Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / iommu / rockchip-iommu.c
blob4b369419b32ce1b571f836e11f92452943a753c6
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * IOMMU API for Rockchip
5 * Module Authors: Simon Xue <xxm@rock-chips.com>
6 * Daniel Kurtz <djkurtz@chromium.org>
7 */
9 #include <linux/clk.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/iommu.h>
18 #include <linux/iopoll.h>
19 #include <linux/list.h>
20 #include <linux/mm.h>
21 #include <linux/init.h>
22 #include <linux/of.h>
23 #include <linux/of_platform.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
29 #include "iommu-pages.h"
31 /** MMU register offsets */
32 #define RK_MMU_DTE_ADDR 0x00 /* Directory table address */
33 #define RK_MMU_STATUS 0x04
34 #define RK_MMU_COMMAND 0x08
35 #define RK_MMU_PAGE_FAULT_ADDR 0x0C /* IOVA of last page fault */
36 #define RK_MMU_ZAP_ONE_LINE 0x10 /* Shootdown one IOTLB entry */
37 #define RK_MMU_INT_RAWSTAT 0x14 /* IRQ status ignoring mask */
38 #define RK_MMU_INT_CLEAR 0x18 /* Acknowledge and re-arm irq */
39 #define RK_MMU_INT_MASK 0x1C /* IRQ enable */
40 #define RK_MMU_INT_STATUS 0x20 /* IRQ status after masking */
41 #define RK_MMU_AUTO_GATING 0x24
43 #define DTE_ADDR_DUMMY 0xCAFEBABE
45 #define RK_MMU_POLL_PERIOD_US 100
46 #define RK_MMU_FORCE_RESET_TIMEOUT_US 100000
47 #define RK_MMU_POLL_TIMEOUT_US 1000
49 /* RK_MMU_STATUS fields */
50 #define RK_MMU_STATUS_PAGING_ENABLED BIT(0)
51 #define RK_MMU_STATUS_PAGE_FAULT_ACTIVE BIT(1)
52 #define RK_MMU_STATUS_STALL_ACTIVE BIT(2)
53 #define RK_MMU_STATUS_IDLE BIT(3)
54 #define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY BIT(4)
55 #define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE BIT(5)
56 #define RK_MMU_STATUS_STALL_NOT_ACTIVE BIT(31)
58 /* RK_MMU_COMMAND command values */
59 #define RK_MMU_CMD_ENABLE_PAGING 0 /* Enable memory translation */
60 #define RK_MMU_CMD_DISABLE_PAGING 1 /* Disable memory translation */
61 #define RK_MMU_CMD_ENABLE_STALL 2 /* Stall paging to allow other cmds */
62 #define RK_MMU_CMD_DISABLE_STALL 3 /* Stop stall re-enables paging */
63 #define RK_MMU_CMD_ZAP_CACHE 4 /* Shoot down entire IOTLB */
64 #define RK_MMU_CMD_PAGE_FAULT_DONE 5 /* Clear page fault */
65 #define RK_MMU_CMD_FORCE_RESET 6 /* Reset all registers */
67 /* RK_MMU_INT_* register fields */
68 #define RK_MMU_IRQ_PAGE_FAULT 0x01 /* page fault */
69 #define RK_MMU_IRQ_BUS_ERROR 0x02 /* bus read error */
70 #define RK_MMU_IRQ_MASK (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
72 #define NUM_DT_ENTRIES 1024
73 #define NUM_PT_ENTRIES 1024
75 #define SPAGE_ORDER 12
76 #define SPAGE_SIZE (1 << SPAGE_ORDER)
79 * Support mapping any size that fits in one page table:
80 * 4 KiB to 4 MiB
82 #define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
84 struct rk_iommu_domain {
85 struct list_head iommus;
86 u32 *dt; /* page directory table */
87 dma_addr_t dt_dma;
88 spinlock_t iommus_lock; /* lock for iommus list */
89 spinlock_t dt_lock; /* lock for modifying page directory table */
91 struct iommu_domain domain;
94 /* list of clocks required by IOMMU */
95 static const char * const rk_iommu_clocks[] = {
96 "aclk", "iface",
99 struct rk_iommu_ops {
100 phys_addr_t (*pt_address)(u32 dte);
101 u32 (*mk_dtentries)(dma_addr_t pt_dma);
102 u32 (*mk_ptentries)(phys_addr_t page, int prot);
103 u64 dma_bit_mask;
104 gfp_t gfp_flags;
107 struct rk_iommu {
108 struct device *dev;
109 void __iomem **bases;
110 int num_mmu;
111 int num_irq;
112 struct clk_bulk_data *clocks;
113 int num_clocks;
114 bool reset_disabled;
115 struct iommu_device iommu;
116 struct list_head node; /* entry in rk_iommu_domain.iommus */
117 struct iommu_domain *domain; /* domain to which iommu is attached */
120 struct rk_iommudata {
121 struct device_link *link; /* runtime PM link from IOMMU to master */
122 struct rk_iommu *iommu;
125 static struct device *dma_dev;
126 static const struct rk_iommu_ops *rk_ops;
127 static struct iommu_domain rk_identity_domain;
129 static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
130 unsigned int count)
132 size_t size = count * sizeof(u32); /* count of u32 entry */
134 dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
137 static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
139 return container_of(dom, struct rk_iommu_domain, domain);
143 * The Rockchip rk3288 iommu uses a 2-level page table.
