1 // SPDX-License-Identifier: GPL-2.0
3 * bcache journalling code, for btree insertions
5 * Copyright 2012 Google, Inc.
13 #include <trace/events/bcache.h>
16 * Journal replay/recovery:
18 * This code is all driven from run_cache_set(); we first read the journal
19 * entries, do some other stuff, then we mark all the keys in the journal
20 * entries (same as garbage collection would), then we replay them - reinserting
21 * them into the cache in precisely the same order as they appear in the
24 * We only journal keys that go in leaf nodes, which simplifies things quite a
28 static void journal_read_endio(struct bio
*bio
)
30 struct closure
*cl
= bio
->bi_private
;
35 static int journal_read_bucket(struct cache
*ca
, struct list_head
*list
,
36 unsigned int bucket_index
)
38 struct journal_device
*ja
= &ca
->journal
;
39 struct bio
*bio
= &ja
->bio
;
41 struct journal_replay
*i
;
42 struct jset
*j
, *data
= ca
->set
->journal
.w
[0].data
;
44 unsigned int len
, left
, offset
= 0;
46 sector_t bucket
= bucket_to_sector(ca
->set
, ca
->sb
.d
[bucket_index
]);
48 closure_init_stack(&cl
);
50 pr_debug("reading %u\n", bucket_index
);
52 while (offset
< ca
->sb
.bucket_size
) {
53 reread
: left
= ca
->sb
.bucket_size
- offset
;
54 len
= min_t(unsigned int, left
, PAGE_SECTORS
<< JSET_BITS
);
56 bio_reset(bio
, ca
->bdev
, REQ_OP_READ
);
57 bio
->bi_iter
.bi_sector
= bucket
+ offset
;
58 bio
->bi_iter
.bi_size
= len
<< 9;
60 bio
->bi_end_io
= journal_read_endio
;
61 bio
->bi_private
= &cl
;
62 bch_bio_map(bio
, data
);
64 closure_bio_submit(ca
->set
, bio
, &cl
);
67 /* This function could be simpler now since we no longer write
68 * journal entries that overlap bucket boundaries; this means
69 * the start of a bucket will always have a valid journal entry
70 * if it has any journal entries at all.
75 struct list_head
*where
;
76 size_t blocks
, bytes
= set_bytes(j
);
78 if (j
->magic
!= jset_magic(&ca
->sb
)) {
79 pr_debug("%u: bad magic\n", bucket_index
);
83 if (bytes
> left
<< 9 ||
84 bytes
> PAGE_SIZE
<< JSET_BITS
) {
85 pr_info("%u: too big, %zu bytes, offset %u\n",
86 bucket_index
, bytes
, offset
);
93 if (j
->csum
!= csum_set(j
)) {
94 pr_info("%u: bad csum, %zu bytes, offset %u\n",
95 bucket_index
, bytes
, offset
);
99 blocks
= set_blocks(j
, block_bytes(ca
));
102 * Nodes in 'list' are in linear increasing order of
103 * i->j.seq, the node on head has the smallest (oldest)
104 * journal seq, the node on tail has the biggest
105 * (latest) journal seq.
109 * Check from the oldest jset for last_seq. If
110 * i->j.seq < j->last_seq, it means the oldest jset
111 * in list is expired and useless, remove it from
112 * this list. Otherwise, j is a candidate jset for
113 * further following checks.
115 while (!list_empty(list
)) {
116 i
= list_first_entry(list
,
117 struct journal_replay
, list
);
118 if (i
->j
.seq
>= j
->last_seq
)
124 /* iterate list in reverse order (from latest jset) */
125 list_for_each_entry_reverse(i
, list
, list
) {
126 if (j
->seq
== i
->j
.seq
)
130 * if j->seq is less than any i->j.last_seq
131 * in list, j is an expired and useless jset.
