1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
7 * This file is released under the GPL.
10 #include "dm-bio-record.h"
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <linux/async_tx.h>
25 #include <linux/dm-bufio.h>
29 #define DM_MSG_PREFIX "integrity"
31 #define DEFAULT_INTERLEAVE_SECTORS 32768
32 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
33 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34 #define DEFAULT_BUFFER_SECTORS 128
35 #define DEFAULT_JOURNAL_WATERMARK 50
36 #define DEFAULT_SYNC_MSEC 10000
37 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38 #define MIN_LOG2_INTERLEAVE_SECTORS 3
39 #define MAX_LOG2_INTERLEAVE_SECTORS 31
40 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
41 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42 #define RECALC_WRITE_SUPER 16
43 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
45 #define DISCARD_FILLER 0xf6
47 #define RECHECK_POOL_SIZE 256
50 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
51 * so it should not be enabled in the official kernel
54 //#define INTERNAL_VERIFY
60 #define SB_MAGIC "integrt"
61 #define SB_VERSION_1 1
62 #define SB_VERSION_2 2
63 #define SB_VERSION_3 3
64 #define SB_VERSION_4 4
65 #define SB_VERSION_5 5
66 #define SB_VERSION_6 6
68 #define MAX_SECTORS_PER_BLOCK 8
73 __u8 log2_interleave_sectors
;
74 __le16 integrity_tag_size
;
75 __le32 journal_sections
;
76 __le64 provided_data_sectors
; /* userspace uses this value */
78 __u8 log2_sectors_per_block
;
79 __u8 log2_blocks_per_bitmap_bit
;
86 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
87 #define SB_FLAG_RECALCULATING 0x2
88 #define SB_FLAG_DIRTY_BITMAP 0x4
89 #define SB_FLAG_FIXED_PADDING 0x8
90 #define SB_FLAG_FIXED_HMAC 0x10
91 #define SB_FLAG_INLINE 0x20
93 #define JOURNAL_ENTRY_ROUNDUP 8
95 typedef __le64 commit_id_t
;
96 #define JOURNAL_MAC_PER_SECTOR 8
98 struct journal_entry
{
106 commit_id_t last_bytes
[];
110 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
112 #if BITS_PER_LONG == 64
113 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
115 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
117 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
118 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
119 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
120 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
121 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
123 #define JOURNAL_BLOCK_SECTORS 8
124 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
125 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
127 struct journal_sector
{
128 struct_group(sectors
,
129 __u8 entries
[JOURNAL_SECTOR_DATA
- JOURNAL_MAC_PER_SECTOR
];
130 __u8 mac
[JOURNAL_MAC_PER_SECTOR
];
132 commit_id_t commit_id
;
135 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
137 #define METADATA_PADDING_SECTORS 8
139 #define N_COMMIT_IDS 4
141 static unsigned char prev_commit_seq(unsigned char seq
)
143 return (seq
+ N_COMMIT_IDS
- 1) % N_COMMIT_IDS
;
146 static unsigned char next_commit_seq(unsigned char seq
)
148 return (seq
+ 1) % N_COMMIT_IDS
;
152 * In-memory structures
155 struct journal_node
{
164 unsigned int key_size
;
167 struct dm_integrity_c
{
169 struct dm_dev
*meta_dev
;
170 unsigned int tag_size
;
172 unsigned int tuple_size
;
174 mempool_t journal_io_mempool
;
175 struct dm_io_client
*io
;
176 struct dm_bufio_client
*bufio
;
177 struct workqueue_struct
*metadata_wq
;
178 struct superblock
*sb
;
179 unsigned int journal_pages
;
180 unsigned int n_bitmap_blocks
;
182 struct page_list
*journal
;
183 struct page_list
*journal_io
;
184 struct page_list
*journal_xor
;
185 struct page_list
*recalc_bitmap
;
186 struct page_list
*may_write_bitmap
;
187 struct bitmap_block_status
*bbs
;
188 unsigned int bitmap_flush_interval
;
189 int synchronous_mode
;
190 struct bio_list synchronous_bios
;
191 struct delayed_work bitmap_flush_work
;
193 struct crypto_skcipher
*journal_crypt
;
194 struct scatterlist
**journal_scatterlist
;
195 struct scatterlist
**journal_io_scatterlist
;
196 struct skcipher_request
**sk_requests
;
198 struct crypto_shash
*journal_mac
;
200 struct journal_node
*journal_tree
;
201 struct rb_root journal_tree_root
;
203 sector_t provided_data_sectors
;
205 unsigned short journal_entry_size
;
206 unsigned char journal_entries_per_sector
;
207 unsigned char journal_section_entries
;
208 unsigned short journal_section_sectors
;
209 unsigned int journal_sections
;
210 unsigned int journal_entries
;
211 sector_t data_device_sectors
;
212 sector_t meta_device_sectors
;
213 unsigned int initial_sectors
;
214 unsigned int metadata_run
;
215 __s8 log2_metadata_run
;
216 __u8 log2_buffer_sectors
;
217 __u8 sectors_per_block
;
218 __u8 log2_blocks_per_bitmap_bit
;
224 struct crypto_shash
*internal_hash
;
226 struct dm_target
*ti
;
228 /* these variables are locked with endio_wait.lock */
229 struct rb_root in_progress
;
230 struct list_head wait_list
;
231 wait_queue_head_t endio_wait
;
232 struct workqueue_struct
*wait_wq
;
233 struct workqueue_struct
*offload_wq
;
235 unsigned char commit_seq
;
236 commit_id_t commit_ids
[N_COMMIT_IDS
];
238 unsigned int committed_section
;
239 unsigned int n_committed_sections
;
241 unsigned int uncommitted_section
;
242 unsigned int n_uncommitted_sections
;
244 unsigned int free_section
;
245 unsigned char free_section_entry
;
246 unsigned int free_sectors
;
248 unsigned int free_sectors_threshold
;
250 struct workqueue_struct
*commit_wq
;
251 struct work_struct commit_work
;
253 struct workqueue_struct
*writer_wq
;
254 struct work_struct writer_work
;
256 struct workqueue_struct
*recalc_wq
;
257 struct work_struct recalc_work
;
259 struct bio_list flush_bio_list
;
261 unsigned long autocommit_jiffies
;
262 struct timer_list autocommit_timer
;
263 unsigned int autocommit_msec
;
265 wait_queue_head_t copy_to_journal_wait
;
267 struct completion crypto_backoff
;
269 bool wrote_to_journal
;
270 bool journal_uptodate
;
272 bool recalculate_flag
;
273 bool reset_recalculate_flag
;
277 bool legacy_recalculate
;
279 struct alg_spec internal_hash_alg
;
280 struct alg_spec journal_crypt_alg
;
281 struct alg_spec journal_mac_alg
;
283 atomic64_t number_of_mismatches
;
285 mempool_t recheck_pool
;
286 struct bio_set recheck_bios
;
287 struct bio_set recalc_bios
;
289 struct notifier_block reboot_notifier
;
292 struct dm_integrity_range
{
293 sector_t logical_sector
;
299 struct task_struct
*task
;
300 struct list_head wait_entry
;
305 struct dm_integrity_io
{
306 struct work_struct work
;
308 struct dm_integrity_c
*ic
;
312 struct dm_integrity_range range
;
314 sector_t metadata_block
;
315 unsigned int metadata_offset
;
318 blk_status_t bi_status
;
320 struct completion
*completion
;
322 struct dm_bio_details bio_details
;
324 char *integrity_payload
;
325 unsigned payload_len
;
326 bool integrity_payload_from_mempool
;
327 bool integrity_range_locked
;
330 struct journal_completion
{
331 struct dm_integrity_c
*ic
;
333 struct completion comp
;
337 struct dm_integrity_range range
;
338 struct journal_completion
*comp
;
341 struct bitmap_block_status
{
342 struct work_struct work
;
343 struct dm_integrity_c
*ic
;
345 unsigned long *bitmap
;
346 struct bio_list bio_queue
;
347 spinlock_t bio_queue_lock
;
351 static struct kmem_cache
*journal_io_cache
;
353 #define JOURNAL_IO_MEMPOOL 32
356 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
357 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
358 len ? ": " : "", len, bytes)
360 #define DEBUG_print(x, ...) do { } while (0)
361 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
364 static void dm_integrity_map_continue(struct dm_integrity_io
*dio
, bool from_map
);
365 static int dm_integrity_map_inline(struct dm_integrity_io
*dio
, bool from_map
);
366 static void integrity_bio_wait(struct work_struct
*w
);
367 static void dm_integrity_dtr(struct dm_target
*ti
);
369 static void dm_integrity_io_error(struct dm_integrity_c
*ic
, const char *msg
, int err
)
372 atomic64_inc(&ic
->number_of_mismatches
);
373 if (!cmpxchg(&ic
->failed
, 0, err
))
374 DMERR("Error on %s: %d", msg
, err
);
377 static int dm_integrity_failed(struct dm_integrity_c
*ic
)
379 return READ_ONCE(ic
->failed
);
382 static bool dm_integrity_disable_recalculate(struct dm_integrity_c
*ic
)
384 if (ic
->legacy_recalculate
)
386 if (!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_HMAC
)) ?
387 ic
->internal_hash_alg
.key
|| ic
->journal_mac_alg
.key
:
388 ic
->internal_hash_alg
.key
&& !ic
->journal_mac_alg
.key
)
393 static commit_id_t
dm_integrity_commit_id(struct dm_integrity_c
*ic
, unsigned int i
,
394 unsigned int j
, unsigned char seq
)
397 * Xor the number with section and sector, so that if a piece of
398 * journal is written at wrong place, it is detected.
400 return ic
->commit_ids
[seq
] ^ cpu_to_le64(((__u64
)i
<< 32) ^ j
);
403 static void get_area_and_offset(struct dm_integrity_c
*ic
, sector_t data_sector
,
404 sector_t
*area
, sector_t
*offset
)
407 __u8 log2_interleave_sectors
= ic
->sb
->log2_interleave_sectors
;
408 *area
= data_sector
>> log2_interleave_sectors
;
409 *offset
= (unsigned int)data_sector
& ((1U << log2_interleave_sectors
) - 1);
412 *offset
= data_sector
;
416 #define sector_to_block(ic, n) \
418 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
419 (n) >>= (ic)->sb->log2_sectors_per_block; \
422 static __u64
get_metadata_sector_and_offset(struct dm_integrity_c
*ic
, sector_t area
,
423 sector_t offset
, unsigned int *metadata_offset
)
428 ms
= area
<< ic
->sb
->log2_interleave_sectors
;
429 if (likely(ic
->log2_metadata_run
>= 0))
430 ms
+= area
<< ic
->log2_metadata_run
;
432 ms
+= area
* ic
->metadata_run
;
433 ms
>>= ic
->log2_buffer_sectors
;
435 sector_to_block(ic
, offset
);
437 if (likely(ic
->log2_tag_size
>= 0)) {
438 ms
+= offset
>> (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
- ic
->log2_tag_size
);
439 mo
= (offset
<< ic
->log2_tag_size
) & ((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - 1);
441 ms
+= (__u64
)offset
* ic
->tag_size
>> (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
);
442 mo
= (offset
* ic
->tag_size
) & ((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - 1);
444 *metadata_offset
= mo
;
448 static sector_t
get_data_sector(struct dm_integrity_c
*ic
, sector_t area
, sector_t offset
)
455 result
= area
<< ic
->sb
->log2_interleave_sectors
;
456 if (likely(ic
->log2_metadata_run
>= 0))
457 result
+= (area
+ 1) << ic
->log2_metadata_run
;
459 result
+= (area
+ 1) * ic
->metadata_run
;
461 result
+= (sector_t
)ic
->initial_sectors
+ offset
;
467 static void wraparound_section(struct dm_integrity_c
*ic
, unsigned int *sec_ptr
)
469 if (unlikely(*sec_ptr
>= ic
->journal_sections
))
470 *sec_ptr
-= ic
->journal_sections
;
473 static void sb_set_version(struct dm_integrity_c
*ic
)
475 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_INLINE
))
476 ic
->sb
->version
= SB_VERSION_6
;
477 else if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_HMAC
))
478 ic
->sb
->version
= SB_VERSION_5
;
479 else if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
))
480 ic
->sb
->version
= SB_VERSION_4
;
481 else if (ic
->mode
== 'B' || ic
->sb
->flags
& cpu_to_le32(SB_FLAG_DIRTY_BITMAP
))
482 ic
->sb
->version
= SB_VERSION_3
;
483 else if (ic
->meta_dev
|| ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))
484 ic
->sb
->version
= SB_VERSION_2
;
486 ic
->sb
->version
= SB_VERSION_1
;
489 static int sb_mac(struct dm_integrity_c
*ic
, bool wr
)
491 SHASH_DESC_ON_STACK(desc
, ic
->journal_mac
);
493 unsigned int mac_size
= crypto_shash_digestsize(ic
->journal_mac
);
494 __u8
*sb
= (__u8
*)ic
->sb
;
495 __u8
*mac
= sb
+ (1 << SECTOR_SHIFT
) - mac_size
;
497 if (sizeof(struct superblock
) + mac_size
> 1 << SECTOR_SHIFT
||
498 mac_size
> HASH_MAX_DIGESTSIZE
) {
499 dm_integrity_io_error(ic
, "digest is too long", -EINVAL
);
503 desc
->tfm
= ic
->journal_mac
;
506 r
= crypto_shash_digest(desc
, sb
, mac
- sb
, mac
);
507 if (unlikely(r
< 0)) {
508 dm_integrity_io_error(ic
, "crypto_shash_digest", r
);
512 __u8 actual_mac
[HASH_MAX_DIGESTSIZE
];
514 r
= crypto_shash_digest(desc
, sb
, mac
- sb
, actual_mac
);
515 if (unlikely(r
< 0)) {
516 dm_integrity_io_error(ic
, "crypto_shash_digest", r
);
519 if (memcmp(mac
, actual_mac
, mac_size
)) {
520 dm_integrity_io_error(ic
, "superblock mac", -EILSEQ
);
521 dm_audit_log_target(DM_MSG_PREFIX
, "mac-superblock", ic
->ti
, 0);
529 static int sync_rw_sb(struct dm_integrity_c
*ic
, blk_opf_t opf
)
531 struct dm_io_request io_req
;
532 struct dm_io_region io_loc
;
533 const enum req_op op
= opf
& REQ_OP_MASK
;
537 io_req
.mem
.type
= DM_IO_KMEM
;
538 io_req
.mem
.ptr
.addr
= ic
->sb
;
539 io_req
.notify
.fn
= NULL
;
540 io_req
.client
= ic
->io
;
541 io_loc
.bdev
= ic
->meta_dev
? ic
->meta_dev
->bdev
: ic
->dev
->bdev
;
542 io_loc
.sector
= ic
->start
;
543 io_loc
.count
= SB_SECTORS
;
545 if (op
== REQ_OP_WRITE
) {
547 if (ic
->journal_mac
&& ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_HMAC
)) {
548 r
= sb_mac(ic
, true);
554 r
= dm_io(&io_req
, 1, &io_loc
, NULL
, IOPRIO_DEFAULT
);
558 if (op
== REQ_OP_READ
) {
559 if (ic
->mode
!= 'R' && ic
->journal_mac
&& ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_HMAC
)) {
560 r
= sb_mac(ic
, false);
569 #define BITMAP_OP_TEST_ALL_SET 0
570 #define BITMAP_OP_TEST_ALL_CLEAR 1
571 #define BITMAP_OP_SET 2
572 #define BITMAP_OP_CLEAR 3
574 static bool block_bitmap_op(struct dm_integrity_c
*ic
, struct page_list
*bitmap
,
575 sector_t sector
, sector_t n_sectors
, int mode
)
577 unsigned long bit
, end_bit
, this_end_bit
, page
, end_page
;
580 if (unlikely(((sector
| n_sectors
) & ((1 << ic
->sb
->log2_sectors_per_block
) - 1)) != 0)) {
581 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
584 ic
->sb
->log2_sectors_per_block
,
585 ic
->log2_blocks_per_bitmap_bit
,
590 if (unlikely(!n_sectors
))
593 bit
= sector
>> (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
594 end_bit
= (sector
+ n_sectors
- 1) >>
595 (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
597 page
= bit
/ (PAGE_SIZE
* 8);
598 bit
%= PAGE_SIZE
* 8;
600 end_page
= end_bit
/ (PAGE_SIZE
* 8);
601 end_bit
%= PAGE_SIZE
* 8;
605 this_end_bit
= PAGE_SIZE
* 8 - 1;
607 this_end_bit
= end_bit
;
609 data
= lowmem_page_address(bitmap
[page
].page
);
611 if (mode
== BITMAP_OP_TEST_ALL_SET
) {
612 while (bit
<= this_end_bit
) {
613 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
615 if (data
[bit
/ BITS_PER_LONG
] != -1)
617 bit
+= BITS_PER_LONG
;
618 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
621 if (!test_bit(bit
, data
))
625 } else if (mode
== BITMAP_OP_TEST_ALL_CLEAR
) {
626 while (bit
<= this_end_bit
) {
627 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
629 if (data
[bit
/ BITS_PER_LONG
] != 0)
631 bit
+= BITS_PER_LONG
;
632 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
635 if (test_bit(bit
, data
))
639 } else if (mode
== BITMAP_OP_SET
) {
640 while (bit
<= this_end_bit
) {
641 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
643 data
[bit
/ BITS_PER_LONG
] = -1;
644 bit
+= BITS_PER_LONG
;
645 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
648 __set_bit(bit
, data
);
651 } else if (mode
== BITMAP_OP_CLEAR
) {
652 if (!bit
&& this_end_bit
== PAGE_SIZE
* 8 - 1)
655 while (bit
<= this_end_bit
) {
656 if (!(bit
% BITS_PER_LONG
) && this_end_bit
>= bit
+ BITS_PER_LONG
- 1) {
658 data
[bit
/ BITS_PER_LONG
] = 0;
659 bit
+= BITS_PER_LONG
;
660 } while (this_end_bit
>= bit
+ BITS_PER_LONG
- 1);
663 __clear_bit(bit
, data
);
671 if (unlikely(page
< end_page
)) {
680 static void block_bitmap_copy(struct dm_integrity_c
*ic
, struct page_list
*dst
, struct page_list
*src
)
682 unsigned int n_bitmap_pages
= DIV_ROUND_UP(ic
->n_bitmap_blocks
, PAGE_SIZE
/ BITMAP_BLOCK_SIZE
);
685 for (i
= 0; i
< n_bitmap_pages
; i
++) {
686 unsigned long *dst_data
= lowmem_page_address(dst
[i
].page
);
687 unsigned long *src_data
= lowmem_page_address(src
[i
].page
);
689 copy_page(dst_data
, src_data
);
693 static struct bitmap_block_status
*sector_to_bitmap_block(struct dm_integrity_c
*ic
, sector_t sector
)
695 unsigned int bit
= sector
>> (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
696 unsigned int bitmap_block
= bit
/ (BITMAP_BLOCK_SIZE
* 8);
698 BUG_ON(bitmap_block
>= ic
->n_bitmap_blocks
);
699 return &ic
->bbs
[bitmap_block
];
702 static void access_journal_check(struct dm_integrity_c
*ic
, unsigned int section
, unsigned int offset
,
703 bool e
, const char *function
)
705 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
706 unsigned int limit
= e
? ic
->journal_section_entries
: ic
->journal_section_sectors
;
708 if (unlikely(section
>= ic
->journal_sections
) ||
709 unlikely(offset
>= limit
)) {
710 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
711 function
, section
, offset
, ic
->journal_sections
, limit
);
717 static void page_list_location(struct dm_integrity_c
*ic
, unsigned int section
, unsigned int offset
,
718 unsigned int *pl_index
, unsigned int *pl_offset
)
722 access_journal_check(ic
, section
, offset
, false, "page_list_location");
724 sector
= section
* ic
->journal_section_sectors
+ offset
;
726 *pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
727 *pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
730 static struct journal_sector
*access_page_list(struct dm_integrity_c
*ic
, struct page_list
*pl
,
731 unsigned int section
, unsigned int offset
, unsigned int *n_sectors
)
733 unsigned int pl_index
, pl_offset
;
736 page_list_location(ic
, section
, offset
, &pl_index
, &pl_offset
);
739 *n_sectors
= (PAGE_SIZE
- pl_offset
) >> SECTOR_SHIFT
;
741 va
= lowmem_page_address(pl
[pl_index
].page
);
743 return (struct journal_sector
*)(va
+ pl_offset
);
746 static struct journal_sector
*access_journal(struct dm_integrity_c
*ic
, unsigned int section
, unsigned int offset
)
748 return access_page_list(ic
, ic
->journal
, section
, offset
, NULL
);
751 static struct journal_entry
*access_journal_entry(struct dm_integrity_c
*ic
, unsigned int section
, unsigned int n
)
753 unsigned int rel_sector
, offset
;
754 struct journal_sector
*js
;
756 access_journal_check(ic
, section
, n
, true, "access_journal_entry");
758 rel_sector
= n
% JOURNAL_BLOCK_SECTORS
;
759 offset
= n
/ JOURNAL_BLOCK_SECTORS
;
761 js
= access_journal(ic
, section
, rel_sector
);
762 return (struct journal_entry
*)((char *)js
+ offset
* ic
->journal_entry_size
);
765 static struct journal_sector
*access_journal_data(struct dm_integrity_c
*ic
, unsigned int section
, unsigned int n
)
767 n
<<= ic
->sb
->log2_sectors_per_block
;
769 n
+= JOURNAL_BLOCK_SECTORS
;
771 access_journal_check(ic
, section
, n
, false, "access_journal_data");
773 return access_journal(ic
, section
, n
);
776 static void section_mac(struct dm_integrity_c
*ic
, unsigned int section
, __u8 result
[JOURNAL_MAC_SIZE
])
778 SHASH_DESC_ON_STACK(desc
, ic
->journal_mac
);
780 unsigned int j
, size
;
782 desc
->tfm
= ic
->journal_mac
;
784 r
= crypto_shash_init(desc
);
785 if (unlikely(r
< 0)) {
786 dm_integrity_io_error(ic
, "crypto_shash_init", r
);
790 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_HMAC
)) {
793 r
= crypto_shash_update(desc
, (__u8
*)&ic
->sb
->salt
, SALT_SIZE
);
794 if (unlikely(r
< 0)) {
795 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
799 section_le
= cpu_to_le64(section
);
800 r
= crypto_shash_update(desc
, (__u8
*)§ion_le
, sizeof(section_le
));
801 if (unlikely(r
< 0)) {
802 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
807 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
808 struct journal_entry
*je
= access_journal_entry(ic
, section
, j
);
810 r
= crypto_shash_update(desc
, (__u8
*)&je
->u
.sector
, sizeof(je
->u
.sector
));
811 if (unlikely(r
< 0)) {
812 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
817 size
= crypto_shash_digestsize(ic
->journal_mac
);
819 if (likely(size
<= JOURNAL_MAC_SIZE
)) {
820 r
= crypto_shash_final(desc
, result
);
821 if (unlikely(r
< 0)) {
822 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
825 memset(result
+ size
, 0, JOURNAL_MAC_SIZE
- size
);
827 __u8 digest
[HASH_MAX_DIGESTSIZE
];
829 if (WARN_ON(size
> sizeof(digest
))) {
830 dm_integrity_io_error(ic
, "digest_size", -EINVAL
);
833 r
= crypto_shash_final(desc
, digest
);
834 if (unlikely(r
< 0)) {
835 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
838 memcpy(result
, digest
, JOURNAL_MAC_SIZE
);
843 memset(result
, 0, JOURNAL_MAC_SIZE
);
846 static void rw_section_mac(struct dm_integrity_c
*ic
, unsigned int section
, bool wr
)
848 __u8 result
[JOURNAL_MAC_SIZE
];
851 if (!ic
->journal_mac
)
854 section_mac(ic
, section
, result
);
856 for (j
= 0; j
< JOURNAL_BLOCK_SECTORS
; j
++) {
857 struct journal_sector
*js
= access_journal(ic
, section
, j
);
860 memcpy(&js
->mac
, result
+ (j
* JOURNAL_MAC_PER_SECTOR
), JOURNAL_MAC_PER_SECTOR
);
862 if (memcmp(&js
->mac
, result
+ (j
* JOURNAL_MAC_PER_SECTOR
), JOURNAL_MAC_PER_SECTOR
)) {
863 dm_integrity_io_error(ic
, "journal mac", -EILSEQ
);
864 dm_audit_log_target(DM_MSG_PREFIX
, "mac-journal", ic
->ti
, 0);
870 static void complete_journal_op(void *context
)
872 struct journal_completion
*comp
= context
;
874 BUG_ON(!atomic_read(&comp
->in_flight
));
875 if (likely(atomic_dec_and_test(&comp
->in_flight
)))
876 complete(&comp
->comp
);
879 static void xor_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned int section
,
880 unsigned int n_sections
, struct journal_completion
*comp
)
882 struct async_submit_ctl submit
;
883 size_t n_bytes
= (size_t)(n_sections
* ic
->journal_section_sectors
) << SECTOR_SHIFT
;
884 unsigned int pl_index
, pl_offset
, section_index
;
885 struct page_list
*source_pl
, *target_pl
;
887 if (likely(encrypt
)) {
888 source_pl
= ic
->journal
;
889 target_pl
= ic
->journal_io
;
891 source_pl
= ic
->journal_io
;
892 target_pl
= ic
->journal
;
895 page_list_location(ic
, section
, 0, &pl_index
, &pl_offset
);
897 atomic_add(roundup(pl_offset
+ n_bytes
, PAGE_SIZE
) >> PAGE_SHIFT
, &comp
->in_flight
);
899 init_async_submit(&submit
, ASYNC_TX_XOR_ZERO_DST
, NULL
, complete_journal_op
, comp
, NULL
);
901 section_index
= pl_index
;
905 struct page
*src_pages
[2];
906 struct page
*dst_page
;
908 while (unlikely(pl_index
== section_index
)) {
912 rw_section_mac(ic
, section
, true);
917 page_list_location(ic
, section
, 0, §ion_index
, &dummy
);
920 this_step
= min(n_bytes
, (size_t)PAGE_SIZE
- pl_offset
);
921 dst_page
= target_pl
[pl_index
].page
;
922 src_pages
[0] = source_pl
[pl_index
].page
;
923 src_pages
[1] = ic
->journal_xor
[pl_index
].page
;
925 async_xor(dst_page
, src_pages
, pl_offset
, 2, this_step
, &submit
);
929 n_bytes
-= this_step
;
934 async_tx_issue_pending_all();
937 static void complete_journal_encrypt(void *data
, int err
)
939 struct journal_completion
*comp
= data
;
942 if (likely(err
== -EINPROGRESS
)) {
943 complete(&comp
->ic
->crypto_backoff
);
946 dm_integrity_io_error(comp
->ic
, "asynchronous encrypt", err
);
948 complete_journal_op(comp
);
951 static bool do_crypt(bool encrypt
, struct skcipher_request
*req
, struct journal_completion
*comp
)
955 skcipher_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
956 complete_journal_encrypt
, comp
);
958 r
= crypto_skcipher_encrypt(req
);
960 r
= crypto_skcipher_decrypt(req
);
963 if (likely(r
== -EINPROGRESS
))
965 if (likely(r
== -EBUSY
)) {
966 wait_for_completion(&comp
->ic
->crypto_backoff
);
967 reinit_completion(&comp
->ic
->crypto_backoff
);
970 dm_integrity_io_error(comp
->ic
, "encrypt", r
);
974 static void crypt_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned int section
,
975 unsigned int n_sections
, struct journal_completion
*comp
)
977 struct scatterlist
**source_sg
;
978 struct scatterlist
**target_sg
;
980 atomic_add(2, &comp
->in_flight
);
982 if (likely(encrypt
)) {
983 source_sg
= ic
->journal_scatterlist
;
984 target_sg
= ic
->journal_io_scatterlist
;
986 source_sg
= ic
->journal_io_scatterlist
;
987 target_sg
= ic
->journal_scatterlist
;
991 struct skcipher_request
*req
;
996 rw_section_mac(ic
, section
, true);
998 req
= ic
->sk_requests
[section
];
999 ivsize
= crypto_skcipher_ivsize(ic
->journal_crypt
);
1002 memcpy(iv
, iv
+ ivsize
, ivsize
);
1004 req
->src
= source_sg
[section
];
1005 req
->dst
= target_sg
[section
];
1007 if (unlikely(do_crypt(encrypt
, req
, comp
)))
1008 atomic_inc(&comp
->in_flight
);
1012 } while (n_sections
);
1014 atomic_dec(&comp
->in_flight
);
1015 complete_journal_op(comp
);
1018 static void encrypt_journal(struct dm_integrity_c
*ic
, bool encrypt
, unsigned int section
,
1019 unsigned int n_sections
, struct journal_completion
*comp
)
1021 if (ic
->journal_xor
)
1022 return xor_journal(ic
, encrypt
, section
, n_sections
, comp
);
1024 return crypt_journal(ic
, encrypt
, section
, n_sections
, comp
);
1027 static void complete_journal_io(unsigned long error
, void *context
)
1029 struct journal_completion
*comp
= context
;
1031 if (unlikely(error
!= 0))
1032 dm_integrity_io_error(comp
->ic
, "writing journal", -EIO
);
1033 complete_journal_op(comp
);
1036 static void rw_journal_sectors(struct dm_integrity_c
*ic
, blk_opf_t opf
,
1037 unsigned int sector
, unsigned int n_sectors
,
1038 struct journal_completion
*comp
)
1040 struct dm_io_request io_req
;
1041 struct dm_io_region io_loc
;
1042 unsigned int pl_index
, pl_offset
;
1045 if (unlikely(dm_integrity_failed(ic
))) {
1047 complete_journal_io(-1UL, comp
);
1051 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
1052 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
1054 io_req
.bi_opf
= opf
;
1055 io_req
.mem
.type
= DM_IO_PAGE_LIST
;
1057 io_req
.mem
.ptr
.pl
= &ic
->journal_io
[pl_index
];
1059 io_req
.mem
.ptr
.pl
= &ic
->journal
[pl_index
];
1060 io_req
.mem
.offset
= pl_offset
;
1061 if (likely(comp
!= NULL
)) {
1062 io_req
.notify
.fn
= complete_journal_io
;
1063 io_req
.notify
.context
= comp
;
1065 io_req
.notify
.fn
= NULL
;
1067 io_req
.client
= ic
->io
;
1068 io_loc
.bdev
= ic
->meta_dev
? ic
->meta_dev
->bdev
: ic
->dev
->bdev
;
1069 io_loc
.sector
= ic
->start
+ SB_SECTORS
+ sector
;
1070 io_loc
.count
= n_sectors
;
1072 r
= dm_io(&io_req
, 1, &io_loc
, NULL
, IOPRIO_DEFAULT
);
1074 dm_integrity_io_error(ic
, (opf
& REQ_OP_MASK
) == REQ_OP_READ
?