144 * The first level is the "Directory Table" (DT).
145 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
146 * to a "Page Table".
147 * The second level is the 1024 Page Tables (PT).
148 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
149 * a 4 KB page of physical memory.
151 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
152 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
153 * address of the start of the DT page.
155 * The structure of the page table is as follows:
157 * DT
158 * MMU_DTE_ADDR -> +-----+
159 * | |
160 * +-----+ PT
161 * | DTE | -> +-----+
162 * +-----+ | | Memory
163 * | | +-----+ Page
164 * | | | PTE | -> +-----+
165 * +-----+ +-----+ | |
166 * | | | |
167 * | | | |
168 * +-----+ | |
169 * | |
170 * | |
171 * +-----+
175 * Each DTE has a PT address and a valid bit:
176 * +---------------------+-----------+-+
177 * | PT address | Reserved |V|
178 * +---------------------+-----------+-+
179 * 31:12 - PT address (PTs always starts on a 4 KB boundary)
180 * 11: 1 - Reserved
181 * 0 - 1 if PT @ PT address is valid
183 #define RK_DTE_PT_ADDRESS_MASK 0xfffff000
184 #define RK_DTE_PT_VALID BIT(0)
186 static inline phys_addr_t rk_dte_pt_address(u32 dte)
188 return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
192 * In v2:
193 * 31:12 - PT address bit 31:0
194 * 11: 8 - PT address bit 35:32
195 * 7: 4 - PT address bit 39:36
196 * 3: 1 - Reserved
197 * 0 - 1 if PT @ PT address is valid
199 #define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
200 #define DTE_HI_MASK1 GENMASK(11, 8)
201 #define DTE_HI_MASK2 GENMASK(7, 4)
202 #define DTE_HI_SHIFT1 24 /* shift bit 8 to bit 32 */
203 #define DTE_HI_SHIFT2 32 /* shift bit 4 to bit 36 */
204 #define PAGE_DESC_HI_MASK1 GENMASK_ULL(35, 32)
205 #define PAGE_DESC_HI_MASK2 GENMASK_ULL(39, 36)
207 static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
209 u64 dte_v2 = dte;
211 dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
212 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
213 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
215 return (phys_addr_t)dte_v2;
218 static inline bool rk_dte_is_pt_valid(u32 dte)
220 return dte & RK_DTE_PT_VALID;
223 static inline u32 rk_mk_dte(dma_addr_t pt_dma)
225 return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
228 static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
230 pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
231 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
232 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
234 return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
238 * Each PTE has a Page address, some flags and a valid bit:
239 * +---------------------+---+-------+-+
240 * | Page address |Rsv| Flags |V|
241 * +---------------------+---+-------+-+
242 * 31:12 - Page address (Pages always start on a 4 KB boundary)
243 * 11: 9 - Reserved
244 * 8: 1 - Flags
245 * 8 - Read allocate - allocate cache space on read misses
246 * 7 - Read cache - enable cache & prefetch of data
247 * 6 - Write buffer - enable delaying writes on their way to memory
248 * 5 - Write allocate - allocate cache space on write misses
249 * 4 - Write cache - different writes can be merged together
250 * 3 - Override cache attributes
251 * if 1, bits 4-8 control cache attributes
252 * if 0, the system bus defaults are used
253 * 2 - Writable
254 * 1 - Readable
255 * 0 - 1 if Page @ Page address is valid
257 #define RK_PTE_PAGE_ADDRESS_MASK 0xfffff000
258 #define RK_PTE_PAGE_FLAGS_MASK 0x000001fe
259 #define RK_PTE_PAGE_WRITABLE BIT(2)
260 #define RK_PTE_PAGE_READABLE BIT(1)
261 #define RK_PTE_PAGE_VALID BIT(0)
263 static inline bool rk_pte_is_page_valid(u32 pte)
265 return pte & RK_PTE_PAGE_VALID;
268 /* TODO: set cache flags per prot IOMMU_CACHE */
269 static u32 rk_mk_pte(phys_addr_t page, int prot)
271 u32 flags = 0;
272 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
273 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
274 page &= RK_PTE_PAGE_ADDRESS_MASK;
275 return page | flags | RK_PTE_PAGE_VALID;
279 * In v2:
280 * 31:12 - Page address bit 31:0
281 * 11: 8 - Page address bit 35:32
282 * 7: 4 - Page address bit 39:36
283 * 3 - Security
284 * 2 - Writable
285 * 1 - Readable
286 * 0 - 1 if Page @ Page address is valid
289 static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
291 u32 flags = 0;
293 flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
294 flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
296 return rk_mk_dte_v2(page) | flags;
299 static u32 rk_mk_pte_invalid(u32 pte)
301 return pte & ~RK_PTE_PAGE_VALID;
305 * rk3288 iova (IOMMU Virtual Address) format
306 * 31 22.21 12.11 0
307 * +-----------+-----------+-------------+
308 * | DTE index | PTE index | Page offset |
309 * +-----------+-----------+-------------+
