1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
3 * Copyright(c) 2015 - 2017 Intel Corporation.
6 #include <linux/firmware.h>
7 #include <linux/mutex.h>
8 #include <linux/delay.h>
9 #include <linux/crc32.h>
15 * Make it easy to toggle firmware file name and if it gets loaded by
16 * editing the following. This may be something we do while in development
17 * but not necessarily something a user would ever need to use.
19 #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
20 #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
21 #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
22 #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
23 #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
24 #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
25 #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
26 #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
27 #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
29 MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC
);
30 MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME
);
31 MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME
);
32 MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME
);
34 static uint fw_8051_load
= 1;
35 static uint fw_fabric_serdes_load
= 1;
36 static uint fw_pcie_serdes_load
= 1;
37 static uint fw_sbus_load
= 1;
39 /* Firmware file names get set in hfi1_firmware_init() based on the above */
40 static char *fw_8051_name
;
41 static char *fw_fabric_serdes_name
;
42 static char *fw_sbus_name
;
43 static char *fw_pcie_serdes_name
;
45 #define SBUS_MAX_POLL_COUNT 100
46 #define SBUS_COUNTER(reg, name) \
47 (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
48 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
51 * Firmware security header.
59 u32 date
; /* BCD yyyymmdd */
60 u32 size
; /* in DWORDs */
61 u32 key_size
; /* in DWORDs */
62 u32 modulus_size
; /* in DWORDs */
63 u32 exponent_size
; /* in DWORDs */
67 /* expected field values */
68 #define CSS_MODULE_TYPE 0x00000006
69 #define CSS_HEADER_LEN 0x000000a1
70 #define CSS_HEADER_VERSION 0x00010000
71 #define CSS_MODULE_VENDOR 0x00008086
75 #define EXPONENT_SIZE 4
77 /* size of platform configuration partition */
78 #define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
80 /* size of file of plaform configuration encoded in format version 4 */
81 #define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
84 struct firmware_file
{
85 struct css_header css_header
;
87 u8 exponent
[EXPONENT_SIZE
];
88 u8 signature
[KEY_SIZE
];
92 struct augmented_firmware_file
{
93 struct css_header css_header
;
95 u8 exponent
[EXPONENT_SIZE
];
96 u8 signature
[KEY_SIZE
];
102 /* augmented file size difference */
103 #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
104 sizeof(struct firmware_file))
106 struct firmware_details
{
107 /* Linux core piece */
108 const struct firmware
*fw
;
110 struct css_header
*css_header
;
111 u8
*firmware_ptr
; /* pointer to binary data */
112 u32 firmware_len
; /* length in bytes */
113 u8
*modulus
; /* pointer to the modulus */
114 u8
*exponent
; /* pointer to the exponent */
115 u8
*signature
; /* pointer to the signature */
116 u8
*r2
; /* pointer to r2 */
117 u8
*mu
; /* pointer to mu */
118 struct augmented_firmware_file dummy_header
;
122 * The mutex protects fw_state, fw_err, and all of the firmware_details
125 static DEFINE_MUTEX(fw_mutex
);
133 static enum fw_state fw_state
= FW_EMPTY
;
135 static struct firmware_details fw_8051
;
136 static struct firmware_details fw_fabric
;
137 static struct firmware_details fw_pcie
;
138 static struct firmware_details fw_sbus
;
140 /* flags for turn_off_spicos() */
141 #define SPICO_SBUS 0x1
142 #define SPICO_FABRIC 0x2
143 #define ENABLE_SPICO_SMASK 0x1
145 /* security block commands */
146 #define RSA_CMD_INIT 0x1
147 #define RSA_CMD_START 0x2
149 /* security block status */
150 #define RSA_STATUS_IDLE 0x0
151 #define RSA_STATUS_ACTIVE 0x1
152 #define RSA_STATUS_DONE 0x2
153 #define RSA_STATUS_FAILED 0x3
155 /* RSA engine timeout, in ms */
156 #define RSA_ENGINE_TIMEOUT 100 /* ms */
158 /* hardware mutex timeout, in ms */
159 #define HM_TIMEOUT 10 /* ms */
161 /* 8051 memory access timeout, in us */
162 #define DC8051_ACCESS_TIMEOUT 100 /* us */
164 /* the number of fabric SerDes on the SBus */
165 #define NUM_FABRIC_SERDES 4
167 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
168 #define SBUS_READ_COMPLETE 0x4
170 /* SBus fabric SerDes addresses, one set per HFI */
171 static const u8 fabric_serdes_addrs
[2][NUM_FABRIC_SERDES
] = {
172 { 0x01, 0x02, 0x03, 0x04 },
173 { 0x28, 0x29, 0x2a, 0x2b }
176 /* SBus PCIe SerDes addresses, one set per HFI */
177 static const u8 pcie_serdes_addrs
[2][NUM_PCIE_SERDES
] = {
178 { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
179 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
180 { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
181 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
184 /* SBus PCIe PCS addresses, one set per HFI */
185 const u8 pcie_pcs_addrs
[2][NUM_PCIE_SERDES
] = {
186 { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
187 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
188 { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
189 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
192 /* SBus fabric SerDes broadcast addresses, one per HFI */
193 static const u8 fabric_serdes_broadcast
[2] = { 0xe4, 0xe5 };
194 static const u8 all_fabric_serdes_broadcast
= 0xe1;
196 /* SBus PCIe SerDes broadcast addresses, one per HFI */
197 const u8 pcie_serdes_broadcast
[2] = { 0xe2, 0xe3 };
198 static const u8 all_pcie_serdes_broadcast
= 0xe0;
200 static const u32 platform_config_table_limits
[PLATFORM_CONFIG_TABLE_MAX
] = {
206 QSFP_ATTEN_TABLE_MAX
,
207 VARIABLE_SETTINGS_TABLE_MAX
211 static void dispose_one_firmware(struct firmware_details
*fdet
);
212 static int load_fabric_serdes_firmware(struct hfi1_devdata
*dd
,
213 struct firmware_details
*fdet
);
214 static void dump_fw_version(struct hfi1_devdata
*dd
);
217 * Read a single 64-bit value from 8051 data memory.
220 * o caller to have already set up data read, no auto increment
221 * o caller to turn off read enable when finished
223 * The address argument is a byte offset. Bits 0:2 in the address are
224 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
225 * the lower bits are zero.
227 * Return 0 on success, -ENXIO on a read error (timeout).
229 static int __read_8051_data(struct hfi1_devdata
*dd
, u32 addr
, u64
*result
)
234 /* step 1: set the address, clear enable */
235 reg
= (addr
& DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK
)
236 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT
;
237 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
, reg
);
239 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
,
240 reg
| DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK
);
242 /* wait until ACCESS_COMPLETED is set */
244 while ((read_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_STATUS
)
245 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK
)
248 if (count
> DC8051_ACCESS_TIMEOUT
) {
249 dd_dev_err(dd
, "timeout reading 8051 data\n");
255 /* gather the data */
256 *result
= read_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_RD_DATA
);
262 * Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks.
263 * Return 0 on success, -errno on error.
265 int read_8051_data(struct hfi1_devdata
*dd
, u32 addr
, u32 len
, u64
*result
)
271 spin_lock_irqsave(&dd
->dc8051_memlock
, flags
);
273 /* data read set-up, no auto-increment */
274 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_SETUP
, 0);
276 for (done
= 0; done
< len
; addr
+= 8, done
+= 8, result
++) {
277 ret
= __read_8051_data(dd
, addr
, result
);
282 /* turn off read enable */
283 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
, 0);
285 spin_unlock_irqrestore(&dd
->dc8051_memlock
, flags
);
291 * Write data or code to the 8051 code or data RAM.
293 static int write_8051(struct hfi1_devdata
*dd
, int code
, u32 start
,
294 const u8
*data
, u32 len
)
300 /* check alignment */
301 aligned
= ((unsigned long)data
& 0x7) == 0;
304 reg
= (code
? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK
: 0ull)
305 | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK
;
306 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_SETUP
, reg
);
308 reg
= ((start
& DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK
)
309 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT
)
310 | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK
;
311 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
, reg
);
314 for (offset
= 0; offset
< len
; offset
+= 8) {
315 int bytes
= len
- offset
;
319 memcpy(®
, &data
[offset
], bytes
);
320 } else if (aligned
) {
321 reg
= *(u64
*)&data
[offset
];
323 memcpy(®
, &data
[offset
], 8);
325 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_WR_DATA
, reg
);
327 /* wait until ACCESS_COMPLETED is set */
329 while ((read_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_STATUS
)
330 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK
)
333 if (count
> DC8051_ACCESS_TIMEOUT
) {
334 dd_dev_err(dd
, "timeout writing 8051 data\n");
341 /* turn off write access, auto increment (also sets to data access) */
342 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_CTRL
, 0);
343 write_csr(dd
, DC_DC8051_CFG_RAM_ACCESS_SETUP
, 0);
348 /* return 0 if values match, non-zero and complain otherwise */
349 static int invalid_header(struct hfi1_devdata
*dd
, const char *what
,
350 u32 actual
, u32 expected
)
352 if (actual
== expected
)
356 "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
357 what
, expected
, actual
);
362 * Verify that the static fields in the CSS header match.