133 if (j
->seq
< i
->j
.last_seq
)
137 * 'where' points to first jset in list which
140 if (j
->seq
> i
->j
.seq
) {
148 i
= kmalloc(offsetof(struct journal_replay
, j
) +
152 unsafe_memcpy(&i
->j
, j
, bytes
,
153 /* "bytes" was calculated by set_bytes() above */);
154 /* Add to the location after 'where' points to */
155 list_add(&i
->list
, where
);
158 if (j
->seq
> ja
->seq
[bucket_index
])
159 ja
->seq
[bucket_index
] = j
->seq
;
161 offset
+= blocks
* ca
->sb
.block_size
;
162 len
-= blocks
* ca
->sb
.block_size
;
163 j
= ((void *) j
) + blocks
* block_bytes(ca
);
170 int bch_journal_read(struct cache_set
*c
, struct list_head
*list
)
172 #define read_bucket(b) \
174 ret = journal_read_bucket(ca, list, b); \
175 __set_bit(b, bitmap); \
181 struct cache
*ca
= c
->cache
;
183 struct journal_device
*ja
= &ca
->journal
;
184 DECLARE_BITMAP(bitmap
, SB_JOURNAL_BUCKETS
);
185 unsigned int i
, l
, r
, m
;
188 bitmap_zero(bitmap
, SB_JOURNAL_BUCKETS
);
189 pr_debug("%u journal buckets\n", ca
->sb
.njournal_buckets
);
192 * Read journal buckets ordered by golden ratio hash to quickly
193 * find a sequence of buckets with valid journal entries
195 for (i
= 0; i
< ca
->sb
.njournal_buckets
; i
++) {
197 * We must try the index l with ZERO first for
198 * correctness due to the scenario that the journal
199 * bucket is circular buffer which might have wrapped
201 l
= (i
* 2654435769U) % ca
->sb
.njournal_buckets
;
203 if (test_bit(l
, bitmap
))
211 * If that fails, check all the buckets we haven't checked
214 pr_debug("falling back to linear search\n");
216 for_each_clear_bit(l
, bitmap
, ca
->sb
.njournal_buckets
)
220 /* no journal entries on this device? */
221 if (l
== ca
->sb
.njournal_buckets
)
224 BUG_ON(list_empty(list
));
228 r
= find_next_bit(bitmap
, ca
->sb
.njournal_buckets
, l
+ 1);
229 pr_debug("starting binary search, l %u r %u\n", l
, r
);
232 seq
= list_entry(list
->prev
, struct journal_replay
,
238 if (seq
!= list_entry(list
->prev
, struct journal_replay
,
246 * Read buckets in reverse order until we stop finding more
249 pr_debug("finishing up: m %u njournal_buckets %u\n",
250 m
, ca
->sb
.njournal_buckets
);
255 l
= ca
->sb
.njournal_buckets
- 1;
260 if (test_bit(l
, bitmap
))
269 for (i
= 0; i
< ca
->sb
.njournal_buckets
; i
++)
270 if (ja
->seq
[i
] > seq
) {
273 * When journal_reclaim() goes to allocate for
274 * the first time, it'll use the bucket after
278 ja
->last_idx
= ja
->discard_idx
= (i
+ 1) %
279 ca
->sb
.njournal_buckets
;
284 if (!list_empty(list
))
285 c
->journal
.seq
= list_entry(list
->prev
,
286 struct journal_replay
,
293 void bch_journal_mark(struct cache_set
*c
, struct list_head
*list
)
297 struct journal_replay
*i
;
298 struct journal
*j
= &c
->journal
;
299 uint64_t last
= j
->seq
;
302 * journal.pin should never fill up - we never write a journal
303 * entry when it would fill up. But if for some reason it does, we
304 * iterate over the list in reverse order so that we can just skip that
305 * refcount instead of bugging.
