Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / input / input.c
blob7f0477e04ad21830fd3a408c8ce7d63c4fbd1355
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The input core
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/pm.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/kstrtox.h>
26 #include <linux/mutex.h>
27 #include <linux/rcupdate.h>
28 #include "input-compat.h"
29 #include "input-core-private.h"
30 #include "input-poller.h"
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida);
40 static LIST_HEAD(input_dev_list);
41 static LIST_HEAD(input_handler_list);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
49 static DEFINE_MUTEX(input_mutex);
51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
53 static const unsigned int input_max_code[EV_CNT] = {
54 [EV_KEY] = KEY_MAX,
55 [EV_REL] = REL_MAX,
56 [EV_ABS] = ABS_MAX,
57 [EV_MSC] = MSC_MAX,
58 [EV_SW] = SW_MAX,
59 [EV_LED] = LED_MAX,
60 [EV_SND] = SND_MAX,
61 [EV_FF] = FF_MAX,
64 static inline int is_event_supported(unsigned int code,
65 unsigned long *bm, unsigned int max)
67 return code <= max && test_bit(code, bm);
70 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
72 if (fuzz) {
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 return old_val;
76 if (value > old_val - fuzz && value < old_val + fuzz)
77 return (old_val * 3 + value) / 4;
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 return (old_val + value) / 2;
83 return value;
86 static void input_start_autorepeat(struct input_dev *dev, int code)
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
97 static void input_stop_autorepeat(struct input_dev *dev)
99 del_timer(&dev->timer);
103 * Pass values first through all filters and then, if event has not been
104 * filtered out, through all open handles. This order is achieved by placing
105 * filters at the head of the list of handles attached to the device, and
106 * placing regular handles at the tail of the list.
108 * This function is called with dev->event_lock held and interrupts disabled.
110 static void input_pass_values(struct input_dev *dev,
111 struct input_value *vals, unsigned int count)
113 struct input_handle *handle;
114 struct input_value *v;
116 lockdep_assert_held(&dev->event_lock);
118 rcu_read_lock();
120 handle = rcu_dereference(dev->grab);
121 if (handle) {
122 count = handle->handle_events(handle, vals, count);
123 } else {
124 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
125 if (handle->open) {
126 count = handle->handle_events(handle, vals,
127 count);
128 if (!count)
129 break;
133 rcu_read_unlock();
135 /* trigger auto repeat for key events */
136 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 for (v = vals; v != vals + count; v++) {
138 if (v->type == EV_KEY && v->value != 2) {
139 if (v->value)
140 input_start_autorepeat(dev, v->code);
141 else
142 input_stop_autorepeat(dev);
148 #define INPUT_IGNORE_EVENT 0
149 #define INPUT_PASS_TO_HANDLERS 1
150 #define INPUT_PASS_TO_DEVICE 2
151 #define INPUT_SLOT 4
152 #define INPUT_FLUSH 8
153 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
155 static int input_handle_abs_event(struct input_dev *dev,
156 unsigned int code, int *pval)
158 struct input_mt *mt = dev->mt;
159 bool is_new_slot = false;
160 bool is_mt_event;
161 int *pold;
163 if (code == ABS_MT_SLOT) {
165 * "Stage" the event; we'll flush it later, when we
166 * get actual touch data.
168 if (mt && *pval >= 0 && *pval < mt->num_slots)
169 mt->slot = *pval;
171 return INPUT_IGNORE_EVENT;
174 is_mt_event = input_is_mt_value(code);
176 if (!is_mt_event) {
177 pold = &dev->absinfo[code].value;
178 } else if (mt) {
179 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181 } else {
183 * Bypass filtering for multi-touch events when
184 * not employing slots.
186 pold = NULL;
189 if (pold) {
190 *pval = input_defuzz_abs_event(*pval, *pold,
191 dev->absinfo[code].fuzz);
192 if (*pold == *pval)
193 return INPUT_IGNORE_EVENT;
195 *pold = *pval;
198 /* Flush pending "slot" event */
199 if (is_new_slot) {
200 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
204 return INPUT_PASS_TO_HANDLERS;
207 static int input_get_disposition(struct input_dev *dev,
208 unsigned int type, unsigned int code, int *pval)
210 int disposition = INPUT_IGNORE_EVENT;
211 int value = *pval;
213 /* filter-out events from inhibited devices */
214 if (dev->inhibited)
215 return INPUT_IGNORE_EVENT;
217 switch (type) {
219 case EV_SYN:
220 switch (code) {
221 case SYN_CONFIG:
222 disposition = INPUT_PASS_TO_ALL;
223 break;
225 case SYN_REPORT:
226 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227 break;
228 case SYN_MT_REPORT:
229 disposition = INPUT_PASS_TO_HANDLERS;
230 break;
232 break;
234 case EV_KEY:
235 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
237 /* auto-repeat bypasses state updates */
238 if (value == 2) {
239 disposition = INPUT_PASS_TO_HANDLERS;
240 break;
243 if (!!test_bit(code, dev->key) != !!value) {
245 __change_bit(code, dev->key);
246 disposition = INPUT_PASS_TO_HANDLERS;
249 break;
251 case EV_SW:
252 if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 !!test_bit(code, dev->sw) != !!value) {
255 __change_bit(code, dev->sw);
256 disposition = INPUT_PASS_TO_HANDLERS;
258 break;
260 case EV_ABS:
261 if (is_event_supported(code, dev->absbit, ABS_MAX))
262 disposition = input_handle_abs_event(dev, code, &value);
264 break;
266 case EV_REL:
267 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 disposition = INPUT_PASS_TO_HANDLERS;
270 break;
272 case EV_MSC:
273 if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 disposition = INPUT_PASS_TO_ALL;
276 break;
278 case EV_LED:
279 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 !!test_bit(code, dev->led) != !!value) {
282 __change_bit(code, dev->led);
283 disposition = INPUT_PASS_TO_ALL;
285 break;
287 case EV_SND:
288 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
290 if (!!test_bit(code, dev->snd) != !!value)
291 __change_bit(code, dev->snd);
292 disposition = INPUT_PASS_TO_ALL;
294 break;
296 case EV_REP:
297 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 dev->rep[code] = value;
299 disposition = INPUT_PASS_TO_ALL;
301 break;
303 case EV_FF:
304 if (value >= 0)
305 disposition = INPUT_PASS_TO_ALL;
306 break;
308 case EV_PWR:
309 disposition = INPUT_PASS_TO_ALL;
310 break;
313 *pval = value;
314 return disposition;
317 static void input_event_dispose(struct input_dev *dev, int disposition,
318 unsigned int type, unsigned int code, int value)
320 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 dev->event(dev, type, code, value);
323 if (disposition & INPUT_PASS_TO_HANDLERS) {
324 struct input_value *v;
326 if (disposition & INPUT_SLOT) {
327 v = &dev->vals[dev->num_vals++];
328 v->type = EV_ABS;
329 v->code = ABS_MT_SLOT;
330 v->value = dev->mt->slot;
333 v = &dev->vals[dev->num_vals++];
334 v->type = type;
335 v->code = code;
336 v->value = value;
339 if (disposition & INPUT_FLUSH) {
340 if (dev->num_vals >= 2)
341 input_pass_values(dev, dev->vals, dev->num_vals);
342 dev->num_vals = 0;
344 * Reset the timestamp on flush so we won't end up
345 * with a stale one. Note we only need to reset the
346 * monolithic one as we use its presence when deciding
347 * whether to generate a synthetic timestamp.
349 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 } else if (dev->num_vals >= dev->max_vals - 2) {
351 dev->vals[dev->num_vals++] = input_value_sync;
352 input_pass_values(dev, dev->vals, dev->num_vals);
353 dev->num_vals = 0;
357 void input_handle_event(struct input_dev *dev,
358 unsigned int type, unsigned int code, int value)
360 int disposition;
362 lockdep_assert_held(&dev->event_lock);
364 disposition = input_get_disposition(dev, type, code, &value);
365 if (disposition != INPUT_IGNORE_EVENT) {
366 if (type != EV_SYN)
367 add_input_randomness(type, code, value);
369 input_event_dispose(dev, disposition, type, code, value);
374 * input_event() - report new input event
375 * @dev: device that generated the event
376 * @type: type of the event
377 * @code: event code
378 * @value: value of the event
380 * This function should be used by drivers implementing various input
381 * devices to report input events. See also input_inject_event().
383 * NOTE: input_event() may be safely used right after input device was
384 * allocated with input_allocate_device(), even before it is registered
385 * with input_register_device(), but the event will not reach any of the
386 * input handlers. Such early invocation of input_event() may be used
387 * to 'seed' initial state of a switch or initial position of absolute
388 * axis, etc.
390 void input_event(struct input_dev *dev,
391 unsigned int type, unsigned int code, int value)
393 unsigned long flags;
395 if (is_event_supported(type, dev->evbit, EV_MAX)) {
397 spin_lock_irqsave(&dev->event_lock, flags);
398 input_handle_event(dev, type, code, value);
399 spin_unlock_irqrestore(&dev->event_lock, flags);
402 EXPORT_SYMBOL(input_event);
405 * input_inject_event() - send input event from input handler
406 * @handle: input handle to send event through
407 * @type: type of the event
408 * @code: event code
409 * @value: value of the event
411 * Similar to input_event() but will ignore event if device is
412 * "grabbed" and handle injecting event is not the one that owns
413 * the device.
