1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
43 * register_bcache: Return errors out to userspace correctly
45 * Writeback: don't undirty key until after a cache flush
47 * Create an iterator for key pointers
49 * On btree write error, mark bucket such that it won't be freed from the cache
52 * Check for bad keys in replay
54 * Refcount journal entries in journal_replay
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
68 * Add a tracepoint or somesuch to watch for writeback starvation
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
79 * Superblock needs to be fleshed out for multiple cache devices
81 * Add a sysfs tunable for the number of writeback IOs in flight
83 * Add a sysfs tunable for the number of open data buckets
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
88 * Test module load/unload
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
102 static struct workqueue_struct
*btree_io_wq
;
104 #define insert_lock(s, b) ((b)->level <= (s)->lock)
107 static inline struct bset
*write_block(struct btree
*b
)
109 return ((void *) btree_bset_first(b
)) + b
->written
* block_bytes(b
->c
->cache
);
112 static void bch_btree_init_next(struct btree
*b
)
114 /* If not a leaf node, always sort */
115 if (b
->level
&& b
->keys
.nsets
)
116 bch_btree_sort(&b
->keys
, &b
->c
->sort
);
118 bch_btree_sort_lazy(&b
->keys
, &b
->c
->sort
);
120 if (b
->written
< btree_blocks(b
))
121 bch_bset_init_next(&b
->keys
, write_block(b
),
122 bset_magic(&b
->c
->cache
->sb
));
126 /* Btree key manipulation */
128 void bkey_put(struct cache_set
*c
, struct bkey
*k
)
132 for (i
= 0; i
< KEY_PTRS(k
); i
++)
133 if (ptr_available(c
, k
, i
))
134 atomic_dec_bug(&PTR_BUCKET(c
, k
, i
)->pin
);
139 static uint64_t btree_csum_set(struct btree
*b
, struct bset
*i
)
141 uint64_t crc
= b
->key
.ptr
[0];
142 void *data
= (void *) i
+ 8, *end
= bset_bkey_last(i
);
144 crc
= crc64_be(crc
, data
, end
- data
);
145 return crc
^ 0xffffffffffffffffULL
;
148 void bch_btree_node_read_done(struct btree
*b
)
150 const char *err
= "bad btree header";
151 struct bset
*i
= btree_bset_first(b
);
152 struct btree_iter iter
;
155 * c->fill_iter can allocate an iterator with more memory space
156 * than static MAX_BSETS.
157 * See the comment arount cache_set->fill_iter.
159 iter
.heap
.data
= mempool_alloc(&b
->c
->fill_iter
, GFP_NOIO
);
160 iter
.heap
.size
= b
->c
->cache
->sb
.bucket_size
/ b
->c
->cache
->sb
.block_size
;
163 #ifdef CONFIG_BCACHE_DEBUG
171 b
->written
< btree_blocks(b
) && i
->seq
== b
->keys
.set
[0].data
->seq
;
172 i
= write_block(b
)) {
173 err
= "unsupported bset version";
174 if (i
->version
> BCACHE_BSET_VERSION
)
177 err
= "bad btree header";
178 if (b
->written
+ set_blocks(i
, block_bytes(b
->c
->cache
)) >
183 if (i
->magic
!= bset_magic(&b
->c
->cache
->sb
))
186 err
= "bad checksum";
187 switch (i
->version
) {
189 if (i
->csum
!= csum_set(i
))
192 case BCACHE_BSET_VERSION
:
193 if (i
->csum
!= btree_csum_set(b
, i
))
199 if (i
!= b
->keys
.set
[0].data
&& !i
->keys
)
202 bch_btree_iter_push(&iter
, i
->start
, bset_bkey_last(i
));
204 b
->written
+= set_blocks(i
, block_bytes(b
->c
->cache
));
207 err
= "corrupted btree";
208 for (i
= write_block(b
);
209 bset_sector_offset(&b
->keys
, i
) < KEY_SIZE(&b
->key
);
210 i
= ((void *) i
) + block_bytes(b
->c
->cache
))
211 if (i
->seq
== b
->keys
.set
[0].data
->seq
)
214 bch_btree_sort_and_fix_extents(&b
->keys
, &iter
, &b
->c
->sort
);
216 i
= b
->keys
.set
[0].data
;
217 err
= "short btree key";
218 if (b
->keys
.set
[0].size
&&
219 bkey_cmp(&b
->key
, &b
->keys
.set
[0].end
) < 0)
222 if (b
->written
< btree_blocks(b
))
223 bch_bset_init_next(&b
->keys
, write_block(b
),
224 bset_magic(&b
->c
->cache
->sb
));
226 mempool_free(iter
.heap
.data
, &b
->c
->fill_iter
);
229 set_btree_node_io_error(b
);
230 bch_cache_set_error(b
->c
, "%s at bucket %zu, block %u, %u keys",
231 err
, PTR_BUCKET_NR(b
->c
, &b
->key
, 0),
232 bset_block_offset(b
, i
), i
->keys
);
236 static void btree_node_read_endio(struct bio
*bio
)
238 struct closure
*cl
= bio
->bi_private
;
243 static void bch_btree_node_read(struct btree
*b
)
245 uint64_t start_time
= local_clock();
249 trace_bcache_btree_read(b
);
251 closure_init_stack(&cl
);
253 bio
= bch_bbio_alloc(b
->c
);
254 bio
->bi_iter
.bi_size
= KEY_SIZE(&b
->key
) << 9;
255 bio
->bi_end_io
= btree_node_read_endio
;
256 bio
->bi_private
= &cl
;
257 bio
->bi_opf
= REQ_OP_READ
| REQ_META
;
259 bch_bio_map(bio
, b
->keys
.set
[0].data
);
261 bch_submit_bbio(bio
, b
->c
, &b
->key
, 0);
265 set_btree_node_io_error(b
);
267 bch_bbio_free(bio
, b
->c
);
269 if (btree_node_io_error(b
))
272 bch_btree_node_read_done(b
);
273 bch_time_stats_update(&b
->c
->btree_read_time
, start_time
);
277 bch_cache_set_error(b
->c
, "io error reading bucket %zu",
278 PTR_BUCKET_NR(b
->c
, &b
->key
, 0));
281 static void btree_complete_write(struct btree
*b
, struct btree_write
*w
)
283 if (w
->prio_blocked
&&
284 !atomic_sub_return(w
->prio_blocked
, &b
->c
->prio_blocked
))
285 wake_up_allocators(b
->c
);
288 atomic_dec_bug(w
->journal
);
289 __closure_wake_up(&b
->c
->journal
.wait
);
296 static CLOSURE_CALLBACK(btree_node_write_unlock
)
298 closure_type(b
, struct btree
, io
);
303 static CLOSURE_CALLBACK(__btree_node_write_done
)
305 closure_type(b
, struct btree
, io
);
306 struct btree_write
*w
= btree_prev_write(b
);
308 bch_bbio_free(b
->bio
, b
->c
);
310 btree_complete_write(b
, w
);
312 if (btree_node_dirty(b
))
313 queue_delayed_work(btree_io_wq
, &b
->work
, 30 * HZ
);
315 closure_return_with_destructor(cl
, btree_node_write_unlock
);
318 static CLOSURE_CALLBACK(btree_node_write_done
)
320 closure_type(b
, struct btree
, io
);
322 bio_free_pages(b
->bio
);
323 __btree_node_write_done(&cl
->work
);
326 static void btree_node_write_endio(struct bio
*bio
)
328 struct closure
*cl
= bio
->bi_private
;
329 struct btree
*b
= container_of(cl
, struct btree
, io
);
332 set_btree_node_io_error(b
);
334 bch_bbio_count_io_errors(b
->c
, bio
, bio
->bi_status
, "writing btree");
338 static void do_btree_node_write(struct btree
*b
)
340 struct closure
*cl
= &b
->io
;
341 struct bset
*i
= btree_bset_last(b
);
344 i
->version
= BCACHE_BSET_VERSION
;
345 i
->csum
= btree_csum_set(b
, i
);
348 b
->bio
= bch_bbio_alloc(b
->c
);
350 b
->bio
->bi_end_io
= btree_node_write_endio
;
351 b
->bio
->bi_private
= cl
;
352 b
->bio
->bi_iter
.bi_size
= roundup(set_bytes(i
), block_bytes(b
->c
->cache
));
353 b
->bio
->bi_opf
= REQ_OP_WRITE
| REQ_META
| REQ_FUA
;
354 bch_bio_map(b
->bio
, i
);
357 * If we're appending to a leaf node, we don't technically need FUA -
358 * this write just needs to be persisted before the next journal write,
359 * which will be marked FLUSH|FUA.
361 * Similarly if we're writing a new btree root - the pointer is going to
362 * be in the next journal entry.
364 * But if we're writing a new btree node (that isn't a root) or
365 * appending to a non leaf btree node, we need either FUA or a flush
366 * when we write the parent with the new pointer. FUA is cheaper than a
367 * flush, and writes appending to leaf nodes aren't blocking anything so
368 * just make all btree node writes FUA to keep things sane.