1075 "reading journal" : "writing journal", r
);
1077 WARN_ONCE(1, "asynchronous dm_io failed: %d", r
);
1078 complete_journal_io(-1UL, comp
);
1083 static void rw_journal(struct dm_integrity_c
*ic
, blk_opf_t opf
,
1084 unsigned int section
, unsigned int n_sections
,
1085 struct journal_completion
*comp
)
1087 unsigned int sector
, n_sectors
;
1089 sector
= section
* ic
->journal_section_sectors
;
1090 n_sectors
= n_sections
* ic
->journal_section_sectors
;
1092 rw_journal_sectors(ic
, opf
, sector
, n_sectors
, comp
);
1095 static void write_journal(struct dm_integrity_c
*ic
, unsigned int commit_start
, unsigned int commit_sections
)
1097 struct journal_completion io_comp
;
1098 struct journal_completion crypt_comp_1
;
1099 struct journal_completion crypt_comp_2
;
1103 init_completion(&io_comp
.comp
);
1105 if (commit_start
+ commit_sections
<= ic
->journal_sections
) {
1106 io_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
1107 if (ic
->journal_io
) {
1108 crypt_comp_1
.ic
= ic
;
1109 init_completion(&crypt_comp_1
.comp
);
1110 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1111 encrypt_journal(ic
, true, commit_start
, commit_sections
, &crypt_comp_1
);
1112 wait_for_completion_io(&crypt_comp_1
.comp
);
1114 for (i
= 0; i
< commit_sections
; i
++)
1115 rw_section_mac(ic
, commit_start
+ i
, true);
1117 rw_journal(ic
, REQ_OP_WRITE
| REQ_FUA
| REQ_SYNC
, commit_start
,
1118 commit_sections
, &io_comp
);
1120 unsigned int to_end
;
1122 io_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(2);
1123 to_end
= ic
->journal_sections
- commit_start
;
1124 if (ic
->journal_io
) {
1125 crypt_comp_1
.ic
= ic
;
1126 init_completion(&crypt_comp_1
.comp
);
1127 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1128 encrypt_journal(ic
, true, commit_start
, to_end
, &crypt_comp_1
);
1129 if (try_wait_for_completion(&crypt_comp_1
.comp
)) {
1130 rw_journal(ic
, REQ_OP_WRITE
| REQ_FUA
,
1131 commit_start
, to_end
, &io_comp
);
1132 reinit_completion(&crypt_comp_1
.comp
);
1133 crypt_comp_1
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1134 encrypt_journal(ic
, true, 0, commit_sections
- to_end
, &crypt_comp_1
);
1135 wait_for_completion_io(&crypt_comp_1
.comp
);
1137 crypt_comp_2
.ic
= ic
;
1138 init_completion(&crypt_comp_2
.comp
);
1139 crypt_comp_2
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
1140 encrypt_journal(ic
, true, 0, commit_sections
- to_end
, &crypt_comp_2
);
1141 wait_for_completion_io(&crypt_comp_1
.comp
);
1142 rw_journal(ic
, REQ_OP_WRITE
| REQ_FUA
, commit_start
, to_end
, &io_comp
);
1143 wait_for_completion_io(&crypt_comp_2
.comp
);
1146 for (i
= 0; i
< to_end
; i
++)
1147 rw_section_mac(ic
, commit_start
+ i
, true);
1148 rw_journal(ic
, REQ_OP_WRITE
| REQ_FUA
, commit_start
, to_end
, &io_comp
);
1149 for (i
= 0; i
< commit_sections
- to_end
; i
++)
1150 rw_section_mac(ic
, i
, true);
1152 rw_journal(ic
, REQ_OP_WRITE
| REQ_FUA
, 0, commit_sections
- to_end
, &io_comp
);
1155 wait_for_completion_io(&io_comp
.comp
);
1158 static void copy_from_journal(struct dm_integrity_c
*ic
, unsigned int section
, unsigned int offset
,
1159 unsigned int n_sectors
, sector_t target
, io_notify_fn fn
, void *data
)
1161 struct dm_io_request io_req
;
1162 struct dm_io_region io_loc
;
1164 unsigned int sector
, pl_index
, pl_offset
;
1166 BUG_ON((target
| n_sectors
| offset
) & (unsigned int)(ic
->sectors_per_block
- 1));
1168 if (unlikely(dm_integrity_failed(ic
))) {
1173 sector
= section
* ic
->journal_section_sectors
+ JOURNAL_BLOCK_SECTORS
+ offset
;
1175 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
1176 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
1178 io_req
.bi_opf
= REQ_OP_WRITE
;
1179 io_req
.mem
.type
= DM_IO_PAGE_LIST
;
1180 io_req
.mem
.ptr
.pl
= &ic
->journal
[pl_index
];
1181 io_req
.mem
.offset
= pl_offset
;
1182 io_req
.notify
.fn
= fn
;
1183 io_req
.notify
.context
= data
;
1184 io_req
.client
= ic
->io
;
1185 io_loc
.bdev
= ic
->dev
->bdev
;
1186 io_loc
.sector
= target
;
1187 io_loc
.count
= n_sectors
;
1189 r
= dm_io(&io_req
, 1, &io_loc
, NULL
, IOPRIO_DEFAULT
);
1191 WARN_ONCE(1, "asynchronous dm_io failed: %d", r
);
1196 static bool ranges_overlap(struct dm_integrity_range
*range1
, struct dm_integrity_range
*range2
)
1198 return range1
->logical_sector
< range2
->logical_sector
+ range2
->n_sectors
&&
1199 range1
->logical_sector
+ range1
->n_sectors
> range2
->logical_sector
;
1202 static bool add_new_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
, bool check_waiting
)
1204 struct rb_node
**n
= &ic
->in_progress
.rb_node
;
1205 struct rb_node
*parent
;
1207 BUG_ON((new_range
->logical_sector
| new_range
->n_sectors
) & (unsigned int)(ic
->sectors_per_block
- 1));
1209 if (likely(check_waiting
)) {
1210 struct dm_integrity_range
*range
;
1212 list_for_each_entry(range
, &ic
->wait_list
, wait_entry
) {
1213 if (unlikely(ranges_overlap(range
, new_range
)))
1221 struct dm_integrity_range
*range
= container_of(*n
, struct dm_integrity_range
, node
);
1224 if (new_range
->logical_sector
+ new_range
->n_sectors
<= range
->logical_sector
)
1225 n
= &range
->node
.rb_left
;
1226 else if (new_range
->logical_sector
>= range
->logical_sector
+ range
->n_sectors
)
1227 n
= &range
->node
.rb_right
;
1232 rb_link_node(&new_range
->node
, parent
, n
);
1233 rb_insert_color(&new_range
->node
, &ic
->in_progress
);
1238 static void remove_range_unlocked(struct dm_integrity_c
*ic
, struct dm_integrity_range
*range
)
1240 rb_erase(&range
->node
, &ic
->in_progress
);
1241 while (unlikely(!list_empty(&ic
->wait_list
))) {
1242 struct dm_integrity_range
*last_range
=
1243 list_first_entry(&ic
->wait_list
, struct dm_integrity_range
, wait_entry
);
1244 struct task_struct
*last_range_task
;
1246 last_range_task
= last_range
->task
;
1247 list_del(&last_range
->wait_entry
);
1248 if (!add_new_range(ic
, last_range
, false)) {
1249 last_range
->task
= last_range_task
;
1250 list_add(&last_range
->wait_entry
, &ic
->wait_list
);
1253 last_range
->waiting
= false;
1254 wake_up_process(last_range_task
);
1258 static void remove_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*range
)
1260 unsigned long flags
;
1262 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1263 remove_range_unlocked(ic
, range
);
1264 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1267 static void wait_and_add_new_range(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
)
1269 new_range
->waiting
= true;
1270 list_add_tail(&new_range
->wait_entry
, &ic
->wait_list
);
1271 new_range
->task
= current
;
1273 __set_current_state(TASK_UNINTERRUPTIBLE
);
1274 spin_unlock_irq(&ic
->endio_wait
.lock
);
1276 spin_lock_irq(&ic
->endio_wait
.lock
);
1277 } while (unlikely(new_range
->waiting
));
1280 static void add_new_range_and_wait(struct dm_integrity_c
*ic
, struct dm_integrity_range
*new_range
)
1282 if (unlikely(!add_new_range(ic
, new_range
, true)))
1283 wait_and_add_new_range(ic
, new_range
);
1286 static void init_journal_node(struct journal_node
*node
)
1288 RB_CLEAR_NODE(&node
->node
);
1289 node
->sector
= (sector_t
)-1;
1292 static void add_journal_node(struct dm_integrity_c
*ic
, struct journal_node
*node
, sector_t sector
)
1294 struct rb_node
**link
;
1295 struct rb_node
*parent
;
1297 node
->sector
= sector
;
1298 BUG_ON(!RB_EMPTY_NODE(&node
->node
));
1300 link
= &ic
->journal_tree_root
.rb_node
;
1304 struct journal_node
*j
;
1307 j
= container_of(parent
, struct journal_node
, node
);
1308 if (sector
< j
->sector
)
1309 link
= &j
->node
.rb_left
;
1311 link
= &j
->node
.rb_right
;
1314 rb_link_node(&node
->node
, parent
, link
);
1315 rb_insert_color(&node
->node
, &ic
->journal_tree_root
);
1318 static void remove_journal_node(struct dm_integrity_c
*ic
, struct journal_node
*node
)
1320 BUG_ON(RB_EMPTY_NODE(&node
->node
));
1321 rb_erase(&node
->node
, &ic
->journal_tree_root
);
1322 init_journal_node(node
);
1325 #define NOT_FOUND (-1U)
1327 static unsigned int find_journal_node(struct dm_integrity_c
*ic
, sector_t sector
, sector_t
*next_sector
)
1329 struct rb_node
*n
= ic
->journal_tree_root
.rb_node
;
1330 unsigned int found
= NOT_FOUND
;
1332 *next_sector
= (sector_t
)-1;
1334 struct journal_node
*j
= container_of(n
, struct journal_node
, node
);
1336 if (sector
== j
->sector
)
1337 found
= j
- ic
->journal_tree
;
1339 if (sector
< j
->sector
) {
1340 *next_sector
= j
->sector
;
1341 n
= j
->node
.rb_left
;
1343 n
= j
->node
.rb_right
;
1349 static bool test_journal_node(struct dm_integrity_c
*ic
, unsigned int pos
, sector_t sector
)
1351 struct journal_node
*node
, *next_node
;
1352 struct rb_node
*next
;
1354 if (unlikely(pos
>= ic
->journal_entries
))
1356 node
= &ic
->journal_tree
[pos
];
1357 if (unlikely(RB_EMPTY_NODE(&node
->node
)))
1359 if (unlikely(node
->sector
!= sector
))
1362 next
= rb_next(&node
->node
);
1363 if (unlikely(!next
))
1366 next_node
= container_of(next
, struct journal_node
, node
);
1367 return next_node
->sector
!= sector
;
1370 static bool find_newer_committed_node(struct dm_integrity_c
*ic
, struct journal_node
*node
)
1372 struct rb_node
*next
;
1373 struct journal_node
*next_node
;
1374 unsigned int next_section
;
1376 BUG_ON(RB_EMPTY_NODE(&node
->node
));
1378 next
= rb_next(&node
->node
);
1379 if (unlikely(!next
))
1382 next_node
= container_of(next
, struct journal_node
, node
);
1384 if (next_node
->sector
!= node
->sector
)
1387 next_section
= (unsigned int)(next_node
- ic
->journal_tree
) / ic
->journal_section_entries
;
1388 if (next_section
>= ic
->committed_section
&&
1389 next_section
< ic
->committed_section
+ ic
->n_committed_sections
)
1391 if (next_section
+ ic
->journal_sections
< ic
->committed_section
+ ic
->n_committed_sections
)
1401 static int dm_integrity_rw_tag(struct dm_integrity_c
*ic
, unsigned char *tag
, sector_t
*metadata_block
,
1402 unsigned int *metadata_offset
, unsigned int total_size
, int op
)
1404 #define MAY_BE_FILLER 1
1405 #define MAY_BE_HASH 2
1406 unsigned int hash_offset
= 0;
1407 unsigned int may_be
= MAY_BE_HASH
| (ic
->discard
? MAY_BE_FILLER
: 0);
1410 unsigned char *data
, *dp
;
1411 struct dm_buffer
*b
;
1412 unsigned int to_copy
;
1415 r
= dm_integrity_failed(ic
);
1419 data
= dm_bufio_read(ic
->bufio
, *metadata_block
, &b
);
1421 return PTR_ERR(data
);
1423 to_copy
= min((1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
) - *metadata_offset
, total_size
);
1424 dp
= data
+ *metadata_offset
;
1425 if (op
== TAG_READ
) {
1426 memcpy(tag
, dp
, to_copy
);
1427 } else if (op
== TAG_WRITE
) {
1428 if (memcmp(dp
, tag
, to_copy
)) {
1429 memcpy(dp
, tag
, to_copy
);
1430 dm_bufio_mark_partial_buffer_dirty(b
, *metadata_offset
, *metadata_offset
+ to_copy
);
1433 /* e.g.: op == TAG_CMP */
1435 if (likely(is_power_of_2(ic
->tag_size
))) {
1436 if (unlikely(memcmp(dp
, tag
, to_copy
)))
1437 if (unlikely(!ic
->discard
) ||
1438 unlikely(memchr_inv(dp
, DISCARD_FILLER
, to_copy
) != NULL
)) {
1446 for (i
= 0; i
< to_copy
; i
++, ts
--) {
1447 if (unlikely(dp
[i
] != tag
[i
]))
1448 may_be
&= ~MAY_BE_HASH
;
1449 if (likely(dp
[i
] != DISCARD_FILLER
))
1450 may_be
&= ~MAY_BE_FILLER
;
1452 if (unlikely(hash_offset
== ic
->tag_size
)) {
1453 if (unlikely(!may_be
)) {
1454 dm_bufio_release(b
);
1458 may_be
= MAY_BE_HASH
| (ic
->discard
? MAY_BE_FILLER
: 0);
1463 dm_bufio_release(b
);
1466 *metadata_offset
+= to_copy
;
1467 if (unlikely(*metadata_offset
== 1U << SECTOR_SHIFT
<< ic
->log2_buffer_sectors
)) {
1468 (*metadata_block
)++;
1469 *metadata_offset
= 0;
1472 if (unlikely(!is_power_of_2(ic
->tag_size
)))
1473 hash_offset
= (hash_offset
+ to_copy
) % ic
->tag_size
;
1475 total_size
-= to_copy
;
1476 } while (unlikely(total_size
));
1479 #undef MAY_BE_FILLER
1483 struct flush_request
{
1484 struct dm_io_request io_req
;
1485 struct dm_io_region io_reg
;
1486 struct dm_integrity_c
*ic
;
1487 struct completion comp
;
1490 static void flush_notify(unsigned long error
, void *fr_
)
1492 struct flush_request
*fr
= fr_
;
1494 if (unlikely(error
!= 0))
1495 dm_integrity_io_error(fr
->ic
, "flushing disk cache", -EIO
);
1496 complete(&fr
->comp
);
1499 static void dm_integrity_flush_buffers(struct dm_integrity_c
*ic
, bool flush_data
)
1502 struct flush_request fr
;
1507 fr
.io_req
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1508 fr
.io_req
.mem
.type
= DM_IO_KMEM
;
1509 fr
.io_req
.mem
.ptr
.addr
= NULL
;
1510 fr
.io_req
.notify
.fn
= flush_notify
;
1511 fr
.io_req
.notify
.context
= &fr
;
1512 fr
.io_req
.client
= dm_bufio_get_dm_io_client(ic
->bufio
);
1513 fr
.io_reg
.bdev
= ic
->dev
->bdev
;
1514 fr
.io_reg
.sector
= 0;
1515 fr
.io_reg
.count
= 0;
1517 init_completion(&fr
.comp
);
1518 r
= dm_io(&fr
.io_req
, 1, &fr
.io_reg
, NULL
, IOPRIO_DEFAULT
);
1522 r
= dm_bufio_write_dirty_buffers(ic
->bufio
);
1524 dm_integrity_io_error(ic
, "writing tags", r
);
1527 wait_for_completion(&fr
.comp
);
1530 static void sleep_on_endio_wait(struct dm_integrity_c
*ic
)
1532 DECLARE_WAITQUEUE(wait
, current
);
1534 __add_wait_queue(&ic
->endio_wait
, &wait
);
1535 __set_current_state(TASK_UNINTERRUPTIBLE
);
1536 spin_unlock_irq(&ic
->endio_wait
.lock
);
1538 spin_lock_irq(&ic
->endio_wait
.lock
);
1539 __remove_wait_queue(&ic
->endio_wait
, &wait
);
1542 static void autocommit_fn(struct timer_list
*t
)
1544 struct dm_integrity_c
*ic
= from_timer(ic
, t
, autocommit_timer
);
1546 if (likely(!dm_integrity_failed(ic
)))
1547 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1550 static void schedule_autocommit(struct dm_integrity_c
*ic
)
1552 if (!timer_pending(&ic
->autocommit_timer
))
1553 mod_timer(&ic
->autocommit_timer
, jiffies
+ ic
->autocommit_jiffies
);
1556 static void submit_flush_bio(struct dm_integrity_c
*ic
, struct dm_integrity_io
*dio
)
1559 unsigned long flags
;
1561 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1562 bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1563 bio_list_add(&ic
->flush_bio_list
, bio
);
1564 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1566 queue_work(ic
->commit_wq
, &ic
->commit_work
);
1569 static void do_endio(struct dm_integrity_c
*ic
, struct bio
*bio
)
1573 r
= dm_integrity_failed(ic
);
1574 if (unlikely(r
) && !bio
->bi_status
)
1575 bio
->bi_status
= errno_to_blk_status(r
);
1576 if (unlikely(ic
->synchronous_mode
) && bio_op(bio
) == REQ_OP_WRITE
) {
1577 unsigned long flags
;
1579 spin_lock_irqsave(&ic
->endio_wait
.lock
, flags
);
1580 bio_list_add(&ic
->synchronous_bios
, bio
);
1581 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, 0);
1582 spin_unlock_irqrestore(&ic
->endio_wait
.lock
, flags
);
1588 static void do_endio_flush(struct dm_integrity_c
*ic
, struct dm_integrity_io
*dio
)
1590 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1592 if (unlikely(dio
->fua
) && likely(!bio
->bi_status
) && likely(!dm_integrity_failed(ic
)))
1593 submit_flush_bio(ic
, dio
);
1598 static void dec_in_flight(struct dm_integrity_io
*dio
)
1600 if (atomic_dec_and_test(&dio
->in_flight
)) {
1601 struct dm_integrity_c
*ic
= dio
->ic
;
1604 remove_range(ic
, &dio
->range
);
1606 if (dio
->op
== REQ_OP_WRITE
|| unlikely(dio
->op
== REQ_OP_DISCARD
))
1607 schedule_autocommit(ic
);
1609 bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1610 if (unlikely(dio
->bi_status
) && !bio
->bi_status
)
1611 bio
->bi_status
= dio
->bi_status
;
1612 if (likely(!bio
->bi_status
) && unlikely(bio_sectors(bio
) != dio
->range
.n_sectors
)) {
1613 dio
->range
.logical_sector
+= dio
->range
.n_sectors
;
1614 bio_advance(bio
, dio
->range
.n_sectors
<< SECTOR_SHIFT
);
1615 INIT_WORK(&dio
->work
, integrity_bio_wait
);
1616 queue_work(ic
->offload_wq
, &dio
->work
);
1619 do_endio_flush(ic
, dio
);
1623 static void integrity_end_io(struct bio
*bio
)
1625 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
1627 dm_bio_restore(&dio
->bio_details
, bio
);
1628 if (bio
->bi_integrity
)
1629 bio
->bi_opf
|= REQ_INTEGRITY
;
1631 if (dio
->completion
)
1632 complete(dio
->completion
);
1637 static void integrity_sector_checksum(struct dm_integrity_c
*ic
, sector_t sector
,
1638 const char *data
, char *result
)
1640 __le64 sector_le
= cpu_to_le64(sector
);
1641 SHASH_DESC_ON_STACK(req
, ic
->internal_hash
);
1643 unsigned int digest_size
;
1645 req
->tfm
= ic
->internal_hash
;
1647 r
= crypto_shash_init(req
);
1648 if (unlikely(r
< 0)) {
1649 dm_integrity_io_error(ic
, "crypto_shash_init", r
);
1653 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_HMAC
)) {
1654 r
= crypto_shash_update(req
, (__u8
*)&ic
->sb
->salt
, SALT_SIZE
);
1655 if (unlikely(r
< 0)) {
1656 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
1661 r
= crypto_shash_update(req
, (const __u8
*)§or_le
, sizeof(sector_le
));
1662 if (unlikely(r
< 0)) {
1663 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
1667 r
= crypto_shash_update(req
, data
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
1668 if (unlikely(r
< 0)) {
1669 dm_integrity_io_error(ic
, "crypto_shash_update", r
);
1673 r
= crypto_shash_final(req
, result
);
1674 if (unlikely(r
< 0)) {
1675 dm_integrity_io_error(ic
, "crypto_shash_final", r
);
1679 digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1680 if (unlikely(digest_size
< ic
->tag_size
))
1681 memset(result
+ digest_size
, 0, ic
->tag_size
- digest_size
);
1686 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1687 get_random_bytes(result
, ic
->tag_size
);
1690 static noinline
void integrity_recheck(struct dm_integrity_io
*dio
, char *checksum
)
1692 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1693 struct dm_integrity_c
