1 /* SPDX-License-Identifier: GPL-2.0 */
6 #include <linux/blkdev.h>
7 #include <linux/closure.h>
8 #include <linux/errno.h>
9 #include <linux/kernel.h>
10 #include <linux/sched/clock.h>
11 #include <linux/llist.h>
12 #include <linux/min_heap.h>
13 #include <linux/ratelimit.h>
14 #include <linux/vmalloc.h>
15 #include <linux/workqueue.h>
16 #include <linux/crc64.h>
20 #ifdef CONFIG_BCACHE_DEBUG
22 #define EBUG_ON(cond) BUG_ON(cond)
23 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
24 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
28 #define EBUG_ON(cond) do { if (cond) do {} while (0); } while (0)
29 #define atomic_dec_bug(v) atomic_dec(v)
30 #define atomic_inc_bug(v, i) atomic_inc(v)
34 #define init_heap(heap, _size, gfp) \
38 (heap)->size = (_size); \
39 _bytes = (heap)->size * sizeof(*(heap)->data); \
40 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
44 #define free_heap(heap) \
46 kvfree((heap)->data); \
47 (heap)->data = NULL; \
50 #define DECLARE_FIFO(type, name) \
52 size_t front, back, size, mask; \
56 #define fifo_for_each(c, fifo, iter) \
57 for (iter = (fifo)->front; \
58 c = (fifo)->data[iter], iter != (fifo)->back; \
59 iter = (iter + 1) & (fifo)->mask)
61 #define __init_fifo(fifo, gfp) \
63 size_t _allocated_size, _bytes; \
64 BUG_ON(!(fifo)->size); \
66 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
67 _bytes = _allocated_size * sizeof(*(fifo)->data); \
69 (fifo)->mask = _allocated_size - 1; \
70 (fifo)->front = (fifo)->back = 0; \
72 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
76 #define init_fifo_exact(fifo, _size, gfp) \
78 (fifo)->size = (_size); \
79 __init_fifo(fifo, gfp); \
82 #define init_fifo(fifo, _size, gfp) \
84 (fifo)->size = (_size); \
85 if ((fifo)->size > 4) \
86 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
87 __init_fifo(fifo, gfp); \
90 #define free_fifo(fifo) \
92 kvfree((fifo)->data); \
93 (fifo)->data = NULL; \
96 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
97 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
99 #define fifo_empty(fifo) (!fifo_used(fifo))
100 #define fifo_full(fifo) (!fifo_free(fifo))
102 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
103 #define fifo_back(fifo) \
104 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
106 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
108 #define fifo_push_back(fifo, i) \
110 bool _r = !fifo_full((fifo)); \
112 (fifo)->data[(fifo)->back++] = (i); \
113 (fifo)->back &= (fifo)->mask; \
118 #define fifo_pop_front(fifo, i) \
120 bool _r = !fifo_empty((fifo)); \
122 (i) = (fifo)->data[(fifo)->front++]; \
123 (fifo)->front &= (fifo)->mask; \
128 #define fifo_push_front(fifo, i) \
130 bool _r = !fifo_full((fifo)); \
133 (fifo)->front &= (fifo)->mask; \
134 (fifo)->data[(fifo)->front] = (i); \
139 #define fifo_pop_back(fifo, i) \
141 bool _r = !fifo_empty((fifo)); \
144 (fifo)->back &= (fifo)->mask; \
145 (i) = (fifo)->data[(fifo)->back] \
150 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
151 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
153 #define fifo_swap(l, r) \
155 swap((l)->front, (r)->front); \
156 swap((l)->back, (r)->back); \
157 swap((l)->size, (r)->size); \
158 swap((l)->mask, (r)->mask); \
159 swap((l)->data, (r)->data); \
162 #define fifo_move(dest, src) \
164 typeof(*((dest)->data)) _t; \
165 while (!fifo_full(dest) && \
167 fifo_push(dest, _t); \
171 * Simple array based allocator - preallocates a number of elements and you can
172 * never allocate more than that, also has no locking.