308 list_for_each_entry_reverse(i
, list
, list
) {
309 BUG_ON(last
< i
->j
.seq
);
312 while (last
-- != i
->j
.seq
)
313 if (fifo_free(&j
->pin
) > 1) {
314 fifo_push_front(&j
->pin
, p
);
315 atomic_set(&fifo_front(&j
->pin
), 0);
318 if (fifo_free(&j
->pin
) > 1) {
319 fifo_push_front(&j
->pin
, p
);
320 i
->pin
= &fifo_front(&j
->pin
);
321 atomic_set(i
->pin
, 1);
325 k
< bset_bkey_last(&i
->j
);
327 if (!__bch_extent_invalid(c
, k
)) {
330 for (j
= 0; j
< KEY_PTRS(k
); j
++)
331 if (ptr_available(c
, k
, j
))
332 atomic_inc(&PTR_BUCKET(c
, k
, j
)->pin
);
334 bch_initial_mark_key(c
, 0, k
);
339 static bool is_discard_enabled(struct cache_set
*s
)
341 struct cache
*ca
= s
->cache
;
349 int bch_journal_replay(struct cache_set
*s
, struct list_head
*list
)
351 int ret
= 0, keys
= 0, entries
= 0;
353 struct journal_replay
*i
=
354 list_entry(list
->prev
, struct journal_replay
, list
);
356 uint64_t start
= i
->j
.last_seq
, end
= i
->j
.seq
, n
= start
;
357 struct keylist keylist
;
359 list_for_each_entry(i
, list
, list
) {
360 BUG_ON(i
->pin
&& atomic_read(i
->pin
) != 1);
363 if (n
== start
&& is_discard_enabled(s
))
364 pr_info("journal entries %llu-%llu may be discarded! (replaying %llu-%llu)\n",
365 n
, i
->j
.seq
- 1, start
, end
);
367 pr_err("journal entries %llu-%llu missing! (replaying %llu-%llu)\n",
368 n
, i
->j
.seq
- 1, start
, end
);
375 k
< bset_bkey_last(&i
->j
);
377 trace_bcache_journal_replay_key(k
);
379 bch_keylist_init_single(&keylist
, k
);
381 ret
= bch_btree_insert(s
, &keylist
, i
->pin
, NULL
);
385 BUG_ON(!bch_keylist_empty(&keylist
));
397 pr_info("journal replay done, %i keys in %i entries, seq %llu\n",
400 while (!list_empty(list
)) {
401 i
= list_first_entry(list
, struct journal_replay
, list
);
409 void bch_journal_space_reserve(struct journal
*j
)
411 j
->do_reserve
= true;
416 static void btree_flush_write(struct cache_set
*c
)
418 struct btree
*b
, *t
, *btree_nodes
[BTREE_FLUSH_NR
];
421 atomic_t
*fifo_front_p
, *now_fifo_front_p
;
424 if (c
->journal
.btree_flushing
)
427 spin_lock(&c
->journal
.flush_write_lock
);
428 if (c
->journal
.btree_flushing
) {
429 spin_unlock(&c
->journal
.flush_write_lock
);
432 c
->journal
.btree_flushing
= true;
433 spin_unlock(&c
->journal
.flush_write_lock
);
435 /* get the oldest journal entry and check its refcount */
436 spin_lock(&c
->journal
.lock
);
437 fifo_front_p
= &fifo_front(&c
->journal
.pin
);
438 ref_nr
= atomic_read(fifo_front_p
);
441 * do nothing if no btree node references
442 * the oldest journal entry
444 spin_unlock(&c
->journal
.lock
);
447 spin_unlock(&c
->journal
.lock
);
449 mask
= c
->journal
.pin
.mask
;
451 atomic_long_inc(&c
->flush_write
);
452 memset(btree_nodes
, 0, sizeof(btree_nodes
));
454 mutex_lock(&c
->bucket_lock
);
455 list_for_each_entry_safe_reverse(b
, t
, &c
->btree_cache
, list
) {
457 * It is safe to get now_fifo_front_p without holding
458 * c->journal.lock here, because we don't need to know
459 * the exactly accurate value, just check whether the
460 * front pointer of c->journal.pin is changed.
462 now_fifo_front_p
= &fifo_front(&c
->journal
.pin
);
464 * If the oldest journal entry is reclaimed and front
465 * pointer of c->journal.pin changes, it is unnecessary
466 * to scan c->btree_cache anymore, just quit the loop and
467 * flush out what we have already.
469 if (now_fifo_front_p
!= fifo_front_p
)
472 * quit this loop if all matching btree nodes are
473 * scanned and record in btree_nodes[] already.
