1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 * Copyright(c) 2020 Cornelis Networks, Inc.
4 * Copyright(c) 2015-2020 Intel Corporation.
7 #include <linux/poll.h>
8 #include <linux/cdev.h>
9 #include <linux/vmalloc.h>
11 #include <linux/sched/mm.h>
12 #include <linux/bitmap.h>
22 #include "user_sdma.h"
23 #include "user_exp_rcv.h"
27 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
29 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
32 * File operation functions
34 static int hfi1_file_open(struct inode
*inode
, struct file
*fp
);
35 static int hfi1_file_close(struct inode
*inode
, struct file
*fp
);
36 static ssize_t
hfi1_write_iter(struct kiocb
*kiocb
, struct iov_iter
*from
);
37 static __poll_t
hfi1_poll(struct file
*fp
, struct poll_table_struct
*pt
);
38 static int hfi1_file_mmap(struct file
*fp
, struct vm_area_struct
*vma
);
40 static u64
kvirt_to_phys(void *addr
);
41 static int assign_ctxt(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
);
42 static void init_subctxts(struct hfi1_ctxtdata
*uctxt
,
43 const struct hfi1_user_info
*uinfo
);
44 static int init_user_ctxt(struct hfi1_filedata
*fd
,
45 struct hfi1_ctxtdata
*uctxt
);
46 static void user_init(struct hfi1_ctxtdata
*uctxt
);
47 static int get_ctxt_info(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
);
48 static int get_base_info(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
);
49 static int user_exp_rcv_setup(struct hfi1_filedata
*fd
, unsigned long arg
,
51 static int user_exp_rcv_clear(struct hfi1_filedata
*fd
, unsigned long arg
,
53 static int user_exp_rcv_invalid(struct hfi1_filedata
*fd
, unsigned long arg
,
55 static int setup_base_ctxt(struct hfi1_filedata
*fd
,
56 struct hfi1_ctxtdata
*uctxt
);
57 static int setup_subctxt(struct hfi1_ctxtdata
*uctxt
);
59 static int find_sub_ctxt(struct hfi1_filedata
*fd
,
60 const struct hfi1_user_info
*uinfo
);
61 static int allocate_ctxt(struct hfi1_filedata
*fd
, struct hfi1_devdata
*dd
,
62 struct hfi1_user_info
*uinfo
,
63 struct hfi1_ctxtdata
**cd
);
64 static void deallocate_ctxt(struct hfi1_ctxtdata
*uctxt
);
65 static __poll_t
poll_urgent(struct file
*fp
, struct poll_table_struct
*pt
);
66 static __poll_t
poll_next(struct file
*fp
, struct poll_table_struct
*pt
);
67 static int user_event_ack(struct hfi1_ctxtdata
*uctxt
, u16 subctxt
,
69 static int set_ctxt_pkey(struct hfi1_ctxtdata
*uctxt
, unsigned long arg
);
70 static int ctxt_reset(struct hfi1_ctxtdata
*uctxt
);
71 static int manage_rcvq(struct hfi1_ctxtdata
*uctxt
, u16 subctxt
,
73 static vm_fault_t
vma_fault(struct vm_fault
*vmf
);
74 static long hfi1_file_ioctl(struct file
*fp
, unsigned int cmd
,
77 static const struct file_operations hfi1_file_ops
= {
79 .write_iter
= hfi1_write_iter
,
80 .open
= hfi1_file_open
,
81 .release
= hfi1_file_close
,
82 .unlocked_ioctl
= hfi1_file_ioctl
,
84 .mmap
= hfi1_file_mmap
,
85 .llseek
= noop_llseek
,
88 static const struct vm_operations_struct vm_ops
= {
93 * Types of memories mapped into user processes' space
112 * Masks and offsets defining the mmap tokens
114 #define HFI1_MMAP_OFFSET_MASK 0xfffULL
115 #define HFI1_MMAP_OFFSET_SHIFT 0
116 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL
117 #define HFI1_MMAP_SUBCTXT_SHIFT 12
118 #define HFI1_MMAP_CTXT_MASK 0xffULL
119 #define HFI1_MMAP_CTXT_SHIFT 16
120 #define HFI1_MMAP_TYPE_MASK 0xfULL
121 #define HFI1_MMAP_TYPE_SHIFT 24
122 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
123 #define HFI1_MMAP_MAGIC_SHIFT 32
125 #define HFI1_MMAP_MAGIC 0xdabbad00
127 #define HFI1_MMAP_TOKEN_SET(field, val) \
128 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129 #define HFI1_MMAP_TOKEN_GET(field, token) \
130 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
132 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
138 #define dbg(fmt, ...) \
139 pr_info(fmt, ##__VA_ARGS__)
141 static inline int is_valid_mmap(u64 token
)
143 return (HFI1_MMAP_TOKEN_GET(MAGIC
, token
) == HFI1_MMAP_MAGIC
);
146 static int hfi1_file_open(struct inode
*inode
, struct file
*fp
)
148 struct hfi1_filedata
*fd
;
149 struct hfi1_devdata
*dd
= container_of(inode
->i_cdev
,
153 if (!((dd
->flags
& HFI1_PRESENT
) && dd
->kregbase1
))
156 if (!refcount_inc_not_zero(&dd
->user_refcount
))
159 /* The real work is performed later in assign_ctxt() */
161 fd
= kzalloc(sizeof(*fd
), GFP_KERNEL
);
163 if (!fd
|| init_srcu_struct(&fd
->pq_srcu
))
165 spin_lock_init(&fd
->pq_rcu_lock
);
166 spin_lock_init(&fd
->tid_lock
);
167 spin_lock_init(&fd
->invalid_lock
);
168 fd
->rec_cpu_num
= -1; /* no cpu affinity by default */
170 fp
->private_data
= fd
;
174 fp
->private_data
= NULL
;
175 if (refcount_dec_and_test(&dd
->user_refcount
))
176 complete(&dd
->user_comp
);
180 static long hfi1_file_ioctl(struct file
*fp
, unsigned int cmd
,
183 struct hfi1_filedata
*fd
= fp
->private_data
;
184 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
188 hfi1_cdbg(IOCTL
, "IOCTL recv: 0x%x", cmd
);
189 if (cmd
!= HFI1_IOCTL_ASSIGN_CTXT
&&
190 cmd
!= HFI1_IOCTL_GET_VERS
&&
195 case HFI1_IOCTL_ASSIGN_CTXT
:
196 ret
= assign_ctxt(fd
, arg
, _IOC_SIZE(cmd
));
199 case HFI1_IOCTL_CTXT_INFO
:
200 ret
= get_ctxt_info(fd