364 static int verify_css_header(struct hfi1_devdata
*dd
, struct css_header
*css
)
366 /* verify CSS header fields (most sizes are in DW, so add /4) */
367 if (invalid_header(dd
, "module_type", css
->module_type
,
369 invalid_header(dd
, "header_len", css
->header_len
,
370 (sizeof(struct firmware_file
) / 4)) ||
371 invalid_header(dd
, "header_version", css
->header_version
,
372 CSS_HEADER_VERSION
) ||
373 invalid_header(dd
, "module_vendor", css
->module_vendor
,
374 CSS_MODULE_VENDOR
) ||
375 invalid_header(dd
, "key_size", css
->key_size
, KEY_SIZE
/ 4) ||
376 invalid_header(dd
, "modulus_size", css
->modulus_size
,
378 invalid_header(dd
, "exponent_size", css
->exponent_size
,
379 EXPONENT_SIZE
/ 4)) {
386 * Make sure there are at least some bytes after the prefix.
388 static int payload_check(struct hfi1_devdata
*dd
, const char *name
,
389 long file_size
, long prefix_size
)
391 /* make sure we have some payload */
392 if (prefix_size
>= file_size
) {
394 "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
395 name
, file_size
, prefix_size
);
403 * Request the firmware from the system. Extract the pieces and fill in
404 * fdet. If successful, the caller will need to call dispose_one_firmware().
405 * Returns 0 on success, -ERRNO on error.
407 static int obtain_one_firmware(struct hfi1_devdata
*dd
, const char *name
,
408 struct firmware_details
*fdet
)
410 struct css_header
*css
;
413 memset(fdet
, 0, sizeof(*fdet
));
415 ret
= request_firmware(&fdet
->fw
, name
, &dd
->pcidev
->dev
);
417 dd_dev_warn(dd
, "cannot find firmware \"%s\", err %d\n",
422 /* verify the firmware */
423 if (fdet
->fw
->size
< sizeof(struct css_header
)) {
424 dd_dev_err(dd
, "firmware \"%s\" is too small\n", name
);
428 css
= (struct css_header
*)fdet
->fw
->data
;
430 hfi1_cdbg(FIRMWARE
, "Firmware %s details:", name
);
431 hfi1_cdbg(FIRMWARE
, "file size: 0x%lx bytes", fdet
->fw
->size
);
432 hfi1_cdbg(FIRMWARE
, "CSS structure:");
433 hfi1_cdbg(FIRMWARE
, " module_type 0x%x", css
->module_type
);
434 hfi1_cdbg(FIRMWARE
, " header_len 0x%03x (0x%03x bytes)",
435 css
->header_len
, 4 * css
->header_len
);
436 hfi1_cdbg(FIRMWARE
, " header_version 0x%x", css
->header_version
);
437 hfi1_cdbg(FIRMWARE
, " module_id 0x%x", css
->module_id
);
438 hfi1_cdbg(FIRMWARE
, " module_vendor 0x%x", css
->module_vendor
);
439 hfi1_cdbg(FIRMWARE
, " date 0x%x", css
->date
);
440 hfi1_cdbg(FIRMWARE
, " size 0x%03x (0x%03x bytes)",
441 css
->size
, 4 * css
->size
);
442 hfi1_cdbg(FIRMWARE
, " key_size 0x%03x (0x%03x bytes)",
443 css
->key_size
, 4 * css
->key_size
);
444 hfi1_cdbg(FIRMWARE
, " modulus_size 0x%03x (0x%03x bytes)",
445 css
->modulus_size
, 4 * css
->modulus_size
);
446 hfi1_cdbg(FIRMWARE
, " exponent_size 0x%03x (0x%03x bytes)",
447 css
->exponent_size
, 4 * css
->exponent_size
);
448 hfi1_cdbg(FIRMWARE
, "firmware size: 0x%lx bytes",
449 fdet
->fw
->size
- sizeof(struct firmware_file
));
452 * If the file does not have a valid CSS header, fail.
453 * Otherwise, check the CSS size field for an expected size.
454 * The augmented file has r2 and mu inserted after the header
455 * was generated, so there will be a known difference between
456 * the CSS header size and the actual file size. Use this
457 * difference to identify an augmented file.
459 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
461 ret
= verify_css_header(dd
, css
);
463 dd_dev_info(dd
, "Invalid CSS header for \"%s\"\n", name
);
464 } else if ((css
->size
* 4) == fdet
->fw
->size
) {
465 /* non-augmented firmware file */
466 struct firmware_file
*ff
= (struct firmware_file
*)
469 /* make sure there are bytes in the payload */
470 ret
= payload_check(dd
, name
, fdet
->fw
->size
,
471 sizeof(struct firmware_file
));
473 fdet
->css_header
= css
;
474 fdet
->modulus
= ff
->modulus
;
475 fdet
->exponent
= ff
->exponent
;
476 fdet
->signature
= ff
->signature
;
477 fdet
->r2
= fdet
->dummy_header
.r2
; /* use dummy space */
478 fdet
->mu
= fdet
->dummy_header
.mu
; /* use dummy space */
479 fdet
->firmware_ptr
= ff
->firmware
;
480 fdet
->firmware_len
= fdet
->fw
->size
-
481 sizeof(struct firmware_file
);
483 * Header does not include r2 and mu - generate here.
486 dd_dev_err(dd
, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
489 } else if ((css
->size
* 4) + AUGMENT_SIZE
== fdet
->fw
->size
) {
490 /* augmented firmware file */
491 struct augmented_firmware_file
*aff
=
492 (struct augmented_firmware_file
*)fdet
->fw
->data
;
494 /* make sure there are bytes in the payload */
495 ret
= payload_check(dd
, name
, fdet
->fw
->size
,
496 sizeof(struct augmented_firmware_file
));
498 fdet
->css_header
= css
;
499 fdet
->modulus
= aff
->modulus
;
500 fdet
->exponent
= aff
->exponent
;
501 fdet
->signature
= aff
->signature
;
504 fdet
->firmware_ptr
= aff
->firmware
;
505 fdet
->firmware_len
= fdet
->fw
->size
-
506 sizeof(struct augmented_firmware_file
);
509 /* css->size check failed */
511 "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
513 (fdet
->fw
->size
- AUGMENT_SIZE
) / 4,
520 /* if returning an error, clean up after ourselves */
522 dispose_one_firmware(fdet
);
526 static void dispose_one_firmware(struct firmware_details
*fdet
)
528 release_firmware(fdet
->fw
);
529 /* erase all previous information */
530 memset(fdet
, 0, sizeof(*fdet
));
534 * Obtain the 4 firmwares from the OS. All must be obtained at once or not
535 * at all. If called with the firmware state in FW_TRY, use alternate names.
536 * On exit, this routine will have set the firmware state to one of FW_TRY,
537 * FW_FINAL, or FW_ERR.
539 * Must be holding fw_mutex.
541 static void __obtain_firmware(struct hfi1_devdata
*dd
)
545 if (fw_state
== FW_FINAL
) /* nothing more to obtain */
547 if (fw_state
== FW_ERR
) /* already in error */
550 /* fw_state is FW_EMPTY or FW_TRY */
552 if (fw_state
== FW_TRY
) {
554 * We tried the original and it failed. Move to the
557 dd_dev_warn(dd
, "using alternate firmware names\n");
559 * Let others run. Some systems, when missing firmware, does
560 * something that holds for 30 seconds. If we do that twice
561 * in a row it triggers task blocked warning.
565 dispose_one_firmware(&fw_8051
);
566 if (fw_fabric_serdes_load
)
567 dispose_one_firmware(&fw_fabric
);
569 dispose_one_firmware(&fw_sbus
);
570 if (fw_pcie_serdes_load
)
571 dispose_one_firmware(&fw_pcie
);
572 fw_8051_name
= ALT_FW_8051_NAME_ASIC
;
573 fw_fabric_serdes_name
= ALT_FW_FABRIC_NAME
;
574 fw_sbus_name
= ALT_FW_SBUS_NAME
;
575 fw_pcie_serdes_name
= ALT_FW_PCIE_NAME
;
578 * Add a delay before obtaining and loading debug firmware.
579 * Authorization will fail if the delay between firmware
580 * authorization events is shorter than 50us. Add 100us to
581 * make a delay time safe.
