1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 * Copyright(c) 2015-2020 Intel Corporation.
4 * Copyright(c) 2021 Cornelis Networks.
7 #include <linux/spinlock.h>
10 #include <linux/delay.h>
11 #include <linux/netdevice.h>
12 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/prefetch.h>
15 #include <rdma/ib_verbs.h>
16 #include <linux/etherdevice.h>
30 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
32 DEFINE_MUTEX(hfi1_mutex
); /* general driver use */
34 unsigned int hfi1_max_mtu
= HFI1_DEFAULT_MAX_MTU
;
35 module_param_named(max_mtu
, hfi1_max_mtu
, uint
, S_IRUGO
);
36 MODULE_PARM_DESC(max_mtu
, "Set max MTU bytes, default is " __stringify(
37 HFI1_DEFAULT_MAX_MTU
));
39 unsigned int hfi1_cu
= 1;
40 module_param_named(cu
, hfi1_cu
, uint
, S_IRUGO
);
41 MODULE_PARM_DESC(cu
, "Credit return units");
43 unsigned long hfi1_cap_mask
= HFI1_CAP_MASK_DEFAULT
;
44 static int hfi1_caps_set(const char *val
, const struct kernel_param
*kp
);
45 static int hfi1_caps_get(char *buffer
, const struct kernel_param
*kp
);
46 static const struct kernel_param_ops cap_ops
= {
50 module_param_cb(cap_mask
, &cap_ops
, &hfi1_cap_mask
, S_IWUSR
| S_IRUGO
);
51 MODULE_PARM_DESC(cap_mask
, "Bit mask of enabled/disabled HW features");
53 MODULE_LICENSE("Dual BSD/GPL");
54 MODULE_DESCRIPTION("Cornelis Omni-Path Express driver");
57 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
59 #define MAX_PKT_RECV 64
61 * MAX_PKT_THREAD_RCV is the max # of packets processed before
62 * the qp_wait_list queue is flushed.
64 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
65 #define EGR_HEAD_UPDATE_THRESHOLD 16
67 struct hfi1_ib_stats hfi1_stats
;
69 static int hfi1_caps_set(const char *val
, const struct kernel_param
*kp
)
72 unsigned long *cap_mask_ptr
= (unsigned long *)kp
->arg
,
73 cap_mask
= *cap_mask_ptr
, value
, diff
,
74 write_mask
= ((HFI1_CAP_WRITABLE_MASK
<< HFI1_CAP_USER_SHIFT
) |
75 HFI1_CAP_WRITABLE_MASK
);
77 ret
= kstrtoul(val
, 0, &value
);
79 pr_warn("Invalid module parameter value for 'cap_mask'\n");
82 /* Get the changed bits (except the locked bit) */
83 diff
= value
^ (cap_mask
& ~HFI1_CAP_LOCKED_SMASK
);
85 /* Remove any bits that are not allowed to change after driver load */
86 if (HFI1_CAP_LOCKED() && (diff
& ~write_mask
)) {
87 pr_warn("Ignoring non-writable capability bits %#lx\n",
92 /* Mask off any reserved bits */
93 diff
&= ~HFI1_CAP_RESERVED_MASK
;
94 /* Clear any previously set and changing bits */
96 /* Update the bits with the new capability */
97 cap_mask
|= (value
& diff
);
98 /* Check for any kernel/user restrictions */
99 diff
= (cap_mask
& (HFI1_CAP_MUST_HAVE_KERN
<< HFI1_CAP_USER_SHIFT
)) ^
100 ((cap_mask
& HFI1_CAP_MUST_HAVE_KERN
) << HFI1_CAP_USER_SHIFT
);
102 /* Set the bitmask to the final set */
103 *cap_mask_ptr
= cap_mask
;
108 static int hfi1_caps_get(char *buffer
, const struct kernel_param
*kp
)
110 unsigned long cap_mask
= *(unsigned long *)kp
->arg
;
112 cap_mask
&= ~HFI1_CAP_LOCKED_SMASK
;
113 cap_mask
|= ((cap_mask
& HFI1_CAP_K2U
) << HFI1_CAP_USER_SHIFT
);
115 return sysfs_emit(buffer
, "0x%lx\n", cap_mask
);
118 struct pci_dev
*get_pci_dev(struct rvt_dev_info
*rdi
)
120 struct hfi1_ibdev
*ibdev
= container_of(rdi
, struct hfi1_ibdev
, rdi
);
121 struct hfi1_devdata
*dd
= container_of(ibdev
,
122 struct hfi1_devdata
, verbs_dev
);
127 * Return count of units with at least one port ACTIVE.
129 int hfi1_count_active_units(void)
131 struct hfi1_devdata
*dd
;
132 struct hfi1_pportdata
*ppd
;
133 unsigned long index
, flags
;
134 int pidx
, nunits_active
= 0;
136 xa_lock_irqsave(&hfi1_dev_table
, flags
);
137 xa_for_each(&hfi1_dev_table
, index
, dd
) {
138 if (!(dd
->flags
& HFI1_PRESENT
) || !dd
->kregbase1
)
140 for (pidx
= 0; pidx
< dd
->num_pports
; ++pidx
) {
141 ppd
= dd
->pport
+ pidx
;
142 if (ppd
->lid
&& ppd
->linkup
) {
148 xa_unlock_irqrestore(&hfi1_dev_table
, flags
);
149 return nunits_active
;
153 * Get address of eager buffer from it's index (allocated in chunks, not
156 static inline void *get_egrbuf(const struct hfi1_ctxtdata
*rcd
, u64 rhf
,
159 u32 idx
= rhf_egr_index(rhf
), offset
= rhf_egr_buf_offset(rhf
);
161 *update
|= !(idx
& (rcd
->egrbufs
.threshold
- 1)) && !offset
;
162 return (void *)(((u64
)(rcd
->egrbufs
.rcvtids
[idx
].addr
)) +
163 (offset
* RCV_BUF_BLOCK_SIZE
));
166 static inline void *hfi1_get_header(struct hfi1_ctxtdata
*rcd
,
169 u32 offset
= rhf_hdrq_offset(rhf_to_cpu(rhf_addr
));
171 return (void *)(rhf_addr
- rcd
->rhf_offset
+ offset
);
174 static inline struct ib_header
*hfi1_get_msgheader(struct hfi1_ctxtdata
*rcd
,
177 return (struct ib_header
*)hfi1_get_header(rcd
, rhf_addr
);
180 static inline struct hfi1_16b_header
181 *hfi1_get_16B_header(struct hfi1_ctxtdata
*rcd
,
184 return (struct hfi1_16b_header
*)hfi1_get_header(rcd
, rhf_addr
);
188 * Validate and encode the a given RcvArray Buffer size.
189 * The function will check whether the given size falls within
190 * allowed size ranges for the respective type and, optionally,
191 * return the proper encoding.