, arg
, _IOC_SIZE(cmd
));
203 case HFI1_IOCTL_USER_INFO
:
204 ret
= get_base_info(fd
, arg
, _IOC_SIZE(cmd
));
207 case HFI1_IOCTL_CREDIT_UPD
:
209 sc_return_credits(uctxt
->sc
);
212 case HFI1_IOCTL_TID_UPDATE
:
213 ret
= user_exp_rcv_setup(fd
, arg
, _IOC_SIZE(cmd
));
216 case HFI1_IOCTL_TID_FREE
:
217 ret
= user_exp_rcv_clear(fd
, arg
, _IOC_SIZE(cmd
));
220 case HFI1_IOCTL_TID_INVAL_READ
:
221 ret
= user_exp_rcv_invalid(fd
, arg
, _IOC_SIZE(cmd
));
224 case HFI1_IOCTL_RECV_CTRL
:
225 ret
= manage_rcvq(uctxt
, fd
->subctxt
, arg
);
228 case HFI1_IOCTL_POLL_TYPE
:
229 if (get_user(uval
, (int __user
*)arg
))
231 uctxt
->poll_type
= (typeof(uctxt
->poll_type
))uval
;
234 case HFI1_IOCTL_ACK_EVENT
:
235 ret
= user_event_ack(uctxt
, fd
->subctxt
, arg
);
238 case HFI1_IOCTL_SET_PKEY
:
239 ret
= set_ctxt_pkey(uctxt
, arg
);
242 case HFI1_IOCTL_CTXT_RESET
:
243 ret
= ctxt_reset(uctxt
);
246 case HFI1_IOCTL_GET_VERS
:
247 uval
= HFI1_USER_SWVERSION
;
248 if (put_user(uval
, (int __user
*)arg
))
259 static ssize_t
hfi1_write_iter(struct kiocb
*kiocb
, struct iov_iter
*from
)
261 struct hfi1_filedata
*fd
= kiocb
->ki_filp
->private_data
;
262 struct hfi1_user_sdma_pkt_q
*pq
;
263 struct hfi1_user_sdma_comp_q
*cq
= fd
->cq
;
264 int done
= 0, reqs
= 0;
265 unsigned long dim
= from
->nr_segs
;
268 if (!HFI1_CAP_IS_KSET(SDMA
))
270 if (!user_backed_iter(from
))
272 idx
= srcu_read_lock(&fd
->pq_srcu
);
273 pq
= srcu_dereference(fd
->pq
, &fd
->pq_srcu
);
275 srcu_read_unlock(&fd
->pq_srcu
, idx
);
279 trace_hfi1_sdma_request(fd
->dd
, fd
->uctxt
->ctxt
, fd
->subctxt
, dim
);
281 if (atomic_read(&pq
->n_reqs
) == pq
->n_max_reqs
) {
282 srcu_read_unlock(&fd
->pq_srcu
, idx
);
287 const struct iovec
*iov
= iter_iov(from
);
289 unsigned long count
= 0;
291 ret
= hfi1_user_sdma_process_request(
292 fd
, (struct iovec
*)(iov
+ done
),
303 srcu_read_unlock(&fd
->pq_srcu
, idx
);
307 static inline void mmap_cdbg(u16 ctxt
, u8 subctxt
, u8 type
, u8 mapio
, u8 vmf
,
308 u64 memaddr
, void *memvirt
, dma_addr_t memdma
,
309 ssize_t memlen
, struct vm_area_struct
*vma
)
312 "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
313 ctxt
, subctxt
, type
, mapio
, vmf
, !!memdma
,
314 memaddr
?: (u64
)memvirt
, memlen
,
315 vma
->vm_end
- vma
->vm_start
, vma
->vm_flags
);
318 static int hfi1_file_mmap(struct file
*fp
, struct vm_area_struct
*vma
)
320 struct hfi1_filedata
*fd
= fp
->private_data
;
321 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
322 struct hfi1_devdata
*dd
;
324 u64 token
= vma
->vm_pgoff
<< PAGE_SHIFT
,
326 void *memvirt
= NULL
;
327 dma_addr_t memdma
= 0;
328 u8 subctxt
, mapio
= 0, vmf
= 0, type
;
333 if (!is_valid_mmap(token
) || !uctxt
||
334 !(vma
->vm_flags
& VM_SHARED
)) {
339 ctxt
= HFI1_MMAP_TOKEN_GET(CTXT
, token
);
340 subctxt
= HFI1_MMAP_TOKEN_GET(SUBCTXT
, token
);
341 type
= HFI1_MMAP_TOKEN_GET(TYPE
, token
);
342 if (ctxt
!= uctxt
->ctxt
|| subctxt
!= fd
->subctxt
) {
348 * vm_pgoff is used as a buffer selector cookie. Always mmap from
352 flags
= vma
->vm_flags
;
357 memaddr
= ((dd
->physaddr
+ TXE_PIO_SEND
) +
359 (uctxt
->sc
->hw_context
* BIT(16))) +
360 /* 64K PIO space / ctxt */
361 (type
== PIO_BUFS_SOP
?
362 (TXE_PIO_SIZE
/ 2) : 0); /* sop? */
364 * Map only the amount allocated to the context, not the
365 * entire available context's PIO space.
367 memlen
= PAGE_ALIGN(uctxt
->sc
->credits
* PIO_BLOCK_SIZE
);
368 flags
&= ~VM_MAYREAD
;
369 flags
|= VM_DONTCOPY
| VM_DONTEXPAND
;
370 vma
->vm_page_prot
= pgprot_writecombine(vma
->vm_page_prot
);
375 if (flags
& VM_WRITE
) {
380 * The credit return location for this context could be on the
381 * second or third page allocated for credit returns (if number
382 * of enabled contexts > 64 and 128 respectively).
384 cr_page_offset
= ((u64
)uctxt
->sc
->hw_free
-
385 (u64
)dd
->cr_base
[uctxt
->numa_id
].va
) &
387 memvirt
= dd
->cr_base
[uctxt
->numa_id
].va
+ cr_page_offset
;
388 memdma
= dd
->cr_base
[uctxt
->numa_id
].dma
+ cr_page_offset
;
390 flags
&= ~VM_MAYWRITE
;
391 flags
|= VM_DONTCOPY
| VM_DONTEXPAND
;
393 * The driver has already allocated memory for credit
394 * returns and programmed it into the chip. Has that
395 * memory been flagged as non-cached?
397 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
401 memlen
= rcvhdrq_size(uctxt
);
402 memvirt
= uctxt
->rcvhdrq
;
403 memdma
= uctxt
->rcvhdrq_dma
;
406 unsigned long vm_start_save
;
407 unsigned long vm_end_save
;
410 * The RcvEgr buffer need to be handled differently
411 * as multiple non-contiguous pages need to be mapped
412 * into the user process.
414 memlen
= uctxt
->egrbufs
.size
;
415 if ((vma
->vm_end
- vma
->vm_start
) != memlen
) {
416 dd_dev_err(dd
, "Eager buffer map size invalid (%lu != %lu)\n",
417 (vma
->vm_end
- vma
->vm_start
), memlen
);
421 if (vma
->vm_flags
& VM_WRITE
) {
425 vm_flags_clear(vma
, VM_MAYWRITE
);
427 * Mmap multiple separate allocations into a single vma. From
428 * here, dma_mmap_coherent() calls dma_direct_mmap(), which
429 * requires the mmap to exactly fill the vma starting at
430 * vma_start. Adjust the vma start and end for each eager
431 * buffer segment mapped. Restore the originals when done.