*ic
= dio
->ic
;
1694 struct bvec_iter iter
;
1696 sector_t sector
, logical_sector
, area
, offset
;
1699 get_area_and_offset(ic
, dio
->range
.logical_sector
, &area
, &offset
);
1700 dio
->metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
,
1701 &dio
->metadata_offset
);
1702 sector
= get_data_sector(ic
, area
, offset
);
1703 logical_sector
= dio
->range
.logical_sector
;
1705 page
= mempool_alloc(&ic
->recheck_pool
, GFP_NOIO
);
1707 __bio_for_each_segment(bv
, bio
, iter
, dio
->bio_details
.bi_iter
) {
1713 char *buffer
= page_to_virt(page
);
1715 struct dm_io_request io_req
;
1716 struct dm_io_region io_loc
;
1717 io_req
.bi_opf
= REQ_OP_READ
;
1718 io_req
.mem
.type
= DM_IO_KMEM
;
1719 io_req
.mem
.ptr
.addr
= buffer
;
1720 io_req
.notify
.fn
= NULL
;
1721 io_req
.client
= ic
->io
;
1722 io_loc
.bdev
= ic
->dev
->bdev
;
1723 io_loc
.sector
= sector
;
1724 io_loc
.count
= ic
->sectors_per_block
;
1726 /* Align the bio to logical block size */
1727 alignment
= dio
->range
.logical_sector
| bio_sectors(bio
) | (PAGE_SIZE
>> SECTOR_SHIFT
);
1728 alignment
&= -alignment
;
1729 io_loc
.sector
= round_down(io_loc
.sector
, alignment
);
1730 io_loc
.count
+= sector
- io_loc
.sector
;
1731 buffer
+= (sector
- io_loc
.sector
) << SECTOR_SHIFT
;
1732 io_loc
.count
= round_up(io_loc
.count
, alignment
);
1734 r
= dm_io(&io_req
, 1, &io_loc
, NULL
, IOPRIO_DEFAULT
);
1736 dio
->bi_status
= errno_to_blk_status(r
);
1740 integrity_sector_checksum(ic
, logical_sector
, buffer
, checksum
);
1741 r
= dm_integrity_rw_tag(ic
, checksum
, &dio
->metadata_block
,
1742 &dio
->metadata_offset
, ic
->tag_size
, TAG_CMP
);
1745 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1746 bio
->bi_bdev
, logical_sector
);
1747 atomic64_inc(&ic
->number_of_mismatches
);
1748 dm_audit_log_bio(DM_MSG_PREFIX
, "integrity-checksum",
1749 bio
, logical_sector
, 0);
1752 dio
->bi_status
= errno_to_blk_status(r
);
1756 mem
= bvec_kmap_local(&bv
);
1757 memcpy(mem
+ pos
, buffer
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
1760 pos
+= ic
->sectors_per_block
<< SECTOR_SHIFT
;
1761 sector
+= ic
->sectors_per_block
;
1762 logical_sector
+= ic
->sectors_per_block
;
1763 } while (pos
< bv
.bv_len
);
1766 mempool_free(page
, &ic
->recheck_pool
);
1769 static void integrity_metadata(struct work_struct
*w
)
1771 struct dm_integrity_io
*dio
= container_of(w
, struct dm_integrity_io
, work
);
1772 struct dm_integrity_c
*ic
= dio
->ic
;
1776 if (ic
->internal_hash
) {
1777 struct bvec_iter iter
;
1779 unsigned int digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
1780 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
1782 unsigned int extra_space
= unlikely(digest_size
> ic
->tag_size
) ? digest_size
- ic
->tag_size
: 0;
1783 char checksums_onstack
[MAX_T(size_t, HASH_MAX_DIGESTSIZE
, MAX_TAG_SIZE
)];
1785 unsigned int sectors_to_process
;
1787 if (unlikely(ic
->mode
== 'R'))
1790 if (likely(dio
->op
!= REQ_OP_DISCARD
))
1791 checksums
= kmalloc((PAGE_SIZE
>> SECTOR_SHIFT
>> ic
->sb
->log2_sectors_per_block
) * ic
->tag_size
+ extra_space
,
1792 GFP_NOIO
| __GFP_NORETRY
| __GFP_NOWARN
);
1794 checksums
= kmalloc(PAGE_SIZE
, GFP_NOIO
| __GFP_NORETRY
| __GFP_NOWARN
);
1796 checksums
= checksums_onstack
;
1797 if (WARN_ON(extra_space
&&
1798 digest_size
> sizeof(checksums_onstack
))) {
1804 if (unlikely(dio
->op
== REQ_OP_DISCARD
)) {
1805 unsigned int bi_size
= dio
->bio_details
.bi_iter
.bi_size
;
1806 unsigned int max_size
= likely(checksums
!= checksums_onstack
) ? PAGE_SIZE
: HASH_MAX_DIGESTSIZE
;
1807 unsigned int max_blocks
= max_size
/ ic
->tag_size
;
1809 memset(checksums
, DISCARD_FILLER
, max_size
);
1812 unsigned int this_step_blocks
= bi_size
>> (SECTOR_SHIFT
+ ic
->sb
->log2_sectors_per_block
);
1814 this_step_blocks
= min(this_step_blocks
, max_blocks
);
1815 r
= dm_integrity_rw_tag(ic
, checksums
, &dio
->metadata_block
, &dio
->metadata_offset
,
1816 this_step_blocks
* ic
->tag_size
, TAG_WRITE
);
1818 if (likely(checksums
!= checksums_onstack
))
1823 bi_size
-= this_step_blocks
<< (SECTOR_SHIFT
+ ic
->sb
->log2_sectors_per_block
);
1826 if (likely(checksums
!= checksums_onstack
))
1831 sector
= dio
->range
.logical_sector
;
1832 sectors_to_process
= dio
->range
.n_sectors
;
1834 __bio_for_each_segment(bv
, bio
, iter
, dio
->bio_details
.bi_iter
) {
1835 struct bio_vec bv_copy
= bv
;
1837 char *mem
, *checksums_ptr
;
1840 mem
= bvec_kmap_local(&bv_copy
);
1842 checksums_ptr
= checksums
;
1844 integrity_sector_checksum(ic
, sector
, mem
+ pos
, checksums_ptr
);
1845 checksums_ptr
+= ic
->tag_size
;
1846 sectors_to_process
-= ic
->sectors_per_block
;
1847 pos
+= ic
->sectors_per_block
<< SECTOR_SHIFT
;
1848 sector
+= ic
->sectors_per_block
;
1849 } while (pos
< bv_copy
.bv_len
&& sectors_to_process
&& checksums
!= checksums_onstack
);
1852 r
= dm_integrity_rw_tag(ic
, checksums
, &dio
->metadata_block
, &dio
->metadata_offset
,
1853 checksums_ptr
- checksums
, dio
->op
== REQ_OP_READ
? TAG_CMP
: TAG_WRITE
);
1855 if (likely(checksums
!= checksums_onstack
))
1858 integrity_recheck(dio
, checksums_onstack
);
1864 if (!sectors_to_process
)
1867 if (unlikely(pos
< bv_copy
.bv_len
)) {
1868 bv_copy
.bv_offset
+= pos
;
1869 bv_copy
.bv_len
-= pos
;
1874 if (likely(checksums
!= checksums_onstack
))
1877 struct bio_integrity_payload
*bip
= dio
->bio_details
.bi_integrity
;
1881 struct bvec_iter iter
;
1882 unsigned int data_to_process
= dio
->range
.n_sectors
;
1884 sector_to_block(ic
, data_to_process
);
1885 data_to_process
*= ic
->tag_size
;
1887 bip_for_each_vec(biv
, bip
, iter
) {
1889 unsigned int this_len
;
1891 BUG_ON(PageHighMem(biv
.bv_page
));
1892 tag
= bvec_virt(&biv
);
1893 this_len
= min(biv
.bv_len
, data_to_process
);
1894 r
= dm_integrity_rw_tag(ic
, tag
, &dio
->metadata_block
, &dio
->metadata_offset
,
1895 this_len
, dio
->op
== REQ_OP_READ
? TAG_READ
: TAG_WRITE
);
1898 data_to_process
-= this_len
;
1899 if (!data_to_process
)
1908 dio
->bi_status
= errno_to_blk_status(r
);
1912 static inline bool dm_integrity_check_limits(struct dm_integrity_c
*ic
, sector_t logical_sector
, struct bio
*bio
)
1914 if (unlikely(logical_sector
+ bio_sectors(bio
) > ic
->provided_data_sectors
)) {
1915 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1916 logical_sector
, bio_sectors(bio
),
1917 ic
->provided_data_sectors
);
1920 if (unlikely((logical_sector
| bio_sectors(bio
)) & (unsigned int)(ic
->sectors_per_block
- 1))) {
1921 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1922 ic
->sectors_per_block
,
1923 logical_sector
, bio_sectors(bio
));
1926 if (ic
->sectors_per_block
> 1 && likely(bio_op(bio
) != REQ_OP_DISCARD
)) {
1927 struct bvec_iter iter
;
1930 bio_for_each_segment(bv
, bio
, iter
) {
1931 if (unlikely(bv
.bv_len
& ((ic
->sectors_per_block
<< SECTOR_SHIFT
) - 1))) {
1932 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1933 bv
.bv_offset
, bv
.bv_len
, ic
->sectors_per_block
);
1941 static int dm_integrity_map(struct dm_target
*ti
, struct bio
*bio
)
1943 struct dm_integrity_c
*ic
= ti
->private;
1944 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
1945 struct bio_integrity_payload
*bip
;
1947 sector_t area
, offset
;
1951 dio
->op
= bio_op(bio
);
1953 if (ic
->mode
== 'I') {
1954 bio
->bi_iter
.bi_sector
= dm_target_offset(ic
->ti
, bio
->bi_iter
.bi_sector
);
1955 dio
->integrity_payload
= NULL
;
1956 dio
->integrity_payload_from_mempool
= false;
1957 dio
->integrity_range_locked
= false;
1958 return dm_integrity_map_inline(dio
, true);
1961 if (unlikely(dio
->op
== REQ_OP_DISCARD
)) {
1962 if (ti
->max_io_len
) {
1963 sector_t sec
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1964 unsigned int log2_max_io_len
= __fls(ti
->max_io_len
);
1965 sector_t start_boundary
= sec
>> log2_max_io_len
;
1966 sector_t end_boundary
= (sec
+ bio_sectors(bio
) - 1) >> log2_max_io_len
;
1968 if (start_boundary
< end_boundary
) {
1969 sector_t len
= ti
->max_io_len
- (sec
& (ti
->max_io_len
- 1));
1971 dm_accept_partial_bio(bio
, len
);
1976 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1977 submit_flush_bio(ic
, dio
);
1978 return DM_MAPIO_SUBMITTED
;
1981 dio
->range
.logical_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
1982 dio
->fua
= dio
->op
== REQ_OP_WRITE
&& bio
->bi_opf
& REQ_FUA
;
1983 if (unlikely(dio
->fua
)) {
1985 * Don't pass down the FUA flag because we have to flush
1986 * disk cache anyway.
1988 bio
->bi_opf
&= ~REQ_FUA
;
1990 if (unlikely(!dm_integrity_check_limits(ic
, dio
->range
.logical_sector
, bio
)))
1991 return DM_MAPIO_KILL
;
1993 bip
= bio_integrity(bio
);
1994 if (!ic
->internal_hash
) {
1996 unsigned int wanted_tag_size
= bio_sectors(bio
) >> ic
->sb
->log2_sectors_per_block
;
1998 if (ic
->log2_tag_size
>= 0)
1999 wanted_tag_size
<<= ic
->log2_tag_size
;
2001 wanted_tag_size
*= ic
->tag_size
;
2002 if (unlikely(wanted_tag_size
!= bip
->bip_iter
.bi_size
)) {
2003 DMERR("Invalid integrity data size %u, expected %u",
2004 bip
->bip_iter
.bi_size
, wanted_tag_size
);
2005 return DM_MAPIO_KILL
;
2009 if (unlikely(bip
!= NULL
)) {
2010 DMERR("Unexpected integrity data when using internal hash");
2011 return DM_MAPIO_KILL
;
2015 if (unlikely(ic
->mode
== 'R') && unlikely(dio
->op
!= REQ_OP_READ
))
2016 return DM_MAPIO_KILL
;
2018 get_area_and_offset(ic
, dio
->range
.logical_sector
, &area
, &offset
);
2019 dio
->metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &dio
->metadata_offset
);
2020 bio
->bi_iter
.bi_sector
= get_data_sector(ic
, area
, offset
);
2022 dm_integrity_map_continue(dio
, true);
2023 return DM_MAPIO_SUBMITTED
;
2026 static bool __journal_read_write(struct dm_integrity_io
*dio
, struct bio
*bio
,
2027 unsigned int journal_section
, unsigned int journal_entry
)
2029 struct dm_integrity_c
*ic
= dio
->ic
;
2030 sector_t logical_sector
;
2031 unsigned int n_sectors
;
2033 logical_sector
= dio
->range
.logical_sector
;
2034 n_sectors
= dio
->range
.n_sectors
;
2036 struct bio_vec bv
= bio_iovec(bio
);
2039 if (unlikely(bv
.bv_len
>> SECTOR_SHIFT
> n_sectors
))
2040 bv
.bv_len
= n_sectors
<< SECTOR_SHIFT
;
2041 n_sectors
-= bv
.bv_len
>> SECTOR_SHIFT
;
2042 bio_advance_iter(bio
, &bio
->bi_iter
, bv
.bv_len
);
2044 mem
= kmap_local_page(bv
.bv_page
);
2045 if (likely(dio
->op
== REQ_OP_WRITE
))
2046 flush_dcache_page(bv
.bv_page
);
2049 struct journal_entry
*je
= access_journal_entry(ic
, journal_section
, journal_entry
);
2051 if (unlikely(dio
->op
== REQ_OP_READ
)) {
2052 struct journal_sector
*js
;
2056 if (unlikely(journal_entry_is_inprogress(je
))) {
2057 flush_dcache_page(bv
.bv_page
);
2060 __io_wait_event(ic
->copy_to_journal_wait
, !journal_entry_is_inprogress(je
));
2064 BUG_ON(journal_entry_get_sector(je
) != logical_sector
);
2065 js
= access_journal_data(ic
, journal_section
, journal_entry
);
2066 mem_ptr
= mem
+ bv
.bv_offset
;
2069 memcpy(mem_ptr
, js
, JOURNAL_SECTOR_DATA
);
2070 *(commit_id_t
*)(mem_ptr
+ JOURNAL_SECTOR_DATA
) = je
->last_bytes
[s
];
2072 mem_ptr
+= 1 << SECTOR_SHIFT
;
2073 } while (++s
< ic
->sectors_per_block
);
2074 #ifdef INTERNAL_VERIFY
2075 if (ic
->internal_hash
) {
2076 char checksums_onstack
[MAX_T(size_t, HASH_MAX_DIGESTSIZE
, MAX_TAG_SIZE
)];
2078 integrity_sector_checksum(ic
, logical_sector
, mem
+ bv
.bv_offset
, checksums_onstack
);
2079 if (unlikely(memcmp(checksums_onstack
, journal_entry_tag(ic
, je
), ic
->tag_size
))) {
2080 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2082 dm_audit_log_bio(DM_MSG_PREFIX
, "journal-checksum",
2083 bio
, logical_sector
, 0);
2089 if (!ic
->internal_hash
) {
2090 struct bio_integrity_payload
*bip
= bio_integrity(bio
);
2091 unsigned int tag_todo
= ic
->tag_size
;
2092 char *tag_ptr
= journal_entry_tag(ic
, je
);
2096 struct bio_vec biv
= bvec_iter_bvec(bip
->bip_vec
, bip
->bip_iter
);
2097 unsigned int tag_now
= min(biv
.bv_len
, tag_todo
);
2100 BUG_ON(PageHighMem(biv
.bv_page
));
2101 tag_addr
= bvec_virt(&biv
);
2102 if (likely(dio
->op
== REQ_OP_WRITE
))
2103 memcpy(tag_ptr
, tag_addr
, tag_now
);
2105 memcpy(tag_addr
, tag_ptr
, tag_now
);
2106 bvec_iter_advance(bip
->bip_vec
, &bip
->bip_iter
, tag_now
);
2108 tag_todo
-= tag_now
;
2109 } while (unlikely(tag_todo
));
2110 } else if (likely(dio
->op
== REQ_OP_WRITE
))
2111 memset(tag_ptr
, 0, tag_todo
);
2114 if (likely(dio
->op
== REQ_OP_WRITE
)) {
2115 struct journal_sector
*js
;
2118 js
= access_journal_data(ic
, journal_section
, journal_entry
);
2119 memcpy(js
, mem
+ bv
.bv_offset
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
2123 je
->last_bytes
[s
] = js
[s
].commit_id
;
2124 } while (++s
< ic
->sectors_per_block
);
2126 if (ic
->internal_hash
) {
2127 unsigned int digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
2129 if (unlikely(digest_size
> ic
->tag_size
)) {
2130 char checksums_onstack
[HASH_MAX_DIGESTSIZE
];
2132 integrity_sector_checksum(ic
, logical_sector
, (char *)js
, checksums_onstack
);
2133 memcpy(journal_entry_tag(ic
, je
), checksums_onstack
, ic
->tag_size
);
2135 integrity_sector_checksum(ic
, logical_sector
, (char *)js
, journal_entry_tag(ic
, je
));
2138 journal_entry_set_sector(je
, logical_sector
);
2140 logical_sector
+= ic
->sectors_per_block
;
2143 if (unlikely(journal_entry
== ic
->journal_section_entries
)) {
2146 wraparound_section(ic
, &journal_section
);
2149 bv
.bv_offset
+= ic
->sectors_per_block
<< SECTOR_SHIFT
;
2150 } while (bv
.bv_len
-= ic
->sectors_per_block
<< SECTOR_SHIFT
);
2152 if (unlikely(dio
->op
== REQ_OP_READ
))
2153 flush_dcache_page(bv
.bv_page
);
2155 } while (n_sectors
);
2157 if (likely(dio
->op
== REQ_OP_WRITE
)) {
2159 if (unlikely(waitqueue_active(&ic
->copy_to_journal_wait
)))
2160 wake_up(&ic
->copy_to_journal_wait
);
2161 if (READ_ONCE(ic
->free_sectors
) <= ic
->free_sectors_threshold
)
2162 queue_work(ic
->commit_wq
, &ic
->commit_work
);
2164 schedule_autocommit(ic
);
2166 remove_range(ic
, &dio
->range
);
2168 if (unlikely(bio
->bi_iter
.bi_size
)) {
2169 sector_t area
, offset
;
2171 dio
->range
.logical_sector
= logical_sector
;
2172 get_area_and_offset(ic
, dio
->range
.logical_sector
, &area
, &offset
);
2173 dio
->metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &dio
->metadata_offset
);
2180 static void dm_integrity_map_continue(struct dm_integrity_io
*dio
, bool from_map
)
2182 struct dm_integrity_c
*ic
= dio
->ic
;
2183 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
2184 unsigned int journal_section
, journal_entry
;
2185 unsigned int journal_read_pos
;
2186 sector_t recalc_sector
;
2187 struct completion read_comp
;
2188 bool discard_retried
= false;
2189 bool need_sync_io
= ic
->internal_hash
&& dio
->op
== REQ_OP_READ
;
2191 if (unlikely(dio
->op
== REQ_OP_DISCARD
) && ic
->mode
!= 'D')
2192 need_sync_io
= true;
2194 if (need_sync_io
&& from_map
) {
2195 INIT_WORK(&dio
->work
, integrity_bio_wait
);
2196 queue_work(ic
->offload_wq
, &dio
->work
);
2201 spin_lock_irq(&ic
->endio_wait
.lock
);
2203 if (unlikely(dm_integrity_failed(ic
))) {
2204 spin_unlock_irq(&ic
->endio_wait
.lock
);
2208 dio
->range
.n_sectors
= bio_sectors(bio
);
2209 journal_read_pos
= NOT_FOUND
;
2210 if (ic
->mode
== 'J' && likely(dio
->op
!= REQ_OP_DISCARD
)) {
2211 if (dio
->op
== REQ_OP_WRITE
) {
2212 unsigned int next_entry
, i
, pos
;
2213 unsigned int ws
, we
, range_sectors
;
2215 dio
->range
.n_sectors
= min(dio
->range
.n_sectors
,
2216 (sector_t
)ic
->free_sectors
<< ic
->sb
->log2_sectors_per_block
);
2217 if (unlikely(!dio
->range
.n_sectors
)) {
2219 goto offload_to_thread
;
2220 sleep_on_endio_wait(ic
);
2223 range_sectors
= dio
->range
.n_sectors
>> ic
->sb
->log2_sectors_per_block
;
2224 ic
->free_sectors
-= range_sectors
;
2225 journal_section
= ic
->free_section
;
2226 journal_entry
= ic
->free_section_entry
;
2228 next_entry
= ic
->free_section_entry
+ range_sectors
;
2229 ic
->free_section_entry
= next_entry
% ic
->journal_section_entries
;
2230 ic
->free_section
+= next_entry
/ ic
->journal_section_entries
;
2231 ic
->n_uncommitted_sections
+= next_entry
/ ic
->journal_section_entries
;
2232 wraparound_section(ic
, &ic
->free_section
);
2234 pos
= journal_section
* ic
->journal_section_entries
+ journal_entry
;
2235 ws
= journal_section
;
2239 struct journal_entry
*je
;
2241 add_journal_node(ic
, &ic
->journal_tree
[pos
], dio
->range
.logical_sector
+ i
);
2243 if (unlikely(pos
>= ic
->journal_entries
))
2246 je
= access_journal_entry(ic
, ws
, we
);
2247 BUG_ON(!journal_entry_is_unused(je
));
2248 journal_entry_set_inprogress(je
);
2250 if (unlikely(we
== ic
->journal_section_entries
)) {
2253 wraparound_section(ic
, &ws
);
2255 } while ((i
+= ic
->sectors_per_block
) < dio
->range
.n_sectors
);
2257 spin_unlock_irq(&ic
->endio_wait
.lock
);
2258 goto journal_read_write
;
2260 sector_t next_sector
;
2262 journal_read_pos
= find_journal_node(ic
, dio
->range
.logical_sector
, &next_sector
);
2263 if (likely(journal_read_pos
== NOT_FOUND
)) {
2264 if (unlikely(dio
->range
.n_sectors
> next_sector
- dio
->range
.logical_sector
))
2265 dio
->range
.n_sectors
= next_sector
- dio
->range
.logical_sector
;
2268 unsigned int jp
= journal_read_pos
+ 1;
2270 for (i
= ic
->sectors_per_block
; i
< dio
->range
.n_sectors
; i
+= ic
->sectors_per_block
, jp
++) {
2271 if (!test_journal_node(ic
, jp
, dio
->range
.logical_sector
+ i
))
2274 dio
->range
.n_sectors
= i
;
2278 if (unlikely(!add_new_range(ic
, &dio
->range
, true))) {
2280 * We must not sleep in the request routine because it could
2281 * stall bios on current->bio_list.