193 int hfi1_rcvbuf_validate(u32 size
, u8 type
, u16
*encoded
)
195 if (unlikely(!PAGE_ALIGNED(size
)))
197 if (unlikely(size
< MIN_EAGER_BUFFER
))
200 (type
== PT_EAGER
? MAX_EAGER_BUFFER
: MAX_EXPECTED_BUFFER
))
203 *encoded
= ilog2(size
/ PAGE_SIZE
) + 1;
207 static void rcv_hdrerr(struct hfi1_ctxtdata
*rcd
, struct hfi1_pportdata
*ppd
,
208 struct hfi1_packet
*packet
)
210 struct ib_header
*rhdr
= packet
->hdr
;
211 u32 rte
= rhf_rcv_type_err(packet
->rhf
);
213 struct hfi1_ibport
*ibp
= rcd_to_iport(rcd
);
214 struct hfi1_devdata
*dd
= ppd
->dd
;
215 struct hfi1_ibdev
*verbs_dev
= &dd
->verbs_dev
;
216 struct rvt_dev_info
*rdi
= &verbs_dev
->rdi
;
218 if ((packet
->rhf
& RHF_DC_ERR
) &&
219 hfi1_dbg_fault_suppress_err(verbs_dev
))
222 if (packet
->rhf
& RHF_ICRC_ERR
)
225 if (packet
->etype
== RHF_RCV_TYPE_BYPASS
) {
228 u8 lnh
= ib_get_lnh(rhdr
);
230 mlid_base
= be16_to_cpu(IB_MULTICAST_LID_BASE
);
231 if (lnh
== HFI1_LRH_BTH
) {
232 packet
->ohdr
= &rhdr
->u
.oth
;
233 } else if (lnh
== HFI1_LRH_GRH
) {
234 packet
->ohdr
= &rhdr
->u
.l
.oth
;
235 packet
->grh
= &rhdr
->u
.l
.grh
;
241 if (packet
->rhf
& RHF_TID_ERR
) {
242 /* For TIDERR and RC QPs preemptively schedule a NAK */
243 u32 tlen
= rhf_pkt_len(packet
->rhf
); /* in bytes */
244 u32 dlid
= ib_get_dlid(rhdr
);
247 /* Sanity check packet */
254 struct ib_grh
*grh
= packet
->grh
;
256 if (grh
->next_hdr
!= IB_GRH_NEXT_HDR
)
258 vtf
= be32_to_cpu(grh
->version_tclass_flow
);
259 if ((vtf
>> IB_GRH_VERSION_SHIFT
) != IB_GRH_VERSION
)
263 /* Get the destination QP number. */
264 qp_num
= ib_bth_get_qpn(packet
->ohdr
);
265 if (dlid
< mlid_base
) {
270 qp
= rvt_lookup_qpn(rdi
, &ibp
->rvp
, qp_num
);
277 * Handle only RC QPs - for other QP types drop error
280 spin_lock_irqsave(&qp
->r_lock
, flags
);
282 /* Check for valid receive state. */
283 if (!(ib_rvt_state_ops
[qp
->state
] &
284 RVT_PROCESS_RECV_OK
)) {
285 ibp
->rvp
.n_pkt_drops
++;
288 switch (qp
->ibqp
.qp_type
) {
290 hfi1_rc_hdrerr(rcd
, packet
, qp
);
293 /* For now don't handle any other QP types */
297 spin_unlock_irqrestore(&qp
->r_lock
, flags
);
300 } /* Valid packet with TIDErr */
302 /* handle "RcvTypeErr" flags */
304 case RHF_RTE_ERROR_OP_CODE_ERR
:
309 if (rhf_use_egr_bfr(packet
->rhf
))
313 goto drop
; /* this should never happen */
315 opcode
= ib_bth_get_opcode(packet
->ohdr
);
316 if (opcode
== IB_OPCODE_CNP
) {
318 * Only in pre-B0 h/w is the CNP_OPCODE handled
319 * via this code path.
321 struct rvt_qp
*qp
= NULL
;
324 u8 svc_type
, sl
, sc5
;
326 sc5
= hfi1_9B_get_sc5(rhdr
, packet
->rhf
);
327 sl
= ibp
->sc_to_sl
[sc5
];
329 lqpn
= ib_bth_get_qpn(packet
->ohdr
);
331 qp
= rvt_lookup_qpn(rdi
, &ibp
->rvp
, lqpn
);
337 switch (qp
->ibqp
.qp_type
) {
341 svc_type
= IB_CC_SVCTYPE_UD
;
344 rlid
= ib_get_slid(rhdr
);
345 rqpn
= qp
->remote_qpn
;
346 svc_type
= IB_CC_SVCTYPE_UC
;
353 process_becn(ppd
, sl
, rlid
, lqpn
, rqpn
, svc_type
);
357 packet
->rhf
&= ~RHF_RCV_TYPE_ERR_SMASK
;
368 static inline void init_packet(struct hfi1_ctxtdata
*rcd
,
369 struct hfi1_packet
*packet
)
371 packet
->rsize
= get_hdrqentsize(rcd
); /* words */
372 packet
->maxcnt
= get_hdrq_cnt(rcd
) * packet
->rsize
; /* words */
376 packet
->rhf_addr
= get_rhf_addr(rcd
);
377 packet
->rhf
= rhf_to_cpu(packet
->rhf_addr
);
378 packet
->rhqoff
= hfi1_rcd_head(rcd
);
382 /* We support only two types - 9B and 16B for now */
383 static const hfi1_handle_cnp hfi1_handle_cnp_tbl
[2] = {
384 [HFI1_PKT_TYPE_9B
] = &return_cnp
,
385 [HFI1_PKT_TYPE_16B
] = &return_cnp_16B
389 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
390 * @qp: The packet's destination QP
391 * @pkt: The packet itself.
392 * @prescan: Is the caller the RXQ prescan
394 * Process the packet's FECN or BECN bits. By now, the packet
395 * has already been evaluated whether processing of those bit should
397 * The significance of the @prescan argument is that if the caller
398 * is the RXQ prescan, a CNP will be send out instead of waiting for the
399 * normal packet processing to send an ACK with BECN set (or a CNP).
401 bool hfi1_process_ecn_slowpath(struct rvt_qp
*qp
, struct hfi1_packet
*pkt
,
404 struct hfi1_ibport
*ibp
= to_iport(qp
->ibqp
.device
, qp
->port_num
);
405 struct hfi1_pportdata
*ppd
= ppd_from_ibp(ibp
);
406 struct ib_other_headers
*ohdr
= pkt
->ohdr
;
407 struct ib_grh
*grh
= pkt
->grh
;
410 u32 rlid
, slid
, dlid
= 0;
411 u8 hdr_type
, sc
, svc_type
, opcode
;
412 bool is_mcast
= false, ignore_fecn
= false, do_cnp
= false,
415 /* can be called from prescan */
416 if (pkt
->etype
== RHF_RCV_TYPE_BYPASS
) {
417 pkey
= hfi1_16B_get_pkey(pkt
->hdr
);
418 sc
= hfi1_16B_get_sc(pkt
->hdr
);
419 dlid
= hfi1_16B_get_dlid(pkt
->hdr
);
420 slid
= hfi1_16B_get_slid(pkt
->hdr
);
421 is_mcast
= hfi1_is_16B_mcast(dlid
);
422 opcode
= ib_bth_get_opcode(ohdr
);
423 hdr_type
= HFI1_PKT_TYPE_16B
;
424 fecn
= hfi1_16B_get_fecn(pkt
->hdr
);
425 becn
= hfi1_16B_get_becn(pkt
->hdr
);
427 pkey
= ib_bth_get_pkey(ohdr
);
428 sc
= hfi1_9B_get_sc5(pkt
->hdr
, pkt
->rhf
);
429 dlid
= qp
->ibqp
.qp_type
!= IB_QPT_UD
? ib_get_dlid(pkt
->hdr
) :
431 slid
= ib_get_slid(pkt
->hdr
);
432 is_mcast
= (dlid
> be16_to_cpu(IB_MULTICAST_LID_BASE
)) &&
433 (dlid
!= be16_to_cpu(IB_LID_PERMISSIVE
));
434 opcode
= ib_bth_get_opcode(ohdr
);
435 hdr_type
= HFI1_PKT_TYPE_9B
;
436 fecn
= ib_bth_get_fecn(ohdr
);
437 becn
= ib_bth_get_becn(ohdr
);
440 switch (qp
->ibqp
.qp_type
) {
443 rqpn
= ib_get_sqpn(pkt
->ohdr
);
444 svc_type
= IB_CC_SVCTYPE_UD
;
449 rqpn
= ib_get_sqpn(pkt
->ohdr
);
450 svc_type
= IB_CC_SVCTYPE_UD
;
453 rlid
= rdma_ah_get_dlid(&qp
->remote_ah_attr
);
454 rqpn
= qp
->remote_qpn
;
455 svc_type
= IB_CC_SVCTYPE_UC
;
458 rlid
= rdma_ah_get_dlid(&qp
->remote_ah_attr
);
459 rqpn
= qp
->remote_qpn
;
460 svc_type
= IB_CC_SVCTYPE_RC
;
466 ignore_fecn
= is_mcast
|| (opcode
== IB_OPCODE_CNP
) ||
467 (opcode
== IB_OPCODE_RC_ACKNOWLEDGE
);
469 * ACKNOWLEDGE packets do not get a CNP but this will be
470 * guarded by ignore_fecn above.