583 usleep_range(100, 120);
587 err
= obtain_one_firmware(dd
, fw_sbus_name
, &fw_sbus
);
592 if (fw_pcie_serdes_load
) {
593 err
= obtain_one_firmware(dd
, fw_pcie_serdes_name
, &fw_pcie
);
598 if (fw_fabric_serdes_load
) {
599 err
= obtain_one_firmware(dd
, fw_fabric_serdes_name
,
606 err
= obtain_one_firmware(dd
, fw_8051_name
, &fw_8051
);
613 /* oops, had problems obtaining a firmware */
614 if (fw_state
== FW_EMPTY
&& dd
->icode
== ICODE_RTL_SILICON
) {
615 /* retry with alternate (RTL only) */
619 dd_dev_err(dd
, "unable to obtain working firmware\n");
624 if (fw_state
== FW_EMPTY
&&
625 dd
->icode
!= ICODE_FUNCTIONAL_SIMULATOR
)
626 fw_state
= FW_TRY
; /* may retry later */
628 fw_state
= FW_FINAL
; /* cannot try again */
633 * Called by all HFIs when loading their firmware - i.e. device probe time.
634 * The first one will do the actual firmware load. Use a mutex to resolve
635 * any possible race condition.
637 * The call to this routine cannot be moved to driver load because the kernel
638 * call request_firmware() requires a device which is only available after
639 * the first device probe.
641 static int obtain_firmware(struct hfi1_devdata
*dd
)
643 unsigned long timeout
;
645 mutex_lock(&fw_mutex
);
647 /* 40s delay due to long delay on missing firmware on some systems */
648 timeout
= jiffies
+ msecs_to_jiffies(40000);
649 while (fw_state
== FW_TRY
) {
651 * Another device is trying the firmware. Wait until it
652 * decides what works (or not).
654 if (time_after(jiffies
, timeout
)) {
655 /* waited too long */
656 dd_dev_err(dd
, "Timeout waiting for firmware try");
661 mutex_unlock(&fw_mutex
);
662 msleep(20); /* arbitrary delay */
663 mutex_lock(&fw_mutex
);
665 /* not in FW_TRY state */
667 /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
668 if (fw_state
== FW_EMPTY
)
669 __obtain_firmware(dd
);
671 mutex_unlock(&fw_mutex
);
676 * Called when the driver unloads. The timing is asymmetric with its
677 * counterpart, obtain_firmware(). If called at device remove time,
678 * then it is conceivable that another device could probe while the
679 * firmware is being disposed. The mutexes can be moved to do that
680 * safely, but then the firmware would be requested from the OS multiple
683 * No mutex is needed as the driver is unloading and there cannot be any
686 void dispose_firmware(void)
688 dispose_one_firmware(&fw_8051
);
689 dispose_one_firmware(&fw_fabric
);
690 dispose_one_firmware(&fw_pcie
);
691 dispose_one_firmware(&fw_sbus
);
693 /* retain the error state, otherwise revert to empty */
694 if (fw_state
!= FW_ERR
)
699 * Called with the result of a firmware download.
701 * Return 1 to retry loading the firmware, 0 to stop.
703 static int retry_firmware(struct hfi1_devdata
*dd
, int load_result
)
707 mutex_lock(&fw_mutex
);
709 if (load_result
== 0) {
711 * The load succeeded, so expect all others to do the same.
712 * Do not retry again.
714 if (fw_state
== FW_TRY
)
716 retry
= 0; /* do NOT retry */
717 } else if (fw_state
== FW_TRY
) {
718 /* load failed, obtain alternate firmware */
719 __obtain_firmware(dd
);
720 retry
= (fw_state
== FW_FINAL
);
722 /* else in FW_FINAL or FW_ERR, no retry in either case */
726 mutex_unlock(&fw_mutex
);
731 * Write a block of data to a given array CSR. All calls will be in
732 * multiples of 8 bytes.
734 static void write_rsa_data(struct hfi1_devdata
*dd
, int what
,
735 const u8
*data
, int nbytes
)
737 int qw_size
= nbytes
/ 8;
740 if (((unsigned long)data
& 0x7) == 0) {
742 u64
*ptr
= (u64
*)data
;
744 for (i
= 0; i
< qw_size
; i
++, ptr
++)
745 write_csr(dd
, what
+ (8 * i
), *ptr
);
748 for (i
= 0; i
< qw_size
; i
++, data
+= 8) {
751 memcpy(&value
, data
, 8);
752 write_csr(dd
, what
+ (8 * i
), value
);
758 * Write a block of data to a given CSR as a stream of writes. All calls will
759 * be in multiples of 8 bytes.
761 static void write_streamed_rsa_data(struct hfi1_devdata
*dd
, int what
,
762 const u8
*data
, int nbytes
)
764 u64
*ptr
= (u64
*)data
;
765 int qw_size
= nbytes
/ 8;
767 for (; qw_size
> 0; qw_size
--, ptr
++)
768 write_csr(dd
, what
, *ptr
);
772 * Download the signature and start the RSA mechanism. Wait for
773 * RSA_ENGINE_TIMEOUT before giving up.
775 static int run_rsa(struct hfi1_devdata
*dd
, const char *who
,
778 unsigned long timeout
;
783 /* write the signature */
784 write_rsa_data(dd
, MISC_CFG_RSA_SIGNATURE
, signature
, KEY_SIZE
);
787 write_csr(dd
, MISC_CFG_RSA_CMD
, RSA_CMD_INIT
);
790 * Make sure the engine is idle and insert a delay between the two
791 * writes to MISC_CFG_RSA_CMD.
793 status
= (read_csr(dd
, MISC_CFG_FW_CTRL
)
794 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK
)
795 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT
;
796 if (status
!= RSA_STATUS_IDLE
) {
797 dd_dev_err(dd
, "%s security engine not idle - giving up\n",
803 write_csr(dd
, MISC_CFG_RSA_CMD
, RSA_CMD_START
);
806 * Look for the result.
808 * The RSA engine is hooked up to two MISC errors. The driver
809 * masks these errors as they do not respond to the standard
810 * error "clear down" mechanism. Look for these errors here and
811 * clear them when possible. This routine will exit with the
812 * errors of the current run still set.
814 * MISC_FW_AUTH_FAILED_ERR
815 * Firmware authorization failed. This can be cleared by
816 * re-initializing the RSA engine, then clearing the status bit.
817 * Do not re-init the RSA angine immediately after a successful
818 * run - this will reset the current authorization.
820 * MISC_KEY_MISMATCH_ERR
821 * Key does not match. The only way to clear this is to load
822 * a matching key then clear the status bit. If this error
823 * is raised, it will persist outside of this routine until a
824 * matching key is loaded.
826 timeout
= msecs_to_jiffies(RSA_ENGINE_TIMEOUT
) + jiffies
;
828 status
= (read_csr(dd
, MISC_CFG_FW_CTRL
)
829 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK
)
830 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT
;
832 if (status
== RSA_STATUS_IDLE
) {
833 /* should not happen */
834 dd_dev_err(dd
, "%s firmware security bad idle state\n",
838 } else if (status
== RSA_STATUS_DONE
) {
839 /* finished successfully */
841 } else if (status
== RSA_STATUS_FAILED
) {
842 /* finished unsuccessfully */
846 /* else still active */
848 if (time_after(jiffies
, timeout
)) {
850 * Timed out while active. We can't reset the engine
851 * if it is stuck active, but run through the
852 * error code to see what error bits are set.
854 dd_dev_err(dd
, "%s firmware security time out\n", who
);
863 * Arrive here on success or failure. Clear all RSA engine
864 * errors. All current errors will stick - the RSA logic is keeping
865 * error high. All previous errors will clear - the RSA logic
866 * is not keeping the error high.
868 write_csr(dd
, MISC_ERR_CLEAR
,
869 MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK
|
870 MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK
);
872 * All that is left are the current errors. Print warnings on
873 * authorization failure details, if any. Firmware authorization
874 * can be retried, so these are only warnings.
876 reg
= read_csr(dd
, MISC_ERR_STATUS
);
878 if (reg
& MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK
)
879 dd_dev_warn(dd
, "%s firmware authorization failed\n",
881 if (reg
& MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK
)
882 dd_dev_warn(dd
, "%s firmware key mismatch\n", who
);
888 static void load_security_variables(struct hfi1_devdata
*dd
,
889 struct firmware_details
*fdet
)
891 /* Security variables a. Write the modulus */
892 write_rsa_data(dd
, MISC_CFG_RSA_MODULUS
, fdet
->modulus
, KEY_SIZE
);
893 /* Security variables b. Write the r2 */
894 write_rsa_data(dd
, MISC_CFG_RSA_R2
, fdet
->r2
, KEY_SIZE
);
895 /* Security variables c. Write the mu */
896 write_rsa_data(dd
, MISC_CFG_RSA_MU
, fdet
->mu
, MU_SIZE
);
897 /* Security variables d. Write the header */
898 write_streamed_rsa_data(dd
, MISC_CFG_SHA_PRELOAD
,
899 (u8
*)fdet
->css_header
,
900 sizeof(struct css_header
));
903 /* return the 8051 firmware state */
904 static inline u32
get_firmware_state(struct hfi1_devdata
*dd
)
906 u64 reg
= read_csr(dd
, DC_DC8051_STS_CUR_STATE
);
908 return (reg
>> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT
)
909 & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK
;
913 * Wait until the firmware is up and ready to take host requests.