415 void input_inject_event(struct input_handle *handle,
416 unsigned int type, unsigned int code, int value)
418 struct input_dev *dev = handle->dev;
419 struct input_handle *grab;
420 unsigned long flags;
422 if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 spin_lock_irqsave(&dev->event_lock, flags);
425 rcu_read_lock();
426 grab = rcu_dereference(dev->grab);
427 if (!grab || grab == handle)
428 input_handle_event(dev, type, code, value);
429 rcu_read_unlock();
431 spin_unlock_irqrestore(&dev->event_lock, flags);
434 EXPORT_SYMBOL(input_inject_event);
437 * input_alloc_absinfo - allocates array of input_absinfo structs
438 * @dev: the input device emitting absolute events
440 * If the absinfo struct the caller asked for is already allocated, this
441 * functions will not do anything.
443 void input_alloc_absinfo(struct input_dev *dev)
445 if (dev->absinfo)
446 return;
448 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
449 if (!dev->absinfo) {
450 dev_err(dev->dev.parent ?: &dev->dev,
451 "%s: unable to allocate memory\n", __func__);
453 * We will handle this allocation failure in
454 * input_register_device() when we refuse to register input
455 * device with ABS bits but without absinfo.
459 EXPORT_SYMBOL(input_alloc_absinfo);
461 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 int min, int max, int fuzz, int flat)
464 struct input_absinfo *absinfo;
466 __set_bit(EV_ABS, dev->evbit);
467 __set_bit(axis, dev->absbit);
469 input_alloc_absinfo(dev);
470 if (!dev->absinfo)
471 return;
473 absinfo = &dev->absinfo[axis];
474 absinfo->minimum = min;
475 absinfo->maximum = max;
476 absinfo->fuzz = fuzz;
477 absinfo->flat = flat;
479 EXPORT_SYMBOL(input_set_abs_params);
482 * input_copy_abs - Copy absinfo from one input_dev to another
483 * @dst: Destination input device to copy the abs settings to
484 * @dst_axis: ABS_* value selecting the destination axis
485 * @src: Source input device to copy the abs settings from
486 * @src_axis: ABS_* value selecting the source axis
488 * Set absinfo for the selected destination axis by copying it from
489 * the specified source input device's source axis.
490 * This is useful to e.g. setup a pen/stylus input-device for combined
491 * touchscreen/pen hardware where the pen uses the same coordinates as
492 * the touchscreen.
494 void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 const struct input_dev *src, unsigned int src_axis)
497 /* src must have EV_ABS and src_axis set */
498 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 test_bit(src_axis, src->absbit))))
500 return;
503 * input_alloc_absinfo() may have failed for the source. Our caller is
504 * expected to catch this when registering the input devices, which may
505 * happen after the input_copy_abs() call.
507 if (!src->absinfo)
508 return;
510 input_set_capability(dst, EV_ABS, dst_axis);
511 if (!dst->absinfo)
512 return;
514 dst->absinfo[dst_axis] = src->absinfo[src_axis];
516 EXPORT_SYMBOL(input_copy_abs);
519 * input_grab_device - grabs device for exclusive use
520 * @handle: input handle that wants to own the device
522 * When a device is grabbed by an input handle all events generated by
523 * the device are delivered only to this handle. Also events injected
524 * by other input handles are ignored while device is grabbed.
526 int input_grab_device(struct input_handle *handle)
528 struct input_dev *dev = handle->dev;
529 int retval;
531 retval = mutex_lock_interruptible(&dev->mutex);
532 if (retval)
533 return retval;
535 if (dev->grab) {
536 retval = -EBUSY;
537 goto out;
540 rcu_assign_pointer(dev->grab, handle);
542 out:
543 mutex_unlock(&dev->mutex);
544 return retval;
546 EXPORT_SYMBOL(input_grab_device);
548 static void __input_release_device(struct input_handle *handle)
550 struct input_dev *dev = handle->dev;
551 struct input_handle *grabber;
553 grabber = rcu_dereference_protected(dev->grab,
554 lockdep_is_held(&dev->mutex));
555 if (grabber == handle) {
556 rcu_assign_pointer(dev->grab, NULL);
557 /* Make sure input_pass_values() notices that grab is gone */
558 synchronize_rcu();
560 list_for_each_entry(handle, &dev->h_list, d_node)
561 if (handle->open && handle->handler->start)
562 handle->handler->start(handle);
567 * input_release_device - release previously grabbed device
568 * @handle: input handle that owns the device
570 * Releases previously grabbed device so that other input handles can
571 * start receiving input events. Upon release all handlers attached
572 * to the device have their start() method called so they have a change
573 * to synchronize device state with the rest of the system.
575 void input_release_device(struct input_handle *handle)
577 struct input_dev *dev = handle->dev;
579 mutex_lock(&dev->mutex);
580 __input_release_device(handle);
581 mutex_unlock(&dev->mutex);
583 EXPORT_SYMBOL(input_release_device);
586 * input_open_device - open input device
587 * @handle: handle through which device is being accessed
589 * This function should be called by input handlers when they
590 * want to start receive events from given input device.
592 int input_open_device(struct input_handle *handle)
594 struct input_dev *dev = handle->dev;
595 int retval;
597 retval = mutex_lock_interruptible(&dev->mutex);
598 if (retval)
599 return retval;
601 if (dev->going_away) {
602 retval = -ENODEV;
603 goto out;
606 handle->open++;
608 if (handle->handler->passive_observer)
609 goto out;
611 if (dev->users++ || dev->inhibited) {
613 * Device is already opened and/or inhibited,
614 * so we can exit immediately and report success.
616 goto out;
619 if (dev->open) {
620 retval = dev->open(dev);
621 if (retval) {
622 dev->users--;
623 handle->open--;
625 * Make sure we are not delivering any more events
626 * through this handle
628 synchronize_rcu();
629 goto out;
633 if (dev->poller)
634 input_dev_poller_start(dev->poller);
636 out:
637 mutex_unlock(&dev->mutex);
638 return retval;
640 EXPORT_SYMBOL(input_open_device);
642 int input_flush_device(struct input_handle *handle, struct file *file)
644 struct input_dev *dev = handle->dev;
645 int retval;
647 retval = mutex_lock_interruptible(&dev->mutex);
648 if (retval)
649 return retval;
651 if (dev->flush)
652 retval = dev->flush(dev, file);
654 mutex_unlock(&dev->mutex);
655 return retval;
657 EXPORT_SYMBOL(input_flush_device);
660 * input_close_device - close input device
661 * @handle: handle through which device is being accessed
663 * This function should be called by input handlers when they
664 * want to stop receive events from given input device.
666 void input_close_device(struct input_handle *handle)
668 struct input_dev *dev = handle->dev;
670 mutex_lock(&dev->mutex);
672 __input_release_device(handle);
674 if (!handle->handler->passive_observer) {
675 if (!--dev->users && !dev->inhibited) {
676 if (dev->poller)
677 input_dev_poller_stop(dev->poller);
678 if (dev->close)
679 dev->close(dev);
683 if (!--handle->open) {
685 * synchronize_rcu() makes sure that input_pass_values()
686 * completed and that no more input events are delivered
687 * through this handle
689 synchronize_rcu();
692 mutex_unlock(&dev->mutex);
694 EXPORT_SYMBOL(input_close_device);
697 * Simulate keyup events for all keys that are marked as pressed.
698 * The function must be called with dev->event_lock held.
700 static bool input_dev_release_keys(struct input_dev *dev)
702 bool need_sync = false;
703 int code;
705 lockdep_assert_held(&dev->event_lock);
707 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
708 for_each_set_bit(code, dev->key, KEY_CNT) {
709 input_handle_event(dev, EV_KEY, code, 0);
710 need_sync = true;
714 return need_sync;
718 * Prepare device for unregistering
720 static void input_disconnect_device(struct input_dev *dev)
722 struct input_handle *handle;
725 * Mark device as going away. Note that we take dev->mutex here
726 * not to protect access to dev->going_away but rather to ensure
727 * that there are no threads in the middle of input_open_device()
729 mutex_lock(&dev->mutex);
730 dev->going_away = true;
731 mutex_unlock(&dev->mutex);
733 spin_lock_irq(&dev->event_lock);
736 * Simulate keyup events for all pressed keys so that handlers
737 * are not left with "stuck" keys. The driver may continue
738 * generate events even after we done here but they will not
739 * reach any handlers.
741 if (input_dev_release_keys(dev))
742 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
744 list_for_each_entry(handle, &dev->h_list, d_node)
745 handle->open = 0;
747 spin_unlock_irq(&dev->event_lock);
751 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
752 * @ke: keymap entry containing scancode to be converted.
753 * @scancode: pointer to the location where converted scancode should
754 * be stored.
756 * This function is used to convert scancode stored in &struct keymap_entry
757 * into scalar form understood by legacy keymap handling methods. These
758 * methods expect scancodes to be represented as 'unsigned int'.