371 bkey_copy(&k
.key
, &b
->key
);
372 SET_PTR_OFFSET(&k
.key
, 0, PTR_OFFSET(&k
.key
, 0) +
373 bset_sector_offset(&b
->keys
, i
));
375 if (!bch_bio_alloc_pages(b
->bio
, __GFP_NOWARN
|GFP_NOWAIT
)) {
377 void *addr
= (void *) ((unsigned long) i
& ~(PAGE_SIZE
- 1));
378 struct bvec_iter_all iter_all
;
380 bio_for_each_segment_all(bv
, b
->bio
, iter_all
) {
381 memcpy(page_address(bv
->bv_page
), addr
, PAGE_SIZE
);
385 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
387 continue_at(cl
, btree_node_write_done
, NULL
);
390 * No problem for multipage bvec since the bio is
394 bch_bio_map(b
->bio
, i
);
396 bch_submit_bbio(b
->bio
, b
->c
, &k
.key
, 0);
399 continue_at_nobarrier(cl
, __btree_node_write_done
, NULL
);
403 void __bch_btree_node_write(struct btree
*b
, struct closure
*parent
)
405 struct bset
*i
= btree_bset_last(b
);
407 lockdep_assert_held(&b
->write_lock
);
409 trace_bcache_btree_write(b
);
411 BUG_ON(current
->bio_list
);
412 BUG_ON(b
->written
>= btree_blocks(b
));
413 BUG_ON(b
->written
&& !i
->keys
);
414 BUG_ON(btree_bset_first(b
)->seq
!= i
->seq
);
415 bch_check_keys(&b
->keys
, "writing");
417 cancel_delayed_work(&b
->work
);
419 /* If caller isn't waiting for write, parent refcount is cache set */
421 closure_init(&b
->io
, parent
?: &b
->c
->cl
);
423 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
424 change_bit(BTREE_NODE_write_idx
, &b
->flags
);
426 do_btree_node_write(b
);
428 atomic_long_add(set_blocks(i
, block_bytes(b
->c
->cache
)) * b
->c
->cache
->sb
.block_size
,
429 &b
->c
->cache
->btree_sectors_written
);
431 b
->written
+= set_blocks(i
, block_bytes(b
->c
->cache
));
434 void bch_btree_node_write(struct btree
*b
, struct closure
*parent
)
436 unsigned int nsets
= b
->keys
.nsets
;
438 lockdep_assert_held(&b
->lock
);
440 __bch_btree_node_write(b
, parent
);
443 * do verify if there was more than one set initially (i.e. we did a
444 * sort) and we sorted down to a single set:
446 if (nsets
&& !b
->keys
.nsets
)
449 bch_btree_init_next(b
);
452 static void bch_btree_node_write_sync(struct btree
*b
)
456 closure_init_stack(&cl
);
458 mutex_lock(&b
->write_lock
);
459 bch_btree_node_write(b
, &cl
);
460 mutex_unlock(&b
->write_lock
);
465 static void btree_node_write_work(struct work_struct
*w
)
467 struct btree
*b
= container_of(to_delayed_work(w
), struct btree
, work
);
469 mutex_lock(&b
->write_lock
);
470 if (btree_node_dirty(b
))
471 __bch_btree_node_write(b
, NULL
);
472 mutex_unlock(&b
->write_lock
);
475 static void bch_btree_leaf_dirty(struct btree
*b
, atomic_t
*journal_ref
)
477 struct bset
*i
= btree_bset_last(b
);
478 struct btree_write
*w
= btree_current_write(b
);
480 lockdep_assert_held(&b
->write_lock
);
485 if (!btree_node_dirty(b
))
486 queue_delayed_work(btree_io_wq
, &b
->work
, 30 * HZ
);
488 set_btree_node_dirty(b
);
491 * w->journal is always the oldest journal pin of all bkeys
492 * in the leaf node, to make sure the oldest jset seq won't
493 * be increased before this btree node is flushed.
497 journal_pin_cmp(b
->c
, w
->journal
, journal_ref
)) {
498 atomic_dec_bug(w
->journal
);
503 w
->journal
= journal_ref
;
504 atomic_inc(w
->journal
);
508 /* Force write if set is too big */
509 if (set_bytes(i
) > PAGE_SIZE
- 48 &&
511 bch_btree_node_write(b
, NULL
);
515 * Btree in memory cache - allocation/freeing
516 * mca -> memory cache
519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c) \
522 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
524 static void mca_data_free(struct btree
*b
)
526 BUG_ON(b
->io_mutex
.count
!= 1);
528 bch_btree_keys_free(&b
->keys
);
530 b
->c
->btree_cache_used
--;
531 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
534 static void mca_bucket_free(struct btree
*b
)
536 BUG_ON(btree_node_dirty(b
));
539 hlist_del_init_rcu(&b
->hash
);
540 list_move(&b
->list
, &b
->c
->btree_cache_freeable
);
543 static unsigned int btree_order(struct bkey
*k
)
545 return ilog2(KEY_SIZE(k
) / PAGE_SECTORS
?: 1);
548 static void mca_data_alloc(struct btree
*b
, struct bkey
*k
, gfp_t gfp
)
550 if (!bch_btree_keys_alloc(&b
->keys
,
552 ilog2(b
->c
->btree_pages
),
555 b
->c
->btree_cache_used
++;
556 list_move(&b
->list
, &b
->c
->btree_cache
);
558 list_move(&b
->list
, &b
->c
->btree_cache_freed
);
562 #define cmp_int(l, r) ((l > r) - (l < r))
564 #ifdef CONFIG_PROVE_LOCKING
565 static int btree_lock_cmp_fn(const struct lockdep_map
*_a
,
566 const struct lockdep_map
*_b
)
568 const struct btree
*a
= container_of(_a
, struct btree
, lock
.dep_map
);
569 const struct btree
*b
= container_of(_b
, struct btree
, lock
.dep_map
);
571 return -cmp_int(a
->level
, b
->level
) ?: bkey_cmp(&a
->key
, &b
->key
);
574 static void btree_lock_print_fn(const struct lockdep_map
*map
)
576 const struct btree
*b
= container_of(map
, struct btree
, lock
.dep_map
);
578 printk(KERN_CONT
" l=%u %llu:%llu", b
->level
,
579 KEY_INODE(&b
->key
), KEY_OFFSET(&b
->key
));
583 static struct btree
*mca_bucket_alloc(struct cache_set
*c
,
584 struct bkey
*k
, gfp_t gfp
)
587 * kzalloc() is necessary here for initialization,
588 * see code comments in bch_btree_keys_init().
590 struct btree
*b
= kzalloc(sizeof(struct btree
), gfp
);
595 init_rwsem(&b
->lock
);
596 lock_set_cmp_fn(&b
->lock
, btree_lock_cmp_fn
, btree_lock_print_fn
);
597 mutex_init(&b
->write_lock
);
598 lockdep_set_novalidate_class(&b
->write_lock
);
599 INIT_LIST_HEAD(&b
->list
);
600 INIT_DELAYED_WORK(&b
->work
, btree_node_write_work
);
602 sema_init(&b
->io_mutex
, 1);
604 mca_data_alloc(b
, k
, gfp
);
608 static int mca_reap(struct btree
*b
, unsigned int min_order
, bool flush
)
612 closure_init_stack(&cl
);
613 lockdep_assert_held(&b
->c
->bucket_lock
);
615 if (!down_write_trylock(&b
->lock
))
618 BUG_ON(btree_node_dirty(b
) && !b
->keys
.set
[0].data
);
620 if (b
->keys
.page_order
< min_order
)
624 if (btree_node_dirty(b
))
627 if (down_trylock(&b
->io_mutex
))
634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
635 * __bch_btree_node_write(). To avoid an extra flush, acquire
636 * b->write_lock before checking BTREE_NODE_dirty bit.
638 mutex_lock(&b
->write_lock
);
640 * If this btree node is selected in btree_flush_write() by journal
641 * code, delay and retry until the node is flushed by journal code
642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
644 if (btree_node_journal_flush(b
)) {
645 pr_debug("bnode %p is flushing by journal, retry\n", b
);
646 mutex_unlock(&b
->write_lock
);
651 if (btree_node_dirty(b
))
652 __bch_btree_node_write(b
, &cl
);
653 mutex_unlock(&b
->write_lock
);
657 /* wait for any in flight btree write */
667 static unsigned long bch_mca_scan(struct shrinker
*shrink
,
668 struct shrink_control
*sc
)
670 struct cache_set
*c
= shrink
->private_data
;
672 unsigned long i
, nr
= sc
->nr_to_scan
;
673 unsigned long freed
= 0;
674 unsigned int btree_cache_used
;
676 if (c
->shrinker_disabled
)
679 if (c
->btree_cache_alloc_lock
)
682 /* Return -1 if we can't do anything right now */
683 if (sc
->gfp_mask
& __GFP_IO
)
684 mutex_lock(&c
->bucket_lock
);
685 else if (!mutex_trylock(&c
->bucket_lock
))
689 * It's _really_ critical that we don't free too many btree nodes - we
690 * have to always leave ourselves a reserve. The reserve is how we
691 * guarantee that allocating memory for a new btree node can always
692 * succeed, so that inserting keys into the btree can always succeed and
693 * IO can always make forward progress:
695 nr
/= c
->btree_pages
;
698 nr
= min_t(unsigned long, nr
, mca_can_free(c
));
701 btree_cache_used
= c
->btree_cache_used
;
702 list_for_each_entry_safe_reverse(b
, t
, &c
->btree_cache_freeable
, list
) {
706 if (!mca_reap(b
, 0, false)) {
715 list_for_each_entry_safe_reverse(b
, t
, &c
->btree_cache
, list
) {
716 if (nr
<= 0 || i
>= btree_cache_used
)
719 if (!mca_reap(b
, 0, false)) {
730 mutex_unlock(&c
->bucket_lock
);
731 return freed
* c
->btree_pages
;
734 static unsigned long bch_mca_count(struct shrinker
*shrink
,
735 struct shrink_control
*sc
)
737 struct cache_set
*c
= shrink
->private_data
;
739 if (c
->shrinker_disabled
)
742 if (c
->btree_cache_alloc_lock
)
745 return mca_can_free(c
) * c
->btree_pages
;
748 void bch_btree_cache_free(struct cache_set
*c
)
753 closure_init_stack(&cl
);
756 shrinker_free(c
->shrink
);
758 mutex_lock(&c
->bucket_lock
);
760 #ifdef CONFIG_BCACHE_DEBUG
762 list_move(&c
->verify_data
->list
, &c
->btree_cache
);
764 free_pages((unsigned long) c
->verify_ondisk
, ilog2(meta_bucket_pages(&c
->cache
->sb
)));
767 list_splice(&c
->btree_cache_freeable
,
770 while (!list_empty(&c
->btree_cache
)) {
771 b
= list_first_entry(&c
->btree_cache
, struct btree
, list
);
774 * This function is called by cache_set_free(), no I/O
775 * request on cache now, it is unnecessary to acquire
776 * b->write_lock before clearing BTREE_NODE_dirty anymore.