2282 * So, we offload the bio to a workqueue if we have to sleep.
2286 spin_unlock_irq(&ic
->endio_wait
.lock
);
2287 INIT_WORK(&dio
->work
, integrity_bio_wait
);
2288 queue_work(ic
->wait_wq
, &dio
->work
);
2291 if (journal_read_pos
!= NOT_FOUND
)
2292 dio
->range
.n_sectors
= ic
->sectors_per_block
;
2293 wait_and_add_new_range(ic
, &dio
->range
);
2295 * wait_and_add_new_range drops the spinlock, so the journal
2296 * may have been changed arbitrarily. We need to recheck.
2297 * To simplify the code, we restrict I/O size to just one block.
2299 if (journal_read_pos
!= NOT_FOUND
) {
2300 sector_t next_sector
;
2301 unsigned int new_pos
;
2303 new_pos
= find_journal_node(ic
, dio
->range
.logical_sector
, &next_sector
);
2304 if (unlikely(new_pos
!= journal_read_pos
)) {
2305 remove_range_unlocked(ic
, &dio
->range
);
2310 if (ic
->mode
== 'J' && likely(dio
->op
== REQ_OP_DISCARD
) && !discard_retried
) {
2311 sector_t next_sector
;
2312 unsigned int new_pos
;
2314 new_pos
= find_journal_node(ic
, dio
->range
.logical_sector
, &next_sector
);
2315 if (unlikely(new_pos
!= NOT_FOUND
) ||
2316 unlikely(next_sector
< dio
->range
.logical_sector
- dio
->range
.n_sectors
)) {
2317 remove_range_unlocked(ic
, &dio
->range
);
2318 spin_unlock_irq(&ic
->endio_wait
.lock
);
2319 queue_work(ic
->commit_wq
, &ic
->commit_work
);
2320 flush_workqueue(ic
->commit_wq
);
2321 queue_work(ic
->writer_wq
, &ic
->writer_work
);
2322 flush_workqueue(ic
->writer_wq
);
2323 discard_retried
= true;
2327 recalc_sector
= le64_to_cpu(ic
->sb
->recalc_sector
);
2328 spin_unlock_irq(&ic
->endio_wait
.lock
);
2330 if (unlikely(journal_read_pos
!= NOT_FOUND
)) {
2331 journal_section
= journal_read_pos
/ ic
->journal_section_entries
;
2332 journal_entry
= journal_read_pos
% ic
->journal_section_entries
;
2333 goto journal_read_write
;
2336 if (ic
->mode
== 'B' && (dio
->op
== REQ_OP_WRITE
|| unlikely(dio
->op
== REQ_OP_DISCARD
))) {
2337 if (!block_bitmap_op(ic
, ic
->may_write_bitmap
, dio
->range
.logical_sector
,
2338 dio
->range
.n_sectors
, BITMAP_OP_TEST_ALL_SET
)) {
2339 struct bitmap_block_status
*bbs
;
2341 bbs
= sector_to_bitmap_block(ic
, dio
->range
.logical_sector
);
2342 spin_lock(&bbs
->bio_queue_lock
);
2343 bio_list_add(&bbs
->bio_queue
, bio
);
2344 spin_unlock(&bbs
->bio_queue_lock
);
2345 queue_work(ic
->writer_wq
, &bbs
->work
);
2350 dio
->in_flight
= (atomic_t
)ATOMIC_INIT(2);
2353 init_completion(&read_comp
);
2354 dio
->completion
= &read_comp
;
2356 dio
->completion
= NULL
;
2358 dm_bio_record(&dio
->bio_details
, bio
);
2359 bio_set_dev(bio
, ic
->dev
->bdev
);
2360 bio
->bi_integrity
= NULL
;
2361 bio
->bi_opf
&= ~REQ_INTEGRITY
;
2362 bio
->bi_end_io
= integrity_end_io
;
2363 bio
->bi_iter
.bi_size
= dio
->range
.n_sectors
<< SECTOR_SHIFT
;
2365 if (unlikely(dio
->op
== REQ_OP_DISCARD
) && likely(ic
->mode
!= 'D')) {
2366 integrity_metadata(&dio
->work
);
2367 dm_integrity_flush_buffers(ic
, false);
2369 dio
->in_flight
= (atomic_t
)ATOMIC_INIT(1);
2370 dio
->completion
= NULL
;
2372 submit_bio_noacct(bio
);
2377 submit_bio_noacct(bio
);
2380 wait_for_completion_io(&read_comp
);
2381 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
) &&
2382 dio
->range
.logical_sector
+ dio
->range
.n_sectors
> recalc_sector
)
2384 if (ic
->mode
== 'B') {
2385 if (!block_bitmap_op(ic
, ic
->recalc_bitmap
, dio
->range
.logical_sector
,
2386 dio
->range
.n_sectors
, BITMAP_OP_TEST_ALL_CLEAR
))
2390 if (likely(!bio
->bi_status
))
2391 integrity_metadata(&dio
->work
);
2396 INIT_WORK(&dio
->work
, integrity_metadata
);
2397 queue_work(ic
->metadata_wq
, &dio
->work
);
2403 if (unlikely(__journal_read_write(dio
, bio
, journal_section
, journal_entry
)))
2406 do_endio_flush(ic
, dio
);
2409 static int dm_integrity_map_inline(struct dm_integrity_io
*dio
, bool from_map
)
2411 struct dm_integrity_c
*ic
= dio
->ic
;
2412 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
2413 struct bio_integrity_payload
*bip
;
2415 sector_t recalc_sector
;
2417 if (unlikely(bio_integrity(bio
))) {
2418 bio
->bi_status
= BLK_STS_NOTSUPP
;
2420 return DM_MAPIO_SUBMITTED
;
2423 bio_set_dev(bio
, ic
->dev
->bdev
);
2424 if (unlikely((bio
->bi_opf
& REQ_PREFLUSH
) != 0))
2425 return DM_MAPIO_REMAPPED
;
2428 if (!dio
->integrity_payload
) {
2429 unsigned digest_size
, extra_size
;
2430 dio
->payload_len
= ic
->tuple_size
* (bio_sectors(bio
) >> ic
->sb
->log2_sectors_per_block
);
2431 digest_size
= crypto_shash_digestsize(ic
->internal_hash
);
2432 extra_size
= unlikely(digest_size
> ic
->tag_size
) ? digest_size
- ic
->tag_size
: 0;
2433 dio
->payload_len
+= extra_size
;
2434 dio
->integrity_payload
= kmalloc(dio
->payload_len
, GFP_NOIO
| __GFP_NORETRY
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
2435 if (unlikely(!dio
->integrity_payload
)) {
2436 const unsigned x_size
= PAGE_SIZE
<< 1;
2437 if (dio
->payload_len
> x_size
) {
2438 unsigned sectors
= ((x_size
- extra_size
) / ic
->tuple_size
) << ic
->sb
->log2_sectors_per_block
;
2439 if (WARN_ON(!sectors
|| sectors
>= bio_sectors(bio
))) {
2440 bio
->bi_status
= BLK_STS_NOTSUPP
;
2442 return DM_MAPIO_SUBMITTED
;
2444 dm_accept_partial_bio(bio
, sectors
);
2450 dio
->range
.logical_sector
= bio
->bi_iter
.bi_sector
;
2451 dio
->range
.n_sectors
= bio_sectors(bio
);
2453 if (!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
)))
2457 * On 64-bit CPUs we can optimize the lock away (so that it won't cause
2458 * cache line bouncing) and use acquire/release barriers instead.
2460 * Paired with smp_store_release in integrity_recalc_inline.
2462 recalc_sector
= le64_to_cpu(smp_load_acquire(&ic
->sb
->recalc_sector
));
2463 if (likely(dio
->range
.logical_sector
+ dio
->range
.n_sectors
<= recalc_sector
))
2466 spin_lock_irq(&ic
->endio_wait
.lock
);
2467 recalc_sector
= le64_to_cpu(ic
->sb
->recalc_sector
);
2468 if (dio
->range
.logical_sector
+ dio
->range
.n_sectors
<= recalc_sector
)
2470 if (unlikely(!add_new_range(ic
, &dio
->range
, true))) {
2472 spin_unlock_irq(&ic
->endio_wait
.lock
);
2473 INIT_WORK(&dio
->work
, integrity_bio_wait
);
2474 queue_work(ic
->wait_wq
, &dio
->work
);
2475 return DM_MAPIO_SUBMITTED
;
2477 wait_and_add_new_range(ic
, &dio
->range
);
2479 dio
->integrity_range_locked
= true;
2481 spin_unlock_irq(&ic
->endio_wait
.lock
);
2484 if (unlikely(!dio
->integrity_payload
)) {
2485 dio
->integrity_payload
= page_to_virt((struct page
*)mempool_alloc(&ic
->recheck_pool
, GFP_NOIO
));
2486 dio
->integrity_payload_from_mempool
= true;
2489 dio
->bio_details
.bi_iter
= bio
->bi_iter
;
2491 if (unlikely(!dm_integrity_check_limits(ic
, bio
->bi_iter
.bi_sector
, bio
))) {
2492 return DM_MAPIO_KILL
;
2495 bio
->bi_iter
.bi_sector
+= ic
->start
+ SB_SECTORS
;
2497 bip
= bio_integrity_alloc(bio
, GFP_NOIO
, 1);
2499 bio
->bi_status
= errno_to_blk_status(PTR_ERR(bip
));
2501 return DM_MAPIO_SUBMITTED
;
2504 if (dio
->op
== REQ_OP_WRITE
) {
2506 while (dio
->bio_details
.bi_iter
.bi_size
) {
2507 struct bio_vec bv
= bio_iter_iovec(bio
, dio
->bio_details
.bi_iter
);
2508 const char *mem
= bvec_kmap_local(&bv
);
2509 if (ic
->tag_size
< ic
->tuple_size
)
2510 memset(dio
->integrity_payload
+ pos
+ ic
->tag_size
, 0, ic
->tuple_size
- ic
->tuple_size
);
2511 integrity_sector_checksum(ic
, dio
->bio_details
.bi_iter
.bi_sector
, mem
, dio
->integrity_payload
+ pos
);
2513 pos
+= ic
->tuple_size
;
2514 bio_advance_iter_single(bio
, &dio
->bio_details
.bi_iter
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
2518 ret
= bio_integrity_add_page(bio
, virt_to_page(dio
->integrity_payload
),
2519 dio
->payload_len
, offset_in_page(dio
->integrity_payload
));
2520 if (unlikely(ret
!= dio
->payload_len
)) {
2521 bio
->bi_status
= BLK_STS_RESOURCE
;
2523 return DM_MAPIO_SUBMITTED
;
2526 return DM_MAPIO_REMAPPED
;
2529 static inline void dm_integrity_free_payload(struct dm_integrity_io
*dio
)
2531 struct dm_integrity_c
*ic
= dio
->ic
;
2532 if (unlikely(dio
->integrity_payload_from_mempool
))
2533 mempool_free(virt_to_page(dio
->integrity_payload
), &ic
->recheck_pool
);
2535 kfree(dio
->integrity_payload
);
2536 dio
->integrity_payload
= NULL
;
2537 dio
->integrity_payload_from_mempool
= false;
2540 static void dm_integrity_inline_recheck(struct work_struct
*w
)
2542 struct dm_integrity_io
*dio
= container_of(w
, struct dm_integrity_io
, work
);
2543 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
2544 struct dm_integrity_c
*ic
= dio
->ic
;
2545 struct bio
*outgoing_bio
;
2546 void *outgoing_data
;
2548 dio
->integrity_payload
= page_to_virt((struct page
*)mempool_alloc(&ic
->recheck_pool
, GFP_NOIO
));
2549 dio
->integrity_payload_from_mempool
= true;
2551 outgoing_data
= dio
->integrity_payload
+ PAGE_SIZE
;
2553 while (dio
->bio_details
.bi_iter
.bi_size
) {
2554 char digest
[HASH_MAX_DIGESTSIZE
];
2556 struct bio_integrity_payload
*bip
;
2560 outgoing_bio
= bio_alloc_bioset(ic
->dev
->bdev
, 1, REQ_OP_READ
, GFP_NOIO
, &ic
->recheck_bios
);
2562 r
= bio_add_page(outgoing_bio
, virt_to_page(outgoing_data
), ic
->sectors_per_block
<< SECTOR_SHIFT
, 0);
2563 if (unlikely(r
!= (ic
->sectors_per_block
<< SECTOR_SHIFT
))) {
2564 bio_put(outgoing_bio
);
2565 bio
->bi_status
= BLK_STS_RESOURCE
;
2570 bip
= bio_integrity_alloc(outgoing_bio
, GFP_NOIO
, 1);
2572 bio_put(outgoing_bio
);
2573 bio
->bi_status
= errno_to_blk_status(PTR_ERR(bip
));
2578 r
= bio_integrity_add_page(outgoing_bio
, virt_to_page(dio
->integrity_payload
), ic
->tuple_size
, 0);
2579 if (unlikely(r
!= ic
->tuple_size
)) {
2580 bio_put(outgoing_bio
);
2581 bio
->bi_status
= BLK_STS_RESOURCE
;
2586 outgoing_bio
->bi_iter
.bi_sector
= dio
->bio_details
.bi_iter
.bi_sector
+ ic
->start
+ SB_SECTORS
;
2588 r
= submit_bio_wait(outgoing_bio
);
2589 if (unlikely(r
!= 0)) {
2590 bio_put(outgoing_bio
);
2591 bio
->bi_status
= errno_to_blk_status(r
);
2595 bio_put(outgoing_bio
);
2597 integrity_sector_checksum(ic
, dio
->bio_details
.bi_iter
.bi_sector
, outgoing_data
, digest
);
2598 if (unlikely(memcmp(digest
, dio
->integrity_payload
, min(crypto_shash_digestsize(ic
->internal_hash
), ic
->tag_size
)))) {
2599 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2600 ic
->dev
->bdev
, dio
->bio_details
.bi_iter
.bi_sector
);
2601 atomic64_inc(&ic
->number_of_mismatches
);
2602 dm_audit_log_bio(DM_MSG_PREFIX
, "integrity-checksum",
2603 bio
, dio
->bio_details
.bi_iter
.bi_sector
, 0);
2605 bio
->bi_status
= BLK_STS_PROTECTION
;
2610 bv
= bio_iter_iovec(bio
, dio
->bio_details
.bi_iter
);
2611 mem
= bvec_kmap_local(&bv
);
2612 memcpy(mem
, outgoing_data
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
2615 bio_advance_iter_single(bio
, &dio
->bio_details
.bi_iter
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
2621 static int dm_integrity_end_io(struct dm_target
*ti
, struct bio
*bio
, blk_status_t
*status
)
2623 struct dm_integrity_c
*ic
= ti
->private;
2624 if (ic
->mode
== 'I') {
2625 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
2626 if (dio
->op
== REQ_OP_READ
&& likely(*status
== BLK_STS_OK
)) {
2628 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
) &&
2629 unlikely(dio
->integrity_range_locked
))
2631 while (dio
->bio_details
.bi_iter
.bi_size
) {
2632 char digest
[HASH_MAX_DIGESTSIZE
];
2633 struct bio_vec bv
= bio_iter_iovec(bio
, dio
->bio_details
.bi_iter
);
2634 char *mem
= bvec_kmap_local(&bv
);
2635 //memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT);
2636 integrity_sector_checksum(ic
, dio
->bio_details
.bi_iter
.bi_sector
, mem
, digest
);
2637 if (unlikely(memcmp(digest
, dio
->integrity_payload
+ pos
,
2638 min(crypto_shash_digestsize(ic
->internal_hash
), ic
->tag_size
)))) {
2640 dm_integrity_free_payload(dio
);
2641 INIT_WORK(&dio
->work
, dm_integrity_inline_recheck
);
2642 queue_work(ic
->offload_wq
, &dio
->work
);
2643 return DM_ENDIO_INCOMPLETE
;
2646 pos
+= ic
->tuple_size
;
2647 bio_advance_iter_single(bio
, &dio
->bio_details
.bi_iter
, ic
->sectors_per_block
<< SECTOR_SHIFT
);
2651 dm_integrity_free_payload(dio
);
2652 if (unlikely(dio
->integrity_range_locked
))
2653 remove_range(ic
, &dio
->range
);
2655 return DM_ENDIO_DONE
;
2658 static void integrity_bio_wait(struct work_struct
*w
)
2660 struct dm_integrity_io
*dio
= container_of(w
, struct dm_integrity_io
, work
);
2661 struct dm_integrity_c
*ic
= dio
->ic
;
2663 if (ic
->mode
== 'I') {
2664 struct bio
*bio
= dm_bio_from_per_bio_data(dio
, sizeof(struct dm_integrity_io
));
2665 int r
= dm_integrity_map_inline(dio
, false);
2668 bio
->bi_status
= BLK_STS_IOERR
;
2670 case DM_MAPIO_REMAPPED
:
2671 submit_bio_noacct(bio
);
2673 case DM_MAPIO_SUBMITTED
:
2679 dm_integrity_map_continue(dio
, false);
2683 static void pad_uncommitted(struct dm_integrity_c
*ic
)
2685 if (ic
->free_section_entry
) {
2686 ic
->free_sectors
-= ic
->journal_section_entries
- ic
->free_section_entry
;
2687 ic
->free_section_entry
= 0;
2689 wraparound_section(ic
, &ic
->free_section
);
2690 ic
->n_uncommitted_sections
++;
2692 if (WARN_ON(ic
->journal_sections
* ic
->journal_section_entries
!=
2693 (ic
->n_uncommitted_sections
+ ic
->n_committed_sections
) *
2694 ic
->journal_section_entries
+ ic
->free_sectors
)) {
2695 DMCRIT("journal_sections %u, journal_section_entries %u, "
2696 "n_uncommitted_sections %u, n_committed_sections %u, "
2697 "journal_section_entries %u, free_sectors %u",
2698 ic
->journal_sections
, ic
->journal_section_entries
,
2699 ic
->n_uncommitted_sections
, ic
->n_committed_sections
,
2700 ic
->journal_section_entries
, ic
->free_sectors
);
2704 static void integrity_commit(struct work_struct
*w
)
2706 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, commit_work
);
2707 unsigned int commit_start
, commit_sections
;
2708 unsigned int i
, j
, n
;
2709 struct bio
*flushes
;
2711 del_timer(&ic
->autocommit_timer
);
2713 if (ic
->mode
== 'I')
2716 spin_lock_irq(&ic
->endio_wait
.lock
);
2717 flushes
= bio_list_get(&ic
->flush_bio_list
);
2718 if (unlikely(ic
->mode
!= 'J')) {
2719 spin_unlock_irq(&ic
->endio_wait
.lock
);
2720 dm_integrity_flush_buffers(ic
, true);
2721 goto release_flush_bios
;
2724 pad_uncommitted(ic
);
2725 commit_start
= ic
->uncommitted_section
;
2726 commit_sections
= ic
->n_uncommitted_sections
;
2727 spin_unlock_irq(&ic
->endio_wait
.lock
);
2729 if (!commit_sections
)
2730 goto release_flush_bios
;
2732 ic
->wrote_to_journal
= true;
2735 for (n
= 0; n
< commit_sections
; n
++) {
2736 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2737 struct journal_entry
*je
;
2739 je
= access_journal_entry(ic
, i
, j
);
2740 io_wait_event(ic
->copy_to_journal_wait
, !journal_entry_is_inprogress(je
));
2742 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
2743 struct journal_sector
*js
;
2745 js
= access_journal(ic
, i
, j
);
2746 js
->commit_id
= dm_integrity_commit_id(ic
, i
, j
, ic
->commit_seq
);
2749 if (unlikely(i
>= ic
->journal_sections
))
2750 ic
->commit_seq
= next_commit_seq(ic
->commit_seq
);
2751 wraparound_section(ic
, &i
);
2755 write_journal(ic
, commit_start
, commit_sections
);
2757 spin_lock_irq(&ic
->endio_wait
.lock
);
2758 ic
->uncommitted_section
+= commit_sections
;
2759 wraparound_section(ic
, &ic
->uncommitted_section
);
2760 ic
->n_uncommitted_sections
-= commit_sections
;
2761 ic
->n_committed_sections
+= commit_sections
;
2762 spin_unlock_irq(&ic
->endio_wait
.lock
);
2764 if (READ_ONCE(ic
->free_sectors
) <= ic
->free_sectors_threshold
)
2765 queue_work(ic
->writer_wq
, &ic
->writer_work
);
2769 struct bio
*next
= flushes
->bi_next
;
2771 flushes
->bi_next
= NULL
;
2772 do_endio(ic
, flushes
);
2777 static void complete_copy_from_journal(unsigned long error
, void *context
)
2779 struct journal_io
*io
= context
;
2780 struct journal_completion
*comp
= io
->comp
;
2781 struct dm_integrity_c
*ic
= comp
->ic
;
2783 remove_range(ic
, &io
->range
);
2784 mempool_free(io
, &ic
->journal_io_mempool
);
2785 if (unlikely(error
!= 0))
2786 dm_integrity_io_error(ic
, "copying from journal", -EIO
);
2787 complete_journal_op(comp
);
2790 static void restore_last_bytes(struct dm_integrity_c
*ic
, struct journal_sector
*js
,
2791 struct journal_entry
*je
)
2796 js
->commit_id
= je
->last_bytes
[s
];
2798 } while (++s
< ic
->sectors_per_block
);
2801 static void do_journal_write(struct dm_integrity_c
*ic
, unsigned int write_start
,
2802 unsigned int write_sections
, bool from_replay
)
2804 unsigned int i
, j
, n
;
2805 struct journal_completion comp
;
2806 struct blk_plug plug
;
2808 blk_start_plug(&plug
);
2811 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
2812 init_completion(&comp
.comp
);
2815 for (n
= 0; n
< write_sections
; n
++, i
++, wraparound_section(ic
, &i
)) {
2816 #ifndef INTERNAL_VERIFY
2817 if (unlikely(from_replay
))
2819 rw_section_mac(ic
, i
, false);
2820 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
2821 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
2822 sector_t sec
, area
, offset
;
2823 unsigned int k
, l
, next_loop
;
2824 sector_t metadata_block
;
2825 unsigned int metadata_offset
;
2826 struct journal_io
*io
;
2828 if (journal_entry_is_unused(je
))
2830 BUG_ON(unlikely(journal_entry_is_inprogress(je
)) && !from_replay
);
2831 sec
= journal_entry_get_sector(je
);
2832 if (unlikely(from_replay
)) {
2833 if (unlikely(sec
& (unsigned int)(ic
->sectors_per_block
- 1))) {
2834 dm_integrity_io_error(ic
, "invalid sector in journal", -EIO
);
2835 sec
&= ~(sector_t
)(ic
->sectors_per_block
- 1);
2837 if (unlikely(sec
>= ic
->provided_data_sectors
)) {
2838 journal_entry_set_unused(je
);
2842 get_area_and_offset(ic
, sec
, &area
, &offset
);
2843 restore_last_bytes(ic
, access_journal_data(ic
, i
, j
), je
);
2844 for (k
= j
+ 1; k
< ic
->journal_section_entries
; k
++) {
2845 struct journal_entry
*je2
= access_journal_entry(ic
, i
, k
);
2846 sector_t sec2
, area2
, offset2
;
2848 if (journal_entry_is_unused(je2
))
2850 BUG_ON(unlikely(journal_entry_is_inprogress(je2
)) && !from_replay
);
2851 sec2
= journal_entry_get_sector(je2
);
2852 if (unlikely(sec2
>= ic
->provided_data_sectors
))
2854 get_area_and_offset(ic
, sec2
, &area2
, &offset2
);
2855 if (area2
!= area
|| offset2
!= offset
+ ((k
- j
) << ic
->sb
->log2_sectors_per_block
))
2857 restore_last_bytes(ic
, access_journal_data(ic
, i
, k
), je2
);
2861 io
= mempool_alloc(&ic
->journal_io_mempool
, GFP_NOIO
);
2863 io
->range
.logical_sector
= sec
;
2864 io
->range
.n_sectors
= (k
- j
) << ic
->sb
->log2_sectors_per_block
;
2866 spin_lock_irq(&ic
->endio_wait
.lock
);
2867 add_new_range_and_wait(ic
, &io
->range
);
2869 if (likely(!from_replay
)) {
2870 struct journal_node
*section_node
= &ic
->journal_tree
[i
* ic
->journal_section_entries
];
2872 /* don't write if there is newer committed sector */
2873 while (j
< k
&& find_newer_committed_node(ic
, §ion_node
[j
])) {
2874 struct journal_entry
*je2
= access_journal_entry(ic
, i
, j
);
2876 journal_entry_set_unused(je2
);
2877 remove_journal_node(ic
, §ion_node
[j
]);
2879 sec
+= ic
->sectors_per_block
;
2880 offset
+= ic