760 int input_scancode_to_scalar(const struct input_keymap_entry *ke,
761 unsigned int *scancode)
763 switch (ke->len) {
764 case 1:
765 *scancode = *((u8 *)ke->scancode);
766 break;
768 case 2:
769 *scancode = *((u16 *)ke->scancode);
770 break;
772 case 4:
773 *scancode = *((u32 *)ke->scancode);
774 break;
776 default:
777 return -EINVAL;
780 return 0;
782 EXPORT_SYMBOL(input_scancode_to_scalar);
785 * Those routines handle the default case where no [gs]etkeycode() is
786 * defined. In this case, an array indexed by the scancode is used.
789 static unsigned int input_fetch_keycode(struct input_dev *dev,
790 unsigned int index)
792 switch (dev->keycodesize) {
793 case 1:
794 return ((u8 *)dev->keycode)[index];
796 case 2:
797 return ((u16 *)dev->keycode)[index];
799 default:
800 return ((u32 *)dev->keycode)[index];
804 static int input_default_getkeycode(struct input_dev *dev,
805 struct input_keymap_entry *ke)
807 unsigned int index;
808 int error;
810 if (!dev->keycodesize)
811 return -EINVAL;
813 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
814 index = ke->index;
815 else {
816 error = input_scancode_to_scalar(ke, &index);
817 if (error)
818 return error;
821 if (index >= dev->keycodemax)
822 return -EINVAL;
824 ke->keycode = input_fetch_keycode(dev, index);
825 ke->index = index;
826 ke->len = sizeof(index);
827 memcpy(ke->scancode, &index, sizeof(index));
829 return 0;
832 static int input_default_setkeycode(struct input_dev *dev,
833 const struct input_keymap_entry *ke,
834 unsigned int *old_keycode)
836 unsigned int index;
837 int error;
838 int i;
840 if (!dev->keycodesize)
841 return -EINVAL;
843 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
844 index = ke->index;
845 } else {
846 error = input_scancode_to_scalar(ke, &index);
847 if (error)
848 return error;
851 if (index >= dev->keycodemax)
852 return -EINVAL;
854 if (dev->keycodesize < sizeof(ke->keycode) &&
855 (ke->keycode >> (dev->keycodesize * 8)))
856 return -EINVAL;
858 switch (dev->keycodesize) {
859 case 1: {
860 u8 *k = (u8 *)dev->keycode;
861 *old_keycode = k[index];
862 k[index] = ke->keycode;
863 break;
865 case 2: {
866 u16 *k = (u16 *)dev->keycode;
867 *old_keycode = k[index];
868 k[index] = ke->keycode;
869 break;
871 default: {
872 u32 *k = (u32 *)dev->keycode;
873 *old_keycode = k[index];
874 k[index] = ke->keycode;
875 break;
879 if (*old_keycode <= KEY_MAX) {
880 __clear_bit(*old_keycode, dev->keybit);
881 for (i = 0; i < dev->keycodemax; i++) {
882 if (input_fetch_keycode(dev, i) == *old_keycode) {
883 __set_bit(*old_keycode, dev->keybit);
884 /* Setting the bit twice is useless, so break */
885 break;
890 __set_bit(ke->keycode, dev->keybit);
891 return 0;
895 * input_get_keycode - retrieve keycode currently mapped to a given scancode
896 * @dev: input device which keymap is being queried
897 * @ke: keymap entry
899 * This function should be called by anyone interested in retrieving current
900 * keymap. Presently evdev handlers use it.
902 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
904 unsigned long flags;
905 int retval;
907 spin_lock_irqsave(&dev->event_lock, flags);
908 retval = dev->getkeycode(dev, ke);
909 spin_unlock_irqrestore(&dev->event_lock, flags);
911 return retval;
913 EXPORT_SYMBOL(input_get_keycode);
916 * input_set_keycode - attribute a keycode to a given scancode
917 * @dev: input device which keymap is being updated
918 * @ke: new keymap entry
920 * This function should be called by anyone needing to update current
921 * keymap. Presently keyboard and evdev handlers use it.
923 int input_set_keycode(struct input_dev *dev,
924 const struct input_keymap_entry *ke)
926 unsigned long flags;
927 unsigned int old_keycode;
928 int retval;
930 if (ke->keycode > KEY_MAX)
931 return -EINVAL;
933 spin_lock_irqsave(&dev->event_lock, flags);
935 retval = dev->setkeycode(dev, ke, &old_keycode);
936 if (retval)
937 goto out;
939 /* Make sure KEY_RESERVED did not get enabled. */
940 __clear_bit(KEY_RESERVED, dev->keybit);
943 * Simulate keyup event if keycode is not present
944 * in the keymap anymore
946 if (old_keycode > KEY_MAX) {
947 dev_warn(dev->dev.parent ?: &dev->dev,
948 "%s: got too big old keycode %#x\n",
949 __func__, old_keycode);
950 } else if (test_bit(EV_KEY, dev->evbit) &&
951 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
952 __test_and_clear_bit(old_keycode, dev->key)) {
954 * We have to use input_event_dispose() here directly instead
955 * of input_handle_event() because the key we want to release
956 * here is considered no longer supported by the device and
957 * input_handle_event() will ignore it.
959 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
960 EV_KEY, old_keycode, 0);
961 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
962 EV_SYN, SYN_REPORT, 1);
965 out:
966 spin_unlock_irqrestore(&dev->event_lock, flags);
968 return retval;
970 EXPORT_SYMBOL(input_set_keycode);
972 bool input_match_device_id(const struct input_dev *dev,
973 const struct input_device_id *id)
975 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
976 if (id->bustype != dev->id.bustype)
977 return false;
979 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
980 if (id->vendor != dev->id.vendor)
981 return false;
983 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
984 if (id->product != dev->id.product)
985 return false;
987 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
988 if (id->version != dev->id.version)
989 return false;
991 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
992 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
993 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
994 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
995 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
996 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
997 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
998 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
999 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1000 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1001 return false;
1004 return true;
1006 EXPORT_SYMBOL(input_match_device_id);
1008 static const struct input_device_id *input_match_device(struct input_handler *handler,
1009 struct input_dev *dev)
1011 const struct input_device_id *id;
1013 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1014 if (input_match_device_id(dev, id) &&
1015 (!handler->match || handler->match(handler, dev))) {
1016 return id;
1020 return NULL;
1023 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1025 const struct input_device_id *id;
1026 int error;
1028 id = input_match_device(handler, dev);
1029 if (!id)
1030 return -ENODEV;
1032 error = handler->connect(handler, dev, id);
1033 if (error && error != -ENODEV)
1034 pr_err("failed to attach handler %s to device %s, error: %d\n",
1035 handler->name, kobject_name(&dev->dev.kobj), error);
1037 return error;
1040 #ifdef CONFIG_COMPAT
1042 static int input_bits_to_string(char *buf, int buf_size,
1043 unsigned long bits, bool skip_empty)
1045 int len = 0;
1047 if (in_compat_syscall()) {
1048 u32 dword = bits >> 32;
1049 if (dword || !skip_empty)
1050 len += snprintf(buf, buf_size, "%x ", dword);
1052 dword = bits & 0xffffffffUL;
1053 if (dword || !skip_empty || len)
1054 len += snprintf(buf + len, max(buf_size - len, 0),
1055 "%x", dword);
1056 } else {
1057 if (bits || !skip_empty)
1058 len += snprintf(buf, buf_size, "%lx", bits);
1061 return len;
1064 #else /* !CONFIG_COMPAT */
1066 static int input_bits_to_string(char *buf, int buf_size,
1067 unsigned long bits, bool skip_empty)
1069 return bits || !skip_empty ?
1070 snprintf(buf, buf_size, "%lx", bits) : 0;
1073 #endif
1075 #ifdef CONFIG_PROC_FS
1077 static struct proc_dir_entry *proc_bus_input_dir;
1078 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1079 static int input_devices_state;
1081 static inline void input_wakeup_procfs_readers(void)
1083 input_devices_state++;
1084 wake_up(&input_devices_poll_wait);
1087 struct input_seq_state {
1088 unsigned short pos;
1089 bool mutex_acquired;
1090 int input_devices_state;
1093 static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1095 struct seq_file *seq = file->private_data;
1096 struct input_seq_state *state = seq->private;
1098 poll_wait(file, &input_devices_poll_wait, wait);
1099 if (state->input_devices_state != input_devices_state) {
1100 state->input_devices_state = input_devices_state;
1101 return EPOLLIN | EPOLLRDNORM;
1104 return 0;
1107 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1109 struct input_seq_state *state = seq->private;
1110 int error;
1112 error = mutex_lock_interruptible(&input_mutex);
1113 if (error) {
1114 state->mutex_acquired = false;
1115 return ERR_PTR(error);
1118 state->mutex_acquired = true;
1120 return seq_list_start(&input_dev_list, *pos);
1123 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1125 return seq_list_next(v, &input_dev_list, pos);
1128 static void input_seq_stop(struct seq_file *seq, void *v)
1130 struct input_seq_state *state = seq->private;
1132 if (state->mutex_acquired)
1133 mutex_unlock(&input_mutex);
1136 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1137 unsigned long *bitmap, int max)
1139 int i;
1140 bool skip_empty = true;
1141 char buf[18];
1143 seq_printf(seq, "B: %s=", name);
1145 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1146 if (input_bits_to_string(buf, sizeof(buf),
1147 bitmap[i], skip_empty)) {
1148 skip_empty = false;
1149 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1154 * If no output was produced print a single 0.