433 vm_start_save
= vma
->vm_start
;
434 vm_end_save
= vma
->vm_end
;
435 vma
->vm_end
= vma
->vm_start
;
436 for (i
= 0 ; i
< uctxt
->egrbufs
.numbufs
; i
++) {
437 memlen
= uctxt
->egrbufs
.buffers
[i
].len
;
438 memvirt
= uctxt
->egrbufs
.buffers
[i
].addr
;
439 memdma
= uctxt
->egrbufs
.buffers
[i
].dma
;
440 vma
->vm_end
+= memlen
;
441 mmap_cdbg(ctxt
, subctxt
, type
, mapio
, vmf
, memaddr
,
442 memvirt
, memdma
, memlen
, vma
);
443 ret
= dma_mmap_coherent(&dd
->pcidev
->dev
, vma
,
444 memvirt
, memdma
, memlen
);
446 vma
->vm_start
= vm_start_save
;
447 vma
->vm_end
= vm_end_save
;
450 vma
->vm_start
+= memlen
;
452 vma
->vm_start
= vm_start_save
;
453 vma
->vm_end
= vm_end_save
;
459 * Map only the page that contains this context's user
462 memaddr
= (unsigned long)
463 (dd
->physaddr
+ RXE_PER_CONTEXT_USER
)
464 + (uctxt
->ctxt
* RXE_PER_CONTEXT_SIZE
);
466 * TidFlow table is on the same page as the rest of the
470 flags
|= VM_DONTCOPY
| VM_DONTEXPAND
;
471 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
476 * Use the page where this context's flags are. User level
477 * knows where it's own bitmap is within the page.
479 memaddr
= (unsigned long)
480 (dd
->events
+ uctxt_offset(uctxt
)) & PAGE_MASK
;
483 * v3.7 removes VM_RESERVED but the effect is kept by
486 flags
|= VM_IO
| VM_DONTEXPAND
;
490 if (flags
& VM_WRITE
) {
494 memaddr
= kvirt_to_phys((void *)dd
->status
);
496 flags
|= VM_IO
| VM_DONTEXPAND
;
499 if (!HFI1_CAP_IS_USET(DMA_RTAIL
)) {
501 * If the memory allocation failed, the context alloc
502 * also would have failed, so we would never get here
507 if ((flags
& VM_WRITE
) || !hfi1_rcvhdrtail_kvaddr(uctxt
)) {
512 memvirt
= (void *)hfi1_rcvhdrtail_kvaddr(uctxt
);
513 memdma
= uctxt
->rcvhdrqtailaddr_dma
;
514 flags
&= ~VM_MAYWRITE
;
517 memaddr
= (u64
)uctxt
->subctxt_uregbase
;
519 flags
|= VM_IO
| VM_DONTEXPAND
;
522 case SUBCTXT_RCV_HDRQ
:
523 memaddr
= (u64
)uctxt
->subctxt_rcvhdr_base
;
524 memlen
= rcvhdrq_size(uctxt
) * uctxt
->subctxt_cnt
;
525 flags
|= VM_IO
| VM_DONTEXPAND
;
529 memaddr
= (u64
)uctxt
->subctxt_rcvegrbuf
;
530 memlen
= uctxt
->egrbufs
.size
* uctxt
->subctxt_cnt
;
531 flags
|= VM_IO
| VM_DONTEXPAND
;
532 flags
&= ~VM_MAYWRITE
;
536 struct hfi1_user_sdma_comp_q
*cq
= fd
->cq
;
542 memaddr
= (u64
)cq
->comps
;
543 memlen
= PAGE_ALIGN(sizeof(*cq
->comps
) * cq
->nentries
);
544 flags
|= VM_IO
| VM_DONTEXPAND
;
553 if ((vma
->vm_end
- vma
->vm_start
) != memlen
) {
554 hfi1_cdbg(PROC
, "%u:%u Memory size mismatch %lu:%lu",
555 uctxt
->ctxt
, fd
->subctxt
,
556 (vma
->vm_end
- vma
->vm_start
), memlen
);
561 vm_flags_reset(vma
, flags
);
562 mmap_cdbg(ctxt
, subctxt
, type
, mapio
, vmf
, memaddr
, memvirt
, memdma
,
565 vma
->vm_pgoff
= PFN_DOWN(memaddr
);
566 vma
->vm_ops
= &vm_ops
;
569 ret
= dma_mmap_coherent(&dd
->pcidev
->dev
, vma
,
570 memvirt
, memdma
, memlen
);
572 ret
= io_remap_pfn_range(vma
, vma
->vm_start
,
576 } else if (memvirt
) {
577 ret
= remap_pfn_range(vma
, vma
->vm_start
,
578 PFN_DOWN(__pa(memvirt
)),
582 ret
= remap_pfn_range(vma
, vma
->vm_start
,
592 * Local (non-chip) user memory is not mapped right away but as it is
593 * accessed by the user-level code.
595 static vm_fault_t
vma_fault(struct vm_fault
*vmf
)
599 page
= vmalloc_to_page((void *)(vmf
->pgoff
<< PAGE_SHIFT
));
601 return VM_FAULT_SIGBUS
;
609 static __poll_t
hfi1_poll(struct file
*fp
, struct poll_table_struct
*pt
)
611 struct hfi1_ctxtdata
*uctxt
;
614 uctxt
= ((struct hfi1_filedata
*)fp
->private_data
)->uctxt
;
617 else if (uctxt
->poll_type
== HFI1_POLL_TYPE_URGENT
)
618 pollflag
= poll_urgent(fp
, pt
);
619 else if (uctxt
->poll_type
== HFI1_POLL_TYPE_ANYRCV
)
620 pollflag
= poll_next(fp
, pt
);
627 static int hfi1_file_close(struct inode
*inode
, struct file
*fp
)
629 struct hfi1_filedata
*fdata
= fp
->private_data
;
630 struct hfi1_ctxtdata
*uctxt
= fdata
->uctxt
;
631 struct hfi1_devdata
*dd
= container_of(inode
->i_cdev
,
634 unsigned long flags
, *ev
;
636 fp
->private_data
= NULL
;
641 hfi1_cdbg(PROC
, "closing ctxt %u:%u", uctxt
->ctxt
, fdata
->subctxt
);
644 /* drain user sdma queue */
645 hfi1_user_sdma_free_queues(fdata
, uctxt
);
647 /* release the cpu */
648 hfi1_put_proc_affinity(fdata
->rec_cpu_num
);
650 /* clean up rcv side */
651 hfi1_user_exp_rcv_free(fdata
);
654 * fdata->uctxt is used in the above cleanup. It is not ready to be
655 * removed until here.