475 ref_nr
= atomic_read(fifo_front_p
);
479 if (btree_node_journal_flush(b
))
480 pr_err("BUG: flush_write bit should not be set here!\n");
482 mutex_lock(&b
->write_lock
);
484 if (!btree_node_dirty(b
)) {
485 mutex_unlock(&b
->write_lock
);
489 if (!btree_current_write(b
)->journal
) {
490 mutex_unlock(&b
->write_lock
);
495 * Only select the btree node which exactly references
496 * the oldest journal entry.
498 * If the journal entry pointed by fifo_front_p is
499 * reclaimed in parallel, don't worry:
500 * - the list_for_each_xxx loop will quit when checking
501 * next now_fifo_front_p.
502 * - If there are matched nodes recorded in btree_nodes[],
503 * they are clean now (this is why and how the oldest
504 * journal entry can be reclaimed). These selected nodes
505 * will be ignored and skipped in the following for-loop.
507 if (((btree_current_write(b
)->journal
- fifo_front_p
) &
509 mutex_unlock(&b
->write_lock
);
513 set_btree_node_journal_flush(b
);
515 mutex_unlock(&b
->write_lock
);
517 btree_nodes
[nr
++] = b
;
519 * To avoid holding c->bucket_lock too long time,
520 * only scan for BTREE_FLUSH_NR matched btree nodes
521 * at most. If there are more btree nodes reference
522 * the oldest journal entry, try to flush them next
523 * time when btree_flush_write() is called.
525 if (nr
== BTREE_FLUSH_NR
)
528 mutex_unlock(&c
->bucket_lock
);
530 for (i
= 0; i
< nr
; i
++) {
533 pr_err("BUG: btree_nodes[%d] is NULL\n", i
);
537 /* safe to check without holding b->write_lock */
538 if (!btree_node_journal_flush(b
)) {
539 pr_err("BUG: bnode %p: journal_flush bit cleaned\n", b
);
543 mutex_lock(&b
->write_lock
);
544 if (!btree_current_write(b
)->journal
) {
545 clear_bit(BTREE_NODE_journal_flush
, &b
->flags
);
546 mutex_unlock(&b
->write_lock
);
547 pr_debug("bnode %p: written by others\n", b
);
551 if (!btree_node_dirty(b
)) {
552 clear_bit(BTREE_NODE_journal_flush
, &b
->flags
);
553 mutex_unlock(&b
->write_lock
);
554 pr_debug("bnode %p: dirty bit cleaned by others\n", b
);
558 __bch_btree_node_write(b
, NULL
);
559 clear_bit(BTREE_NODE_journal_flush
, &b
->flags
);
560 mutex_unlock(&b
->write_lock
);
564 spin_lock(&c
->journal
.flush_write_lock
);
565 c
->journal
.btree_flushing
= false;
566 spin_unlock(&c
->journal
.flush_write_lock
);
569 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1)
571 static void journal_discard_endio(struct bio
*bio
)
573 struct journal_device
*ja
=
574 container_of(bio
, struct journal_device
, discard_bio
);
575 struct cache
*ca
= container_of(ja
, struct cache
, journal
);
577 atomic_set(&ja
->discard_in_flight
, DISCARD_DONE
);
579 closure_wake_up(&ca
->set
->journal
.wait
);
580 closure_put(&ca
->set
->cl
);
583 static void journal_discard_work(struct work_struct
*work
)
585 struct journal_device
*ja
=
586 container_of(work
, struct journal_device
, discard_work
);
588 submit_bio(&ja
->discard_bio
);
591 static void do_journal_discard(struct cache
*ca
)
593 struct journal_device
*ja
= &ca
->journal
;
594 struct bio
*bio
= &ja
->discard_bio
;
597 ja
->discard_idx
= ja
->last_idx
;
601 switch (atomic_read(&ja
->discard_in_flight
)) {
602 case DISCARD_IN_FLIGHT
:
606 ja
->discard_idx
= (ja
->discard_idx
+ 1) %
607 ca
->sb
.njournal_buckets
;
609 atomic_set(&ja
->discard_in_flight
, DISCARD_READY
);
613 if (ja
->discard_idx
== ja
->last_idx
