Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / md / dm-thin.c
blobbf0f9dddd146ab0a24344906060c997c60d10bc4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2011-2012 Red Hat UK.
5 * This file is released under the GPL.
6 */
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
26 #define DM_MSG_PREFIX "thin"
29 * Tunable constants
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39 "A percentage of time allocated for copy on write");
42 * The block size of the device holding pool data must be
43 * between 64KB and 1GB.
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
49 * Device id is restricted to 24 bits.
51 #define MAX_DEV_ID ((1 << 24) - 1)
54 * How do we handle breaking sharing of data blocks?
55 * =================================================
57 * We use a standard copy-on-write btree to store the mappings for the
58 * devices (note I'm talking about copy-on-write of the metadata here, not
59 * the data). When you take an internal snapshot you clone the root node
60 * of the origin btree. After this there is no concept of an origin or a
61 * snapshot. They are just two device trees that happen to point to the
62 * same data blocks.
64 * When we get a write in we decide if it's to a shared data block using
65 * some timestamp magic. If it is, we have to break sharing.
67 * Let's say we write to a shared block in what was the origin. The
68 * steps are:
70 * i) plug io further to this physical block. (see bio_prison code).
72 * ii) quiesce any read io to that shared data block. Obviously
73 * including all devices that share this block. (see dm_deferred_set code)
75 * iii) copy the data block to a newly allocate block. This step can be
76 * missed out if the io covers the block. (schedule_copy).
78 * iv) insert the new mapping into the origin's btree
79 * (process_prepared_mapping). This act of inserting breaks some
80 * sharing of btree nodes between the two devices. Breaking sharing only
81 * effects the btree of that specific device. Btrees for the other
82 * devices that share the block never change. The btree for the origin
83 * device as it was after the last commit is untouched, ie. we're using
84 * persistent data structures in the functional programming sense.
86 * v) unplug io to this physical block, including the io that triggered
87 * the breaking of sharing.
89 * Steps (ii) and (iii) occur in parallel.
91 * The metadata _doesn't_ need to be committed before the io continues. We
92 * get away with this because the io is always written to a _new_ block.
93 * If there's a crash, then:
95 * - The origin mapping will point to the old origin block (the shared
96 * one). This will contain the data as it was before the io that triggered
97 * the breaking of sharing came in.
99 * - The snap mapping still points to the old block. As it would after
100 * the commit.
102 * The downside of this scheme is the timestamp magic isn't perfect, and
103 * will continue to think that data block in the snapshot device is shared
104 * even after the write to the origin has broken sharing. I suspect data
105 * blocks will typically be shared by many different devices, so we're
106 * breaking sharing n + 1 times, rather than n, where n is the number of
107 * devices that reference this data block. At the moment I think the
108 * benefits far, far outweigh the disadvantages.
111 /*----------------------------------------------------------------*/
114 * Key building.
116 enum lock_space {
117 VIRTUAL,
118 PHYSICAL
121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
124 key->virtual = (ls == VIRTUAL);
125 key->dev = dm_thin_dev_id(td);
126 key->block_begin = b;
127 key->block_end = e;
129 return dm_cell_key_has_valid_range(key);
132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133 struct dm_cell_key *key)
135 (void) build_key(td, PHYSICAL, b, b + 1llu, key);
138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139 struct dm_cell_key *key)
141 (void) build_key(td, VIRTUAL, b, b + 1llu, key);
144 /*----------------------------------------------------------------*/
146 #define THROTTLE_THRESHOLD (1 * HZ)
148 struct throttle {
149 struct rw_semaphore lock;
150 unsigned long threshold;
151 bool throttle_applied;
154 static void throttle_init(struct throttle *t)
156 init_rwsem(&t->lock);
157 t->throttle_applied = false;
160 static void throttle_work_start(struct throttle *t)
162 t->threshold = jiffies + THROTTLE_THRESHOLD;
165 static void throttle_work_update(struct throttle *t)
167 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168 down_write(&t->lock);
169 t->throttle_applied = true;
173 static void throttle_work_complete(struct throttle *t)
175 if (t->throttle_applied) {
176 t->throttle_applied = false;
177 up_write(&t->lock);
181 static void throttle_lock(struct throttle *t)
183 down_read(&t->lock);
186 static void throttle_unlock(struct throttle *t)
188 up_read(&t->lock);
191 /*----------------------------------------------------------------*/
194 * A pool device ties together a metadata device and a data device. It
195 * also provides the interface for creating and destroying internal
196 * devices.
198 struct dm_thin_new_mapping;
201 * The pool runs in various modes. Ordered in degraded order for comparisons.
203 enum pool_mode {
204 PM_WRITE, /* metadata may be changed */
205 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
208 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
210 PM_OUT_OF_METADATA_SPACE,
211 PM_READ_ONLY, /* metadata may not be changed */
213 PM_FAIL, /* all I/O fails */
216 struct pool_features {
217 enum pool_mode mode;
219 bool zero_new_blocks:1;
220 bool discard_enabled:1;
221 bool discard_passdown:1;
222 bool error_if_no_space:1;
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
230 #define CELL_SORT_ARRAY_SIZE 8192
232 struct pool {
233 struct list_head list;
234 struct dm_target *ti; /* Only set if a pool target is bound */
236 struct mapped_device *pool_md;
237 struct block_device *data_dev;
238 struct block_device *md_dev;
239 struct dm_pool_metadata *pmd;
241 dm_block_t low_water_blocks;
242 uint32_t sectors_per_block;
243 int sectors_per_block_shift;
245 struct pool_features pf;
246 bool low_water_triggered:1; /* A dm event has been sent */
247 bool suspended:1;
248 bool out_of_data_space:1;
250 struct dm_bio_prison *prison;
251 struct dm_kcopyd_client *copier;
253 struct work_struct worker;
254 struct workqueue_struct *wq;
255 struct throttle throttle;
256 struct delayed_work waker;
257 struct delayed_work no_space_timeout;
259 unsigned long last_commit_jiffies;
260 unsigned int ref_count;
262 spinlock_t lock;
263 struct bio_list deferred_flush_bios;
264 struct bio_list deferred_flush_completions;
265 struct list_head prepared_mappings;
266 struct list_head prepared_discards;
267 struct list_head prepared_discards_pt2;
268 struct list_head active_thins;
270 struct dm_deferred_set *shared_read_ds;
271 struct dm_deferred_set *all_io_ds;
273 struct dm_thin_new_mapping *next_mapping;
275 process_bio_fn process_bio;
276 process_bio_fn process_discard;
278 process_cell_fn process_cell;
279 process_cell_fn process_discard_cell;
281 process_mapping_fn process_prepared_mapping;
282 process_mapping_fn process_prepared_discard;
283 process_mapping_fn process_prepared_discard_pt2;
285 struct dm_bio_prison_cell **cell_sort_array;
287 mempool_t mapping_pool;
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
292 static enum pool_mode get_pool_mode(struct pool *pool)
294 return pool->pf.mode;
297 static void notify_of_pool_mode_change(struct pool *pool)
299 static const char *descs[] = {
300 "write",
301 "out-of-data-space",
302 "read-only",
303 "read-only",
304 "fail"
306 const char *extra_desc = NULL;
307 enum pool_mode mode = get_pool_mode(pool);
309 if (mode == PM_OUT_OF_DATA_SPACE) {
310 if (!pool->pf.error_if_no_space)
311 extra_desc = " (queue IO)";
312 else
313 extra_desc = " (error IO)";
316 dm_table_event(pool->ti->table);
317 DMINFO("%s: switching pool to %s%s mode",
318 dm_device_name(pool->pool_md),
319 descs[(int)mode], extra_desc ? : "");
323 * Target context for a pool.
325 struct pool_c {
326 struct dm_target *ti;
327 struct pool *pool;
328 struct dm_dev *data_dev;
329 struct dm_dev *metadata_dev;
331 dm_block_t low_water_blocks;
332 struct pool_features requested_pf; /* Features requested during table load */
333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
337 * Target context for a thin.
339 struct thin_c {
340 struct list_head list;
341 struct dm_dev *pool_dev;
342 struct dm_dev *origin_dev;
343 sector_t origin_size;
344 dm_thin_id dev_id;
346 struct pool *pool;
347 struct dm_thin_device *td;
348 struct mapped_device *thin_md;
350 bool requeue_mode:1;
351 spinlock_t lock;
352 struct list_head deferred_cells;
353 struct bio_list deferred_bio_list;
354 struct bio_list retry_on_resume_list;
355 struct rb_root sort_bio_list; /* sorted list of deferred bios */
358 * Ensures the thin is not destroyed until the worker has finished
359 * iterating the active_thins list.
361 refcount_t refcount;
362 struct completion can_destroy;
365 /*----------------------------------------------------------------*/
367 static bool block_size_is_power_of_two(struct pool *pool)
369 return pool->sectors_per_block_shift >= 0;
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
374 return block_size_is_power_of_two(pool) ?
375 (b << pool->sectors_per_block_shift) :
376 (b * pool->sectors_per_block);
379 /*----------------------------------------------------------------*/
381 struct discard_op {
382 struct thin_c *tc;
383 struct blk_plug plug;
384 struct bio *parent_bio;
385 struct bio *bio;
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
390 BUG_ON(!parent);
392 op->tc = tc;
393 blk_start_plug(&op->plug);
394 op->parent_bio = parent;
395 op->bio = NULL;
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
400 struct thin_c *tc = op->tc;
401 sector_t s = block_to_sectors(tc->pool, data_b);
402 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
404 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
407 static void end_discard(struct discard_op *op, int r)
409 if (op->bio) {
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
414 bio_chain(op->bio, op->parent_bio);
415 op->bio->bi_opf = REQ_OP_DISCARD;
416 submit_bio(op->bio);
419 blk_finish_plug(&op->plug);
422 * Even if r is set, there could be sub discards in flight that we
423 * need to wait for.