661 * Clear any left over, unhandled events so the next process that
662 * gets this context doesn't get confused.
664 ev
= dd
->events
+ uctxt_offset(uctxt
) + fdata
->subctxt
;
667 spin_lock_irqsave(&dd
->uctxt_lock
, flags
);
668 __clear_bit(fdata
->subctxt
, uctxt
->in_use_ctxts
);
669 if (!bitmap_empty(uctxt
->in_use_ctxts
, HFI1_MAX_SHARED_CTXTS
)) {
670 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
673 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
676 * Disable receive context and interrupt available, reset all
677 * RcvCtxtCtrl bits to default values.
679 hfi1_rcvctrl(dd
, HFI1_RCVCTRL_CTXT_DIS
|
680 HFI1_RCVCTRL_TIDFLOW_DIS
|
681 HFI1_RCVCTRL_INTRAVAIL_DIS
|
682 HFI1_RCVCTRL_TAILUPD_DIS
|
683 HFI1_RCVCTRL_ONE_PKT_EGR_DIS
|
684 HFI1_RCVCTRL_NO_RHQ_DROP_DIS
|
685 HFI1_RCVCTRL_NO_EGR_DROP_DIS
|
686 HFI1_RCVCTRL_URGENT_DIS
, uctxt
);
687 /* Clear the context's J_KEY */
688 hfi1_clear_ctxt_jkey(dd
, uctxt
);
690 * If a send context is allocated, reset context integrity
691 * checks to default and disable the send context.
694 sc_disable(uctxt
->sc
);
695 set_pio_integrity(uctxt
->sc
);
698 hfi1_free_ctxt_rcv_groups(uctxt
);
699 hfi1_clear_ctxt_pkey(dd
, uctxt
);
701 uctxt
->event_flags
= 0;
703 deallocate_ctxt(uctxt
);
706 if (refcount_dec_and_test(&dd
->user_refcount
))
707 complete(&dd
->user_comp
);
709 cleanup_srcu_struct(&fdata
->pq_srcu
);
715 * Convert kernel *virtual* addresses to physical addresses.
716 * This is used to vmalloc'ed addresses.
718 static u64
kvirt_to_phys(void *addr
)
723 page
= vmalloc_to_page(addr
);
725 paddr
= page_to_pfn(page
) << PAGE_SHIFT
;
731 * complete_subctxt - complete sub-context info
732 * @fd: valid filedata pointer
734 * Sub-context info can only be set up after the base context
735 * has been completed. This is indicated by the clearing of the
736 * HFI1_CTXT_BASE_UINIT bit.
738 * Wait for the bit to be cleared, and then complete the subcontext
742 static int complete_subctxt(struct hfi1_filedata
*fd
)
748 * sub-context info can only be set up after the base context
749 * has been completed.
751 ret
= wait_event_interruptible(
753 !test_bit(HFI1_CTXT_BASE_UNINIT
, &fd
->uctxt
->event_flags
));
755 if (test_bit(HFI1_CTXT_BASE_FAILED
, &fd
->uctxt
->event_flags
))
758 /* Finish the sub-context init */
760 fd
->rec_cpu_num
= hfi1_get_proc_affinity(fd
->uctxt
->numa_id
);
761 ret
= init_user_ctxt(fd
, fd
->uctxt
);
765 spin_lock_irqsave(&fd
->dd
->uctxt_lock
, flags
);
766 __clear_bit(fd
->subctxt
, fd
->uctxt
->in_use_ctxts
);
767 spin_unlock_irqrestore(&fd
->dd
->uctxt_lock
, flags
);
768 hfi1_rcd_put(fd
->uctxt
);
775 static int assign_ctxt(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
)
778 unsigned int swmajor
;
779 struct hfi1_ctxtdata
*uctxt
= NULL
;
780 struct hfi1_user_info uinfo
;
785 if (sizeof(uinfo
) != len
)
788 if (copy_from_user(&uinfo
, (void __user
*)arg
, sizeof(uinfo
)))
791 swmajor
= uinfo
.userversion
>> 16;
792 if (swmajor
!= HFI1_USER_SWMAJOR
)
795 if (uinfo
.subctxt_cnt
> HFI1_MAX_SHARED_CTXTS
)
799 * Acquire the mutex to protect against multiple creations of what
800 * could be a shared base context.
802 mutex_lock(&hfi1_mutex
);
804 * Get a sub context if available (fd->uctxt will be set).
805 * ret < 0 error, 0 no context, 1 sub-context found
807 ret
= find_sub_ctxt(fd
, &uinfo
);
810 * Allocate a base context if context sharing is not required or a
811 * sub context wasn't found.
814 ret
= allocate_ctxt(fd
, fd
->dd
, &uinfo
, &uctxt
);
816 mutex_unlock(&hfi1_mutex
);
818 /* Depending on the context type, finish the appropriate init */
821 ret
= setup_base_ctxt(fd
, uctxt
);
823 deallocate_ctxt(uctxt
);
826 ret
= complete_subctxt(fd
);
836 * match_ctxt - match context
837 * @fd: valid filedata pointer
838 * @uinfo: user info to compare base context with
839 * @uctxt: context to compare uinfo to.
841 * Compare the given context with the given information to see if it
842 * can be used for a sub context.
844 static int match_ctxt(struct hfi1_filedata
*fd
,
845 const struct hfi1_user_info
*uinfo
,
846 struct hfi1_ctxtdata
*uctxt
)
848 struct hfi1_devdata
*dd
= fd
->dd
;
852 /* Skip dynamically allocated kernel contexts */
853 if (uctxt
->sc
&& (uctxt
->sc
->type
== SC_KERNEL
))
856 /* Skip ctxt if it doesn't match the requested one */
857 if (memcmp(uctxt
->uuid
, uinfo
->uuid
, sizeof(uctxt
->uuid
)) ||
858 uctxt
->jkey
!= generate_jkey(current_uid()) ||
859 uctxt
->subctxt_id
!= uinfo
->subctxt_id
||
860 uctxt
->subctxt_cnt
!= uinfo
->subctxt_cnt
)
863 /* Verify the sharing process matches the base */
864 if (uctxt
->userversion
!= uinfo
->userversion
)
867 /* Find an unused sub context */
868 spin_lock_irqsave(&dd
->uctxt_lock
, flags
);
869 if (bitmap_empty(uctxt
->in_use_ctxts
, HFI1_MAX_SHARED_CTXTS
)) {
870 /* context is being closed, do not use */
871 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
875 subctxt
= find_first_zero_bit(uctxt
->in_use_ctxts
,
876 HFI1_MAX_SHARED_CTXTS
);
877 if (subctxt
>= uctxt
->subctxt_cnt
) {
878 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
882 fd
->subctxt
= subctxt
;
883 __set_bit(fd
->subctxt
, uctxt
->in_use_ctxts
);
884 spin_unlock_irqrestore(&dd
->uctxt_lock
, flags
);
893 * find_sub_ctxt - fund sub-context
894 * @fd: valid filedata pointer
895 * @uinfo: matching info to use to find a possible context to share.
