1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2011-2012 Red Hat UK.
5 * This file is released under the GPL.
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
26 #define DM_MSG_PREFIX "thin"
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
36 static unsigned int no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
39 "A percentage of time allocated for copy on write");
42 * The block size of the device holding pool data must be
43 * between 64KB and 1GB.
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
49 * Device id is restricted to 24 bits.
51 #define MAX_DEV_ID ((1 << 24) - 1)
54 * How do we handle breaking sharing of data blocks?
55 * =================================================
57 * We use a standard copy-on-write btree to store the mappings for the
58 * devices (note I'm talking about copy-on-write of the metadata here, not
59 * the data). When you take an internal snapshot you clone the root node
60 * of the origin btree. After this there is no concept of an origin or a
61 * snapshot. They are just two device trees that happen to point to the
64 * When we get a write in we decide if it's to a shared data block using
65 * some timestamp magic. If it is, we have to break sharing.
67 * Let's say we write to a shared block in what was the origin. The
70 * i) plug io further to this physical block. (see bio_prison code).
72 * ii) quiesce any read io to that shared data block. Obviously
73 * including all devices that share this block. (see dm_deferred_set code)
75 * iii) copy the data block to a newly allocate block. This step can be
76 * missed out if the io covers the block. (schedule_copy).
78 * iv) insert the new mapping into the origin's btree
79 * (process_prepared_mapping). This act of inserting breaks some
80 * sharing of btree nodes between the two devices. Breaking sharing only
81 * effects the btree of that specific device. Btrees for the other
82 * devices that share the block never change. The btree for the origin
83 * device as it was after the last commit is untouched, ie. we're using
84 * persistent data structures in the functional programming sense.
86 * v) unplug io to this physical block, including the io that triggered
87 * the breaking of sharing.
89 * Steps (ii) and (iii) occur in parallel.
91 * The metadata _doesn't_ need to be committed before the io continues. We
92 * get away with this because the io is always written to a _new_ block.
93 * If there's a crash, then:
95 * - The origin mapping will point to the old origin block (the shared
96 * one). This will contain the data as it was before the io that triggered
97 * the breaking of sharing came in.
99 * - The snap mapping still points to the old block. As it would after
102 * The downside of this scheme is the timestamp magic isn't perfect, and
103 * will continue to think that data block in the snapshot device is shared
104 * even after the write to the origin has broken sharing. I suspect data
105 * blocks will typically be shared by many different devices, so we're
106 * breaking sharing n + 1 times, rather than n, where n is the number of
107 * devices that reference this data block. At the moment I think the
108 * benefits far, far outweigh the disadvantages.
111 /*----------------------------------------------------------------*/
121 static bool build_key(struct dm_thin_device
*td
, enum lock_space ls
,
122 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
124 key
->virtual = (ls
== VIRTUAL
);
125 key
->dev
= dm_thin_dev_id(td
);
126 key
->block_begin
= b
;
129 return dm_cell_key_has_valid_range(key
);
132 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
133 struct dm_cell_key
*key
)
135 (void) build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
138 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
139 struct dm_cell_key
*key
)
141 (void) build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
144 /*----------------------------------------------------------------*/
146 #define THROTTLE_THRESHOLD (1 * HZ)
149 struct rw_semaphore lock
;
150 unsigned long threshold
;
151 bool throttle_applied
;
154 static void throttle_init(struct throttle
*t
)
156 init_rwsem(&t
->lock
);
157 t
->throttle_applied
= false;
160 static void throttle_work_start(struct throttle
*t
)
162 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
165 static void throttle_work_update(struct throttle
*t
)
167 if (!t
->throttle_applied
&& time_is_before_jiffies(t
->threshold
)) {
168 down_write(&t
->lock
);
169 t
->throttle_applied
= true;
173 static void throttle_work_complete(struct throttle
*t
)
175 if (t
->throttle_applied
) {
176 t
->throttle_applied
= false;
181 static void throttle_lock(struct throttle
*t
)
186 static void throttle_unlock(struct throttle
*t
)
191 /*----------------------------------------------------------------*/
194 * A pool device ties together a metadata device and a data device. It
195 * also provides the interface for creating and destroying internal
198 struct dm_thin_new_mapping
;
201 * The pool runs in various modes. Ordered in degraded order for comparisons.
204 PM_WRITE
, /* metadata may be changed */
205 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
208 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
210 PM_OUT_OF_METADATA_SPACE
,
211 PM_READ_ONLY
, /* metadata may not be changed */
213 PM_FAIL
, /* all I/O fails */
216 struct pool_features
{
219 bool zero_new_blocks
:1;
220 bool discard_enabled
:1;
221 bool discard_passdown
:1;
222 bool error_if_no_space
:1;
226 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
227 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
228 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
230 #define CELL_SORT_ARRAY_SIZE 8192
233 struct list_head list
;
234 struct dm_target
*ti
; /* Only set if a pool target is bound */
236 struct mapped_device
*pool_md
;
237 struct block_device
*data_dev
;
238 struct block_device
*md_dev
;
239 struct dm_pool_metadata
*pmd
;
241 dm_block_t low_water_blocks
;
242 uint32_t sectors_per_block
;
243 int sectors_per_block_shift
;
245 struct pool_features pf
;
246 bool low_water_triggered
:1; /* A dm event has been sent */
248 bool out_of_data_space
:1;
250 struct dm_bio_prison
*prison
;
251 struct dm_kcopyd_client
*copier
;
253 struct work_struct worker
;
254 struct workqueue_struct
*wq
;
255 struct throttle throttle
;
256 struct delayed_work waker
;
257 struct delayed_work no_space_timeout
;
259 unsigned long last_commit_jiffies
;
260 unsigned int ref_count
;
263 struct bio_list deferred_flush_bios
;
264 struct bio_list deferred_flush_completions
;
265 struct list_head prepared_mappings
;
266 struct list_head prepared_discards
;
267 struct list_head prepared_discards_pt2
;
268 struct list_head active_thins
;
270 struct dm_deferred_set
*shared_read_ds
;
271 struct dm_deferred_set
*all_io_ds
;
273 struct dm_thin_new_mapping
*next_mapping
;
275 process_bio_fn process_bio
;
276 process_bio_fn process_discard
;
278 process_cell_fn process_cell
;
279 process_cell_fn process_discard_cell
;
281 process_mapping_fn process_prepared_mapping
;
282 process_mapping_fn process_prepared_discard
;
283 process_mapping_fn process_prepared_discard_pt2
;
285 struct dm_bio_prison_cell
**cell_sort_array
;
287 mempool_t mapping_pool
;
290 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
292 static enum pool_mode
get_pool_mode(struct pool
*pool
)
294 return pool
->pf
.mode
;
297 static void notify_of_pool_mode_change(struct pool
*pool
)
299 static const char *descs
[] = {
306 const char *extra_desc
= NULL
;
307 enum pool_mode mode
= get_pool_mode(pool
);
309 if (mode
== PM_OUT_OF_DATA_SPACE
) {
310 if (!pool
->pf
.error_if_no_space
)
311 extra_desc
= " (queue IO)";
313 extra_desc
= " (error IO)";
316 dm_table_event(pool
->ti
->table
);
317 DMINFO("%s: switching pool to %s%s mode",
318 dm_device_name(pool
->pool_md
),
319 descs
[(int)mode
], extra_desc
? : "");
323 * Target context for a pool.
326 struct dm_target
*ti
;
328 struct dm_dev
*data_dev
;
329 struct dm_dev
*metadata_dev
;
331 dm_block_t low_water_blocks
;
332 struct pool_features requested_pf
; /* Features requested during table load */
333 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
337 * Target context for a thin.
340 struct list_head list
;
341 struct dm_dev
*pool_dev
;
342 struct dm_dev
*origin_dev
;
343 sector_t origin_size
;
347 struct dm_thin_device
*td
;
348 struct mapped_device
*thin_md
;
352 struct list_head deferred_cells
;
353 struct bio_list deferred_bio_list
;
354 struct bio_list retry_on_resume_list
;
355 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
358 * Ensures the thin is not destroyed until the worker has finished
359 * iterating the active_thins list.
362 struct completion can_destroy
;
365 /*----------------------------------------------------------------*/
367 static bool block_size_is_power_of_two(struct pool
*pool
)
369 return pool
->sectors_per_block_shift
>= 0;
372 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
374 return block_size_is_power_of_two(pool
) ?
375 (b
<< pool
->sectors_per_block_shift
) :
376 (b
* pool
->sectors_per_block
);
379 /*----------------------------------------------------------------*/
383 struct blk_plug plug
;
384 struct bio
*parent_bio
;
388 static void begin_discard(struct discard_op
*op
, struct thin_c
*tc
, struct bio
*parent
)
393 blk_start_plug(&op
->plug
);
394 op
->parent_bio
= parent
;
398 static int issue_discard(struct discard_op
*op
, dm_block_t data_b
, dm_block_t data_e
)
400 struct thin_c
*tc
= op
->tc
;
401 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
402 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
404 return __blkdev_issue_discard(tc
->pool_dev
->bdev
, s
, len
, GFP_NOIO
, &op
->bio
);
407 static void end_discard(struct discard_op
*op
, int r
)
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
414 bio_chain(op
->bio
, op
->parent_bio
);
415 op
->bio
->bi_opf
= REQ_OP_DISCARD
;
419 blk_finish_plug(&op
->plug
);
422 * Even if r is set, there could be sub discards in flight that we
425 if (r
&& !op
->parent_bio
->bi_status
)
426 op
->parent_bio
->bi_status
= errno_to_blk_status(r
);
427 bio_endio(op
->parent_bio
);
430 /*----------------------------------------------------------------*/
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
436 static void wake_worker(struct pool
*pool
)
438 queue_work(pool
->wq
, &pool
->worker
);
441 /*----------------------------------------------------------------*/
443 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
444 struct dm_bio_prison_cell
**cell_result
)
447 struct dm_bio_prison_cell
*cell_prealloc
;
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
453 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
455 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
458 * We reused an old cell; we can get rid of
461 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
467 static void cell_release(struct pool
*pool
,
468 struct dm_bio_prison_cell
*cell
,
469 struct bio_list
*bios
)
471 dm_cell_release(pool
->prison
, cell
, bios
);
472 dm_bio_prison_free_cell(pool
->prison
, cell
);
475 static void cell_visit_release(struct pool
*pool
,
476 void (*fn
)(void *, struct dm_bio_prison_cell
*),
478 struct dm_bio_prison_cell
*cell
)
480 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
481 dm_bio_prison_free_cell(pool
->prison
, cell
);
484 static void cell_release_no_holder(struct pool
*pool
,
485 struct dm_bio_prison_cell
*cell
,
486 struct bio_list
*bios
)
488 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
489 dm_bio_prison_free_cell(pool
->prison
, cell
);
492 static void cell_error_with_code(struct pool
*pool
,
493 struct dm_bio_prison_cell
*cell
, blk_status_t error_code
)
495 dm_cell_error(pool
->prison
, cell
, error_code
);
496 dm_bio_prison_free_cell(pool
->prison
, cell
);
499 static blk_status_t
get_pool_io_error_code(struct pool
*pool
)
501 return pool
->out_of_data_space
? BLK_STS_NOSPC
: BLK_STS_IOERR
;
504 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
506 cell_error_with_code(pool
, cell
, get_pool_io_error_code(pool
));
509 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
511 cell_error_with_code(pool
, cell
, 0);
514 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
516 cell_error_with_code(pool
, cell
, BLK_STS_DM_REQUEUE
);
519 /*----------------------------------------------------------------*/
522 * A global list of pools that uses a struct mapped_device as a key.