425 if (r && !op->parent_bio->bi_status)
426 op->parent_bio->bi_status = errno_to_blk_status(r);
427 bio_endio(op->parent_bio);
430 /*----------------------------------------------------------------*/
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
436 static void wake_worker(struct pool *pool)
438 queue_work(pool->wq, &pool->worker);
441 /*----------------------------------------------------------------*/
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 struct dm_bio_prison_cell **cell_result)
446 int r;
447 struct dm_bio_prison_cell *cell_prealloc;
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 if (r) {
458 * We reused an old cell; we can get rid of
459 * the new one.
461 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
464 return r;
467 static void cell_release(struct pool *pool,
468 struct dm_bio_prison_cell *cell,
469 struct bio_list *bios)
471 dm_cell_release(pool->prison, cell, bios);
472 dm_bio_prison_free_cell(pool->prison, cell);
475 static void cell_visit_release(struct pool *pool,
476 void (*fn)(void *, struct dm_bio_prison_cell *),
477 void *context,
478 struct dm_bio_prison_cell *cell)
480 dm_cell_visit_release(pool->prison, fn, context, cell);
481 dm_bio_prison_free_cell(pool->prison, cell);
484 static void cell_release_no_holder(struct pool *pool,
485 struct dm_bio_prison_cell *cell,
486 struct bio_list *bios)
488 dm_cell_release_no_holder(pool->prison, cell, bios);
489 dm_bio_prison_free_cell(pool->prison, cell);
492 static void cell_error_with_code(struct pool *pool,
493 struct dm_bio_prison_cell *cell, blk_status_t error_code)
495 dm_cell_error(pool->prison, cell, error_code);
496 dm_bio_prison_free_cell(pool->prison, cell);
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
501 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
506 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
511 cell_error_with_code(pool, cell, 0);
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
516 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
519 /*----------------------------------------------------------------*/
522 * A global list of pools that uses a struct mapped_device as a key.
524 static struct dm_thin_pool_table {
525 struct mutex mutex;
526 struct list_head pools;
527 } dm_thin_pool_table;
529 static void pool_table_init(void)
531 mutex_init(&dm_thin_pool_table.mutex);
532 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
535 static void pool_table_exit(void)
537 mutex_destroy(&dm_thin_pool_table.mutex);
540 static void __pool_table_insert(struct pool *pool)
542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543 list_add(&pool->list, &dm_thin_pool_table.pools);
546 static void __pool_table_remove(struct pool *pool)
548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549 list_del(&pool->list);
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
554 struct pool *pool = NULL, *tmp;
556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
558 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559 if (tmp->pool_md == md) {
560 pool = tmp;
561 break;
565 return pool;
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
570 struct pool *pool = NULL, *tmp;
572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
574 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575 if (tmp->md_dev == md_dev) {
576 pool = tmp;
577 break;
581 return pool;
584 /*----------------------------------------------------------------*/
586 struct dm_thin_endio_hook {
587 struct thin_c *tc;
588 struct dm_deferred_entry *shared_read_entry;
589 struct dm_deferred_entry *all_io_entry;
590 struct dm_thin_new_mapping *overwrite_mapping;
591 struct rb_node rb_node;
592 struct dm_bio_prison_cell *cell;
595 static void error_bio_list(struct bio_list *bios, blk_status_t error)
597 struct bio *bio;
599 while ((bio = bio_list_pop(bios))) {
600 bio->bi_status = error;
601 bio_endio(bio);
605 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
606 blk_status_t error)
608 struct bio_list bios;
610 bio_list_init(&bios);
612 spin_lock_irq(&tc->lock);
613 bio_list_merge_init(&bios, master);
614 spin_unlock_irq(&tc->lock);
616 error_bio_list(&bios, error);
619 static void requeue_deferred_cells(struct thin_c *tc)
621 struct pool *pool = tc->pool;
622 struct list_head cells;
623 struct dm_bio_prison_cell *cell, *tmp;
625 INIT_LIST_HEAD(&cells);
627 spin_lock_irq(&tc->lock);
628 list_splice_init(&tc->deferred_cells, &cells);
629 spin_unlock_irq(&tc->lock);
631 list_for_each_entry_safe(cell, tmp, &cells, user_list)
632 cell_requeue(pool, cell);
635 static void requeue_io(struct thin_c *tc)
637 struct bio_list bios;
639 bio_list_init(&bios);
641 spin_lock_irq(&tc->lock);
642 bio_list_merge_init(&bios, &tc->deferred_bio_list);
643 bio_list_merge_init(&bios, &tc->retry_on_resume_list);
644 spin_unlock_irq(&tc->lock);
646 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
647 requeue_deferred_cells(tc);
650 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
652 struct thin_c *tc;
654 rcu_read_lock();
655 list_for_each_entry_rcu(tc, &pool->active_thins, list)
656 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
657 rcu_read_unlock();
660 static void error_retry_list(struct pool *pool)
662 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
666 * This section of code contains the logic for processing a thin device's IO.
667 * Much of the code depends on pool object resources (lists, workqueues, etc)
668 * but most is exclusively called from the thin target rather than the thin-pool
669 * target.
672 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
674 struct pool *pool = tc->pool;
675 sector_t block_nr = bio->bi_iter.bi_sector;
677 if (block_size_is_power_of_two(pool))
678 block_nr >>= pool->sectors_per_block_shift;
679 else
680 (void) sector_div(block_nr, pool->sectors_per_block);
682 return block_nr;
686 * Returns the _complete_ blocks that this bio covers.
688 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
689 dm_block_t *begin, dm_block_t *end)
691 struct pool *pool = tc->pool;
692 sector_t b = bio->bi_iter.bi_sector;
693 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
695 b += pool->sectors_per_block - 1ull; /* so we round up */
697 if (block_size_is_power_of_two(pool)) {
698 b >>= pool->sectors_per_block_shift;
699 e >>= pool->sectors_per_block_shift;
700 } else {
701 (void) sector_div(b, pool->sectors_per_block);
702 (void) sector_div(e, pool->sectors_per_block);
705 if (e < b) {
706 /* Can happen if the bio is within a single block. */
707 e = b;
710 *begin = b;
711 *end = e;
714 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
716 struct pool *pool = tc->pool;
717 sector_t bi_sector = bio->bi_iter.bi_sector;
719 bio_set_dev(bio, tc->pool_dev->bdev);
720 if (block_size_is_power_of_two(pool)) {
721 bio->bi_iter.bi_sector =
722 (block << pool->sectors_per_block_shift) |
723 (bi_sector & (pool->sectors_per_block - 1));
724 } else {
725 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
726 sector_div(bi_sector, pool->sectors_per_block);
730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
732 bio_set_dev(bio, tc->origin_dev->bdev);
735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
737 return op_is_flush(bio->bi_opf) &&
738 dm_thin_changed_this_transaction(tc->td);
741 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
743 struct dm_thin_endio_hook *h;
745 if (bio_op(bio) == REQ_OP_DISCARD)
746 return;
748 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
749 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
752 static void issue(struct thin_c *tc, struct bio *bio)
754 struct pool *pool = tc->pool;
756 if (!bio_triggers_commit(tc, bio)) {
757 dm_submit_bio_remap(bio, NULL);
758 return;
762 * Complete bio with an error if earlier I/O caused changes to
763 * the metadata that can't be committed e.g, due to I/O errors
764 * on the metadata device.
766 if (dm_thin_aborted_changes(tc->td)) {
767 bio_io_error(bio);
768 return;
772 * Batch together any bios that trigger commits and then issue a
773 * single commit for them in process_deferred_bios().
775 spin_lock_irq(&pool->lock);
776 bio_list_add(&pool->deferred_flush_bios, bio);
777 spin_unlock_irq(&pool->lock);
780 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
782 remap_to_origin(tc, bio);
783 issue(tc, bio);
786 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
787 dm_block_t block)
789 remap(tc, bio, block);
790 issue(tc, bio);
793 /*----------------------------------------------------------------*/
796 * Bio endio functions.
798 struct dm_thin_new_mapping {
799 struct list_head list;
801 bool pass_discard:1;
802 bool maybe_shared:1;
805 * Track quiescing, copying and zeroing preparation actions. When this
806 * counter hits zero the block is prepared and can be inserted into the
807 * btree.
809 atomic_t prepare_actions;
811 blk_status_t status;
812 struct thin_c *tc;
813 dm_block_t virt_begin, virt_end;
814 dm_block_t data_block;
815 struct dm_bio_prison_cell *cell;
818 * If the bio covers the whole area of a block then we can avoid
819 * zeroing or copying. Instead this bio is hooked. The bio will
820 * still be in the cell, so care has to be taken to avoid issuing
821 * the bio twice.
823 struct bio *bio;
824 bio_end_io_t *saved_bi_end_io;
827 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
829 struct pool *pool = m->tc->pool;
831 if (atomic_dec_and_test(&m->prepare_actions)) {
832 list_add_tail(&m->list, &pool->prepared_mappings);
833 wake_worker(pool);
837 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
839 unsigned long flags;
840 struct pool *pool = m->tc->pool;
842 spin_lock_irqsave(&pool->lock, flags);
843 __complete_mapping_preparation(m);
844 spin_unlock_irqrestore(&pool->lock, flags);
847 static void copy_complete(int read_err, unsigned long write_err, void *context)
849 struct dm_thin_new_mapping *m = context;
851 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
852 complete_mapping_preparation(m);
855 static void overwrite_endio(struct bio *bio)
857 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
858 struct dm_thin_new_mapping *m = h->overwrite_mapping;
860 bio->bi_end_io = m->saved_bi_end_io;
862 m->status = bio->bi_status;
863 complete_mapping_preparation(m);
866 /*----------------------------------------------------------------*/
869 * Workqueue.
873 * Prepared mapping jobs.
877 * This sends the bios in the cell, except the original holder, back
878 * to the deferred_bios list.
