1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
6 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/leds.h>
13 #include <linux/module.h>
14 #include <linux/panic_notifier.h>
15 #include <linux/reboot.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/timer.h>
21 static int panic_detected
;
23 struct activity_data
{
24 struct timer_list timer
;
25 struct led_classdev
*led_cdev
;
33 static void led_activity_function(struct timer_list
*t
)
35 struct activity_data
*activity_data
= from_timer(activity_data
, t
,
37 struct led_classdev
*led_cdev
= activity_data
->led_cdev
;
48 if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE
, &led_cdev
->work_flags
))
49 led_cdev
->blink_brightness
= led_cdev
->new_blink_brightness
;
51 if (unlikely(panic_detected
)) {
52 /* full brightness in case of panic */
53 led_set_brightness_nosleep(led_cdev
, led_cdev
->blink_brightness
);
60 for_each_possible_cpu(i
) {
61 struct kernel_cpustat kcpustat
;
63 kcpustat_cpu_fetch(&kcpustat
, i
);
65 curr_used
+= kcpustat
.cpustat
[CPUTIME_USER
]
66 + kcpustat
.cpustat
[CPUTIME_NICE
]
67 + kcpustat
.cpustat
[CPUTIME_SYSTEM
]
68 + kcpustat
.cpustat
[CPUTIME_SOFTIRQ
]
69 + kcpustat
.cpustat
[CPUTIME_IRQ
];
73 /* We come here every 100ms in the worst case, so that's 100M ns of
74 * cumulated time. By dividing by 2^16, we get the time resolution
75 * down to 16us, ensuring we won't overflow 32-bit computations below
76 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
78 curr_boot
= ktime_get_boottime_ns() * cpus
;
79 diff_boot
= (curr_boot
- activity_data
->last_boot
) >> 16;
80 diff_used
= (curr_used
- activity_data
->last_used
) >> 16;
81 activity_data
->last_boot
= curr_boot
;
82 activity_data
->last_used
= curr_used
;
84 if (diff_boot
<= 0 || diff_used
< 0)
86 else if (diff_used
>= diff_boot
)
89 usage
= 100 * diff_used
/ diff_boot
;
92 * Now we know the total boot_time multiplied by the number of CPUs, and
93 * the total idle+wait time for all CPUs. We'll compare how they evolved
94 * since last call. The % of overall CPU usage is :
96 * 1 - delta_idle / delta_boot
98 * What we want is that when the CPU usage is zero, the LED must blink
99 * slowly with very faint flashes that are detectable but not disturbing
100 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
101 * blinking frequency to increase up to the point where the load is
102 * enough to saturate one core in multi-core systems or 50% in single
103 * core systems. At this point it should reach 10 Hz with a 10/90 duty
104 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
105 * remains stable (10 Hz) and only the duty cycle increases to report
106 * the activity, up to the point where we have 90ms ON, 10ms OFF when
107 * all cores are saturated. It's important that the LED never stays in
108 * a steady state so that it's easy to distinguish an idle or saturated
109 * machine from a hung one.
112 * - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
113 * (10ms ON, 90ms OFF)
116 * OFF_ms = 90 + (1 - usage/target) * 900
118 * ON_ms = 10 + (usage-target)/(100%-target) * 80
119 * OFF_ms = 90 - (usage-target)/(100%-target) * 80
121 * In order to keep a good responsiveness, we cap the sleep time to
122 * 100 ms and keep track of the sleep time left. This allows us to
123 * quickly change it if needed.
126 activity_data
->time_left
-= 100;
127 if (activity_data
->time_left
<= 0) {
128 activity_data
->time_left
= 0;
129 activity_data
->state
= !activity_data
->state
;
130 led_set_brightness_nosleep(led_cdev
,
131 (activity_data
->state
^ activity_data
->invert
) ?
132 led_cdev
->blink_brightness
: LED_OFF
);
135 target
= (cpus
> 1) ? (100 / cpus
) : 50;
138 delay
= activity_data
->state
?