1156 if (skip_empty)
1157 seq_putc(seq, '0');
1159 seq_putc(seq, '\n');
1162 static int input_devices_seq_show(struct seq_file *seq, void *v)
1164 struct input_dev *dev = container_of(v, struct input_dev, node);
1165 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1166 struct input_handle *handle;
1168 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1169 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1171 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1172 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1173 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1174 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1175 seq_puts(seq, "H: Handlers=");
1177 list_for_each_entry(handle, &dev->h_list, d_node)
1178 seq_printf(seq, "%s ", handle->name);
1179 seq_putc(seq, '\n');
1181 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1183 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1184 if (test_bit(EV_KEY, dev->evbit))
1185 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1186 if (test_bit(EV_REL, dev->evbit))
1187 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1188 if (test_bit(EV_ABS, dev->evbit))
1189 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1190 if (test_bit(EV_MSC, dev->evbit))
1191 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1192 if (test_bit(EV_LED, dev->evbit))
1193 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1194 if (test_bit(EV_SND, dev->evbit))
1195 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1196 if (test_bit(EV_FF, dev->evbit))
1197 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1198 if (test_bit(EV_SW, dev->evbit))
1199 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1201 seq_putc(seq, '\n');
1203 kfree(path);
1204 return 0;
1207 static const struct seq_operations input_devices_seq_ops = {
1208 .start = input_devices_seq_start,
1209 .next = input_devices_seq_next,
1210 .stop = input_seq_stop,
1211 .show = input_devices_seq_show,
1214 static int input_proc_devices_open(struct inode *inode, struct file *file)
1216 return seq_open_private(file, &input_devices_seq_ops,
1217 sizeof(struct input_seq_state));
1220 static const struct proc_ops input_devices_proc_ops = {
1221 .proc_open = input_proc_devices_open,
1222 .proc_poll = input_proc_devices_poll,
1223 .proc_read = seq_read,
1224 .proc_lseek = seq_lseek,
1225 .proc_release = seq_release_private,
1228 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1230 struct input_seq_state *state = seq->private;
1231 int error;
1233 error = mutex_lock_interruptible(&input_mutex);
1234 if (error) {
1235 state->mutex_acquired = false;
1236 return ERR_PTR(error);
1239 state->mutex_acquired = true;
1240 state->pos = *pos;
1242 return seq_list_start(&input_handler_list, *pos);
1245 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1247 struct input_seq_state *state = seq->private;
1249 state->pos = *pos + 1;
1250 return seq_list_next(v, &input_handler_list, pos);
1253 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1255 struct input_handler *handler = container_of(v, struct input_handler, node);
1256 struct input_seq_state *state = seq->private;
1258 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1259 if (handler->filter)
1260 seq_puts(seq, " (filter)");
1261 if (handler->legacy_minors)
1262 seq_printf(seq, " Minor=%d", handler->minor);
1263 seq_putc(seq, '\n');
1265 return 0;
1268 static const struct seq_operations input_handlers_seq_ops = {
1269 .start = input_handlers_seq_start,
1270 .next = input_handlers_seq_next,
1271 .stop = input_seq_stop,
1272 .show = input_handlers_seq_show,
1275 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1277 return seq_open_private(file, &input_handlers_seq_ops,
1278 sizeof(struct input_seq_state));
1281 static const struct proc_ops input_handlers_proc_ops = {
1282 .proc_open = input_proc_handlers_open,
1283 .proc_read = seq_read,
1284 .proc_lseek = seq_lseek,
1285 .proc_release = seq_release_private,
1288 static int __init input_proc_init(void)
1290 struct proc_dir_entry *entry;
1292 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1293 if (!proc_bus_input_dir)
1294 return -ENOMEM;
1296 entry = proc_create("devices", 0, proc_bus_input_dir,
1297 &input_devices_proc_ops);
1298 if (!entry)
1299 goto fail1;
1301 entry = proc_create("handlers", 0, proc_bus_input_dir,
1302 &input_handlers_proc_ops);
1303 if (!entry)
1304 goto fail2;
1306 return 0;
1308 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1309 fail1: remove_proc_entry("bus/input", NULL);
1310 return -ENOMEM;
1313 static void input_proc_exit(void)
1315 remove_proc_entry("devices", proc_bus_input_dir);
1316 remove_proc_entry("handlers", proc_bus_input_dir);
1317 remove_proc_entry("bus/input", NULL);
1320 #else /* !CONFIG_PROC_FS */
1321 static inline void input_wakeup_procfs_readers(void) { }
1322 static inline int input_proc_init(void) { return 0; }
1323 static inline void input_proc_exit(void) { }
1324 #endif
1326 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1327 static ssize_t input_dev_show_##name(struct device *dev, \
1328 struct device_attribute *attr, \
1329 char *buf) \
1331 struct input_dev *input_dev = to_input_dev(dev); \
1333 return sysfs_emit(buf, "%s\n", \
1334 input_dev->name ? input_dev->name : ""); \
1336 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1338 INPUT_DEV_STRING_ATTR_SHOW(name);
1339 INPUT_DEV_STRING_ATTR_SHOW(phys);
1340 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1342 static int input_print_modalias_bits(char *buf, int size,
1343 char name, const unsigned long *bm,
1344 unsigned int min_bit, unsigned int max_bit)
1346 int bit = min_bit;
1347 int len = 0;
1349 len += snprintf(buf, max(size, 0), "%c", name);
1350 for_each_set_bit_from(bit, bm, max_bit)
1351 len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1352 return len;
1355 static int input_print_modalias_parts(char *buf, int size, int full_len,
1356 const struct input_dev *id)
1358 int len, klen, remainder, space;
1360 len = snprintf(buf, max(size, 0),
1361 "input:b%04Xv%04Xp%04Xe%04X-",
1362 id->id.bustype, id->id.vendor,
1363 id->id.product, id->id.version);
1365 len += input_print_modalias_bits(buf + len, size - len,
1366 'e', id->evbit, 0, EV_MAX);
1369 * Calculate the remaining space in the buffer making sure we
1370 * have place for the terminating 0.
1372 space = max(size - (len + 1), 0);
1374 klen = input_print_modalias_bits(buf + len, size - len,
1375 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1376 len += klen;
1379 * If we have more data than we can fit in the buffer, check
1380 * if we can trim key data to fit in the rest. We will indicate
1381 * that key data is incomplete by adding "+" sign at the end, like
1382 * this: * "k1,2,3,45,+,".
1384 * Note that we shortest key info (if present) is "k+," so we
1385 * can only try to trim if key data is longer than that.
1387 if (full_len && size < full_len + 1 && klen > 3) {
1388 remainder = full_len - len;
1390 * We can only trim if we have space for the remainder
1391 * and also for at least "k+," which is 3 more characters.
1393 if (remainder <= space - 3) {
1395 * We are guaranteed to have 'k' in the buffer, so
1396 * we need at least 3 additional bytes for storing
1397 * "+," in addition to the remainder.
1399 for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1400 if (buf[i] == 'k' || buf[i] == ',') {
1401 strcpy(buf + i + 1, "+,");
1402 len = i + 3; /* Not counting '\0' */
1403 break;
1409 len += input_print_modalias_bits(buf + len, size - len,
1410 'r', id->relbit, 0, REL_MAX);
1411 len += input_print_modalias_bits(buf + len, size - len,
1412 'a', id->absbit, 0, ABS_MAX);
1413 len += input_print_modalias_bits(buf + len, size - len,
1414 'm', id->mscbit, 0, MSC_MAX);
1415 len += input_print_modalias_bits(buf + len, size - len,
1416 'l', id->ledbit, 0, LED_MAX);
1417 len += input_print_modalias_bits(buf + len, size - len,
1418 's', id->sndbit, 0, SND_MAX);
1419 len += input_print_modalias_bits(buf + len, size - len,
1420 'f', id->ffbit, 0, FF_MAX);
1421 len += input_print_modalias_bits(buf + len, size - len,
1422 'w', id->swbit, 0, SW_MAX);
1424 return len;
1427 static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1429 int full_len;
1432 * Printing is done in 2 passes: first one figures out total length
1433 * needed for the modalias string, second one will try to trim key
1434 * data in case when buffer is too small for the entire modalias.
1435 * If the buffer is too small regardless, it will fill as much as it
1436 * can (without trimming key data) into the buffer and leave it to
1437 * the caller to figure out what to do with the result.