310 * 31:22 - DTE index - index of DTE in DT
311 * 21:12 - PTE index - index of PTE in PT @ DTE.pt_address
312 * 11: 0 - Page offset - offset into page @ PTE.page_address
314 #define RK_IOVA_DTE_MASK 0xffc00000
315 #define RK_IOVA_DTE_SHIFT 22
316 #define RK_IOVA_PTE_MASK 0x003ff000
317 #define RK_IOVA_PTE_SHIFT 12
318 #define RK_IOVA_PAGE_MASK 0x00000fff
319 #define RK_IOVA_PAGE_SHIFT 0
321 static u32 rk_iova_dte_index(dma_addr_t iova)
323 return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
326 static u32 rk_iova_pte_index(dma_addr_t iova)
328 return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
331 static u32 rk_iova_page_offset(dma_addr_t iova)
333 return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
336 static u32 rk_iommu_read(void __iomem *base, u32 offset)
338 return readl(base + offset);
341 static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
343 writel(value, base + offset);
346 static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
348 int i;
350 for (i = 0; i < iommu->num_mmu; i++)
351 writel(command, iommu->bases[i] + RK_MMU_COMMAND);
354 static void rk_iommu_base_command(void __iomem *base, u32 command)
356 writel(command, base + RK_MMU_COMMAND);
358 static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
359 size_t size)
361 int i;
362 dma_addr_t iova_end = iova_start + size;
364 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
365 * entire iotlb rather than iterate over individual iovas.
367 for (i = 0; i < iommu->num_mmu; i++) {
368 dma_addr_t iova;
370 for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
371 rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
375 static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
377 bool active = true;
378 int i;
380 for (i = 0; i < iommu->num_mmu; i++)
381 active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
382 RK_MMU_STATUS_STALL_ACTIVE);
384 return active;
387 static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
389 bool enable = true;
390 int i;
392 for (i = 0; i < iommu->num_mmu; i++)
393 enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
394 RK_MMU_STATUS_PAGING_ENABLED);
396 return enable;
399 static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
401 bool done = true;
402 int i;
404 for (i = 0; i < iommu->num_mmu; i++)
405 done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
407 return done;
410 static int rk_iommu_enable_stall(struct rk_iommu *iommu)
412 int ret, i;
413 bool val;
415 if (rk_iommu_is_stall_active(iommu))
416 return 0;
418 /* Stall can only be enabled if paging is enabled */
419 if (!rk_iommu_is_paging_enabled(iommu))
420 return 0;
422 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
424 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
425 val, RK_MMU_POLL_PERIOD_US,
426 RK_MMU_POLL_TIMEOUT_US);
427 if (ret)
428 for (i = 0; i < iommu->num_mmu; i++)
429 dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
430 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
432 return ret;
435 static int rk_iommu_disable_stall(struct rk_iommu *iommu)
437 int ret, i;
438 bool val;
440 if (!rk_iommu_is_stall_active(iommu))
441 return 0;
443 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
445 ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
446 !val, RK_MMU_POLL_PERIOD_US,
447 RK_MMU_POLL_TIMEOUT_US);
448 if (ret)
449 for (i = 0; i < iommu->num_mmu; i++)
450 dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
451 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
453 return ret;
456 static int rk_iommu_enable_paging(struct rk_iommu *iommu)
458 int ret, i;
459 bool val;
461 if (rk_iommu_is_paging_enabled(iommu))
462 return 0;
464 rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
466 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
467 val, RK_MMU_POLL_PERIOD_US,
468 RK_MMU_POLL_TIMEOUT_US);
469 if (ret)
470 for (i = 0; i < iommu->num_mmu; i++)
471 dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
472 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
474 return ret;
477 static int rk_iommu_disable_paging(struct rk_iommu *iommu)
479 int ret, i;
480 bool val;
482 if (!rk_iommu_is_paging_enabled(iommu))
483 return 0;
485 rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
487 ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
488 !val, RK_MMU_POLL_PERIOD_US,
489 RK_MMU_POLL_TIMEOUT_US);
490 if (ret)
491 for (i = 0; i < iommu->num_mmu; i++)
492 dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
493 rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
495 return ret;
498 static int rk_iommu_force_reset(struct rk_iommu *iommu)
500 int ret, i;
501 u32 dte_addr;
502 bool val;
504 if (iommu->reset_disabled)
505 return 0;
508 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
509 * and verifying that upper 5 (v1) or 7 (v2) nybbles are read back.