778 if (btree_node_dirty(b
)) {
779 btree_complete_write(b
, btree_current_write(b
));
780 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
785 while (!list_empty(&c
->btree_cache_freed
)) {
786 b
= list_first_entry(&c
->btree_cache_freed
,
789 cancel_delayed_work_sync(&b
->work
);
793 mutex_unlock(&c
->bucket_lock
);
796 int bch_btree_cache_alloc(struct cache_set
*c
)
800 for (i
= 0; i
< mca_reserve(c
); i
++)
801 if (!mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
))
804 list_splice_init(&c
->btree_cache
,
805 &c
->btree_cache_freeable
);
807 #ifdef CONFIG_BCACHE_DEBUG
808 mutex_init(&c
->verify_lock
);
810 c
->verify_ondisk
= (void *)
811 __get_free_pages(GFP_KERNEL
|__GFP_COMP
,
812 ilog2(meta_bucket_pages(&c
->cache
->sb
)));
813 if (!c
->verify_ondisk
) {
815 * Don't worry about the mca_rereserve buckets
816 * allocated in previous for-loop, they will be
817 * handled properly in bch_cache_set_unregister().
822 c
->verify_data
= mca_bucket_alloc(c
, &ZERO_KEY
, GFP_KERNEL
);
824 if (c
->verify_data
&&
825 c
->verify_data
->keys
.set
->data
)
826 list_del_init(&c
->verify_data
->list
);
828 c
->verify_data
= NULL
;
831 c
->shrink
= shrinker_alloc(0, "md-bcache:%pU", c
->set_uuid
);
833 pr_warn("bcache: %s: could not allocate shrinker\n", __func__
);
837 c
->shrink
->count_objects
= bch_mca_count
;
838 c
->shrink
->scan_objects
= bch_mca_scan
;
839 c
->shrink
->seeks
= 4;
840 c
->shrink
->batch
= c
->btree_pages
* 2;
841 c
->shrink
->private_data
= c
;
843 shrinker_register(c
->shrink
);
848 /* Btree in memory cache - hash table */
850 static struct hlist_head
*mca_hash(struct cache_set
*c
, struct bkey
*k
)
852 return &c
->bucket_hash
[hash_32(PTR_HASH(c
, k
), BUCKET_HASH_BITS
)];
855 static struct btree
*mca_find(struct cache_set
*c
, struct bkey
*k
)
860 hlist_for_each_entry_rcu(b
, mca_hash(c
, k
), hash
)
861 if (PTR_HASH(c
, &b
->key
) == PTR_HASH(c
, k
))
869 static int mca_cannibalize_lock(struct cache_set
*c
, struct btree_op
*op
)
871 spin_lock(&c
->btree_cannibalize_lock
);
872 if (likely(c
->btree_cache_alloc_lock
== NULL
)) {
873 c
->btree_cache_alloc_lock
= current
;
874 } else if (c
->btree_cache_alloc_lock
!= current
) {
876 prepare_to_wait(&c
->btree_cache_wait
, &op
->wait
,
877 TASK_UNINTERRUPTIBLE
);
878 spin_unlock(&c
->btree_cannibalize_lock
);
881 spin_unlock(&c
->btree_cannibalize_lock
);
886 static struct btree
*mca_cannibalize(struct cache_set
*c
, struct btree_op
*op
,
891 trace_bcache_btree_cache_cannibalize(c
);
893 if (mca_cannibalize_lock(c
, op
))
894 return ERR_PTR(-EINTR
);
896 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
897 if (!mca_reap(b
, btree_order(k
), false))
900 list_for_each_entry_reverse(b
, &c
->btree_cache
, list
)
901 if (!mca_reap(b
, btree_order(k
), true))
904 WARN(1, "btree cache cannibalize failed\n");
905 return ERR_PTR(-ENOMEM
);
909 * We can only have one thread cannibalizing other cached btree nodes at a time,
910 * or we'll deadlock. We use an open coded mutex to ensure that, which a
911 * cannibalize_bucket() will take. This means every time we unlock the root of
912 * the btree, we need to release this lock if we have it held.
914 void bch_cannibalize_unlock(struct cache_set
*c
)
916 spin_lock(&c
->btree_cannibalize_lock
);
917 if (c
->btree_cache_alloc_lock
== current
) {
918 c
->btree_cache_alloc_lock
= NULL
;
919 wake_up(&c
->btree_cache_wait
);
921 spin_unlock(&c
->btree_cannibalize_lock
);
924 static struct btree
*mca_alloc(struct cache_set
*c
, struct btree_op
*op
,
925 struct bkey
*k
, int level
)
929 BUG_ON(current
->bio_list
);
931 lockdep_assert_held(&c
->bucket_lock
);
936 /* btree_free() doesn't free memory; it sticks the node on the end of
937 * the list. Check if there's any freed nodes there:
939 list_for_each_entry(b
, &c
->btree_cache_freeable
, list
)
940 if (!mca_reap(b
, btree_order(k
), false))
943 /* We never free struct btree itself, just the memory that holds the on
944 * disk node. Check the freed list before allocating a new one:
946 list_for_each_entry(b
, &c
->btree_cache_freed
, list
)
947 if (!mca_reap(b
, 0, false)) {
948 mca_data_alloc(b
, k
, __GFP_NOWARN
|GFP_NOIO
);
949 if (!b
->keys
.set
[0].data
)
955 b
= mca_bucket_alloc(c
, k
, __GFP_NOWARN
|GFP_NOIO
);
959 BUG_ON(!down_write_trylock(&b
->lock
));
960 if (!b
->keys
.set
->data
)
963 BUG_ON(b
->io_mutex
.count
!= 1);
965 bkey_copy(&b
->key
, k
);
966 list_move(&b
->list
, &c
->btree_cache
);
967 hlist_del_init_rcu(&b
->hash
);
968 hlist_add_head_rcu(&b
->hash
, mca_hash(c
, k
));
970 lock_set_subclass(&b
->lock
.dep_map
, level
+ 1, _THIS_IP_
);
971 b
->parent
= (void *) ~0UL;
977 bch_btree_keys_init(&b
->keys
, &bch_extent_keys_ops
,
978 &b
->c
->expensive_debug_checks
);
980 bch_btree_keys_init(&b
->keys
, &bch_btree_keys_ops
,
981 &b
->c
->expensive_debug_checks
);
988 b
= mca_cannibalize(c
, op
, k
);
996 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
997 * in from disk if necessary.
999 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
1001 * The btree node will have either a read or a write lock held, depending on
1002 * level and op->lock.
1004 * Note: Only error code or btree pointer will be returned, it is unncessary
1005 * for callers to check NULL pointer.
1007 struct btree
*bch_btree_node_get(struct cache_set
*c
, struct btree_op
*op
,
1008 struct bkey
*k
, int level
, bool write
,
1009 struct btree
*parent
)
1019 if (current
->bio_list
)
1020 return ERR_PTR(-EAGAIN
);
1022 mutex_lock(&c
->bucket_lock
);
1023 b
= mca_alloc(c
, op
, k
, level
);
1024 mutex_unlock(&c
->bucket_lock
);
1031 bch_btree_node_read(b
);
1034 downgrade_write(&b
->lock
);
1036 rw_lock(write
, b
, level
);
1037 if (PTR_HASH(c
, &b
->key
) != PTR_HASH(c
, k
)) {
1038 rw_unlock(write
, b
);
1041 BUG_ON(b
->level
!= level
);
1044 if (btree_node_io_error(b
)) {
1045 rw_unlock(write
, b
);
1046 return ERR_PTR(-EIO
);
1049 BUG_ON(!b
->written
);
1053 for (; i
<= b
->keys
.nsets
&& b
->keys
.set
[i
].size
; i
++) {
1054 prefetch(b
->keys
.set
[i
].tree
);
1055 prefetch(b
->keys
.set
[i
].data
);
1058 for (; i
<= b
->keys
.nsets
; i
++)
1059 prefetch(b
->keys
.set
[i
].data
);
1064 static void btree_node_prefetch(struct btree
*parent
, struct bkey
*k
)
1068 mutex_lock(&parent
->c
->bucket_lock
);
1069 b
= mca_alloc(parent
->c
, NULL
, k
, parent
->level
- 1);
1070 mutex_unlock(&parent
->c
->bucket_lock
);
1072 if (!IS_ERR_OR_NULL(b
)) {
1074 bch_btree_node_read(b
);
1081 static void btree_node_free(struct btree
*b
)
1083 trace_bcache_btree_node_free(b
);
1085 BUG_ON(b
== b
->c
->root
);
1088 mutex_lock(&b
->write_lock
);
1090 * If the btree node is selected and flushing in btree_flush_write(),
1091 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1092 * then it is safe to free the btree node here. Otherwise this btree
1093 * node will be in race condition.
1095 if (btree_node_journal_flush(b
)) {
1096 mutex_unlock(&b
->write_lock
);
1097 pr_debug("bnode %p journal_flush set, retry\n", b
);
1102 if (btree_node_dirty(b
)) {
1103 btree_complete_write(b
, btree_current_write(b
));
1104 clear_bit(BTREE_NODE_dirty
, &b
->flags
);
1107 mutex_unlock(&b
->write_lock
);
1109 cancel_delayed_work(&b
->work
);
1111 mutex_lock(&b
->c
->bucket_lock
);
1112 bch_bucket_free(b
->c
, &b
->key
);
1114 mutex_unlock(&b
->c
->bucket_lock
);
1118 * Only error code or btree pointer will be returned, it is unncessary for
1119 * callers to check NULL pointer.