524 static struct dm_thin_pool_table
{
526 struct list_head pools
;
527 } dm_thin_pool_table
;
529 static void pool_table_init(void)
531 mutex_init(&dm_thin_pool_table
.mutex
);
532 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
535 static void pool_table_exit(void)
537 mutex_destroy(&dm_thin_pool_table
.mutex
);
540 static void __pool_table_insert(struct pool
*pool
)
542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
543 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
546 static void __pool_table_remove(struct pool
*pool
)
548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
549 list_del(&pool
->list
);
552 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
554 struct pool
*pool
= NULL
, *tmp
;
556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
558 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
559 if (tmp
->pool_md
== md
) {
568 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
570 struct pool
*pool
= NULL
, *tmp
;
572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
574 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
575 if (tmp
->md_dev
== md_dev
) {
584 /*----------------------------------------------------------------*/
586 struct dm_thin_endio_hook
{
588 struct dm_deferred_entry
*shared_read_entry
;
589 struct dm_deferred_entry
*all_io_entry
;
590 struct dm_thin_new_mapping
*overwrite_mapping
;
591 struct rb_node rb_node
;
592 struct dm_bio_prison_cell
*cell
;
595 static void error_bio_list(struct bio_list
*bios
, blk_status_t error
)
599 while ((bio
= bio_list_pop(bios
))) {
600 bio
->bi_status
= error
;
605 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
,
608 struct bio_list bios
;
610 bio_list_init(&bios
);
612 spin_lock_irq(&tc
->lock
);
613 bio_list_merge_init(&bios
, master
);
614 spin_unlock_irq(&tc
->lock
);
616 error_bio_list(&bios
, error
);
619 static void requeue_deferred_cells(struct thin_c
*tc
)
621 struct pool
*pool
= tc
->pool
;
622 struct list_head cells
;
623 struct dm_bio_prison_cell
*cell
, *tmp
;
625 INIT_LIST_HEAD(&cells
);
627 spin_lock_irq(&tc
->lock
);
628 list_splice_init(&tc
->deferred_cells
, &cells
);
629 spin_unlock_irq(&tc
->lock
);
631 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
632 cell_requeue(pool
, cell
);
635 static void requeue_io(struct thin_c
*tc
)
637 struct bio_list bios
;
639 bio_list_init(&bios
);
641 spin_lock_irq(&tc
->lock
);
642 bio_list_merge_init(&bios
, &tc
->deferred_bio_list
);
643 bio_list_merge_init(&bios
, &tc
->retry_on_resume_list
);
644 spin_unlock_irq(&tc
->lock
);
646 error_bio_list(&bios
, BLK_STS_DM_REQUEUE
);
647 requeue_deferred_cells(tc
);
650 static void error_retry_list_with_code(struct pool
*pool
, blk_status_t error
)
655 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
656 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
660 static void error_retry_list(struct pool
*pool
)
662 error_retry_list_with_code(pool
, get_pool_io_error_code(pool
));
666 * This section of code contains the logic for processing a thin device's IO.
667 * Much of the code depends on pool object resources (lists, workqueues, etc)
668 * but most is exclusively called from the thin target rather than the thin-pool
672 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
674 struct pool
*pool
= tc
->pool
;
675 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
677 if (block_size_is_power_of_two(pool
))
678 block_nr
>>= pool
->sectors_per_block_shift
;
680 (void) sector_div(block_nr
, pool
->sectors_per_block
);
686 * Returns the _complete_ blocks that this bio covers.
688 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
689 dm_block_t
*begin
, dm_block_t
*end
)
691 struct pool
*pool
= tc
->pool
;
692 sector_t b
= bio
->bi_iter
.bi_sector
;
693 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
695 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
697 if (block_size_is_power_of_two(pool
)) {
698 b
>>= pool
->sectors_per_block_shift
;
699 e
>>= pool
->sectors_per_block_shift
;
701 (void) sector_div(b
, pool
->sectors_per_block
);
702 (void) sector_div(e
, pool
->sectors_per_block
);
706 /* Can happen if the bio is within a single block. */
714 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
716 struct pool
*pool
= tc
->pool
;
717 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
719 bio_set_dev(bio
, tc
->pool_dev
->bdev
);
720 if (block_size_is_power_of_two(pool
)) {
721 bio
->bi_iter
.bi_sector
=
722 (block
<< pool
->sectors_per_block_shift
) |
723 (bi_sector
& (pool
->sectors_per_block
- 1));
725 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
726 sector_div(bi_sector
, pool
->sectors_per_block
);
730 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
732 bio_set_dev(bio
, tc
->origin_dev
->bdev
);
735 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
737 return op_is_flush(bio
->bi_opf
) &&
738 dm_thin_changed_this_transaction(tc
->td
);
741 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
743 struct dm_thin_endio_hook
*h
;
745 if (bio_op(bio
) == REQ_OP_DISCARD
)
748 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
749 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
752 static void issue(struct thin_c
*tc
, struct bio
*bio
)
754 struct pool
*pool
= tc
->pool
;
756 if (!bio_triggers_commit(tc
, bio
)) {
757 dm_submit_bio_remap(bio
, NULL
);
762 * Complete bio with an error if earlier I/O caused changes to
763 * the metadata that can't be committed e.g, due to I/O errors
764 * on the metadata device.
766 if (dm_thin_aborted_changes(tc
->td
)) {
772 * Batch together any bios that trigger commits and then issue a
773 * single commit for them in process_deferred_bios().
775 spin_lock_irq(&pool
->lock
);
776 bio_list_add(&pool
->deferred_flush_bios
, bio
);
777 spin_unlock_irq(&pool
->lock
);
780 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
782 remap_to_origin(tc
, bio
);
786 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
789 remap(tc
, bio
, block
);
793 /*----------------------------------------------------------------*/
796 * Bio endio functions.
798 struct dm_thin_new_mapping
{
799 struct list_head list
;
805 * Track quiescing, copying and zeroing preparation actions. When this
806 * counter hits zero the block is prepared and can be inserted into the
809 atomic_t prepare_actions
;
813 dm_block_t virt_begin
, virt_end
;
814 dm_block_t data_block
;
815 struct dm_bio_prison_cell
*cell
;
818 * If the bio covers the whole area of a block then we can avoid
819 * zeroing or copying. Instead this bio is hooked. The bio will
820 * still be in the cell, so care has to be taken to avoid issuing
824 bio_end_io_t
*saved_bi_end_io
;
827 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
829 struct pool
*pool
= m
->tc
->pool
;
831 if (atomic_dec_and_test(&m
->prepare_actions
)) {
832 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
837 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
840 struct pool
*pool
= m
->tc
->pool
;
842 spin_lock_irqsave(&pool
->lock
, flags
);
843 __complete_mapping_preparation(m
);
844 spin_unlock_irqrestore(&pool
->lock
, flags
);
847 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
849 struct dm_thin_new_mapping
*m
= context
;
851 m
->status
= read_err
|| write_err
? BLK_STS_IOERR
: 0;
852 complete_mapping_preparation(m
);
855 static void overwrite_endio(struct bio
*bio
)
857 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
858 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
860 bio
->bi_end_io
= m
->saved_bi_end_io
;
862 m
->status
= bio
->bi_status
;
863 complete_mapping_preparation(m
);
866 /*----------------------------------------------------------------*/
873 * Prepared mapping jobs.
877 * This sends the bios in the cell, except the original holder, back
878 * to the deferred_bios list.
880 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
882 struct pool
*pool
= tc
->pool
;
884 struct bio_list bios
;
886 bio_list_init(&bios
);
887 cell_release_no_holder(pool
, cell
, &bios
);
889 if (!bio_list_empty(&bios
)) {
890 spin_lock_irqsave(&tc
->lock
, flags
);
891 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
892 spin_unlock_irqrestore(&tc
->lock
, flags
);
897 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
901 struct bio_list defer_bios
;
902 struct bio_list issue_bios
;
905 static void __inc_remap_and_issue_cell(void *context
,
906 struct dm_bio_prison_cell
*cell
)
908 struct remap_info
*info
= context
;
911 while ((bio
= bio_list_pop(&cell
->bios
))) {
912 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
)
913 bio_list_add(&info
->defer_bios
, bio
);
915 inc_all_io_entry(info
->tc
->pool
, bio
);
918 * We can't issue the bios with the bio prison lock
919 * held, so we add them to a list to issue on
920 * return from this function.
922 bio_list_add(&info
->issue_bios
, bio
);
927 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
928 struct dm_bio_prison_cell
*cell
,
932 struct remap_info info
;
935 bio_list_init(&info
.defer_bios
);
936 bio_list_init(&info
.issue_bios
);
939 * We have to be careful to inc any bios we're about to issue
940 * before the cell is released, and avoid a race with new bios
941 * being added to the cell.
943 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
946 while ((bio
= bio_list_pop(&info
.defer_bios
)))
947 thin_defer_bio(tc
, bio
);
949 while ((bio
= bio_list_pop(&info
.issue_bios
)))
950 remap_and_issue(info
.tc
, bio
, block
);
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
955 cell_error(m
->tc
->pool
, m
->cell
);
957 mempool_free(m
, &m
->tc
->pool
->mapping_pool
);
960 static void complete_overwrite_bio(struct thin_c
*tc
, struct bio
*bio
)
962 struct pool
*pool
= tc
->pool
;
965 * If the bio has the REQ_FUA flag set we must commit the metadata
966 * before signaling its completion.
968 if (!bio_triggers_commit(tc
, bio
)) {
974 * Complete bio with an error if earlier I/O caused changes to the
975 * metadata that can't be committed, e.g, due to I/O errors on the
978 if (dm_thin_aborted_changes(tc
->td
)) {
984 * Batch together any bios that trigger commits and then issue a
985 * single commit for them in process_deferred_bios().
987 spin_lock_irq(&pool
->lock
);
988 bio_list_add(&pool
->deferred_flush_completions
, bio
);
989 spin_unlock_irq(&pool
->lock
);
992 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
994 struct thin_c
*tc
= m
->tc
;
995 struct pool
*pool
= tc
->pool
;
996 struct bio
*bio
= m
->bio
;
1000 cell_error(pool
, m
->cell
);
1005 * Commit the prepared block into the mapping btree.
1006 * Any I/O for this block arriving after this point will get
1007 * remapped to it directly.
1009 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
1011 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
1012 cell_error(pool
, m
->cell
);
1017 * Release any bios held while the block was being provisioned.
1018 * If we are processing a write bio that completely covers the block,
1019 * we already processed it so can ignore it now when processing
1020 * the bios in the cell.
1023 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1024 complete_overwrite_bio(tc
, bio
);
1026 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
1027 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
1028 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
1033 mempool_free(m
, &pool
->mapping_pool
);
1036 /*----------------------------------------------------------------*/
1038 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
1040 struct thin_c
*tc
= m
->tc
;
1043 cell_defer_no_holder(tc
, m
->cell
);
1044 mempool_free(m
, &tc
->pool
->mapping_pool
);
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
1049 bio_io_error(m
->bio
);
1050 free_discard_mapping(m
);
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
1056 free_discard_mapping(m
);
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
1062 struct thin_c
*tc
= m
->tc
;
1064 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
1066 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
1067 bio_io_error(m
->bio
);
1071 cell_defer_no_holder(tc
, m
->cell
);
1072 mempool_free(m
, &tc
->pool
->mapping_pool
);
1075 /*----------------------------------------------------------------*/
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
,
1078 struct bio
*discard_parent
)
1081 * We've already unmapped this range of blocks, but before we
1082 * passdown we have to check that these blocks are now unused.
1086 struct thin_c
*tc
= m
->tc
;
1087 struct pool
*pool
= tc
->pool
;
1088 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1089 struct discard_op op
;
1091 begin_discard(&op
, tc
, discard_parent
);
1093 /* find start of unmapped run */
1094 for (; b
< end
; b
++) {
1095 r
= dm_pool_block_is_shared(pool
->pmd
, b
, &shared
);
1106 /* find end of run */
1107 for (e
= b
+ 1; e
!= end
; e
++) {
1108 r
= dm_pool_block_is_shared(pool
->pmd
, e
, &shared
);
1116 r
= issue_discard(&op
, b
, e
);
1123 end_discard(&op
, r
);
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping
*m
)
1128 unsigned long flags
;
1129 struct pool
*pool
= m
->tc
->pool
;
1131 spin_lock_irqsave(&pool
->lock
, flags
);
1132 list_add_tail(&m
->list
, &pool
->prepared_discards_pt2
);
1133 spin_unlock_irqrestore(&pool
->lock
, flags
);
1137 static void passdown_endio(struct bio
*bio
)
1140 * It doesn't matter if the passdown discard failed, we still want
1141 * to unmap (we ignore err).
1143 queue_passdown_pt2(bio
->bi_private
);
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping
*m
)
1150 struct thin_c
*tc
= m
->tc
;
1151 struct pool
*pool
= tc
->pool
;
1152 struct bio
*discard_parent
;
1153 dm_block_t data_end
= m
->data_block
+ (m
->virt_end
- m
->virt_begin
);
1156 * Only this thread allocates blocks, so we can be sure that the
1157 * newly unmapped blocks will not be allocated before the end of
1160 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1162 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1163 bio_io_error(m
->bio
);
1164 cell_defer_no_holder(tc
, m
->cell
);
1165 mempool_free(m
, &pool
->mapping_pool
);
1170 * Increment the unmapped blocks. This prevents a race between the
1171 * passdown io and reallocation of freed blocks.