473 (opcode
>= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST
&&
474 opcode
<= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE
) ||
475 opcode
== TID_OP(READ_RESP
) ||
476 opcode
== TID_OP(ACK
);
478 /* Call appropriate CNP handler */
479 if (!ignore_fecn
&& do_cnp
&& fecn
)
480 hfi1_handle_cnp_tbl
[hdr_type
](ibp
, qp
, rqpn
, pkey
,
481 dlid
, rlid
, sc
, grh
);
484 u32 lqpn
= be32_to_cpu(ohdr
->bth
[1]) & RVT_QPN_MASK
;
485 u8 sl
= ibp
->sc_to_sl
[sc
];
487 process_becn(ppd
, sl
, rlid
, lqpn
, rqpn
, svc_type
);
489 return !ignore_fecn
&& fecn
;
493 struct hfi1_ctxtdata
*rcd
;
501 static inline void init_ps_mdata(struct ps_mdata
*mdata
,
502 struct hfi1_packet
*packet
)
504 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
507 mdata
->rsize
= packet
->rsize
;
508 mdata
->maxcnt
= packet
->maxcnt
;
509 mdata
->ps_head
= packet
->rhqoff
;
511 if (get_dma_rtail_setting(rcd
)) {
512 mdata
->ps_tail
= get_rcvhdrtail(rcd
);
513 if (rcd
->ctxt
== HFI1_CTRL_CTXT
)
514 mdata
->ps_seq
= hfi1_seq_cnt(rcd
);
516 mdata
->ps_seq
= 0; /* not used with DMA_RTAIL */
518 mdata
->ps_tail
= 0; /* used only with DMA_RTAIL*/
519 mdata
->ps_seq
= hfi1_seq_cnt(rcd
);
523 static inline int ps_done(struct ps_mdata
*mdata
, u64 rhf
,
524 struct hfi1_ctxtdata
*rcd
)
526 if (get_dma_rtail_setting(rcd
))
527 return mdata
->ps_head
== mdata
->ps_tail
;
528 return mdata
->ps_seq
!= rhf_rcv_seq(rhf
);
531 static inline int ps_skip(struct ps_mdata
*mdata
, u64 rhf
,
532 struct hfi1_ctxtdata
*rcd
)
535 * Control context can potentially receive an invalid rhf.
538 if ((rcd
->ctxt
== HFI1_CTRL_CTXT
) && (mdata
->ps_head
!= mdata
->ps_tail
))
539 return mdata
->ps_seq
!= rhf_rcv_seq(rhf
);
544 static inline void update_ps_mdata(struct ps_mdata
*mdata
,
545 struct hfi1_ctxtdata
*rcd
)
547 mdata
->ps_head
+= mdata
->rsize
;
548 if (mdata
->ps_head
>= mdata
->maxcnt
)
551 /* Control context must do seq counting */
552 if (!get_dma_rtail_setting(rcd
) ||
553 rcd
->ctxt
== HFI1_CTRL_CTXT
)
554 mdata
->ps_seq
= hfi1_seq_incr_wrap(mdata
->ps_seq
);
558 * prescan_rxq - search through the receive queue looking for packets
559 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
560 * When an ECN is found, process the Congestion Notification, and toggle
562 * This is declared as a macro to allow quick checking of the port to avoid
563 * the overhead of a function call if not enabled.
565 #define prescan_rxq(rcd, packet) \
567 if (rcd->ppd->cc_prescan) \
568 __prescan_rxq(packet); \
570 static void __prescan_rxq(struct hfi1_packet
*packet
)
572 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
573 struct ps_mdata mdata
;
575 init_ps_mdata(&mdata
, packet
);
578 struct hfi1_ibport
*ibp
= rcd_to_iport(rcd
);
579 __le32
*rhf_addr
= (__le32
*)rcd
->rcvhdrq
+ mdata
.ps_head
+
580 packet
->rcd
->rhf_offset
;
582 struct ib_header
*hdr
;
583 struct rvt_dev_info
*rdi
= &rcd
->dd
->verbs_dev
.rdi
;
584 u64 rhf
= rhf_to_cpu(rhf_addr
);
585 u32 etype
= rhf_rcv_type(rhf
), qpn
, bth1
;
588 if (ps_done(&mdata
, rhf
, rcd
))
591 if (ps_skip(&mdata
, rhf
, rcd
))
594 if (etype
!= RHF_RCV_TYPE_IB
)
597 packet
->hdr
= hfi1_get_msgheader(packet
->rcd
, rhf_addr
);
599 lnh
= ib_get_lnh(hdr
);
601 if (lnh
== HFI1_LRH_BTH
) {
602 packet
->ohdr
= &hdr
->u
.oth
;
604 } else if (lnh
== HFI1_LRH_GRH
) {
605 packet
->ohdr
= &hdr
->u
.l
.oth
;
606 packet
->grh
= &hdr
->u
.l
.grh
;
608 goto next
; /* just in case */
611 if (!hfi1_may_ecn(packet
))
614 bth1
= be32_to_cpu(packet
->ohdr
->bth
[1]);
615 qpn
= bth1
& RVT_QPN_MASK
;
617 qp
= rvt_lookup_qpn(rdi
, &ibp
->rvp
, qpn
);
624 hfi1_process_ecn_slowpath(qp
, packet
, true);
627 /* turn off BECN, FECN */
628 bth1
&= ~(IB_FECN_SMASK
| IB_BECN_SMASK
);
629 packet
->ohdr
->bth
[1] = cpu_to_be32(bth1
);
631 update_ps_mdata(&mdata
, rcd
);
635 static void process_rcv_qp_work(struct hfi1_packet
*packet
)
637 struct rvt_qp
*qp
, *nqp
;
638 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
641 * Iterate over all QPs waiting to respond.
642 * The list won't change since the IRQ is only run on one CPU.
644 list_for_each_entry_safe(qp
, nqp
, &rcd
->qp_wait_list
, rspwait
) {
645 list_del_init(&qp
->rspwait
);
646 if (qp
->r_flags
& RVT_R_RSP_NAK
) {
647 qp
->r_flags
&= ~RVT_R_RSP_NAK
;
649 hfi1_send_rc_ack(packet
, 0);
651 if (qp
->r_flags
& RVT_R_RSP_SEND
) {
654 qp
->r_flags
&= ~RVT_R_RSP_SEND
;
655 spin_lock_irqsave(&qp
->s_lock
, flags
);
656 if (ib_rvt_state_ops
[qp
->state
] &
657 RVT_PROCESS_OR_FLUSH_SEND
)
658 hfi1_schedule_send(qp
);
659 spin_unlock_irqrestore(&qp
->s_lock
, flags
);
665 static noinline
int max_packet_exceeded(struct hfi1_packet
*packet
, int thread
)
668 if ((packet
->numpkt
& (MAX_PKT_RECV_THREAD
- 1)) == 0)
669 /* allow defered processing */
670 process_rcv_qp_work(packet
);
674 this_cpu_inc(*packet
->rcd
->dd
->rcv_limit
);
675 return RCV_PKT_LIMIT
;
679 static inline int check_max_packet(struct hfi1_packet
*packet
, int thread
)
681 int ret
= RCV_PKT_OK
;
683 if (unlikely((packet
->numpkt
& (MAX_PKT_RECV
- 1)) == 0))
684 ret
= max_packet_exceeded(packet
, thread
);
688 static noinline
int skip_rcv_packet(struct hfi1_packet
*packet
, int thread
)
692 packet
->rcd
->dd
->ctx0_seq_drop
++;
693 /* Set up for the next packet */
694 packet
->rhqoff
+= packet
->rsize
;
695 if (packet
->rhqoff
>= packet
->maxcnt
)
699 ret
= check_max_packet(packet
, thread
);
701 packet
->rhf_addr
= (__le32
*)packet
->rcd
->rcvhdrq
+ packet
->rhqoff
+
702 packet
->rcd
->rhf_offset
;
703 packet
->rhf
= rhf_to_cpu(packet
->rhf_addr
);
708 static void process_rcv_packet_napi(struct hfi1_packet
*packet
)
710 packet
->etype
= rhf_rcv_type(packet
->rhf
);
713 packet
->tlen
= rhf_pkt_len(packet
->rhf
); /* in bytes */
714 /* retrieve eager buffer details */
715 packet
->etail
= rhf_egr_index(packet
->rhf
);
716 packet
->ebuf
= get_egrbuf(packet
->rcd
, packet
->rhf
,
719 * Prefetch the contents of the eager buffer. It is
720 * OK to send a negative length to prefetch_range().