880 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
882 struct pool *pool = tc->pool;
883 unsigned long flags;
884 struct bio_list bios;
886 bio_list_init(&bios);
887 cell_release_no_holder(pool, cell, &bios);
889 if (!bio_list_empty(&bios)) {
890 spin_lock_irqsave(&tc->lock, flags);
891 bio_list_merge(&tc->deferred_bio_list, &bios);
892 spin_unlock_irqrestore(&tc->lock, flags);
893 wake_worker(pool);
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
899 struct remap_info {
900 struct thin_c *tc;
901 struct bio_list defer_bios;
902 struct bio_list issue_bios;
905 static void __inc_remap_and_issue_cell(void *context,
906 struct dm_bio_prison_cell *cell)
908 struct remap_info *info = context;
909 struct bio *bio;
911 while ((bio = bio_list_pop(&cell->bios))) {
912 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913 bio_list_add(&info->defer_bios, bio);
914 else {
915 inc_all_io_entry(info->tc->pool, bio);
918 * We can't issue the bios with the bio prison lock
919 * held, so we add them to a list to issue on
920 * return from this function.
922 bio_list_add(&info->issue_bios, bio);
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928 struct dm_bio_prison_cell *cell,
929 dm_block_t block)
931 struct bio *bio;
932 struct remap_info info;
934 info.tc = tc;
935 bio_list_init(&info.defer_bios);
936 bio_list_init(&info.issue_bios);
939 * We have to be careful to inc any bios we're about to issue
940 * before the cell is released, and avoid a race with new bios
941 * being added to the cell.
943 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944 &info, cell);
946 while ((bio = bio_list_pop(&info.defer_bios)))
947 thin_defer_bio(tc, bio);
949 while ((bio = bio_list_pop(&info.issue_bios)))
950 remap_and_issue(info.tc, bio, block);
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
955 cell_error(m->tc->pool, m->cell);
956 list_del(&m->list);
957 mempool_free(m, &m->tc->pool->mapping_pool);
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
962 struct pool *pool = tc->pool;
965 * If the bio has the REQ_FUA flag set we must commit the metadata
966 * before signaling its completion.
968 if (!bio_triggers_commit(tc, bio)) {
969 bio_endio(bio);
970 return;
974 * Complete bio with an error if earlier I/O caused changes to the
975 * metadata that can't be committed, e.g, due to I/O errors on the
976 * metadata device.
978 if (dm_thin_aborted_changes(tc->td)) {
979 bio_io_error(bio);
980 return;
984 * Batch together any bios that trigger commits and then issue a
985 * single commit for them in process_deferred_bios().
987 spin_lock_irq(&pool->lock);
988 bio_list_add(&pool->deferred_flush_completions, bio);
989 spin_unlock_irq(&pool->lock);
992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994 struct thin_c *tc = m->tc;
995 struct pool *pool = tc->pool;
996 struct bio *bio = m->bio;
997 int r;
999 if (m->status) {
1000 cell_error(pool, m->cell);
1001 goto out;
1005 * Commit the prepared block into the mapping btree.
1006 * Any I/O for this block arriving after this point will get
1007 * remapped to it directly.
1009 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010 if (r) {
1011 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012 cell_error(pool, m->cell);
1013 goto out;
1017 * Release any bios held while the block was being provisioned.
1018 * If we are processing a write bio that completely covers the block,
1019 * we already processed it so can ignore it now when processing
1020 * the bios in the cell.
1022 if (bio) {
1023 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024 complete_overwrite_bio(tc, bio);
1025 } else {
1026 inc_all_io_entry(tc->pool, m->cell->holder);
1027 remap_and_issue(tc, m->cell->holder, m->data_block);
1028 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1031 out:
1032 list_del(&m->list);
1033 mempool_free(m, &pool->mapping_pool);
1036 /*----------------------------------------------------------------*/
1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040 struct thin_c *tc = m->tc;
1042 if (m->cell)
1043 cell_defer_no_holder(tc, m->cell);
1044 mempool_free(m, &tc->pool->mapping_pool);
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1049 bio_io_error(m->bio);
1050 free_discard_mapping(m);
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1055 bio_endio(m->bio);
1056 free_discard_mapping(m);
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1061 int r;
1062 struct thin_c *tc = m->tc;
1064 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 if (r) {
1066 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 bio_io_error(m->bio);
1068 } else
1069 bio_endio(m->bio);
1071 cell_defer_no_holder(tc, m->cell);
1072 mempool_free(m, &tc->pool->mapping_pool);
1075 /*----------------------------------------------------------------*/
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 struct bio *discard_parent)
1081 * We've already unmapped this range of blocks, but before we
1082 * passdown we have to check that these blocks are now unused.
1084 int r = 0;
1085 bool shared = true;
1086 struct thin_c *tc = m->tc;
1087 struct pool *pool = tc->pool;
1088 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 struct discard_op op;
1091 begin_discard(&op, tc, discard_parent);
1092 while (b != end) {
1093 /* find start of unmapped run */
1094 for (; b < end; b++) {
1095 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 if (r)
1097 goto out;
1099 if (!shared)
1100 break;
1103 if (b == end)
1104 break;
1106 /* find end of run */
1107 for (e = b + 1; e != end; e++) {
1108 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 if (r)
1110 goto out;
1112 if (shared)
1113 break;
1116 r = issue_discard(&op, b, e);
1117 if (r)
1118 goto out;
1120 b = e;
1122 out:
1123 end_discard(&op, r);
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1128 unsigned long flags;
1129 struct pool *pool = m->tc->pool;
1131 spin_lock_irqsave(&pool->lock, flags);
1132 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133 spin_unlock_irqrestore(&pool->lock, flags);
1134 wake_worker(pool);
1137 static void passdown_endio(struct bio *bio)
1140 * It doesn't matter if the passdown discard failed, we still want
1141 * to unmap (we ignore err).
1143 queue_passdown_pt2(bio->bi_private);
1144 bio_put(bio);
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1149 int r;
1150 struct thin_c *tc = m->tc;
1151 struct pool *pool = tc->pool;
1152 struct bio *discard_parent;
1153 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1156 * Only this thread allocates blocks, so we can be sure that the
1157 * newly unmapped blocks will not be allocated before the end of
1158 * the function.
1160 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161 if (r) {
1162 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163 bio_io_error(m->bio);
1164 cell_defer_no_holder(tc, m->cell);
1165 mempool_free(m, &pool->mapping_pool);
1166 return;
1170 * Increment the unmapped blocks. This prevents a race between the
1171 * passdown io and reallocation of freed blocks.
1173 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174 if (r) {
1175 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176 bio_io_error(m->bio);
1177 cell_defer_no_holder(tc, m->cell);
1178 mempool_free(m, &pool->mapping_pool);
1179 return;
1182 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1183 discard_parent->bi_end_io = passdown_endio;
1184 discard_parent->bi_private = m;
1185 if (m->maybe_shared)
1186 passdown_double_checking_shared_status(m, discard_parent);
1187 else {
1188 struct discard_op op;
1190 begin_discard(&op, tc, discard_parent);
1191 r = issue_discard(&op, m->data_block, data_end);
1192 end_discard(&op, r);
1196 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1198 int r;
1199 struct thin_c *tc = m->tc;
1200 struct pool *pool = tc->pool;
1203 * The passdown has completed, so now we can decrement all those
1204 * unmapped blocks.
1206 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1207 m->data_block + (m->virt_end - m->virt_begin));
1208 if (r) {
1209 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1210 bio_io_error(m->bio);
1211 } else
1212 bio_endio(m->bio);
1214 cell_defer_no_holder(tc, m->cell);
1215 mempool_free(m, &pool->mapping_pool);
1218 static void process_prepared(struct pool *pool, struct list_head *head,
1219 process_mapping_fn *fn)
1221 struct list_head maps;
1222 struct dm_thin_new_mapping *m, *tmp;
1224 INIT_LIST_HEAD(&maps);
1225 spin_lock_irq(&pool->lock);
1226 list_splice_init(head, &maps);
1227 spin_unlock_irq(&pool->lock);
1229 list_for_each_entry_safe(m, tmp, &maps, list)
1230 (*fn)(m);
1234 * Deferred bio jobs.
1236 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1238 return bio->bi_iter.bi_size ==
1239 (pool->sectors_per_block << SECTOR_SHIFT);
1242 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1244 return (bio_data_dir(bio) == WRITE) &&
1245 io_overlaps_block(pool, bio);
1248 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1249 bio_end_io_t *fn)
1251 *save = bio->bi_end_io;
1252 bio->bi_end_io = fn;
1255 static int ensure_next_mapping(struct pool *pool)
1257 if (pool->next_mapping)
1258 return 0;
1260 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1262 return pool->next_mapping ? 0 : -ENOMEM;
1265 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1267 struct dm_thin_new_mapping *m = pool->next_mapping;
1269 BUG_ON(!pool->next_mapping);
1271 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1272 INIT_LIST_HEAD(&m->list);
1273 m->bio = NULL;
1275 pool->next_mapping = NULL;
1277 return m;
1280 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1281 sector_t begin, sector_t end)
1283 struct dm_io_region to;
1285 to.bdev = tc->pool_dev->bdev;
1286 to.sector = begin;
1287 to.count = end - begin;
1289 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1292 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1293 dm_block_t data_begin,
1294 struct dm_thin_new_mapping *m)
1296 struct pool *pool = tc->pool;
1297 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1299 h->overwrite_mapping = m;
1300 m->bio = bio;
1301 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1302 inc_all_io_entry(pool, bio);
1303 remap_and_issue(tc, bio, data_begin);
1307 * A partial copy also needs to zero the uncopied region.
1309 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1310 struct dm_dev *origin, dm_block_t data_origin,
1311 dm_block_t data_dest,
1312 struct dm_bio_prison_cell *cell, struct bio *bio,
1313 sector_t len)
1315 struct pool *pool = tc->pool;
1316 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1318 m->tc = tc;
1319 m->virt_begin = virt_block;
1320 m->virt_end = virt_block + 1u;
1321 m->data_block = data_dest;
1322 m->cell = cell;
1325 * quiesce action + copy action + an extra reference held for the
1326 * duration of this function (we may need to inc later for a
1327 * partial zero).