174 * Handy because if you know you only need a fixed number of elements you don't
175 * have to worry about memory allocation failure, and sometimes a mempool isn't
178 * We treat the free elements as entries in a singly linked list, and the
179 * freelist as a stack - allocating and freeing push and pop off the freelist.
182 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
188 #define array_alloc(array) \
190 typeof((array)->freelist) _ret = (array)->freelist; \
193 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
198 #define array_free(array, ptr) \
200 typeof((array)->freelist) _ptr = ptr; \
202 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
203 (array)->freelist = _ptr; \
206 #define array_allocator_init(array) \
208 typeof((array)->freelist) _i; \
210 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
211 (array)->freelist = NULL; \
213 for (_i = (array)->data; \
214 _i < (array)->data + ARRAY_SIZE((array)->data); \
216 array_free(array, _i); \
219 #define array_freelist_empty(array) ((array)->freelist == NULL)
221 #define ANYSINT_MAX(t) \
222 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
224 int bch_strtoint_h(const char *cp
, int *res
);
225 int bch_strtouint_h(const char *cp
, unsigned int *res
);
226 int bch_strtoll_h(const char *cp
, long long *res
);
227 int bch_strtoull_h(const char *cp
, unsigned long long *res
);
229 static inline int bch_strtol_h(const char *cp
, long *res
)
231 #if BITS_PER_LONG == 32
232 return bch_strtoint_h(cp
, (int *) res
);
234 return bch_strtoll_h(cp
, (long long *) res
);
238 static inline int bch_strtoul_h(const char *cp
, long *res
)
240 #if BITS_PER_LONG == 32
241 return bch_strtouint_h(cp
, (unsigned int *) res
);
243 return bch_strtoull_h(cp
, (unsigned long long *) res
);
247 #define strtoi_h(cp, res) \
248 (__builtin_types_compatible_p(typeof(*res), int) \
249 ? bch_strtoint_h(cp, (void *) res) \
250 : __builtin_types_compatible_p(typeof(*res), long) \
251 ? bch_strtol_h(cp, (void *) res) \
252 : __builtin_types_compatible_p(typeof(*res), long long) \
253 ? bch_strtoll_h(cp, (void *) res) \
254 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
255 ? bch_strtouint_h(cp, (void *) res) \
256 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
257 ? bch_strtoul_h(cp, (void *) res) \
258 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
259 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
261 #define strtoul_safe(cp, var) \
264 int _r = kstrtoul(cp, 10, &_v); \
270 #define strtoul_safe_clamp(cp, var, min, max) \
273 int _r = kstrtoul(cp, 10, &_v); \
275 var = clamp_t(typeof(var), _v, min, max); \
279 ssize_t
bch_hprint(char *buf
, int64_t v
);
281 bool bch_is_zero(const char *p
, size_t n
);
282 int bch_parse_uuid(const char *s
, char *uuid
);
287 * all fields are in nanoseconds, averages are ewmas stored left shifted
290 uint64_t max_duration
;
291 uint64_t average_duration
;
292 uint64_t average_frequency
;
296 void bch_time_stats_update(struct time_stats
*stats
, uint64_t time
);
298 static inline unsigned int local_clock_us(void)
300 return local_clock() >> 10;
303 #define NSEC_PER_ns 1L
304 #define NSEC_PER_us NSEC_PER_USEC
305 #define NSEC_PER_ms NSEC_PER_MSEC
306 #define NSEC_PER_sec NSEC_PER_SEC
308 #define __print_time_stat(stats, name, stat, units) \
309 sysfs_print(name ## _ ## stat ## _ ## units, \
310 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
312 #define sysfs_print_time_stats(stats, name, \
316 __print_time_stat(stats, name, \
317 average_frequency, frequency_units); \
318 __print_time_stat(stats, name, \
319 average_duration, duration_units); \
320 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
321 div_u64((stats)->max_duration, \
322 NSEC_PER_ ## duration_units)); \
324 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