1439 full_len = input_print_modalias_parts(NULL, 0, 0, id);
1440 return input_print_modalias_parts(buf, size, full_len, id);
1443 static ssize_t input_dev_show_modalias(struct device *dev,
1444 struct device_attribute *attr,
1445 char *buf)
1447 struct input_dev *id = to_input_dev(dev);
1448 ssize_t len;
1450 len = input_print_modalias(buf, PAGE_SIZE, id);
1451 if (len < PAGE_SIZE - 2)
1452 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1454 return min_t(int, len, PAGE_SIZE);
1456 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1458 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1459 int max, int add_cr);
1461 static ssize_t input_dev_show_properties(struct device *dev,
1462 struct device_attribute *attr,
1463 char *buf)
1465 struct input_dev *input_dev = to_input_dev(dev);
1466 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1467 INPUT_PROP_MAX, true);
1468 return min_t(int, len, PAGE_SIZE);
1470 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1472 static int input_inhibit_device(struct input_dev *dev);
1473 static int input_uninhibit_device(struct input_dev *dev);
1475 static ssize_t inhibited_show(struct device *dev,
1476 struct device_attribute *attr,
1477 char *buf)
1479 struct input_dev *input_dev = to_input_dev(dev);
1481 return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1484 static ssize_t inhibited_store(struct device *dev,
1485 struct device_attribute *attr, const char *buf,
1486 size_t len)
1488 struct input_dev *input_dev = to_input_dev(dev);
1489 ssize_t rv;
1490 bool inhibited;
1492 if (kstrtobool(buf, &inhibited))
1493 return -EINVAL;
1495 if (inhibited)
1496 rv = input_inhibit_device(input_dev);
1497 else
1498 rv = input_uninhibit_device(input_dev);
1500 if (rv != 0)
1501 return rv;
1503 return len;
1506 static DEVICE_ATTR_RW(inhibited);
1508 static struct attribute *input_dev_attrs[] = {
1509 &dev_attr_name.attr,
1510 &dev_attr_phys.attr,
1511 &dev_attr_uniq.attr,
1512 &dev_attr_modalias.attr,
1513 &dev_attr_properties.attr,
1514 &dev_attr_inhibited.attr,
1515 NULL
1518 static const struct attribute_group input_dev_attr_group = {
1519 .attrs = input_dev_attrs,
1522 #define INPUT_DEV_ID_ATTR(name) \
1523 static ssize_t input_dev_show_id_##name(struct device *dev, \
1524 struct device_attribute *attr, \
1525 char *buf) \
1527 struct input_dev *input_dev = to_input_dev(dev); \
1528 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \
1530 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1532 INPUT_DEV_ID_ATTR(bustype);
1533 INPUT_DEV_ID_ATTR(vendor);
1534 INPUT_DEV_ID_ATTR(product);
1535 INPUT_DEV_ID_ATTR(version);
1537 static struct attribute *input_dev_id_attrs[] = {
1538 &dev_attr_bustype.attr,
1539 &dev_attr_vendor.attr,
1540 &dev_attr_product.attr,
1541 &dev_attr_version.attr,
1542 NULL
1545 static const struct attribute_group input_dev_id_attr_group = {
1546 .name = "id",
1547 .attrs = input_dev_id_attrs,
1550 static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1551 int max, int add_cr)
1553 int i;
1554 int len = 0;
1555 bool skip_empty = true;
1557 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1558 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1559 bitmap[i], skip_empty);
1560 if (len) {
1561 skip_empty = false;
1562 if (i > 0)
1563 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1568 * If no output was produced print a single 0.
1570 if (len == 0)
1571 len = snprintf(buf, buf_size, "%d", 0);
1573 if (add_cr)
1574 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1576 return len;
1579 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1580 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1581 struct device_attribute *attr, \
1582 char *buf) \
1584 struct input_dev *input_dev = to_input_dev(dev); \
1585 int len = input_print_bitmap(buf, PAGE_SIZE, \
1586 input_dev->bm##bit, ev##_MAX, \
1587 true); \
1588 return min_t(int, len, PAGE_SIZE); \
1590 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1592 INPUT_DEV_CAP_ATTR(EV, ev);
1593 INPUT_DEV_CAP_ATTR(KEY, key);
1594 INPUT_DEV_CAP_ATTR(REL, rel);
1595 INPUT_DEV_CAP_ATTR(ABS, abs);
1596 INPUT_DEV_CAP_ATTR(MSC, msc);
1597 INPUT_DEV_CAP_ATTR(LED, led);
1598 INPUT_DEV_CAP_ATTR(SND, snd);
1599 INPUT_DEV_CAP_ATTR(FF, ff);
1600 INPUT_DEV_CAP_ATTR(SW, sw);
1602 static struct attribute *input_dev_caps_attrs[] = {
1603 &dev_attr_ev.attr,
1604 &dev_attr_key.attr,
1605 &dev_attr_rel.attr,
1606 &dev_attr_abs.attr,
1607 &dev_attr_msc.attr,
1608 &dev_attr_led.attr,
1609 &dev_attr_snd.attr,
1610 &dev_attr_ff.attr,
1611 &dev_attr_sw.attr,
1612 NULL
1615 static const struct attribute_group input_dev_caps_attr_group = {
1616 .name = "capabilities",
1617 .attrs = input_dev_caps_attrs,
1620 static const struct attribute_group *input_dev_attr_groups[] = {
1621 &input_dev_attr_group,
1622 &input_dev_id_attr_group,
1623 &input_dev_caps_attr_group,
1624 &input_poller_attribute_group,
1625 NULL
1628 static void input_dev_release(struct device *device)
1630 struct input_dev *dev = to_input_dev(device);
1632 input_ff_destroy(dev);
1633 input_mt_destroy_slots(dev);
1634 kfree(dev->poller);
1635 kfree(dev->absinfo);
1636 kfree(dev->vals);
1637 kfree(dev);
1639 module_put(THIS_MODULE);
1643 * Input uevent interface - loading event handlers based on
1644 * device bitfields.
1646 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1647 const char *name, const unsigned long *bitmap, int max)
1649 int len;
1651 if (add_uevent_var(env, "%s", name))
1652 return -ENOMEM;
1654 len = input_print_bitmap(&env->buf[env->buflen - 1],
1655 sizeof(env->buf) - env->buflen,
1656 bitmap, max, false);
1657 if (len >= (sizeof(env->buf) - env->buflen))
1658 return -ENOMEM;
1660 env->buflen += len;
1661 return 0;
1665 * This is a pretty gross hack. When building uevent data the driver core
1666 * may try adding more environment variables to kobj_uevent_env without
1667 * telling us, so we have no idea how much of the buffer we can use to
1668 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1669 * reduce amount of memory we will use for the modalias environment variable.
1671 * The potential additions are:
1673 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1674 * HOME=/ (6 bytes)
1675 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1677 * 68 bytes total. Allow extra buffer - 96 bytes
1679 #define UEVENT_ENV_EXTRA_LEN 96
1681 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1682 const struct input_dev *dev)
1684 int len;
1686 if (add_uevent_var(env, "MODALIAS="))
1687 return -ENOMEM;
1689 len = input_print_modalias(&env->buf[env->buflen - 1],
1690 (int)sizeof(env->buf) - env->buflen -
1691 UEVENT_ENV_EXTRA_LEN,
1692 dev);
1693 if (len >= ((int)sizeof(env->buf) - env->buflen -
1694 UEVENT_ENV_EXTRA_LEN))
1695 return -ENOMEM;
1697 env->buflen += len;
1698 return 0;
1701 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1702 do { \
1703 int err = add_uevent_var(env, fmt, val); \
1704 if (err) \
1705 return err; \
1706 } while (0)
1708 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1709 do { \
1710 int err = input_add_uevent_bm_var(env, name, bm, max); \
1711 if (err) \
1712 return err; \
1713 } while (0)
1715 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1716 do { \
1717 int err = input_add_uevent_modalias_var(env, dev); \
1718 if (err) \
1719 return err; \
1720 } while (0)
1722 static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1724 const struct input_dev *dev = to_input_dev(device);
1726 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1727 dev->id.bustype, dev->id.vendor,
1728 dev->id.product, dev->id.version);
1729 if (dev->name)
1730 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1731 if (dev->phys)
1732 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1733 if (dev->uniq)
1734 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1736 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1738 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1739 if (test_bit(EV_KEY, dev->evbit))
1740 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1741 if (test_bit(EV_REL, dev->evbit))
1742 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1743 if (test_bit(EV_ABS, dev->evbit))
1744 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1745 if (test_bit(EV_MSC, dev->evbit))
1746 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1747 if (test_bit(EV_LED, dev->evbit))
1748 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1749 if (test_bit(EV_SND, dev->evbit))
1750 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1751 if (test_bit(EV_FF, dev->evbit))
1752 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1753 if (test_bit(EV_SW, dev->evbit))
1754 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1756 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1758 return 0;
1761 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1762 do { \
1763 int i; \
1764 bool active; \
1766 if (!test_bit(EV_##type, dev->evbit)) \
1767 break; \
1769 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1770 active = test_bit(i, dev->bits); \
1771 if (!active && !on) \
1772 continue; \
1774 dev->event(dev, EV_##type, i, on ? active : 0); \
1776 } while (0)
1778 static void input_dev_toggle(struct input_dev *dev, bool activate)
1780 if (!dev->event)
1781 return;
1783 INPUT_DO_TOGGLE(dev, LED, led, activate);
1784 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1786 if (activate && test_bit(EV_REP, dev->evbit)) {
1787 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1788 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1793 * input_reset_device() - reset/restore the state of input device
1794 * @dev: input device whose state needs to be reset
1796 * This function tries to reset the state of an opened input device and
1797 * bring internal state and state if the hardware in sync with each other.
1798 * We mark all keys as released, restore LED state, repeat rate, etc.