1173 r
= dm_pool_inc_data_range(pool
->pmd
, m
->data_block
, data_end
);
1175 metadata_operation_failed(pool
, "dm_pool_inc_data_range", r
);
1176 bio_io_error(m
->bio
);
1177 cell_defer_no_holder(tc
, m
->cell
);
1178 mempool_free(m
, &pool
->mapping_pool
);
1182 discard_parent
= bio_alloc(NULL
, 1, 0, GFP_NOIO
);
1183 discard_parent
->bi_end_io
= passdown_endio
;
1184 discard_parent
->bi_private
= m
;
1185 if (m
->maybe_shared
)
1186 passdown_double_checking_shared_status(m
, discard_parent
);
1188 struct discard_op op
;
1190 begin_discard(&op
, tc
, discard_parent
);
1191 r
= issue_discard(&op
, m
->data_block
, data_end
);
1192 end_discard(&op
, r
);
1196 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping
*m
)
1199 struct thin_c
*tc
= m
->tc
;
1200 struct pool
*pool
= tc
->pool
;
1203 * The passdown has completed, so now we can decrement all those
1206 r
= dm_pool_dec_data_range(pool
->pmd
, m
->data_block
,
1207 m
->data_block
+ (m
->virt_end
- m
->virt_begin
));
1209 metadata_operation_failed(pool
, "dm_pool_dec_data_range", r
);
1210 bio_io_error(m
->bio
);
1214 cell_defer_no_holder(tc
, m
->cell
);
1215 mempool_free(m
, &pool
->mapping_pool
);
1218 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1219 process_mapping_fn
*fn
)
1221 struct list_head maps
;
1222 struct dm_thin_new_mapping
*m
, *tmp
;
1224 INIT_LIST_HEAD(&maps
);
1225 spin_lock_irq(&pool
->lock
);
1226 list_splice_init(head
, &maps
);
1227 spin_unlock_irq(&pool
->lock
);
1229 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1234 * Deferred bio jobs.
1236 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1238 return bio
->bi_iter
.bi_size
==
1239 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1242 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1244 return (bio_data_dir(bio
) == WRITE
) &&
1245 io_overlaps_block(pool
, bio
);
1248 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1251 *save
= bio
->bi_end_io
;
1252 bio
->bi_end_io
= fn
;
1255 static int ensure_next_mapping(struct pool
*pool
)
1257 if (pool
->next_mapping
)
1260 pool
->next_mapping
= mempool_alloc(&pool
->mapping_pool
, GFP_ATOMIC
);
1262 return pool
->next_mapping
? 0 : -ENOMEM
;
1265 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1267 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1269 BUG_ON(!pool
->next_mapping
);
1271 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1272 INIT_LIST_HEAD(&m
->list
);
1275 pool
->next_mapping
= NULL
;
1280 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1281 sector_t begin
, sector_t end
)
1283 struct dm_io_region to
;
1285 to
.bdev
= tc
->pool_dev
->bdev
;
1287 to
.count
= end
- begin
;
1289 dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1292 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1293 dm_block_t data_begin
,
1294 struct dm_thin_new_mapping
*m
)
1296 struct pool
*pool
= tc
->pool
;
1297 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1299 h
->overwrite_mapping
= m
;
1301 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1302 inc_all_io_entry(pool
, bio
);
1303 remap_and_issue(tc
, bio
, data_begin
);
1307 * A partial copy also needs to zero the uncopied region.
1309 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1310 struct dm_dev
*origin
, dm_block_t data_origin
,
1311 dm_block_t data_dest
,
1312 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1315 struct pool
*pool
= tc
->pool
;
1316 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1319 m
->virt_begin
= virt_block
;
1320 m
->virt_end
= virt_block
+ 1u;
1321 m
->data_block
= data_dest
;
1325 * quiesce action + copy action + an extra reference held for the
1326 * duration of this function (we may need to inc later for a
1329 atomic_set(&m
->prepare_actions
, 3);
1331 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1332 complete_mapping_preparation(m
); /* already quiesced */
1335 * IO to pool_dev remaps to the pool target's data_dev.
1337 * If the whole block of data is being overwritten, we can issue the
1338 * bio immediately. Otherwise we use kcopyd to clone the data first.
1340 if (io_overwrites_block(pool
, bio
))
1341 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1343 struct dm_io_region from
, to
;
1345 from
.bdev
= origin
->bdev
;
1346 from
.sector
= data_origin
* pool
->sectors_per_block
;
1349 to
.bdev
= tc
->pool_dev
->bdev
;
1350 to
.sector
= data_dest
* pool
->sectors_per_block
;
1353 dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1354 0, copy_complete
, m
);
1357 * Do we need to zero a tail region?
1359 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1360 atomic_inc(&m
->prepare_actions
);
1362 data_dest
* pool
->sectors_per_block
+ len
,
1363 (data_dest
+ 1) * pool
->sectors_per_block
);
1367 complete_mapping_preparation(m
); /* drop our ref */
1370 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1371 dm_block_t data_origin
, dm_block_t data_dest
,
1372 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1374 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1375 data_origin
, data_dest
, cell
, bio
,
1376 tc
->pool
->sectors_per_block
);
1379 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1380 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1383 struct pool
*pool
= tc
->pool
;
1384 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1386 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1388 m
->virt_begin
= virt_block
;
1389 m
->virt_end
= virt_block
+ 1u;
1390 m
->data_block
= data_block
;
1394 * If the whole block of data is being overwritten or we are not
1395 * zeroing pre-existing data, we can issue the bio immediately.
1396 * Otherwise we use kcopyd to zero the data first.
1398 if (pool
->pf
.zero_new_blocks
) {
1399 if (io_overwrites_block(pool
, bio
))
1400 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1402 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1403 (data_block
+ 1) * pool
->sectors_per_block
);
1406 process_prepared_mapping(m
);
1409 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1410 dm_block_t data_dest
,
1411 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1413 struct pool
*pool
= tc
->pool
;
1414 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1415 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1417 if (virt_block_end
<= tc
->origin_size
) {
1418 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1419 virt_block
, data_dest
, cell
, bio
,
1420 pool
->sectors_per_block
);
1422 } else if (virt_block_begin
< tc
->origin_size
) {
1423 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1424 virt_block
, data_dest
, cell
, bio
,
1425 tc
->origin_size
- virt_block_begin
);
1428 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1431 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1433 static void requeue_bios(struct pool
*pool
);
1435 static bool is_read_only_pool_mode(enum pool_mode mode
)
1437 return (mode
== PM_OUT_OF_METADATA_SPACE
|| mode
== PM_READ_ONLY
);
1440 static bool is_read_only(struct pool
*pool
)
1442 return is_read_only_pool_mode(get_pool_mode(pool
));
1445 static void check_for_metadata_space(struct pool
*pool
)
1448 const char *ooms_reason
= NULL
;
1451 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free
);
1453 ooms_reason
= "Could not get free metadata blocks";
1455 ooms_reason
= "No free metadata blocks";
1457 if (ooms_reason
&& !is_read_only(pool
)) {
1458 DMERR("%s", ooms_reason
);
1459 set_pool_mode(pool
, PM_OUT_OF_METADATA_SPACE
);
1463 static void check_for_data_space(struct pool
*pool
)
1468 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1471 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1476 set_pool_mode(pool
, PM_WRITE
);
1482 * A non-zero return indicates read_only or fail_io mode.
1483 * Many callers don't care about the return value.
1485 static int commit(struct pool
*pool
)
1489 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
)
1492 r
= dm_pool_commit_metadata(pool
->pmd
);
1494 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1496 check_for_metadata_space(pool
);
1497 check_for_data_space(pool
);
1503 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1505 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1506 DMWARN("%s: reached low water mark for data device: sending event.",
1507 dm_device_name(pool
->pool_md
));
1508 spin_lock_irq(&pool
->lock
);
1509 pool
->low_water_triggered
= true;
1510 spin_unlock_irq(&pool
->lock
);
1511 dm_table_event(pool
->ti
->table
);
1515 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1518 dm_block_t free_blocks
;
1519 struct pool
*pool
= tc
->pool
;
1521 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1524 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1526 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1530 check_low_water_mark(pool
, free_blocks
);
1534 * Try to commit to see if that will free up some
1541 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1543 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1548 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1553 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1556 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1558 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1562 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &free_blocks
);
1564 metadata_operation_failed(pool
, "dm_pool_get_free_metadata_block_count", r
);
1569 /* Let's commit before we use up the metadata reserve. */
1579 * If we have run out of space, queue bios until the device is
1580 * resumed, presumably after having been reloaded with more space.
1582 static void retry_on_resume(struct bio
*bio
)
1584 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1585 struct thin_c
*tc
= h
->tc
;
1587 spin_lock_irq(&tc
->lock
);
1588 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1589 spin_unlock_irq(&tc
->lock
);
1592 static blk_status_t
should_error_unserviceable_bio(struct pool
*pool
)
1594 enum pool_mode m
= get_pool_mode(pool
);
1598 /* Shouldn't get here */
1599 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1600 return BLK_STS_IOERR
;
1602 case PM_OUT_OF_DATA_SPACE
:
1603 return pool
->pf
.error_if_no_space
? BLK_STS_NOSPC
: 0;
1605 case PM_OUT_OF_METADATA_SPACE
:
1608 return BLK_STS_IOERR
;
1610 /* Shouldn't get here */
1611 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1612 return BLK_STS_IOERR
;
1616 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1618 blk_status_t error
= should_error_unserviceable_bio(pool
);
1621 bio
->bi_status
= error
;
1624 retry_on_resume(bio
);
1627 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1630 struct bio_list bios
;
1633 error
= should_error_unserviceable_bio(pool
);
1635 cell_error_with_code(pool
, cell
, error
);
1639 bio_list_init(&bios
);
1640 cell_release(pool
, cell
, &bios
);
1642 while ((bio
= bio_list_pop(&bios
)))
1643 retry_on_resume(bio
);
1646 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1647 struct dm_bio_prison_cell
*virt_cell
)
1649 struct pool
*pool
= tc
->pool
;
1650 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1653 * We don't need to lock the data blocks, since there's no
1654 * passdown. We only lock data blocks for allocation and breaking sharing.
1657 m
->virt_begin
= virt_cell
->key
.block_begin
;
1658 m
->virt_end
= virt_cell
->key
.block_end
;
1659 m
->cell
= virt_cell
;
1660 m
->bio
= virt_cell
->holder
;
1662 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1663 pool
->process_prepared_discard(m
);
1666 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1669 struct pool
*pool
= tc
->pool
;
1673 struct dm_cell_key data_key
;
1674 struct dm_bio_prison_cell
*data_cell
;
1675 struct dm_thin_new_mapping
*m
;
1676 dm_block_t virt_begin
, virt_end
, data_begin
, data_end
;
1677 dm_block_t len
, next_boundary
;
1679 while (begin
!= end
) {
1680 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1681 &data_begin
, &maybe_shared
);
1684 * Silently fail, letting any mappings we've
1690 data_end
= data_begin
+ (virt_end
- virt_begin
);
1693 * Make sure the data region obeys the bio prison restrictions.
1695 while (data_begin
< data_end
) {
1696 r
= ensure_next_mapping(pool
);
1698 return; /* we did our best */
1700 next_boundary
= ((data_begin
>> BIO_PRISON_MAX_RANGE_SHIFT
) + 1)
1701 << BIO_PRISON_MAX_RANGE_SHIFT
;
1702 len
= min_t(sector_t
, data_end
- data_begin
, next_boundary
- data_begin
);
1704 /* This key is certainly within range given the above splitting */
1705 (void) build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ len
, &data_key
);
1706 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1707 /* contention, we'll give up with this range */
1713 * IO may still be going to the destination block. We must
1714 * quiesce before we can do the removal.
1716 m
= get_next_mapping(pool
);
1718 m
->maybe_shared
= maybe_shared
;
1719 m
->virt_begin
= virt_begin
;
1720 m
->virt_end
= virt_begin
+ len
;
1721 m
->data_block
= data_begin
;
1722 m
->cell
= data_cell
;
1726 * The parent bio must not complete before sub discard bios are
1727 * chained to it (see end_discard's bio_chain)!
1729 * This per-mapping bi_remaining increment is paired with
1730 * the implicit decrement that occurs via bio_endio() in
1733 bio_inc_remaining(bio
);
1734 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1735 pool
->process_prepared_discard(m
);
1745 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1747 struct bio
*bio
= virt_cell
->holder
;
1748 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1751 * The virt_cell will only get freed once the origin bio completes.
1752 * This means it will remain locked while all the individual
1753 * passdown bios are in flight.
1755 h
->cell
= virt_cell
;
1756 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1759 * We complete the bio now, knowing that the bi_remaining field
1760 * will prevent completion until the sub range discards have
1766 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1768 dm_block_t begin
, end
;
1769 struct dm_cell_key virt_key
;
1770 struct dm_bio_prison_cell
*virt_cell
;
1772 get_bio_block_range(tc
, bio
, &begin
, &end
);
1775 * The discard covers less than a block.