325 ? div_s64(local_clock() - (stats)->last, \
326 NSEC_PER_ ## frequency_units) \
330 #define sysfs_time_stats_attribute(name, \
333 read_attribute(name ## _average_frequency_ ## frequency_units); \
334 read_attribute(name ## _average_duration_ ## duration_units); \
335 read_attribute(name ## _max_duration_ ## duration_units); \
336 read_attribute(name ## _last_ ## frequency_units)
338 #define sysfs_time_stats_attribute_list(name, \
341 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
342 &sysfs_ ## name ## _average_duration_ ## duration_units, \
343 &sysfs_ ## name ## _max_duration_ ## duration_units, \
344 &sysfs_ ## name ## _last_ ## frequency_units,
346 #define ewma_add(ewma, val, weight, factor) \
348 (ewma) *= (weight) - 1; \
349 (ewma) += (val) << factor; \
350 (ewma) /= (weight); \
354 struct bch_ratelimit
{
355 /* Next time we want to do some work, in nanoseconds */
359 * Rate at which we want to do work, in units per second
360 * The units here correspond to the units passed to bch_next_delay()
365 static inline void bch_ratelimit_reset(struct bch_ratelimit
*d
)
367 d
->next
= local_clock();
370 uint64_t bch_next_delay(struct bch_ratelimit
*d
, uint64_t done
);
372 #define __DIV_SAFE(n, d, zero) \
374 typeof(n) _n = (n); \
375 typeof(d) _d = (d); \
376 _d ? _n / _d : zero; \
379 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
381 #define container_of_or_null(ptr, type, member) \
383 typeof(ptr) _ptr = ptr; \
384 _ptr ? container_of(_ptr, type, member) : NULL; \
387 #define RB_INSERT(root, new, member, cmp) \
390 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
396 this = container_of(*n, typeof(*(new)), member); \
397 res = cmp(new, this); \
405 rb_link_node(&(new)->member, parent, n); \
406 rb_insert_color(&(new)->member, root); \
412 #define RB_SEARCH(root, search, member, cmp) \
414 struct rb_node *n = (root)->rb_node; \
415 typeof(&(search)) this, ret = NULL; \
419 this = container_of(n, typeof(search), member); \
420 res = cmp(&(search), this); \
432 #define RB_GREATER(root, search, member, cmp) \
434 struct rb_node *n = (root)->rb_node; \
435 typeof(&(search)) this, ret = NULL; \
439 this = container_of(n, typeof(search), member); \
440 res = cmp(&(search), this); \
450 #define RB_FIRST(root, type, member) \
451 container_of_or_null(rb_first(root), type, member)
453 #define RB_LAST(root, type, member) \
454 container_of_or_null(rb_last(root), type, member)
456 #define RB_NEXT(ptr, member) \
457 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
459 #define RB_PREV(ptr, member) \
460 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
462 static inline uint64_t bch_crc64(const void *p
, size_t len
)
464 uint64_t crc
= 0xffffffffffffffffULL
;
466 crc
= crc64_be(crc
, p
, len
);
467 return crc
^ 0xffffffffffffffffULL
;
471 * A stepwise-linear pseudo-exponential. This returns 1 << (x >>
472 * frac_bits), with the less-significant bits filled in by linear
475 * This can also be interpreted as a floating-point number format,
476 * where the low frac_bits are the mantissa (with implicit leading
477 * 1 bit), and the more significant bits are the exponent.
478 * The return value is 1.mantissa * 2^exponent.
480 * The way this is used, fract_bits is 6 and the largest possible
481 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
482 * so the maximum output is 0x1fc00.
484 static inline unsigned int fract_exp_two(unsigned int x
,
485 unsigned int fract_bits
)
487 unsigned int mantissa
= 1 << fract_bits
; /* Implicit bit */
489 mantissa
+= x
& (mantissa
- 1);
490 x
>>= fract_bits
; /* The exponent */
491 /* Largest intermediate value 0x7f0000 */
492 return mantissa
<< x
>> fract_bits
;
495 void bch_bio_map(struct bio
*bio
, void *base
);
496 int bch_bio_alloc_pages(struct bio
*bio
, gfp_t gfp_mask
);
498 #endif /* _BCACHE_UTIL_H */