721 * The +2 is the size of the RHF.
723 prefetch_range(packet
->ebuf
,
724 packet
->tlen
- ((packet
->rcd
->rcvhdrqentsize
-
725 (rhf_hdrq_offset(packet
->rhf
)
728 packet
->rcd
->rhf_rcv_function_map
[packet
->etype
](packet
);
731 /* Set up for the next packet */
732 packet
->rhqoff
+= packet
->rsize
;
733 if (packet
->rhqoff
>= packet
->maxcnt
)
736 packet
->rhf_addr
= (__le32
*)packet
->rcd
->rcvhdrq
+ packet
->rhqoff
+
737 packet
->rcd
->rhf_offset
;
738 packet
->rhf
= rhf_to_cpu(packet
->rhf_addr
);
741 static inline int process_rcv_packet(struct hfi1_packet
*packet
, int thread
)
745 packet
->etype
= rhf_rcv_type(packet
->rhf
);
748 packet
->tlen
= rhf_pkt_len(packet
->rhf
); /* in bytes */
749 /* retrieve eager buffer details */
751 if (rhf_use_egr_bfr(packet
->rhf
)) {
752 packet
->etail
= rhf_egr_index(packet
->rhf
);
753 packet
->ebuf
= get_egrbuf(packet
->rcd
, packet
->rhf
,
756 * Prefetch the contents of the eager buffer. It is
757 * OK to send a negative length to prefetch_range().
758 * The +2 is the size of the RHF.
760 prefetch_range(packet
->ebuf
,
761 packet
->tlen
- ((get_hdrqentsize(packet
->rcd
) -
762 (rhf_hdrq_offset(packet
->rhf
)
767 * Call a type specific handler for the packet. We
768 * should be able to trust that etype won't be beyond
769 * the range of valid indexes. If so something is really
770 * wrong and we can probably just let things come
771 * crashing down. There is no need to eat another
772 * comparison in this performance critical code.
774 packet
->rcd
->rhf_rcv_function_map
[packet
->etype
](packet
);
777 /* Set up for the next packet */
778 packet
->rhqoff
+= packet
->rsize
;
779 if (packet
->rhqoff
>= packet
->maxcnt
)
782 ret
= check_max_packet(packet
, thread
);
784 packet
->rhf_addr
= (__le32
*)packet
->rcd
->rcvhdrq
+ packet
->rhqoff
+
785 packet
->rcd
->rhf_offset
;
786 packet
->rhf
= rhf_to_cpu(packet
->rhf_addr
);
791 static inline void process_rcv_update(int last
, struct hfi1_packet
*packet
)
794 * Update head regs etc., every 16 packets, if not last pkt,
795 * to help prevent rcvhdrq overflows, when many packets
796 * are processed and queue is nearly full.
797 * Don't request an interrupt for intermediate updates.
799 if (!last
&& !(packet
->numpkt
& 0xf)) {
800 update_usrhead(packet
->rcd
, packet
->rhqoff
, packet
->updegr
,
801 packet
->etail
, 0, 0);
807 static inline void finish_packet(struct hfi1_packet
*packet
)
810 * Nothing we need to free for the packet.
812 * The only thing we need to do is a final update and call for an
815 update_usrhead(packet
->rcd
, hfi1_rcd_head(packet
->rcd
), packet
->updegr
,
816 packet
->etail
, rcv_intr_dynamic
, packet
->numpkt
);
820 * handle_receive_interrupt_napi_fp - receive a packet
822 * @budget: polling budget
824 * Called from interrupt handler for receive interrupt.
825 * This is the fast path interrupt handler
826 * when executing napi soft irq environment.
828 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata
*rcd
, int budget
)
830 struct hfi1_packet packet
;
832 init_packet(rcd
, &packet
);
833 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
)))
836 while (packet
.numpkt
< budget
) {
837 process_rcv_packet_napi(&packet
);
838 if (hfi1_seq_incr(rcd
, rhf_rcv_seq(packet
.rhf
)))
841 process_rcv_update(0, &packet
);
843 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
845 finish_packet(&packet
);
846 return packet
.numpkt
;
850 * Handle receive interrupts when using the no dma rtail option.
852 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata
*rcd
, int thread
)
854 int last
= RCV_PKT_OK
;
855 struct hfi1_packet packet
;
857 init_packet(rcd
, &packet
);
858 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
))) {
863 prescan_rxq(rcd
, &packet
);
865 while (last
== RCV_PKT_OK
) {
866 last
= process_rcv_packet(&packet
, thread
);
867 if (hfi1_seq_incr(rcd
, rhf_rcv_seq(packet
.rhf
)))
869 process_rcv_update(last
, &packet
);
871 process_rcv_qp_work(&packet
);
872 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
874 finish_packet(&packet
);
878 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata
*rcd
, int thread
)
881 int last
= RCV_PKT_OK
;
882 struct hfi1_packet packet
;
884 init_packet(rcd
, &packet
);
885 hdrqtail
= get_rcvhdrtail(rcd
);
886 if (packet
.rhqoff
== hdrqtail
) {
890 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
892 prescan_rxq(rcd
, &packet
);
894 while (last
== RCV_PKT_OK
) {
895 last
= process_rcv_packet(&packet
, thread
);
896 if (packet
.rhqoff
== hdrqtail
)
898 process_rcv_update(last
, &packet
);
900 process_rcv_qp_work(&packet
);
901 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
903 finish_packet(&packet
);
907 static void set_all_fastpath(struct hfi1_devdata
*dd
, struct hfi1_ctxtdata
*rcd
)
912 * For dynamically allocated kernel contexts (like vnic) switch
913 * interrupt handler only for that context. Otherwise, switch
914 * interrupt handler for all statically allocated kernel contexts.
916 if (rcd
->ctxt
>= dd
->first_dyn_alloc_ctxt
&& !rcd
->is_vnic
) {
923 for (i
= HFI1_CTRL_CTXT
+ 1; i
< dd
->num_rcv_contexts
; i
++) {
924 rcd
= hfi1_rcd_get_by_index(dd
, i
);
925 if (rcd
&& (i
< dd
->first_dyn_alloc_ctxt
|| rcd
->is_vnic
))
931 void set_all_slowpath(struct hfi1_devdata
*dd
)
933 struct hfi1_ctxtdata
*rcd
;
936 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
937 for (i
= HFI1_CTRL_CTXT
+ 1; i
< dd
->num_rcv_contexts
; i
++) {
938 rcd
= hfi1_rcd_get_by_index(dd
, i
);
941 if (i
< dd
->first_dyn_alloc_ctxt
|| rcd
->is_vnic
)
942 rcd
->do_interrupt
= rcd
->slow_handler
;
948 static bool __set_armed_to_active(struct hfi1_packet
*packet
)
950 u8 etype
= rhf_rcv_type(packet
->rhf
);
953 if (etype
== RHF_RCV_TYPE_IB
) {
954 struct ib_header
*hdr
= hfi1_get_msgheader(packet
->rcd
,
956 sc
= hfi1_9B_get_sc5(hdr
, packet
->rhf
);
957 } else if (etype
== RHF_RCV_TYPE_BYPASS
) {
958 struct hfi1_16b_header
*hdr
= hfi1_get_16B_header(
961 sc
= hfi1_16B_get_sc(hdr
);
963 if (sc
!= SC15_PACKET
) {
964 int hwstate
= driver_lstate(packet
->rcd
->ppd
);
965 struct work_struct
*lsaw
=
966 &packet
->rcd
->ppd
->linkstate_active_work
;
968 if (hwstate
!= IB_PORT_ACTIVE
) {
969 dd_dev_info(packet
->rcd
->dd
,
970 "Unexpected link state %s\n",
971 opa_lstate_name(hwstate
));
975 queue_work(packet
->rcd
->ppd
->link_wq
, lsaw
);
982 * set_armed_to_active - the fast path for armed to active
983 * @packet: the packet structure
985 * Return true if packet processing needs to bail.