)
616 atomic_set(&ja
->discard_in_flight
, DISCARD_IN_FLIGHT
);
618 bio_init(bio
, ca
->bdev
, bio
->bi_inline_vecs
, 1, REQ_OP_DISCARD
);
619 bio
->bi_iter
.bi_sector
= bucket_to_sector(ca
->set
,
620 ca
->sb
.d
[ja
->discard_idx
]);
621 bio
->bi_iter
.bi_size
= bucket_bytes(ca
);
622 bio
->bi_end_io
= journal_discard_endio
;
624 closure_get(&ca
->set
->cl
);
625 INIT_WORK(&ja
->discard_work
, journal_discard_work
);
626 queue_work(bch_journal_wq
, &ja
->discard_work
);
630 static unsigned int free_journal_buckets(struct cache_set
*c
)
632 struct journal
*j
= &c
->journal
;
633 struct cache
*ca
= c
->cache
;
634 struct journal_device
*ja
= &c
->cache
->journal
;
637 /* In case njournal_buckets is not power of 2 */
638 if (ja
->cur_idx
>= ja
->discard_idx
)
639 n
= ca
->sb
.njournal_buckets
+ ja
->discard_idx
- ja
->cur_idx
;
641 n
= ja
->discard_idx
- ja
->cur_idx
;
643 if (n
> (1 + j
->do_reserve
))
644 return n
- (1 + j
->do_reserve
);
649 static void journal_reclaim(struct cache_set
*c
)
651 struct bkey
*k
= &c
->journal
.key
;
652 struct cache
*ca
= c
->cache
;
654 struct journal_device
*ja
= &ca
->journal
;
655 atomic_t p __maybe_unused
;
657 atomic_long_inc(&c
->reclaim
);
659 while (!atomic_read(&fifo_front(&c
->journal
.pin
)))
660 fifo_pop(&c
->journal
.pin
, p
);
662 last_seq
= last_seq(&c
->journal
);
664 /* Update last_idx */
666 while (ja
->last_idx
!= ja
->cur_idx
&&
667 ja
->seq
[ja
->last_idx
] < last_seq
)
668 ja
->last_idx
= (ja
->last_idx
+ 1) %
669 ca
->sb
.njournal_buckets
;
671 do_journal_discard(ca
);
673 if (c
->journal
.blocks_free
)
676 if (!free_journal_buckets(c
))
679 ja
->cur_idx
= (ja
->cur_idx
+ 1) % ca
->sb
.njournal_buckets
;
680 k
->ptr
[0] = MAKE_PTR(0,
681 bucket_to_sector(c
, ca
->sb
.d
[ja
->cur_idx
]),
683 atomic_long_inc(&c
->reclaimed_journal_buckets
);
687 c
->journal
.blocks_free
= ca
->sb
.bucket_size
>> c
->block_bits
;
690 if (!journal_full(&c
->journal
))
691 __closure_wake_up(&c
->journal
.wait
);
694 void bch_journal_next(struct journal
*j
)
698 j
->cur
= (j
->cur
== j
->w
)
703 * The fifo_push() needs to happen at the same time as j->seq is
704 * incremented for last_seq() to be calculated correctly
706 BUG_ON(!fifo_push(&j
->pin
, p
));
707 atomic_set(&fifo_back(&j
->pin
), 1);
709 j
->cur
->data
->seq
= ++j
->seq
;
710 j
->cur
->dirty
= false;
711 j
->cur
->need_write
= false;
712 j
->cur
->data
->keys
= 0;
714 if (fifo_full(&j
->pin
))
715 pr_debug("journal_pin full (%zu)\n", fifo_used(&j
->pin
));
718 static void journal_write_endio(struct bio
*bio
)
720 struct journal_write
*w
= bio
->bi_private
;
722 cache_set_err_on(bio
->bi_status
, w
->c
, "journal io error");
723 closure_put(&w
->c
->journal
.io
);
726 static CLOSURE_CALLBACK(journal_write
);
728 static CLOSURE_CALLBACK(journal_write_done
)
730 closure_type(j
, struct journal
, io
);
731 struct journal_write
*w
= (j
->cur
== j
->w
)
735 __closure_wake_up(&w
->wait
);
736 continue_at_nobarrier(cl
, journal_write
, bch_journal_wq
);
739 static CLOSURE_CALLBACK(journal_write_unlock
)
740 __releases(&c
->journal
.lock
)
742 closure_type(c
, struct cache_set
, journal
.io
);
744 c
->journal
.io_in_flight
= 0;
745 spin_unlock(&c
->journal
.lock
);
748 static CLOSURE_CALLBACK(journal_write_unlocked
)
749 __releases(c
->journal
.lock
)
751 closure_type(c
, struct cache_set