914 * Return 0 on success, -ETIMEDOUT on timeout.
916 int wait_fm_ready(struct hfi1_devdata
*dd
, u32 mstimeout
)
918 unsigned long timeout
;
920 /* in the simulator, the fake 8051 is always ready */
921 if (dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
)
924 timeout
= msecs_to_jiffies(mstimeout
) + jiffies
;
926 if (get_firmware_state(dd
) == 0xa0) /* ready */
928 if (time_after(jiffies
, timeout
)) /* timed out */
930 usleep_range(1950, 2050); /* sleep 2ms-ish */
935 * Load the 8051 firmware.
937 static int load_8051_firmware(struct hfi1_devdata
*dd
,
938 struct firmware_details
*fdet
)
948 * Load DC 8051 firmware
951 * DC reset step 1: Reset DC8051
953 reg
= DC_DC8051_CFG_RST_M8051W_SMASK
954 | DC_DC8051_CFG_RST_CRAM_SMASK
955 | DC_DC8051_CFG_RST_DRAM_SMASK
956 | DC_DC8051_CFG_RST_IRAM_SMASK
957 | DC_DC8051_CFG_RST_SFR_SMASK
;
958 write_csr(dd
, DC_DC8051_CFG_RST
, reg
);
961 * DC reset step 2 (optional): Load 8051 data memory with link
966 * DC reset step 3: Load DC8051 firmware
968 /* release all but the core reset */
969 reg
= DC_DC8051_CFG_RST_M8051W_SMASK
;
970 write_csr(dd
, DC_DC8051_CFG_RST
, reg
);
972 /* Firmware load step 1 */
973 load_security_variables(dd
, fdet
);
976 * Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
978 write_csr(dd
, MISC_CFG_FW_CTRL
, 0);
980 /* Firmware load steps 3-5 */
981 ret
= write_8051(dd
, 1/*code*/, 0, fdet
->firmware_ptr
,
987 * DC reset step 4. Host starts the DC8051 firmware
990 * Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED
992 write_csr(dd
, MISC_CFG_FW_CTRL
, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK
);
994 /* Firmware load steps 7-10 */
995 ret
= run_rsa(dd
, "8051", fdet
->signature
);
999 /* clear all reset bits, releasing the 8051 */
1000 write_csr(dd
, DC_DC8051_CFG_RST
, 0ull);
1003 * DC reset step 5. Wait for firmware to be ready to accept host
1006 ret
= wait_fm_ready(dd
, TIMEOUT_8051_START
);
1007 if (ret
) { /* timed out */
1008 dd_dev_err(dd
, "8051 start timeout, current state 0x%x\n",
1009 get_firmware_state(dd
));
1013 read_misc_status(dd
, &ver_major
, &ver_minor
, &ver_patch
);
1014 dd_dev_info(dd
, "8051 firmware version %d.%d.%d\n",
1015 (int)ver_major
, (int)ver_minor
, (int)ver_patch
);
1016 dd
->dc8051_ver
= dc8051_ver(ver_major
, ver_minor
, ver_patch
);
1017 ret
= write_host_interface_version(dd
, HOST_INTERFACE_VERSION
);
1018 if (ret
!= HCMD_SUCCESS
) {
1020 "Failed to set host interface version, return 0x%x\n",
1029 * Write the SBus request register
1031 * No need for masking - the arguments are sized exactly.
1033 void sbus_request(struct hfi1_devdata
*dd
,
1034 u8 receiver_addr
, u8 data_addr
, u8 command
, u32 data_in
)
1036 write_csr(dd
, ASIC_CFG_SBUS_REQUEST
,
1037 ((u64
)data_in
<< ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT
) |
1038 ((u64
)command
<< ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT
) |
1039 ((u64
)data_addr
<< ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT
) |
1040 ((u64
)receiver_addr
<<
1041 ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT
));
1045 * Read a value from the SBus.
1047 * Requires the caller to be in fast mode
1049 static u32
sbus_read(struct hfi1_devdata
*dd
, u8 receiver_addr
, u8 data_addr
,
1056 u32 result_code
= 0;
1058 sbus_request(dd
, receiver_addr
, data_addr
, READ_SBUS_RECEIVER
, data_in
);
1060 for (retries
= 0; retries
< 100; retries
++) {
1061 usleep_range(1000, 1200); /* arbitrary */
1062 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1063 result_code
= (reg
>> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT
)
1064 & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK
;
1065 if (result_code
!= SBUS_READ_COMPLETE
)
1069 result
= (reg
>> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT
)
1070 & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK
;
1075 dd_dev_err(dd
, "%s: read failed, result code 0x%x\n", __func__
,
1083 * Turn off the SBus and fabric serdes spicos.
1085 * + Must be called with Sbus fast mode turned on.
1086 * + Must be called after fabric serdes broadcast is set up.
1087 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1088 * when using MISC_CFG_FW_CTRL.
1090 static void turn_off_spicos(struct hfi1_devdata
*dd
, int flags
)
1092 /* only needed on A0 */
1096 dd_dev_info(dd
, "Turning off spicos:%s%s\n",
1097 flags
& SPICO_SBUS
? " SBus" : "",
1098 flags
& SPICO_FABRIC
? " fabric" : "");
1100 write_csr(dd
, MISC_CFG_FW_CTRL
, ENABLE_SPICO_SMASK
);
1101 /* disable SBus spico */
1102 if (flags
& SPICO_SBUS
)
1103 sbus_request(dd
, SBUS_MASTER_BROADCAST
, 0x01,
1104 WRITE_SBUS_RECEIVER
, 0x00000040);
1106 /* disable the fabric serdes spicos */
1107 if (flags
& SPICO_FABRIC
)
1108 sbus_request(dd
, fabric_serdes_broadcast
[dd
->hfi1_id
],
1109 0x07, WRITE_SBUS_RECEIVER
, 0x00000000);
1110 write_csr(dd
, MISC_CFG_FW_CTRL
, 0);
1114 * Reset all of the fabric serdes for this HFI in preparation to take the
1117 * To do a reset, we need to write to the serdes registers. Unfortunately,
1118 * the fabric serdes download to the other HFI on the ASIC will have turned
1119 * off the firmware validation on this HFI. This means we can't write to the
1120 * registers to reset the serdes. Work around this by performing a complete
1121 * re-download and validation of the fabric serdes firmware. This, as a
1122 * by-product, will reset the serdes. NOTE: the re-download requires that
1123 * the 8051 be in the Offline state. I.e. not actively trying to use the
1124 * serdes. This routine is called at the point where the link is Offline and
1125 * is getting ready to go to Polling.
1127 void fabric_serdes_reset(struct hfi1_devdata
*dd
)
1131 if (!fw_fabric_serdes_load
)
1134 ret
= acquire_chip_resource(dd
, CR_SBUS
, SBUS_TIMEOUT
);
1137 "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1140 set_sbus_fast_mode(dd
);
1143 /* A0 serdes do not work with a re-download */
1144 u8 ra
= fabric_serdes_broadcast
[dd
->hfi1_id
];
1146 /* place SerDes in reset and disable SPICO */
1147 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000011);
1148 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1150 /* remove SerDes reset */
1151 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000010);
1152 /* turn SPICO enable on */
1153 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000002);
1155 turn_off_spicos(dd
, SPICO_FABRIC
);
1157 * No need for firmware retry - what to download has already
1159 * No need to pay attention to the load return - the only
1160 * failure is a validation failure, which has already been
1161 * checked by the initial download.
1163 (void)load_fabric_serdes_firmware(dd
, &fw_fabric
);
1166 clear_sbus_fast_mode(dd
);
1167 release_chip_resource(dd
, CR_SBUS
);
1170 /* Access to the SBus in this routine should probably be serialized */
1171 int sbus_request_slow(struct hfi1_devdata
*dd
,
1172 u8 receiver_addr
, u8 data_addr
, u8 command
, u32 data_in
)
1176 /* make sure fast mode is clear */
1177 clear_sbus_fast_mode(dd
);
1179 sbus_request(dd
, receiver_addr
, data_addr
, command
, data_in
);
1180 write_csr(dd
, ASIC_CFG_SBUS_EXECUTE
,
1181 ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK
);
1182 /* Wait for both DONE and RCV_DATA_VALID to go high */
1183 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1184 while (!((reg
& ASIC_STS_SBUS_RESULT_DONE_SMASK
) &&
1185 (reg
& ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK
))) {
1186 if (count
++ >= SBUS_MAX_POLL_COUNT
) {
1187 u64 counts
= read_csr(dd
, ASIC_STS_SBUS_COUNTERS
);
1189 * If the loop has timed out, we are OK if DONE bit
1190 * is set and RCV_DATA_VALID and EXECUTE counters
1191 * are the same. If not, we cannot proceed.