511 for (i = 0; i < iommu->num_mmu; i++) {
512 dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
513 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
515 if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
516 dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
517 return -EFAULT;
521 rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
523 ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
524 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
525 RK_MMU_POLL_TIMEOUT_US);
526 if (ret) {
527 dev_err(iommu->dev, "FORCE_RESET command timed out\n");
528 return ret;
531 return 0;
534 static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
536 void __iomem *base = iommu->bases[index];
537 u32 dte_index, pte_index, page_offset;
538 u32 mmu_dte_addr;
539 phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
540 u32 *dte_addr;
541 u32 dte;
542 phys_addr_t pte_addr_phys = 0;
543 u32 *pte_addr = NULL;
544 u32 pte = 0;
545 phys_addr_t page_addr_phys = 0;
546 u32 page_flags = 0;
548 dte_index = rk_iova_dte_index(iova);
549 pte_index = rk_iova_pte_index(iova);
550 page_offset = rk_iova_page_offset(iova);
552 mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
553 mmu_dte_addr_phys = rk_ops->pt_address(mmu_dte_addr);
555 dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
556 dte_addr = phys_to_virt(dte_addr_phys);
557 dte = *dte_addr;
559 if (!rk_dte_is_pt_valid(dte))
560 goto print_it;
562 pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
563 pte_addr = phys_to_virt(pte_addr_phys);
564 pte = *pte_addr;
566 if (!rk_pte_is_page_valid(pte))
567 goto print_it;
569 page_addr_phys = rk_ops->pt_address(pte) + page_offset;
570 page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
572 print_it:
573 dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
574 &iova, dte_index, pte_index, page_offset);
575 dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
576 &mmu_dte_addr_phys, &dte_addr_phys, dte,
577 rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
578 rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
581 static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
583 struct rk_iommu *iommu = dev_id;
584 u32 status;
585 u32 int_status;
586 dma_addr_t iova;
587 irqreturn_t ret = IRQ_NONE;
588 int i, err;
590 err = pm_runtime_get_if_in_use(iommu->dev);
591 if (!err || WARN_ON_ONCE(err < 0))
592 return ret;
594 if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
595 goto out;
597 for (i = 0; i < iommu->num_mmu; i++) {
598 int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
599 if (int_status == 0)
600 continue;
602 ret = IRQ_HANDLED;
603 iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
605 if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
606 int flags;
608 status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
609 flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
610 IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
612 dev_err(iommu->dev, "Page fault at %pad of type %s\n",
613 &iova,
614 (flags == IOMMU_FAULT_WRITE) ? "write" : "read");
616 log_iova(iommu, i, iova);
619 * Report page fault to any installed handlers.
620 * Ignore the return code, though, since we always zap cache
621 * and clear the page fault anyway.
623 if (iommu->domain != &rk_identity_domain)
624 report_iommu_fault(iommu->domain, iommu->dev, iova,
625 flags);
626 else
627 dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
629 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
630 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
633 if (int_status & RK_MMU_IRQ_BUS_ERROR)
634 dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
636 if (int_status & ~RK_MMU_IRQ_MASK)
637 dev_err(iommu->dev, "unexpected int_status: %#08x\n",
638 int_status);
640 rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
643 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
645 out:
646 pm_runtime_put(iommu->dev);
647 return ret;
650 static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
651 dma_addr_t iova)
653 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
654 unsigned long flags;
655 phys_addr_t pt_phys, phys = 0;
656 u32 dte, pte;
657 u32 *page_table;
659 spin_lock_irqsave(&rk_domain->dt_lock, flags);
661 dte = rk_domain->dt[rk_iova_dte_index(iova)];
662 if (!rk_dte_is_pt_valid(dte))
663 goto out;
665 pt_phys = rk_ops->pt_address(dte);
666 page_table = (u32 *)phys_to_virt(pt_phys);
667 pte = page_table[rk_iova_pte_index(iova)];
668 if (!rk_pte_is_page_valid(pte))
669 goto out;
671 phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
672 out:
673 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
675 return phys;
678 static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
679 dma_addr_t iova, size_t size)
681 struct list_head *pos;
682 unsigned long flags;
684 /* shootdown these iova from all iommus using this domain */
685 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
686 list_for_each(pos, &rk_domain->iommus) {
687 struct rk_iommu *iommu;
688 int ret;
690 iommu = list_entry(pos, struct rk_iommu, node);
692 /* Only zap TLBs of IOMMUs that are powered on. */
693 ret = pm_runtime_get_if_in_use(iommu->dev);