1121 struct btree
*__bch_btree_node_alloc(struct cache_set
*c
, struct btree_op
*op
,
1122 int level
, bool wait
,
1123 struct btree
*parent
)
1128 mutex_lock(&c
->bucket_lock
);
1130 /* return ERR_PTR(-EAGAIN) when it fails */
1131 b
= ERR_PTR(-EAGAIN
);
1132 if (__bch_bucket_alloc_set(c
, RESERVE_BTREE
, &k
.key
, wait
))
1135 bkey_put(c
, &k
.key
);
1136 SET_KEY_SIZE(&k
.key
, c
->btree_pages
* PAGE_SECTORS
);
1138 b
= mca_alloc(c
, op
, &k
.key
, level
);
1144 "Tried to allocate bucket that was in btree cache");
1149 bch_bset_init_next(&b
->keys
, b
->keys
.set
->data
, bset_magic(&b
->c
->cache
->sb
));
1151 mutex_unlock(&c
->bucket_lock
);
1153 trace_bcache_btree_node_alloc(b
);
1156 bch_bucket_free(c
, &k
.key
);
1158 mutex_unlock(&c
->bucket_lock
);
1160 trace_bcache_btree_node_alloc_fail(c
);
1164 static struct btree
*bch_btree_node_alloc(struct cache_set
*c
,
1165 struct btree_op
*op
, int level
,
1166 struct btree
*parent
)
1168 return __bch_btree_node_alloc(c
, op
, level
, op
!= NULL
, parent
);
1171 static struct btree
*btree_node_alloc_replacement(struct btree
*b
,
1172 struct btree_op
*op
)
1174 struct btree
*n
= bch_btree_node_alloc(b
->c
, op
, b
->level
, b
->parent
);
1177 mutex_lock(&n
->write_lock
);
1178 bch_btree_sort_into(&b
->keys
, &n
->keys
, &b
->c
->sort
);
1179 bkey_copy_key(&n
->key
, &b
->key
);
1180 mutex_unlock(&n
->write_lock
);
1186 static void make_btree_freeing_key(struct btree
*b
, struct bkey
*k
)
1190 mutex_lock(&b
->c
->bucket_lock
);
1192 atomic_inc(&b
->c
->prio_blocked
);
1194 bkey_copy(k
, &b
->key
);
1195 bkey_copy_key(k
, &ZERO_KEY
);
1197 for (i
= 0; i
< KEY_PTRS(k
); i
++)
1199 bch_inc_gen(b
->c
->cache
,
1200 PTR_BUCKET(b
->c
, &b
->key
, i
)));
1202 mutex_unlock(&b
->c
->bucket_lock
);
1205 static int btree_check_reserve(struct btree
*b
, struct btree_op
*op
)
1207 struct cache_set
*c
= b
->c
;
1208 struct cache
*ca
= c
->cache
;
1209 unsigned int reserve
= (c
->root
->level
- b
->level
) * 2 + 1;
1211 mutex_lock(&c
->bucket_lock
);
1213 if (fifo_used(&ca
->free
[RESERVE_BTREE
]) < reserve
) {
1215 prepare_to_wait(&c
->btree_cache_wait
, &op
->wait
,
1216 TASK_UNINTERRUPTIBLE
);
1217 mutex_unlock(&c
->bucket_lock
);
1221 mutex_unlock(&c
->bucket_lock
);
1223 return mca_cannibalize_lock(b
->c
, op
);
1226 /* Garbage collection */
1228 static uint8_t __bch_btree_mark_key(struct cache_set
*c
, int level
,
1236 * ptr_invalid() can't return true for the keys that mark btree nodes as
1237 * freed, but since ptr_bad() returns true we'll never actually use them
1238 * for anything and thus we don't want mark their pointers here
1240 if (!bkey_cmp(k
, &ZERO_KEY
))
1243 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
1244 if (!ptr_available(c
, k
, i
))
1247 g
= PTR_BUCKET(c
, k
, i
);
1249 if (gen_after(g
->last_gc
, PTR_GEN(k
, i
)))
1250 g
->last_gc
= PTR_GEN(k
, i
);
1252 if (ptr_stale(c
, k
, i
)) {
1253 stale
= max(stale
, ptr_stale(c
, k
, i
));
1257 cache_bug_on(GC_MARK(g
) &&
1258 (GC_MARK(g
) == GC_MARK_METADATA
) != (level
!= 0),
1259 c
, "inconsistent ptrs: mark = %llu, level = %i",
1263 SET_GC_MARK(g
, GC_MARK_METADATA
);
1264 else if (KEY_DIRTY(k
))
1265 SET_GC_MARK(g
, GC_MARK_DIRTY
);
1266 else if (!GC_MARK(g
))
1267 SET_GC_MARK(g
, GC_MARK_RECLAIMABLE
);
1269 /* guard against overflow */
1270 SET_GC_SECTORS_USED(g
, min_t(unsigned int,
1271 GC_SECTORS_USED(g
) + KEY_SIZE(k
),
1272 MAX_GC_SECTORS_USED
));
1274 BUG_ON(!GC_SECTORS_USED(g
));
1280 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1282 void bch_initial_mark_key(struct cache_set
*c
, int level
, struct bkey
*k
)
1286 for (i
= 0; i
< KEY_PTRS(k
); i
++)
1287 if (ptr_available(c
, k
, i
) &&
1288 !ptr_stale(c
, k
, i
)) {
1289 struct bucket
*b
= PTR_BUCKET(c
, k
, i
);
1291 b
->gen
= PTR_GEN(k
, i
);
1293 if (level
&& bkey_cmp(k
, &ZERO_KEY
))
1294 b
->prio
= BTREE_PRIO
;
1295 else if (!level
&& b
->prio
== BTREE_PRIO
)
1296 b
->prio
= INITIAL_PRIO
;
1299 __bch_btree_mark_key(c
, level
, k
);
1302 void bch_update_bucket_in_use(struct cache_set
*c
, struct gc_stat
*stats
)
1304 stats
->in_use
= (c
->nbuckets
- c
->avail_nbuckets
) * 100 / c
->nbuckets
;
1307 static bool btree_gc_mark_node(struct btree
*b
, struct gc_stat
*gc
)
1310 unsigned int keys
= 0, good_keys
= 0;
1312 struct btree_iter iter
;
1313 struct bset_tree
*t
;
1315 min_heap_init(&iter
.heap
, NULL
, MAX_BSETS
);
1319 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
) {
1320 stale
= max(stale
, btree_mark_key(b
, k
));
1323 if (bch_ptr_bad(&b
->keys
, k
))
1326 gc
->key_bytes
+= bkey_u64s(k
);
1330 gc
->data
+= KEY_SIZE(k
);
1333 for (t
= b
->keys
.set
; t
<= &b
->keys
.set
[b
->keys
.nsets
]; t
++)
1334 btree_bug_on(t
->size
&&
1335 bset_written(&b
->keys
, t
) &&
1336 bkey_cmp(&b
->key
, &t
->end
) < 0,
1337 b
, "found short btree key in gc");
1339 if (b
->c
->gc_always_rewrite
)
1345 if ((keys
- good_keys
) * 2 > keys
)
1351 #define GC_MERGE_NODES 4U
1353 struct gc_merge_info
{
1358 static int bch_btree_insert_node(struct btree
*b
, struct btree_op
*op
,
1359 struct keylist
*insert_keys
,
1360 atomic_t
*journal_ref
,
1361 struct bkey
*replace_key
);
1363 static int btree_gc_coalesce(struct btree
*b
, struct btree_op
*op
,
1364 struct gc_stat
*gc
, struct gc_merge_info
*r
)
1366 unsigned int i
, nodes
= 0, keys
= 0, blocks
;
1367 struct btree
*new_nodes
[GC_MERGE_NODES
];
1368 struct keylist keylist
;
1372 bch_keylist_init(&keylist
);
1374 if (btree_check_reserve(b
, NULL
))
1377 memset(new_nodes
, 0, sizeof(new_nodes
));
1378 closure_init_stack(&cl
);
1380 while (nodes
< GC_MERGE_NODES
&& !IS_ERR_OR_NULL(r
[nodes
].b
))
1381 keys
+= r
[nodes
++].keys
;
1383 blocks
= btree_default_blocks(b
->c
) * 2 / 3;
1386 __set_blocks(b
->keys
.set
[0].data
, keys
,
1387 block_bytes(b
->c
->cache
)) > blocks
* (nodes
- 1))
1390 for (i
= 0; i
< nodes
; i
++) {
1391 new_nodes
[i
] = btree_node_alloc_replacement(r
[i
].b
, NULL
);
1392 if (IS_ERR(new_nodes
[i
]))
1393 goto out_nocoalesce
;
1397 * We have to check the reserve here, after we've allocated our new
1398 * nodes, to make sure the insert below will succeed - we also check
1399 * before as an optimization to potentially avoid a bunch of expensive
1402 if (btree_check_reserve(b
, NULL
))
1403 goto out_nocoalesce
;
1405 for (i
= 0; i
< nodes
; i
++)
1406 mutex_lock(&new_nodes
[i
]->write_lock
);
1408 for (i
= nodes
- 1; i
> 0; --i
) {
1409 struct bset
*n1
= btree_bset_first(new_nodes
[i
]);
1410 struct bset
*n2
= btree_bset_first(new_nodes
[i
- 1]);
1411 struct bkey
*k
, *last
= NULL
;
1417 k
< bset_bkey_last(n2
);
1419 if (__set_blocks(n1
, n1
->keys
+ keys
+
1421 block_bytes(b
->c
->cache
)) > blocks
)
1425 keys
+= bkey_u64s(k
);
1429 * Last node we're not getting rid of - we're getting
1430 * rid of the node at r[0]. Have to try and fit all of
1431 * the remaining keys into this node; we can't ensure
1432 * they will always fit due to rounding and variable
1433 * length keys (shouldn't be possible in practice,
1436 if (__set_blocks(n1
, n1
->keys
+ n2
->keys
,
1437 block_bytes(b
->c
->cache
)) >
1438 btree_blocks(new_nodes
[i
]))
1439 goto out_unlock_nocoalesce
;
1442 /* Take the key of the node we're getting rid of */
1446 BUG_ON(__set_blocks(n1
, n1
->keys
+ keys
, block_bytes(b
->c
->cache
)) >
1447 btree_blocks(new_nodes
[i
]));
1450 bkey_copy_key(&new_nodes
[i
]->key
, last
);
1452 memcpy(bset_bkey_last(n1