->sectors_per_block
;
2882 while (j
< k
&& find_newer_committed_node(ic
, §ion_node
[k
- 1])) {
2883 struct journal_entry
*je2
= access_journal_entry(ic
, i
, k
- 1);
2885 journal_entry_set_unused(je2
);
2886 remove_journal_node(ic
, §ion_node
[k
- 1]);
2890 remove_range_unlocked(ic
, &io
->range
);
2891 spin_unlock_irq(&ic
->endio_wait
.lock
);
2892 mempool_free(io
, &ic
->journal_io_mempool
);
2895 for (l
= j
; l
< k
; l
++)
2896 remove_journal_node(ic
, §ion_node
[l
]);
2898 spin_unlock_irq(&ic
->endio_wait
.lock
);
2900 metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &metadata_offset
);
2901 for (l
= j
; l
< k
; l
++) {
2903 struct journal_entry
*je2
= access_journal_entry(ic
, i
, l
);
2906 #ifndef INTERNAL_VERIFY
2907 unlikely(from_replay
) &&
2909 ic
->internal_hash
) {
2910 char test_tag
[MAX_T(size_t, HASH_MAX_DIGESTSIZE
, MAX_TAG_SIZE
)];
2912 integrity_sector_checksum(ic
, sec
+ ((l
- j
) << ic
->sb
->log2_sectors_per_block
),
2913 (char *)access_journal_data(ic
, i
, l
), test_tag
);
2914 if (unlikely(memcmp(test_tag
, journal_entry_tag(ic
, je2
), ic
->tag_size
))) {
2915 dm_integrity_io_error(ic
, "tag mismatch when replaying journal", -EILSEQ
);
2916 dm_audit_log_target(DM_MSG_PREFIX
, "integrity-replay-journal", ic
->ti
, 0);
2920 journal_entry_set_unused(je2
);
2921 r
= dm_integrity_rw_tag(ic
, journal_entry_tag(ic
, je2
), &metadata_block
, &metadata_offset
,
2922 ic
->tag_size
, TAG_WRITE
);
2924 dm_integrity_io_error(ic
, "reading tags", r
);
2927 atomic_inc(&comp
.in_flight
);
2928 copy_from_journal(ic
, i
, j
<< ic
->sb
->log2_sectors_per_block
,
2929 (k
- j
) << ic
->sb
->log2_sectors_per_block
,
2930 get_data_sector(ic
, area
, offset
),
2931 complete_copy_from_journal
, io
);
2937 dm_bufio_write_dirty_buffers_async(ic
->bufio
);
2939 blk_finish_plug(&plug
);
2941 complete_journal_op(&comp
);
2942 wait_for_completion_io(&comp
.comp
);
2944 dm_integrity_flush_buffers(ic
, true);
2947 static void integrity_writer(struct work_struct
*w
)
2949 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, writer_work
);
2950 unsigned int write_start
, write_sections
;
2951 unsigned int prev_free_sectors
;
2953 spin_lock_irq(&ic
->endio_wait
.lock
);
2954 write_start
= ic
->committed_section
;
2955 write_sections
= ic
->n_committed_sections
;
2956 spin_unlock_irq(&ic
->endio_wait
.lock
);
2958 if (!write_sections
)
2961 do_journal_write(ic
, write_start
, write_sections
, false);
2963 spin_lock_irq(&ic
->endio_wait
.lock
);
2965 ic
->committed_section
+= write_sections
;
2966 wraparound_section(ic
, &ic
->committed_section
);
2967 ic
->n_committed_sections
-= write_sections
;
2969 prev_free_sectors
= ic
->free_sectors
;
2970 ic
->free_sectors
+= write_sections
* ic
->journal_section_entries
;
2971 if (unlikely(!prev_free_sectors
))
2972 wake_up_locked(&ic
->endio_wait
);
2974 spin_unlock_irq(&ic
->endio_wait
.lock
);
2977 static void recalc_write_super(struct dm_integrity_c
*ic
)
2981 dm_integrity_flush_buffers(ic
, false);
2982 if (dm_integrity_failed(ic
))
2985 r
= sync_rw_sb(ic
, REQ_OP_WRITE
);
2987 dm_integrity_io_error(ic
, "writing superblock", r
);
2990 static void integrity_recalc(struct work_struct
*w
)
2992 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, recalc_work
);
2993 size_t recalc_tags_size
;
2994 u8
*recalc_buffer
= NULL
;
2995 u8
*recalc_tags
= NULL
;
2996 struct dm_integrity_range range
;
2997 struct dm_io_request io_req
;
2998 struct dm_io_region io_loc
;
2999 sector_t area
, offset
;
3000 sector_t metadata_block
;
3001 unsigned int metadata_offset
;
3002 sector_t logical_sector
, n_sectors
;
3006 unsigned int super_counter
= 0;
3007 unsigned recalc_sectors
= RECALC_SECTORS
;
3010 recalc_buffer
= __vmalloc(recalc_sectors
<< SECTOR_SHIFT
, GFP_NOIO
);
3011 if (!recalc_buffer
) {
3013 recalc_sectors
>>= 1;
3014 if (recalc_sectors
>= 1U << ic
->sb
->log2_sectors_per_block
)
3016 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3019 recalc_tags_size
= (recalc_sectors
>> ic
->sb
->log2_sectors_per_block
) * ic
->tag_size
;
3020 if (crypto_shash_digestsize(ic
->internal_hash
) > ic
->tag_size
)
3021 recalc_tags_size
+= crypto_shash_digestsize(ic
->internal_hash
) - ic
->tag_size
;
3022 recalc_tags
= kvmalloc(recalc_tags_size
, GFP_NOIO
);
3024 vfree(recalc_buffer
);
3025 recalc_buffer
= NULL
;
3029 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic
->sb
->recalc_sector
));
3031 spin_lock_irq(&ic
->endio_wait
.lock
);
3035 if (unlikely(dm_post_suspending(ic
->ti
)))
3038 range
.logical_sector
= le64_to_cpu(ic
->sb
->recalc_sector
);
3039 if (unlikely(range
.logical_sector
>= ic
->provided_data_sectors
)) {
3040 if (ic
->mode
== 'B') {
3041 block_bitmap_op(ic
, ic
->recalc_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_CLEAR
);
3042 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
3043 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, 0);
3048 get_area_and_offset(ic
, range
.logical_sector
, &area
, &offset
);
3049 range
.n_sectors
= min((sector_t
)recalc_sectors
, ic
->provided_data_sectors
- range
.logical_sector
);
3051 range
.n_sectors
= min(range
.n_sectors
, ((sector_t
)1U << ic
->sb
->log2_interleave_sectors
) - (unsigned int)offset
);
3053 add_new_range_and_wait(ic
, &range
);
3054 spin_unlock_irq(&ic
->endio_wait
.lock
);
3055 logical_sector
= range
.logical_sector
;
3056 n_sectors
= range
.n_sectors
;
3058 if (ic
->mode
== 'B') {
3059 if (block_bitmap_op(ic
, ic
->recalc_bitmap
, logical_sector
, n_sectors
, BITMAP_OP_TEST_ALL_CLEAR
))
3060 goto advance_and_next
;
3062 while (block_bitmap_op(ic
, ic
->recalc_bitmap
, logical_sector
,
3063 ic
->sectors_per_block
, BITMAP_OP_TEST_ALL_CLEAR
)) {
3064 logical_sector
+= ic
->sectors_per_block
;
3065 n_sectors
-= ic
->sectors_per_block
;
3068 while (block_bitmap_op(ic
, ic
->recalc_bitmap
, logical_sector
+ n_sectors
- ic
->sectors_per_block
,
3069 ic
->sectors_per_block
, BITMAP_OP_TEST_ALL_CLEAR
)) {
3070 n_sectors
-= ic
->sectors_per_block
;
3073 get_area_and_offset(ic
, logical_sector
, &area
, &offset
);
3076 DEBUG_print("recalculating: %llx, %llx\n", logical_sector
, n_sectors
);
3078 if (unlikely(++super_counter
== RECALC_WRITE_SUPER
)) {
3079 recalc_write_super(ic
);
3080 if (ic
->mode
== 'B')
3081 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, ic
->bitmap_flush_interval
);
3086 if (unlikely(dm_integrity_failed(ic
)))
3089 io_req
.bi_opf
= REQ_OP_READ
;
3090 io_req
.mem
.type
= DM_IO_VMA
;
3091 io_req
.mem
.ptr
.addr
= recalc_buffer
;
3092 io_req
.notify
.fn
= NULL
;
3093 io_req
.client
= ic
->io
;
3094 io_loc
.bdev
= ic
->dev
->bdev
;
3095 io_loc
.sector
= get_data_sector(ic
, area
, offset
);
3096 io_loc
.count
= n_sectors
;
3098 r
= dm_io(&io_req
, 1, &io_loc
, NULL
, IOPRIO_DEFAULT
);
3100 dm_integrity_io_error(ic
, "reading data", r
);
3105 for (i
= 0; i
< n_sectors
; i
+= ic
->sectors_per_block
) {
3106 integrity_sector_checksum(ic
, logical_sector
+ i
, recalc_buffer
+ (i
<< SECTOR_SHIFT
), t
);
3110 metadata_block
= get_metadata_sector_and_offset(ic
, area
, offset
, &metadata_offset
);
3112 r
= dm_integrity_rw_tag(ic
, recalc_tags
, &metadata_block
, &metadata_offset
, t
- recalc_tags
, TAG_WRITE
);
3114 dm_integrity_io_error(ic
, "writing tags", r
);
3118 if (ic
->mode
== 'B') {
3119 sector_t start
, end
;
3121 start
= (range
.logical_sector
>>
3122 (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
)) <<
3123 (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
3124 end
= ((range
.logical_sector
+ range
.n_sectors
) >>
3125 (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
)) <<
3126 (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
3127 block_bitmap_op(ic
, ic
->recalc_bitmap
, start
, end
- start
, BITMAP_OP_CLEAR
);
3133 spin_lock_irq(&ic
->endio_wait
.lock
);
3134 remove_range_unlocked(ic
, &range
);
3135 ic
->sb
->recalc_sector
= cpu_to_le64(range
.logical_sector
+ range
.n_sectors
);
3139 remove_range(ic
, &range
);
3143 spin_unlock_irq(&ic
->endio_wait
.lock
);
3145 recalc_write_super(ic
);
3148 vfree(recalc_buffer
);
3149 kvfree(recalc_tags
);
3152 static void integrity_recalc_inline(struct work_struct
*w
)
3154 struct dm_integrity_c
*ic
= container_of(w
, struct dm_integrity_c
, recalc_work
);
3155 size_t recalc_tags_size
;
3156 u8
*recalc_buffer
= NULL
;
3157 u8
*recalc_tags
= NULL
;
3158 struct dm_integrity_range range
;
3160 struct bio_integrity_payload
*bip
;
3165 unsigned int super_counter
= 0;
3166 unsigned recalc_sectors
= RECALC_SECTORS
;
3169 recalc_buffer
= kmalloc(recalc_sectors
<< SECTOR_SHIFT
, GFP_NOIO
| __GFP_NOWARN
);
3170 if (!recalc_buffer
) {
3172 recalc_sectors
>>= 1;
3173 if (recalc_sectors
>= 1U << ic
->sb
->log2_sectors_per_block
)
3175 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3179 recalc_tags_size
= (recalc_sectors
>> ic
->sb
->log2_sectors_per_block
) * ic
->tuple_size
;
3180 if (crypto_shash_digestsize(ic
->internal_hash
) > ic
->tuple_size
)
3181 recalc_tags_size
+= crypto_shash_digestsize(ic
->internal_hash
) - ic
->tuple_size
;
3182 recalc_tags
= kmalloc(recalc_tags_size
, GFP_NOIO
| __GFP_NOWARN
);
3184 kfree(recalc_buffer
);
3185 recalc_buffer
= NULL
;
3189 spin_lock_irq(&ic
->endio_wait
.lock
);
3192 if (unlikely(dm_post_suspending(ic
->ti
)))
3195 range
.logical_sector
= le64_to_cpu(ic
->sb
->recalc_sector
);
3196 if (unlikely(range
.logical_sector
>= ic
->provided_data_sectors
))
3198 range
.n_sectors
= min((sector_t
)recalc_sectors
, ic
->provided_data_sectors
- range
.logical_sector
);
3200 add_new_range_and_wait(ic
, &range
);
3201 spin_unlock_irq(&ic
->endio_wait
.lock
);
3203 if (unlikely(++super_counter
== RECALC_WRITE_SUPER
)) {
3204 recalc_write_super(ic
);
3208 if (unlikely(dm_integrity_failed(ic
)))
3211 DEBUG_print("recalculating: %llx - %llx\n", range
.logical_sector
, range
.n_sectors
);
3213 bio
= bio_alloc_bioset(ic
->dev
->bdev
, 1, REQ_OP_READ
, GFP_NOIO
, &ic
->recalc_bios
);
3214 bio
->bi_iter
.bi_sector
= ic
->start
+ SB_SECTORS
+ range
.logical_sector
;
3215 __bio_add_page(bio
, virt_to_page(recalc_buffer
), range
.n_sectors
<< SECTOR_SHIFT
, offset_in_page(recalc_buffer
));
3216 r
= submit_bio_wait(bio
);
3219 dm_integrity_io_error(ic
, "reading data", r
);
3224 for (i
= 0; i
< range
.n_sectors
; i
+= ic
->sectors_per_block
) {
3225 memset(t
, 0, ic
->tuple_size
);
3226 integrity_sector_checksum(ic
, range
.logical_sector
+ i
, recalc_buffer
+ (i
<< SECTOR_SHIFT
), t
);
3227 t
+= ic
->tuple_size
;
3230 bio
= bio_alloc_bioset(ic
->dev
->bdev
, 1, REQ_OP_WRITE
, GFP_NOIO
, &ic
->recalc_bios
);
3231 bio
->bi_iter
.bi_sector
= ic
->start
+ SB_SECTORS
+ range
.logical_sector
;
3232 __bio_add_page(bio
, virt_to_page(recalc_buffer
), range
.n_sectors
<< SECTOR_SHIFT
, offset_in_page(recalc_buffer
));
3234 bip
= bio_integrity_alloc(bio
, GFP_NOIO
, 1);
3235 if (unlikely(IS_ERR(bip
))) {
3237 DMCRIT("out of memory for bio integrity payload - recalculation disabled");
3240 ret
= bio_integrity_add_page(bio
, virt_to_page(recalc_tags
), t
- recalc_tags
, offset_in_page(recalc_tags
));
3241 if (unlikely(ret
!= t
- recalc_tags
)) {
3243 dm_integrity_io_error(ic
, "attaching integrity tags", -ENOMEM
);
3247 r
= submit_bio_wait(bio
);
3250 dm_integrity_io_error(ic
, "writing data", r
);
3255 spin_lock_irq(&ic
->endio_wait
.lock
);
3256 remove_range_unlocked(ic
, &range
);
3258 /* Paired with smp_load_acquire in dm_integrity_map_inline. */
3259 smp_store_release(&ic
->sb
->recalc_sector
, cpu_to_le64(range
.logical_sector
+ range
.n_sectors
));
3261 ic
->sb
->recalc_sector
= cpu_to_le64(range
.logical_sector
+ range
.n_sectors
);
3266 remove_range(ic
, &range
);
3270 spin_unlock_irq(&ic
->endio_wait
.lock
);
3272 recalc_write_super(ic
);
3275 kfree(recalc_buffer
);
3279 static void bitmap_block_work(struct work_struct
*w
)
3281 struct bitmap_block_status
*bbs
= container_of(w
, struct bitmap_block_status
, work
);
3282 struct dm_integrity_c
*ic
= bbs
->ic
;
3284 struct bio_list bio_queue
;
3285 struct bio_list waiting
;
3287 bio_list_init(&waiting
);
3289 spin_lock(&bbs
->bio_queue_lock
);
3290 bio_queue
= bbs
->bio_queue
;
3291 bio_list_init(&bbs
->bio_queue
);
3292 spin_unlock(&bbs
->bio_queue_lock
);
3294 while ((bio
= bio_list_pop(&bio_queue
))) {
3295 struct dm_integrity_io
*dio
;
3297 dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
3299 if (block_bitmap_op(ic
, ic
->may_write_bitmap
, dio
->range
.logical_sector
,
3300 dio
->range
.n_sectors
, BITMAP_OP_TEST_ALL_SET
)) {
3301 remove_range(ic
, &dio
->range
);
3302 INIT_WORK(&dio
->work
, integrity_bio_wait
);
3303 queue_work(ic
->offload_wq
, &dio
->work
);
3305 block_bitmap_op(ic
, ic
->journal
, dio
->range
.logical_sector
,
3306 dio
->range
.n_sectors
, BITMAP_OP_SET
);
3307 bio_list_add(&waiting
, bio
);
3311 if (bio_list_empty(&waiting
))
3314 rw_journal_sectors(ic
, REQ_OP_WRITE
| REQ_FUA
| REQ_SYNC
,
3315 bbs
->idx
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
),
3316 BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
, NULL
);
3318 while ((bio
= bio_list_pop(&waiting
))) {
3319 struct dm_integrity_io
*dio
= dm_per_bio_data(bio
, sizeof(struct dm_integrity_io
));
3321 block_bitmap_op(ic
, ic
->may_write_bitmap
, dio
->range
.logical_sector
,
3322 dio
->range
.n_sectors
, BITMAP_OP_SET
);
3324 remove_range(ic
, &dio
->range
);
3325 INIT_WORK(&dio
->work
, integrity_bio_wait
);
3326 queue_work(ic
->offload_wq
, &dio
->work
);
3329 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, ic
->bitmap_flush_interval
);
3332 static void bitmap_flush_work(struct work_struct
*work
)
3334 struct dm_integrity_c
*ic
= container_of(work
, struct dm_integrity_c
, bitmap_flush_work
.work
);
3335 struct dm_integrity_range range
;
3336 unsigned long limit
;
3339 dm_integrity_flush_buffers(ic
, false);
3341 range
.logical_sector
= 0;
3342 range
.n_sectors
= ic
->provided_data_sectors
;
3344 spin_lock_irq(&ic
->endio_wait
.lock
);
3345 add_new_range_and_wait(ic
, &range
);
3346 spin_unlock_irq(&ic
->endio_wait
.lock
);
3348 dm_integrity_flush_buffers(ic
, true);
3350 limit
= ic
->provided_data_sectors
;
3351 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
)) {
3352 limit
= le64_to_cpu(ic
->sb
->recalc_sector
)
3353 >> (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
)
3354 << (ic
->sb
->log2_sectors_per_block
+ ic
->log2_blocks_per_bitmap_bit
);
3356 /*DEBUG_print("zeroing journal\n");*/
3357 block_bitmap_op(ic
, ic
->journal
, 0, limit
, BITMAP_OP_CLEAR
);
3358 block_bitmap_op(ic
, ic
->may_write_bitmap
, 0, limit
, BITMAP_OP_CLEAR
);
3360 rw_journal_sectors(ic
, REQ_OP_WRITE
| REQ_FUA
| REQ_SYNC
, 0,
3361 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
3363 spin_lock_irq(&ic
->endio_wait
.lock
);
3364 remove_range_unlocked(ic
, &range
);
3365 while (unlikely((bio
= bio_list_pop(&ic
->synchronous_bios
)) != NULL
)) {
3367 spin_unlock_irq(&ic
->endio_wait
.lock
);
3368 spin_lock_irq(&ic
->endio_wait
.lock
);
3370 spin_unlock_irq(&ic
->endio_wait
.lock
);
3374 static void init_journal(struct dm_integrity_c
*ic
, unsigned int start_section
,
3375 unsigned int n_sections
, unsigned char commit_seq
)
3377 unsigned int i
, j
, n
;
3382 for (n
= 0; n
< n_sections
; n
++) {
3383 i
= start_section
+ n
;
3384 wraparound_section(ic
, &i
);
3385 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
3386 struct journal_sector
*js
= access_journal(ic
, i
, j
);
3388 BUILD_BUG_ON(sizeof(js
->sectors
) != JOURNAL_SECTOR_DATA
);
3389 memset(&js
->sectors
, 0, sizeof(js
->sectors
));
3390 js
->commit_id
= dm_integrity_commit_id(ic
, i
, j
, commit_seq
);
3392 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
3393 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
3395 journal_entry_set_unused(je
);
3399 write_journal(ic
, start_section
, n_sections
);
3402 static int find_commit_seq(struct dm_integrity_c
*ic
, unsigned int i
, unsigned int j
, commit_id_t id
)
3406 for (k
= 0; k
< N_COMMIT_IDS
; k
++) {
3407 if (dm_integrity_commit_id(ic
, i
, j
, k
) == id
)
3410 dm_integrity_io_error(ic
, "journal commit id", -EIO
);
3414 static void replay_journal(struct dm_integrity_c
*ic
)
3417 bool used_commit_ids
[N_COMMIT_IDS
];
3418 unsigned int max_commit_id_sections
[N_COMMIT_IDS
];
3419 unsigned int write_start
, write_sections
;
3420 unsigned int continue_section
;
3422 unsigned char unused
, last_used
, want_commit_seq
;
3424 if (ic
->mode
== 'R')
3427 if (ic
->journal_uptodate
)
3433 if (!ic
->just_formatted
) {
3434 DEBUG_print("reading journal\n");
3435 rw_journal(ic
, REQ_OP_READ
, 0, ic
->journal_sections
, NULL
);
3437 DEBUG_bytes(lowmem_page_address(ic
->journal_io
[0].page
), 64, "read journal");
3438 if (ic
->journal_io
) {
3439 struct journal_completion crypt_comp
;
3442 init_completion(&crypt_comp
.comp
);
3443 crypt_comp
.in_flight
= (atomic_t
)ATOMIC_INIT(0);
3444 encrypt_journal(ic
, false, 0, ic
->journal_sections
, &crypt_comp
);
3445 wait_for_completion(&crypt_comp
.comp
);
3447 DEBUG_bytes(lowmem_page_address(ic
->journal
[0].page
), 64, "decrypted journal");
3450 if (dm_integrity_failed(ic
))
3453 journal_empty
= true;
3454 memset(used_commit_ids
, 0, sizeof(used_commit_ids
));
3455 memset(max_commit_id_sections
, 0, sizeof(max_commit_id_sections
));
3456 for (i
= 0; i
< ic
->journal_sections
; i
++) {
3457 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
3459 struct journal_sector
*js
= access_journal(ic
, i
, j
);
3461 k
= find_commit_seq(ic
, i
, j
, js
->commit_id
);
3464 used_commit_ids
[k
] = true;
3465 max_commit_id_sections
[k
] = i
;
3467 if (journal_empty
) {
3468 for (j
= 0; j
< ic
->journal_section_entries
; j
++) {
3469 struct journal_entry
*je
= access_journal_entry(ic
, i
, j
);
3471 if (!journal_entry_is_unused(je
)) {
3472 journal_empty
= false;
3479 if (!used_commit_ids
[N_COMMIT_IDS
- 1]) {
3480 unused
= N_COMMIT_IDS
- 1;
3481 while (unused
&& !used_commit_ids
[unused
- 1])
3484 for (unused
= 0; unused
< N_COMMIT_IDS
; unused
++)
3485 if (!used_commit_ids
[unused
])
3487 if (unused
== N_COMMIT_IDS
) {
3488 dm_integrity_io_error(ic
, "journal commit ids", -EIO
);
3492 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3493 unused
, used_commit_ids
[0], used_commit_ids
[1],
3494 used_commit_ids
[2], used_commit_ids
[3]);
3496 last_used
= prev_commit_seq(unused
);
3497 want_commit_seq
= prev_commit_seq(last_used
);
3499 if (!used_commit_ids
[want_commit_seq
] && used_commit_ids
[prev_commit_seq(want_commit_seq
)])
3500 journal_empty
= true;
3502 write_start
= max_commit_id_sections
[last_used
] + 1;
3503 if (unlikely(write_start
>= ic
->journal_sections
))
3504 want_commit_seq
= next_commit_seq(want_commit_seq
);
3505 wraparound_section(ic
, &write_start
);
3508 for (write_sections
= 0; write_sections
< ic
->journal_sections
; write_sections
++) {
3509 for (j
= 0; j
< ic
->journal_section_sectors
; j
++) {
3510 struct journal_sector
*js
= access_journal(ic
, i
, j
);
3512 if (js
->commit_id
!= dm_integrity_commit_id(ic
, i
, j
, want_commit_seq
)) {
3514 * This could be caused by crash during writing.