987 static bool set_armed_to_active(struct hfi1_packet
*packet
)
989 if (likely(packet
->rcd
->ppd
->host_link_state
!= HLS_UP_ARMED
))
991 return __set_armed_to_active(packet
);
995 * handle_receive_interrupt - receive a packet
998 * Called from interrupt handler for errors or receive interrupt.
999 * This is the slow path interrupt handler.
1001 int handle_receive_interrupt(struct hfi1_ctxtdata
*rcd
, int thread
)
1003 struct hfi1_devdata
*dd
= rcd
->dd
;
1005 int needset
, last
= RCV_PKT_OK
;
1006 struct hfi1_packet packet
;
1011 /* Control context will always use the slow path interrupt handler */
1012 needset
= (rcd
->ctxt
== HFI1_CTRL_CTXT
) ? 0 : 1;
1014 init_packet(rcd
, &packet
);
1016 if (!get_dma_rtail_setting(rcd
)) {
1017 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
))) {
1018 last
= RCV_PKT_DONE
;
1023 hdrqtail
= get_rcvhdrtail(rcd
);
1024 if (packet
.rhqoff
== hdrqtail
) {
1025 last
= RCV_PKT_DONE
;
1028 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
1031 * Control context can potentially receive an invalid
1032 * rhf. Drop such packets.
1034 if (rcd
->ctxt
== HFI1_CTRL_CTXT
)
1035 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
)))
1039 prescan_rxq(rcd
, &packet
);
1041 while (last
== RCV_PKT_OK
) {
1042 if (hfi1_need_drop(dd
)) {
1043 /* On to the next packet */
1044 packet
.rhqoff
+= packet
.rsize
;
1045 packet
.rhf_addr
= (__le32
*)rcd
->rcvhdrq
+
1048 packet
.rhf
= rhf_to_cpu(packet
.rhf_addr
);
1050 } else if (skip_pkt
) {
1051 last
= skip_rcv_packet(&packet
, thread
);
1054 if (set_armed_to_active(&packet
))
1056 last
= process_rcv_packet(&packet
, thread
);
1059 if (!get_dma_rtail_setting(rcd
)) {
1060 if (hfi1_seq_incr(rcd
, rhf_rcv_seq(packet
.rhf
)))
1061 last
= RCV_PKT_DONE
;
1063 if (packet
.rhqoff
== hdrqtail
)
1064 last
= RCV_PKT_DONE
;
1066 * Control context can potentially receive an invalid
1067 * rhf. Drop such packets.
1069 if (rcd
->ctxt
== HFI1_CTRL_CTXT
) {
1072 lseq
= hfi1_seq_incr(rcd
,
1073 rhf_rcv_seq(packet
.rhf
));
1081 set_all_fastpath(dd
, rcd
);
1083 process_rcv_update(last
, &packet
);
1086 process_rcv_qp_work(&packet
);
1087 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
1091 * Always write head at end, and setup rcv interrupt, even
1092 * if no packets were processed.
1094 finish_packet(&packet
);
1099 * handle_receive_interrupt_napi_sp - receive a packet
1101 * @budget: polling budget
1103 * Called from interrupt handler for errors or receive interrupt.
1104 * This is the slow path interrupt handler
1105 * when executing napi soft irq environment.
1107 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata
*rcd
, int budget
)
1109 struct hfi1_devdata
*dd
= rcd
->dd
;
1110 int last
= RCV_PKT_OK
;
1111 bool needset
= true;
1112 struct hfi1_packet packet
;
1114 init_packet(rcd
, &packet
);
1115 if (last_rcv_seq(rcd
, rhf_rcv_seq(packet
.rhf
)))
1118 while (last
!= RCV_PKT_DONE
&& packet
.numpkt
< budget
) {
1119 if (hfi1_need_drop(dd
)) {
1120 /* On to the next packet */
1121 packet
.rhqoff
+= packet
.rsize
;
1122 packet
.rhf_addr
= (__le32
*)rcd
->rcvhdrq
+
1125 packet
.rhf
= rhf_to_cpu(packet
.rhf_addr
);
1128 if (set_armed_to_active(&packet
))
1130 process_rcv_packet_napi(&packet
);
1133 if (hfi1_seq_incr(rcd
, rhf_rcv_seq(packet
.rhf
)))
1134 last
= RCV_PKT_DONE
;
1138 set_all_fastpath(dd
, rcd
);
1141 process_rcv_update(last
, &packet
);
1144 hfi1_set_rcd_head(rcd
, packet
.rhqoff
);
1148 * Always write head at end, and setup rcv interrupt, even
1149 * if no packets were processed.
1151 finish_packet(&packet
);
1152 return packet
.numpkt
;
1156 * We may discover in the interrupt that the hardware link state has
1157 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1158 * and we need to update the driver's notion of the link state. We cannot
1159 * run set_link_state from interrupt context, so we queue this function on
1162 * We delay the regular interrupt processing until after the state changes
1163 * so that the link will be in the correct state by the time any application
1164 * we wake up attempts to send a reply to any message it received.
1165 * (Subsequent receive interrupts may possibly force the wakeup before we
1166 * update the link state.)
1168 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1169 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1170 * so we're safe from use-after-free of the rcd.
1172 void receive_interrupt_work(struct work_struct
*work
)
1174 struct hfi1_pportdata
*ppd
= container_of(work
, struct hfi1_pportdata
,
1175 linkstate_active_work
);
1176 struct hfi1_devdata
*dd
= ppd
->dd
;
1177 struct hfi1_ctxtdata
*rcd
;
1180 /* Received non-SC15 packet implies neighbor_normal */
1181 ppd
->neighbor_normal
= 1;
1182 set_link_state(ppd
, HLS_UP_ACTIVE
);
1185 * Interrupt all statically allocated kernel contexts that could
1186 * have had an interrupt during auto activation.
1188 for (i
= HFI1_CTRL_CTXT
; i
< dd
->first_dyn_alloc_ctxt
; i
++) {
1189 rcd
= hfi1_rcd_get_by_index(dd
, i
);
1191 force_recv_intr(rcd
);
1197 * Convert a given MTU size to the on-wire MAD packet enumeration.
1198 * Return -1 if the size is invalid.
1200 int mtu_to_enum(u32 mtu
, int default_if_bad
)
1203 case 0: return OPA_MTU_0
;
1204 case 256: return OPA_MTU_256
;
1205 case 512: return OPA_MTU_512
;
1206 case 1024: return OPA_MTU_1024
;
1207 case 2048: return OPA_MTU_2048
;
1208 case 4096: return OPA_MTU_4096
;
1209 case 8192: return OPA_MTU_8192
;
1210 case 10240: return OPA_MTU_10240
;
1212 return default_if_bad
;
1215 u16
enum_to_mtu(int mtu
)
1218 case OPA_MTU_0
: return 0;
1219 case OPA_MTU_256
: return 256;
1220 case OPA_MTU_512
: return 512;
1221 case OPA_MTU_1024
: return 1024;
1222 case OPA_MTU_2048
: return 2048;
1223 case OPA_MTU_4096
: return 4096;
1224 case OPA_MTU_8192
: return 8192;
1225 case OPA_MTU_10240
: return 10240;
1226 default: return 0xffff;
1231 * set_mtu - set the MTU
1232 * @ppd: the per port data
1234 * We can handle "any" incoming size, the issue here is whether we
1235 * need to restrict our outgoing size. We do not deal with what happens
1236 * to programs that are already running when the size changes.