1800 void input_reset_device(struct input_dev *dev)
1802 unsigned long flags;
1804 mutex_lock(&dev->mutex);
1805 spin_lock_irqsave(&dev->event_lock, flags);
1807 input_dev_toggle(dev, true);
1808 if (input_dev_release_keys(dev))
1809 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1811 spin_unlock_irqrestore(&dev->event_lock, flags);
1812 mutex_unlock(&dev->mutex);
1814 EXPORT_SYMBOL(input_reset_device);
1816 static int input_inhibit_device(struct input_dev *dev)
1818 mutex_lock(&dev->mutex);
1820 if (dev->inhibited)
1821 goto out;
1823 if (dev->users) {
1824 if (dev->close)
1825 dev->close(dev);
1826 if (dev->poller)
1827 input_dev_poller_stop(dev->poller);
1830 spin_lock_irq(&dev->event_lock);
1831 input_mt_release_slots(dev);
1832 input_dev_release_keys(dev);
1833 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1834 input_dev_toggle(dev, false);
1835 spin_unlock_irq(&dev->event_lock);
1837 dev->inhibited = true;
1839 out:
1840 mutex_unlock(&dev->mutex);
1841 return 0;
1844 static int input_uninhibit_device(struct input_dev *dev)
1846 int ret = 0;
1848 mutex_lock(&dev->mutex);
1850 if (!dev->inhibited)
1851 goto out;
1853 if (dev->users) {
1854 if (dev->open) {
1855 ret = dev->open(dev);
1856 if (ret)
1857 goto out;
1859 if (dev->poller)
1860 input_dev_poller_start(dev->poller);
1863 dev->inhibited = false;
1864 spin_lock_irq(&dev->event_lock);
1865 input_dev_toggle(dev, true);
1866 spin_unlock_irq(&dev->event_lock);
1868 out:
1869 mutex_unlock(&dev->mutex);
1870 return ret;
1873 static int input_dev_suspend(struct device *dev)
1875 struct input_dev *input_dev = to_input_dev(dev);
1877 spin_lock_irq(&input_dev->event_lock);
1880 * Keys that are pressed now are unlikely to be
1881 * still pressed when we resume.
1883 if (input_dev_release_keys(input_dev))
1884 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1886 /* Turn off LEDs and sounds, if any are active. */
1887 input_dev_toggle(input_dev, false);
1889 spin_unlock_irq(&input_dev->event_lock);
1891 return 0;
1894 static int input_dev_resume(struct device *dev)
1896 struct input_dev *input_dev = to_input_dev(dev);
1898 spin_lock_irq(&input_dev->event_lock);
1900 /* Restore state of LEDs and sounds, if any were active. */
1901 input_dev_toggle(input_dev, true);
1903 spin_unlock_irq(&input_dev->event_lock);
1905 return 0;
1908 static int input_dev_freeze(struct device *dev)
1910 struct input_dev *input_dev = to_input_dev(dev);
1912 spin_lock_irq(&input_dev->event_lock);
1915 * Keys that are pressed now are unlikely to be
1916 * still pressed when we resume.
1918 if (input_dev_release_keys(input_dev))
1919 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1921 spin_unlock_irq(&input_dev->event_lock);
1923 return 0;
1926 static int input_dev_poweroff(struct device *dev)
1928 struct input_dev *input_dev = to_input_dev(dev);
1930 spin_lock_irq(&input_dev->event_lock);
1932 /* Turn off LEDs and sounds, if any are active. */
1933 input_dev_toggle(input_dev, false);
1935 spin_unlock_irq(&input_dev->event_lock);
1937 return 0;
1940 static const struct dev_pm_ops input_dev_pm_ops = {
1941 .suspend = input_dev_suspend,
1942 .resume = input_dev_resume,
1943 .freeze = input_dev_freeze,
1944 .poweroff = input_dev_poweroff,
1945 .restore = input_dev_resume,
1948 static const struct device_type input_dev_type = {
1949 .groups = input_dev_attr_groups,
1950 .release = input_dev_release,
1951 .uevent = input_dev_uevent,
1952 .pm = pm_sleep_ptr(&input_dev_pm_ops),
1955 static char *input_devnode(const struct device *dev, umode_t *mode)
1957 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1960 const struct class input_class = {
1961 .name = "input",
1962 .devnode = input_devnode,
1964 EXPORT_SYMBOL_GPL(input_class);
1967 * input_allocate_device - allocate memory for new input device
1969 * Returns prepared struct input_dev or %NULL.
1971 * NOTE: Use input_free_device() to free devices that have not been
1972 * registered; input_unregister_device() should be used for already
1973 * registered devices.
1975 struct input_dev *input_allocate_device(void)
1977 static atomic_t input_no = ATOMIC_INIT(-1);
1978 struct input_dev *dev;
1980 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1981 if (!dev)
1982 return NULL;
1985 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1986 * see input_estimate_events_per_packet(). We will tune the number
1987 * when we register the device.
1989 dev->max_vals = 10;
1990 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1991 if (!dev->vals) {
1992 kfree(dev);
1993 return NULL;
1996 mutex_init(&dev->mutex);
1997 spin_lock_init(&dev->event_lock);
1998 timer_setup(&dev->timer, NULL, 0);
1999 INIT_LIST_HEAD(&dev->h_list);
2000 INIT_LIST_HEAD(&dev->node);
2002 dev->dev.type = &input_dev_type;
2003 dev->dev.class = &input_class;
2004 device_initialize(&dev->dev);
2006 * From this point on we can no longer simply "kfree(dev)", we need
2007 * to use input_free_device() so that device core properly frees its
2008 * resources associated with the input device.
2011 dev_set_name(&dev->dev, "input%lu",
2012 (unsigned long)atomic_inc_return(&input_no));
2014 __module_get(THIS_MODULE);
2016 return dev;
2018 EXPORT_SYMBOL(input_allocate_device);
2020 struct input_devres {
2021 struct input_dev *input;
2024 static int devm_input_device_match(struct device *dev, void *res, void *data)
2026 struct input_devres *devres = res;
2028 return devres->input == data;
2031 static void devm_input_device_release(struct device *dev, void *res)
2033 struct input_devres *devres = res;
2034 struct input_dev *input = devres->input;
2036 dev_dbg(dev, "%s: dropping reference to %s\n",
2037 __func__, dev_name(&input->dev));
2038 input_put_device(input);
2042 * devm_input_allocate_device - allocate managed input device
2043 * @dev: device owning the input device being created
2045 * Returns prepared struct input_dev or %NULL.
2047 * Managed input devices do not need to be explicitly unregistered or
2048 * freed as it will be done automatically when owner device unbinds from
2049 * its driver (or binding fails). Once managed input device is allocated,
2050 * it is ready to be set up and registered in the same fashion as regular
2051 * input device. There are no special devm_input_device_[un]register()
2052 * variants, regular ones work with both managed and unmanaged devices,
2053 * should you need them. In most cases however, managed input device need
2054 * not be explicitly unregistered or freed.
2056 * NOTE: the owner device is set up as parent of input device and users
2057 * should not override it.
2059 struct input_dev *devm_input_allocate_device(struct device *dev)
2061 struct input_dev *input;
2062 struct input_devres *devres;
2064 devres = devres_alloc(devm_input_device_release,
2065 sizeof(*devres), GFP_KERNEL);
2066 if (!devres)
2067 return NULL;
2069 input = input_allocate_device();
2070 if (!input) {
2071 devres_free(devres);
2072 return NULL;
2075 input->dev.parent = dev;
2076 input->devres_managed = true;
2078 devres->input = input;
2079 devres_add(dev, devres);
2081 return input;
2083 EXPORT_SYMBOL(devm_input_allocate_device);
2086 * input_free_device - free memory occupied by input_dev structure
2087 * @dev: input device to free
2089 * This function should only be used if input_register_device()
2090 * was not called yet or if it failed. Once device was registered
2091 * use input_unregister_device() and memory will be freed once last
2092 * reference to the device is dropped.
2094 * Device should be allocated by input_allocate_device().
2096 * NOTE: If there are references to the input device then memory
2097 * will not be freed until last reference is dropped.
2099 void input_free_device(struct input_dev *dev)
2101 if (dev) {
2102 if (dev->devres_managed)
2103 WARN_ON(devres_destroy(dev->dev.parent,
2104 devm_input_device_release,
2105 devm_input_device_match,
2106 dev));
2107 input_put_device(dev);
2110 EXPORT_SYMBOL(input_free_device);
2113 * input_set_timestamp - set timestamp for input events
2114 * @dev: input device to set timestamp for
2115 * @timestamp: the time at which the event has occurred
2116 * in CLOCK_MONOTONIC
2118 * This function is intended to provide to the input system a more
2119 * accurate time of when an event actually occurred. The driver should
2120 * call this function as soon as a timestamp is acquired ensuring
2121 * clock conversions in input_set_timestamp are done correctly.
2123 * The system entering suspend state between timestamp acquisition and
2124 * calling input_set_timestamp can result in inaccurate conversions.
2126 void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2128 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2129 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2130 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2131 TK_OFFS_BOOT);
2133 EXPORT_SYMBOL(input_set_timestamp);
2136 * input_get_timestamp - get timestamp for input events
2137 * @dev: input device to get timestamp from
2139 * A valid timestamp is a timestamp of non-zero value.
2141 ktime_t *input_get_timestamp(struct input_dev *dev)
2143 const ktime_t invalid_timestamp = ktime_set(0, 0);
2145 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2146 input_set_timestamp(dev, ktime_get());
2148 return dev->timestamp;
2150 EXPORT_SYMBOL(input_get_timestamp);
2153 * input_set_capability - mark device as capable of a certain event
2154 * @dev: device that is capable of emitting or accepting event
2155 * @type: type of the event (EV_KEY, EV_REL, etc...)