),
1454 (void *) bset_bkey_idx(n2
, keys
) - (void *) n2
->start
);
1457 r
[i
].keys
= n1
->keys
;
1460 bset_bkey_idx(n2
, keys
),
1461 (void *) bset_bkey_last(n2
) -
1462 (void *) bset_bkey_idx(n2
, keys
));
1466 if (__bch_keylist_realloc(&keylist
,
1467 bkey_u64s(&new_nodes
[i
]->key
)))
1468 goto out_unlock_nocoalesce
;
1470 bch_btree_node_write(new_nodes
[i
], &cl
);
1471 bch_keylist_add(&keylist
, &new_nodes
[i
]->key
);
1474 for (i
= 0; i
< nodes
; i
++)
1475 mutex_unlock(&new_nodes
[i
]->write_lock
);
1479 /* We emptied out this node */
1480 BUG_ON(btree_bset_first(new_nodes
[0])->keys
);
1481 btree_node_free(new_nodes
[0]);
1482 rw_unlock(true, new_nodes
[0]);
1483 new_nodes
[0] = NULL
;
1485 for (i
= 0; i
< nodes
; i
++) {
1486 if (__bch_keylist_realloc(&keylist
, bkey_u64s(&r
[i
].b
->key
)))
1487 goto out_nocoalesce
;
1489 make_btree_freeing_key(r
[i
].b
, keylist
.top
);
1490 bch_keylist_push(&keylist
);
1493 bch_btree_insert_node(b
, op
, &keylist
, NULL
, NULL
);
1494 BUG_ON(!bch_keylist_empty(&keylist
));
1496 for (i
= 0; i
< nodes
; i
++) {
1497 btree_node_free(r
[i
].b
);
1498 rw_unlock(true, r
[i
].b
);
1500 r
[i
].b
= new_nodes
[i
];
1503 memmove(r
, r
+ 1, sizeof(r
[0]) * (nodes
- 1));
1504 r
[nodes
- 1].b
= ERR_PTR(-EINTR
);
1506 trace_bcache_btree_gc_coalesce(nodes
);
1509 bch_keylist_free(&keylist
);
1511 /* Invalidated our iterator */
1514 out_unlock_nocoalesce
:
1515 for (i
= 0; i
< nodes
; i
++)
1516 mutex_unlock(&new_nodes
[i
]->write_lock
);
1521 while ((k
= bch_keylist_pop(&keylist
)))
1522 if (!bkey_cmp(k
, &ZERO_KEY
))
1523 atomic_dec(&b
->c
->prio_blocked
);
1524 bch_keylist_free(&keylist
);
1526 for (i
= 0; i
< nodes
; i
++)
1527 if (!IS_ERR_OR_NULL(new_nodes
[i
])) {
1528 btree_node_free(new_nodes
[i
]);
1529 rw_unlock(true, new_nodes
[i
]);
1534 static int btree_gc_rewrite_node(struct btree
*b
, struct btree_op
*op
,
1535 struct btree
*replace
)
1537 struct keylist keys
;
1540 if (btree_check_reserve(b
, NULL
))
1543 n
= btree_node_alloc_replacement(replace
, NULL
);
1547 /* recheck reserve after allocating replacement node */
1548 if (btree_check_reserve(b
, NULL
)) {
1554 bch_btree_node_write_sync(n
);
1556 bch_keylist_init(&keys
);
1557 bch_keylist_add(&keys
, &n
->key
);
1559 make_btree_freeing_key(replace
, keys
.top
);
1560 bch_keylist_push(&keys
);
1562 bch_btree_insert_node(b
, op
, &keys
, NULL
, NULL
);
1563 BUG_ON(!bch_keylist_empty(&keys
));
1565 btree_node_free(replace
);
1568 /* Invalidated our iterator */
1572 static unsigned int btree_gc_count_keys(struct btree
*b
)
1575 struct btree_iter iter
;
1576 unsigned int ret
= 0;
1578 min_heap_init(&iter
.heap
, NULL
, MAX_BSETS
);
1580 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_bad
)
1581 ret
+= bkey_u64s(k
);
1586 static size_t btree_gc_min_nodes(struct cache_set
*c
)
1591 * Since incremental GC would stop 100ms when front
1592 * side I/O comes, so when there are many btree nodes,
1593 * if GC only processes constant (100) nodes each time,
1594 * GC would last a long time, and the front side I/Os
1595 * would run out of the buckets (since no new bucket
1596 * can be allocated during GC), and be blocked again.
1597 * So GC should not process constant nodes, but varied
1598 * nodes according to the number of btree nodes, which
1599 * realized by dividing GC into constant(100) times,
1600 * so when there are many btree nodes, GC can process
1601 * more nodes each time, otherwise, GC will process less
1602 * nodes each time (but no less than MIN_GC_NODES)
1604 min_nodes
= c
->gc_stats
.nodes
/ MAX_GC_TIMES
;
1605 if (min_nodes
< MIN_GC_NODES
)
1606 min_nodes
= MIN_GC_NODES
;
1612 static int btree_gc_recurse(struct btree
*b
, struct btree_op
*op
,
1613 struct closure
*writes
, struct gc_stat
*gc
)
1616 bool should_rewrite
;
1618 struct btree_iter iter
;
1619 struct gc_merge_info r
[GC_MERGE_NODES
];
1620 struct gc_merge_info
*i
, *last
= r
+ ARRAY_SIZE(r
) - 1;
1622 min_heap_init(&iter
.heap
, NULL
, MAX_BSETS
);
1623 bch_btree_iter_init(&b
->keys
, &iter
, &b
->c
->gc_done
);
1625 for (i
= r
; i
< r
+ ARRAY_SIZE(r
); i
++)
1626 i
->b
= ERR_PTR(-EINTR
);
1629 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
);
1631 r
->b
= bch_btree_node_get(b
->c
, op
, k
, b
->level
- 1,
1634 ret
= PTR_ERR(r
->b
);
1638 r
->keys
= btree_gc_count_keys(r
->b
);
1640 ret
= btree_gc_coalesce(b
, op
, gc
, r
);
1648 if (!IS_ERR(last
->b
)) {
1649 should_rewrite
= btree_gc_mark_node(last
->b
, gc
);
1650 if (should_rewrite
) {
1651 ret
= btree_gc_rewrite_node(b
, op
, last
->b
);
1656 if (last
->b
->level
) {
1657 ret
= btree_gc_recurse(last
->b
, op
, writes
, gc
);
1662 bkey_copy_key(&b
->c
->gc_done
, &last
->b
->key
);
1665 * Must flush leaf nodes before gc ends, since replace
1666 * operations aren't journalled
1668 mutex_lock(&last
->b
->write_lock
);
1669 if (btree_node_dirty(last
->b
))
1670 bch_btree_node_write(last
->b
, writes
);
1671 mutex_unlock(&last
->b
->write_lock
);
1672 rw_unlock(true, last
->b
);
1675 memmove(r
+ 1, r
, sizeof(r
[0]) * (GC_MERGE_NODES
- 1));
1678 if (atomic_read(&b
->c
->search_inflight
) &&
1679 gc
->nodes
>= gc
->nodes_pre
+ btree_gc_min_nodes(b
->c
)) {
1680 gc
->nodes_pre
= gc
->nodes
;
1685 if (need_resched()) {
1691 for (i
= r
; i
< r
+ ARRAY_SIZE(r
); i
++)
1692 if (!IS_ERR_OR_NULL(i
->b
)) {
1693 mutex_lock(&i
->b
->write_lock
);
1694 if (btree_node_dirty(i
->b
))
1695 bch_btree_node_write(i
->b
, writes
);
1696 mutex_unlock(&i
->b
->write_lock
);
1697 rw_unlock(true, i
->b
);
1703 static int bch_btree_gc_root(struct btree
*b
, struct btree_op
*op
,
1704 struct closure
*writes
, struct gc_stat
*gc
)
1706 struct btree
*n
= NULL
;
1708 bool should_rewrite
;
1710 should_rewrite
= btree_gc_mark_node(b
, gc
);
1711 if (should_rewrite
) {
1712 n
= btree_node_alloc_replacement(b
, NULL
);
1715 bch_btree_node_write_sync(n
);
1717 bch_btree_set_root(n
);
1725 __bch_btree_mark_key(b
->c
, b
->level
+ 1, &b
->key
);
1728 ret
= btree_gc_recurse(b
, op
, writes
, gc
);
1733 bkey_copy_key(&b
->c
->gc_done
, &b
->key
);
1738 static void btree_gc_start(struct cache_set
*c
)
1743 if (!c
->gc_mark_valid
)
1746 mutex_lock(&c
->bucket_lock
);
1748 c
->gc_done
= ZERO_KEY
;
1751 for_each_bucket(b
, ca
) {
1752 b
->last_gc
= b
->gen
;
1753 if (bch_can_invalidate_bucket(ca
, b
))
1754 b
->reclaimable_in_gc
= 1;
1755 if (!atomic_read(&b
->pin
)) {
1757 SET_GC_SECTORS_USED(b
, 0);
1761 c
->gc_mark_valid
= 0;
1762 mutex_unlock(&c
->bucket_lock
);
1765 static void bch_btree_gc_finish(struct cache_set
*c
)
1772 mutex_lock(&c
->bucket_lock
);
1775 c
->gc_mark_valid
= 1;
1778 for (i
= 0; i
< KEY_PTRS(&c
->uuid_bucket
); i
++)
1779 SET_GC_MARK(PTR_BUCKET(c
, &c
->uuid_bucket
, i
),
1782 /* don't reclaim buckets to which writeback keys point */
1784 for (i
= 0; i
< c
->devices_max_used
; i
++) {
1785 struct bcache_device
*d
= c
->devices
[i
];
1786 struct cached_dev
*dc
;
1787 struct keybuf_key
*w
, *n
;
1789 if (!d
|| UUID_FLASH_ONLY(&c
->uuids
[i
]))
1791 dc
= container_of(d
, struct cached_dev
, disk
);
1793 spin_lock(&dc
->writeback_keys
.lock
);
1794 rbtree_postorder_for_each_entry_safe(w
, n
,
1795 &dc
->writeback_keys
.keys
, node
)
1796 for (j
= 0; j
< KEY_PTRS(&w
->key
); j
++)
1797 SET_GC_MARK(PTR_BUCKET(c
, &w
->key
, j
),
1799 spin_unlock(&dc
->writeback_keys
.lock
);
1803 c
->avail_nbuckets
= 0;
1806 ca
->invalidate_needs_gc
= 0;