694 if (WARN_ON_ONCE(ret < 0))
695 continue;
696 if (ret) {
697 WARN_ON(clk_bulk_enable(iommu->num_clocks,
698 iommu->clocks));
699 rk_iommu_zap_lines(iommu, iova, size);
700 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
701 pm_runtime_put(iommu->dev);
704 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
707 static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
708 dma_addr_t iova, size_t size)
710 rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
711 if (size > SPAGE_SIZE)
712 rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
713 SPAGE_SIZE);
716 static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
717 dma_addr_t iova)
719 u32 *page_table, *dte_addr;
720 u32 dte_index, dte;
721 phys_addr_t pt_phys;
722 dma_addr_t pt_dma;
724 assert_spin_locked(&rk_domain->dt_lock);
726 dte_index = rk_iova_dte_index(iova);
727 dte_addr = &rk_domain->dt[dte_index];
728 dte = *dte_addr;
729 if (rk_dte_is_pt_valid(dte))
730 goto done;
732 page_table = iommu_alloc_page(GFP_ATOMIC | rk_ops->gfp_flags);
733 if (!page_table)
734 return ERR_PTR(-ENOMEM);
736 pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
737 if (dma_mapping_error(dma_dev, pt_dma)) {
738 dev_err(dma_dev, "DMA mapping error while allocating page table\n");
739 iommu_free_page(page_table);
740 return ERR_PTR(-ENOMEM);
743 dte = rk_ops->mk_dtentries(pt_dma);
744 *dte_addr = dte;
746 rk_table_flush(rk_domain,
747 rk_domain->dt_dma + dte_index * sizeof(u32), 1);
748 done:
749 pt_phys = rk_ops->pt_address(dte);
750 return (u32 *)phys_to_virt(pt_phys);
753 static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
754 u32 *pte_addr, dma_addr_t pte_dma,
755 size_t size)
757 unsigned int pte_count;
758 unsigned int pte_total = size / SPAGE_SIZE;
760 assert_spin_locked(&rk_domain->dt_lock);
762 for (pte_count = 0; pte_count < pte_total; pte_count++) {
763 u32 pte = pte_addr[pte_count];
764 if (!rk_pte_is_page_valid(pte))
765 break;
767 pte_addr[pte_count] = rk_mk_pte_invalid(pte);
770 rk_table_flush(rk_domain, pte_dma, pte_count);
772 return pte_count * SPAGE_SIZE;
775 static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
776 dma_addr_t pte_dma, dma_addr_t iova,
777 phys_addr_t paddr, size_t size, int prot)
779 unsigned int pte_count;
780 unsigned int pte_total = size / SPAGE_SIZE;
781 phys_addr_t page_phys;
783 assert_spin_locked(&rk_domain->dt_lock);
785 for (pte_count = 0; pte_count < pte_total; pte_count++) {
786 u32 pte = pte_addr[pte_count];
788 if (rk_pte_is_page_valid(pte))
789 goto unwind;
791 pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
793 paddr += SPAGE_SIZE;
796 rk_table_flush(rk_domain, pte_dma, pte_total);
799 * Zap the first and last iova to evict from iotlb any previously
800 * mapped cachelines holding stale values for its dte and pte.
801 * We only zap the first and last iova, since only they could have
802 * dte or pte shared with an existing mapping.
804 rk_iommu_zap_iova_first_last(rk_domain, iova, size);
806 return 0;
807 unwind:
808 /* Unmap the range of iovas that we just mapped */
809 rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
810 pte_count * SPAGE_SIZE);
812 iova += pte_count * SPAGE_SIZE;
813 page_phys = rk_ops->pt_address(pte_addr[pte_count]);
814 pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
815 &iova, &page_phys, &paddr, prot);
817 return -EADDRINUSE;
820 static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
821 phys_addr_t paddr, size_t size, size_t count,
822 int prot, gfp_t gfp, size_t *mapped)
824 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
825 unsigned long flags;
826 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
827 u32 *page_table, *pte_addr;
828 u32 dte_index, pte_index;
829 int ret;
831 spin_lock_irqsave(&rk_domain->dt_lock, flags);
834 * pgsize_bitmap specifies iova sizes that fit in one page table
835 * (1024 4-KiB pages = 4 MiB).
836 * So, size will always be 4096 <= size <= 4194304.
837 * Since iommu_map() guarantees that both iova and size will be
838 * aligned, we will always only be mapping from a single dte here.
840 page_table = rk_dte_get_page_table(rk_domain, iova);
841 if (IS_ERR(page_table)) {
842 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
843 return PTR_ERR(page_table);
846 dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
847 pte_index = rk_iova_pte_index(iova);
848 pte_addr = &page_table[pte_index];
850 pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
851 ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
852 paddr, size, prot);
854 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
855 if (!ret)
856 *mapped = size;
858 return ret;
861 static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
862 size_t size, size_t count, struct iommu_iotlb_gather *gather)
864 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
865 unsigned long flags;
866 dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
867 phys_addr_t pt_phys;
868 u32 dte;
869 u32 *pte_addr;
870 size_t unmap_size;
872 spin_lock_irqsave(&rk_domain->dt_lock, flags);
875 * pgsize_bitmap specifies iova sizes that fit in one page table
876 * (1024 4-KiB pages = 4 MiB).