2156 * @code: event code
2158 * In addition to setting up corresponding bit in appropriate capability
2159 * bitmap the function also adjusts dev->evbit.
2161 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2163 if (type < EV_CNT && input_max_code[type] &&
2164 code > input_max_code[type]) {
2165 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2166 type);
2167 dump_stack();
2168 return;
2171 switch (type) {
2172 case EV_KEY:
2173 __set_bit(code, dev->keybit);
2174 break;
2176 case EV_REL:
2177 __set_bit(code, dev->relbit);
2178 break;
2180 case EV_ABS:
2181 input_alloc_absinfo(dev);
2182 __set_bit(code, dev->absbit);
2183 break;
2185 case EV_MSC:
2186 __set_bit(code, dev->mscbit);
2187 break;
2189 case EV_SW:
2190 __set_bit(code, dev->swbit);
2191 break;
2193 case EV_LED:
2194 __set_bit(code, dev->ledbit);
2195 break;
2197 case EV_SND:
2198 __set_bit(code, dev->sndbit);
2199 break;
2201 case EV_FF:
2202 __set_bit(code, dev->ffbit);
2203 break;
2205 case EV_PWR:
2206 /* do nothing */
2207 break;
2209 default:
2210 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2211 dump_stack();
2212 return;
2215 __set_bit(type, dev->evbit);
2217 EXPORT_SYMBOL(input_set_capability);
2219 static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2221 int mt_slots;
2222 int i;
2223 unsigned int events;
2225 if (dev->mt) {
2226 mt_slots = dev->mt->num_slots;
2227 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2228 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2229 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2230 mt_slots = clamp(mt_slots, 2, 32);
2231 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2232 mt_slots = 2;
2233 } else {
2234 mt_slots = 0;
2237 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2239 if (test_bit(EV_ABS, dev->evbit))
2240 for_each_set_bit(i, dev->absbit, ABS_CNT)
2241 events += input_is_mt_axis(i) ? mt_slots : 1;
2243 if (test_bit(EV_REL, dev->evbit))
2244 events += bitmap_weight(dev->relbit, REL_CNT);
2246 /* Make room for KEY and MSC events */
2247 events += 7;
2249 return events;
2252 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2253 do { \
2254 if (!test_bit(EV_##type, dev->evbit)) \
2255 memset(dev->bits##bit, 0, \
2256 sizeof(dev->bits##bit)); \
2257 } while (0)
2259 static void input_cleanse_bitmasks(struct input_dev *dev)
2261 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2262 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2263 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2264 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2265 INPUT_CLEANSE_BITMASK(dev, LED, led);
2266 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2267 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2268 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2271 static void __input_unregister_device(struct input_dev *dev)
2273 struct input_handle *handle, *next;
2275 input_disconnect_device(dev);
2277 mutex_lock(&input_mutex);
2279 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2280 handle->handler->disconnect(handle);
2281 WARN_ON(!list_empty(&dev->h_list));
2283 del_timer_sync(&dev->timer);
2284 list_del_init(&dev->node);
2286 input_wakeup_procfs_readers();
2288 mutex_unlock(&input_mutex);
2290 device_del(&dev->dev);
2293 static void devm_input_device_unregister(struct device *dev, void *res)
2295 struct input_devres *devres = res;
2296 struct input_dev *input = devres->input;
2298 dev_dbg(dev, "%s: unregistering device %s\n",
2299 __func__, dev_name(&input->dev));
2300 __input_unregister_device(input);
2304 * Generate software autorepeat event. Note that we take
2305 * dev->event_lock here to avoid racing with input_event
2306 * which may cause keys get "stuck".
2308 static void input_repeat_key(struct timer_list *t)
2310 struct input_dev *dev = from_timer(dev, t, timer);
2311 unsigned long flags;
2313 spin_lock_irqsave(&dev->event_lock, flags);
2315 if (!dev->inhibited &&
2316 test_bit(dev->repeat_key, dev->key) &&
2317 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2319 input_set_timestamp(dev, ktime_get());
2320 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2321 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2323 if (dev->rep[REP_PERIOD])
2324 mod_timer(&dev->timer, jiffies +
2325 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2328 spin_unlock_irqrestore(&dev->event_lock, flags);
2332 * input_enable_softrepeat - enable software autorepeat
2333 * @dev: input device
2334 * @delay: repeat delay
2335 * @period: repeat period
2337 * Enable software autorepeat on the input device.
2339 void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2341 dev->timer.function = input_repeat_key;
2342 dev->rep[REP_DELAY] = delay;
2343 dev->rep[REP_PERIOD] = period;
2345 EXPORT_SYMBOL(input_enable_softrepeat);
2347 bool input_device_enabled(struct input_dev *dev)
2349 lockdep_assert_held(&dev->mutex);
2351 return !dev->inhibited && dev->users > 0;
2353 EXPORT_SYMBOL_GPL(input_device_enabled);
2355 static int input_device_tune_vals(struct input_dev *dev)
2357 struct input_value *vals;
2358 unsigned int packet_size;
2359 unsigned int max_vals;
2361 packet_size = input_estimate_events_per_packet(dev);
2362 if (dev->hint_events_per_packet < packet_size)
2363 dev->hint_events_per_packet = packet_size;
2365 max_vals = dev->hint_events_per_packet + 2;
2366 if (dev->max_vals >= max_vals)
2367 return 0;
2369 vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2370 if (!vals)
2371 return -ENOMEM;
2373 spin_lock_irq(&dev->event_lock);
2374 dev->max_vals = max_vals;
2375 swap(dev->vals, vals);
2376 spin_unlock_irq(&dev->event_lock);
2378 /* Because of swap() above, this frees the old vals memory */
2379 kfree(vals);
2381 return 0;
2385 * input_register_device - register device with input core
2386 * @dev: device to be registered
2388 * This function registers device with input core. The device must be
2389 * allocated with input_allocate_device() and all it's capabilities
2390 * set up before registering.
2391 * If function fails the device must be freed with input_free_device().
2392 * Once device has been successfully registered it can be unregistered
2393 * with input_unregister_device(); input_free_device() should not be
2394 * called in this case.
2396 * Note that this function is also used to register managed input devices
2397 * (ones allocated with devm_input_allocate_device()). Such managed input
2398 * devices need not be explicitly unregistered or freed, their tear down
2399 * is controlled by the devres infrastructure. It is also worth noting
2400 * that tear down of managed input devices is internally a 2-step process:
2401 * registered managed input device is first unregistered, but stays in
2402 * memory and can still handle input_event() calls (although events will
2403 * not be delivered anywhere). The freeing of managed input device will
2404 * happen later, when devres stack is unwound to the point where device
2405 * allocation was made.
2407 int input_register_device(struct input_dev *dev)
2409 struct input_devres *devres = NULL;
2410 struct input_handler *handler;
2411 const char *path;
2412 int error;
2414 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2415 dev_err(&dev->dev,
2416 "Absolute device without dev->absinfo, refusing to register\n");
2417 return -EINVAL;
2420 if (dev->devres_managed) {
2421 devres = devres_alloc(devm_input_device_unregister,
2422 sizeof(*devres), GFP_KERNEL);
2423 if (!devres)
2424 return -ENOMEM;
2426 devres->input = dev;
2429 /* Every input device generates EV_SYN/SYN_REPORT events. */
2430 __set_bit(EV_SYN, dev->evbit);
2432 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2433 __clear_bit(KEY_RESERVED, dev->keybit);
2435 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2436 input_cleanse_bitmasks(dev);
2438 error = input_device_tune_vals(dev);
2439 if (error)
2440 goto err_devres_free;
2443 * If delay and period are pre-set by the driver, then autorepeating
2444 * is handled by the driver itself and we don't do it in input.c.
2446 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2447 input_enable_softrepeat(dev, 250, 33);
2449 if (!dev->getkeycode)
2450 dev->getkeycode = input_default_getkeycode;
2452 if (!dev->setkeycode)
2453 dev->setkeycode = input_default_setkeycode;
2455 if (dev->poller)
2456 input_dev_poller_finalize(dev->poller);
2458 error = device_add(&dev->dev);
2459 if (error)
2460 goto err_devres_free;
2462 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2463 pr_info("%s as %s\n",
2464 dev->name ? dev->name : "Unspecified device",
2465 path ? path : "N/A");
2466 kfree(path);
2468 error = mutex_lock_interruptible(&input_mutex);
2469 if (error)
2470 goto err_device_del;
2472 list_add_tail(&dev->node, &input_dev_list);
2474 list_for_each_entry(handler, &input_handler_list, node)
2475 input_attach_handler(dev, handler);
2477 input_wakeup_procfs_readers();
2479 mutex_unlock(&input_mutex);
2481 if (dev->devres_managed) {
2482 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2483 __func__, dev_name(&dev->dev));
2484 devres_add(dev->dev.parent, devres);
2486 return 0;
2488 err_device_del:
2489 device_del(&dev->dev);
2490 err_devres_free:
2491 devres_free(devres);
2492 return error;
2494 EXPORT_SYMBOL(input_register_device);
2497 * input_unregister_device - unregister previously registered device
2498 * @dev: device to be unregistered
2500 * This function unregisters an input device. Once device is unregistered
2501 * the caller should not try to access it as it may get freed at any moment.