, journal
.io
);
752 struct cache
*ca
= c
->cache
;
753 struct journal_write
*w
= c
->journal
.cur
;
754 struct bkey
*k
= &c
->journal
.key
;
755 unsigned int i
, sectors
= set_blocks(w
->data
, block_bytes(ca
)) *
759 struct bio_list list
;
761 bio_list_init(&list
);
763 if (!w
->need_write
) {
764 closure_return_with_destructor(cl
, journal_write_unlock
);
766 } else if (journal_full(&c
->journal
)) {
768 spin_unlock(&c
->journal
.lock
);
770 btree_flush_write(c
);
771 continue_at(cl
, journal_write
, bch_journal_wq
);
775 c
->journal
.blocks_free
-= set_blocks(w
->data
, block_bytes(ca
));
777 w
->data
->btree_level
= c
->root
->level
;
779 bkey_copy(&w
->data
->btree_root
, &c
->root
->key
);
780 bkey_copy(&w
->data
->uuid_bucket
, &c
->uuid_bucket
);
782 w
->data
->prio_bucket
[ca
->sb
.nr_this_dev
] = ca
->prio_buckets
[0];
783 w
->data
->magic
= jset_magic(&ca
->sb
);
784 w
->data
->version
= BCACHE_JSET_VERSION
;
785 w
->data
->last_seq
= last_seq(&c
->journal
);
786 w
->data
->csum
= csum_set(w
->data
);
788 for (i
= 0; i
< KEY_PTRS(k
); i
++) {
790 bio
= &ca
->journal
.bio
;
792 atomic_long_add(sectors
, &ca
->meta_sectors_written
);
794 bio_reset(bio
, ca
->bdev
, REQ_OP_WRITE
|
795 REQ_SYNC
| REQ_META
| REQ_PREFLUSH
| REQ_FUA
);
796 bio
->bi_iter
.bi_sector
= PTR_OFFSET(k
, i
);
797 bio
->bi_iter
.bi_size
= sectors
<< 9;
799 bio
->bi_end_io
= journal_write_endio
;
801 bch_bio_map(bio
, w
->data
);
803 trace_bcache_journal_write(bio
, w
->data
->keys
);
804 bio_list_add(&list
, bio
);
806 SET_PTR_OFFSET(k
, i
, PTR_OFFSET(k
, i
) + sectors
);
808 ca
->journal
.seq
[ca
->journal
.cur_idx
] = w
->data
->seq
;
811 /* If KEY_PTRS(k) == 0, this jset gets lost in air */
814 atomic_dec_bug(&fifo_back(&c
->journal
.pin
));
815 bch_journal_next(&c
->journal
);
818 spin_unlock(&c
->journal
.lock
);
820 while ((bio
= bio_list_pop(&list
)))
821 closure_bio_submit(c
, bio
, cl
);
823 continue_at(cl
, journal_write_done
, NULL
);
826 static CLOSURE_CALLBACK(journal_write
)
828 closure_type(c
, struct cache_set
, journal
.io
);
830 spin_lock(&c
->journal
.lock
);
831 journal_write_unlocked(&cl
->work
);
834 static void journal_try_write(struct cache_set
*c
)
835 __releases(c
->journal
.lock
)
837 struct closure
*cl
= &c
->journal
.io
;
838 struct journal_write
*w
= c
->journal
.cur
;
840 w
->need_write
= true;
842 if (!c
->journal
.io_in_flight
) {
843 c
->journal
.io_in_flight
= 1;
844 closure_call(cl
, journal_write_unlocked
, NULL
, &c
->cl
);
846 spin_unlock(&c
->journal
.lock
);
850 static struct journal_write
*journal_wait_for_write(struct cache_set
*c
,
852 __acquires(&c
->journal
.lock
)
857 struct cache
*ca
= c
->cache
;
859 closure_init_stack(&cl
);
861 spin_lock(&c
->journal
.lock
);
864 struct journal_write
*w
= c
->journal
.cur
;
866 sectors
= __set_blocks(w
->data
, w
->data
->keys
+ nkeys
,
867 block_bytes(ca
)) * ca
->sb
.block_size
;
869 if (sectors
<= min_t(size_t,
870 c
->journal
.blocks_free
* ca
->sb
.block_size
,
871 PAGE_SECTORS
<< JSET_BITS
))
875 closure_wait(&c
->journal
.wait
, &cl
);
877 if (!journal_full(&c
->journal
)) {
879 trace_bcache_journal_entry_full(c
);
882 * XXX: If we were inserting so many keys that they
883 * won't fit in an _empty_ journal write, we'll
884 * deadlock. For now, handle this in
885 * bch_keylist_realloc() - but something to think about.