140 990 - 900 * usage
/ target
; /* OFF */
142 delay
= activity_data
->state
?
143 10 + 80 * (usage
- target
) / (100 - target
) : /* ON */
144 90 - 80 * (usage
- target
) / (100 - target
); /* OFF */
147 if (!activity_data
->time_left
|| delay
<= activity_data
->time_left
)
148 activity_data
->time_left
= delay
;
150 delay
= min_t(int, activity_data
->time_left
, 100);
151 mod_timer(&activity_data
->timer
, jiffies
+ msecs_to_jiffies(delay
));
154 static ssize_t
led_invert_show(struct device
*dev
,
155 struct device_attribute
*attr
, char *buf
)
157 struct activity_data
*activity_data
= led_trigger_get_drvdata(dev
);
159 return sprintf(buf
, "%u\n", activity_data
->invert
);
162 static ssize_t
led_invert_store(struct device
*dev
,
163 struct device_attribute
*attr
,
164 const char *buf
, size_t size
)
166 struct activity_data
*activity_data
= led_trigger_get_drvdata(dev
);
170 ret
= kstrtoul(buf
, 0, &state
);
174 activity_data
->invert
= !!state
;
179 static DEVICE_ATTR(invert
, 0644, led_invert_show
, led_invert_store
);
181 static struct attribute
*activity_led_attrs
[] = {
182 &dev_attr_invert
.attr
,
185 ATTRIBUTE_GROUPS(activity_led
);
187 static int activity_activate(struct led_classdev
*led_cdev
)
189 struct activity_data
*activity_data
;
191 activity_data
= kzalloc(sizeof(*activity_data
), GFP_KERNEL
);
195 led_set_trigger_data(led_cdev
, activity_data
);
197 activity_data
->led_cdev
= led_cdev
;
198 timer_setup(&activity_data
->timer
, led_activity_function
, 0);
199 if (!led_cdev
->blink_brightness
)
200 led_cdev
->blink_brightness
= led_cdev
->max_brightness
;
201 led_activity_function(&activity_data
->timer
);
202 set_bit(LED_BLINK_SW
, &led_cdev
->work_flags
);
207 static void activity_deactivate(struct led_classdev
*led_cdev
)
209 struct activity_data
*activity_data
= led_get_trigger_data(led_cdev
);
211 timer_shutdown_sync(&activity_data
->timer
);
212 kfree(activity_data
);
213 clear_bit(LED_BLINK_SW
, &led_cdev
->work_flags
);
216 static struct led_trigger activity_led_trigger
= {
218 .activate
= activity_activate
,
219 .deactivate
= activity_deactivate
,
220 .groups
= activity_led_groups
,
223 static int activity_reboot_notifier(struct notifier_block
*nb
,
224 unsigned long code
, void *unused
)
226 led_trigger_unregister(&activity_led_trigger
);
230 static int activity_panic_notifier(struct notifier_block
*nb
,
231 unsigned long code
, void *unused
)
237 static struct notifier_block activity_reboot_nb
= {
238 .notifier_call
= activity_reboot_notifier
,
241 static struct notifier_block activity_panic_nb
= {
242 .notifier_call
= activity_panic_notifier
,
245 static int __init
activity_init(void)
247 int rc
= led_trigger_register(&activity_led_trigger
);
250 atomic_notifier_chain_register(&panic_notifier_list
,
252 register_reboot_notifier(&activity_reboot_nb
);
257 static void __exit
activity_exit(void)
259 unregister_reboot_notifier(&activity_reboot_nb
);
260 atomic_notifier_chain_unregister(&panic_notifier_list
,
262 led_trigger_unregister(&activity_led_trigger
);
265 module_init(activity_init
);
266 module_exit(activity_exit
);
268 MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
269 MODULE_DESCRIPTION("Activity LED trigger");
270 MODULE_LICENSE("GPL v2");