877 * So, size will always be 4096 <= size <= 4194304.
878 * Since iommu_unmap() guarantees that both iova and size will be
879 * aligned, we will always only be unmapping from a single dte here.
881 dte = rk_domain->dt[rk_iova_dte_index(iova)];
882 /* Just return 0 if iova is unmapped */
883 if (!rk_dte_is_pt_valid(dte)) {
884 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
885 return 0;
888 pt_phys = rk_ops->pt_address(dte);
889 pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
890 pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
891 unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
893 spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
895 /* Shootdown iotlb entries for iova range that was just unmapped */
896 rk_iommu_zap_iova(rk_domain, iova, unmap_size);
898 return unmap_size;
901 static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
903 struct rk_iommudata *data = dev_iommu_priv_get(dev);
905 return data ? data->iommu : NULL;
908 /* Must be called with iommu powered on and attached */
909 static void rk_iommu_disable(struct rk_iommu *iommu)
911 int i;
913 /* Ignore error while disabling, just keep going */
914 WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
915 rk_iommu_enable_stall(iommu);
916 rk_iommu_disable_paging(iommu);
917 for (i = 0; i < iommu->num_mmu; i++) {
918 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
919 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
921 rk_iommu_disable_stall(iommu);
922 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
925 /* Must be called with iommu powered on and attached */
926 static int rk_iommu_enable(struct rk_iommu *iommu)
928 struct iommu_domain *domain = iommu->domain;
929 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
930 int ret, i;
932 ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
933 if (ret)
934 return ret;
936 ret = rk_iommu_enable_stall(iommu);
937 if (ret)
938 goto out_disable_clocks;
940 ret = rk_iommu_force_reset(iommu);
941 if (ret)
942 goto out_disable_stall;
944 for (i = 0; i < iommu->num_mmu; i++) {
945 rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
946 rk_ops->mk_dtentries(rk_domain->dt_dma));
947 rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
948 rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
951 ret = rk_iommu_enable_paging(iommu);
953 out_disable_stall:
954 rk_iommu_disable_stall(iommu);
955 out_disable_clocks:
956 clk_bulk_disable(iommu->num_clocks, iommu->clocks);
957 return ret;
960 static int rk_iommu_identity_attach(struct iommu_domain *identity_domain,
961 struct device *dev)
963 struct rk_iommu *iommu;
964 struct rk_iommu_domain *rk_domain;
965 unsigned long flags;
966 int ret;
968 /* Allow 'virtual devices' (eg drm) to detach from domain */
969 iommu = rk_iommu_from_dev(dev);
970 if (!iommu)
971 return -ENODEV;
973 rk_domain = to_rk_domain(iommu->domain);
975 dev_dbg(dev, "Detaching from iommu domain\n");
977 if (iommu->domain == identity_domain)
978 return 0;
980 iommu->domain = identity_domain;
982 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
983 list_del_init(&iommu->node);
984 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
986 ret = pm_runtime_get_if_in_use(iommu->dev);
987 WARN_ON_ONCE(ret < 0);
988 if (ret > 0) {
989 rk_iommu_disable(iommu);
990 pm_runtime_put(iommu->dev);
993 return 0;
996 static struct iommu_domain_ops rk_identity_ops = {
997 .attach_dev = rk_iommu_identity_attach,
1000 static struct iommu_domain rk_identity_domain = {
1001 .type = IOMMU_DOMAIN_IDENTITY,
1002 .ops = &rk_identity_ops,
1005 static int rk_iommu_attach_device(struct iommu_domain *domain,
1006 struct device *dev)
1008 struct rk_iommu *iommu;
1009 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1010 unsigned long flags;
1011 int ret;
1014 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1015 * Such a device does not belong to an iommu group.
1017 iommu = rk_iommu_from_dev(dev);
1018 if (!iommu)
1019 return 0;
1021 dev_dbg(dev, "Attaching to iommu domain\n");
1023 /* iommu already attached */
1024 if (iommu->domain == domain)
1025 return 0;
1027 ret = rk_iommu_identity_attach(&rk_identity_domain, dev);
1028 if (ret)
1029 return ret;
1031 iommu->domain = domain;
1033 spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1034 list_add_tail(&iommu->node, &rk_domain->iommus);
1035 spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1037 ret = pm_runtime_get_if_in_use(iommu->dev);
1038 if (!ret || WARN_ON_ONCE(ret < 0))
1039 return 0;
1041 ret = rk_iommu_enable(iommu);
1042 if (ret)
1043 WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev));
1045 pm_runtime_put(iommu->dev);
1047 return ret;
1050 static struct iommu_domain *rk_iommu_domain_alloc_paging(struct device *dev)
1052 struct rk_iommu_domain *rk_domain;
1054 if (!dma_dev)
1055 return NULL;
1057 rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1058 if (!rk_domain)
1059 return NULL;
1062 * rk32xx iommus use a 2 level pagetable.