1808 for (k
= ca
->sb
.d
; k
< ca
->sb
.d
+ ca
->sb
.keys
; k
++)
1809 SET_GC_MARK(ca
->buckets
+ *k
, GC_MARK_METADATA
);
1811 for (k
= ca
->prio_buckets
;
1812 k
< ca
->prio_buckets
+ prio_buckets(ca
) * 2; k
++)
1813 SET_GC_MARK(ca
->buckets
+ *k
, GC_MARK_METADATA
);
1815 for_each_bucket(b
, ca
) {
1816 c
->need_gc
= max(c
->need_gc
, bucket_gc_gen(b
));
1818 if (b
->reclaimable_in_gc
)
1819 b
->reclaimable_in_gc
= 0;
1821 if (atomic_read(&b
->pin
))
1824 BUG_ON(!GC_MARK(b
) && GC_SECTORS_USED(b
));
1826 if (!GC_MARK(b
) || GC_MARK(b
) == GC_MARK_RECLAIMABLE
)
1827 c
->avail_nbuckets
++;
1830 mutex_unlock(&c
->bucket_lock
);
1833 static void bch_btree_gc(struct cache_set
*c
)
1836 struct gc_stat stats
;
1837 struct closure writes
;
1839 uint64_t start_time
= local_clock();
1841 trace_bcache_gc_start(c
);
1843 memset(&stats
, 0, sizeof(struct gc_stat
));
1844 closure_init_stack(&writes
);
1845 bch_btree_op_init(&op
, SHRT_MAX
);
1849 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1851 ret
= bcache_btree_root(gc_root
, c
, &op
, &writes
, &stats
);
1852 closure_sync(&writes
);
1856 schedule_timeout_interruptible(msecs_to_jiffies
1859 pr_warn("gc failed!\n");
1860 } while (ret
&& !test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
));
1862 bch_btree_gc_finish(c
);
1863 wake_up_allocators(c
);
1865 bch_time_stats_update(&c
->btree_gc_time
, start_time
);
1867 stats
.key_bytes
*= sizeof(uint64_t);
1869 bch_update_bucket_in_use(c
, &stats
);
1870 memcpy(&c
->gc_stats
, &stats
, sizeof(struct gc_stat
));
1872 trace_bcache_gc_end(c
);
1877 static bool gc_should_run(struct cache_set
*c
)
1879 struct cache
*ca
= c
->cache
;
1881 if (ca
->invalidate_needs_gc
)
1884 if (atomic_read(&c
->sectors_to_gc
) < 0)
1890 static int bch_gc_thread(void *arg
)
1892 struct cache_set
*c
= arg
;
1895 wait_event_interruptible(c
->gc_wait
,
1896 kthread_should_stop() ||
1897 test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
) ||
1900 if (kthread_should_stop() ||
1901 test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
))
1908 wait_for_kthread_stop();
1912 int bch_gc_thread_start(struct cache_set
*c
)
1914 c
->gc_thread
= kthread_run(bch_gc_thread
, c
, "bcache_gc");
1915 return PTR_ERR_OR_ZERO(c
->gc_thread
);
1918 /* Initial partial gc */
1920 static int bch_btree_check_recurse(struct btree
*b
, struct btree_op
*op
)
1923 struct bkey
*k
, *p
= NULL
;
1924 struct btree_iter iter
;
1926 min_heap_init(&iter
.heap
, NULL
, MAX_BSETS
);
1928 for_each_key_filter(&b
->keys
, k
, &iter
, bch_ptr_invalid
)
1929 bch_initial_mark_key(b
->c
, b
->level
, k
);
1931 bch_initial_mark_key(b
->c
, b
->level
+ 1, &b
->key
);
1934 bch_btree_iter_init(&b
->keys
, &iter
, NULL
);
1937 k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
1940 btree_node_prefetch(b
, k
);
1942 * initiallize c->gc_stats.nodes
1943 * for incremental GC
1945 b
->c
->gc_stats
.nodes
++;
1949 ret
= bcache_btree(check_recurse
, p
, b
, op
);
1952 } while (p
&& !ret
);
1959 static int bch_btree_check_thread(void *arg
)
1962 struct btree_check_info
*info
= arg
;
1963 struct btree_check_state
*check_state
= info
->state
;
1964 struct cache_set
*c
= check_state
->c
;
1965 struct btree_iter iter
;
1967 int cur_idx
, prev_idx
, skip_nr
;
1970 cur_idx
= prev_idx
= 0;
1973 min_heap_init(&iter
.heap
, NULL
, MAX_BSETS
);
1975 /* root node keys are checked before thread created */
1976 bch_btree_iter_init(&c
->root
->keys
, &iter
, NULL
);
1977 k
= bch_btree_iter_next_filter(&iter
, &c
->root
->keys
, bch_ptr_bad
);
1983 * Fetch a root node key index, skip the keys which
1984 * should be fetched by other threads, then check the
1985 * sub-tree indexed by the fetched key.
1987 spin_lock(&check_state
->idx_lock
);
1988 cur_idx
= check_state
->key_idx
;
1989 check_state
->key_idx
++;
1990 spin_unlock(&check_state
->idx_lock
);
1992 skip_nr
= cur_idx
- prev_idx
;
1995 k
= bch_btree_iter_next_filter(&iter
,
2002 * No more keys to check in root node,
2003 * current checking threads are enough,
2004 * stop creating more.
2006 atomic_set(&check_state
->enough
, 1);
2007 /* Update check_state->enough earlier */
2008 smp_mb__after_atomic();
2018 btree_node_prefetch(c
->root
, p
);
2019 c
->gc_stats
.nodes
++;
2020 bch_btree_op_init(&op
, 0);
2021 ret
= bcache_btree(check_recurse
, p
, c
->root
, &op
);
2023 * The op may be added to cache_set's btree_cache_wait
2024 * in mca_cannibalize(), must ensure it is removed from
2025 * the list and release btree_cache_alloc_lock before
2027 * Otherwise, the btree_cache_wait will be damaged.
2029 bch_cannibalize_unlock(c
);
2030 finish_wait(&c
->btree_cache_wait
, &(&op
)->wait
);
2041 /* update check_state->started among all CPUs */
2042 smp_mb__before_atomic();
2043 if (atomic_dec_and_test(&check_state
->started
))
2044 wake_up(&check_state
->wait
);
2051 static int bch_btree_chkthread_nr(void)
2053 int n
= num_online_cpus()/2;
2057 else if (n
> BCH_BTR_CHKTHREAD_MAX
)
2058 n
= BCH_BTR_CHKTHREAD_MAX
;
2063 int bch_btree_check(struct cache_set
*c
)
2067 struct bkey
*k
= NULL
;
2068 struct btree_iter iter
;
2069 struct btree_check_state check_state
;
2071 min_heap_init(&iter
.heap
, NULL
, MAX_BSETS
);
2073 /* check and mark root node keys */
2074 for_each_key_filter(&c
->root
->keys
, k
, &iter
, bch_ptr_invalid
)
2075 bch_initial_mark_key(c
, c
->root
->level
, k
);
2077 bch_initial_mark_key(c
, c
->root
->level
+ 1, &c
->root
->key
);
2079 if (c
->root
->level
== 0)
2082 memset(&check_state
, 0, sizeof(struct btree_check_state
));
2084 check_state
.total_threads
= bch_btree_chkthread_nr();
2085 check_state
.key_idx
= 0;
2086 spin_lock_init(&check_state
.idx_lock
);
2087 atomic_set(&check_state
.started
, 0);
2088 atomic_set(&check_state
.enough
, 0);
2089 init_waitqueue_head(&check_state
.wait
);
2091 rw_lock(0, c
->root
, c
->root
->level
);
2093 * Run multiple threads to check btree nodes in parallel,
2094 * if check_state.enough is non-zero, it means current
2095 * running check threads are enough, unncessary to create
2098 for (i
= 0; i
< check_state
.total_threads
; i
++) {
2099 /* fetch latest check_state.enough earlier */
2100 smp_mb__before_atomic();
2101 if (atomic_read(&check_state
.enough
))
2104 check_state
.infos
[i
].result
= 0;
2105 check_state
.infos
[i
].state
= &check_state
;
2107 check_state
.infos
[i
].thread
=
2108 kthread_run(bch_btree_check_thread
,
2109 &check_state
.infos
[i
],
2110 "bch_btrchk[%d]", i
);
2111 if (IS_ERR(check_state
.infos
[i
].thread
)) {
2112 pr_err("fails to run thread bch_btrchk[%d]\n", i
);
2113 for (--i
; i
>= 0; i
--)
2114 kthread_stop(check_state
.infos
[i
].thread
);
2118 atomic_inc(&check_state
.started
);
2122 * Must wait for all threads to stop.
2124 wait_event(check_state
.wait
, atomic_read(&check_state
.started
) == 0);
2126 for (i
= 0; i
< check_state
.total_threads
; i
++) {
2127 if (check_state
.infos
[i
].result
) {
2128 ret
= check_state
.infos
[i
].result
;
2134 rw_unlock(0, c
->root
);
2138 void bch_initial_gc_finish(struct cache_set
*c
)
2140 struct cache
*ca
= c
->cache
;
2143 bch_btree_gc_finish(c
);
2145 mutex_lock(&c
->bucket_lock
);
2148 * We need to put some unused buckets directly on the prio freelist in
2149 * order to get the allocator thread started - it needs freed buckets in
2150 * order to rewrite the prios and gens, and it needs to rewrite prios
2151 * and gens in order to free buckets.