1193 if ((reg
& ASIC_STS_SBUS_RESULT_DONE_SMASK
) &&
1194 (SBUS_COUNTER(counts
, RCV_DATA_VALID
) ==
1195 SBUS_COUNTER(counts
, EXECUTE
)))
1200 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1203 write_csr(dd
, ASIC_CFG_SBUS_EXECUTE
, 0);
1204 /* Wait for DONE to clear after EXECUTE is cleared */
1205 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1206 while (reg
& ASIC_STS_SBUS_RESULT_DONE_SMASK
) {
1207 if (count
++ >= SBUS_MAX_POLL_COUNT
)
1210 reg
= read_csr(dd
, ASIC_STS_SBUS_RESULT
);
1215 static int load_fabric_serdes_firmware(struct hfi1_devdata
*dd
,
1216 struct firmware_details
*fdet
)
1219 const u8 ra
= fabric_serdes_broadcast
[dd
->hfi1_id
]; /* receiver addr */
1221 dd_dev_info(dd
, "Downloading fabric firmware\n");
1223 /* step 1: load security variables */
1224 load_security_variables(dd
, fdet
);
1225 /* step 2: place SerDes in reset and disable SPICO */
1226 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000011);
1227 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1229 /* step 3: remove SerDes reset */
1230 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000010);
1231 /* step 4: assert IMEM override */
1232 sbus_request(dd
, ra
, 0x00, WRITE_SBUS_RECEIVER
, 0x40000000);
1233 /* step 5: download SerDes machine code */
1234 for (i
= 0; i
< fdet
->firmware_len
; i
+= 4) {
1235 sbus_request(dd
, ra
, 0x0a, WRITE_SBUS_RECEIVER
,
1236 *(u32
*)&fdet
->firmware_ptr
[i
]);
1238 /* step 6: IMEM override off */
1239 sbus_request(dd
, ra
, 0x00, WRITE_SBUS_RECEIVER
, 0x00000000);
1240 /* step 7: turn ECC on */
1241 sbus_request(dd
, ra
, 0x0b, WRITE_SBUS_RECEIVER
, 0x000c0000);
1243 /* steps 8-11: run the RSA engine */
1244 err
= run_rsa(dd
, "fabric serdes", fdet
->signature
);
1248 /* step 12: turn SPICO enable on */
1249 sbus_request(dd
, ra
, 0x07, WRITE_SBUS_RECEIVER
, 0x00000002);
1250 /* step 13: enable core hardware interrupts */
1251 sbus_request(dd
, ra
, 0x08, WRITE_SBUS_RECEIVER
, 0x00000000);
1256 static int load_sbus_firmware(struct hfi1_devdata
*dd
,
1257 struct firmware_details
*fdet
)
1260 const u8 ra
= SBUS_MASTER_BROADCAST
; /* receiver address */
1262 dd_dev_info(dd
, "Downloading SBus firmware\n");
1264 /* step 1: load security variables */
1265 load_security_variables(dd
, fdet
);
1266 /* step 2: place SPICO into reset and enable off */
1267 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x000000c0);
1268 /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1269 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000240);
1270 /* step 4: set starting IMEM address for burst download */
1271 sbus_request(dd
, ra
, 0x03, WRITE_SBUS_RECEIVER
, 0x80000000);
1272 /* step 5: download the SBus Master machine code */
1273 for (i
= 0; i
< fdet
->firmware_len
; i
+= 4) {
1274 sbus_request(dd
, ra
, 0x14, WRITE_SBUS_RECEIVER
,
1275 *(u32
*)&fdet
->firmware_ptr
[i
]);
1277 /* step 6: set IMEM_CNTL_EN off */
1278 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000040);
1279 /* step 7: turn ECC on */
1280 sbus_request(dd
, ra
, 0x16, WRITE_SBUS_RECEIVER
, 0x000c0000);
1282 /* steps 8-11: run the RSA engine */
1283 err
= run_rsa(dd
, "SBus", fdet
->signature
);
1287 /* step 12: set SPICO_ENABLE on */
1288 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000140);
1293 static int load_pcie_serdes_firmware(struct hfi1_devdata
*dd
,
1294 struct firmware_details
*fdet
)
1297 const u8 ra
= SBUS_MASTER_BROADCAST
; /* receiver address */
1299 dd_dev_info(dd
, "Downloading PCIe firmware\n");
1301 /* step 1: load security variables */
1302 load_security_variables(dd
, fdet
);
1303 /* step 2: assert single step (halts the SBus Master spico) */
1304 sbus_request(dd
, ra
, 0x05, WRITE_SBUS_RECEIVER
, 0x00000001);
1305 /* step 3: enable XDMEM access */
1306 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000d40);
1307 /* step 4: load firmware into SBus Master XDMEM */
1309 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1310 * we only need to pick up the bytes and write them
1312 for (i
= 0; i
< fdet
->firmware_len
; i
+= 4) {
1313 sbus_request(dd
, ra
, 0x04, WRITE_SBUS_RECEIVER
,
1314 *(u32
*)&fdet
->firmware_ptr
[i
]);
1316 /* step 5: disable XDMEM access */
1317 sbus_request(dd
, ra
, 0x01, WRITE_SBUS_RECEIVER
, 0x00000140);
1318 /* step 6: allow SBus Spico to run */
1319 sbus_request(dd
, ra
, 0x05, WRITE_SBUS_RECEIVER
, 0x00000000);
1322 * steps 7-11: run RSA, if it succeeds, firmware is available to
1325 return run_rsa(dd
, "PCIe serdes", fdet
->signature
);
1329 * Set the given broadcast values on the given list of devices.
1331 static void set_serdes_broadcast(struct hfi1_devdata
*dd
, u8 bg1
, u8 bg2
,
1332 const u8
*addrs
, int count
)
1334 while (--count
>= 0) {
1336 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1337 * defaults for everything else. Do not read-modify-write,
1338 * per instruction from the manufacturer.
1342 * ----- ---------------------------------
1343 * 0 IGNORE_BROADCAST (default 0)
1344 * 11:4 BROADCAST_GROUP_1 (default 0xff)
1345 * 23:16 BROADCAST_GROUP_2 (default 0xff)
1347 sbus_request(dd
, addrs
[count
], 0xfd, WRITE_SBUS_RECEIVER
,
1348 (u32
)bg1
<< 4 | (u32
)bg2
<< 16);
1352 int acquire_hw_mutex(struct hfi1_devdata
*dd
)
1354 unsigned long timeout
;
1356 u8 mask
= 1 << dd
->hfi1_id
;
1357 u8 user
= (u8
)read_csr(dd
, ASIC_CFG_MUTEX
);
1361 "Hardware mutex already acquired, mutex mask %u\n",
1367 timeout
= msecs_to_jiffies(HM_TIMEOUT
) + jiffies
;
1369 write_csr(dd
, ASIC_CFG_MUTEX
, mask
);
1370 user
= (u8
)read_csr(dd
, ASIC_CFG_MUTEX
);
1372 return 0; /* success */
1373 if (time_after(jiffies
, timeout
))
1374 break; /* timed out */
1380 "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1381 (u32
)user
, (u32
)mask
, (try == 0) ? "retrying" : "giving up");
1384 /* break mutex and retry */
1385 write_csr(dd
, ASIC_CFG_MUTEX
, 0);
1393 void release_hw_mutex(struct hfi1_devdata
*dd
)
1395 u8 mask
= 1 << dd
->hfi1_id
;
1396 u8 user
= (u8
)read_csr(dd
, ASIC_CFG_MUTEX
);
1400 "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1401 (u32
)user
, (u32
)mask
);
1403 write_csr(dd
, ASIC_CFG_MUTEX
, 0);
1406 /* return the given resource bit(s) as a mask for the given HFI */
1407 static inline u64
resource_mask(u32 hfi1_id
, u32 resource
)
1409 return ((u64
)resource
) << (hfi1_id
? CR_DYN_SHIFT
: 0);
1412 static void fail_mutex_acquire_message(struct hfi1_devdata
*dd
,
1416 "%s: hardware mutex stuck - suggest rebooting the machine\n",
1421 * Acquire access to a chip resource.