1063 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1064 * Allocate one 4 KiB page for each table.
1066 rk_domain->dt = iommu_alloc_page(GFP_KERNEL | rk_ops->gfp_flags);
1067 if (!rk_domain->dt)
1068 goto err_free_domain;
1070 rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1071 SPAGE_SIZE, DMA_TO_DEVICE);
1072 if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1073 dev_err(dma_dev, "DMA map error for DT\n");
1074 goto err_free_dt;
1077 spin_lock_init(&rk_domain->iommus_lock);
1078 spin_lock_init(&rk_domain->dt_lock);
1079 INIT_LIST_HEAD(&rk_domain->iommus);
1081 rk_domain->domain.geometry.aperture_start = 0;
1082 rk_domain->domain.geometry.aperture_end = DMA_BIT_MASK(32);
1083 rk_domain->domain.geometry.force_aperture = true;
1085 return &rk_domain->domain;
1087 err_free_dt:
1088 iommu_free_page(rk_domain->dt);
1089 err_free_domain:
1090 kfree(rk_domain);
1092 return NULL;
1095 static void rk_iommu_domain_free(struct iommu_domain *domain)
1097 struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1098 int i;
1100 WARN_ON(!list_empty(&rk_domain->iommus));
1102 for (i = 0; i < NUM_DT_ENTRIES; i++) {
1103 u32 dte = rk_domain->dt[i];
1104 if (rk_dte_is_pt_valid(dte)) {
1105 phys_addr_t pt_phys = rk_ops->pt_address(dte);
1106 u32 *page_table = phys_to_virt(pt_phys);
1107 dma_unmap_single(dma_dev, pt_phys,
1108 SPAGE_SIZE, DMA_TO_DEVICE);
1109 iommu_free_page(page_table);
1113 dma_unmap_single(dma_dev, rk_domain->dt_dma,
1114 SPAGE_SIZE, DMA_TO_DEVICE);
1115 iommu_free_page(rk_domain->dt);
1117 kfree(rk_domain);
1120 static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1122 struct rk_iommudata *data;
1123 struct rk_iommu *iommu;
1125 data = dev_iommu_priv_get(dev);
1126 if (!data)
1127 return ERR_PTR(-ENODEV);
1129 iommu = rk_iommu_from_dev(dev);
1131 data->link = device_link_add(dev, iommu->dev,
1132 DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1134 return &iommu->iommu;
1137 static void rk_iommu_release_device(struct device *dev)
1139 struct rk_iommudata *data = dev_iommu_priv_get(dev);
1141 device_link_del(data->link);
1144 static int rk_iommu_of_xlate(struct device *dev,
1145 const struct of_phandle_args *args)
1147 struct platform_device *iommu_dev;
1148 struct rk_iommudata *data;
1150 data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1151 if (!data)
1152 return -ENOMEM;
1154 iommu_dev = of_find_device_by_node(args->np);
1156 data->iommu = platform_get_drvdata(iommu_dev);
1157 data->iommu->domain = &rk_identity_domain;
1158 dev_iommu_priv_set(dev, data);
1160 platform_device_put(iommu_dev);
1162 return 0;
1165 static const struct iommu_ops rk_iommu_ops = {
1166 .identity_domain = &rk_identity_domain,
1167 .domain_alloc_paging = rk_iommu_domain_alloc_paging,
1168 .probe_device = rk_iommu_probe_device,
1169 .release_device = rk_iommu_release_device,
1170 .device_group = generic_single_device_group,
1171 .pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1172 .of_xlate = rk_iommu_of_xlate,
1173 .default_domain_ops = &(const struct iommu_domain_ops) {
1174 .attach_dev = rk_iommu_attach_device,
1175 .map_pages = rk_iommu_map,
1176 .unmap_pages = rk_iommu_unmap,
1177 .iova_to_phys = rk_iommu_iova_to_phys,
1178 .free = rk_iommu_domain_free,
1182 static int rk_iommu_probe(struct platform_device *pdev)
1184 struct device *dev = &pdev->dev;
1185 struct rk_iommu *iommu;
1186 struct resource *res;
1187 const struct rk_iommu_ops *ops;
1188 int num_res = pdev->num_resources;
1189 int err, i;
1191 iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1192 if (!iommu)
1193 return -ENOMEM;
1195 platform_set_drvdata(pdev, iommu);
1196 iommu->dev = dev;
1197 iommu->num_mmu = 0;
1199 ops = of_device_get_match_data(dev);
1200 if (!rk_ops)
1201 rk_ops = ops;
1204 * That should not happen unless different versions of the
1205 * hardware block are embedded the same SoC
1207 if (WARN_ON(rk_ops != ops))
1208 return -EINVAL;
1210 iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1211 GFP_KERNEL);
1212 if (!iommu->bases)
1213 return -ENOMEM;
1215 for (i = 0; i < num_res; i++) {
1216 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1217 if (!res)
1218 continue;
1219 iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1220 if (IS_ERR(iommu->bases[i]))
1221 continue;
1222 iommu->num_mmu++;
1224 if (iommu->num_mmu == 0)
1225 return PTR_ERR(iommu->bases[0]);
1227 iommu->num_irq = platform_irq_count(pdev);
1228 if (iommu->num_irq < 0)
1229 return iommu->num_irq;
1231 iommu->reset_disabled = device_property_read_bool(dev,
1232 "rockchip,disable-mmu-reset");
1234 iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1235 iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1236 sizeof(*iommu->clocks), GFP_KERNEL);
1237 if (!iommu->clocks)
1238 return -ENOMEM;
1240 for (i = 0; i < iommu->num_clocks; ++i)
1241 iommu->clocks[i].id = rk_iommu_clocks[i];
1244 * iommu clocks should be present for all new devices and devicetrees
1245 * but there are older devicetrees without clocks out in the wild.