3515 * We won't replay the inconsistent part of the
3518 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3519 i
, j
, find_commit_seq(ic
, i
, j
, js
->commit_id
), want_commit_seq
);
3524 if (unlikely(i
>= ic
->journal_sections
))
3525 want_commit_seq
= next_commit_seq(want_commit_seq
);
3526 wraparound_section(ic
, &i
);
3530 if (!journal_empty
) {
3531 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3532 write_sections
, write_start
, want_commit_seq
);
3533 do_journal_write(ic
, write_start
, write_sections
, true);
3536 if (write_sections
== ic
->journal_sections
&& (ic
->mode
== 'J' || journal_empty
)) {
3537 continue_section
= write_start
;
3538 ic
->commit_seq
= want_commit_seq
;
3539 DEBUG_print("continuing from section %u, commit seq %d\n", write_start
, ic
->commit_seq
);
3542 unsigned char erase_seq
;
3545 DEBUG_print("clearing journal\n");
3547 erase_seq
= prev_commit_seq(prev_commit_seq(last_used
));
3549 init_journal(ic
, s
, 1, erase_seq
);
3551 wraparound_section(ic
, &s
);
3552 if (ic
->journal_sections
>= 2) {
3553 init_journal(ic
, s
, ic
->journal_sections
- 2, erase_seq
);
3554 s
+= ic
->journal_sections
- 2;
3555 wraparound_section(ic
, &s
);
3556 init_journal(ic
, s
, 1, erase_seq
);
3559 continue_section
= 0;
3560 ic
->commit_seq
= next_commit_seq(erase_seq
);
3563 ic
->committed_section
= continue_section
;
3564 ic
->n_committed_sections
= 0;
3566 ic
->uncommitted_section
= continue_section
;
3567 ic
->n_uncommitted_sections
= 0;
3569 ic
->free_section
= continue_section
;
3570 ic
->free_section_entry
= 0;
3571 ic
->free_sectors
= ic
->journal_entries
;
3573 ic
->journal_tree_root
= RB_ROOT
;
3574 for (i
= 0; i
< ic
->journal_entries
; i
++)
3575 init_journal_node(&ic
->journal_tree
[i
]);
3578 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c
*ic
)
3580 DEBUG_print("%s\n", __func__
);
3582 if (ic
->mode
== 'B') {
3583 ic
->bitmap_flush_interval
= msecs_to_jiffies(10) + 1;
3584 ic
->synchronous_mode
= 1;
3586 cancel_delayed_work_sync(&ic
->bitmap_flush_work
);
3587 queue_delayed_work(ic
->commit_wq
, &ic
->bitmap_flush_work
, 0);
3588 flush_workqueue(ic
->commit_wq
);
3592 static int dm_integrity_reboot(struct notifier_block
*n
, unsigned long code
, void *x
)
3594 struct dm_integrity_c
*ic
= container_of(n
, struct dm_integrity_c
, reboot_notifier
);
3596 DEBUG_print("%s\n", __func__
);
3598 dm_integrity_enter_synchronous_mode(ic
);
3603 static void dm_integrity_postsuspend(struct dm_target
*ti
)
3605 struct dm_integrity_c
*ic
= ti
->private;
3608 WARN_ON(unregister_reboot_notifier(&ic
->reboot_notifier
));
3610 del_timer_sync(&ic
->autocommit_timer
);
3613 drain_workqueue(ic
->recalc_wq
);
3615 if (ic
->mode
== 'B')
3616 cancel_delayed_work_sync(&ic
->bitmap_flush_work
);
3618 queue_work(ic
->commit_wq
, &ic
->commit_work
);
3619 drain_workqueue(ic
->commit_wq
);
3621 if (ic
->mode
== 'J') {
3622 queue_work(ic
->writer_wq
, &ic
->writer_work
);
3623 drain_workqueue(ic
->writer_wq
);
3624 dm_integrity_flush_buffers(ic
, true);
3625 if (ic
->wrote_to_journal
) {
3626 init_journal(ic
, ic
->free_section
,
3627 ic
->journal_sections
- ic
->free_section
, ic
->commit_seq
);
3628 if (ic
->free_section
) {
3629 init_journal(ic
, 0, ic
->free_section
,
3630 next_commit_seq(ic
->commit_seq
));
3635 if (ic
->mode
== 'B') {
3636 dm_integrity_flush_buffers(ic
, true);
3638 /* set to 0 to test bitmap replay code */
3639 init_journal(ic
, 0, ic
->journal_sections
, 0);
3640 ic
->sb
->flags
&= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP
);
3641 r
= sync_rw_sb(ic
, REQ_OP_WRITE
| REQ_FUA
);
3643 dm_integrity_io_error(ic
, "writing superblock", r
);
3647 BUG_ON(!RB_EMPTY_ROOT(&ic
->in_progress
));
3649 ic
->journal_uptodate
= true;
3652 static void dm_integrity_resume(struct dm_target
*ti
)
3654 struct dm_integrity_c
*ic
= ti
->private;
3655 __u64 old_provided_data_sectors
= le64_to_cpu(ic
->sb
->provided_data_sectors
);
3658 DEBUG_print("resume\n");
3660 ic
->wrote_to_journal
= false;
3662 if (ic
->provided_data_sectors
!= old_provided_data_sectors
) {
3663 if (ic
->provided_data_sectors
> old_provided_data_sectors
&&
3665 ic
->sb
->log2_blocks_per_bitmap_bit
== ic
->log2_blocks_per_bitmap_bit
) {
3666 rw_journal_sectors(ic
, REQ_OP_READ
, 0,
3667 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
3668 block_bitmap_op(ic
, ic
->journal
, old_provided_data_sectors
,
3669 ic
->provided_data_sectors
- old_provided_data_sectors
, BITMAP_OP_SET
);
3670 rw_journal_sectors(ic
, REQ_OP_WRITE
| REQ_FUA
| REQ_SYNC
, 0,
3671 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
3674 ic
->sb
->provided_data_sectors
= cpu_to_le64(ic
->provided_data_sectors
);
3675 r
= sync_rw_sb(ic
, REQ_OP_WRITE
| REQ_FUA
);
3677 dm_integrity_io_error(ic
, "writing superblock", r
);
3680 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_DIRTY_BITMAP
)) {
3681 DEBUG_print("resume dirty_bitmap\n");
3682 rw_journal_sectors(ic
, REQ_OP_READ
, 0,
3683 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
3684 if (ic
->mode
== 'B') {
3685 if (ic
->sb
->log2_blocks_per_bitmap_bit
== ic
->log2_blocks_per_bitmap_bit
&&
3686 !ic
->reset_recalculate_flag
) {
3687 block_bitmap_copy(ic
, ic
->recalc_bitmap
, ic
->journal
);
3688 block_bitmap_copy(ic
, ic
->may_write_bitmap
, ic
->journal
);
3689 if (!block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
,
3690 BITMAP_OP_TEST_ALL_CLEAR
)) {
3691 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
3692 ic
->sb
->recalc_sector
= cpu_to_le64(0);
3695 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3696 ic
->sb
->log2_blocks_per_bitmap_bit
, ic
->log2_blocks_per_bitmap_bit
);
3697 ic
->sb
->log2_blocks_per_bitmap_bit
= ic
->log2_blocks_per_bitmap_bit
;
3698 block_bitmap_op(ic
, ic
->recalc_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_SET
);
3699 block_bitmap_op(ic
, ic
->may_write_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_SET
);
3700 block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
, BITMAP_OP_SET
);
3701 rw_journal_sectors(ic
, REQ_OP_WRITE
| REQ_FUA
| REQ_SYNC
, 0,
3702 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
3703 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
3704 ic
->sb
->recalc_sector
= cpu_to_le64(0);
3707 if (!(ic
->sb
->log2_blocks_per_bitmap_bit
== ic
->log2_blocks_per_bitmap_bit
&&
3708 block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
, BITMAP_OP_TEST_ALL_CLEAR
)) ||
3709 ic
->reset_recalculate_flag
) {
3710 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
3711 ic
->sb
->recalc_sector
= cpu_to_le64(0);
3713 init_journal(ic
, 0, ic
->journal_sections
, 0);
3715 ic
->sb
->flags
&= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP
);
3717 r
= sync_rw_sb(ic
, REQ_OP_WRITE
| REQ_FUA
);
3719 dm_integrity_io_error(ic
, "writing superblock", r
);
3722 if (ic
->reset_recalculate_flag
) {
3723 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
3724 ic
->sb
->recalc_sector
= cpu_to_le64(0);
3726 if (ic
->mode
== 'B') {
3727 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_DIRTY_BITMAP
);
3728 ic
->sb
->log2_blocks_per_bitmap_bit
= ic
->log2_blocks_per_bitmap_bit
;
3729 r
= sync_rw_sb(ic
, REQ_OP_WRITE
| REQ_FUA
);
3731 dm_integrity_io_error(ic
, "writing superblock", r
);
3733 block_bitmap_op(ic
, ic
->journal
, 0, ic
->provided_data_sectors
, BITMAP_OP_CLEAR
);
3734 block_bitmap_op(ic
, ic
->recalc_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_CLEAR
);
3735 block_bitmap_op(ic
, ic
->may_write_bitmap
, 0, ic
->provided_data_sectors
, BITMAP_OP_CLEAR
);
3736 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
) &&
3737 le64_to_cpu(ic
->sb
->recalc_sector
) < ic
->provided_data_sectors
) {
3738 block_bitmap_op(ic
, ic
->journal
, le64_to_cpu(ic
->sb
->recalc_sector
),
3739 ic
->provided_data_sectors
- le64_to_cpu(ic
->sb
->recalc_sector
), BITMAP_OP_SET
);
3740 block_bitmap_op(ic
, ic
->recalc_bitmap
, le64_to_cpu(ic
->sb
->recalc_sector
),
3741 ic
->provided_data_sectors
- le64_to_cpu(ic
->sb
->recalc_sector
), BITMAP_OP_SET
);
3742 block_bitmap_op(ic
, ic
->may_write_bitmap
, le64_to_cpu(ic
->sb
->recalc_sector
),
3743 ic
->provided_data_sectors
- le64_to_cpu(ic
->sb
->recalc_sector
), BITMAP_OP_SET
);
3745 rw_journal_sectors(ic
, REQ_OP_WRITE
| REQ_FUA
| REQ_SYNC
, 0,
3746 ic
->n_bitmap_blocks
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
), NULL
);
3750 DEBUG_print("testing recalc: %x\n", ic
->sb
->flags
);
3751 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
)) {
3752 __u64 recalc_pos
= le64_to_cpu(ic
->sb
->recalc_sector
);
3754 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos
, ic
->provided_data_sectors
);
3755 if (recalc_pos
< ic
->provided_data_sectors
) {
3756 queue_work(ic
->recalc_wq
, &ic
->recalc_work
);
3757 } else if (recalc_pos
> ic
->provided_data_sectors
) {
3758 ic
->sb
->recalc_sector
= cpu_to_le64(ic
->provided_data_sectors
);
3759 recalc_write_super(ic
);
3763 ic
->reboot_notifier
.notifier_call
= dm_integrity_reboot
;
3764 ic
->reboot_notifier
.next
= NULL
;
3765 ic
->reboot_notifier
.priority
= INT_MAX
- 1; /* be notified after md and before hardware drivers */
3766 WARN_ON(register_reboot_notifier(&ic
->reboot_notifier
));
3769 /* set to 1 to stress test synchronous mode */
3770 dm_integrity_enter_synchronous_mode(ic
);
3774 static void dm_integrity_status(struct dm_target
*ti
, status_type_t type
,
3775 unsigned int status_flags
, char *result
, unsigned int maxlen
)
3777 struct dm_integrity_c
*ic
= ti
->private;
3778 unsigned int arg_count
;
3782 case STATUSTYPE_INFO
:
3784 (unsigned long long)atomic64_read(&ic
->number_of_mismatches
),
3785 ic
->provided_data_sectors
);
3786 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))
3787 DMEMIT(" %llu", le64_to_cpu(ic
->sb
->recalc_sector
));
3792 case STATUSTYPE_TABLE
: {
3793 __u64 watermark_percentage
= (__u64
)(ic
->journal_entries
- ic
->free_sectors_threshold
) * 100;
3795 watermark_percentage
+= ic
->journal_entries
/ 2;
3796 do_div(watermark_percentage
, ic
->journal_entries
);
3798 arg_count
+= !!ic
->meta_dev
;
3799 arg_count
+= ic
->sectors_per_block
!= 1;
3800 arg_count
+= !!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
));
3801 arg_count
+= ic
->reset_recalculate_flag
;
3802 arg_count
+= ic
->discard
;
3803 arg_count
+= ic
->mode
== 'J';
3804 arg_count
+= ic
->mode
== 'J';
3805 arg_count
+= ic
->mode
== 'B';
3806 arg_count
+= ic
->mode
== 'B';
3807 arg_count
+= !!ic
->internal_hash_alg
.alg_string
;
3808 arg_count
+= !!ic
->journal_crypt_alg
.alg_string
;
3809 arg_count
+= !!ic
->journal_mac_alg
.alg_string
;
3810 arg_count
+= (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
)) != 0;
3811 arg_count
+= (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_HMAC
)) != 0;
3812 arg_count
+= ic
->legacy_recalculate
;
3813 DMEMIT("%s %llu %u %c %u", ic
->dev
->name
, ic
->start
,
3814 ic
->tag_size
, ic
->mode
, arg_count
);
3816 DMEMIT(" meta_device:%s", ic
->meta_dev
->name
);
3817 if (ic
->sectors_per_block
!= 1)
3818 DMEMIT(" block_size:%u", ic
->sectors_per_block
<< SECTOR_SHIFT
);
3819 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))
3820 DMEMIT(" recalculate");
3821 if (ic
->reset_recalculate_flag
)
3822 DMEMIT(" reset_recalculate");
3824 DMEMIT(" allow_discards");
3825 DMEMIT(" journal_sectors:%u", ic
->initial_sectors
- SB_SECTORS
);
3826 DMEMIT(" interleave_sectors:%u", 1U << ic
->sb
->log2_interleave_sectors
);
3827 DMEMIT(" buffer_sectors:%u", 1U << ic
->log2_buffer_sectors
);
3828 if (ic
->mode
== 'J') {
3829 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage
);
3830 DMEMIT(" commit_time:%u", ic
->autocommit_msec
);
3832 if (ic
->mode
== 'B') {
3833 DMEMIT(" sectors_per_bit:%llu", (sector_t
)ic
->sectors_per_block
<< ic
->log2_blocks_per_bitmap_bit
);
3834 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic
->bitmap_flush_interval
));
3836 if ((ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
)) != 0)
3837 DMEMIT(" fix_padding");
3838 if ((ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_HMAC
)) != 0)
3839 DMEMIT(" fix_hmac");
3840 if (ic
->legacy_recalculate
)
3841 DMEMIT(" legacy_recalculate");
3843 #define EMIT_ALG(a, n) \
3845 if (ic->a.alg_string) { \
3846 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3847 if (ic->a.key_string) \
3848 DMEMIT(":%s", ic->a.key_string);\
3851 EMIT_ALG(internal_hash_alg
, "internal_hash");
3852 EMIT_ALG(journal_crypt_alg
, "journal_crypt");
3853 EMIT_ALG(journal_mac_alg
, "journal_mac");
3856 case STATUSTYPE_IMA
:
3857 DMEMIT_TARGET_NAME_VERSION(ti
->type
);
3858 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3859 ic
->dev
->name
, ic
->start
, ic
->tag_size
, ic
->mode
);
3862 DMEMIT(",meta_device=%s", ic
->meta_dev
->name
);
3863 if (ic
->sectors_per_block
!= 1)
3864 DMEMIT(",block_size=%u", ic
->sectors_per_block
<< SECTOR_SHIFT
);
3866 DMEMIT(",recalculate=%c", (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
)) ?
3868 DMEMIT(",allow_discards=%c", ic
->discard
? 'y' : 'n');
3869 DMEMIT(",fix_padding=%c",
3870 ((ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
)) != 0) ? 'y' : 'n');
3871 DMEMIT(",fix_hmac=%c",
3872 ((ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_HMAC
)) != 0) ? 'y' : 'n');
3873 DMEMIT(",legacy_recalculate=%c", ic
->legacy_recalculate
? 'y' : 'n');
3875 DMEMIT(",journal_sectors=%u", ic
->initial_sectors
- SB_SECTORS
);
3876 DMEMIT(",interleave_sectors=%u", 1U << ic
->sb
->log2_interleave_sectors
);
3877 DMEMIT(",buffer_sectors=%u", 1U << ic
->log2_buffer_sectors
);
3883 static int dm_integrity_iterate_devices(struct dm_target
*ti
,
3884 iterate_devices_callout_fn fn
, void *data
)
3886 struct dm_integrity_c
*ic
= ti
->private;
3889 return fn(ti
, ic
->dev
, ic
->start
+ ic
->initial_sectors
+ ic
->metadata_run
, ti
->len
, data
);
3891 return fn(ti
, ic
->dev
, 0, ti
->len
, data
);
3894 static void dm_integrity_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3896 struct dm_integrity_c
*ic
= ti
->private;
3898 if (ic
->sectors_per_block
> 1) {
3899 limits
->logical_block_size
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
3900 limits
->physical_block_size
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
3901 limits
->io_min
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
3902 limits
->dma_alignment
= limits
->logical_block_size
- 1;
3903 limits
->discard_granularity
= ic
->sectors_per_block
<< SECTOR_SHIFT
;
3906 if (!ic
->internal_hash
) {
3907 struct blk_integrity
*bi
= &limits
->integrity
;
3909 memset(bi
, 0, sizeof(*bi
));
3910 bi
->tuple_size
= ic
->tag_size
;
3911 bi
->tag_size
= bi
->tuple_size
;
3913 ic
->sb
->log2_sectors_per_block
+ SECTOR_SHIFT
;
3916 limits
->max_integrity_segments
= USHRT_MAX
;
3919 static void calculate_journal_section_size(struct dm_integrity_c
*ic
)
3921 unsigned int sector_space
= JOURNAL_SECTOR_DATA
;
3923 ic
->journal_sections
= le32_to_cpu(ic
->sb
->journal_sections
);
3924 ic
->journal_entry_size
= roundup(offsetof(struct journal_entry
, last_bytes
[ic
->sectors_per_block
]) + ic
->tag_size
,
3925 JOURNAL_ENTRY_ROUNDUP
);
3927 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
))
3928 sector_space
-= JOURNAL_MAC_PER_SECTOR
;
3929 ic
->journal_entries_per_sector
= sector_space
/ ic
->journal_entry_size
;
3930 ic
->journal_section_entries
= ic
->journal_entries_per_sector
* JOURNAL_BLOCK_SECTORS
;
3931 ic
->journal_section_sectors
= (ic
->journal_section_entries
<< ic
->sb
->log2_sectors_per_block
) + JOURNAL_BLOCK_SECTORS
;
3932 ic
->journal_entries
= ic
->journal_section_entries
* ic
->journal_sections
;
3935 static int calculate_device_limits(struct dm_integrity_c
*ic
)
3937 __u64 initial_sectors
;
3939 calculate_journal_section_size(ic
);
3940 initial_sectors
= SB_SECTORS
+ (__u64
)ic
->journal_section_sectors
* ic
->journal_sections
;
3941 if (initial_sectors
+ METADATA_PADDING_SECTORS
>= ic
->meta_device_sectors
|| initial_sectors
> UINT_MAX
)
3943 ic
->initial_sectors
= initial_sectors
;
3945 if (ic
->mode
== 'I') {
3946 if (ic
->initial_sectors
+ ic
->provided_data_sectors
> ic
->meta_device_sectors
)
3948 } else if (!ic
->meta_dev
) {
3949 sector_t last_sector
, last_area
, last_offset
;
3951 /* we have to maintain excessive padding for compatibility with existing volumes */
3952 __u64 metadata_run_padding
=
3953 ic
->sb
->flags
& cpu_to_le32(SB_FLAG_FIXED_PADDING
) ?