1238 int set_mtu(struct hfi1_pportdata
*ppd
)
1240 struct hfi1_devdata
*dd
= ppd
->dd
;
1241 int i
, drain
, ret
= 0, is_up
= 0;
1244 for (i
= 0; i
< ppd
->vls_supported
; i
++)
1245 if (ppd
->ibmtu
< dd
->vld
[i
].mtu
)
1246 ppd
->ibmtu
= dd
->vld
[i
].mtu
;
1247 ppd
->ibmaxlen
= ppd
->ibmtu
+ lrh_max_header_bytes(ppd
->dd
);
1249 mutex_lock(&ppd
->hls_lock
);
1250 if (ppd
->host_link_state
== HLS_UP_INIT
||
1251 ppd
->host_link_state
== HLS_UP_ARMED
||
1252 ppd
->host_link_state
== HLS_UP_ACTIVE
)
1255 drain
= !is_ax(dd
) && is_up
;
1259 * MTU is specified per-VL. To ensure that no packet gets
1260 * stuck (due, e.g., to the MTU for the packet's VL being
1261 * reduced), empty the per-VL FIFOs before adjusting MTU.
1263 ret
= stop_drain_data_vls(dd
);
1266 dd_dev_err(dd
, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1271 hfi1_set_ib_cfg(ppd
, HFI1_IB_CFG_MTU
, 0);
1274 open_fill_data_vls(dd
); /* reopen all VLs */
1277 mutex_unlock(&ppd
->hls_lock
);
1282 int hfi1_set_lid(struct hfi1_pportdata
*ppd
, u32 lid
, u8 lmc
)
1284 struct hfi1_devdata
*dd
= ppd
->dd
;
1288 hfi1_set_ib_cfg(ppd
, HFI1_IB_CFG_LIDLMC
, 0);
1290 dd_dev_info(dd
, "port %u: got a lid: 0x%x\n", ppd
->port
, lid
);
1295 void shutdown_led_override(struct hfi1_pportdata
*ppd
)
1297 struct hfi1_devdata
*dd
= ppd
->dd
;
1300 * This pairs with the memory barrier in hfi1_start_led_override to
1301 * ensure that we read the correct state of LED beaconing represented
1302 * by led_override_timer_active
1305 if (atomic_read(&ppd
->led_override_timer_active
)) {
1306 del_timer_sync(&ppd
->led_override_timer
);
1307 atomic_set(&ppd
->led_override_timer_active
, 0);
1308 /* Ensure the atomic_set is visible to all CPUs */
1312 /* Hand control of the LED to the DC for normal operation */
1313 write_csr(dd
, DCC_CFG_LED_CNTRL
, 0);
1316 static void run_led_override(struct timer_list
*t
)
1318 struct hfi1_pportdata
*ppd
= from_timer(ppd
, t
, led_override_timer
);
1319 struct hfi1_devdata
*dd
= ppd
->dd
;
1320 unsigned long timeout
;
1323 if (!(dd
->flags
& HFI1_INITTED
))
1326 phase_idx
= ppd
->led_override_phase
& 1;
1328 setextled(dd
, phase_idx
);
1330 timeout
= ppd
->led_override_vals
[phase_idx
];
1332 /* Set up for next phase */
1333 ppd
->led_override_phase
= !ppd
->led_override_phase
;
1335 mod_timer(&ppd
->led_override_timer
, jiffies
+ timeout
);
1339 * To have the LED blink in a particular pattern, provide timeon and timeoff
1341 * To turn off custom blinking and return to normal operation, use
1342 * shutdown_led_override()
1344 void hfi1_start_led_override(struct hfi1_pportdata
*ppd
, unsigned int timeon
,
1345 unsigned int timeoff
)
1347 if (!(ppd
->dd
->flags
& HFI1_INITTED
))
1350 /* Convert to jiffies for direct use in timer */
1351 ppd
->led_override_vals
[0] = msecs_to_jiffies(timeoff
);
1352 ppd
->led_override_vals
[1] = msecs_to_jiffies(timeon
);
1354 /* Arbitrarily start from LED on phase */
1355 ppd
->led_override_phase
= 1;
1358 * If the timer has not already been started, do so. Use a "quick"
1359 * timeout so the handler will be called soon to look at our request.
1361 if (!timer_pending(&ppd
->led_override_timer
)) {
1362 timer_setup(&ppd
->led_override_timer
, run_led_override
, 0);
1363 ppd
->led_override_timer
.expires
= jiffies
+ 1;
1364 add_timer(&ppd
->led_override_timer
);
1365 atomic_set(&ppd
->led_override_timer_active
, 1);
1366 /* Ensure the atomic_set is visible to all CPUs */
1372 * hfi1_reset_device - reset the chip if possible
1373 * @unit: the device to reset
1375 * Whether or not reset is successful, we attempt to re-initialize the chip
1376 * (that is, much like a driver unload/reload). We clear the INITTED flag
1377 * so that the various entry points will fail until we reinitialize. For
1378 * now, we only allow this if no user contexts are open that use chip resources
1380 int hfi1_reset_device(int unit
)
1383 struct hfi1_devdata
*dd
= hfi1_lookup(unit
);
1384 struct hfi1_pportdata
*ppd
;
1392 dd_dev_info(dd
, "Reset on unit %u requested\n", unit
);
1394 if (!dd
->kregbase1
|| !(dd
->flags
& HFI1_PRESENT
)) {
1396 "Invalid unit number %u or not initialized or not present\n",
1402 /* If there are any user/vnic contexts, we cannot reset */
1403 mutex_lock(&hfi1_mutex
);
1405 if (hfi1_stats
.sps_ctxts
) {
1406 mutex_unlock(&hfi1_mutex
);
1410 mutex_unlock(&hfi1_mutex
);
1412 for (pidx
= 0; pidx
< dd
->num_pports
; ++pidx
) {
1413 ppd
= dd
->pport
+ pidx
;
1415 shutdown_led_override(ppd
);
1417 if (dd
->flags
& HFI1_HAS_SEND_DMA
)
1420 hfi1_reset_cpu_counters(dd
);
1422 ret
= hfi1_init(dd
, 1);
1426 "Reinitialize unit %u after reset failed with %d\n",
1429 dd_dev_info(dd
, "Reinitialized unit %u after resetting\n",
1436 static inline void hfi1_setup_ib_header(struct hfi1_packet
*packet
)
1438 packet
->hdr
= (struct hfi1_ib_message_header
*)
1439 hfi1_get_msgheader(packet
->rcd
,
1441 packet
->hlen
= (u8
*)packet
->rhf_addr
- (u8
*)packet
->hdr
;
1444 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet
*packet
)
1446 struct hfi1_pportdata
*ppd
= packet
->rcd
->ppd
;
1448 /* slid and dlid cannot be 0 */
1449 if ((!packet
->slid
) || (!packet
->dlid
))
1452 /* Compare port lid with incoming packet dlid */
1453 if ((!(hfi1_is_16B_mcast(packet
->dlid
))) &&
1455 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE
), 16B
))) {
1456 if ((packet
->dlid
& ~((1 << ppd
->lmc
) - 1)) != ppd
->lid
)
1460 /* No multicast packets with SC15 */
1461 if ((hfi1_is_16B_mcast(packet
->dlid
)) && (packet
->sc
== 0xF))
1464 /* Packets with permissive DLID always on SC15 */
1465 if ((packet
->dlid
== opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE
),
1467 (packet
->sc
!= 0xF))
1473 static int hfi1_setup_9B_packet(struct hfi1_packet
*packet
)
1475 struct hfi1_ibport
*ibp
= rcd_to_iport(packet
->rcd
);
1476 struct ib_header
*hdr
;
1479 hfi1_setup_ib_header(packet
);
1482 lnh
= ib_get_lnh(hdr
);
1483 if (lnh
== HFI1_LRH_BTH
) {
1484 packet
->ohdr
= &hdr
->u
.oth
;
1486 } else if (lnh
== HFI1_LRH_GRH
) {
1489 packet
->ohdr
= &hdr
->u
.l
.oth
;
1490 packet
->grh
= &hdr
->u
.l
.grh
;
1491 if (packet
->grh
->next_hdr
!= IB_GRH_NEXT_HDR
)
1493 vtf
= be32_to_cpu(packet
->grh
->version_tclass_flow
);
1494 if ((vtf
>> IB_GRH_VERSION_SHIFT
) != IB_GRH_VERSION
)
1500 /* Query commonly used fields from packet header */
1501 packet
->payload
= packet
->ebuf
;
1502 packet
->opcode
= ib_bth_get_opcode(packet
->ohdr
);
1503 packet
->slid
= ib_get_slid(hdr
);
1504 packet
->dlid
= ib_get_dlid(hdr
);
1505 if (unlikely((packet
->dlid
>= be16_to_cpu(IB_MULTICAST_LID_BASE
)) &&
1506 (packet
->dlid
!= be16_to_cpu(IB_LID_PERMISSIVE
))))
1507 packet
->dlid
+= opa_get_mcast_base(OPA_MCAST_NR
) -
1508 be16_to_cpu(IB_MULTICAST_LID_BASE
);
1509 packet
->sl
= ib_get_sl(hdr
);
1510 packet
->sc
= hfi1_9B_get_sc5(hdr
, packet
->rhf
);
1511 packet
->pad
= ib_bth_get_pad(packet
->ohdr
);
1512 packet
->extra_byte
= 0;
1513 packet
->pkey
= ib_bth_get_pkey(packet
->ohdr
);
1514 packet
->migrated
= ib_bth_is_migration(packet
->ohdr
);
1518 ibp
->rvp
.n_pkt_drops
++;
1522 static int hfi1_setup_bypass_packet(struct hfi1_packet
*packet
)
1525 * Bypass packets have a different header/payload split
1526 * compared to an IB packet.