897 * The hfi1_mutex must be held when this function is called. It is
898 * necessary to ensure serialized creation of shared contexts.
901 * 0 No sub-context found
902 * 1 Subcontext found and allocated
903 * errno EINVAL (incorrect parameters)
904 * EBUSY (all sub contexts in use)
906 static int find_sub_ctxt(struct hfi1_filedata
*fd
,
907 const struct hfi1_user_info
*uinfo
)
909 struct hfi1_ctxtdata
*uctxt
;
910 struct hfi1_devdata
*dd
= fd
->dd
;
914 if (!uinfo
->subctxt_cnt
)
917 for (i
= dd
->first_dyn_alloc_ctxt
; i
< dd
->num_rcv_contexts
; i
++) {
918 uctxt
= hfi1_rcd_get_by_index(dd
, i
);
920 ret
= match_ctxt(fd
, uinfo
, uctxt
);
922 /* value of != 0 will return */
931 static int allocate_ctxt(struct hfi1_filedata
*fd
, struct hfi1_devdata
*dd
,
932 struct hfi1_user_info
*uinfo
,
933 struct hfi1_ctxtdata
**rcd
)
935 struct hfi1_ctxtdata
*uctxt
;
938 if (dd
->flags
& HFI1_FROZEN
) {
940 * Pick an error that is unique from all other errors
941 * that are returned so the user process knows that
942 * it tried to allocate while the SPC was frozen. It
943 * it should be able to retry with success in a short
953 * If we don't have a NUMA node requested, preference is towards
956 fd
->rec_cpu_num
= hfi1_get_proc_affinity(dd
->node
);
957 if (fd
->rec_cpu_num
!= -1)
958 numa
= cpu_to_node(fd
->rec_cpu_num
);
960 numa
= numa_node_id();
961 ret
= hfi1_create_ctxtdata(dd
->pport
, numa
, &uctxt
);
963 dd_dev_err(dd
, "user ctxtdata allocation failed\n");
966 hfi1_cdbg(PROC
, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
967 uctxt
->ctxt
, fd
->subctxt
, current
->pid
, fd
->rec_cpu_num
,
971 * Allocate and enable a PIO send context.
973 uctxt
->sc
= sc_alloc(dd
, SC_USER
, uctxt
->rcvhdrqentsize
, dd
->node
);
978 hfi1_cdbg(PROC
, "allocated send context %u(%u)", uctxt
->sc
->sw_index
,
979 uctxt
->sc
->hw_context
);
980 ret
= sc_enable(uctxt
->sc
);
985 * Setup sub context information if the user-level has requested
987 * This has to be done here so the rest of the sub-contexts find the
988 * proper base context.
989 * NOTE: _set_bit() can be used here because the context creation is
990 * protected by the mutex (rather than the spin_lock), and will be the
991 * very first instance of this context.
993 __set_bit(0, uctxt
->in_use_ctxts
);
994 if (uinfo
->subctxt_cnt
)
995 init_subctxts(uctxt
, uinfo
);
996 uctxt
->userversion
= uinfo
->userversion
;
997 uctxt
->flags
= hfi1_cap_mask
; /* save current flag state */
998 init_waitqueue_head(&uctxt
->wait
);
999 strscpy(uctxt
->comm
, current
->comm
, sizeof(uctxt
->comm
));
1000 memcpy(uctxt
->uuid
, uinfo
->uuid
, sizeof(uctxt
->uuid
));
1001 uctxt
->jkey
= generate_jkey(current_uid());
1002 hfi1_stats
.sps_ctxts
++;
1004 * Disable ASPM when there are open user/PSM contexts to avoid
1005 * issues with ASPM L1 exit latency
1007 if (dd
->freectxts
-- == dd
->num_user_contexts
)
1008 aspm_disable_all(dd
);
1015 hfi1_free_ctxt(uctxt
);
1019 static void deallocate_ctxt(struct hfi1_ctxtdata
*uctxt
)
1021 mutex_lock(&hfi1_mutex
);
1022 hfi1_stats
.sps_ctxts
--;
1023 if (++uctxt
->dd
->freectxts
== uctxt
->dd
->num_user_contexts
)
1024 aspm_enable_all(uctxt
->dd
);
1025 mutex_unlock(&hfi1_mutex
);
1027 hfi1_free_ctxt(uctxt
);
1030 static void init_subctxts(struct hfi1_ctxtdata
*uctxt
,
1031 const struct hfi1_user_info
*uinfo
)
1033 uctxt
->subctxt_cnt
= uinfo
->subctxt_cnt
;
1034 uctxt
->subctxt_id
= uinfo
->subctxt_id
;
1035 set_bit(HFI1_CTXT_BASE_UNINIT
, &uctxt
->event_flags
);
1038 static int setup_subctxt(struct hfi1_ctxtdata
*uctxt
)
1041 u16 num_subctxts
= uctxt
->subctxt_cnt
;
1043 uctxt
->subctxt_uregbase
= vmalloc_user(PAGE_SIZE
);
1044 if (!uctxt
->subctxt_uregbase
)
1047 /* We can take the size of the RcvHdr Queue from the master */
1048 uctxt
->subctxt_rcvhdr_base
= vmalloc_user(rcvhdrq_size(uctxt
) *
1050 if (!uctxt
->subctxt_rcvhdr_base
) {
1055 uctxt
->subctxt_rcvegrbuf
= vmalloc_user(uctxt
->egrbufs
.size
*
1057 if (!uctxt
->subctxt_rcvegrbuf
) {
1065 vfree(uctxt
->subctxt_rcvhdr_base
);
1066 uctxt
->subctxt_rcvhdr_base
= NULL
;
1068 vfree(uctxt
->subctxt_uregbase
);
1069 uctxt
->subctxt_uregbase
= NULL
;
1074 static void user_init(struct hfi1_ctxtdata
*uctxt
)
1076 unsigned int rcvctrl_ops
= 0;
1078 /* initialize poll variables... */
1080 uctxt
->urgent_poll
= 0;
1083 * Now enable the ctxt for receive.
1084 * For chips that are set to DMA the tail register to memory
1085 * when they change (and when the update bit transitions from
1086 * 0 to 1. So for those chips, we turn it off and then back on.
1087 * This will (very briefly) affect any other open ctxts, but the
1088 * duration is very short, and therefore isn't an issue. We
1089 * explicitly set the in-memory tail copy to 0 beforehand, so we
1090 * don't have to wait to be sure the DMA update has happened
1091 * (chip resets head/tail to 0 on transition to enable).