1781 if (unlikely(!build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
))) {
1782 DMERR_LIMIT("Discard doesn't respect bio prison limits");
1787 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
)) {
1789 * Potential starvation issue: We're relying on the
1790 * fs/application being well behaved, and not trying to
1791 * send IO to a region at the same time as discarding it.
1792 * If they do this persistently then it's possible this
1793 * cell will never be granted.
1798 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1801 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1802 struct dm_cell_key
*key
,
1803 struct dm_thin_lookup_result
*lookup_result
,
1804 struct dm_bio_prison_cell
*cell
)
1807 dm_block_t data_block
;
1808 struct pool
*pool
= tc
->pool
;
1810 r
= alloc_data_block(tc
, &data_block
);
1813 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1814 data_block
, cell
, bio
);
1818 retry_bios_on_resume(pool
, cell
);
1822 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1824 cell_error(pool
, cell
);
1829 static void __remap_and_issue_shared_cell(void *context
,
1830 struct dm_bio_prison_cell
*cell
)
1832 struct remap_info
*info
= context
;
1835 while ((bio
= bio_list_pop(&cell
->bios
))) {
1836 if (bio_data_dir(bio
) == WRITE
|| op_is_flush(bio
->bi_opf
) ||
1837 bio_op(bio
) == REQ_OP_DISCARD
)
1838 bio_list_add(&info
->defer_bios
, bio
);
1840 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1842 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1843 inc_all_io_entry(info
->tc
->pool
, bio
);
1844 bio_list_add(&info
->issue_bios
, bio
);
1849 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1850 struct dm_bio_prison_cell
*cell
,
1854 struct remap_info info
;
1857 bio_list_init(&info
.defer_bios
);
1858 bio_list_init(&info
.issue_bios
);
1860 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1863 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1864 thin_defer_bio(tc
, bio
);
1866 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1867 remap_and_issue(tc
, bio
, block
);
1870 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1872 struct dm_thin_lookup_result
*lookup_result
,
1873 struct dm_bio_prison_cell
*virt_cell
)
1875 struct dm_bio_prison_cell
*data_cell
;
1876 struct pool
*pool
= tc
->pool
;
1877 struct dm_cell_key key
;
1880 * If cell is already occupied, then sharing is already in the process
1881 * of being broken so we have nothing further to do here.
1883 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1884 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1885 cell_defer_no_holder(tc
, virt_cell
);
1889 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1890 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1891 cell_defer_no_holder(tc
, virt_cell
);
1893 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1895 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1896 inc_all_io_entry(pool
, bio
);
1897 remap_and_issue(tc
, bio
, lookup_result
->block
);
1899 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1900 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1904 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1905 struct dm_bio_prison_cell
*cell
)
1908 dm_block_t data_block
;
1909 struct pool
*pool
= tc
->pool
;
1912 * Remap empty bios (flushes) immediately, without provisioning.
1914 if (!bio
->bi_iter
.bi_size
) {
1915 inc_all_io_entry(pool
, bio
);
1916 cell_defer_no_holder(tc
, cell
);
1918 remap_and_issue(tc
, bio
, 0);
1923 * Fill read bios with zeroes and complete them immediately.
1925 if (bio_data_dir(bio
) == READ
) {
1927 cell_defer_no_holder(tc
, cell
);
1932 r
= alloc_data_block(tc
, &data_block
);
1936 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1938 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1942 retry_bios_on_resume(pool
, cell
);
1946 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1948 cell_error(pool
, cell
);
1953 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1956 struct pool
*pool
= tc
->pool
;
1957 struct bio
*bio
= cell
->holder
;
1958 dm_block_t block
= get_bio_block(tc
, bio
);
1959 struct dm_thin_lookup_result lookup_result
;
1961 if (tc
->requeue_mode
) {
1962 cell_requeue(pool
, cell
);
1966 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1969 if (lookup_result
.shared
)
1970 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1972 inc_all_io_entry(pool
, bio
);
1973 remap_and_issue(tc
, bio
, lookup_result
.block
);
1974 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1979 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1980 inc_all_io_entry(pool
, bio
);
1981 cell_defer_no_holder(tc
, cell
);
1983 if (bio_end_sector(bio
) <= tc
->origin_size
)
1984 remap_to_origin_and_issue(tc
, bio
);
1986 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1988 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1989 remap_to_origin_and_issue(tc
, bio
);
1996 provision_block(tc
, bio
, block
, cell
);
2000 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2002 cell_defer_no_holder(tc
, cell
);
2008 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
2010 struct pool
*pool
= tc
->pool
;
2011 dm_block_t block
= get_bio_block(tc
, bio
);
2012 struct dm_bio_prison_cell
*cell
;
2013 struct dm_cell_key key
;
2016 * If cell is already occupied, then the block is already
2017 * being provisioned so we have nothing further to do here.
2019 build_virtual_key(tc
->td
, block
, &key
);
2020 if (bio_detain(pool
, &key
, bio
, &cell
))
2023 process_cell(tc
, cell
);
2026 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
2027 struct dm_bio_prison_cell
*cell
)
2030 int rw
= bio_data_dir(bio
);
2031 dm_block_t block
= get_bio_block(tc
, bio
);
2032 struct dm_thin_lookup_result lookup_result
;
2034 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
2037 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
2038 handle_unserviceable_bio(tc
->pool
, bio
);
2040 cell_defer_no_holder(tc
, cell
);
2042 inc_all_io_entry(tc
->pool
, bio
);
2043 remap_and_issue(tc
, bio
, lookup_result
.block
);
2045 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
2051 cell_defer_no_holder(tc
, cell
);
2053 handle_unserviceable_bio(tc
->pool
, bio
);
2057 if (tc
->origin_dev
) {
2058 inc_all_io_entry(tc
->pool
, bio
);
2059 remap_to_origin_and_issue(tc
, bio
);
2068 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2071 cell_defer_no_holder(tc
, cell
);
2077 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
2079 __process_bio_read_only(tc
, bio
, NULL
);
2082 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2084 __process_bio_read_only(tc
, cell
->holder
, cell
);
2087 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
2092 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
2097 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2099 cell_success(tc
->pool
, cell
);
2102 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2104 cell_error(tc
->pool
, cell
);
2108 * FIXME: should we also commit due to size of transaction, measured in
2111 static int need_commit_due_to_time(struct pool
*pool
)
2113 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
2114 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
2117 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2118 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2120 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
2122 struct rb_node
**rbp
, *parent
;
2123 struct dm_thin_endio_hook
*pbd
;
2124 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
2126 rbp
= &tc
->sort_bio_list
.rb_node
;
2130 pbd
= thin_pbd(parent
);
2132 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
2133 rbp
= &(*rbp
)->rb_left
;
2135 rbp
= &(*rbp
)->rb_right
;
2138 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2139 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
2140 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
2143 static void __extract_sorted_bios(struct thin_c
*tc
)
2145 struct rb_node
*node
;
2146 struct dm_thin_endio_hook
*pbd
;
2149 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
2150 pbd
= thin_pbd(node
);
2151 bio
= thin_bio(pbd
);
2153 bio_list_add(&tc
->deferred_bio_list
, bio
);
2154 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
2157 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
2160 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
2163 struct bio_list bios
;
2165 bio_list_init(&bios
);
2166 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2167 bio_list_init(&tc
->deferred_bio_list
);
2169 /* Sort deferred_bio_list using rb-tree */
2170 while ((bio
= bio_list_pop(&bios
)))
2171 __thin_bio_rb_add(tc
, bio
);
2174 * Transfer the sorted bios in sort_bio_list back to
2175 * deferred_bio_list to allow lockless submission of
2178 __extract_sorted_bios(tc
);
2181 static void process_thin_deferred_bios(struct thin_c
*tc
)
2183 struct pool
*pool
= tc
->pool
;
2185 struct bio_list bios
;
2186 struct blk_plug plug
;
2187 unsigned int count
= 0;
2189 if (tc
->requeue_mode
) {
2190 error_thin_bio_list(tc
, &tc
->deferred_bio_list
,
2191 BLK_STS_DM_REQUEUE
);
2195 bio_list_init(&bios
);
2197 spin_lock_irq(&tc
->lock
);
2199 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2200 spin_unlock_irq(&tc
->lock
);
2204 __sort_thin_deferred_bios(tc
);
2206 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2207 bio_list_init(&tc
->deferred_bio_list
);
2209 spin_unlock_irq(&tc
->lock
);
2211 blk_start_plug(&plug
);
2212 while ((bio
= bio_list_pop(&bios
))) {
2214 * If we've got no free new_mapping structs, and processing
2215 * this bio might require one, we pause until there are some
2216 * prepared mappings to process.
2218 if (ensure_next_mapping(pool
)) {
2219 spin_lock_irq(&tc
->lock
);
2220 bio_list_add(&tc
->deferred_bio_list
, bio
);
2221 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2222 spin_unlock_irq(&tc
->lock
);
2226 if (bio_op(bio
) == REQ_OP_DISCARD
)
2227 pool
->process_discard(tc
, bio
);
2229 pool
->process_bio(tc
, bio
);
2231 if ((count
++ & 127) == 0) {
2232 throttle_work_update(&pool
->throttle
);
2233 dm_pool_issue_prefetches(pool
->pmd
);
2237 blk_finish_plug(&plug
);
2240 static int cmp_cells(const void *lhs
, const void *rhs
)
2242 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2243 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2245 BUG_ON(!lhs_cell
->holder
);
2246 BUG_ON(!rhs_cell
->holder
);
2248 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2251 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2257 static unsigned int sort_cells(struct pool
*pool
, struct list_head
*cells
)
2259 unsigned int count
= 0;
2260 struct dm_bio_prison_cell
*cell
, *tmp
;
2262 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2263 if (count
>= CELL_SORT_ARRAY_SIZE
)
2266 pool
->cell_sort_array
[count
++] = cell
;
2267 list_del(&cell
->user_list
);
2270 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2275 static void process_thin_deferred_cells(struct thin_c
*tc
)
2277 struct pool
*pool
= tc
->pool
;
2278 struct list_head cells
;
2279 struct dm_bio_prison_cell
*cell
;
2280 unsigned int i
, j
, count
;
2282 INIT_LIST_HEAD(&cells
);
2284 spin_lock_irq(&tc
->lock
);
2285 list_splice_init(&tc
->deferred_cells
, &cells
);
2286 spin_unlock_irq(&tc
->lock
);
2288 if (list_empty(&cells
))
2292 count
= sort_cells(tc
->pool
, &cells
);
2294 for (i
= 0; i
< count
; i
++) {
2295 cell
= pool
->cell_sort_array
[i
];
2296 BUG_ON(!cell
->holder
);
2299 * If we've got no free new_mapping structs, and processing
2300 * this bio might require one, we pause until there are some
2301 * prepared mappings to process.
2303 if (ensure_next_mapping(pool
)) {
2304 for (j
= i
; j
< count
; j
++)
2305 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2307 spin_lock_irq(&tc
->lock
);
2308 list_splice(&cells
, &tc
->deferred_cells
);
2309 spin_unlock_irq(&tc
->lock
);
2313 if (bio_op(cell
->holder
) == REQ_OP_DISCARD
)
2314 pool
->process_discard_cell(tc
, cell
);
2316 pool
->process_cell(tc
, cell
);
2319 } while (!list_empty(&cells
));
2322 static void thin_get(struct thin_c
*tc
);
2323 static void thin_put(struct thin_c
*tc
);
2326 * We can't hold rcu_read_lock() around code that can block. So we
2327 * find a thin with the rcu lock held; bump a refcount; then drop
2330 static struct thin_c
*get_first_thin(struct pool
*pool
)
2332 struct thin_c
*tc
= NULL
;
2335 if (!list_empty(&pool
->active_thins
)) {
2336 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2344 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2346 struct thin_c
*old_tc
= tc
;
2349 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2361 static void process_deferred_bios(struct pool
*pool
)
2364 struct bio_list bios
, bio_completions
;
2367 tc
= get_first_thin(pool
);
2369 process_thin_deferred_cells(tc
);
2370 process_thin_deferred_bios(tc
);
2371 tc
= get_next_thin(pool
, tc
);
2375 * If there are any deferred flush bios, we must commit the metadata
2376 * before issuing them or signaling their completion.
2378 bio_list_init(&bios
);
2379 bio_list_init(&bio_completions
);
2381 spin_lock_irq(&pool
->lock
);
2382 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2383 bio_list_init(&pool
->deferred_flush_bios
);
2385 bio_list_merge(&bio_completions
, &pool
->deferred_flush_completions
);
2386 bio_list_init(&pool
->deferred_flush_completions
);
2387 spin_unlock_irq(&pool
->lock
);
2389 if (bio_list_empty(&bios
) && bio_list_empty(&bio_completions
) &&
2390 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2394 bio_list_merge(&bios
, &bio_completions
);
2396 while ((bio
= bio_list_pop(&bios
)))
2400 pool
->last_commit_jiffies
= jiffies
;
2402 while ((bio
= bio_list_pop(&bio_completions
)))
2405 while ((bio
= bio_list_pop(&bios
))) {
2407 * The data device was flushed as part of metadata commit,
2408 * so complete redundant flushes immediately.