1423 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1425 static int __acquire_chip_resource(struct hfi1_devdata
*dd
, u32 resource
)
1427 u64 scratch0
, all_bits
, my_bit
;
1430 if (resource
& CR_DYN_MASK
) {
1431 /* a dynamic resource is in use if either HFI has set the bit */
1432 if (dd
->pcidev
->device
== PCI_DEVICE_ID_INTEL0
&&
1433 (resource
& (CR_I2C1
| CR_I2C2
))) {
1434 /* discrete devices must serialize across both chains */
1435 all_bits
= resource_mask(0, CR_I2C1
| CR_I2C2
) |
1436 resource_mask(1, CR_I2C1
| CR_I2C2
);
1438 all_bits
= resource_mask(0, resource
) |
1439 resource_mask(1, resource
);
1441 my_bit
= resource_mask(dd
->hfi1_id
, resource
);
1443 /* non-dynamic resources are not split between HFIs */
1444 all_bits
= resource
;
1448 /* lock against other callers within the driver wanting a resource */
1449 mutex_lock(&dd
->asic_data
->asic_resource_mutex
);
1451 ret
= acquire_hw_mutex(dd
);
1453 fail_mutex_acquire_message(dd
, __func__
);
1458 scratch0
= read_csr(dd
, ASIC_CFG_SCRATCH
);
1459 if (scratch0
& all_bits
) {
1462 write_csr(dd
, ASIC_CFG_SCRATCH
, scratch0
| my_bit
);
1463 /* force write to be visible to other HFI on another OS */
1464 (void)read_csr(dd
, ASIC_CFG_SCRATCH
);
1467 release_hw_mutex(dd
);
1470 mutex_unlock(&dd
->asic_data
->asic_resource_mutex
);
1475 * Acquire access to a chip resource, wait up to mswait milliseconds for
1476 * the resource to become available.
1478 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1481 int acquire_chip_resource(struct hfi1_devdata
*dd
, u32 resource
, u32 mswait
)
1483 unsigned long timeout
;
1486 timeout
= jiffies
+ msecs_to_jiffies(mswait
);
1488 ret
= __acquire_chip_resource(dd
, resource
);
1491 /* resource is busy, check our timeout */
1492 if (time_after_eq(jiffies
, timeout
))
1494 usleep_range(80, 120); /* arbitrary delay */
1499 * Release access to a chip resource
1501 void release_chip_resource(struct hfi1_devdata
*dd
, u32 resource
)
1505 /* only dynamic resources should ever be cleared */
1506 if (!(resource
& CR_DYN_MASK
)) {
1507 dd_dev_err(dd
, "%s: invalid resource 0x%x\n", __func__
,
1511 bit
= resource_mask(dd
->hfi1_id
, resource
);
1513 /* lock against other callers within the driver wanting a resource */
1514 mutex_lock(&dd
->asic_data
->asic_resource_mutex
);
1516 if (acquire_hw_mutex(dd
)) {
1517 fail_mutex_acquire_message(dd
, __func__
);
1521 scratch0
= read_csr(dd
, ASIC_CFG_SCRATCH
);
1522 if ((scratch0
& bit
) != 0) {
1524 write_csr(dd
, ASIC_CFG_SCRATCH
, scratch0
);
1525 /* force write to be visible to other HFI on another OS */
1526 (void)read_csr(dd
, ASIC_CFG_SCRATCH
);
1528 dd_dev_warn(dd
, "%s: id %d, resource 0x%x: bit not set\n",
1529 __func__
, dd
->hfi1_id
, resource
);
1532 release_hw_mutex(dd
);
1535 mutex_unlock(&dd
->asic_data
->asic_resource_mutex
);
1539 * Return true if resource is set, false otherwise. Print a warning
1540 * if not set and a function is supplied.
1542 bool check_chip_resource(struct hfi1_devdata
*dd
, u32 resource
,
1547 if (resource
& CR_DYN_MASK
)
1548 bit
= resource_mask(dd
->hfi1_id
, resource
);
1552 scratch0
= read_csr(dd
, ASIC_CFG_SCRATCH
);
1553 if ((scratch0
& bit
) == 0) {
1556 "%s: id %d, resource 0x%x, not acquired!\n",
1557 func
, dd
->hfi1_id
, resource
);
1563 static void clear_chip_resources(struct hfi1_devdata
*dd
, const char *func
)
1567 /* lock against other callers within the driver wanting a resource */
1568 mutex_lock(&dd
->asic_data
->asic_resource_mutex
);
1570 if (acquire_hw_mutex(dd
)) {
1571 fail_mutex_acquire_message(dd
, func
);
1575 /* clear all dynamic access bits for this HFI */
1576 scratch0
= read_csr(dd
, ASIC_CFG_SCRATCH
);
1577 scratch0
&= ~resource_mask(dd
->hfi1_id
, CR_DYN_MASK
);
1578 write_csr(dd
, ASIC_CFG_SCRATCH
, scratch0
);
1579 /* force write to be visible to other HFI on another OS */
1580 (void)read_csr(dd
, ASIC_CFG_SCRATCH
);
1582 release_hw_mutex(dd
);
1585 mutex_unlock(&dd
->asic_data
->asic_resource_mutex
);
1588 void init_chip_resources(struct hfi1_devdata
*dd
)
1590 /* clear any holds left by us */
1591 clear_chip_resources(dd
, __func__
);
1594 void finish_chip_resources(struct hfi1_devdata
*dd
)
1596 /* clear any holds left by us */
1597 clear_chip_resources(dd
, __func__
);
1600 void set_sbus_fast_mode(struct hfi1_devdata
*dd
)
1602 write_csr(dd
, ASIC_CFG_SBUS_EXECUTE
,
1603 ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK
);
1606 void clear_sbus_fast_mode(struct hfi1_devdata
*dd
)
1610 reg
= read_csr(dd
, ASIC_STS_SBUS_COUNTERS
);
1611 while (SBUS_COUNTER(reg
, EXECUTE
) !=
1612 SBUS_COUNTER(reg
, RCV_DATA_VALID
)) {
1613 if (count
++ >= SBUS_MAX_POLL_COUNT
)
1616 reg
= read_csr(dd
, ASIC_STS_SBUS_COUNTERS
);
1618 write_csr(dd
, ASIC_CFG_SBUS_EXECUTE
, 0);
1621 int load_firmware(struct hfi1_devdata
*dd
)
1625 if (fw_fabric_serdes_load
) {
1626 ret
= acquire_chip_resource(dd
, CR_SBUS
, SBUS_TIMEOUT
);
1630 set_sbus_fast_mode(dd
);
1632 set_serdes_broadcast(dd
, all_fabric_serdes_broadcast
,
1633 fabric_serdes_broadcast
[dd
->hfi1_id
],
1634 fabric_serdes_addrs
[dd
->hfi1_id
],
1636 turn_off_spicos(dd
, SPICO_FABRIC
);
1638 ret
= load_fabric_serdes_firmware(dd
, &fw_fabric
);
1639 } while (retry_firmware(dd
, ret
));
1641 clear_sbus_fast_mode(dd
);
1642 release_chip_resource(dd
, CR_SBUS
);
1649 ret
= load_8051_firmware(dd
, &fw_8051
);
1650 } while (retry_firmware(dd
, ret
));
1655 dump_fw_version(dd
);
1659 int hfi1_firmware_init(struct hfi1_devdata
*dd
)
1661 /* only RTL can use these */
1662 if (dd
->icode
!= ICODE_RTL_SILICON
) {
1663 fw_fabric_serdes_load
= 0;
1664 fw_pcie_serdes_load
= 0;
1668 /* no 8051 or QSFP on simulator */
1669 if (dd
->icode
== ICODE_FUNCTIONAL_SIMULATOR
)
1672 if (!fw_8051_name
) {
1673 if (dd
->icode
== ICODE_RTL_SILICON
)
1674 fw_8051_name
= DEFAULT_FW_8051_NAME_ASIC
;
1676 fw_8051_name
= DEFAULT_FW_8051_NAME_FPGA
;
1678 if (!fw_fabric_serdes_name
)
1679 fw_fabric_serdes_name
= DEFAULT_FW_FABRIC_NAME
;
1681 fw_sbus_name
= DEFAULT_FW_SBUS_NAME
;
1682 if (!fw_pcie_serdes_name
)
1683 fw_pcie_serdes_name
= DEFAULT_FW_PCIE_NAME
;
1685 return obtain_firmware(dd
);
1689 * This function is a helper function for parse_platform_config(...) and
1690 * does not check for validity of the platform configuration cache
1691 * (because we know it is invalid as we are building up the cache).
1692 * As such, this should not be called from anywhere other than
1693 * parse_platform_config
1695 static int check_meta_version(struct hfi1_devdata
*dd
, u32
*system_table
)
1697 u32 meta_ver
, meta_ver_meta
, ver_start
, ver_len
, mask
;
1698 struct platform_config_cache
*pcfgcache
= &dd
->pcfg_cache
;
1704 *(pcfgcache
->config_tables
[PLATFORM_CONFIG_SYSTEM_TABLE
].table_metadata
1705 + SYSTEM_TABLE_META_VERSION
);
1707 mask
= ((1 << METADATA_TABLE_FIELD_START_LEN_BITS
) - 1);
1708 ver_start
= meta_ver_meta
& mask
;
1710 meta_ver_meta
>>= METADATA_TABLE_FIELD_LEN_SHIFT
;
1712 mask
= ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS
) - 1);
1713 ver_len
= meta_ver_meta
& mask
;
1716 meta_ver
= *((u8
*)system_table
+ ver_start
) & ((1 << ver_len
) - 1);
1720 dd
, "%s:Please update platform config\n", __func__
);
1726 int parse_platform_config(struct hfi1_devdata
*dd
)
1728 struct platform_config_cache
*pcfgcache
= &dd
->pcfg_cache
;
1729 struct hfi1_pportdata
*ppd
= dd
->pport
;
1731 u32 header1
= 0, header2
= 0, magic_num
= 0, crc
= 0, file_length
= 0;
1732 u32 record_idx
= 0, table_type
= 0, table_length_dwords
= 0;
1733 int ret
= -EINVAL
; /* assume failure */
1736 * For integrated devices that did not fall back to the default file,
1737 * the SI tuning information for active channels is acquired from the
1738 * scratch register bitmap, thus there is no platform config to parse.