2153 * This is only safe for buckets that have no live data in them, which
2154 * there should always be some of.
2156 for_each_bucket(b
, ca
) {
2157 if (fifo_full(&ca
->free
[RESERVE_PRIO
]) &&
2158 fifo_full(&ca
->free
[RESERVE_BTREE
]))
2161 if (bch_can_invalidate_bucket(ca
, b
) &&
2163 __bch_invalidate_one_bucket(ca
, b
);
2164 if (!fifo_push(&ca
->free
[RESERVE_PRIO
],
2166 fifo_push(&ca
->free
[RESERVE_BTREE
],
2171 mutex_unlock(&c
->bucket_lock
);
2174 /* Btree insertion */
2176 static bool btree_insert_key(struct btree
*b
, struct bkey
*k
,
2177 struct bkey
*replace_key
)
2179 unsigned int status
;
2181 BUG_ON(bkey_cmp(k
, &b
->key
) > 0);
2183 status
= bch_btree_insert_key(&b
->keys
, k
, replace_key
);
2184 if (status
!= BTREE_INSERT_STATUS_NO_INSERT
) {
2185 bch_check_keys(&b
->keys
, "%u for %s", status
,
2186 replace_key
? "replace" : "insert");
2188 trace_bcache_btree_insert_key(b
, k
, replace_key
!= NULL
,
2195 static size_t insert_u64s_remaining(struct btree
*b
)
2197 long ret
= bch_btree_keys_u64s_remaining(&b
->keys
);
2200 * Might land in the middle of an existing extent and have to split it
2202 if (b
->keys
.ops
->is_extents
)
2203 ret
-= KEY_MAX_U64S
;
2205 return max(ret
, 0L);
2208 static bool bch_btree_insert_keys(struct btree
*b
, struct btree_op
*op
,
2209 struct keylist
*insert_keys
,
2210 struct bkey
*replace_key
)
2213 int oldsize
= bch_count_data(&b
->keys
);
2215 while (!bch_keylist_empty(insert_keys
)) {
2216 struct bkey
*k
= insert_keys
->keys
;
2218 if (bkey_u64s(k
) > insert_u64s_remaining(b
))
2221 if (bkey_cmp(k
, &b
->key
) <= 0) {
2225 ret
|= btree_insert_key(b
, k
, replace_key
);
2226 bch_keylist_pop_front(insert_keys
);
2227 } else if (bkey_cmp(&START_KEY(k
), &b
->key
) < 0) {
2228 BKEY_PADDED(key
) temp
;
2229 bkey_copy(&temp
.key
, insert_keys
->keys
);
2231 bch_cut_back(&b
->key
, &temp
.key
);
2232 bch_cut_front(&b
->key
, insert_keys
->keys
);
2234 ret
|= btree_insert_key(b
, &temp
.key
, replace_key
);
2242 op
->insert_collision
= true;
2244 BUG_ON(!bch_keylist_empty(insert_keys
) && b
->level
);
2246 BUG_ON(bch_count_data(&b
->keys
) < oldsize
);
2250 static int btree_split(struct btree
*b
, struct btree_op
*op
,
2251 struct keylist
*insert_keys
,
2252 struct bkey
*replace_key
)
2255 struct btree
*n1
, *n2
= NULL
, *n3
= NULL
;
2256 uint64_t start_time
= local_clock();
2258 struct keylist parent_keys
;
2260 closure_init_stack(&cl
);
2261 bch_keylist_init(&parent_keys
);
2263 if (btree_check_reserve(b
, op
)) {
2267 WARN(1, "insufficient reserve for split\n");
2270 n1
= btree_node_alloc_replacement(b
, op
);
2274 split
= set_blocks(btree_bset_first(n1
),
2275 block_bytes(n1
->c
->cache
)) > (btree_blocks(b
) * 4) / 5;
2278 unsigned int keys
= 0;
2280 trace_bcache_btree_node_split(b
, btree_bset_first(n1
)->keys
);
2282 n2
= bch_btree_node_alloc(b
->c
, op
, b
->level
, b
->parent
);
2287 n3
= bch_btree_node_alloc(b
->c
, op
, b
->level
+ 1, NULL
);
2292 mutex_lock(&n1
->write_lock
);
2293 mutex_lock(&n2
->write_lock
);
2295 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
2298 * Has to be a linear search because we don't have an auxiliary
2302 while (keys
< (btree_bset_first(n1
)->keys
* 3) / 5)
2303 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
),
2306 bkey_copy_key(&n1
->key
,
2307 bset_bkey_idx(btree_bset_first(n1
), keys
));
2308 keys
+= bkey_u64s(bset_bkey_idx(btree_bset_first(n1
), keys
));
2310 btree_bset_first(n2
)->keys
= btree_bset_first(n1
)->keys
- keys
;
2311 btree_bset_first(n1
)->keys
= keys
;
2313 memcpy(btree_bset_first(n2
)->start
,
2314 bset_bkey_last(btree_bset_first(n1
)),
2315 btree_bset_first(n2
)->keys
* sizeof(uint64_t));
2317 bkey_copy_key(&n2
->key
, &b
->key
);
2319 bch_keylist_add(&parent_keys
, &n2
->key
);
2320 bch_btree_node_write(n2
, &cl
);
2321 mutex_unlock(&n2
->write_lock
);
2322 rw_unlock(true, n2
);
2324 trace_bcache_btree_node_compact(b
, btree_bset_first(n1
)->keys
);
2326 mutex_lock(&n1
->write_lock
);
2327 bch_btree_insert_keys(n1
, op
, insert_keys
, replace_key
);
2330 bch_keylist_add(&parent_keys
, &n1
->key
);
2331 bch_btree_node_write(n1
, &cl
);
2332 mutex_unlock(&n1
->write_lock
);
2335 /* Depth increases, make a new root */
2336 mutex_lock(&n3
->write_lock
);
2337 bkey_copy_key(&n3
->key
, &MAX_KEY
);
2338 bch_btree_insert_keys(n3
, op
, &parent_keys
, NULL
);
2339 bch_btree_node_write(n3
, &cl
);
2340 mutex_unlock(&n3
->write_lock
);
2343 bch_btree_set_root(n3
);
2344 rw_unlock(true, n3
);
2345 } else if (!b
->parent
) {
2346 /* Root filled up but didn't need to be split */
2348 bch_btree_set_root(n1
);
2350 /* Split a non root node */
2352 make_btree_freeing_key(b
, parent_keys
.top
);
2353 bch_keylist_push(&parent_keys
);
2355 bch_btree_insert_node(b
->parent
, op
, &parent_keys
, NULL
, NULL
);
2356 BUG_ON(!bch_keylist_empty(&parent_keys
));
2360 rw_unlock(true, n1
);
2362 bch_time_stats_update(&b
->c
->btree_split_time
, start_time
);
2366 bkey_put(b
->c
, &n2
->key
);
2367 btree_node_free(n2
);
2368 rw_unlock(true, n2
);
2370 bkey_put(b
->c
, &n1
->key
);
2371 btree_node_free(n1
);
2372 rw_unlock(true, n1
);
2374 WARN(1, "bcache: btree split failed (level %u)", b
->level
);
2376 if (n3
== ERR_PTR(-EAGAIN
) ||
2377 n2
== ERR_PTR(-EAGAIN
) ||
2378 n1
== ERR_PTR(-EAGAIN
))
2384 static int bch_btree_insert_node(struct btree
*b
, struct btree_op
*op
,
2385 struct keylist
*insert_keys
,
2386 atomic_t
*journal_ref
,
2387 struct bkey
*replace_key
)
2391 BUG_ON(b
->level
&& replace_key
);
2393 closure_init_stack(&cl
);
2395 mutex_lock(&b
->write_lock
);
2397 if (write_block(b
) != btree_bset_last(b
) &&
2398 b
->keys
.last_set_unwritten
)
2399 bch_btree_init_next(b
); /* just wrote a set */
2401 if (bch_keylist_nkeys(insert_keys
) > insert_u64s_remaining(b
)) {
2402 mutex_unlock(&b
->write_lock
);
2406 BUG_ON(write_block(b
) != btree_bset_last(b
));
2408 if (bch_btree_insert_keys(b
, op
, insert_keys
, replace_key
)) {
2410 bch_btree_leaf_dirty(b
, journal_ref
);
2412 bch_btree_node_write(b
, &cl
);
2415 mutex_unlock(&b
->write_lock
);
2417 /* wait for btree node write if necessary, after unlock */
2422 if (current
->bio_list
) {
2423 op
->lock
= b
->c
->root
->level
+ 1;
2425 } else if (op
->lock
<= b
->c
->root
->level
) {
2426 op
->lock
= b
->c
->root
->level
+ 1;
2429 /* Invalidated all iterators */
2430 int ret
= btree_split(b
, op
, insert_keys
, replace_key
);
2432 if (bch_keylist_empty(insert_keys
))
2440 int bch_btree_insert_check_key(struct btree
*b
, struct btree_op
*op
,
2441 struct bkey
*check_key
)
2444 uint64_t btree_ptr
= b
->key
.ptr
[0];
2445 unsigned long seq
= b
->seq
;
2446 struct keylist insert
;
2447 bool upgrade
= op
->lock
== -1;
2449 bch_keylist_init(&insert
);
2452 rw_unlock(false, b
);
2453 rw_lock(true, b
, b
->level
);
2455 if (b
->key
.ptr
[0] != btree_ptr
||
2456 b
->seq
!= seq
+ 1) {
2457 op
->lock
= b
->level
;
2462 SET_KEY_PTRS(check_key
, 1);
2463 get_random_bytes(&check_key
->ptr
[0], sizeof(uint64_t));
2465 SET_PTR_DEV(check_key
, 0, PTR_CHECK_DEV