1246 * So clocks as optional for the time being.
1248 err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1249 if (err == -ENOENT)
1250 iommu->num_clocks = 0;
1251 else if (err)
1252 return err;
1254 err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1255 if (err)
1256 return err;
1258 err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1259 if (err)
1260 goto err_unprepare_clocks;
1262 err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1263 if (err)
1264 goto err_remove_sysfs;
1267 * Use the first registered IOMMU device for domain to use with DMA
1268 * API, since a domain might not physically correspond to a single
1269 * IOMMU device..
1271 if (!dma_dev)
1272 dma_dev = &pdev->dev;
1274 pm_runtime_enable(dev);
1276 for (i = 0; i < iommu->num_irq; i++) {
1277 int irq = platform_get_irq(pdev, i);
1279 if (irq < 0) {
1280 err = irq;
1281 goto err_pm_disable;
1284 err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1285 IRQF_SHARED, dev_name(dev), iommu);
1286 if (err)
1287 goto err_pm_disable;
1290 dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1292 return 0;
1293 err_pm_disable:
1294 pm_runtime_disable(dev);
1295 err_remove_sysfs:
1296 iommu_device_sysfs_remove(&iommu->iommu);
1297 err_unprepare_clocks:
1298 clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1299 return err;
1302 static void rk_iommu_shutdown(struct platform_device *pdev)
1304 struct rk_iommu *iommu = platform_get_drvdata(pdev);
1305 int i;
1307 for (i = 0; i < iommu->num_irq; i++) {
1308 int irq = platform_get_irq(pdev, i);
1310 devm_free_irq(iommu->dev, irq, iommu);
1313 pm_runtime_force_suspend(&pdev->dev);
1316 static int __maybe_unused rk_iommu_suspend(struct device *dev)
1318 struct rk_iommu *iommu = dev_get_drvdata(dev);
1320 if (iommu->domain == &rk_identity_domain)
1321 return 0;
1323 rk_iommu_disable(iommu);
1324 return 0;
1327 static int __maybe_unused rk_iommu_resume(struct device *dev)
1329 struct rk_iommu *iommu = dev_get_drvdata(dev);
1331 if (iommu->domain == &rk_identity_domain)
1332 return 0;
1334 return rk_iommu_enable(iommu);
1337 static const struct dev_pm_ops rk_iommu_pm_ops = {
1338 SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1339 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1340 pm_runtime_force_resume)
1343 static struct rk_iommu_ops iommu_data_ops_v1 = {
1344 .pt_address = &rk_dte_pt_address,
1345 .mk_dtentries = &rk_mk_dte,
1346 .mk_ptentries = &rk_mk_pte,
1347 .dma_bit_mask = DMA_BIT_MASK(32),
1348 .gfp_flags = GFP_DMA32,
1351 static struct rk_iommu_ops iommu_data_ops_v2 = {
1352 .pt_address = &rk_dte_pt_address_v2,
1353 .mk_dtentries = &rk_mk_dte_v2,
1354 .mk_ptentries = &rk_mk_pte_v2,
1355 .dma_bit_mask = DMA_BIT_MASK(40),
1356 .gfp_flags = 0,
1359 static const struct of_device_id rk_iommu_dt_ids[] = {
1360 { .compatible = "rockchip,iommu",
1361 .data = &iommu_data_ops_v1,
1363 { .compatible = "rockchip,rk3568-iommu",
1364 .data = &iommu_data_ops_v2,
1366 { /* sentinel */ }
1369 static struct platform_driver rk_iommu_driver = {
1370 .probe = rk_iommu_probe,
1371 .shutdown = rk_iommu_shutdown,
1372 .driver = {
1373 .name = "rk_iommu",
1374 .of_match_table = rk_iommu_dt_ids,
1375 .pm = &rk_iommu_pm_ops,
1376 .suppress_bind_attrs = true,
1379 builtin_platform_driver(rk_iommu_driver);