1739 * Skip parsing in these situations.
1741 if (ppd
->config_from_scratch
)
1744 if (!dd
->platform_config
.data
) {
1745 dd_dev_err(dd
, "%s: Missing config file\n", __func__
);
1749 ptr
= (u32
*)dd
->platform_config
.data
;
1753 if (magic_num
!= PLATFORM_CONFIG_MAGIC_NUM
) {
1754 dd_dev_err(dd
, "%s: Bad config file\n", __func__
);
1759 /* Field is file size in DWORDs */
1760 file_length
= (*ptr
) * 4;
1763 * Length can't be larger than partition size. Assume platform
1764 * config format version 4 is being used. Interpret the file size
1765 * field as header instead by not moving the pointer.
1767 if (file_length
> MAX_PLATFORM_CONFIG_FILE_SIZE
) {
1769 "%s:File length out of bounds, using alternative format\n",
1771 file_length
= PLATFORM_CONFIG_FORMAT_4_FILE_SIZE
;
1776 if (file_length
> dd
->platform_config
.size
) {
1777 dd_dev_info(dd
, "%s:File claims to be larger than read size\n",
1781 } else if (file_length
< dd
->platform_config
.size
) {
1783 "%s:File claims to be smaller than read size, continuing\n",
1786 /* exactly equal, perfection */
1789 * In both cases where we proceed, using the self-reported file length
1790 * is the safer option. In case of old format a predefined value is
1793 while (ptr
< (u32
*)(dd
->platform_config
.data
+ file_length
)) {
1795 header2
= *(ptr
+ 1);
1796 if (header1
!= ~header2
) {
1797 dd_dev_err(dd
, "%s: Failed validation at offset %ld\n",
1798 __func__
, (ptr
- (u32
*)
1799 dd
->platform_config
.data
));
1805 ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS
) - 1);
1807 table_length_dwords
= (*ptr
>>
1808 PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT
) &
1809 ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS
) - 1);
1811 table_type
= (*ptr
>> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT
) &
1812 ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS
) - 1);
1814 /* Done with this set of headers */
1819 switch (table_type
) {
1820 case PLATFORM_CONFIG_SYSTEM_TABLE
:
1821 pcfgcache
->config_tables
[table_type
].num_table
=
1823 ret
= check_meta_version(dd
, ptr
);
1827 case PLATFORM_CONFIG_PORT_TABLE
:
1828 pcfgcache
->config_tables
[table_type
].num_table
=
1831 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
1832 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
1833 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
1834 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
1835 pcfgcache
->config_tables
[table_type
].num_table
=
1836 table_length_dwords
;
1840 "%s: Unknown data table %d, offset %ld\n",
1841 __func__
, table_type
,
1843 dd
->platform_config
.data
));
1845 goto bail
; /* We don't trust this file now */
1847 pcfgcache
->config_tables
[table_type
].table
= ptr
;
1849 /* metadata table */
1850 switch (table_type
) {
1851 case PLATFORM_CONFIG_SYSTEM_TABLE
:
1852 case PLATFORM_CONFIG_PORT_TABLE
:
1853 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
1854 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
1855 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
1856 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
1860 "%s: Unknown meta table %d, offset %ld\n",
1861 __func__
, table_type
,
1863 (u32
*)dd
->platform_config
.data
));
1865 goto bail
; /* We don't trust this file now */
1867 pcfgcache
->config_tables
[table_type
].table_metadata
=
1871 /* Calculate and check table crc */
1872 crc
= crc32_le(~(u32
)0, (unsigned char const *)ptr
,
1873 (table_length_dwords
* 4));
1876 /* Jump the table */
1877 ptr
+= table_length_dwords
;
1879 dd_dev_err(dd
, "%s: Failed CRC check at offset %ld\n",
1881 (u32
*)dd
->platform_config
.data
));
1885 /* Jump the CRC DWORD */
1889 pcfgcache
->cache_valid
= 1;
1892 memset(pcfgcache
, 0, sizeof(struct platform_config_cache
));
1896 static void get_integrated_platform_config_field(
1897 struct hfi1_devdata
*dd
,
1898 enum platform_config_table_type_encoding table_type
,
1899 int field_index
, u32
*data
)
1901 struct hfi1_pportdata
*ppd
= dd
->pport
;
1902 u8
*cache
= ppd
->qsfp_info
.cache
;
1905 switch (table_type
) {
1906 case PLATFORM_CONFIG_SYSTEM_TABLE
:
1907 if (field_index
== SYSTEM_TABLE_QSFP_POWER_CLASS_MAX
)
1908 *data
= ppd
->max_power_class
;
1909 else if (field_index
== SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G
)
1910 *data
= ppd
->default_atten
;
1912 case PLATFORM_CONFIG_PORT_TABLE
:
1913 if (field_index
== PORT_TABLE_PORT_TYPE
)
1914 *data
= ppd
->port_type
;
1915 else if (field_index
== PORT_TABLE_LOCAL_ATTEN_25G
)
1916 *data
= ppd
->local_atten
;
1917 else if (field_index
== PORT_TABLE_REMOTE_ATTEN_25G
)
1918 *data
= ppd
->remote_atten
;
1920 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
1921 if (field_index
== RX_PRESET_TABLE_QSFP_RX_CDR_APPLY
)
1922 *data
= (ppd
->rx_preset
& QSFP_RX_CDR_APPLY_SMASK
) >>
1923 QSFP_RX_CDR_APPLY_SHIFT
;
1924 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_EMP_APPLY
)
1925 *data
= (ppd
->rx_preset
& QSFP_RX_EMP_APPLY_SMASK
) >>
1926 QSFP_RX_EMP_APPLY_SHIFT
;
1927 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_AMP_APPLY
)
1928 *data
= (ppd
->rx_preset
& QSFP_RX_AMP_APPLY_SMASK
) >>
1929 QSFP_RX_AMP_APPLY_SHIFT
;
1930 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_CDR
)
1931 *data
= (ppd
->rx_preset
& QSFP_RX_CDR_SMASK
) >>
1933 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_EMP
)
1934 *data
= (ppd
->rx_preset
& QSFP_RX_EMP_SMASK
) >>
1936 else if (field_index
== RX_PRESET_TABLE_QSFP_RX_AMP
)
1937 *data
= (ppd
->rx_preset
& QSFP_RX_AMP_SMASK
) >>
1940 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
1941 if (cache
[QSFP_EQ_INFO_OFFS
] & 0x4)
1942 tx_preset
= ppd
->tx_preset_eq
;
1944 tx_preset
= ppd
->tx_preset_noeq
;
1945 if (field_index
== TX_PRESET_TABLE_PRECUR
)
1946 *data
= (tx_preset
& TX_PRECUR_SMASK
) >>
1948 else if (field_index
== TX_PRESET_TABLE_ATTN
)
1949 *data
= (tx_preset
& TX_ATTN_SMASK
) >>
1951 else if (field_index
== TX_PRESET_TABLE_POSTCUR
)
1952 *data
= (tx_preset
& TX_POSTCUR_SMASK
) >>
1954 else if (field_index
== TX_PRESET_TABLE_QSFP_TX_CDR_APPLY
)
1955 *data
= (tx_preset
& QSFP_TX_CDR_APPLY_SMASK
) >>
1956 QSFP_TX_CDR_APPLY_SHIFT
;
1957 else if (field_index
== TX_PRESET_TABLE_QSFP_TX_EQ_APPLY
)
1958 *data
= (tx_preset
& QSFP_TX_EQ_APPLY_SMASK
) >>
1959 QSFP_TX_EQ_APPLY_SHIFT
;
1960 else if (field_index
== TX_PRESET_TABLE_QSFP_TX_CDR
)
1961 *data
= (tx_preset
& QSFP_TX_CDR_SMASK
) >>
1963 else if (field_index
== TX_PRESET_TABLE_QSFP_TX_EQ
)
1964 *data
= (tx_preset
& QSFP_TX_EQ_SMASK
) >>
1967 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
1968 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
1974 static int get_platform_fw_field_metadata(struct hfi1_devdata
*dd
, int table
,
1975 int field
, u32
*field_len_bits
,
1976 u32
*field_start_bits
)
1978 struct platform_config_cache
*pcfgcache
= &dd
->pcfg_cache
;
1979 u32
*src_ptr
= NULL
;
1981 if (!pcfgcache
->cache_valid
)
1985 case PLATFORM_CONFIG_SYSTEM_TABLE
:
1986 case PLATFORM_CONFIG_PORT_TABLE
:
1987 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
1988 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
1989 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
1990 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
1991 if (field
&& field
< platform_config_table_limits
[table
])
1993 pcfgcache
->config_tables
[table
].table_metadata
+ field
;
1996 dd_dev_info(dd
, "%s: Unknown table\n", __func__
);
2003 if (field_start_bits
)
2004 *field_start_bits
= *src_ptr
&
2005 ((1 << METADATA_TABLE_FIELD_START_LEN_BITS
) - 1);
2008 *field_len_bits
= (*src_ptr
>> METADATA_TABLE_FIELD_LEN_SHIFT
)
2009 & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS
) - 1);
2014 /* This is the central interface to getting data out of the platform config
2015 * file. It depends on parse_platform_config() having populated the
2016 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2017 * validate the sanity of the cache.