1093 if (hfi1_rcvhdrtail_kvaddr(uctxt
))
1094 clear_rcvhdrtail(uctxt
);
1096 /* Setup J_KEY before enabling the context */
1097 hfi1_set_ctxt_jkey(uctxt
->dd
, uctxt
, uctxt
->jkey
);
1099 rcvctrl_ops
= HFI1_RCVCTRL_CTXT_ENB
;
1100 rcvctrl_ops
|= HFI1_RCVCTRL_URGENT_ENB
;
1101 if (HFI1_CAP_UGET_MASK(uctxt
->flags
, HDRSUPP
))
1102 rcvctrl_ops
|= HFI1_RCVCTRL_TIDFLOW_ENB
;
1104 * Ignore the bit in the flags for now until proper
1105 * support for multiple packet per rcv array entry is
1108 if (!HFI1_CAP_UGET_MASK(uctxt
->flags
, MULTI_PKT_EGR
))
1109 rcvctrl_ops
|= HFI1_RCVCTRL_ONE_PKT_EGR_ENB
;
1110 if (HFI1_CAP_UGET_MASK(uctxt
->flags
, NODROP_EGR_FULL
))
1111 rcvctrl_ops
|= HFI1_RCVCTRL_NO_EGR_DROP_ENB
;
1112 if (HFI1_CAP_UGET_MASK(uctxt
->flags
, NODROP_RHQ_FULL
))
1113 rcvctrl_ops
|= HFI1_RCVCTRL_NO_RHQ_DROP_ENB
;
1115 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1116 * We can't rely on the correct value to be set from prior
1117 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1120 if (HFI1_CAP_UGET_MASK(uctxt
->flags
, DMA_RTAIL
))
1121 rcvctrl_ops
|= HFI1_RCVCTRL_TAILUPD_ENB
;
1123 rcvctrl_ops
|= HFI1_RCVCTRL_TAILUPD_DIS
;
1124 hfi1_rcvctrl(uctxt
->dd
, rcvctrl_ops
, uctxt
);
1127 static int get_ctxt_info(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
)
1129 struct hfi1_ctxt_info cinfo
;
1130 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
1132 if (sizeof(cinfo
) != len
)
1135 memset(&cinfo
, 0, sizeof(cinfo
));
1136 cinfo
.runtime_flags
= (((uctxt
->flags
>> HFI1_CAP_MISC_SHIFT
) &
1137 HFI1_CAP_MISC_MASK
) << HFI1_CAP_USER_SHIFT
) |
1138 HFI1_CAP_UGET_MASK(uctxt
->flags
, MASK
) |
1139 HFI1_CAP_KGET_MASK(uctxt
->flags
, K2U
);
1140 /* adjust flag if this fd is not able to cache */
1142 cinfo
.runtime_flags
|= HFI1_CAP_TID_UNMAP
; /* no caching */
1144 cinfo
.num_active
= hfi1_count_active_units();
1145 cinfo
.unit
= uctxt
->dd
->unit
;
1146 cinfo
.ctxt
= uctxt
->ctxt
;
1147 cinfo
.subctxt
= fd
->subctxt
;
1148 cinfo
.rcvtids
= roundup(uctxt
->egrbufs
.alloced
,
1149 uctxt
->dd
->rcv_entries
.group_size
) +
1150 uctxt
->expected_count
;
1151 cinfo
.credits
= uctxt
->sc
->credits
;
1152 cinfo
.numa_node
= uctxt
->numa_id
;
1153 cinfo
.rec_cpu
= fd
->rec_cpu_num
;
1154 cinfo
.send_ctxt
= uctxt
->sc
->hw_context
;
1156 cinfo
.egrtids
= uctxt
->egrbufs
.alloced
;
1157 cinfo
.rcvhdrq_cnt
= get_hdrq_cnt(uctxt
);
1158 cinfo
.rcvhdrq_entsize
= get_hdrqentsize(uctxt
) << 2;
1159 cinfo
.sdma_ring_size
= fd
->cq
->nentries
;
1160 cinfo
.rcvegr_size
= uctxt
->egrbufs
.rcvtid_size
;
1162 trace_hfi1_ctxt_info(uctxt
->dd
, uctxt
->ctxt
, fd
->subctxt
, &cinfo
);
1163 if (copy_to_user((void __user
*)arg
, &cinfo
, len
))
1169 static int init_user_ctxt(struct hfi1_filedata
*fd
,
1170 struct hfi1_ctxtdata
*uctxt
)
1174 ret
= hfi1_user_sdma_alloc_queues(uctxt
, fd
);
1178 ret
= hfi1_user_exp_rcv_init(fd
, uctxt
);
1180 hfi1_user_sdma_free_queues(fd
, uctxt
);
1185 static int setup_base_ctxt(struct hfi1_filedata
*fd
,
1186 struct hfi1_ctxtdata
*uctxt
)
1188 struct hfi1_devdata
*dd
= uctxt
->dd
;
1191 hfi1_init_ctxt(uctxt
->sc
);
1193 /* Now allocate the RcvHdr queue and eager buffers. */
1194 ret
= hfi1_create_rcvhdrq(dd
, uctxt
);
1198 ret
= hfi1_setup_eagerbufs(uctxt
);
1202 /* If sub-contexts are enabled, do the appropriate setup */
1203 if (uctxt
->subctxt_cnt
)
1204 ret
= setup_subctxt(uctxt
);
1208 ret
= hfi1_alloc_ctxt_rcv_groups(uctxt
);
1212 ret
= init_user_ctxt(fd
, uctxt
);
1214 hfi1_free_ctxt_rcv_groups(uctxt
);
1220 /* Now that the context is set up, the fd can get a reference. */
1222 hfi1_rcd_get(uctxt
);
1225 if (uctxt
->subctxt_cnt
) {
1227 * On error, set the failed bit so sub-contexts will clean up
1231 set_bit(HFI1_CTXT_BASE_FAILED
, &uctxt
->event_flags
);
1234 * Base context is done (successfully or not), notify anybody
1235 * using a sub-context that is waiting for this completion.
1237 clear_bit(HFI1_CTXT_BASE_UNINIT
, &uctxt
->event_flags
);
1238 wake_up(&uctxt
->wait
);
1244 static int get_base_info(struct hfi1_filedata
*fd
, unsigned long arg
, u32 len
)
1246 struct hfi1_base_info binfo
;
1247 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
1248 struct hfi1_devdata
*dd
= uctxt
->dd
;
1251 trace_hfi1_uctxtdata(uctxt
->dd
, uctxt
, fd
->subctxt
);
1253 if (sizeof(binfo
) != len
)
1256 memset(&binfo
, 0, sizeof(binfo
));
1257 binfo
.hw_version
= dd
->revision
;
1258 binfo
.sw_version
= HFI1_USER_SWVERSION
;
1259 binfo
.bthqp
= RVT_KDETH_QP_PREFIX
;
1260 binfo
.jkey
= uctxt
->jkey
;
1262 * If more than 64 contexts are enabled the allocated credit
1263 * return will span two or three contiguous pages. Since we only
1264 * map the page containing the context's credit return address,
1265 * we need to calculate the offset in the proper page.