1329 atomic_set(&m->prepare_actions, 3);
1331 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1332 complete_mapping_preparation(m); /* already quiesced */
1335 * IO to pool_dev remaps to the pool target's data_dev.
1337 * If the whole block of data is being overwritten, we can issue the
1338 * bio immediately. Otherwise we use kcopyd to clone the data first.
1340 if (io_overwrites_block(pool, bio))
1341 remap_and_issue_overwrite(tc, bio, data_dest, m);
1342 else {
1343 struct dm_io_region from, to;
1345 from.bdev = origin->bdev;
1346 from.sector = data_origin * pool->sectors_per_block;
1347 from.count = len;
1349 to.bdev = tc->pool_dev->bdev;
1350 to.sector = data_dest * pool->sectors_per_block;
1351 to.count = len;
1353 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1354 0, copy_complete, m);
1357 * Do we need to zero a tail region?
1359 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1360 atomic_inc(&m->prepare_actions);
1361 ll_zero(tc, m,
1362 data_dest * pool->sectors_per_block + len,
1363 (data_dest + 1) * pool->sectors_per_block);
1367 complete_mapping_preparation(m); /* drop our ref */
1370 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1371 dm_block_t data_origin, dm_block_t data_dest,
1372 struct dm_bio_prison_cell *cell, struct bio *bio)
1374 schedule_copy(tc, virt_block, tc->pool_dev,
1375 data_origin, data_dest, cell, bio,
1376 tc->pool->sectors_per_block);
1379 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1380 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1381 struct bio *bio)
1383 struct pool *pool = tc->pool;
1384 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1386 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1387 m->tc = tc;
1388 m->virt_begin = virt_block;
1389 m->virt_end = virt_block + 1u;
1390 m->data_block = data_block;
1391 m->cell = cell;
1394 * If the whole block of data is being overwritten or we are not
1395 * zeroing pre-existing data, we can issue the bio immediately.
1396 * Otherwise we use kcopyd to zero the data first.
1398 if (pool->pf.zero_new_blocks) {
1399 if (io_overwrites_block(pool, bio))
1400 remap_and_issue_overwrite(tc, bio, data_block, m);
1401 else {
1402 ll_zero(tc, m, data_block * pool->sectors_per_block,
1403 (data_block + 1) * pool->sectors_per_block);
1405 } else
1406 process_prepared_mapping(m);
1409 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1410 dm_block_t data_dest,
1411 struct dm_bio_prison_cell *cell, struct bio *bio)
1413 struct pool *pool = tc->pool;
1414 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1415 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1417 if (virt_block_end <= tc->origin_size) {
1418 schedule_copy(tc, virt_block, tc->origin_dev,
1419 virt_block, data_dest, cell, bio,
1420 pool->sectors_per_block);
1422 } else if (virt_block_begin < tc->origin_size) {
1423 schedule_copy(tc, virt_block, tc->origin_dev,
1424 virt_block, data_dest, cell, bio,
1425 tc->origin_size - virt_block_begin);
1427 } else
1428 schedule_zero(tc, virt_block, data_dest, cell, bio);
1431 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1433 static void requeue_bios(struct pool *pool);
1435 static bool is_read_only_pool_mode(enum pool_mode mode)
1437 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1440 static bool is_read_only(struct pool *pool)
1442 return is_read_only_pool_mode(get_pool_mode(pool));
1445 static void check_for_metadata_space(struct pool *pool)
1447 int r;
1448 const char *ooms_reason = NULL;
1449 dm_block_t nr_free;
1451 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1452 if (r)
1453 ooms_reason = "Could not get free metadata blocks";
1454 else if (!nr_free)
1455 ooms_reason = "No free metadata blocks";
1457 if (ooms_reason && !is_read_only(pool)) {
1458 DMERR("%s", ooms_reason);
1459 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1463 static void check_for_data_space(struct pool *pool)
1465 int r;
1466 dm_block_t nr_free;
1468 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1469 return;
1471 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1472 if (r)
1473 return;
1475 if (nr_free) {
1476 set_pool_mode(pool, PM_WRITE);
1477 requeue_bios(pool);
1482 * A non-zero return indicates read_only or fail_io mode.
1483 * Many callers don't care about the return value.
1485 static int commit(struct pool *pool)
1487 int r;
1489 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1490 return -EINVAL;
1492 r = dm_pool_commit_metadata(pool->pmd);
1493 if (r)
1494 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1495 else {
1496 check_for_metadata_space(pool);
1497 check_for_data_space(pool);
1500 return r;
1503 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1505 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1506 DMWARN("%s: reached low water mark for data device: sending event.",
1507 dm_device_name(pool->pool_md));
1508 spin_lock_irq(&pool->lock);
1509 pool->low_water_triggered = true;
1510 spin_unlock_irq(&pool->lock);
1511 dm_table_event(pool->ti->table);
1515 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1517 int r;
1518 dm_block_t free_blocks;
1519 struct pool *pool = tc->pool;
1521 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1522 return -EINVAL;
1524 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1525 if (r) {
1526 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1527 return r;
1530 check_low_water_mark(pool, free_blocks);
1532 if (!free_blocks) {
1534 * Try to commit to see if that will free up some
1535 * more space.
1537 r = commit(pool);
1538 if (r)
1539 return r;
1541 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1542 if (r) {
1543 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1544 return r;
1547 if (!free_blocks) {
1548 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1549 return -ENOSPC;
1553 r = dm_pool_alloc_data_block(pool->pmd, result);
1554 if (r) {
1555 if (r == -ENOSPC)
1556 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1557 else
1558 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1559 return r;
1562 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1563 if (r) {
1564 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1565 return r;
1568 if (!free_blocks) {
1569 /* Let's commit before we use up the metadata reserve. */
1570 r = commit(pool);
1571 if (r)
1572 return r;
1575 return 0;
1579 * If we have run out of space, queue bios until the device is
1580 * resumed, presumably after having been reloaded with more space.
1582 static void retry_on_resume(struct bio *bio)
1584 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1585 struct thin_c *tc = h->tc;
1587 spin_lock_irq(&tc->lock);
1588 bio_list_add(&tc->retry_on_resume_list, bio);
1589 spin_unlock_irq(&tc->lock);
1592 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1594 enum pool_mode m = get_pool_mode(pool);
1596 switch (m) {
1597 case PM_WRITE:
1598 /* Shouldn't get here */
1599 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1600 return BLK_STS_IOERR;
1602 case PM_OUT_OF_DATA_SPACE:
1603 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1605 case PM_OUT_OF_METADATA_SPACE:
1606 case PM_READ_ONLY:
1607 case PM_FAIL:
1608 return BLK_STS_IOERR;
1609 default:
1610 /* Shouldn't get here */
1611 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1612 return BLK_STS_IOERR;
1616 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1618 blk_status_t error = should_error_unserviceable_bio(pool);
1620 if (error) {
1621 bio->bi_status = error;
1622 bio_endio(bio);
1623 } else
1624 retry_on_resume(bio);
1627 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1629 struct bio *bio;
1630 struct bio_list bios;
1631 blk_status_t error;
1633 error = should_error_unserviceable_bio(pool);
1634 if (error) {
1635 cell_error_with_code(pool, cell, error);
1636 return;
1639 bio_list_init(&bios);
1640 cell_release(pool, cell, &bios);
1642 while ((bio = bio_list_pop(&bios)))
1643 retry_on_resume(bio);
1646 static void process_discard_cell_no_passdown(struct thin_c *tc,
1647 struct dm_bio_prison_cell *virt_cell)
1649 struct pool *pool = tc->pool;
1650 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1653 * We don't need to lock the data blocks, since there's no
1654 * passdown. We only lock data blocks for allocation and breaking sharing.
1656 m->tc = tc;
1657 m->virt_begin = virt_cell->key.block_begin;
1658 m->virt_end = virt_cell->key.block_end;
1659 m->cell = virt_cell;
1660 m->bio = virt_cell->holder;
1662 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1663 pool->process_prepared_discard(m);
1666 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1667 struct bio *bio)
1669 struct pool *pool = tc->pool;
1671 int r;
1672 bool maybe_shared;
1673 struct dm_cell_key data_key;
1674 struct dm_bio_prison_cell *data_cell;
1675 struct dm_thin_new_mapping *m;
1676 dm_block_t virt_begin, virt_end, data_begin, data_end;
1677 dm_block_t len, next_boundary;
1679 while (begin != end) {
1680 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1681 &data_begin, &maybe_shared);
1682 if (r) {
1684 * Silently fail, letting any mappings we've
1685 * created complete.
1687 break;
1690 data_end = data_begin + (virt_end - virt_begin);
1693 * Make sure the data region obeys the bio prison restrictions.
1695 while (data_begin < data_end) {
1696 r = ensure_next_mapping(pool);
1697 if (r)
1698 return; /* we did our best */
1700 next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1701 << BIO_PRISON_MAX_RANGE_SHIFT;
1702 len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1704 /* This key is certainly within range given the above splitting */
1705 (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1706 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1707 /* contention, we'll give up with this range */
1708 data_begin += len;
1709 continue;
1713 * IO may still be going to the destination block. We must
1714 * quiesce before we can do the removal.
1716 m = get_next_mapping(pool);
1717 m->tc = tc;
1718 m->maybe_shared = maybe_shared;
1719 m->virt_begin = virt_begin;
1720 m->virt_end = virt_begin + len;
1721 m->data_block = data_begin;
1722 m->cell = data_cell;
1723 m->bio = bio;
1726 * The parent bio must not complete before sub discard bios are
1727 * chained to it (see end_discard's bio_chain)!
1729 * This per-mapping bi_remaining increment is paired with
1730 * the implicit decrement that occurs via bio_endio() in
1731 * end_discard().