);
2467 bch_keylist_add(&insert
, check_key
);
2469 ret
= bch_btree_insert_node(b
, op
, &insert
, NULL
, NULL
);
2471 BUG_ON(!ret
&& !bch_keylist_empty(&insert
));
2474 downgrade_write(&b
->lock
);
2478 struct btree_insert_op
{
2480 struct keylist
*keys
;
2481 atomic_t
*journal_ref
;
2482 struct bkey
*replace_key
;
2485 static int btree_insert_fn(struct btree_op
*b_op
, struct btree
*b
)
2487 struct btree_insert_op
*op
= container_of(b_op
,
2488 struct btree_insert_op
, op
);
2490 int ret
= bch_btree_insert_node(b
, &op
->op
, op
->keys
,
2491 op
->journal_ref
, op
->replace_key
);
2492 if (ret
&& !bch_keylist_empty(op
->keys
))
2498 int bch_btree_insert(struct cache_set
*c
, struct keylist
*keys
,
2499 atomic_t
*journal_ref
, struct bkey
*replace_key
)
2501 struct btree_insert_op op
;
2504 BUG_ON(current
->bio_list
);
2505 BUG_ON(bch_keylist_empty(keys
));
2507 bch_btree_op_init(&op
.op
, 0);
2509 op
.journal_ref
= journal_ref
;
2510 op
.replace_key
= replace_key
;
2512 while (!ret
&& !bch_keylist_empty(keys
)) {
2514 ret
= bch_btree_map_leaf_nodes(&op
.op
, c
,
2515 &START_KEY(keys
->keys
),
2522 pr_err("error %i\n", ret
);
2524 while ((k
= bch_keylist_pop(keys
)))
2526 } else if (op
.op
.insert_collision
)
2532 void bch_btree_set_root(struct btree
*b
)
2537 closure_init_stack(&cl
);
2539 trace_bcache_btree_set_root(b
);
2541 BUG_ON(!b
->written
);
2543 for (i
= 0; i
< KEY_PTRS(&b
->key
); i
++)
2544 BUG_ON(PTR_BUCKET(b
->c
, &b
->key
, i
)->prio
!= BTREE_PRIO
);
2546 mutex_lock(&b
->c
->bucket_lock
);
2547 list_del_init(&b
->list
);
2548 mutex_unlock(&b
->c
->bucket_lock
);
2552 bch_journal_meta(b
->c
, &cl
);
2556 /* Map across nodes or keys */
2558 static int bch_btree_map_nodes_recurse(struct btree
*b
, struct btree_op
*op
,
2560 btree_map_nodes_fn
*fn
, int flags
)
2562 int ret
= MAP_CONTINUE
;
2566 struct btree_iter iter
;
2568 min_heap_init(&iter
.heap
, NULL
, MAX_BSETS
);
2569 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2571 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
,
2573 ret
= bcache_btree(map_nodes_recurse
, k
, b
,
2574 op
, from
, fn
, flags
);
2577 if (ret
!= MAP_CONTINUE
)
2582 if (!b
->level
|| flags
== MAP_ALL_NODES
)
2588 int __bch_btree_map_nodes(struct btree_op
*op
, struct cache_set
*c
,
2589 struct bkey
*from
, btree_map_nodes_fn
*fn
, int flags
)
2591 return bcache_btree_root(map_nodes_recurse
, c
, op
, from
, fn
, flags
);
2594 int bch_btree_map_keys_recurse(struct btree
*b
, struct btree_op
*op
,
2595 struct bkey
*from
, btree_map_keys_fn
*fn
,
2598 int ret
= MAP_CONTINUE
;
2600 struct btree_iter iter
;
2602 min_heap_init(&iter
.heap
, NULL
, MAX_BSETS
);
2603 bch_btree_iter_init(&b
->keys
, &iter
, from
);
2605 while ((k
= bch_btree_iter_next_filter(&iter
, &b
->keys
, bch_ptr_bad
))) {
2608 : bcache_btree(map_keys_recurse
, k
,
2609 b
, op
, from
, fn
, flags
);
2612 if (ret
!= MAP_CONTINUE
)
2616 if (!b
->level
&& (flags
& MAP_END_KEY
))
2617 ret
= fn(op
, b
, &KEY(KEY_INODE(&b
->key
),
2618 KEY_OFFSET(&b
->key
), 0));
2623 int bch_btree_map_keys(struct btree_op
*op
, struct cache_set
*c
,
2624 struct bkey
*from
, btree_map_keys_fn
*fn
, int flags
)
2626 return bcache_btree_root(map_keys_recurse
, c
, op
, from
, fn
, flags
);
2631 static inline int keybuf_cmp(struct keybuf_key
*l
, struct keybuf_key
*r
)
2633 /* Overlapping keys compare equal */
2634 if (bkey_cmp(&l
->key
, &START_KEY(&r
->key
)) <= 0)
2636 if (bkey_cmp(&START_KEY(&l
->key
), &r
->key
) >= 0)
2641 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key
*l
,
2642 struct keybuf_key
*r
)
2644 return clamp_t(int64_t, bkey_cmp(&l
->key
, &r
->key
), -1, 1);
2649 unsigned int nr_found
;
2652 keybuf_pred_fn
*pred
;
2655 static int refill_keybuf_fn(struct btree_op
*op
, struct btree
*b
,
2658 struct refill
*refill
= container_of(op
, struct refill
, op
);
2659 struct keybuf
*buf
= refill
->buf
;
2660 int ret
= MAP_CONTINUE
;
2662 if (bkey_cmp(k
, refill
->end
) > 0) {
2667 if (!KEY_SIZE(k
)) /* end key */
2670 if (refill
->pred(buf
, k
)) {
2671 struct keybuf_key
*w
;
2673 spin_lock(&buf
->lock
);
2675 w
= array_alloc(&buf
->freelist
);
2677 spin_unlock(&buf
->lock
);
2682 bkey_copy(&w
->key
, k
);
2684 if (RB_INSERT(&buf
->keys
, w
, node
, keybuf_cmp
))
2685 array_free(&buf
->freelist
, w
);
2689 if (array_freelist_empty(&buf
->freelist
))
2692 spin_unlock(&buf
->lock
);
2695 buf
->last_scanned
= *k
;
2699 void bch_refill_keybuf(struct cache_set
*c
, struct keybuf
*buf
,
2700 struct bkey
*end
, keybuf_pred_fn
*pred
)
2702 struct bkey start
= buf
->last_scanned
;
2703 struct refill refill
;
2707 bch_btree_op_init(&refill
.op
, -1);
2708 refill
.nr_found
= 0;
2713 bch_btree_map_keys(&refill
.op
, c
, &buf
->last_scanned
,
2714 refill_keybuf_fn
, MAP_END_KEY
);
2716 trace_bcache_keyscan(refill
.nr_found
,
2717 KEY_INODE(&start
), KEY_OFFSET(&start
),
2718 KEY_INODE(&buf
->last_scanned
),
2719 KEY_OFFSET(&buf
->last_scanned
));
2721 spin_lock(&buf
->lock
);
2723 if (!RB_EMPTY_ROOT(&buf
->keys
)) {
2724 struct keybuf_key
*w
;
2726 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2727 buf
->start
= START_KEY(&w
->key
);
2729 w
= RB_LAST(&buf
->keys
, struct keybuf_key
, node
);
2732 buf
->start
= MAX_KEY
;
2736 spin_unlock(&buf
->lock
);
2739 static void __bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2741 rb_erase(&w
->node
, &buf
->keys
);
2742 array_free(&buf
->freelist
, w
);
2745 void bch_keybuf_del(struct keybuf
*buf
, struct keybuf_key
*w
)
2747 spin_lock(&buf
->lock
);
2748 __bch_keybuf_del(buf
, w
);
2749 spin_unlock(&buf
->lock
);
2752 bool bch_keybuf_check_overlapping(struct keybuf
*buf
, struct bkey
*start
,
2756 struct keybuf_key
*p
, *w
, s
;
2760 if (bkey_cmp(end
, &buf
->start
) <= 0 ||
2761 bkey_cmp(start
, &buf
->end
) >= 0)
2764 spin_lock(&buf
->lock
);
2765 w
= RB_GREATER(&buf
->keys
, s
, node
, keybuf_nonoverlapping_cmp
);
2767 while (w
&& bkey_cmp(&START_KEY(&w
->key
), end
) < 0) {
2769 w
= RB_NEXT(w
, node
);
2774 __bch_keybuf_del(buf
, p
);
2777 spin_unlock(&buf
->lock
);
2781 struct keybuf_key
*bch_keybuf_next(struct keybuf
*buf
)
2783 struct keybuf_key
*w
;
2785 spin_lock(&buf
->lock
);
2787 w
= RB_FIRST(&buf
->keys
, struct keybuf_key
, node
);
2789 while (w
&& w
->private)
2790 w
= RB_NEXT(w
, node
);
2793 w
->private = ERR_PTR(-EINTR
);
2795 spin_unlock(&buf
->lock
);
2799 struct keybuf_key
*bch_keybuf_next_rescan(struct cache_set
*c
,
2802 keybuf_pred_fn
*pred
)
2804 struct keybuf_key
*ret
;
2807 ret
= bch_keybuf_next(buf
);
2811 if (bkey_cmp(&buf
->last_scanned
, end
) >= 0) {
2812 pr_debug("scan finished\n");
2816 bch_refill_keybuf(c
, buf
, end
, pred
);
2822 void bch_keybuf_init(struct keybuf
*buf
)
2824 buf
->last_scanned
= MAX_KEY
;
2825 buf
->keys
= RB_ROOT
;
2827 spin_lock_init(&buf
->lock
);
2828 array_allocator_init(&buf
->freelist
);
2831 void bch_btree_exit(void)
2834 destroy_workqueue(btree_io_wq
);
2837 int __init
bch_btree_init(void)
2839 btree_io_wq
= alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM
, 0);