2410 if (bio
->bi_opf
& REQ_PREFLUSH
)
2413 dm_submit_bio_remap(bio
, NULL
);
2417 static void do_worker(struct work_struct
*ws
)
2419 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2421 throttle_work_start(&pool
->throttle
);
2422 dm_pool_issue_prefetches(pool
->pmd
);
2423 throttle_work_update(&pool
->throttle
);
2424 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2425 throttle_work_update(&pool
->throttle
);
2426 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2427 throttle_work_update(&pool
->throttle
);
2428 process_prepared(pool
, &pool
->prepared_discards_pt2
, &pool
->process_prepared_discard_pt2
);
2429 throttle_work_update(&pool
->throttle
);
2430 process_deferred_bios(pool
);
2431 throttle_work_complete(&pool
->throttle
);
2435 * We want to commit periodically so that not too much
2436 * unwritten data builds up.
2438 static void do_waker(struct work_struct
*ws
)
2440 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2443 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2447 * We're holding onto IO to allow userland time to react. After the
2448 * timeout either the pool will have been resized (and thus back in
2449 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2451 static void do_no_space_timeout(struct work_struct
*ws
)
2453 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2456 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2457 pool
->pf
.error_if_no_space
= true;
2458 notify_of_pool_mode_change(pool
);
2459 error_retry_list_with_code(pool
, BLK_STS_NOSPC
);
2463 /*----------------------------------------------------------------*/
2466 struct work_struct worker
;
2467 struct completion complete
;
2470 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2472 return container_of(ws
, struct pool_work
, worker
);
2475 static void pool_work_complete(struct pool_work
*pw
)
2477 complete(&pw
->complete
);
2480 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2481 void (*fn
)(struct work_struct
*))
2483 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2484 init_completion(&pw
->complete
);
2485 queue_work(pool
->wq
, &pw
->worker
);
2486 wait_for_completion(&pw
->complete
);
2487 destroy_work_on_stack(&pw
->worker
);
2490 /*----------------------------------------------------------------*/
2492 struct noflush_work
{
2493 struct pool_work pw
;
2497 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2499 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2502 static void do_noflush_start(struct work_struct
*ws
)
2504 struct noflush_work
*w
= to_noflush(ws
);
2506 w
->tc
->requeue_mode
= true;
2508 pool_work_complete(&w
->pw
);
2511 static void do_noflush_stop(struct work_struct
*ws
)
2513 struct noflush_work
*w
= to_noflush(ws
);
2515 w
->tc
->requeue_mode
= false;
2516 pool_work_complete(&w
->pw
);
2519 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2521 struct noflush_work w
;
2524 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2527 /*----------------------------------------------------------------*/
2529 static void set_discard_callbacks(struct pool
*pool
)
2531 struct pool_c
*pt
= pool
->ti
->private;
2533 if (pt
->adjusted_pf
.discard_passdown
) {
2534 pool
->process_discard_cell
= process_discard_cell_passdown
;
2535 pool
->process_prepared_discard
= process_prepared_discard_passdown_pt1
;
2536 pool
->process_prepared_discard_pt2
= process_prepared_discard_passdown_pt2
;
2538 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2539 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2543 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2545 struct pool_c
*pt
= pool
->ti
->private;
2546 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2547 enum pool_mode old_mode
= get_pool_mode(pool
);
2548 unsigned long no_space_timeout
= READ_ONCE(no_space_timeout_secs
) * HZ
;
2551 * Never allow the pool to transition to PM_WRITE mode if user
2552 * intervention is required to verify metadata and data consistency.
2554 if (new_mode
== PM_WRITE
&& needs_check
) {
2555 DMERR("%s: unable to switch pool to write mode until repaired.",
2556 dm_device_name(pool
->pool_md
));
2557 if (old_mode
!= new_mode
)
2558 new_mode
= old_mode
;
2560 new_mode
= PM_READ_ONLY
;
2563 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2564 * not going to recover without a thin_repair. So we never let the
2565 * pool move out of the old mode.
2567 if (old_mode
== PM_FAIL
)
2568 new_mode
= old_mode
;
2572 dm_pool_metadata_read_only(pool
->pmd
);
2573 pool
->process_bio
= process_bio_fail
;
2574 pool
->process_discard
= process_bio_fail
;
2575 pool
->process_cell
= process_cell_fail
;
2576 pool
->process_discard_cell
= process_cell_fail
;
2577 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2578 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2580 error_retry_list(pool
);
2583 case PM_OUT_OF_METADATA_SPACE
:
2585 dm_pool_metadata_read_only(pool
->pmd
);
2586 pool
->process_bio
= process_bio_read_only
;
2587 pool
->process_discard
= process_bio_success
;
2588 pool
->process_cell
= process_cell_read_only
;
2589 pool
->process_discard_cell
= process_cell_success
;
2590 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2591 pool
->process_prepared_discard
= process_prepared_discard_success
;
2593 error_retry_list(pool
);
2596 case PM_OUT_OF_DATA_SPACE
:
2598 * Ideally we'd never hit this state; the low water mark
2599 * would trigger userland to extend the pool before we
2600 * completely run out of data space. However, many small
2601 * IOs to unprovisioned space can consume data space at an
2602 * alarming rate. Adjust your low water mark if you're
2603 * frequently seeing this mode.
2605 pool
->out_of_data_space
= true;
2606 pool
->process_bio
= process_bio_read_only
;
2607 pool
->process_discard
= process_discard_bio
;
2608 pool
->process_cell
= process_cell_read_only
;
2609 pool
->process_prepared_mapping
= process_prepared_mapping
;
2610 set_discard_callbacks(pool
);
2612 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2613 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2617 if (old_mode
== PM_OUT_OF_DATA_SPACE
)
2618 cancel_delayed_work_sync(&pool
->no_space_timeout
);
2619 pool
->out_of_data_space
= false;
2620 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2621 dm_pool_metadata_read_write(pool
->pmd
);
2622 pool
->process_bio
= process_bio
;
2623 pool
->process_discard
= process_discard_bio
;
2624 pool
->process_cell
= process_cell
;
2625 pool
->process_prepared_mapping
= process_prepared_mapping
;
2626 set_discard_callbacks(pool
);
2630 pool
->pf
.mode
= new_mode
;
2632 * The pool mode may have changed, sync it so bind_control_target()
2633 * doesn't cause an unexpected mode transition on resume.
2635 pt
->adjusted_pf
.mode
= new_mode
;
2637 if (old_mode
!= new_mode
)
2638 notify_of_pool_mode_change(pool
);
2641 static void abort_transaction(struct pool
*pool
)
2643 const char *dev_name
= dm_device_name(pool
->pool_md
);
2645 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2646 if (dm_pool_abort_metadata(pool
->pmd
)) {
2647 DMERR("%s: failed to abort metadata transaction", dev_name
);
2648 set_pool_mode(pool
, PM_FAIL
);
2651 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2652 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2653 set_pool_mode(pool
, PM_FAIL
);
2657 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2659 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2660 dm_device_name(pool
->pool_md
), op
, r
);
2662 abort_transaction(pool
);
2663 set_pool_mode(pool
, PM_READ_ONLY
);
2666 /*----------------------------------------------------------------*/
2669 * Mapping functions.
2673 * Called only while mapping a thin bio to hand it over to the workqueue.
2675 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2677 struct pool
*pool
= tc
->pool
;
2679 spin_lock_irq(&tc
->lock
);
2680 bio_list_add(&tc
->deferred_bio_list
, bio
);
2681 spin_unlock_irq(&tc
->lock
);
2686 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2688 struct pool
*pool
= tc
->pool
;
2690 throttle_lock(&pool
->throttle
);
2691 thin_defer_bio(tc
, bio
);
2692 throttle_unlock(&pool
->throttle
);
2695 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2697 struct pool
*pool
= tc
->pool
;
2699 throttle_lock(&pool
->throttle
);
2700 spin_lock_irq(&tc
->lock
);
2701 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2702 spin_unlock_irq(&tc
->lock
);
2703 throttle_unlock(&pool
->throttle
);
2708 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2710 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2713 h
->shared_read_entry
= NULL
;
2714 h
->all_io_entry
= NULL
;
2715 h
->overwrite_mapping
= NULL
;
2720 * Non-blocking function called from the thin target's map function.
2722 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2725 struct thin_c
*tc
= ti
->private;
2726 dm_block_t block
= get_bio_block(tc
, bio
);
2727 struct dm_thin_device
*td
= tc
->td
;
2728 struct dm_thin_lookup_result result
;
2729 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2730 struct dm_cell_key key
;
2732 thin_hook_bio(tc
, bio
);
2734 if (tc
->requeue_mode
) {
2735 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
2737 return DM_MAPIO_SUBMITTED
;
2740 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2742 return DM_MAPIO_SUBMITTED
;
2745 if (op_is_flush(bio
->bi_opf
) || bio_op(bio
) == REQ_OP_DISCARD
) {
2746 thin_defer_bio_with_throttle(tc
, bio
);
2747 return DM_MAPIO_SUBMITTED
;
2751 * We must hold the virtual cell before doing the lookup, otherwise
2752 * there's a race with discard.
2754 build_virtual_key(tc
->td
, block
, &key
);
2755 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2756 return DM_MAPIO_SUBMITTED
;
2758 r
= dm_thin_find_block(td
, block
, 0, &result
);
2761 * Note that we defer readahead too.
2765 if (unlikely(result
.shared
)) {
2767 * We have a race condition here between the
2768 * result.shared value returned by the lookup and
2769 * snapshot creation, which may cause new
2772 * To avoid this always quiesce the origin before
2773 * taking the snap. You want to do this anyway to
2774 * ensure a consistent application view
2777 * More distant ancestors are irrelevant. The
2778 * shared flag will be set in their case.
2780 thin_defer_cell(tc
, virt_cell
);
2781 return DM_MAPIO_SUBMITTED
;
2784 build_data_key(tc
->td
, result
.block
, &key
);
2785 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2786 cell_defer_no_holder(tc
, virt_cell
);
2787 return DM_MAPIO_SUBMITTED
;
2790 inc_all_io_entry(tc
->pool
, bio
);
2791 cell_defer_no_holder(tc
, data_cell
);
2792 cell_defer_no_holder(tc
, virt_cell
);
2794 remap(tc
, bio
, result
.block
);
2795 return DM_MAPIO_REMAPPED
;
2799 thin_defer_cell(tc
, virt_cell
);
2800 return DM_MAPIO_SUBMITTED
;
2804 * Must always call bio_io_error on failure.
2805 * dm_thin_find_block can fail with -EINVAL if the
2806 * pool is switched to fail-io mode.
2809 cell_defer_no_holder(tc
, virt_cell
);
2810 return DM_MAPIO_SUBMITTED
;
2814 static void requeue_bios(struct pool
*pool
)
2819 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2820 spin_lock_irq(&tc
->lock
);
2821 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2822 bio_list_init(&tc
->retry_on_resume_list
);
2823 spin_unlock_irq(&tc
->lock
);
2829 *--------------------------------------------------------------
2830 * Binding of control targets to a pool object
2831 *--------------------------------------------------------------
2833 static bool is_factor(sector_t block_size
, uint32_t n
)
2835 return !sector_div(block_size
, n
);
2839 * If discard_passdown was enabled verify that the data device
2840 * supports discards. Disable discard_passdown if not.
2842 static void disable_discard_passdown_if_not_supported(struct pool_c
*pt
)
2844 struct pool
*pool
= pt
->pool
;
2845 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2846 struct queue_limits
*data_limits
= bdev_limits(data_bdev
);
2847 const char *reason
= NULL
;
2849 if (!pt
->adjusted_pf
.discard_passdown
)
2852 if (!bdev_max_discard_sectors(pt
->data_dev
->bdev
))
2853 reason
= "discard unsupported";
2855 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2856 reason
= "max discard sectors smaller than a block";
2859 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev
, reason
);
2860 pt
->adjusted_pf
.discard_passdown
= false;
2864 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2866 struct pool_c
*pt
= ti
->private;
2869 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2871 enum pool_mode old_mode
= get_pool_mode(pool
);
2872 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2875 * Don't change the pool's mode until set_pool_mode() below.
2876 * Otherwise the pool's process_* function pointers may
2877 * not match the desired pool mode.