1733 bio_inc_remaining(bio);
1734 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1735 pool->process_prepared_discard(m);
1737 virt_begin += len;
1738 data_begin += len;
1741 begin = virt_end;
1745 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1747 struct bio *bio = virt_cell->holder;
1748 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1751 * The virt_cell will only get freed once the origin bio completes.
1752 * This means it will remain locked while all the individual
1753 * passdown bios are in flight.
1755 h->cell = virt_cell;
1756 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1759 * We complete the bio now, knowing that the bi_remaining field
1760 * will prevent completion until the sub range discards have
1761 * completed.
1763 bio_endio(bio);
1766 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1768 dm_block_t begin, end;
1769 struct dm_cell_key virt_key;
1770 struct dm_bio_prison_cell *virt_cell;
1772 get_bio_block_range(tc, bio, &begin, &end);
1773 if (begin == end) {
1775 * The discard covers less than a block.
1777 bio_endio(bio);
1778 return;
1781 if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1782 DMERR_LIMIT("Discard doesn't respect bio prison limits");
1783 bio_endio(bio);
1784 return;
1787 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1789 * Potential starvation issue: We're relying on the
1790 * fs/application being well behaved, and not trying to
1791 * send IO to a region at the same time as discarding it.
1792 * If they do this persistently then it's possible this
1793 * cell will never be granted.
1795 return;
1798 tc->pool->process_discard_cell(tc, virt_cell);
1801 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1802 struct dm_cell_key *key,
1803 struct dm_thin_lookup_result *lookup_result,
1804 struct dm_bio_prison_cell *cell)
1806 int r;
1807 dm_block_t data_block;
1808 struct pool *pool = tc->pool;
1810 r = alloc_data_block(tc, &data_block);
1811 switch (r) {
1812 case 0:
1813 schedule_internal_copy(tc, block, lookup_result->block,
1814 data_block, cell, bio);
1815 break;
1817 case -ENOSPC:
1818 retry_bios_on_resume(pool, cell);
1819 break;
1821 default:
1822 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1823 __func__, r);
1824 cell_error(pool, cell);
1825 break;
1829 static void __remap_and_issue_shared_cell(void *context,
1830 struct dm_bio_prison_cell *cell)
1832 struct remap_info *info = context;
1833 struct bio *bio;
1835 while ((bio = bio_list_pop(&cell->bios))) {
1836 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1837 bio_op(bio) == REQ_OP_DISCARD)
1838 bio_list_add(&info->defer_bios, bio);
1839 else {
1840 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1842 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1843 inc_all_io_entry(info->tc->pool, bio);
1844 bio_list_add(&info->issue_bios, bio);
1849 static void remap_and_issue_shared_cell(struct thin_c *tc,
1850 struct dm_bio_prison_cell *cell,
1851 dm_block_t block)
1853 struct bio *bio;
1854 struct remap_info info;
1856 info.tc = tc;
1857 bio_list_init(&info.defer_bios);
1858 bio_list_init(&info.issue_bios);
1860 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1861 &info, cell);
1863 while ((bio = bio_list_pop(&info.defer_bios)))
1864 thin_defer_bio(tc, bio);
1866 while ((bio = bio_list_pop(&info.issue_bios)))
1867 remap_and_issue(tc, bio, block);
1870 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1871 dm_block_t block,
1872 struct dm_thin_lookup_result *lookup_result,
1873 struct dm_bio_prison_cell *virt_cell)
1875 struct dm_bio_prison_cell *data_cell;
1876 struct pool *pool = tc->pool;
1877 struct dm_cell_key key;
1880 * If cell is already occupied, then sharing is already in the process
1881 * of being broken so we have nothing further to do here.
1883 build_data_key(tc->td, lookup_result->block, &key);
1884 if (bio_detain(pool, &key, bio, &data_cell)) {
1885 cell_defer_no_holder(tc, virt_cell);
1886 return;
1889 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1890 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1891 cell_defer_no_holder(tc, virt_cell);
1892 } else {
1893 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1895 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1896 inc_all_io_entry(pool, bio);
1897 remap_and_issue(tc, bio, lookup_result->block);
1899 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1900 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1904 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1905 struct dm_bio_prison_cell *cell)
1907 int r;
1908 dm_block_t data_block;
1909 struct pool *pool = tc->pool;
1912 * Remap empty bios (flushes) immediately, without provisioning.
1914 if (!bio->bi_iter.bi_size) {
1915 inc_all_io_entry(pool, bio);
1916 cell_defer_no_holder(tc, cell);
1918 remap_and_issue(tc, bio, 0);
1919 return;
1923 * Fill read bios with zeroes and complete them immediately.
1925 if (bio_data_dir(bio) == READ) {
1926 zero_fill_bio(bio);
1927 cell_defer_no_holder(tc, cell);
1928 bio_endio(bio);
1929 return;
1932 r = alloc_data_block(tc, &data_block);
1933 switch (r) {
1934 case 0:
1935 if (tc->origin_dev)
1936 schedule_external_copy(tc, block, data_block, cell, bio);
1937 else
1938 schedule_zero(tc, block, data_block, cell, bio);
1939 break;
1941 case -ENOSPC:
1942 retry_bios_on_resume(pool, cell);
1943 break;
1945 default:
1946 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1947 __func__, r);
1948 cell_error(pool, cell);
1949 break;
1953 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1955 int r;
1956 struct pool *pool = tc->pool;
1957 struct bio *bio = cell->holder;
1958 dm_block_t block = get_bio_block(tc, bio);
1959 struct dm_thin_lookup_result lookup_result;
1961 if (tc->requeue_mode) {
1962 cell_requeue(pool, cell);
1963 return;
1966 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1967 switch (r) {
1968 case 0:
1969 if (lookup_result.shared)
1970 process_shared_bio(tc, bio, block, &lookup_result, cell);
1971 else {
1972 inc_all_io_entry(pool, bio);
1973 remap_and_issue(tc, bio, lookup_result.block);
1974 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1976 break;
1978 case -ENODATA:
1979 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1980 inc_all_io_entry(pool, bio);
1981 cell_defer_no_holder(tc, cell);
1983 if (bio_end_sector(bio) <= tc->origin_size)
1984 remap_to_origin_and_issue(tc, bio);
1986 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1987 zero_fill_bio(bio);
1988 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1989 remap_to_origin_and_issue(tc, bio);
1991 } else {
1992 zero_fill_bio(bio);
1993 bio_endio(bio);
1995 } else
1996 provision_block(tc, bio, block, cell);
1997 break;
1999 default:
2000 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2001 __func__, r);
2002 cell_defer_no_holder(tc, cell);
2003 bio_io_error(bio);
2004 break;
2008 static void process_bio(struct thin_c *tc, struct bio *bio)
2010 struct pool *pool = tc->pool;
2011 dm_block_t block = get_bio_block(tc, bio);
2012 struct dm_bio_prison_cell *cell;
2013 struct dm_cell_key key;
2016 * If cell is already occupied, then the block is already
2017 * being provisioned so we have nothing further to do here.
2019 build_virtual_key(tc->td, block, &key);
2020 if (bio_detain(pool, &key, bio, &cell))
2021 return;
2023 process_cell(tc, cell);
2026 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2027 struct dm_bio_prison_cell *cell)
2029 int r;
2030 int rw = bio_data_dir(bio);
2031 dm_block_t block = get_bio_block(tc, bio);
2032 struct dm_thin_lookup_result lookup_result;
2034 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2035 switch (r) {
2036 case 0:
2037 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2038 handle_unserviceable_bio(tc->pool, bio);
2039 if (cell)
2040 cell_defer_no_holder(tc, cell);
2041 } else {
2042 inc_all_io_entry(tc->pool, bio);
2043 remap_and_issue(tc, bio, lookup_result.block);
2044 if (cell)
2045 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2047 break;
2049 case -ENODATA:
2050 if (cell)
2051 cell_defer_no_holder(tc, cell);
2052 if (rw != READ) {
2053 handle_unserviceable_bio(tc->pool, bio);
2054 break;
2057 if (tc->origin_dev) {
2058 inc_all_io_entry(tc->pool, bio);
2059 remap_to_origin_and_issue(tc, bio);
2060 break;
2063 zero_fill_bio(bio);
2064 bio_endio(bio);
2065 break;
2067 default:
2068 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2069 __func__, r);
2070 if (cell)
2071 cell_defer_no_holder(tc, cell);
2072 bio_io_error(bio);
2073 break;
2077 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2079 __process_bio_read_only(tc, bio, NULL);
2082 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2084 __process_bio_read_only(tc, cell->holder, cell);
2087 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2089 bio_endio(bio);
2092 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2094 bio_io_error(bio);
2097 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2099 cell_success(tc->pool, cell);
2102 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2104 cell_error(tc->pool, cell);
2108 * FIXME: should we also commit due to size of transaction, measured in
2109 * metadata blocks?
2111 static int need_commit_due_to_time(struct pool *pool)
2113 return !time_in_range(jiffies, pool->last_commit_jiffies,
2114 pool->last_commit_jiffies + COMMIT_PERIOD);
2117 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2118 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2120 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2122 struct rb_node **rbp, *parent;
2123 struct dm_thin_endio_hook *pbd;
2124 sector_t bi_sector = bio->bi_iter.bi_sector;
2126 rbp = &tc->sort_bio_list.rb_node;
2127 parent = NULL;
2128 while (*rbp) {
2129 parent = *rbp;
2130 pbd = thin_pbd(parent);
2132 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2133 rbp = &(*rbp)->rb_left;
2134 else
2135 rbp = &(*rbp)->rb_right;
2138 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2139 rb_link_node(&pbd->rb_node, parent, rbp);
2140 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2143 static void __extract_sorted_bios(struct thin_c *tc)
2145 struct rb_node *node;
2146 struct dm_thin_endio_hook *pbd;
2147 struct bio *bio;
2149 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2150 pbd = thin_pbd(node);
2151 bio = thin_bio(pbd);
2153 bio_list_add(&tc->deferred_bio_list, bio);
2154 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2157 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2160 static void __sort_thin_deferred_bios(struct thin_c *tc)
2162 struct bio *bio;
2163 struct bio_list bios;
2165 bio_list_init(&bios);
2166 bio_list_merge(&bios, &tc->deferred_bio_list);
2167 bio_list_init(&tc->deferred_bio_list);
2169 /* Sort deferred_bio_list using rb-tree */
2170 while ((bio = bio_list_pop(&bios)))
2171 __thin_bio_rb_add(tc, bio);
2174 * Transfer the sorted bios in sort_bio_list back to
2175 * deferred_bio_list to allow lockless submission of
2176 * all bios.