1267 offset
= ((u64
)uctxt
->sc
->hw_free
-
1268 (u64
)dd
->cr_base
[uctxt
->numa_id
].va
) % PAGE_SIZE
;
1269 binfo
.sc_credits_addr
= HFI1_MMAP_TOKEN(PIO_CRED
, uctxt
->ctxt
,
1270 fd
->subctxt
, offset
);
1271 binfo
.pio_bufbase
= HFI1_MMAP_TOKEN(PIO_BUFS
, uctxt
->ctxt
,
1273 uctxt
->sc
->base_addr
);
1274 binfo
.pio_bufbase_sop
= HFI1_MMAP_TOKEN(PIO_BUFS_SOP
,
1277 uctxt
->sc
->base_addr
);
1278 binfo
.rcvhdr_bufbase
= HFI1_MMAP_TOKEN(RCV_HDRQ
, uctxt
->ctxt
,
1281 binfo
.rcvegr_bufbase
= HFI1_MMAP_TOKEN(RCV_EGRBUF
, uctxt
->ctxt
,
1283 uctxt
->egrbufs
.rcvtids
[0].dma
);
1284 binfo
.sdma_comp_bufbase
= HFI1_MMAP_TOKEN(SDMA_COMP
, uctxt
->ctxt
,
1288 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1290 binfo
.user_regbase
= HFI1_MMAP_TOKEN(UREGS
, uctxt
->ctxt
,
1292 offset
= offset_in_page((uctxt_offset(uctxt
) + fd
->subctxt
) *
1293 sizeof(*dd
->events
));
1294 binfo
.events_bufbase
= HFI1_MMAP_TOKEN(EVENTS
, uctxt
->ctxt
,
1297 binfo
.status_bufbase
= HFI1_MMAP_TOKEN(STATUS
, uctxt
->ctxt
,
1300 if (HFI1_CAP_IS_USET(DMA_RTAIL
))
1301 binfo
.rcvhdrtail_base
= HFI1_MMAP_TOKEN(RTAIL
, uctxt
->ctxt
,
1303 if (uctxt
->subctxt_cnt
) {
1304 binfo
.subctxt_uregbase
= HFI1_MMAP_TOKEN(SUBCTXT_UREGS
,
1307 binfo
.subctxt_rcvhdrbuf
= HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ
,
1310 binfo
.subctxt_rcvegrbuf
= HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF
,
1315 if (copy_to_user((void __user
*)arg
, &binfo
, len
))
1322 * user_exp_rcv_setup - Set up the given tid rcv list
1323 * @fd: file data of the current driver instance
1324 * @arg: ioctl argumnent for user space information
1325 * @len: length of data structure associated with ioctl command
1327 * Wrapper to validate ioctl information before doing _rcv_setup.
1330 static int user_exp_rcv_setup(struct hfi1_filedata
*fd
, unsigned long arg
,
1335 struct hfi1_tid_info tinfo
;
1337 if (sizeof(tinfo
) != len
)
1340 if (copy_from_user(&tinfo
, (void __user
*)arg
, (sizeof(tinfo
))))
1343 ret
= hfi1_user_exp_rcv_setup(fd
, &tinfo
);
1346 * Copy the number of tidlist entries we used
1347 * and the length of the buffer we registered.
1349 addr
= arg
+ offsetof(struct hfi1_tid_info
, tidcnt
);
1350 if (copy_to_user((void __user
*)addr
, &tinfo
.tidcnt
,
1351 sizeof(tinfo
.tidcnt
)))
1354 addr
= arg
+ offsetof(struct hfi1_tid_info
, length
);
1355 if (!ret
&& copy_to_user((void __user
*)addr
, &tinfo
.length
,
1356 sizeof(tinfo
.length
)))
1360 hfi1_user_exp_rcv_invalid(fd
, &tinfo
);
1367 * user_exp_rcv_clear - Clear the given tid rcv list
1368 * @fd: file data of the current driver instance
1369 * @arg: ioctl argumnent for user space information
1370 * @len: length of data structure associated with ioctl command
1372 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because
1373 * of this, we need to use this wrapper to copy the user space information
1374 * before doing the clear.
1376 static int user_exp_rcv_clear(struct hfi1_filedata
*fd
, unsigned long arg
,
1381 struct hfi1_tid_info tinfo
;
1383 if (sizeof(tinfo
) != len
)
1386 if (copy_from_user(&tinfo
, (void __user
*)arg
, (sizeof(tinfo
))))
1389 ret
= hfi1_user_exp_rcv_clear(fd
, &tinfo
);
1391 addr
= arg
+ offsetof(struct hfi1_tid_info
, tidcnt
);
1392 if (copy_to_user((void __user
*)addr
, &tinfo
.tidcnt
,
1393 sizeof(tinfo
.tidcnt
)))
1401 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1402 * @fd: file data of the current driver instance
1403 * @arg: ioctl argumnent for user space information
1404 * @len: length of data structure associated with ioctl command
1406 * Wrapper to validate ioctl information before doing _rcv_invalid.
1409 static int user_exp_rcv_invalid(struct hfi1_filedata
*fd
, unsigned long arg
,
1414 struct hfi1_tid_info tinfo
;
1416 if (sizeof(tinfo
) != len
)
1419 if (!fd
->invalid_tids
)
1422 if (copy_from_user(&tinfo
, (void __user
*)arg
, (sizeof(tinfo
))))
1425 ret
= hfi1_user_exp_rcv_invalid(fd
, &tinfo
);
1429 addr
= arg
+ offsetof(struct hfi1_tid_info
, tidcnt
);
1430 if (copy_to_user((void __user
*)addr
, &tinfo
.tidcnt
,
1431 sizeof(tinfo
.tidcnt
)))
1437 static __poll_t
poll_urgent(struct file
*fp
,
1438 struct poll_table_struct
*pt
)
1440 struct hfi1_filedata
*fd
= fp
->private_data
;
1441 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
1442 struct hfi1_devdata
*dd
= uctxt
->dd
;
1445 poll_wait(fp
, &uctxt
->wait
, pt
);
1447 spin_lock_irq(&dd
->uctxt_lock
);
1448 if (uctxt
->urgent
!= uctxt
->urgent_poll
) {
1449 pollflag
= EPOLLIN
| EPOLLRDNORM
;
1450 uctxt
->urgent_poll
= uctxt
->urgent
;
1453 set_bit(HFI1_CTXT_WAITING_URG
, &uctxt
->event_flags
);
1455 spin_unlock_irq(&dd
->uctxt_lock
);
1460 static __poll_t
poll_next(struct file
*fp
,
1461 struct poll_table_struct
*pt
)
1463 struct hfi1_filedata
*fd
= fp
->private_data
;
1464 struct hfi1_ctxtdata
*uctxt
= fd
->uctxt
;
1465 struct hfi1_devdata
*dd
= uctxt
->dd
;
1468 poll_wait(fp
, &uctxt
->wait
, pt
);
1470 spin_lock_irq(&dd
->uctxt_lock
);
1471 if (hdrqempty(uctxt
)) {
1472 set_bit(HFI1_CTXT_WAITING_RCV
, &uctxt
->event_flags
);
1473 hfi1_rcvctrl(dd
, HFI1_RCVCTRL_INTRAVAIL_ENB
, uctxt
);
1476 pollflag
= EPOLLIN
| EPOLLRDNORM
;
1478 spin_unlock_irq(&dd
->uctxt_lock
);
1484 * Find all user contexts in use, and set the specified bit in their
1486 * See also find_ctxt() for a similar use, that is specific to send buffers.