1527 * Current split is set such that 16 bytes of the actual
1528 * header is in the header buffer and the remining is in
1529 * the eager buffer. We chose 16 since hfi1 driver only
1530 * supports 16B bypass packets and we will be able to
1531 * receive the entire LRH with such a split.
1534 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1535 struct hfi1_pportdata
*ppd
= rcd
->ppd
;
1536 struct hfi1_ibport
*ibp
= &ppd
->ibport_data
;
1539 packet
->hdr
= (struct hfi1_16b_header
*)
1540 hfi1_get_16B_header(packet
->rcd
,
1542 l4
= hfi1_16B_get_l4(packet
->hdr
);
1543 if (l4
== OPA_16B_L4_IB_LOCAL
) {
1544 packet
->ohdr
= packet
->ebuf
;
1546 packet
->opcode
= ib_bth_get_opcode(packet
->ohdr
);
1547 packet
->pad
= hfi1_16B_bth_get_pad(packet
->ohdr
);
1548 /* hdr_len_by_opcode already has an IB LRH factored in */
1549 packet
->hlen
= hdr_len_by_opcode
[packet
->opcode
] +
1550 (LRH_16B_BYTES
- LRH_9B_BYTES
);
1551 packet
->migrated
= opa_bth_is_migration(packet
->ohdr
);
1552 } else if (l4
== OPA_16B_L4_IB_GLOBAL
) {
1554 u8 grh_len
= sizeof(struct ib_grh
);
1556 packet
->ohdr
= packet
->ebuf
+ grh_len
;
1557 packet
->grh
= packet
->ebuf
;
1558 packet
->opcode
= ib_bth_get_opcode(packet
->ohdr
);
1559 packet
->pad
= hfi1_16B_bth_get_pad(packet
->ohdr
);
1560 /* hdr_len_by_opcode already has an IB LRH factored in */
1561 packet
->hlen
= hdr_len_by_opcode
[packet
->opcode
] +
1562 (LRH_16B_BYTES
- LRH_9B_BYTES
) + grh_len
;
1563 packet
->migrated
= opa_bth_is_migration(packet
->ohdr
);
1565 if (packet
->grh
->next_hdr
!= IB_GRH_NEXT_HDR
)
1567 vtf
= be32_to_cpu(packet
->grh
->version_tclass_flow
);
1568 if ((vtf
>> IB_GRH_VERSION_SHIFT
) != IB_GRH_VERSION
)
1570 } else if (l4
== OPA_16B_L4_FM
) {
1571 packet
->mgmt
= packet
->ebuf
;
1572 packet
->ohdr
= NULL
;
1574 packet
->opcode
= IB_OPCODE_UD_SEND_ONLY
;
1575 packet
->pad
= OPA_16B_L4_FM_PAD
;
1576 packet
->hlen
= OPA_16B_L4_FM_HLEN
;
1577 packet
->migrated
= false;
1582 /* Query commonly used fields from packet header */
1583 packet
->payload
= packet
->ebuf
+ packet
->hlen
- LRH_16B_BYTES
;
1584 packet
->slid
= hfi1_16B_get_slid(packet
->hdr
);
1585 packet
->dlid
= hfi1_16B_get_dlid(packet
->hdr
);
1586 if (unlikely(hfi1_is_16B_mcast(packet
->dlid
)))
1587 packet
->dlid
+= opa_get_mcast_base(OPA_MCAST_NR
) -
1588 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR
),
1590 packet
->sc
= hfi1_16B_get_sc(packet
->hdr
);
1591 packet
->sl
= ibp
->sc_to_sl
[packet
->sc
];
1592 packet
->extra_byte
= SIZE_OF_LT
;
1593 packet
->pkey
= hfi1_16B_get_pkey(packet
->hdr
);
1595 if (hfi1_bypass_ingress_pkt_check(packet
))
1600 hfi1_cdbg(PKT
, "%s: packet dropped", __func__
);
1601 ibp
->rvp
.n_pkt_drops
++;
1605 static void show_eflags_errs(struct hfi1_packet
*packet
)
1607 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1608 u32 rte
= rhf_rcv_type_err(packet
->rhf
);
1611 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1612 rcd
->ctxt
, packet
->rhf
,
1613 packet
->rhf
& RHF_K_HDR_LEN_ERR
? "k_hdr_len " : "",
1614 packet
->rhf
& RHF_DC_UNC_ERR
? "dc_unc " : "",
1615 packet
->rhf
& RHF_DC_ERR
? "dc " : "",
1616 packet
->rhf
& RHF_TID_ERR
? "tid " : "",
1617 packet
->rhf
& RHF_LEN_ERR
? "len " : "",
1618 packet
->rhf
& RHF_ECC_ERR
? "ecc " : "",
1619 packet
->rhf
& RHF_ICRC_ERR
? "icrc " : "",
1623 void handle_eflags(struct hfi1_packet
*packet
)
1625 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1627 rcv_hdrerr(rcd
, rcd
->ppd
, packet
);
1628 if (rhf_err_flags(packet
->rhf
))
1629 show_eflags_errs(packet
);
1632 static void hfi1_ipoib_ib_rcv(struct hfi1_packet
*packet
)
1634 struct hfi1_ibport
*ibp
;
1635 struct net_device
*netdev
;
1636 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1637 struct napi_struct
*napi
= rcd
->napi
;
1638 struct sk_buff
*skb
;
1639 struct hfi1_netdev_rxq
*rxq
= container_of(napi
,
1640 struct hfi1_netdev_rxq
, napi
);
1643 bool do_work
, do_cnp
;
1645 trace_hfi1_rcvhdr(packet
);
1647 hfi1_setup_ib_header(packet
);
1649 packet
->ohdr
= &((struct ib_header
*)packet
->hdr
)->u
.oth
;
1652 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1653 handle_eflags(packet
);
1657 qpnum
= ib_bth_get_qpn(packet
->ohdr
);
1658 netdev
= hfi1_netdev_get_data(rcd
->dd
, qpnum
);
1662 trace_input_ibhdr(rcd
->dd
, packet
, !!(rhf_dc_info(packet
->rhf
)));
1663 trace_ctxt_rsm_hist(rcd
->ctxt
);
1665 /* handle congestion notifications */
1666 do_work
= hfi1_may_ecn(packet
);
1667 if (unlikely(do_work
)) {
1668 do_cnp
= (packet
->opcode
!= IB_OPCODE_CNP
);
1669 (void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev
)->qp
,
1674 * We have split point after last byte of DETH
1675 * lets strip padding and CRC and ICRC.
1676 * tlen is whole packet len so we need to
1677 * subtract header size as well.