2178 __extract_sorted_bios(tc);
2181 static void process_thin_deferred_bios(struct thin_c *tc)
2183 struct pool *pool = tc->pool;
2184 struct bio *bio;
2185 struct bio_list bios;
2186 struct blk_plug plug;
2187 unsigned int count = 0;
2189 if (tc->requeue_mode) {
2190 error_thin_bio_list(tc, &tc->deferred_bio_list,
2191 BLK_STS_DM_REQUEUE);
2192 return;
2195 bio_list_init(&bios);
2197 spin_lock_irq(&tc->lock);
2199 if (bio_list_empty(&tc->deferred_bio_list)) {
2200 spin_unlock_irq(&tc->lock);
2201 return;
2204 __sort_thin_deferred_bios(tc);
2206 bio_list_merge(&bios, &tc->deferred_bio_list);
2207 bio_list_init(&tc->deferred_bio_list);
2209 spin_unlock_irq(&tc->lock);
2211 blk_start_plug(&plug);
2212 while ((bio = bio_list_pop(&bios))) {
2214 * If we've got no free new_mapping structs, and processing
2215 * this bio might require one, we pause until there are some
2216 * prepared mappings to process.
2218 if (ensure_next_mapping(pool)) {
2219 spin_lock_irq(&tc->lock);
2220 bio_list_add(&tc->deferred_bio_list, bio);
2221 bio_list_merge(&tc->deferred_bio_list, &bios);
2222 spin_unlock_irq(&tc->lock);
2223 break;
2226 if (bio_op(bio) == REQ_OP_DISCARD)
2227 pool->process_discard(tc, bio);
2228 else
2229 pool->process_bio(tc, bio);
2231 if ((count++ & 127) == 0) {
2232 throttle_work_update(&pool->throttle);
2233 dm_pool_issue_prefetches(pool->pmd);
2235 cond_resched();
2237 blk_finish_plug(&plug);
2240 static int cmp_cells(const void *lhs, const void *rhs)
2242 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2243 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2245 BUG_ON(!lhs_cell->holder);
2246 BUG_ON(!rhs_cell->holder);
2248 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2249 return -1;
2251 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2252 return 1;
2254 return 0;
2257 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2259 unsigned int count = 0;
2260 struct dm_bio_prison_cell *cell, *tmp;
2262 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2263 if (count >= CELL_SORT_ARRAY_SIZE)
2264 break;
2266 pool->cell_sort_array[count++] = cell;
2267 list_del(&cell->user_list);
2270 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2272 return count;
2275 static void process_thin_deferred_cells(struct thin_c *tc)
2277 struct pool *pool = tc->pool;
2278 struct list_head cells;
2279 struct dm_bio_prison_cell *cell;
2280 unsigned int i, j, count;
2282 INIT_LIST_HEAD(&cells);
2284 spin_lock_irq(&tc->lock);
2285 list_splice_init(&tc->deferred_cells, &cells);
2286 spin_unlock_irq(&tc->lock);
2288 if (list_empty(&cells))
2289 return;
2291 do {
2292 count = sort_cells(tc->pool, &cells);
2294 for (i = 0; i < count; i++) {
2295 cell = pool->cell_sort_array[i];
2296 BUG_ON(!cell->holder);
2299 * If we've got no free new_mapping structs, and processing
2300 * this bio might require one, we pause until there are some
2301 * prepared mappings to process.
2303 if (ensure_next_mapping(pool)) {
2304 for (j = i; j < count; j++)
2305 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2307 spin_lock_irq(&tc->lock);
2308 list_splice(&cells, &tc->deferred_cells);
2309 spin_unlock_irq(&tc->lock);
2310 return;
2313 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2314 pool->process_discard_cell(tc, cell);
2315 else
2316 pool->process_cell(tc, cell);
2318 cond_resched();
2319 } while (!list_empty(&cells));
2322 static void thin_get(struct thin_c *tc);
2323 static void thin_put(struct thin_c *tc);
2326 * We can't hold rcu_read_lock() around code that can block. So we
2327 * find a thin with the rcu lock held; bump a refcount; then drop
2328 * the lock.
2330 static struct thin_c *get_first_thin(struct pool *pool)
2332 struct thin_c *tc = NULL;
2334 rcu_read_lock();
2335 if (!list_empty(&pool->active_thins)) {
2336 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2337 thin_get(tc);
2339 rcu_read_unlock();
2341 return tc;
2344 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2346 struct thin_c *old_tc = tc;
2348 rcu_read_lock();
2349 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2350 thin_get(tc);
2351 thin_put(old_tc);
2352 rcu_read_unlock();
2353 return tc;
2355 thin_put(old_tc);
2356 rcu_read_unlock();
2358 return NULL;
2361 static void process_deferred_bios(struct pool *pool)
2363 struct bio *bio;
2364 struct bio_list bios, bio_completions;
2365 struct thin_c *tc;
2367 tc = get_first_thin(pool);
2368 while (tc) {
2369 process_thin_deferred_cells(tc);
2370 process_thin_deferred_bios(tc);
2371 tc = get_next_thin(pool, tc);
2375 * If there are any deferred flush bios, we must commit the metadata
2376 * before issuing them or signaling their completion.
2378 bio_list_init(&bios);
2379 bio_list_init(&bio_completions);
2381 spin_lock_irq(&pool->lock);
2382 bio_list_merge(&bios, &pool->deferred_flush_bios);
2383 bio_list_init(&pool->deferred_flush_bios);
2385 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2386 bio_list_init(&pool->deferred_flush_completions);
2387 spin_unlock_irq(&pool->lock);
2389 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2390 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2391 return;
2393 if (commit(pool)) {
2394 bio_list_merge(&bios, &bio_completions);
2396 while ((bio = bio_list_pop(&bios)))
2397 bio_io_error(bio);
2398 return;
2400 pool->last_commit_jiffies = jiffies;
2402 while ((bio = bio_list_pop(&bio_completions)))
2403 bio_endio(bio);
2405 while ((bio = bio_list_pop(&bios))) {
2407 * The data device was flushed as part of metadata commit,
2408 * so complete redundant flushes immediately.
2410 if (bio->bi_opf & REQ_PREFLUSH)
2411 bio_endio(bio);
2412 else
2413 dm_submit_bio_remap(bio, NULL);
2417 static void do_worker(struct work_struct *ws)
2419 struct pool *pool = container_of(ws, struct pool, worker);
2421 throttle_work_start(&pool->throttle);
2422 dm_pool_issue_prefetches(pool->pmd);
2423 throttle_work_update(&pool->throttle);
2424 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2425 throttle_work_update(&pool->throttle);
2426 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2427 throttle_work_update(&pool->throttle);
2428 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2429 throttle_work_update(&pool->throttle);
2430 process_deferred_bios(pool);
2431 throttle_work_complete(&pool->throttle);
2435 * We want to commit periodically so that not too much
2436 * unwritten data builds up.
2438 static void do_waker(struct work_struct *ws)
2440 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2442 wake_worker(pool);
2443 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2447 * We're holding onto IO to allow userland time to react. After the
2448 * timeout either the pool will have been resized (and thus back in
2449 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2451 static void do_no_space_timeout(struct work_struct *ws)
2453 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2454 no_space_timeout);
2456 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2457 pool->pf.error_if_no_space = true;
2458 notify_of_pool_mode_change(pool);
2459 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2463 /*----------------------------------------------------------------*/
2465 struct pool_work {
2466 struct work_struct worker;
2467 struct completion complete;
2470 static struct pool_work *to_pool_work(struct work_struct *ws)
2472 return container_of(ws, struct pool_work, worker);
2475 static void pool_work_complete(struct pool_work *pw)
2477 complete(&pw->complete);
2480 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2481 void (*fn)(struct work_struct *))
2483 INIT_WORK_ONSTACK(&pw->worker, fn);
2484 init_completion(&pw->complete);
2485 queue_work(pool->wq, &pw->worker);
2486 wait_for_completion(&pw->complete);
2487 destroy_work_on_stack(&pw->worker);
2490 /*----------------------------------------------------------------*/
2492 struct noflush_work {
2493 struct pool_work pw;
2494 struct thin_c *tc;
2497 static struct noflush_work *to_noflush(struct work_struct *ws)
2499 return container_of(to_pool_work(ws), struct noflush_work, pw);
2502 static void do_noflush_start(struct work_struct *ws)
2504 struct noflush_work *w = to_noflush(ws);
2506 w->tc->requeue_mode = true;
2507 requeue_io(w->tc);
2508 pool_work_complete(&w->pw);
2511 static void do_noflush_stop(struct work_struct *ws)
2513 struct noflush_work *w = to_noflush(ws);
2515 w->tc->requeue_mode = false;
2516 pool_work_complete(&w->pw);
2519 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2521 struct noflush_work w;
2523 w.tc = tc;
2524 pool_work_wait(&w.pw, tc->pool, fn);
2527 /*----------------------------------------------------------------*/
2529 static void set_discard_callbacks(struct pool *pool)
2531 struct pool_c *pt = pool->ti->private;
2533 if (pt->adjusted_pf.discard_passdown) {
2534 pool->process_discard_cell = process_discard_cell_passdown;
2535 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2536 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2537 } else {
2538 pool->process_discard_cell = process_discard_cell_no_passdown;
2539 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2543 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2545 struct pool_c *pt = pool->ti->private;
2546 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2547 enum pool_mode old_mode = get_pool_mode(pool);
2548 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2551 * Never allow the pool to transition to PM_WRITE mode if user
2552 * intervention is required to verify metadata and data consistency.