3954 (__u64
)(METADATA_PADDING_SECTORS
<< SECTOR_SHIFT
) :
3955 (__u64
)(1 << SECTOR_SHIFT
<< METADATA_PADDING_SECTORS
);
3957 ic
->metadata_run
= round_up((__u64
)ic
->tag_size
<< (ic
->sb
->log2_interleave_sectors
- ic
->sb
->log2_sectors_per_block
),
3958 metadata_run_padding
) >> SECTOR_SHIFT
;
3959 if (!(ic
->metadata_run
& (ic
->metadata_run
- 1)))
3960 ic
->log2_metadata_run
= __ffs(ic
->metadata_run
);
3962 ic
->log2_metadata_run
= -1;
3964 get_area_and_offset(ic
, ic
->provided_data_sectors
- 1, &last_area
, &last_offset
);
3965 last_sector
= get_data_sector(ic
, last_area
, last_offset
);
3966 if (last_sector
< ic
->start
|| last_sector
>= ic
->meta_device_sectors
)
3969 __u64 meta_size
= (ic
->provided_data_sectors
>> ic
->sb
->log2_sectors_per_block
) * ic
->tag_size
;
3971 meta_size
= (meta_size
+ ((1U << (ic
->log2_buffer_sectors
+ SECTOR_SHIFT
)) - 1))
3972 >> (ic
->log2_buffer_sectors
+ SECTOR_SHIFT
);
3973 meta_size
<<= ic
->log2_buffer_sectors
;
3974 if (ic
->initial_sectors
+ meta_size
< ic
->initial_sectors
||
3975 ic
->initial_sectors
+ meta_size
> ic
->meta_device_sectors
)
3977 ic
->metadata_run
= 1;
3978 ic
->log2_metadata_run
= 0;
3984 static void get_provided_data_sectors(struct dm_integrity_c
*ic
)
3986 if (!ic
->meta_dev
) {
3989 ic
->provided_data_sectors
= 0;
3990 for (test_bit
= fls64(ic
->meta_device_sectors
) - 1; test_bit
>= 3; test_bit
--) {
3991 __u64 prev_data_sectors
= ic
->provided_data_sectors
;
3993 ic
->provided_data_sectors
|= (sector_t
)1 << test_bit
;
3994 if (calculate_device_limits(ic
))
3995 ic
->provided_data_sectors
= prev_data_sectors
;
3998 ic
->provided_data_sectors
= ic
->data_device_sectors
;
3999 ic
->provided_data_sectors
&= ~(sector_t
)(ic
->sectors_per_block
- 1);
4003 static int initialize_superblock(struct dm_integrity_c
*ic
,
4004 unsigned int journal_sectors
, unsigned int interleave_sectors
)
4006 unsigned int journal_sections
;
4009 memset(ic
->sb
, 0, SB_SECTORS
<< SECTOR_SHIFT
);
4010 memcpy(ic
->sb
->magic
, SB_MAGIC
, 8);
4011 if (ic
->mode
== 'I')
4012 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_INLINE
);
4013 ic
->sb
->integrity_tag_size
= cpu_to_le16(ic
->tag_size
);
4014 ic
->sb
->log2_sectors_per_block
= __ffs(ic
->sectors_per_block
);
4015 if (ic
->journal_mac_alg
.alg_string
)
4016 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
);
4018 calculate_journal_section_size(ic
);
4019 journal_sections
= journal_sectors
/ ic
->journal_section_sectors
;
4020 if (!journal_sections
)
4021 journal_sections
= 1;
4022 if (ic
->mode
== 'I')
4023 journal_sections
= 0;
4025 if (ic
->fix_hmac
&& (ic
->internal_hash_alg
.alg_string
|| ic
->journal_mac_alg
.alg_string
)) {
4026 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_FIXED_HMAC
);
4027 get_random_bytes(ic
->sb
->salt
, SALT_SIZE
);
4030 if (!ic
->meta_dev
) {
4031 if (ic
->fix_padding
)
4032 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_FIXED_PADDING
);
4033 ic
->sb
->journal_sections
= cpu_to_le32(journal_sections
);
4034 if (!interleave_sectors
)
4035 interleave_sectors
= DEFAULT_INTERLEAVE_SECTORS
;
4036 ic
->sb
->log2_interleave_sectors
= __fls(interleave_sectors
);
4037 ic
->sb
->log2_interleave_sectors
= max_t(__u8
, MIN_LOG2_INTERLEAVE_SECTORS
, ic
->sb
->log2_interleave_sectors
);
4038 ic
->sb
->log2_interleave_sectors
= min_t(__u8
, MAX_LOG2_INTERLEAVE_SECTORS
, ic
->sb
->log2_interleave_sectors
);
4040 get_provided_data_sectors(ic
);
4041 if (!ic
->provided_data_sectors
)
4044 ic
->sb
->log2_interleave_sectors
= 0;
4046 get_provided_data_sectors(ic
);
4047 if (!ic
->provided_data_sectors
)
4051 ic
->sb
->journal_sections
= cpu_to_le32(0);
4052 for (test_bit
= fls(journal_sections
) - 1; test_bit
>= 0; test_bit
--) {
4053 __u32 prev_journal_sections
= le32_to_cpu(ic
->sb
->journal_sections
);
4054 __u32 test_journal_sections
= prev_journal_sections
| (1U << test_bit
);
4056 if (test_journal_sections
> journal_sections
)
4058 ic
->sb
->journal_sections
= cpu_to_le32(test_journal_sections
);
4059 if (calculate_device_limits(ic
))
4060 ic
->sb
->journal_sections
= cpu_to_le32(prev_journal_sections
);
4063 if (!le32_to_cpu(ic
->sb
->journal_sections
)) {
4064 if (ic
->log2_buffer_sectors
> 3) {
4065 ic
->log2_buffer_sectors
--;
4066 goto try_smaller_buffer
;
4072 ic
->sb
->provided_data_sectors
= cpu_to_le64(ic
->provided_data_sectors
);
4079 static void dm_integrity_free_page_list(struct page_list
*pl
)
4085 for (i
= 0; pl
[i
].page
; i
++)
4086 __free_page(pl
[i
].page
);
4090 static struct page_list
*dm_integrity_alloc_page_list(unsigned int n_pages
)
4092 struct page_list
*pl
;
4095 pl
= kvmalloc_array(n_pages
+ 1, sizeof(struct page_list
), GFP_KERNEL
| __GFP_ZERO
);
4099 for (i
= 0; i
< n_pages
; i
++) {
4100 pl
[i
].page
= alloc_page(GFP_KERNEL
);
4102 dm_integrity_free_page_list(pl
);
4106 pl
[i
- 1].next
= &pl
[i
];
4114 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c
*ic
, struct scatterlist
**sl
)
4118 for (i
= 0; i
< ic
->journal_sections
; i
++)
4123 static struct scatterlist
**dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c
*ic
,
4124 struct page_list
*pl
)
4126 struct scatterlist
**sl
;
4129 sl
= kvmalloc_array(ic
->journal_sections
,
4130 sizeof(struct scatterlist
*),
4131 GFP_KERNEL
| __GFP_ZERO
);
4135 for (i
= 0; i
< ic
->journal_sections
; i
++) {
4136 struct scatterlist
*s
;
4137 unsigned int start_index
, start_offset
;
4138 unsigned int end_index
, end_offset
;
4139 unsigned int n_pages
;
4142 page_list_location(ic
, i
, 0, &start_index
, &start_offset
);
4143 page_list_location(ic
, i
, ic
->journal_section_sectors
- 1,
4144 &end_index
, &end_offset
);
4146 n_pages
= (end_index
- start_index
+ 1);
4148 s
= kvmalloc_array(n_pages
, sizeof(struct scatterlist
),
4151 dm_integrity_free_journal_scatterlist(ic
, sl
);
4155 sg_init_table(s
, n_pages
);
4156 for (idx
= start_index
; idx
<= end_index
; idx
++) {
4157 char *va
= lowmem_page_address(pl
[idx
].page
);
4158 unsigned int start
= 0, end
= PAGE_SIZE
;
4160 if (idx
== start_index
)
4161 start
= start_offset
;
4162 if (idx
== end_index
)
4163 end
= end_offset
+ (1 << SECTOR_SHIFT
);
4164 sg_set_buf(&s
[idx
- start_index
], va
+ start
, end
- start
);
4173 static void free_alg(struct alg_spec
*a
)
4175 kfree_sensitive(a
->alg_string
);
4176 kfree_sensitive(a
->key
);
4177 memset(a
, 0, sizeof(*a
));
4180 static int get_alg_and_key(const char *arg
, struct alg_spec
*a
, char **error
, char *error_inval
)
4186 a
->alg_string
= kstrdup(strchr(arg
, ':') + 1, GFP_KERNEL
);
4190 k
= strchr(a
->alg_string
, ':');
4193 a
->key_string
= k
+ 1;
4194 if (strlen(a
->key_string
) & 1)
4197 a
->key_size
= strlen(a
->key_string
) / 2;
4198 a
->key
= kmalloc(a
->key_size
, GFP_KERNEL
);
4201 if (hex2bin(a
->key
, a
->key_string
, a
->key_size
))
4207 *error
= error_inval
;
4210 *error
= "Out of memory for an argument";
4214 static int get_mac(struct crypto_shash
**hash
, struct alg_spec
*a
, char **error
,
4215 char *error_alg
, char *error_key
)
4219 if (a
->alg_string
) {
4220 *hash
= crypto_alloc_shash(a
->alg_string
, 0, CRYPTO_ALG_ALLOCATES_MEMORY
);
4221 if (IS_ERR(*hash
)) {
4229 r
= crypto_shash_setkey(*hash
, a
->key
, a
->key_size
);
4234 } else if (crypto_shash_get_flags(*hash
) & CRYPTO_TFM_NEED_KEY
) {
4243 static int create_journal(struct dm_integrity_c
*ic
, char **error
)
4247 __u64 journal_pages
, journal_desc_size
, journal_tree_size
;
4248 unsigned char *crypt_data
= NULL
, *crypt_iv
= NULL
;
4249 struct skcipher_request
*req
= NULL
;
4251 ic
->commit_ids
[0] = cpu_to_le64(0x1111111111111111ULL
);
4252 ic
->commit_ids
[1] = cpu_to_le64(0x2222222222222222ULL
);
4253 ic
->commit_ids
[2] = cpu_to_le64(0x3333333333333333ULL
);
4254 ic
->commit_ids
[3] = cpu_to_le64(0x4444444444444444ULL
);
4256 journal_pages
= roundup((__u64
)ic
->journal_sections
* ic
->journal_section_sectors
,
4257 PAGE_SIZE
>> SECTOR_SHIFT
) >> (PAGE_SHIFT
- SECTOR_SHIFT
);
4258 journal_desc_size
= journal_pages
* sizeof(struct page_list
);
4259 if (journal_pages
>= totalram_pages() - totalhigh_pages() || journal_desc_size
> ULONG_MAX
) {
4260 *error
= "Journal doesn't fit into memory";
4264 ic
->journal_pages
= journal_pages
;
4266 ic
->journal
= dm_integrity_alloc_page_list(ic
->journal_pages
);
4268 *error
= "Could not allocate memory for journal";
4272 if (ic
->journal_crypt_alg
.alg_string
) {
4273 unsigned int ivsize
, blocksize
;
4274 struct journal_completion comp
;
4277 ic
->journal_crypt
= crypto_alloc_skcipher(ic
->journal_crypt_alg
.alg_string
, 0, CRYPTO_ALG_ALLOCATES_MEMORY
);
4278 if (IS_ERR(ic
->journal_crypt
)) {
4279 *error
= "Invalid journal cipher";
4280 r
= PTR_ERR(ic
->journal_crypt
);
4281 ic
->journal_crypt
= NULL
;
4284 ivsize
= crypto_skcipher_ivsize(ic
->journal_crypt
);
4285 blocksize
= crypto_skcipher_blocksize(ic
->journal_crypt
);
4287 if (ic
->journal_crypt_alg
.key
) {
4288 r
= crypto_skcipher_setkey(ic
->journal_crypt
, ic
->journal_crypt_alg
.key
,
4289 ic
->journal_crypt_alg
.key_size
);
4291 *error
= "Error setting encryption key";
4295 DEBUG_print("cipher %s, block size %u iv size %u\n",
4296 ic
->journal_crypt_alg
.alg_string
, blocksize
, ivsize
);
4298 ic
->journal_io
= dm_integrity_alloc_page_list(ic
->journal_pages
);
4299 if (!ic
->journal_io
) {
4300 *error
= "Could not allocate memory for journal io";
4305 if (blocksize
== 1) {
4306 struct scatterlist
*sg
;
4308 req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
4310 *error
= "Could not allocate crypt request";
4315 crypt_iv
= kzalloc(ivsize
, GFP_KERNEL
);
4317 *error
= "Could not allocate iv";
4322 ic
->journal_xor
= dm_integrity_alloc_page_list(ic
->journal_pages
);
4323 if (!ic
->journal_xor
) {
4324 *error
= "Could not allocate memory for journal xor";
4329 sg
= kvmalloc_array(ic
->journal_pages
+ 1,
4330 sizeof(struct scatterlist
),
4333 *error
= "Unable to allocate sg list";
4337 sg_init_table(sg
, ic
->journal_pages
+ 1);
4338 for (i
= 0; i
< ic
->journal_pages
; i
++) {
4339 char *va
= lowmem_page_address(ic
->journal_xor
[i
].page
);
4342 sg_set_buf(&sg
[i
], va
, PAGE_SIZE
);
4344 sg_set_buf(&sg
[i
], &ic
->commit_ids
, sizeof(ic
->commit_ids
));
4346 skcipher_request_set_crypt(req
, sg
, sg
,
4347 PAGE_SIZE
* ic
->journal_pages
+ sizeof(ic
->commit_ids
), crypt_iv
);
4348 init_completion(&comp
.comp
);
4349 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
4350 if (do_crypt(true, req
, &comp
))
4351 wait_for_completion(&comp
.comp
);
4353 r
= dm_integrity_failed(ic
);
4355 *error
= "Unable to encrypt journal";
4358 DEBUG_bytes(lowmem_page_address(ic
->journal_xor
[0].page
), 64, "xor data");
4360 crypto_free_skcipher(ic
->journal_crypt
);
4361 ic
->journal_crypt
= NULL
;
4363 unsigned int crypt_len
= roundup(ivsize
, blocksize
);
4365 req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
4367 *error
= "Could not allocate crypt request";
4372 crypt_iv
= kmalloc(ivsize
, GFP_KERNEL
);
4374 *error
= "Could not allocate iv";
4379 crypt_data
= kmalloc(crypt_len
, GFP_KERNEL
);
4381 *error
= "Unable to allocate crypt data";
4386 ic
->journal_scatterlist
= dm_integrity_alloc_journal_scatterlist(ic
, ic
->journal
);
4387 if (!ic
->journal_scatterlist
) {
4388 *error
= "Unable to allocate sg list";
4392 ic
->journal_io_scatterlist
= dm_integrity_alloc_journal_scatterlist(ic
, ic
->journal_io
);
4393 if (!ic
->journal_io_scatterlist
) {
4394 *error
= "Unable to allocate sg list";
4398 ic
->sk_requests
= kvmalloc_array(ic
->journal_sections
,
4399 sizeof(struct skcipher_request
*),
4400 GFP_KERNEL
| __GFP_ZERO
);
4401 if (!ic
->sk_requests
) {
4402 *error
= "Unable to allocate sk requests";
4406 for (i
= 0; i
< ic
->journal_sections
; i
++) {
4407 struct scatterlist sg
;
4408 struct skcipher_request
*section_req
;
4409 __le32 section_le
= cpu_to_le32(i
);
4411 memset(crypt_iv
, 0x00, ivsize
);
4412 memset(crypt_data
, 0x00, crypt_len
);
4413 memcpy(crypt_data
, §ion_le
, min_t(size_t, crypt_len
, sizeof(section_le
)));
4415 sg_init_one(&sg
, crypt_data
, crypt_len
);
4416 skcipher_request_set_crypt(req
, &sg
, &sg
, crypt_len
, crypt_iv
);
4417 init_completion(&comp
.comp
);
4418 comp
.in_flight
= (atomic_t
)ATOMIC_INIT(1);
4419 if (do_crypt(true, req
, &comp
))
4420 wait_for_completion(&comp
.comp
);
4422 r
= dm_integrity_failed(ic
);
4424 *error
= "Unable to generate iv";
4428 section_req
= skcipher_request_alloc(ic
->journal_crypt
, GFP_KERNEL
);
4430 *error
= "Unable to allocate crypt request";
4434 section_req
->iv
= kmalloc_array(ivsize
, 2,
4436 if (!section_req
->iv
) {
4437 skcipher_request_free(section_req
);
4438 *error
= "Unable to allocate iv";
4442 memcpy(section_req
->iv
+ ivsize
, crypt_data
, ivsize
);
4443 section_req
->cryptlen
= (size_t)ic
->journal_section_sectors
<< SECTOR_SHIFT
;
4444 ic
->sk_requests
[i
] = section_req
;
4445 DEBUG_bytes(crypt_data
, ivsize
, "iv(%u)", i
);
4450 for (i
= 0; i
< N_COMMIT_IDS
; i
++) {
4454 for (j
= 0; j
< i
; j
++) {
4455 if (ic
->commit_ids
[j
] == ic
->commit_ids
[i
]) {
4456 ic
->commit_ids
[i
] = cpu_to_le64(le64_to_cpu(ic
->commit_ids
[i
]) + 1);
4457 goto retest_commit_id
;
4460 DEBUG_print("commit id %u: %016llx\n", i
, ic
->commit_ids
[i
]);
4463 journal_tree_size
= (__u64
)ic
->journal_entries
* sizeof(struct journal_node
);
4464 if (journal_tree_size
> ULONG_MAX
) {
4465 *error
= "Journal doesn't fit into memory";
4469 ic
->journal_tree
= kvmalloc(journal_tree_size
, GFP_KERNEL
);
4470 if (!ic
->journal_tree
) {
4471 *error
= "Could not allocate memory for journal tree";
4477 skcipher_request_free(req
);
4483 * Construct a integrity mapping
4487 * offset from the start of the device
4489 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4490 * number of optional arguments
4491 * optional arguments:
4493 * interleave_sectors
4500 * bitmap_flush_interval
4506 static int dm_integrity_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
4508 struct dm_integrity_c
*ic
;
4511 unsigned int extra_args
;
4512 struct dm_arg_set as
;
4513 static const struct dm_arg _args
[] = {
4514 {0, 18, "Invalid number of feature args"},
4516 unsigned int journal_sectors
, interleave_sectors
, buffer_sectors
, journal_watermark
, sync_msec
;
4517 bool should_write_sb
;
4519 unsigned long long start
;
4520 __s8 log2_sectors_per_bitmap_bit
= -1;
4521 __s8 log2_blocks_per_bitmap_bit
;
4522 __u64 bits_in_journal
;
4523 __u64 n_bitmap_bits
;
4525 #define DIRECT_ARGUMENTS 4
4527 if (argc
<= DIRECT_ARGUMENTS
) {
4528 ti
->error
= "Invalid argument count";
4532 ic
= kzalloc(sizeof(struct dm_integrity_c
), GFP_KERNEL
);
4534 ti
->error
= "Cannot allocate integrity context";
4538 ti
->per_io_data_size
= sizeof(struct dm_integrity_io
);
4541 ic
->in_progress
= RB_ROOT
;
4542 INIT_LIST_HEAD(&ic
->wait_list
);
4543 init_waitqueue_head(&ic
->endio_wait
);
4544 bio_list_init(&ic
->flush_bio_list
);
4545 init_waitqueue_head(&ic
->copy_to_journal_wait
);
4546 init_completion(&ic
->crypto_backoff
);
4547 atomic64_set(&ic
->number_of_mismatches
, 0);
4548 ic
->bitmap_flush_interval
= BITMAP_FLUSH_INTERVAL
;
4550 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &ic
->dev
);
4552 ti
->error
= "Device lookup failed";
4556 if (sscanf(argv
[1], "%llu%c", &start
, &dummy
) != 1 || start
!= (sector_t
)start
) {
4557 ti
->error
= "Invalid starting offset";
4563 if (strcmp(argv
[2], "-")) {
4564 if (sscanf(argv
[2], "%u%c", &ic
->tag_size
, &dummy
) != 1 || !ic
->tag_size
) {
4565 ti
->error
= "Invalid tag size";
4571 if (!strcmp(argv
[3], "J") || !strcmp(argv
[3], "B") ||
4572 !strcmp(argv
[3], "D") || !strcmp(argv
[3], "R") ||
4573 !strcmp(argv
[3], "I")) {
4574 ic
->mode
= argv
[3][0];
4576 ti
->error
= "Invalid mode (expecting J, B, D, R, I)";
4581 journal_sectors
= 0;
4582 interleave_sectors
= DEFAULT_INTERLEAVE_SECTORS
;
4583 buffer_sectors
= DEFAULT_BUFFER_SECTORS
;
4584 journal_watermark
= DEFAULT_JOURNAL_WATERMARK
;
4585 sync_msec
= DEFAULT_SYNC_MSEC
;
4586 ic
->sectors_per_block
= 1;
4588 as
.argc
= argc
- DIRECT_ARGUMENTS
;
4589 as
.argv
= argv
+ DIRECT_ARGUMENTS
;
4590 r
= dm_read_arg_group(_args
, &as
, &extra_args
, &ti
->error
);
4594 while (extra_args
--) {
4595 const char *opt_string
;
4597 unsigned long long llval
;
4599 opt_string
= dm_shift_arg(&as
);
4602 ti
->error
= "Not enough feature arguments";
4605 if (sscanf(opt_string
, "journal_sectors:%u%c", &val
, &dummy
) == 1)
4606 journal_sectors
= val
? val
: 1;
4607 else if (sscanf(opt_string
, "interleave_sectors:%u%c", &val
, &dummy
) == 1)
4608 interleave_sectors
= val
;
4609 else if (sscanf(opt_string
, "buffer_sectors:%u%c", &val
, &dummy
) == 1)
4610 buffer_sectors
= val
;
4611 else if (sscanf(opt_string
, "journal_watermark:%u%c", &val
, &dummy
) == 1 && val
<= 100)
4612 journal_watermark
= val
;
4613 else if (sscanf(opt_string
, "commit_time:%u%c", &val
, &dummy
) == 1)
4615 else if (!strncmp(opt_string
, "meta_device:", strlen("meta_device:"))) {
4617 dm_put_device(ti
, ic
->meta_dev
);
4618 ic
->meta_dev
= NULL
;
4620 r
= dm_get_device(ti
, strchr(opt_string
, ':') + 1,
4621 dm_table_get_mode(ti
->table
), &ic
->meta_dev
);
4623 ti
->error
= "Device lookup failed";
4626 } else if (sscanf(opt_string
, "block_size:%u%c", &val
, &dummy
) == 1) {
4627 if (val
< 1 << SECTOR_SHIFT
||
4628 val
> MAX_SECTORS_PER_BLOCK
<< SECTOR_SHIFT
||
4629 (val
& (val
- 1))) {
4631 ti
->error
= "Invalid block_size argument";
4634 ic
->sectors_per_block
= val
>> SECTOR_SHIFT
;
4635 } else if (sscanf(opt_string
, "sectors_per_bit:%llu%c", &llval
, &dummy
) == 1) {
4636 log2_sectors_per_bitmap_bit
= !llval
? 0 : __ilog2_u64(llval
);
4637 } else if (sscanf(opt_string
, "bitmap_flush_interval:%u%c", &val
, &dummy
) == 1) {
4638 if ((uint64_t)val
>= (uint64_t)UINT_MAX
* 1000 / HZ
) {
4640 ti
->error
= "Invalid bitmap_flush_interval argument";
4643 ic
->bitmap_flush_interval
= msecs_to_jiffies(val
);
4644 } else if (!strncmp(opt_string
, "internal_hash:", strlen("internal_hash:"))) {
4645 r
= get_alg_and_key(opt_string
, &ic
->internal_hash_alg
, &ti
->error
,
4646 "Invalid internal_hash argument");
4649 } else if (!strncmp(opt_string
, "journal_crypt:", strlen("journal_crypt:"))) {
4650 r
= get_alg_and_key(opt_string
, &ic
->journal_crypt_alg
, &ti
->error
,
4651 "Invalid journal_crypt argument");
4654 } else if (!strncmp(opt_string
, "journal_mac:", strlen("journal_mac:"))) {
4655 r
= get_alg_and_key(opt_string
, &ic
->journal_mac_alg
, &ti
->error
,
4656 "Invalid journal_mac argument");
4659 } else if (!strcmp(opt_string
, "recalculate")) {
4660 ic
->recalculate_flag
= true;
4661 } else if (!strcmp(opt_string
, "reset_recalculate")) {
4662 ic
->recalculate_flag
= true;
4663 ic
->reset_recalculate_flag
= true;
4664 } else if (!strcmp(opt_string
, "allow_discards")) {
4666 } else if (!strcmp(opt_string
, "fix_padding")) {
4667 ic
->fix_padding
= true;
4668 } else if (!strcmp(opt_string
, "fix_hmac")) {
4669 ic
->fix_hmac
= true;
4670 } else if (!strcmp(opt_string
, "legacy_recalculate")) {
4671 ic
->legacy_recalculate
= true;
4674 ti
->error
= "Invalid argument";
4679 ic
->data_device_sectors
= bdev_nr_sectors(ic
->dev
->bdev
);
4681 ic
->meta_device_sectors
= ic
->data_device_sectors
;
4683 ic
->meta_device_sectors
= bdev_nr_sectors(ic
->meta_dev
->bdev
);
4685 if (!journal_sectors
) {
4686 journal_sectors
= min((sector_t
)DEFAULT_MAX_JOURNAL_SECTORS
,
4687 ic
->data_device_sectors
>> DEFAULT_JOURNAL_SIZE_FACTOR
);
4690 if (!buffer_sectors
)
4692 ic
->log2_buffer_sectors
= min((int)__fls(buffer_sectors
), 31 - SECTOR_SHIFT
);
4694 r
= get_mac(&ic
->internal_hash
, &ic
->internal_hash_alg
, &ti
->error
,
4695 "Invalid internal hash", "Error setting internal hash key");
4699 r
= get_mac(&ic
->journal_mac
, &ic
->journal_mac_alg
, &ti
->error
,
4700 "Invalid journal mac", "Error setting journal mac key");
4704 if (!ic
->tag_size
) {
4705 if (!ic
->internal_hash
) {
4706 ti
->error
= "Unknown tag size";
4710 ic
->tag_size
= crypto_shash_digestsize(ic
->internal_hash
);
4712 if (ic
->tag_size
> MAX_TAG_SIZE
) {
4713 ti
->error
= "Too big tag size";
4717 if (!(ic
->tag_size
& (ic
->tag_size
- 1)))
4718 ic
->log2_tag_size
= __ffs(ic
->tag_size
);
4720 ic
->log2_tag_size
= -1;
4722 if (ic
->mode
== 'I') {
4723 struct blk_integrity
*bi
;
4726 ti
->error
= "Metadata device not supported in inline mode";
4729 if (!ic
->internal_hash_alg
.alg_string
) {
4731 ti
->error
= "Internal hash not set in inline mode";
4734 if (ic
->journal_crypt_alg
.alg_string
|| ic
->journal_mac_alg
.alg_string
) {
4736 ti
->error
= "Journal crypt not supported in inline mode";
4741 ti
->error
= "Discards not supported in inline mode";
4744 bi
= blk_get_integrity(ic
->dev
->bdev
->bd_disk
);
4745 if (!bi
|| bi
->csum_type
!= BLK_INTEGRITY_CSUM_NONE
) {
4747 ti
->error
= "Integrity profile not supported";
4750 /*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/
4751 if (bi
->tuple_size
< ic
->tag_size
) {
4753 ti
->error
= "The integrity profile is smaller than tag size";
4756 if ((unsigned long)bi
->tuple_size
> PAGE_SIZE
/ 2) {
4758 ti
->error
= "Too big tuple size";
4761 ic
->tuple_size
= bi
->tuple_size
;
4762 if (1 << bi
->interval_exp
!= ic
->sectors_per_block
<< SECTOR_SHIFT
) {
4764 ti
->error
= "Integrity profile sector size mismatch";
4769 if (ic
->mode
== 'B' && !ic
->internal_hash
) {
4771 ti
->error
= "Bitmap mode can be only used with internal hash";
4775 if (ic
->discard
&& !ic
->internal_hash
) {
4777 ti
->error
= "Discard can be only used with internal hash";
4781 ic
->autocommit_jiffies
= msecs_to_jiffies(sync_msec
);
4782 ic
->autocommit_msec
= sync_msec
;
4783 timer_setup(&ic
->autocommit_timer
, autocommit_fn
, 0);
4785 ic
->io
= dm_io_client_create();
4786 if (IS_ERR(ic
->io
)) {
4787 r
= PTR_ERR(ic
->io
);
4789 ti
->error
= "Cannot allocate dm io";
4793 r
= mempool_init_slab_pool(&ic
->journal_io_mempool
, JOURNAL_IO_MEMPOOL
, journal_io_cache
);
4795 ti
->error
= "Cannot allocate mempool";
4799 r
= mempool_init_page_pool(&ic
->recheck_pool
, 1, ic
->mode
== 'I' ? 1 : 0);
4801 ti
->error
= "Cannot allocate mempool";
4805 if (ic
->mode
== 'I') {
4806 r
= bioset_init(&ic
->recheck_bios
, RECHECK_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
4808 ti
->error
= "Cannot allocate bio set";
4811 r
= bioset_integrity_create(&ic
->recheck_bios
, RECHECK_POOL_SIZE
);
4813 ti
->error
= "Cannot allocate bio integrity set";
4817 r
= bioset_init(&ic
->recalc_bios
, 1, 0, BIOSET_NEED_BVECS
);
4819 ti
->error
= "Cannot allocate bio set";
4822 r
= bioset_integrity_create(&ic
->recalc_bios
, 1);
4824 ti
->error
= "Cannot allocate bio integrity set";
4830 ic
->metadata_wq
= alloc_workqueue("dm-integrity-metadata",
4831 WQ_MEM_RECLAIM
, METADATA_WORKQUEUE_MAX_ACTIVE
);
4832 if (!ic
->metadata_wq
) {
4833 ti
->error
= "Cannot allocate workqueue";
4839 * If this workqueue weren't ordered, it would cause bio reordering
4840 * and reduced performance.