2019 * The non-obvious parameters:
2020 * @table_index: Acts as a look up key into which instance of the tables the
2021 * relevant field is fetched from.
2023 * This applies to the data tables that have multiple instances. The port table
2024 * is an exception to this rule as each HFI only has one port and thus the
2025 * relevant table can be distinguished by hfi_id.
2027 * @data: pointer to memory that will be populated with the field requested.
2028 * @len: length of memory pointed by @data in bytes.
2030 int get_platform_config_field(struct hfi1_devdata
*dd
,
2031 enum platform_config_table_type_encoding
2032 table_type
, int table_index
, int field_index
,
2035 int ret
= 0, wlen
= 0, seek
= 0;
2036 u32 field_len_bits
= 0, field_start_bits
= 0, *src_ptr
= NULL
;
2037 struct platform_config_cache
*pcfgcache
= &dd
->pcfg_cache
;
2038 struct hfi1_pportdata
*ppd
= dd
->pport
;
2041 memset(data
, 0, len
);
2045 if (ppd
->config_from_scratch
) {
2047 * Use saved configuration from ppd for integrated platforms
2049 get_integrated_platform_config_field(dd
, table_type
,
2054 ret
= get_platform_fw_field_metadata(dd
, table_type
, field_index
,
2060 /* Convert length to bits */
2063 /* Our metadata function checked cache_valid and field_index for us */
2064 switch (table_type
) {
2065 case PLATFORM_CONFIG_SYSTEM_TABLE
:
2066 src_ptr
= pcfgcache
->config_tables
[table_type
].table
;
2068 if (field_index
!= SYSTEM_TABLE_QSFP_POWER_CLASS_MAX
) {
2069 if (len
< field_len_bits
)
2072 seek
= field_start_bits
/ 8;
2073 wlen
= field_len_bits
/ 8;
2075 src_ptr
= (u32
*)((u8
*)src_ptr
+ seek
);
2078 * We expect the field to be byte aligned and whole byte
2079 * lengths if we are here
2081 memcpy(data
, src_ptr
, wlen
);
2085 case PLATFORM_CONFIG_PORT_TABLE
:
2086 /* Port table is 4 DWORDS */
2087 src_ptr
= dd
->hfi1_id
?
2088 pcfgcache
->config_tables
[table_type
].table
+ 4 :
2089 pcfgcache
->config_tables
[table_type
].table
;
2091 case PLATFORM_CONFIG_RX_PRESET_TABLE
:
2092 case PLATFORM_CONFIG_TX_PRESET_TABLE
:
2093 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE
:
2094 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE
:
2095 src_ptr
= pcfgcache
->config_tables
[table_type
].table
;
2098 pcfgcache
->config_tables
[table_type
].num_table
)
2099 src_ptr
+= table_index
;
2104 dd_dev_info(dd
, "%s: Unknown table\n", __func__
);
2108 if (!src_ptr
|| len
< field_len_bits
)
2111 src_ptr
+= (field_start_bits
/ 32);
2112 *data
= (*src_ptr
>> (field_start_bits
% 32)) &
2113 ((1 << field_len_bits
) - 1);
2119 * Download the firmware needed for the Gen3 PCIe SerDes. An update
2120 * to the SBus firmware is needed before updating the PCIe firmware.
2122 * Note: caller must be holding the SBus resource.
2124 int load_pcie_firmware(struct hfi1_devdata
*dd
)
2128 /* both firmware loads below use the SBus */
2129 set_sbus_fast_mode(dd
);
2132 turn_off_spicos(dd
, SPICO_SBUS
);
2134 ret
= load_sbus_firmware(dd
, &fw_sbus
);
2135 } while (retry_firmware(dd
, ret
));
2140 if (fw_pcie_serdes_load
) {
2141 dd_dev_info(dd
, "Setting PCIe SerDes broadcast\n");
2142 set_serdes_broadcast(dd
, all_pcie_serdes_broadcast
,
2143 pcie_serdes_broadcast
[dd
->hfi1_id
],
2144 pcie_serdes_addrs
[dd
->hfi1_id
],
2147 ret
= load_pcie_serdes_firmware(dd
, &fw_pcie
);
2148 } while (retry_firmware(dd
, ret
));
2154 clear_sbus_fast_mode(dd
);
2160 * Read the GUID from the hardware, store it in dd.
2162 void read_guid(struct hfi1_devdata
*dd
)
2164 /* Take the DC out of reset to get a valid GUID value */
2165 write_csr(dd
, CCE_DC_CTRL
, 0);
2166 (void)read_csr(dd
, CCE_DC_CTRL
);
2168 dd
->base_guid
= read_csr(dd
, DC_DC8051_CFG_LOCAL_GUID
);
2169 dd_dev_info(dd
, "GUID %llx",
2170 (unsigned long long)dd
->base_guid
);
2173 /* read and display firmware version info */
2174 static void dump_fw_version(struct hfi1_devdata
*dd
)
2176 u32 pcie_vers
[NUM_PCIE_SERDES
];
2177 u32 fabric_vers
[NUM_FABRIC_SERDES
];
2184 ret
= acquire_chip_resource(dd
, CR_SBUS
, SBUS_TIMEOUT
);
2186 dd_dev_err(dd
, "Unable to acquire SBus to read firmware versions\n");
2191 set_sbus_fast_mode(dd
);
2193 /* read version for SBus Master */
2194 sbus_request(dd
, SBUS_MASTER_BROADCAST
, 0x02, WRITE_SBUS_RECEIVER
, 0);
2195 sbus_request(dd
, SBUS_MASTER_BROADCAST
, 0x07, WRITE_SBUS_RECEIVER
, 0x1);
2196 /* wait for interrupt to be processed */
2197 usleep_range(10000, 11000);
2198 sbus_vers
= sbus_read(dd
, SBUS_MASTER_BROADCAST
, 0x08, 0x1);
2199 dd_dev_info(dd
, "SBus Master firmware version 0x%08x\n", sbus_vers
);
2201 /* read version for PCIe SerDes */
2204 for (i
= 0; i
< NUM_PCIE_SERDES
; i
++) {
2205 rcv_addr
= pcie_serdes_addrs
[dd
->hfi1_id
][i
];
2206 sbus_request(dd
, rcv_addr
, 0x03, WRITE_SBUS_RECEIVER
, 0);
2207 /* wait for interrupt to be processed */
2208 usleep_range(10000, 11000);
2209 pcie_vers
[i
] = sbus_read(dd
, rcv_addr
, 0x04, 0x0);
2210 if (i
> 0 && pcie_vers
[0] != pcie_vers
[i
])
2215 dd_dev_info(dd
, "PCIe SerDes firmware version 0x%x\n",
2218 dd_dev_warn(dd
, "PCIe SerDes do not have the same firmware version\n");
2219 for (i
= 0; i
< NUM_PCIE_SERDES
; i
++) {
2221 "PCIe SerDes lane %d firmware version 0x%x\n",
2226 /* read version for fabric SerDes */
2229 for (i
= 0; i
< NUM_FABRIC_SERDES
; i
++) {
2230 rcv_addr
= fabric_serdes_addrs
[dd
->hfi1_id
][i
];
2231 sbus_request(dd
, rcv_addr
, 0x03, WRITE_SBUS_RECEIVER
, 0);
2232 /* wait for interrupt to be processed */
2233 usleep_range(10000, 11000);
2234 fabric_vers
[i
] = sbus_read(dd
, rcv_addr
, 0x04, 0x0);
2235 if (i
> 0 && fabric_vers
[0] != fabric_vers
[i
])
2240 dd_dev_info(dd
, "Fabric SerDes firmware version 0x%x\n",
2243 dd_dev_warn(dd
, "Fabric SerDes do not have the same firmware version\n");
2244 for (i
= 0; i
< NUM_FABRIC_SERDES
; i
++) {
2246 "Fabric SerDes lane %d firmware version 0x%x\n",
2251 clear_sbus_fast_mode(dd
);
2252 release_chip_resource(dd
, CR_SBUS
);