2503 void input_unregister_device(struct input_dev *dev)
2505 if (dev->devres_managed) {
2506 WARN_ON(devres_destroy(dev->dev.parent,
2507 devm_input_device_unregister,
2508 devm_input_device_match,
2509 dev));
2510 __input_unregister_device(dev);
2512 * We do not do input_put_device() here because it will be done
2513 * when 2nd devres fires up.
2515 } else {
2516 __input_unregister_device(dev);
2517 input_put_device(dev);
2520 EXPORT_SYMBOL(input_unregister_device);
2522 static int input_handler_check_methods(const struct input_handler *handler)
2524 int count = 0;
2526 if (handler->filter)
2527 count++;
2528 if (handler->events)
2529 count++;
2530 if (handler->event)
2531 count++;
2533 if (count > 1) {
2534 pr_err("%s: only one event processing method can be defined (%s)\n",
2535 __func__, handler->name);
2536 return -EINVAL;
2539 return 0;
2543 * input_register_handler - register a new input handler
2544 * @handler: handler to be registered
2546 * This function registers a new input handler (interface) for input
2547 * devices in the system and attaches it to all input devices that
2548 * are compatible with the handler.
2550 int input_register_handler(struct input_handler *handler)
2552 struct input_dev *dev;
2553 int error;
2555 error = input_handler_check_methods(handler);
2556 if (error)
2557 return error;
2559 INIT_LIST_HEAD(&handler->h_list);
2561 error = mutex_lock_interruptible(&input_mutex);
2562 if (error)
2563 return error;
2565 list_add_tail(&handler->node, &input_handler_list);
2567 list_for_each_entry(dev, &input_dev_list, node)
2568 input_attach_handler(dev, handler);
2570 input_wakeup_procfs_readers();
2572 mutex_unlock(&input_mutex);
2573 return 0;
2575 EXPORT_SYMBOL(input_register_handler);
2578 * input_unregister_handler - unregisters an input handler
2579 * @handler: handler to be unregistered
2581 * This function disconnects a handler from its input devices and
2582 * removes it from lists of known handlers.
2584 void input_unregister_handler(struct input_handler *handler)
2586 struct input_handle *handle, *next;
2588 mutex_lock(&input_mutex);
2590 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2591 handler->disconnect(handle);
2592 WARN_ON(!list_empty(&handler->h_list));
2594 list_del_init(&handler->node);
2596 input_wakeup_procfs_readers();
2598 mutex_unlock(&input_mutex);
2600 EXPORT_SYMBOL(input_unregister_handler);
2603 * input_handler_for_each_handle - handle iterator
2604 * @handler: input handler to iterate
2605 * @data: data for the callback
2606 * @fn: function to be called for each handle
2608 * Iterate over @bus's list of devices, and call @fn for each, passing
2609 * it @data and stop when @fn returns a non-zero value. The function is
2610 * using RCU to traverse the list and therefore may be using in atomic
2611 * contexts. The @fn callback is invoked from RCU critical section and
2612 * thus must not sleep.
2614 int input_handler_for_each_handle(struct input_handler *handler, void *data,
2615 int (*fn)(struct input_handle *, void *))
2617 struct input_handle *handle;
2618 int retval = 0;
2620 rcu_read_lock();
2622 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2623 retval = fn(handle, data);
2624 if (retval)
2625 break;
2628 rcu_read_unlock();
2630 return retval;
2632 EXPORT_SYMBOL(input_handler_for_each_handle);
2635 * An implementation of input_handle's handle_events() method that simply
2636 * invokes handler->event() method for each event one by one.
2638 static unsigned int input_handle_events_default(struct input_handle *handle,
2639 struct input_value *vals,
2640 unsigned int count)
2642 struct input_handler *handler = handle->handler;
2643 struct input_value *v;
2645 for (v = vals; v != vals + count; v++)
2646 handler->event(handle, v->type, v->code, v->value);
2648 return count;
2652 * An implementation of input_handle's handle_events() method that invokes
2653 * handler->filter() method for each event one by one and removes events
2654 * that were filtered out from the "vals" array.
2656 static unsigned int input_handle_events_filter(struct input_handle *handle,
2657 struct input_value *vals,
2658 unsigned int count)
2660 struct input_handler *handler = handle->handler;
2661 struct input_value *end = vals;
2662 struct input_value *v;
2664 for (v = vals; v != vals + count; v++) {
2665 if (handler->filter(handle, v->type, v->code, v->value))
2666 continue;
2667 if (end != v)
2668 *end = *v;
2669 end++;
2672 return end - vals;
2676 * An implementation of input_handle's handle_events() method that does nothing.
2678 static unsigned int input_handle_events_null(struct input_handle *handle,
2679 struct input_value *vals,
2680 unsigned int count)
2682 return count;
2686 * Sets up appropriate handle->event_handler based on the input_handler
2687 * associated with the handle.
2689 static void input_handle_setup_event_handler(struct input_handle *handle)
2691 struct input_handler *handler = handle->handler;
2693 if (handler->filter)
2694 handle->handle_events = input_handle_events_filter;
2695 else if (handler->event)
2696 handle->handle_events = input_handle_events_default;
2697 else if (handler->events)
2698 handle->handle_events = handler->events;
2699 else
2700 handle->handle_events = input_handle_events_null;
2704 * input_register_handle - register a new input handle
2705 * @handle: handle to register
2707 * This function puts a new input handle onto device's
2708 * and handler's lists so that events can flow through
2709 * it once it is opened using input_open_device().
2711 * This function is supposed to be called from handler's
2712 * connect() method.
2714 int input_register_handle(struct input_handle *handle)
2716 struct input_handler *handler = handle->handler;
2717 struct input_dev *dev = handle->dev;
2718 int error;
2720 input_handle_setup_event_handler(handle);
2722 * We take dev->mutex here to prevent race with
2723 * input_release_device().
2725 error = mutex_lock_interruptible(&dev->mutex);
2726 if (error)
2727 return error;
2730 * Filters go to the head of the list, normal handlers
2731 * to the tail.
2733 if (handler->filter)
2734 list_add_rcu(&handle->d_node, &dev->h_list);
2735 else
2736 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2738 mutex_unlock(&dev->mutex);
2741 * Since we are supposed to be called from ->connect()
2742 * which is mutually exclusive with ->disconnect()
2743 * we can't be racing with input_unregister_handle()
2744 * and so separate lock is not needed here.
2746 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2748 if (handler->start)
2749 handler->start(handle);
2751 return 0;
2753 EXPORT_SYMBOL(input_register_handle);
2756 * input_unregister_handle - unregister an input handle
2757 * @handle: handle to unregister
2759 * This function removes input handle from device's
2760 * and handler's lists.
2762 * This function is supposed to be called from handler's
2763 * disconnect() method.
2765 void input_unregister_handle(struct input_handle *handle)
2767 struct input_dev *dev = handle->dev;
2769 list_del_rcu(&handle->h_node);
2772 * Take dev->mutex to prevent race with input_release_device().
2774 mutex_lock(&dev->mutex);
2775 list_del_rcu(&handle->d_node);
2776 mutex_unlock(&dev->mutex);
2778 synchronize_rcu();
2780 EXPORT_SYMBOL(input_unregister_handle);
2783 * input_get_new_minor - allocates a new input minor number
2784 * @legacy_base: beginning or the legacy range to be searched
2785 * @legacy_num: size of legacy range
2786 * @allow_dynamic: whether we can also take ID from the dynamic range
2788 * This function allocates a new device minor for from input major namespace.
2789 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2790 * parameters and whether ID can be allocated from dynamic range if there are
2791 * no free IDs in legacy range.
2793 int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2794 bool allow_dynamic)
2797 * This function should be called from input handler's ->connect()
2798 * methods, which are serialized with input_mutex, so no additional
2799 * locking is needed here.
2801 if (legacy_base >= 0) {
2802 int minor = ida_alloc_range(&input_ida, legacy_base,
2803 legacy_base + legacy_num - 1,
2804 GFP_KERNEL);
2805 if (minor >= 0 || !allow_dynamic)
2806 return minor;
2809 return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2810 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2812 EXPORT_SYMBOL(input_get_new_minor);
2815 * input_free_minor - release previously allocated minor
2816 * @minor: minor to be released
2818 * This function releases previously allocated input minor so that it can be
2819 * reused later.
2821 void input_free_minor(unsigned int minor)
2823 ida_free(&input_ida, minor);
2825 EXPORT_SYMBOL(input_free_minor);
2827 static int __init input_init(void)
2829 int err;
2831 err = class_register(&input_class);
2832 if (err) {
2833 pr_err("unable to register input_dev class\n");
2834 return err;
2837 err = input_proc_init();
2838 if (err)
2839 goto fail1;
2841 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2842 INPUT_MAX_CHAR_DEVICES, "input");
2843 if (err) {
2844 pr_err("unable to register char major %d", INPUT_MAJOR);
2845 goto fail2;
2848 return 0;
2850 fail2: input_proc_exit();
2851 fail1: class_unregister(&input_class);
2852 return err;
2855 static void __exit input_exit(void)
2857 input_proc_exit();
2858 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2859 INPUT_MAX_CHAR_DEVICES);
2860 class_unregister(&input_class);
2863 subsys_initcall(input_init);
2864 module_exit(input_exit);