2879 pt
->adjusted_pf
.mode
= old_mode
;
2882 pool
->pf
= pt
->adjusted_pf
;
2883 pool
->low_water_blocks
= pt
->low_water_blocks
;
2885 set_pool_mode(pool
, new_mode
);
2890 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2897 *--------------------------------------------------------------
2899 *--------------------------------------------------------------
2901 /* Initialize pool features. */
2902 static void pool_features_init(struct pool_features
*pf
)
2904 pf
->mode
= PM_WRITE
;
2905 pf
->zero_new_blocks
= true;
2906 pf
->discard_enabled
= true;
2907 pf
->discard_passdown
= true;
2908 pf
->error_if_no_space
= false;
2911 static void __pool_destroy(struct pool
*pool
)
2913 __pool_table_remove(pool
);
2915 vfree(pool
->cell_sort_array
);
2916 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2917 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2919 dm_bio_prison_destroy(pool
->prison
);
2920 dm_kcopyd_client_destroy(pool
->copier
);
2922 cancel_delayed_work_sync(&pool
->waker
);
2923 cancel_delayed_work_sync(&pool
->no_space_timeout
);
2925 destroy_workqueue(pool
->wq
);
2927 if (pool
->next_mapping
)
2928 mempool_free(pool
->next_mapping
, &pool
->mapping_pool
);
2929 mempool_exit(&pool
->mapping_pool
);
2930 dm_deferred_set_destroy(pool
->shared_read_ds
);
2931 dm_deferred_set_destroy(pool
->all_io_ds
);
2935 static struct kmem_cache
*_new_mapping_cache
;
2937 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2938 struct block_device
*metadata_dev
,
2939 struct block_device
*data_dev
,
2940 unsigned long block_size
,
2941 int read_only
, char **error
)
2946 struct dm_pool_metadata
*pmd
;
2947 bool format_device
= read_only
? false : true;
2949 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2951 *error
= "Error creating metadata object";
2952 return ERR_CAST(pmd
);
2955 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2957 *error
= "Error allocating memory for pool";
2958 err_p
= ERR_PTR(-ENOMEM
);
2963 pool
->sectors_per_block
= block_size
;
2964 if (block_size
& (block_size
- 1))
2965 pool
->sectors_per_block_shift
= -1;
2967 pool
->sectors_per_block_shift
= __ffs(block_size
);
2968 pool
->low_water_blocks
= 0;
2969 pool_features_init(&pool
->pf
);
2970 pool
->prison
= dm_bio_prison_create();
2971 if (!pool
->prison
) {
2972 *error
= "Error creating pool's bio prison";
2973 err_p
= ERR_PTR(-ENOMEM
);
2977 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2978 if (IS_ERR(pool
->copier
)) {
2979 r
= PTR_ERR(pool
->copier
);
2980 *error
= "Error creating pool's kcopyd client";
2982 goto bad_kcopyd_client
;
2986 * Create singlethreaded workqueue that will service all devices
2987 * that use this metadata.
2989 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2991 *error
= "Error creating pool's workqueue";
2992 err_p
= ERR_PTR(-ENOMEM
);
2996 throttle_init(&pool
->throttle
);
2997 INIT_WORK(&pool
->worker
, do_worker
);
2998 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2999 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
3000 spin_lock_init(&pool
->lock
);
3001 bio_list_init(&pool
->deferred_flush_bios
);
3002 bio_list_init(&pool
->deferred_flush_completions
);
3003 INIT_LIST_HEAD(&pool
->prepared_mappings
);
3004 INIT_LIST_HEAD(&pool
->prepared_discards
);
3005 INIT_LIST_HEAD(&pool
->prepared_discards_pt2
);
3006 INIT_LIST_HEAD(&pool
->active_thins
);
3007 pool
->low_water_triggered
= false;
3008 pool
->suspended
= true;
3009 pool
->out_of_data_space
= false;
3011 pool
->shared_read_ds
= dm_deferred_set_create();
3012 if (!pool
->shared_read_ds
) {
3013 *error
= "Error creating pool's shared read deferred set";
3014 err_p
= ERR_PTR(-ENOMEM
);
3015 goto bad_shared_read_ds
;
3018 pool
->all_io_ds
= dm_deferred_set_create();
3019 if (!pool
->all_io_ds
) {
3020 *error
= "Error creating pool's all io deferred set";
3021 err_p
= ERR_PTR(-ENOMEM
);
3025 pool
->next_mapping
= NULL
;
3026 r
= mempool_init_slab_pool(&pool
->mapping_pool
, MAPPING_POOL_SIZE
,
3027 _new_mapping_cache
);
3029 *error
= "Error creating pool's mapping mempool";
3031 goto bad_mapping_pool
;
3034 pool
->cell_sort_array
=
3035 vmalloc(array_size(CELL_SORT_ARRAY_SIZE
,
3036 sizeof(*pool
->cell_sort_array
)));
3037 if (!pool
->cell_sort_array
) {
3038 *error
= "Error allocating cell sort array";
3039 err_p
= ERR_PTR(-ENOMEM
);
3040 goto bad_sort_array
;
3043 pool
->ref_count
= 1;
3044 pool
->last_commit_jiffies
= jiffies
;
3045 pool
->pool_md
= pool_md
;
3046 pool
->md_dev
= metadata_dev
;
3047 pool
->data_dev
= data_dev
;
3048 __pool_table_insert(pool
);
3053 mempool_exit(&pool
->mapping_pool
);
3055 dm_deferred_set_destroy(pool
->all_io_ds
);
3057 dm_deferred_set_destroy(pool
->shared_read_ds
);
3059 destroy_workqueue(pool
->wq
);
3061 dm_kcopyd_client_destroy(pool
->copier
);
3063 dm_bio_prison_destroy(pool
->prison
);
3067 if (dm_pool_metadata_close(pmd
))
3068 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
3073 static void __pool_inc(struct pool
*pool
)
3075 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3079 static void __pool_dec(struct pool
*pool
)
3081 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
3082 BUG_ON(!pool
->ref_count
);
3083 if (!--pool
->ref_count
)
3084 __pool_destroy(pool
);
3087 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
3088 struct block_device
*metadata_dev
,
3089 struct block_device
*data_dev
,
3090 unsigned long block_size
, int read_only
,
3091 char **error
, int *created
)
3093 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
3096 if (pool
->pool_md
!= pool_md
) {
3097 *error
= "metadata device already in use by a pool";
3098 return ERR_PTR(-EBUSY
);
3100 if (pool
->data_dev
!= data_dev
) {
3101 *error
= "data device already in use by a pool";
3102 return ERR_PTR(-EBUSY
);
3107 pool
= __pool_table_lookup(pool_md
);
3109 if (pool
->md_dev
!= metadata_dev
|| pool
->data_dev
!= data_dev
) {
3110 *error
= "different pool cannot replace a pool";
3111 return ERR_PTR(-EINVAL
);
3116 pool
= pool_create(pool_md
, metadata_dev
, data_dev
, block_size
, read_only
, error
);
3125 *--------------------------------------------------------------
3126 * Pool target methods
3127 *--------------------------------------------------------------
3129 static void pool_dtr(struct dm_target
*ti
)
3131 struct pool_c
*pt
= ti
->private;
3133 mutex_lock(&dm_thin_pool_table
.mutex
);
3135 unbind_control_target(pt
->pool
, ti
);
3136 __pool_dec(pt
->pool
);
3137 dm_put_device(ti
, pt
->metadata_dev
);
3138 dm_put_device(ti
, pt
->data_dev
);
3141 mutex_unlock(&dm_thin_pool_table
.mutex
);
3144 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
3145 struct dm_target
*ti
)
3149 const char *arg_name
;
3151 static const struct dm_arg _args
[] = {
3152 {0, 4, "Invalid number of pool feature arguments"},
3156 * No feature arguments supplied.
3161 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
3165 while (argc
&& !r
) {
3166 arg_name
= dm_shift_arg(as
);
3169 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
3170 pf
->zero_new_blocks
= false;
3172 else if (!strcasecmp(arg_name
, "ignore_discard"))
3173 pf
->discard_enabled
= false;
3175 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
3176 pf
->discard_passdown
= false;
3178 else if (!strcasecmp(arg_name
, "read_only"))
3179 pf
->mode
= PM_READ_ONLY
;
3181 else if (!strcasecmp(arg_name
, "error_if_no_space"))
3182 pf
->error_if_no_space
= true;
3185 ti
->error
= "Unrecognised pool feature requested";
3194 static void metadata_low_callback(void *context
)
3196 struct pool
*pool
= context
;
3198 DMWARN("%s: reached low water mark for metadata device: sending event.",
3199 dm_device_name(pool
->pool_md
));
3201 dm_table_event(pool
->ti
->table
);
3205 * We need to flush the data device **before** committing the metadata.
3207 * This ensures that the data blocks of any newly inserted mappings are
3208 * properly written to non-volatile storage and won't be lost in case of a
3211 * Failure to do so can result in data corruption in the case of internal or
3212 * external snapshots and in the case of newly provisioned blocks, when block
3213 * zeroing is enabled.
3215 static int metadata_pre_commit_callback(void *context
)
3217 struct pool
*pool
= context
;
3219 return blkdev_issue_flush(pool
->data_dev
);
3222 static sector_t
get_dev_size(struct block_device
*bdev
)
3224 return bdev_nr_sectors(bdev
);
3227 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3229 sector_t metadata_dev_size
= get_dev_size(bdev
);
3231 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3232 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3233 bdev
, THIN_METADATA_MAX_SECTORS
);
3236 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3238 sector_t metadata_dev_size
= get_dev_size(bdev
);
3240 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3241 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3243 return metadata_dev_size
;
3246 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3248 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3250 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3252 return metadata_dev_size
;
3256 * When a metadata threshold is crossed a dm event is triggered, and
3257 * userland should respond by growing the metadata device. We could let
3258 * userland set the threshold, like we do with the data threshold, but I'm
3259 * not sure they know enough to do this well.
3261 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3264 * 4M is ample for all ops with the possible exception of thin
3265 * device deletion which is harmless if it fails (just retry the
3266 * delete after you've grown the device).
3268 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3270 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3274 * thin-pool <metadata dev> <data dev>
3275 * <data block size (sectors)>
3276 * <low water mark (blocks)>
3277 * [<#feature args> [<arg>]*]
3279 * Optional feature arguments are:
3280 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3281 * ignore_discard: disable discard
3282 * no_discard_passdown: don't pass discards down to the data device
3283 * read_only: Don't allow any changes to be made to the pool metadata.
3284 * error_if_no_space: error IOs, instead of queueing, if no space.
3286 static int pool_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
3288 int r
, pool_created
= 0;
3291 struct pool_features pf
;
3292 struct dm_arg_set as
;
3293 struct dm_dev
*data_dev
;
3294 unsigned long block_size
;
3295 dm_block_t low_water_blocks
;
3296 struct dm_dev
*metadata_dev
;
3297 blk_mode_t metadata_mode
;
3300 * FIXME Remove validation from scope of lock.
3302 mutex_lock(&dm_thin_pool_table
.mutex
);
3305 ti
->error
= "Invalid argument count";
3313 /* make sure metadata and data are different devices */
3314 if (!strcmp(argv
[0], argv
[1])) {
3315 ti
->error
= "Error setting metadata or data device";
3321 * Set default pool features.
3323 pool_features_init(&pf
);
3325 dm_consume_args(&as
, 4);
3326 r
= parse_pool_features(&as
, &pf
, ti
);
3330 metadata_mode
= BLK_OPEN_READ
|
3331 ((pf
.mode
== PM_READ_ONLY
) ? 0 : BLK_OPEN_WRITE
);
3332 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3334 ti
->error
= "Error opening metadata block device";
3337 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3339 r
= dm_get_device(ti
, argv
[1], BLK_OPEN_READ
| BLK_OPEN_WRITE
, &data_dev
);
3341 ti
->error
= "Error getting data device";
3345 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3346 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3347 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3348 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3349 ti
->error
= "Invalid block size";
3354 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3355 ti
->error
= "Invalid low water mark";
3360 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3366 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
, data_dev
->bdev
,
3367 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3374 * 'pool_created' reflects whether this is the first table load.
3375 * Top level discard support is not allowed to be changed after
3376 * initial load. This would require a pool reload to trigger thin
3379 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3380 ti
->error
= "Discard support cannot be disabled once enabled";
3382 goto out_flags_changed
;
3387 pt
->metadata_dev
= metadata_dev
;
3388 pt
->data_dev
= data_dev
;
3389 pt
->low_water_blocks
= low_water_blocks
;
3390 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3391 ti
->num_flush_bios
= 1;
3392 ti
->limit_swap_bios
= true;
3395 * Only need to enable discards if the pool should pass
3396 * them down to the data device. The thin device's discard
3397 * processing will cause mappings to be removed from the btree.