1488 int hfi1_set_uevent_bits(struct hfi1_pportdata
*ppd
, const int evtbit
)
1490 struct hfi1_ctxtdata
*uctxt
;
1491 struct hfi1_devdata
*dd
= ppd
->dd
;
1497 for (ctxt
= dd
->first_dyn_alloc_ctxt
; ctxt
< dd
->num_rcv_contexts
;
1499 uctxt
= hfi1_rcd_get_by_index(dd
, ctxt
);
1504 * subctxt_cnt is 0 if not shared, so do base
1505 * separately, first, then remaining subctxt, if any
1507 evs
= dd
->events
+ uctxt_offset(uctxt
);
1508 set_bit(evtbit
, evs
);
1509 for (i
= 1; i
< uctxt
->subctxt_cnt
; i
++)
1510 set_bit(evtbit
, evs
+ i
);
1511 hfi1_rcd_put(uctxt
);
1519 * manage_rcvq - manage a context's receive queue
1520 * @uctxt: the context
1521 * @subctxt: the sub-context
1522 * @arg: start/stop action to carry out
1524 * start_stop == 0 disables receive on the context, for use in queue
1525 * overflow conditions. start_stop==1 re-enables, to be used to
1526 * re-init the software copy of the head register
1528 static int manage_rcvq(struct hfi1_ctxtdata
*uctxt
, u16 subctxt
,
1531 struct hfi1_devdata
*dd
= uctxt
->dd
;
1532 unsigned int rcvctrl_op
;
1538 if (get_user(start_stop
, (int __user
*)arg
))
1541 /* atomically clear receive enable ctxt. */
1544 * On enable, force in-memory copy of the tail register to
1545 * 0, so that protocol code doesn't have to worry about
1546 * whether or not the chip has yet updated the in-memory
1547 * copy or not on return from the system call. The chip
1548 * always resets it's tail register back to 0 on a
1549 * transition from disabled to enabled.
1551 if (hfi1_rcvhdrtail_kvaddr(uctxt
))
1552 clear_rcvhdrtail(uctxt
);
1553 rcvctrl_op
= HFI1_RCVCTRL_CTXT_ENB
;
1555 rcvctrl_op
= HFI1_RCVCTRL_CTXT_DIS
;
1557 hfi1_rcvctrl(dd
, rcvctrl_op
, uctxt
);
1558 /* always; new head should be equal to new tail; see above */
1564 * clear the event notifier events for this context.
1565 * User process then performs actions appropriate to bit having been
1566 * set, if desired, and checks again in future.
1568 static int user_event_ack(struct hfi1_ctxtdata
*uctxt
, u16 subctxt
,
1572 struct hfi1_devdata
*dd
= uctxt
->dd
;
1574 unsigned long events
;
1579 if (get_user(events
, (unsigned long __user
*)arg
))
1582 evs
= dd
->events
+ uctxt_offset(uctxt
) + subctxt
;
1584 for (i
= 0; i
<= _HFI1_MAX_EVENT_BIT
; i
++) {
1585 if (!test_bit(i
, &events
))
1592 static int set_ctxt_pkey(struct hfi1_ctxtdata
*uctxt
, unsigned long arg
)
1595 struct hfi1_pportdata
*ppd
= uctxt
->ppd
;
1596 struct hfi1_devdata
*dd
= uctxt
->dd
;
1599 if (!HFI1_CAP_IS_USET(PKEY_CHECK
))
1602 if (get_user(pkey
, (u16 __user
*)arg
))
1605 if (pkey
== LIM_MGMT_P_KEY
|| pkey
== FULL_MGMT_P_KEY
)
1608 for (i
= 0; i
< ARRAY_SIZE(ppd
->pkeys
); i
++)
1609 if (pkey
== ppd
->pkeys
[i
])
1610 return hfi1_set_ctxt_pkey(dd
, uctxt
, pkey
);
1616 * ctxt_reset - Reset the user context
1617 * @uctxt: valid user context
1619 static int ctxt_reset(struct hfi1_ctxtdata
*uctxt
)
1621 struct send_context
*sc
;
1622 struct hfi1_devdata
*dd
;
1625 if (!uctxt
|| !uctxt
->dd
|| !uctxt
->sc
)
1629 * There is no protection here. User level has to guarantee that
1630 * no one will be writing to the send context while it is being
1631 * re-initialized. If user level breaks that guarantee, it will
1632 * break it's own context and no one else's.
1638 * Wait until the interrupt handler has marked the context as
1639 * halted or frozen. Report error if we time out.
1641 wait_event_interruptible_timeout(
1642 sc
->halt_wait
, (sc
->flags
& SCF_HALTED
),
1643 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT
));
1644 if (!(sc
->flags
& SCF_HALTED
))
1648 * If the send context was halted due to a Freeze, wait until the
1649 * device has been "unfrozen" before resetting the context.
1651 if (sc
->flags
& SCF_FROZEN
) {
1652 wait_event_interruptible_timeout(
1654 !(READ_ONCE(dd
->flags
) & HFI1_FROZEN
),
1655 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT
));
1656 if (dd
->flags
& HFI1_FROZEN
)
1659 if (dd
->flags
& HFI1_FORCED_FREEZE
)
1661 * Don't allow context reset if we are into
1667 ret
= sc_enable(sc
);
1668 hfi1_rcvctrl(dd
, HFI1_RCVCTRL_CTXT_ENB
, uctxt
);
1670 ret
= sc_restart(sc
);
1673 sc_return_credits(sc
);
1678 static void user_remove(struct hfi1_devdata
*dd
)
1681 hfi1_cdev_cleanup(&dd
->user_cdev
, &dd
->user_device
);
1684 static int user_add(struct hfi1_devdata
*dd
)
1689 snprintf(name
, sizeof(name
), "%s_%d", class_name(), dd
->unit
);
1690 ret
= hfi1_cdev_init(dd
->unit
, name
, &hfi1_file_ops
,
1691 &dd
->user_cdev
, &dd
->user_device
,
1692 true, &dd
->verbs_dev
.rdi
.ibdev
.dev
.kobj
);
1700 * Create per-unit files in /dev
1702 int hfi1_device_create(struct hfi1_devdata
*dd
)
1704 return user_add(dd
);
1708 * Remove per-unit files in /dev
1709 * void, core kernel returns no errors for this stuff
1711 void hfi1_device_remove(struct hfi1_devdata
*dd
)