887 BUG_ON(!w
->data
->keys
);
889 journal_try_write(c
); /* unlocks */
892 trace_bcache_journal_full(c
);
895 spin_unlock(&c
->journal
.lock
);
897 btree_flush_write(c
);
901 spin_lock(&c
->journal
.lock
);
906 static void journal_write_work(struct work_struct
*work
)
908 struct cache_set
*c
= container_of(to_delayed_work(work
),
911 spin_lock(&c
->journal
.lock
);
912 if (c
->journal
.cur
->dirty
)
913 journal_try_write(c
);
915 spin_unlock(&c
->journal
.lock
);
919 * Entry point to the journalling code - bio_insert() and btree_invalidate()
920 * pass bch_journal() a list of keys to be journalled, and then
921 * bch_journal() hands those same keys off to btree_insert_async()
924 atomic_t
*bch_journal(struct cache_set
*c
,
925 struct keylist
*keys
,
926 struct closure
*parent
)
928 struct journal_write
*w
;
931 /* No journaling if CACHE_SET_IO_DISABLE set already */
932 if (unlikely(test_bit(CACHE_SET_IO_DISABLE
, &c
->flags
)))
935 if (!CACHE_SYNC(&c
->cache
->sb
))
938 w
= journal_wait_for_write(c
, bch_keylist_nkeys(keys
));
940 memcpy(bset_bkey_last(w
->data
), keys
->keys
, bch_keylist_bytes(keys
));
941 w
->data
->keys
+= bch_keylist_nkeys(keys
);
943 ret
= &fifo_back(&c
->journal
.pin
);
947 closure_wait(&w
->wait
, parent
);
948 journal_try_write(c
);
949 } else if (!w
->dirty
) {
951 queue_delayed_work(bch_flush_wq
, &c
->journal
.work
,
952 msecs_to_jiffies(c
->journal_delay_ms
));
953 spin_unlock(&c
->journal
.lock
);
955 spin_unlock(&c
->journal
.lock
);
962 void bch_journal_meta(struct cache_set
*c
, struct closure
*cl
)
967 bch_keylist_init(&keys
);
969 ref
= bch_journal(c
, &keys
, cl
);
974 void bch_journal_free(struct cache_set
*c
)
976 free_pages((unsigned long) c
->journal
.w
[1].data
, JSET_BITS
);
977 free_pages((unsigned long) c
->journal
.w
[0].data
, JSET_BITS
);
978 free_fifo(&c
->journal
.pin
);
981 int bch_journal_alloc(struct cache_set
*c
)
983 struct journal
*j
= &c
->journal
;
985 spin_lock_init(&j
->lock
);
986 spin_lock_init(&j
->flush_write_lock
);
987 INIT_DELAYED_WORK(&j
->work
, journal_write_work
);
989 c
->journal_delay_ms
= 100;
994 if (!(init_fifo(&j
->pin
, JOURNAL_PIN
, GFP_KERNEL
)) ||
995 !(j
->w
[0].data
= (void *) __get_free_pages(GFP_KERNEL
|__GFP_COMP
, JSET_BITS
)) ||
996 !(j
->w
[1].data
= (void *) __get_free_pages(GFP_KERNEL
|__GFP_COMP
, JSET_BITS
)))