2554 if (new_mode == PM_WRITE && needs_check) {
2555 DMERR("%s: unable to switch pool to write mode until repaired.",
2556 dm_device_name(pool->pool_md));
2557 if (old_mode != new_mode)
2558 new_mode = old_mode;
2559 else
2560 new_mode = PM_READ_ONLY;
2563 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2564 * not going to recover without a thin_repair. So we never let the
2565 * pool move out of the old mode.
2567 if (old_mode == PM_FAIL)
2568 new_mode = old_mode;
2570 switch (new_mode) {
2571 case PM_FAIL:
2572 dm_pool_metadata_read_only(pool->pmd);
2573 pool->process_bio = process_bio_fail;
2574 pool->process_discard = process_bio_fail;
2575 pool->process_cell = process_cell_fail;
2576 pool->process_discard_cell = process_cell_fail;
2577 pool->process_prepared_mapping = process_prepared_mapping_fail;
2578 pool->process_prepared_discard = process_prepared_discard_fail;
2580 error_retry_list(pool);
2581 break;
2583 case PM_OUT_OF_METADATA_SPACE:
2584 case PM_READ_ONLY:
2585 dm_pool_metadata_read_only(pool->pmd);
2586 pool->process_bio = process_bio_read_only;
2587 pool->process_discard = process_bio_success;
2588 pool->process_cell = process_cell_read_only;
2589 pool->process_discard_cell = process_cell_success;
2590 pool->process_prepared_mapping = process_prepared_mapping_fail;
2591 pool->process_prepared_discard = process_prepared_discard_success;
2593 error_retry_list(pool);
2594 break;
2596 case PM_OUT_OF_DATA_SPACE:
2598 * Ideally we'd never hit this state; the low water mark
2599 * would trigger userland to extend the pool before we
2600 * completely run out of data space. However, many small
2601 * IOs to unprovisioned space can consume data space at an
2602 * alarming rate. Adjust your low water mark if you're
2603 * frequently seeing this mode.
2605 pool->out_of_data_space = true;
2606 pool->process_bio = process_bio_read_only;
2607 pool->process_discard = process_discard_bio;
2608 pool->process_cell = process_cell_read_only;
2609 pool->process_prepared_mapping = process_prepared_mapping;
2610 set_discard_callbacks(pool);
2612 if (!pool->pf.error_if_no_space && no_space_timeout)
2613 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2614 break;
2616 case PM_WRITE:
2617 if (old_mode == PM_OUT_OF_DATA_SPACE)
2618 cancel_delayed_work_sync(&pool->no_space_timeout);
2619 pool->out_of_data_space = false;
2620 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2621 dm_pool_metadata_read_write(pool->pmd);
2622 pool->process_bio = process_bio;
2623 pool->process_discard = process_discard_bio;
2624 pool->process_cell = process_cell;
2625 pool->process_prepared_mapping = process_prepared_mapping;
2626 set_discard_callbacks(pool);
2627 break;
2630 pool->pf.mode = new_mode;
2632 * The pool mode may have changed, sync it so bind_control_target()
2633 * doesn't cause an unexpected mode transition on resume.
2635 pt->adjusted_pf.mode = new_mode;
2637 if (old_mode != new_mode)
2638 notify_of_pool_mode_change(pool);
2641 static void abort_transaction(struct pool *pool)
2643 const char *dev_name = dm_device_name(pool->pool_md);
2645 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2646 if (dm_pool_abort_metadata(pool->pmd)) {
2647 DMERR("%s: failed to abort metadata transaction", dev_name);
2648 set_pool_mode(pool, PM_FAIL);
2651 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2652 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2653 set_pool_mode(pool, PM_FAIL);
2657 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2659 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2660 dm_device_name(pool->pool_md), op, r);
2662 abort_transaction(pool);
2663 set_pool_mode(pool, PM_READ_ONLY);
2666 /*----------------------------------------------------------------*/
2669 * Mapping functions.
2673 * Called only while mapping a thin bio to hand it over to the workqueue.
2675 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2677 struct pool *pool = tc->pool;
2679 spin_lock_irq(&tc->lock);
2680 bio_list_add(&tc->deferred_bio_list, bio);
2681 spin_unlock_irq(&tc->lock);
2683 wake_worker(pool);
2686 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2688 struct pool *pool = tc->pool;
2690 throttle_lock(&pool->throttle);
2691 thin_defer_bio(tc, bio);
2692 throttle_unlock(&pool->throttle);
2695 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2697 struct pool *pool = tc->pool;
2699 throttle_lock(&pool->throttle);
2700 spin_lock_irq(&tc->lock);
2701 list_add_tail(&cell->user_list, &tc->deferred_cells);
2702 spin_unlock_irq(&tc->lock);
2703 throttle_unlock(&pool->throttle);
2705 wake_worker(pool);
2708 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2710 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2712 h->tc = tc;
2713 h->shared_read_entry = NULL;
2714 h->all_io_entry = NULL;
2715 h->overwrite_mapping = NULL;
2716 h->cell = NULL;
2720 * Non-blocking function called from the thin target's map function.
2722 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2724 int r;
2725 struct thin_c *tc = ti->private;
2726 dm_block_t block = get_bio_block(tc, bio);
2727 struct dm_thin_device *td = tc->td;
2728 struct dm_thin_lookup_result result;
2729 struct dm_bio_prison_cell *virt_cell, *data_cell;
2730 struct dm_cell_key key;
2732 thin_hook_bio(tc, bio);
2734 if (tc->requeue_mode) {
2735 bio->bi_status = BLK_STS_DM_REQUEUE;
2736 bio_endio(bio);
2737 return DM_MAPIO_SUBMITTED;
2740 if (get_pool_mode(tc->pool) == PM_FAIL) {
2741 bio_io_error(bio);
2742 return DM_MAPIO_SUBMITTED;
2745 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2746 thin_defer_bio_with_throttle(tc, bio);
2747 return DM_MAPIO_SUBMITTED;
2751 * We must hold the virtual cell before doing the lookup, otherwise
2752 * there's a race with discard.
2754 build_virtual_key(tc->td, block, &key);
2755 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2756 return DM_MAPIO_SUBMITTED;
2758 r = dm_thin_find_block(td, block, 0, &result);
2761 * Note that we defer readahead too.
2763 switch (r) {
2764 case 0:
2765 if (unlikely(result.shared)) {
2767 * We have a race condition here between the
2768 * result.shared value returned by the lookup and
2769 * snapshot creation, which may cause new
2770 * sharing.
2772 * To avoid this always quiesce the origin before
2773 * taking the snap. You want to do this anyway to
2774 * ensure a consistent application view
2775 * (i.e. lockfs).
2777 * More distant ancestors are irrelevant. The
2778 * shared flag will be set in their case.
2780 thin_defer_cell(tc, virt_cell);
2781 return DM_MAPIO_SUBMITTED;
2784 build_data_key(tc->td, result.block, &key);
2785 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2786 cell_defer_no_holder(tc, virt_cell);
2787 return DM_MAPIO_SUBMITTED;
2790 inc_all_io_entry(tc->pool, bio);
2791 cell_defer_no_holder(tc, data_cell);
2792 cell_defer_no_holder(tc, virt_cell);
2794 remap(tc, bio, result.block);
2795 return DM_MAPIO_REMAPPED;
2797 case -ENODATA:
2798 case -EWOULDBLOCK:
2799 thin_defer_cell(tc, virt_cell);
2800 return DM_MAPIO_SUBMITTED;
2802 default:
2804 * Must always call bio_io_error on failure.
2805 * dm_thin_find_block can fail with -EINVAL if the
2806 * pool is switched to fail-io mode.
2808 bio_io_error(bio);
2809 cell_defer_no_holder(tc, virt_cell);
2810 return DM_MAPIO_SUBMITTED;
2814 static void requeue_bios(struct pool *pool)
2816 struct thin_c *tc;
2818 rcu_read_lock();
2819 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2820 spin_lock_irq(&tc->lock);
2821 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2822 bio_list_init(&tc->retry_on_resume_list);
2823 spin_unlock_irq(&tc->lock);
2825 rcu_read_unlock();
2829 *--------------------------------------------------------------
2830 * Binding of control targets to a pool object
2831 *--------------------------------------------------------------
2833 static bool is_factor(sector_t block_size, uint32_t n)
2835 return !sector_div(block_size, n);
2839 * If discard_passdown was enabled verify that the data device
2840 * supports discards. Disable discard_passdown if not.
2842 static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2844 struct pool *pool = pt->pool;
2845 struct block_device *data_bdev = pt->data_dev->bdev;
2846 struct queue_limits *data_limits = bdev_limits(data_bdev);
2847 const char *reason = NULL;
2849 if (!pt->adjusted_pf.discard_passdown)
2850 return;
2852 if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2853 reason = "discard unsupported";
2855 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2856 reason = "max discard sectors smaller than a block";
2858 if (reason) {
2859 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2860 pt->adjusted_pf.discard_passdown = false;
2864 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2866 struct pool_c *pt = ti->private;
2869 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2871 enum pool_mode old_mode = get_pool_mode(pool);
2872 enum pool_mode new_mode = pt->adjusted_pf.mode;
2875 * Don't change the pool's mode until set_pool_mode() below.
2876 * Otherwise the pool's process_* function pointers may
2877 * not match the desired pool mode.