1679 tlen
= packet
->tlen
;
1680 extra_bytes
= ib_bth_get_pad(packet
->ohdr
) + (SIZE_OF_CRC
<< 2) +
1682 if (unlikely(tlen
< extra_bytes
))
1685 tlen
-= extra_bytes
;
1687 skb
= hfi1_ipoib_prepare_skb(rxq
, tlen
, packet
->ebuf
);
1691 dev_sw_netstats_rx_add(netdev
, skb
->len
);
1694 skb
->pkt_type
= PACKET_HOST
;
1695 netif_receive_skb(skb
);
1700 ++netdev
->stats
.rx_dropped
;
1702 ibp
= rcd_to_iport(packet
->rcd
);
1703 ++ibp
->rvp
.n_pkt_drops
;
1707 * The following functions are called by the interrupt handler. They are type
1708 * specific handlers for each packet type.
1710 static void process_receive_ib(struct hfi1_packet
*packet
)
1712 if (hfi1_setup_9B_packet(packet
))
1715 if (unlikely(hfi1_dbg_should_fault_rx(packet
)))
1718 trace_hfi1_rcvhdr(packet
);
1720 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1721 handle_eflags(packet
);
1725 hfi1_ib_rcv(packet
);
1728 static void process_receive_bypass(struct hfi1_packet
*packet
)
1730 struct hfi1_devdata
*dd
= packet
->rcd
->dd
;
1732 if (hfi1_setup_bypass_packet(packet
))
1735 trace_hfi1_rcvhdr(packet
);
1737 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1738 handle_eflags(packet
);
1742 if (hfi1_16B_get_l2(packet
->hdr
) == 0x2) {
1743 hfi1_16B_rcv(packet
);
1746 "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1747 incr_cntr64(&dd
->sw_rcv_bypass_packet_errors
);
1748 if (!(dd
->err_info_rcvport
.status_and_code
&
1749 OPA_EI_STATUS_SMASK
)) {
1750 u64
*flits
= packet
->ebuf
;
1752 if (flits
&& !(packet
->rhf
& RHF_LEN_ERR
)) {
1753 dd
->err_info_rcvport
.packet_flit1
= flits
[0];
1754 dd
->err_info_rcvport
.packet_flit2
=
1755 packet
->tlen
> sizeof(flits
[0]) ?
1758 dd
->err_info_rcvport
.status_and_code
|=
1759 (OPA_EI_STATUS_SMASK
| BAD_L2_ERR
);
1764 static void process_receive_error(struct hfi1_packet
*packet
)
1766 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1768 hfi1_dbg_fault_suppress_err(&packet
->rcd
->dd
->verbs_dev
) &&
1769 (rhf_rcv_type_err(packet
->rhf
) == RHF_RCV_TYPE_ERROR
||
1770 packet
->rhf
& RHF_DC_ERR
)))
1773 hfi1_setup_ib_header(packet
);
1774 handle_eflags(packet
);
1776 if (unlikely(rhf_err_flags(packet
->rhf
)))
1777 dd_dev_err(packet
->rcd
->dd
,
1778 "Unhandled error packet received. Dropping.\n");
1781 static void kdeth_process_expected(struct hfi1_packet
*packet
)
1783 hfi1_setup_9B_packet(packet
);
1784 if (unlikely(hfi1_dbg_should_fault_rx(packet
)))
1787 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1788 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1790 if (hfi1_handle_kdeth_eflags(rcd
, rcd
->ppd
, packet
))
1794 hfi1_kdeth_expected_rcv(packet
);
1797 static void kdeth_process_eager(struct hfi1_packet
*packet
)
1799 hfi1_setup_9B_packet(packet
);
1800 if (unlikely(hfi1_dbg_should_fault_rx(packet
)))
1803 trace_hfi1_rcvhdr(packet
);
1804 if (unlikely(rhf_err_flags(packet
->rhf
))) {
1805 struct hfi1_ctxtdata
*rcd
= packet
->rcd
;
1807 show_eflags_errs(packet
);
1808 if (hfi1_handle_kdeth_eflags(rcd
, rcd
->ppd
, packet
))
1812 hfi1_kdeth_eager_rcv(packet
);
1815 static void process_receive_invalid(struct hfi1_packet
*packet
)
1817 dd_dev_err(packet
->rcd
->dd
, "Invalid packet type %d. Dropping\n",
1818 rhf_rcv_type(packet
->rhf
));
1821 #define HFI1_RCVHDR_DUMP_MAX 5
1823 void seqfile_dump_rcd(struct seq_file
*s
, struct hfi1_ctxtdata
*rcd
)
1825 struct hfi1_packet packet
;
1826 struct ps_mdata mdata
;
1829 seq_printf(s
, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu sw head %u\n",
1830 rcd
->ctxt
, get_hdrq_cnt(rcd
), get_hdrqentsize(rcd
),
1831 get_dma_rtail_setting(rcd
) ?
1832 "dma_rtail" : "nodma_rtail",
1833 read_kctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_CTXT_CTRL
),
1834 read_kctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_CTXT_STATUS
),
1835 read_uctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_HDR_HEAD
) &
1836 RCV_HDR_HEAD_HEAD_MASK
,
1837 read_uctxt_csr(rcd
->dd
, rcd
->ctxt
, RCV_HDR_TAIL
),
1840 init_packet(rcd
, &packet
);
1841 init_ps_mdata(&mdata
, &packet
);
1843 for (i
= 0; i
< HFI1_RCVHDR_DUMP_MAX
; i
++) {
1844 __le32
*rhf_addr
= (__le32
*)rcd
->rcvhdrq
+ mdata
.ps_head
+
1846 struct ib_header
*hdr
;
1847 u64 rhf
= rhf_to_cpu(rhf_addr
);
1848 u32 etype
= rhf_rcv_type(rhf
), qpn
;
1853 if (ps_done(&mdata
, rhf
, rcd
))
1856 if (ps_skip(&mdata
, rhf
, rcd
))
1859 if (etype
> RHF_RCV_TYPE_IB
)
1862 packet
.hdr
= hfi1_get_msgheader(rcd
, rhf_addr
);
1865 lnh
= be16_to_cpu(hdr
->lrh
[0]) & 3;
1867 if (lnh
== HFI1_LRH_BTH
)
1868 packet
.ohdr
= &hdr
->u
.oth
;
1869 else if (lnh
== HFI1_LRH_GRH
)
1870 packet
.ohdr
= &hdr
->u
.l
.oth
;
1872 goto next
; /* just in case */
1874 opcode
= (be32_to_cpu(packet
.ohdr
->bth
[0]) >> 24);
1875 qpn
= be32_to_cpu(packet
.ohdr
->bth
[1]) & RVT_QPN_MASK
;
1876 psn
= mask_psn(be32_to_cpu(packet
.ohdr
->bth
[2]));
1878 seq_printf(s
, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1879 mdata
.ps_head
, opcode
, qpn
, psn
);
1881 update_ps_mdata(&mdata
, rcd
);
1885 const rhf_rcv_function_ptr normal_rhf_rcv_functions
[] = {
1886 [RHF_RCV_TYPE_EXPECTED
] = kdeth_process_expected
,
1887 [RHF_RCV_TYPE_EAGER
] = kdeth_process_eager
,
1888 [RHF_RCV_TYPE_IB
] = process_receive_ib
,
1889 [RHF_RCV_TYPE_ERROR
] = process_receive_error
,
1890 [RHF_RCV_TYPE_BYPASS
] = process_receive_bypass
,
1891 [RHF_RCV_TYPE_INVALID5
] = process_receive_invalid
,
1892 [RHF_RCV_TYPE_INVALID6
] = process_receive_invalid
,
1893 [RHF_RCV_TYPE_INVALID7
] = process_receive_invalid
,
1896 const rhf_rcv_function_ptr netdev_rhf_rcv_functions
[] = {
1897 [RHF_RCV_TYPE_EXPECTED
] = process_receive_invalid
,
1898 [RHF_RCV_TYPE_EAGER
] = process_receive_invalid
,
1899 [RHF_RCV_TYPE_IB
] = hfi1_ipoib_ib_rcv
,
1900 [RHF_RCV_TYPE_ERROR
] = process_receive_error
,
1901 [RHF_RCV_TYPE_BYPASS
] = hfi1_vnic_bypass_rcv
,
1902 [RHF_RCV_TYPE_INVALID5
] = process_receive_invalid
,
1903 [RHF_RCV_TYPE_INVALID6
] = process_receive_invalid
,
1904 [RHF_RCV_TYPE_INVALID7
] = process_receive_invalid
,