3399 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3400 ti
->num_discard_bios
= 1;
3402 * Setting 'discards_supported' circumvents the normal
3403 * stacking of discard limits (this keeps the pool and
3404 * thin devices' discard limits consistent).
3406 ti
->discards_supported
= true;
3407 ti
->max_discard_granularity
= true;
3411 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3412 calc_metadata_threshold(pt
),
3413 metadata_low_callback
,
3416 ti
->error
= "Error registering metadata threshold";
3417 goto out_flags_changed
;
3420 dm_pool_register_pre_commit_callback(pool
->pmd
,
3421 metadata_pre_commit_callback
, pool
);
3423 mutex_unlock(&dm_thin_pool_table
.mutex
);
3432 dm_put_device(ti
, data_dev
);
3434 dm_put_device(ti
, metadata_dev
);
3436 mutex_unlock(&dm_thin_pool_table
.mutex
);
3441 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3443 struct pool_c
*pt
= ti
->private;
3444 struct pool
*pool
= pt
->pool
;
3447 * As this is a singleton target, ti->begin is always zero.
3449 spin_lock_irq(&pool
->lock
);
3450 bio_set_dev(bio
, pt
->data_dev
->bdev
);
3451 spin_unlock_irq(&pool
->lock
);
3453 return DM_MAPIO_REMAPPED
;
3456 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3459 struct pool_c
*pt
= ti
->private;
3460 struct pool
*pool
= pt
->pool
;
3461 sector_t data_size
= ti
->len
;
3462 dm_block_t sb_data_size
;
3464 *need_commit
= false;
3466 (void) sector_div(data_size
, pool
->sectors_per_block
);
3468 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3470 DMERR("%s: failed to retrieve data device size",
3471 dm_device_name(pool
->pool_md
));
3475 if (data_size
< sb_data_size
) {
3476 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3477 dm_device_name(pool
->pool_md
),
3478 (unsigned long long)data_size
, sb_data_size
);
3481 } else if (data_size
> sb_data_size
) {
3482 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3483 DMERR("%s: unable to grow the data device until repaired.",
3484 dm_device_name(pool
->pool_md
));
3489 DMINFO("%s: growing the data device from %llu to %llu blocks",
3490 dm_device_name(pool
->pool_md
),
3491 sb_data_size
, (unsigned long long)data_size
);
3492 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3494 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3498 *need_commit
= true;
3504 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3507 struct pool_c
*pt
= ti
->private;
3508 struct pool
*pool
= pt
->pool
;
3509 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3511 *need_commit
= false;
3513 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3515 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3517 DMERR("%s: failed to retrieve metadata device size",
3518 dm_device_name(pool
->pool_md
));
3522 if (metadata_dev_size
< sb_metadata_dev_size
) {
3523 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3524 dm_device_name(pool
->pool_md
),
3525 metadata_dev_size
, sb_metadata_dev_size
);
3528 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3529 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3530 DMERR("%s: unable to grow the metadata device until repaired.",
3531 dm_device_name(pool
->pool_md
));
3535 warn_if_metadata_device_too_big(pool
->md_dev
);
3536 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3537 dm_device_name(pool
->pool_md
),
3538 sb_metadata_dev_size
, metadata_dev_size
);
3540 if (get_pool_mode(pool
) == PM_OUT_OF_METADATA_SPACE
)
3541 set_pool_mode(pool
, PM_WRITE
);
3543 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3545 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3549 *need_commit
= true;
3556 * Retrieves the number of blocks of the data device from
3557 * the superblock and compares it to the actual device size,
3558 * thus resizing the data device in case it has grown.
3560 * This both copes with opening preallocated data devices in the ctr
3561 * being followed by a resume
3563 * calling the resume method individually after userspace has
3564 * grown the data device in reaction to a table event.
3566 static int pool_preresume(struct dm_target
*ti
)
3569 bool need_commit1
, need_commit2
;
3570 struct pool_c
*pt
= ti
->private;
3571 struct pool
*pool
= pt
->pool
;
3574 * Take control of the pool object.
3576 r
= bind_control_target(pool
, ti
);
3580 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3584 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3588 if (need_commit1
|| need_commit2
)
3589 (void) commit(pool
);
3592 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3593 * bio is in deferred list. Therefore need to return 0
3594 * to allow pool_resume() to flush IO.
3596 if (r
&& get_pool_mode(pool
) == PM_FAIL
)
3602 static void pool_suspend_active_thins(struct pool
*pool
)
3606 /* Suspend all active thin devices */
3607 tc
= get_first_thin(pool
);
3609 dm_internal_suspend_noflush(tc
->thin_md
);
3610 tc
= get_next_thin(pool
, tc
);
3614 static void pool_resume_active_thins(struct pool
*pool
)
3618 /* Resume all active thin devices */
3619 tc
= get_first_thin(pool
);
3621 dm_internal_resume(tc
->thin_md
);
3622 tc
= get_next_thin(pool
, tc
);
3626 static void pool_resume(struct dm_target
*ti
)
3628 struct pool_c
*pt
= ti
->private;
3629 struct pool
*pool
= pt
->pool
;
3632 * Must requeue active_thins' bios and then resume
3633 * active_thins _before_ clearing 'suspend' flag.
3636 pool_resume_active_thins(pool
);
3638 spin_lock_irq(&pool
->lock
);
3639 pool
->low_water_triggered
= false;
3640 pool
->suspended
= false;
3641 spin_unlock_irq(&pool
->lock
);
3643 do_waker(&pool
->waker
.work
);
3646 static void pool_presuspend(struct dm_target
*ti
)
3648 struct pool_c
*pt
= ti
->private;
3649 struct pool
*pool
= pt
->pool
;
3651 spin_lock_irq(&pool
->lock
);
3652 pool
->suspended
= true;
3653 spin_unlock_irq(&pool
->lock
);
3655 pool_suspend_active_thins(pool
);
3658 static void pool_presuspend_undo(struct dm_target
*ti
)
3660 struct pool_c
*pt
= ti
->private;
3661 struct pool
*pool
= pt
->pool
;
3663 pool_resume_active_thins(pool
);
3665 spin_lock_irq(&pool
->lock
);
3666 pool
->suspended
= false;
3667 spin_unlock_irq(&pool
->lock
);
3670 static void pool_postsuspend(struct dm_target
*ti
)
3672 struct pool_c
*pt
= ti
->private;
3673 struct pool
*pool
= pt
->pool
;
3675 cancel_delayed_work_sync(&pool
->waker
);
3676 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3677 flush_workqueue(pool
->wq
);
3678 (void) commit(pool
);
3681 static int check_arg_count(unsigned int argc
, unsigned int args_required
)
3683 if (argc
!= args_required
) {
3684 DMWARN("Message received with %u arguments instead of %u.",
3685 argc
, args_required
);
3692 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3694 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3695 *dev_id
<= MAX_DEV_ID
)
3699 DMWARN("Message received with invalid device id: %s", arg
);
3704 static int process_create_thin_mesg(unsigned int argc
, char **argv
, struct pool
*pool
)
3709 r
= check_arg_count(argc
, 2);
3713 r
= read_dev_id(argv
[1], &dev_id
, 1);
3717 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3719 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3727 static int process_create_snap_mesg(unsigned int argc
, char **argv
, struct pool
*pool
)
3730 dm_thin_id origin_dev_id
;
3733 r
= check_arg_count(argc
, 3);
3737 r
= read_dev_id(argv
[1], &dev_id
, 1);
3741 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3745 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3747 DMWARN("Creation of new snapshot %s of device %s failed.",
3755 static int process_delete_mesg(unsigned int argc
, char **argv
, struct pool
*pool
)
3760 r
= check_arg_count(argc
, 2);
3764 r
= read_dev_id(argv
[1], &dev_id
, 1);
3768 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3770 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3775 static int process_set_transaction_id_mesg(unsigned int argc
, char **argv
, struct pool
*pool
)
3777 dm_thin_id old_id
, new_id
;
3780 r
= check_arg_count(argc
, 3);
3784 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3785 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3789 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3790 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3794 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3796 DMWARN("Failed to change transaction id from %s to %s.",
3804 static int process_reserve_metadata_snap_mesg(unsigned int argc
, char **argv
, struct pool
*pool
)
3808 r
= check_arg_count(argc
, 1);
3812 (void) commit(pool
);
3814 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3816 DMWARN("reserve_metadata_snap message failed.");
3821 static int process_release_metadata_snap_mesg(unsigned int argc
, char **argv
, struct pool
*pool
)
3825 r
= check_arg_count(argc
, 1);
3829 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3831 DMWARN("release_metadata_snap message failed.");
3837 * Messages supported:
3838 * create_thin <dev_id>
3839 * create_snap <dev_id> <origin_id>
3841 * set_transaction_id <current_trans_id> <new_trans_id>
3842 * reserve_metadata_snap
3843 * release_metadata_snap
3845 static int pool_message(struct dm_target
*ti
, unsigned int argc
, char **argv
,
3846 char *result
, unsigned int maxlen
)
3849 struct pool_c
*pt
= ti
->private;
3850 struct pool
*pool
= pt
->pool
;
3852 if (get_pool_mode(pool
) >= PM_OUT_OF_METADATA_SPACE
) {
3853 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3854 dm_device_name(pool
->pool_md
));
3858 if (!strcasecmp(argv
[0], "create_thin"))
3859 r
= process_create_thin_mesg(argc
, argv
, pool
);
3861 else if (!strcasecmp(argv
[0], "create_snap"))
3862 r
= process_create_snap_mesg(argc
, argv
, pool
);
3864 else if (!strcasecmp(argv
[0], "delete"))
3865 r
= process_delete_mesg(argc
, argv
, pool
);
3867 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3868 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3870 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3871 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3873 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3874 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3877 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3880 (void) commit(pool
);
3885 static void emit_flags(struct pool_features
*pf
, char *result
,
3886 unsigned int sz
, unsigned int maxlen
)
3888 unsigned int count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3889 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3890 pf
->error_if_no_space
;
3891 DMEMIT("%u ", count
);
3893 if (!pf
->zero_new_blocks
)
3894 DMEMIT("skip_block_zeroing ");
3896 if (!pf
->discard_enabled
)
3897 DMEMIT("ignore_discard ");
3899 if (!pf
->discard_passdown
)
3900 DMEMIT("no_discard_passdown ");
3902 if (pf
->mode
== PM_READ_ONLY
)
3903 DMEMIT("read_only ");
3905 if (pf
->error_if_no_space
)
3906 DMEMIT("error_if_no_space ");
3911 * <transaction id> <used metadata sectors>/<total metadata sectors>
3912 * <used data sectors>/<total data sectors> <held metadata root>
3913 * <pool mode> <discard config> <no space config> <needs_check>
3915 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3916 unsigned int status_flags
, char *result
, unsigned int maxlen
)
3919 unsigned int sz
= 0;
3920 uint64_t transaction_id
;
3921 dm_block_t nr_free_blocks_data
;
3922 dm_block_t nr_free_blocks_metadata
;
3923 dm_block_t nr_blocks_data
;
3924 dm_block_t nr_blocks_metadata
;
3925 dm_block_t held_root
;
3926 enum pool_mode mode
;
3927 char buf
[BDEVNAME_SIZE
];
3928 char buf2
[BDEVNAME_SIZE
];
3929 struct pool_c
*pt
= ti
->private;
3930 struct pool
*pool
= pt
->pool
;
3933 case STATUSTYPE_INFO
:
3934 if (get_pool_mode(pool
) == PM_FAIL
) {
3939 /* Commit to ensure statistics aren't out-of-date */
3940 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3941 (void) commit(pool
);
3943 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3945 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3946 dm_device_name(pool
->pool_md
), r
);
3950 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3952 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3953 dm_device_name(pool
->pool_md
), r
);
3957 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3959 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3960 dm_device_name(pool
->pool_md
), r
);
3964 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3966 DMERR("%s: dm_pool_get_free_block_count returned %d",
3967 dm_device_name(pool
->pool_md
), r
);
3971 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3973 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3974 dm_device_name(pool
->pool_md
), r
);
3978 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3980 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3981 dm_device_name(pool
->pool_md
), r
);
3985 DMEMIT("%llu %llu/%llu %llu/%llu ",
3986 (unsigned long long)transaction_id
,
3987 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3988 (unsigned long long)nr_blocks_metadata
,
3989 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3990 (unsigned long long)nr_blocks_data
);
3993 DMEMIT("%llu ", held_root
);
3997 mode
= get_pool_mode(pool
);
3998 if (mode
== PM_OUT_OF_DATA_SPACE
)
3999 DMEMIT("out_of_data_space ");
4000 else if (is_read_only_pool_mode(mode
))
4005 if (!pool
->pf
.discard_enabled
)
4006 DMEMIT("ignore_discard ");
4007 else if (pool
->pf
.discard_passdown
)
4008 DMEMIT("discard_passdown ");
4010 DMEMIT("no_discard_passdown ");
4012 if (pool
->pf
.error_if_no_space
)
4013 DMEMIT("error_if_no_space ");
4015 DMEMIT("queue_if_no_space ");
4017 if (dm_pool_metadata_needs_check(pool
->pmd
))
4018 DMEMIT("needs_check ");
4022 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt
));
4026 case STATUSTYPE_TABLE
:
4027 DMEMIT("%s %s %lu %llu ",
4028 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
4029 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
4030 (unsigned long)pool
->sectors_per_block
,
4031 (unsigned long long)pt
->low_water_blocks
);
4032 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
4035 case STATUSTYPE_IMA
:
4045 static int pool_iterate_devices(struct dm_target
*ti
,
4046 iterate_devices_callout_fn fn
, void *data
)
4048 struct pool_c
*pt
= ti
->private;
4050 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
4053 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4055 struct pool_c
*pt
= ti
->private;
4056 struct pool
*pool
= pt
->pool
;
4057 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
4060 * If max_sectors is smaller than pool->sectors_per_block adjust it
4061 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4062 * This is especially beneficial when the pool's data device is a RAID
4063 * device that has a full stripe width that matches pool->sectors_per_block
4064 * -- because even though partial RAID stripe-sized IOs will be issued to a
4065 * single RAID stripe; when aggregated they will end on a full RAID stripe
4066 * boundary.. which avoids additional partial RAID stripe writes cascading
4068 if (limits
->max_sectors
< pool
->sectors_per_block
) {
4069 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
4070 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
4071 limits
->max_sectors
--;
4072 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
4077 * If the system-determined stacked limits are compatible with the
4078 * pool's blocksize (io_opt is a factor) do not override them.