4842 ic
->wait_wq
= alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM
);
4844 ti
->error
= "Cannot allocate workqueue";
4849 ic
->offload_wq
= alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM
,
4850 METADATA_WORKQUEUE_MAX_ACTIVE
);
4851 if (!ic
->offload_wq
) {
4852 ti
->error
= "Cannot allocate workqueue";
4857 ic
->commit_wq
= alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM
, 1);
4858 if (!ic
->commit_wq
) {
4859 ti
->error
= "Cannot allocate workqueue";
4863 INIT_WORK(&ic
->commit_work
, integrity_commit
);
4865 if (ic
->mode
== 'J' || ic
->mode
== 'B') {
4866 ic
->writer_wq
= alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM
, 1);
4867 if (!ic
->writer_wq
) {
4868 ti
->error
= "Cannot allocate workqueue";
4872 INIT_WORK(&ic
->writer_work
, integrity_writer
);
4875 ic
->sb
= alloc_pages_exact(SB_SECTORS
<< SECTOR_SHIFT
, GFP_KERNEL
);
4878 ti
->error
= "Cannot allocate superblock area";
4882 r
= sync_rw_sb(ic
, REQ_OP_READ
);
4884 ti
->error
= "Error reading superblock";
4887 should_write_sb
= false;
4888 if (memcmp(ic
->sb
->magic
, SB_MAGIC
, 8)) {
4889 if (ic
->mode
!= 'R') {
4890 if (memchr_inv(ic
->sb
, 0, SB_SECTORS
<< SECTOR_SHIFT
)) {
4892 ti
->error
= "The device is not initialized";
4897 r
= initialize_superblock(ic
, journal_sectors
, interleave_sectors
);
4899 ti
->error
= "Could not initialize superblock";
4902 if (ic
->mode
!= 'R')
4903 should_write_sb
= true;
4906 if (!ic
->sb
->version
|| ic
->sb
->version
> SB_VERSION_6
) {
4908 ti
->error
= "Unknown version";
4911 if (!!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_INLINE
)) != (ic
->mode
== 'I')) {
4913 ti
->error
= "Inline flag mismatch";
4916 if (le16_to_cpu(ic
->sb
->integrity_tag_size
) != ic
->tag_size
) {
4918 ti
->error
= "Tag size doesn't match the information in superblock";
4921 if (ic
->sb
->log2_sectors_per_block
!= __ffs(ic
->sectors_per_block
)) {
4923 ti
->error
= "Block size doesn't match the information in superblock";
4926 if (ic
->mode
!= 'I') {
4927 if (!le32_to_cpu(ic
->sb
->journal_sections
)) {
4929 ti
->error
= "Corrupted superblock, journal_sections is 0";
4933 if (le32_to_cpu(ic
->sb
->journal_sections
)) {
4935 ti
->error
= "Corrupted superblock, journal_sections is not 0";
4939 /* make sure that ti->max_io_len doesn't overflow */
4940 if (!ic
->meta_dev
) {
4941 if (ic
->sb
->log2_interleave_sectors
< MIN_LOG2_INTERLEAVE_SECTORS
||
4942 ic
->sb
->log2_interleave_sectors
> MAX_LOG2_INTERLEAVE_SECTORS
) {
4944 ti
->error
= "Invalid interleave_sectors in the superblock";
4948 if (ic
->sb
->log2_interleave_sectors
) {
4950 ti
->error
= "Invalid interleave_sectors in the superblock";
4954 if (!!(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC
)) != !!ic
->journal_mac_alg
.alg_string
) {
4956 ti
->error
= "Journal mac mismatch";
4960 get_provided_data_sectors(ic
);
4961 if (!ic
->provided_data_sectors
) {
4963 ti
->error
= "The device is too small";
4968 r
= calculate_device_limits(ic
);
4971 if (ic
->log2_buffer_sectors
> 3) {
4972 ic
->log2_buffer_sectors
--;
4973 goto try_smaller_buffer
;
4976 ti
->error
= "The device is too small";
4980 if (log2_sectors_per_bitmap_bit
< 0)
4981 log2_sectors_per_bitmap_bit
= __fls(DEFAULT_SECTORS_PER_BITMAP_BIT
);
4982 if (log2_sectors_per_bitmap_bit
< ic
->sb
->log2_sectors_per_block
)
4983 log2_sectors_per_bitmap_bit
= ic
->sb
->log2_sectors_per_block
;
4985 bits_in_journal
= ((__u64
)ic
->journal_section_sectors
* ic
->journal_sections
) << (SECTOR_SHIFT
+ 3);
4986 if (bits_in_journal
> UINT_MAX
)
4987 bits_in_journal
= UINT_MAX
;
4988 if (bits_in_journal
)
4989 while (bits_in_journal
< (ic
->provided_data_sectors
+ ((sector_t
)1 << log2_sectors_per_bitmap_bit
) - 1) >> log2_sectors_per_bitmap_bit
)
4990 log2_sectors_per_bitmap_bit
++;
4992 log2_blocks_per_bitmap_bit
= log2_sectors_per_bitmap_bit
- ic
->sb
->log2_sectors_per_block
;
4993 ic
->log2_blocks_per_bitmap_bit
= log2_blocks_per_bitmap_bit
;
4994 if (should_write_sb
)
4995 ic
->sb
->log2_blocks_per_bitmap_bit
= log2_blocks_per_bitmap_bit
;
4997 n_bitmap_bits
= ((ic
->provided_data_sectors
>> ic
->sb
->log2_sectors_per_block
)
4998 + (((sector_t
)1 << log2_blocks_per_bitmap_bit
) - 1)) >> log2_blocks_per_bitmap_bit
;
4999 ic
->n_bitmap_blocks
= DIV_ROUND_UP(n_bitmap_bits
, BITMAP_BLOCK_SIZE
* 8);
5002 ic
->log2_buffer_sectors
= min(ic
->log2_buffer_sectors
, (__u8
)__ffs(ic
->metadata_run
));
5004 if (ti
->len
> ic
->provided_data_sectors
) {
5006 ti
->error
= "Not enough provided sectors for requested mapping size";
5010 threshold
= (__u64
)ic
->journal_entries
* (100 - journal_watermark
);
5012 do_div(threshold
, 100);
5013 ic
->free_sectors_threshold
= threshold
;
5015 DEBUG_print("initialized:\n");
5016 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic
->sb
->integrity_tag_size
));
5017 DEBUG_print(" journal_entry_size %u\n", ic
->journal_entry_size
);
5018 DEBUG_print(" journal_entries_per_sector %u\n", ic
->journal_entries_per_sector
);
5019 DEBUG_print(" journal_section_entries %u\n", ic
->journal_section_entries
);
5020 DEBUG_print(" journal_section_sectors %u\n", ic
->journal_section_sectors
);
5021 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic
->sb
->journal_sections
));
5022 DEBUG_print(" journal_entries %u\n", ic
->journal_entries
);
5023 DEBUG_print(" log2_interleave_sectors %d\n", ic
->sb
->log2_interleave_sectors
);
5024 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic
->dev
->bdev
));
5025 DEBUG_print(" initial_sectors 0x%x\n", ic
->initial_sectors
);
5026 DEBUG_print(" metadata_run 0x%x\n", ic
->metadata_run
);
5027 DEBUG_print(" log2_metadata_run %d\n", ic
->log2_metadata_run
);
5028 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic
->provided_data_sectors
, ic
->provided_data_sectors
);
5029 DEBUG_print(" log2_buffer_sectors %u\n", ic
->log2_buffer_sectors
);
5030 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal
);
5032 if (ic
->recalculate_flag
&& !(ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
))) {
5033 ic
->sb
->flags
|= cpu_to_le32(SB_FLAG_RECALCULATING
);
5034 ic
->sb
->recalc_sector
= cpu_to_le64(0);
5037 if (ic
->internal_hash
) {
5038 ic
->recalc_wq
= alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM
, 1);
5039 if (!ic
->recalc_wq
) {
5040 ti
->error
= "Cannot allocate workqueue";
5044 INIT_WORK(&ic
->recalc_work
, ic
->mode
== 'I' ? integrity_recalc_inline
: integrity_recalc
);
5046 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
)) {
5047 ti
->error
= "Recalculate can only be specified with internal_hash";
5053 if (ic
->sb
->flags
& cpu_to_le32(SB_FLAG_RECALCULATING
) &&
5054 le64_to_cpu(ic
->sb
->recalc_sector
) < ic
->provided_data_sectors
&&
5055 dm_integrity_disable_recalculate(ic
)) {
5056 ti
->error
= "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
5061 ic
->bufio
= dm_bufio_client_create(ic
->meta_dev
? ic
->meta_dev
->bdev
: ic
->dev
->bdev
,
5062 1U << (SECTOR_SHIFT
+ ic
->log2_buffer_sectors
), 1, 0, NULL
, NULL
, 0);
5063 if (IS_ERR(ic
->bufio
)) {
5064 r
= PTR_ERR(ic
->bufio
);
5065 ti
->error
= "Cannot initialize dm-bufio";
5069 dm_bufio_set_sector_offset(ic
->bufio
, ic
->start
+ ic
->initial_sectors
);
5071 if (ic
->mode
!= 'R' && ic
->mode
!= 'I') {
5072 r
= create_journal(ic
, &ti
->error
);
5078 if (ic
->mode
== 'B') {
5080 unsigned int n_bitmap_pages
= DIV_ROUND_UP(ic
->n_bitmap_blocks
, PAGE_SIZE
/ BITMAP_BLOCK_SIZE
);
5082 ic
->recalc_bitmap
= dm_integrity_alloc_page_list(n_bitmap_pages
);
5083 if (!ic
->recalc_bitmap
) {
5087 ic
->may_write_bitmap
= dm_integrity_alloc_page_list(n_bitmap_pages
);
5088 if (!ic
->may_write_bitmap
) {
5092 ic
->bbs
= kvmalloc_array(ic
->n_bitmap_blocks
, sizeof(struct bitmap_block_status
), GFP_KERNEL
);
5097 INIT_DELAYED_WORK(&ic
->bitmap_flush_work
, bitmap_flush_work
);
5098 for (i
= 0; i
< ic
->n_bitmap_blocks
; i
++) {
5099 struct bitmap_block_status
*bbs
= &ic
->bbs
[i
];
5100 unsigned int sector
, pl_index
, pl_offset
;
5102 INIT_WORK(&bbs
->work
, bitmap_block_work
);
5105 bio_list_init(&bbs
->bio_queue
);
5106 spin_lock_init(&bbs
->bio_queue_lock
);
5108 sector
= i
* (BITMAP_BLOCK_SIZE
>> SECTOR_SHIFT
);
5109 pl_index
= sector
>> (PAGE_SHIFT
- SECTOR_SHIFT
);
5110 pl_offset
= (sector
<< SECTOR_SHIFT
) & (PAGE_SIZE
- 1);
5112 bbs
->bitmap
= lowmem_page_address(ic
->journal
[pl_index
].page
) + pl_offset
;
5116 if (should_write_sb
) {
5117 init_journal(ic
, 0, ic
->journal_sections
, 0);
5118 r
= dm_integrity_failed(ic
);
5120 ti
->error
= "Error initializing journal";
5123 r
= sync_rw_sb(ic
, REQ_OP_WRITE
| REQ_FUA
);
5125 ti
->error
= "Error initializing superblock";
5128 ic
->just_formatted
= true;
5131 if (!ic
->meta_dev
&& ic
->mode
!= 'I') {
5132 r
= dm_set_target_max_io_len(ti
, 1U << ic
->sb
->log2_interleave_sectors
);
5136 if (ic
->mode
== 'B') {
5137 unsigned int max_io_len
;
5139 max_io_len
= ((sector_t
)ic
->sectors_per_block
<< ic
->log2_blocks_per_bitmap_bit
) * (BITMAP_BLOCK_SIZE
* 8);
5141 max_io_len
= 1U << 31;
5142 DEBUG_print("max_io_len: old %u, new %u\n", ti
->max_io_len
, max_io_len
);
5143 if (!ti
->max_io_len
|| ti
->max_io_len
> max_io_len
) {
5144 r
= dm_set_target_max_io_len(ti
, max_io_len
);
5150 ti
->num_flush_bios
= 1;
5151 ti
->flush_supported
= true;
5153 ti
->num_discard_bios
= 1;
5155 if (ic
->mode
== 'I')
5156 ti
->mempool_needs_integrity
= true;
5158 dm_audit_log_ctr(DM_MSG_PREFIX
, ti
, 1);
5162 dm_audit_log_ctr(DM_MSG_PREFIX
, ti
, 0);
5163 dm_integrity_dtr(ti
);
5167 static void dm_integrity_dtr(struct dm_target
*ti
)
5169 struct dm_integrity_c
*ic
= ti
->private;
5171 BUG_ON(!RB_EMPTY_ROOT(&ic
->in_progress
));
5172 BUG_ON(!list_empty(&ic
->wait_list
));
5174 if (ic
->mode
== 'B')
5175 cancel_delayed_work_sync(&ic
->bitmap_flush_work
);
5176 if (ic
->metadata_wq
)
5177 destroy_workqueue(ic
->metadata_wq
);
5179 destroy_workqueue(ic
->wait_wq
);
5181 destroy_workqueue(ic
->offload_wq
);
5183 destroy_workqueue(ic
->commit_wq
);
5185 destroy_workqueue(ic
->writer_wq
);
5187 destroy_workqueue(ic
->recalc_wq
);
5190 dm_bufio_client_destroy(ic
->bufio
);
5191 bioset_exit(&ic
->recalc_bios
);
5192 bioset_exit(&ic
->recheck_bios
);
5193 mempool_exit(&ic
->recheck_pool
);
5194 mempool_exit(&ic
->journal_io_mempool
);
5196 dm_io_client_destroy(ic
->io
);
5198 dm_put_device(ti
, ic
->dev
);
5200 dm_put_device(ti
, ic
->meta_dev
);
5201 dm_integrity_free_page_list(ic
->journal
);
5202 dm_integrity_free_page_list(ic
->journal_io
);
5203 dm_integrity_free_page_list(ic
->journal_xor
);
5204 dm_integrity_free_page_list(ic
->recalc_bitmap
);
5205 dm_integrity_free_page_list(ic
->may_write_bitmap
);
5206 if (ic
->journal_scatterlist
)
5207 dm_integrity_free_journal_scatterlist(ic
, ic
->journal_scatterlist
);
5208 if (ic
->journal_io_scatterlist
)
5209 dm_integrity_free_journal_scatterlist(ic
, ic
->journal_io_scatterlist
);
5210 if (ic
->sk_requests
) {
5213 for (i
= 0; i
< ic
->journal_sections
; i
++) {
5214 struct skcipher_request
*req
;
5216 req
= ic
->sk_requests
[i
];
5218 kfree_sensitive(req
->iv
);
5219 skcipher_request_free(req
);
5222 kvfree(ic
->sk_requests
);
5224 kvfree(ic
->journal_tree
);
5226 free_pages_exact(ic
->sb
, SB_SECTORS
<< SECTOR_SHIFT
);
5228 if (ic
->internal_hash
)
5229 crypto_free_shash(ic
->internal_hash
);
5230 free_alg(&ic
->internal_hash_alg
);
5232 if (ic
->journal_crypt
)
5233 crypto_free_skcipher(ic
->journal_crypt
);
5234 free_alg(&ic
->journal_crypt_alg
);
5236 if (ic
->journal_mac
)
5237 crypto_free_shash(ic
->journal_mac
);
5238 free_alg(&ic
->journal_mac_alg
);
5241 dm_audit_log_dtr(DM_MSG_PREFIX
, ti
, 1);
5244 static struct target_type integrity_target
= {
5245 .name
= "integrity",
5246 .version
= {1, 13, 0},
5247 .module
= THIS_MODULE
,
5248 .features
= DM_TARGET_SINGLETON
| DM_TARGET_INTEGRITY
,
5249 .ctr
= dm_integrity_ctr
,
5250 .dtr
= dm_integrity_dtr
,
5251 .map
= dm_integrity_map
,
5252 .end_io
= dm_integrity_end_io
,
5253 .postsuspend
= dm_integrity_postsuspend
,
5254 .resume
= dm_integrity_resume
,
5255 .status
= dm_integrity_status
,
5256 .iterate_devices
= dm_integrity_iterate_devices
,
5257 .io_hints
= dm_integrity_io_hints
,
5260 static int __init
dm_integrity_init(void)
5264 journal_io_cache
= kmem_cache_create("integrity_journal_io",
5265 sizeof(struct journal_io
), 0, 0, NULL
);
5266 if (!journal_io_cache
) {
5267 DMERR("can't allocate journal io cache");
5271 r
= dm_register_target(&integrity_target
);
5273 kmem_cache_destroy(journal_io_cache
);
5280 static void __exit
dm_integrity_exit(void)
5282 dm_unregister_target(&integrity_target
);
5283 kmem_cache_destroy(journal_io_cache
);
5286 module_init(dm_integrity_init
);
5287 module_exit(dm_integrity_exit
);
5289 MODULE_AUTHOR("Milan Broz");
5290 MODULE_AUTHOR("Mikulas Patocka");
5291 MODULE_DESCRIPTION(DM_NAME
" target for integrity tags extension");
5292 MODULE_LICENSE("GPL");