4080 if (io_opt_sectors
< pool
->sectors_per_block
||
4081 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
4082 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
4083 limits
->io_min
= limits
->max_sectors
<< SECTOR_SHIFT
;
4085 limits
->io_min
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4086 limits
->io_opt
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4090 * pt->adjusted_pf is a staging area for the actual features to use.
4091 * They get transferred to the live pool in bind_control_target()
4092 * called from pool_preresume().
4095 if (pt
->adjusted_pf
.discard_enabled
) {
4096 disable_discard_passdown_if_not_supported(pt
);
4097 if (!pt
->adjusted_pf
.discard_passdown
)
4098 limits
->max_hw_discard_sectors
= 0;
4100 * The pool uses the same discard limits as the underlying data
4101 * device. DM core has already set this up.
4105 * Must explicitly disallow stacking discard limits otherwise the
4106 * block layer will stack them if pool's data device has support.
4108 limits
->discard_granularity
= 0;
4112 static struct target_type pool_target
= {
4113 .name
= "thin-pool",
4114 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
4115 DM_TARGET_IMMUTABLE
,
4116 .version
= {1, 23, 0},
4117 .module
= THIS_MODULE
,
4121 .presuspend
= pool_presuspend
,
4122 .presuspend_undo
= pool_presuspend_undo
,
4123 .postsuspend
= pool_postsuspend
,
4124 .preresume
= pool_preresume
,
4125 .resume
= pool_resume
,
4126 .message
= pool_message
,
4127 .status
= pool_status
,
4128 .iterate_devices
= pool_iterate_devices
,
4129 .io_hints
= pool_io_hints
,
4133 *--------------------------------------------------------------
4134 * Thin target methods
4135 *--------------------------------------------------------------
4137 static void thin_get(struct thin_c
*tc
)
4139 refcount_inc(&tc
->refcount
);
4142 static void thin_put(struct thin_c
*tc
)
4144 if (refcount_dec_and_test(&tc
->refcount
))
4145 complete(&tc
->can_destroy
);
4148 static void thin_dtr(struct dm_target
*ti
)
4150 struct thin_c
*tc
= ti
->private;
4152 spin_lock_irq(&tc
->pool
->lock
);
4153 list_del_rcu(&tc
->list
);
4154 spin_unlock_irq(&tc
->pool
->lock
);
4158 wait_for_completion(&tc
->can_destroy
);
4160 mutex_lock(&dm_thin_pool_table
.mutex
);
4162 __pool_dec(tc
->pool
);
4163 dm_pool_close_thin_device(tc
->td
);
4164 dm_put_device(ti
, tc
->pool_dev
);
4166 dm_put_device(ti
, tc
->origin_dev
);
4169 mutex_unlock(&dm_thin_pool_table
.mutex
);
4173 * Thin target parameters:
4175 * <pool_dev> <dev_id> [origin_dev]
4177 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4178 * dev_id: the internal device identifier
4179 * origin_dev: a device external to the pool that should act as the origin
4181 * If the pool device has discards disabled, they get disabled for the thin
4184 static int thin_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
4188 struct dm_dev
*pool_dev
, *origin_dev
;
4189 struct mapped_device
*pool_md
;
4191 mutex_lock(&dm_thin_pool_table
.mutex
);
4193 if (argc
!= 2 && argc
!= 3) {
4194 ti
->error
= "Invalid argument count";
4199 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
4201 ti
->error
= "Out of memory";
4205 tc
->thin_md
= dm_table_get_md(ti
->table
);
4206 spin_lock_init(&tc
->lock
);
4207 INIT_LIST_HEAD(&tc
->deferred_cells
);
4208 bio_list_init(&tc
->deferred_bio_list
);
4209 bio_list_init(&tc
->retry_on_resume_list
);
4210 tc
->sort_bio_list
= RB_ROOT
;
4213 if (!strcmp(argv
[0], argv
[2])) {
4214 ti
->error
= "Error setting origin device";
4216 goto bad_origin_dev
;
4219 r
= dm_get_device(ti
, argv
[2], BLK_OPEN_READ
, &origin_dev
);
4221 ti
->error
= "Error opening origin device";
4222 goto bad_origin_dev
;
4224 tc
->origin_dev
= origin_dev
;
4227 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
4229 ti
->error
= "Error opening pool device";
4232 tc
->pool_dev
= pool_dev
;
4234 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4235 ti
->error
= "Invalid device id";
4240 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4242 ti
->error
= "Couldn't get pool mapped device";
4247 tc
->pool
= __pool_table_lookup(pool_md
);
4249 ti
->error
= "Couldn't find pool object";
4251 goto bad_pool_lookup
;
4253 __pool_inc(tc
->pool
);
4255 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4256 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4261 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4263 ti
->error
= "Couldn't open thin internal device";
4267 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4271 ti
->num_flush_bios
= 1;
4272 ti
->limit_swap_bios
= true;
4273 ti
->flush_supported
= true;
4274 ti
->accounts_remapped_io
= true;
4275 ti
->per_io_data_size
= sizeof(struct dm_thin_endio_hook
);
4277 /* In case the pool supports discards, pass them on. */
4278 if (tc
->pool
->pf
.discard_enabled
) {
4279 ti
->discards_supported
= true;
4280 ti
->num_discard_bios
= 1;
4281 ti
->max_discard_granularity
= true;
4284 mutex_unlock(&dm_thin_pool_table
.mutex
);
4286 spin_lock_irq(&tc
->pool
->lock
);
4287 if (tc
->pool
->suspended
) {
4288 spin_unlock_irq(&tc
->pool
->lock
);
4289 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4290 ti
->error
= "Unable to activate thin device while pool is suspended";
4294 refcount_set(&tc
->refcount
, 1);
4295 init_completion(&tc
->can_destroy
);
4296 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4297 spin_unlock_irq(&tc
->pool
->lock
);
4299 * This synchronize_rcu() call is needed here otherwise we risk a
4300 * wake_worker() call finding no bios to process (because the newly
4301 * added tc isn't yet visible). So this reduces latency since we
4302 * aren't then dependent on the periodic commit to wake_worker().
4311 dm_pool_close_thin_device(tc
->td
);
4313 __pool_dec(tc
->pool
);
4317 dm_put_device(ti
, tc
->pool_dev
);
4320 dm_put_device(ti
, tc
->origin_dev
);
4324 mutex_unlock(&dm_thin_pool_table
.mutex
);
4329 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4331 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4333 return thin_bio_map(ti
, bio
);
4336 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
,
4339 unsigned long flags
;
4340 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4341 struct list_head work
;
4342 struct dm_thin_new_mapping
*m
, *tmp
;
4343 struct pool
*pool
= h
->tc
->pool
;
4345 if (h
->shared_read_entry
) {
4346 INIT_LIST_HEAD(&work
);
4347 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4349 spin_lock_irqsave(&pool
->lock
, flags
);
4350 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4352 __complete_mapping_preparation(m
);
4354 spin_unlock_irqrestore(&pool
->lock
, flags
);
4357 if (h
->all_io_entry
) {
4358 INIT_LIST_HEAD(&work
);
4359 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4360 if (!list_empty(&work
)) {
4361 spin_lock_irqsave(&pool
->lock
, flags
);
4362 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4363 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4364 spin_unlock_irqrestore(&pool
->lock
, flags
);
4370 cell_defer_no_holder(h
->tc
, h
->cell
);
4372 return DM_ENDIO_DONE
;
4375 static void thin_presuspend(struct dm_target
*ti
)
4377 struct thin_c
*tc
= ti
->private;
4379 if (dm_noflush_suspending(ti
))
4380 noflush_work(tc
, do_noflush_start
);
4383 static void thin_postsuspend(struct dm_target
*ti
)
4385 struct thin_c
*tc
= ti
->private;
4388 * The dm_noflush_suspending flag has been cleared by now, so
4389 * unfortunately we must always run this.
4391 noflush_work(tc
, do_noflush_stop
);
4394 static int thin_preresume(struct dm_target
*ti
)
4396 struct thin_c
*tc
= ti
->private;
4399 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4405 * <nr mapped sectors> <highest mapped sector>
4407 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4408 unsigned int status_flags
, char *result
, unsigned int maxlen
)
4412 dm_block_t mapped
, highest
;
4413 char buf
[BDEVNAME_SIZE
];
4414 struct thin_c
*tc
= ti
->private;
4416 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4425 case STATUSTYPE_INFO
:
4426 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4428 DMERR("dm_thin_get_mapped_count returned %d", r
);
4432 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4434 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4438 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4440 DMEMIT("%llu", ((highest
+ 1) *
4441 tc
->pool
->sectors_per_block
) - 1);
4446 case STATUSTYPE_TABLE
:
4448 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4449 (unsigned long) tc
->dev_id
);
4451 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4454 case STATUSTYPE_IMA
:
4466 static int thin_iterate_devices(struct dm_target
*ti
,
4467 iterate_devices_callout_fn fn
, void *data
)
4470 struct thin_c
*tc
= ti
->private;
4471 struct pool
*pool
= tc
->pool
;
4474 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4475 * we follow a more convoluted path through to the pool's target.
4478 return 0; /* nothing is bound */
4480 blocks
= pool
->ti
->len
;
4481 (void) sector_div(blocks
, pool
->sectors_per_block
);
4483 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4488 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4490 struct thin_c
*tc
= ti
->private;
4491 struct pool
*pool
= tc
->pool
;
4493 if (pool
->pf
.discard_enabled
) {
4494 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4495 limits
->max_hw_discard_sectors
= pool
->sectors_per_block
* BIO_PRISON_MAX_RANGE
;
4499 static struct target_type thin_target
= {
4501 .version
= {1, 23, 0},
4502 .module
= THIS_MODULE
,
4506 .end_io
= thin_endio
,
4507 .preresume
= thin_preresume
,
4508 .presuspend
= thin_presuspend
,
4509 .postsuspend
= thin_postsuspend
,
4510 .status
= thin_status
,
4511 .iterate_devices
= thin_iterate_devices
,
4512 .io_hints
= thin_io_hints
,
4515 /*----------------------------------------------------------------*/
4517 static int __init
dm_thin_init(void)
4523 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4524 if (!_new_mapping_cache
)
4527 r
= dm_register_target(&thin_target
);
4529 goto bad_new_mapping_cache
;
4531 r
= dm_register_target(&pool_target
);
4533 goto bad_thin_target
;
4538 dm_unregister_target(&thin_target
);
4539 bad_new_mapping_cache
:
4540 kmem_cache_destroy(_new_mapping_cache
);
4545 static void dm_thin_exit(void)
4547 dm_unregister_target(&thin_target
);
4548 dm_unregister_target(&pool_target
);
4550 kmem_cache_destroy(_new_mapping_cache
);
4555 module_init(dm_thin_init
);
4556 module_exit(dm_thin_exit
);
4558 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, 0644);
4559 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4561 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4562 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4563 MODULE_LICENSE("GPL");