2879 pt->adjusted_pf.mode = old_mode;
2881 pool->ti = ti;
2882 pool->pf = pt->adjusted_pf;
2883 pool->low_water_blocks = pt->low_water_blocks;
2885 set_pool_mode(pool, new_mode);
2887 return 0;
2890 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2892 if (pool->ti == ti)
2893 pool->ti = NULL;
2897 *--------------------------------------------------------------
2898 * Pool creation
2899 *--------------------------------------------------------------
2901 /* Initialize pool features. */
2902 static void pool_features_init(struct pool_features *pf)
2904 pf->mode = PM_WRITE;
2905 pf->zero_new_blocks = true;
2906 pf->discard_enabled = true;
2907 pf->discard_passdown = true;
2908 pf->error_if_no_space = false;
2911 static void __pool_destroy(struct pool *pool)
2913 __pool_table_remove(pool);
2915 vfree(pool->cell_sort_array);
2916 if (dm_pool_metadata_close(pool->pmd) < 0)
2917 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2919 dm_bio_prison_destroy(pool->prison);
2920 dm_kcopyd_client_destroy(pool->copier);
2922 cancel_delayed_work_sync(&pool->waker);
2923 cancel_delayed_work_sync(&pool->no_space_timeout);
2924 if (pool->wq)
2925 destroy_workqueue(pool->wq);
2927 if (pool->next_mapping)
2928 mempool_free(pool->next_mapping, &pool->mapping_pool);
2929 mempool_exit(&pool->mapping_pool);
2930 dm_deferred_set_destroy(pool->shared_read_ds);
2931 dm_deferred_set_destroy(pool->all_io_ds);
2932 kfree(pool);
2935 static struct kmem_cache *_new_mapping_cache;
2937 static struct pool *pool_create(struct mapped_device *pool_md,
2938 struct block_device *metadata_dev,
2939 struct block_device *data_dev,
2940 unsigned long block_size,
2941 int read_only, char **error)
2943 int r;
2944 void *err_p;
2945 struct pool *pool;
2946 struct dm_pool_metadata *pmd;
2947 bool format_device = read_only ? false : true;
2949 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2950 if (IS_ERR(pmd)) {
2951 *error = "Error creating metadata object";
2952 return ERR_CAST(pmd);
2955 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2956 if (!pool) {
2957 *error = "Error allocating memory for pool";
2958 err_p = ERR_PTR(-ENOMEM);
2959 goto bad_pool;
2962 pool->pmd = pmd;
2963 pool->sectors_per_block = block_size;
2964 if (block_size & (block_size - 1))
2965 pool->sectors_per_block_shift = -1;
2966 else
2967 pool->sectors_per_block_shift = __ffs(block_size);
2968 pool->low_water_blocks = 0;
2969 pool_features_init(&pool->pf);
2970 pool->prison = dm_bio_prison_create();
2971 if (!pool->prison) {
2972 *error = "Error creating pool's bio prison";
2973 err_p = ERR_PTR(-ENOMEM);
2974 goto bad_prison;
2977 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2978 if (IS_ERR(pool->copier)) {
2979 r = PTR_ERR(pool->copier);
2980 *error = "Error creating pool's kcopyd client";
2981 err_p = ERR_PTR(r);
2982 goto bad_kcopyd_client;
2986 * Create singlethreaded workqueue that will service all devices
2987 * that use this metadata.
2989 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2990 if (!pool->wq) {
2991 *error = "Error creating pool's workqueue";
2992 err_p = ERR_PTR(-ENOMEM);
2993 goto bad_wq;
2996 throttle_init(&pool->throttle);
2997 INIT_WORK(&pool->worker, do_worker);
2998 INIT_DELAYED_WORK(&pool->waker, do_waker);
2999 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3000 spin_lock_init(&pool->lock);
3001 bio_list_init(&pool->deferred_flush_bios);
3002 bio_list_init(&pool->deferred_flush_completions);
3003 INIT_LIST_HEAD(&pool->prepared_mappings);
3004 INIT_LIST_HEAD(&pool->prepared_discards);
3005 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3006 INIT_LIST_HEAD(&pool->active_thins);
3007 pool->low_water_triggered = false;
3008 pool->suspended = true;
3009 pool->out_of_data_space = false;
3011 pool->shared_read_ds = dm_deferred_set_create();
3012 if (!pool->shared_read_ds) {
3013 *error = "Error creating pool's shared read deferred set";
3014 err_p = ERR_PTR(-ENOMEM);
3015 goto bad_shared_read_ds;
3018 pool->all_io_ds = dm_deferred_set_create();
3019 if (!pool->all_io_ds) {
3020 *error = "Error creating pool's all io deferred set";
3021 err_p = ERR_PTR(-ENOMEM);
3022 goto bad_all_io_ds;
3025 pool->next_mapping = NULL;
3026 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3027 _new_mapping_cache);
3028 if (r) {
3029 *error = "Error creating pool's mapping mempool";
3030 err_p = ERR_PTR(r);
3031 goto bad_mapping_pool;
3034 pool->cell_sort_array =
3035 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3036 sizeof(*pool->cell_sort_array)));
3037 if (!pool->cell_sort_array) {
3038 *error = "Error allocating cell sort array";
3039 err_p = ERR_PTR(-ENOMEM);
3040 goto bad_sort_array;
3043 pool->ref_count = 1;
3044 pool->last_commit_jiffies = jiffies;
3045 pool->pool_md = pool_md;
3046 pool->md_dev = metadata_dev;
3047 pool->data_dev = data_dev;
3048 __pool_table_insert(pool);
3050 return pool;
3052 bad_sort_array:
3053 mempool_exit(&pool->mapping_pool);
3054 bad_mapping_pool:
3055 dm_deferred_set_destroy(pool->all_io_ds);
3056 bad_all_io_ds:
3057 dm_deferred_set_destroy(pool->shared_read_ds);
3058 bad_shared_read_ds:
3059 destroy_workqueue(pool->wq);
3060 bad_wq:
3061 dm_kcopyd_client_destroy(pool->copier);
3062 bad_kcopyd_client:
3063 dm_bio_prison_destroy(pool->prison);
3064 bad_prison:
3065 kfree(pool);
3066 bad_pool:
3067 if (dm_pool_metadata_close(pmd))
3068 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3070 return err_p;
3073 static void __pool_inc(struct pool *pool)
3075 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3076 pool->ref_count++;
3079 static void __pool_dec(struct pool *pool)
3081 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3082 BUG_ON(!pool->ref_count);
3083 if (!--pool->ref_count)
3084 __pool_destroy(pool);
3087 static struct pool *__pool_find(struct mapped_device *pool_md,
3088 struct block_device *metadata_dev,
3089 struct block_device *data_dev,
3090 unsigned long block_size, int read_only,
3091 char **error, int *created)
3093 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3095 if (pool) {
3096 if (pool->pool_md != pool_md) {
3097 *error = "metadata device already in use by a pool";
3098 return ERR_PTR(-EBUSY);
3100 if (pool->data_dev != data_dev) {
3101 *error = "data device already in use by a pool";
3102 return ERR_PTR(-EBUSY);
3104 __pool_inc(pool);
3106 } else {
3107 pool = __pool_table_lookup(pool_md);
3108 if (pool) {
3109 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3110 *error = "different pool cannot replace a pool";
3111 return ERR_PTR(-EINVAL);
3113 __pool_inc(pool);
3115 } else {
3116 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3117 *created = 1;
3121 return pool;
3125 *--------------------------------------------------------------
3126 * Pool target methods
3127 *--------------------------------------------------------------
3129 static void pool_dtr(struct dm_target *ti)
3131 struct pool_c *pt = ti->private;
3133 mutex_lock(&dm_thin_pool_table.mutex);
3135 unbind_control_target(pt->pool, ti);
3136 __pool_dec(pt->pool);
3137 dm_put_device(ti, pt->metadata_dev);
3138 dm_put_device(ti, pt->data_dev);
3139 kfree(pt);
3141 mutex_unlock(&dm_thin_pool_table.mutex);
3144 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3145 struct dm_target *ti)
3147 int r;
3148 unsigned int argc;
3149 const char *arg_name;
3151 static const struct dm_arg _args[] = {
3152 {0, 4, "Invalid number of pool feature arguments"},
3156 * No feature arguments supplied.
3158 if (!as->argc)
3159 return 0;
3161 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3162 if (r)
3163 return -EINVAL;
3165 while (argc && !r) {
3166 arg_name = dm_shift_arg(as);
3167 argc--;
3169 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3170 pf->zero_new_blocks = false;
3172 else if (!strcasecmp(arg_name, "ignore_discard"))
3173 pf->discard_enabled = false;
3175 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3176 pf->discard_passdown = false;
3178 else if (!strcasecmp(arg_name, "read_only"))
3179 pf->mode = PM_READ_ONLY;
3181 else if (!strcasecmp(arg_name, "error_if_no_space"))
3182 pf->error_if_no_space = true;
3184 else {
3185 ti->error = "Unrecognised pool feature requested";
3186 r = -EINVAL;
3187 break;
3191 return r;
3194 static void metadata_low_callback(void *context)
3196 struct pool *pool = context;
3198 DMWARN("%s: reached low water mark for metadata device: sending event.",
3199 dm_device_name(pool->pool_md));
3201 dm_table_event(pool->ti->table);
3205 * We need to flush the data device **before** committing the metadata.
3207 * This ensures that the data blocks of any newly inserted mappings are
3208 * properly written to non-volatile storage and won't be lost in case of a
3209 * crash.
3211 * Failure to do so can result in data corruption in the case of internal or
3212 * external snapshots and in the case of newly provisioned blocks, when block
3213 * zeroing is enabled.
3215 static int metadata_pre_commit_callback(void *context)
3217 struct pool *pool = context;
3219 return blkdev_issue_flush(pool->data_dev);
3222 static sector_t get_dev_size(struct block_device *bdev)
3224 return bdev_nr_sectors(bdev);
3227 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3229 sector_t metadata_dev_size = get_dev_size(bdev);
3231 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3232 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3233 bdev, THIN_METADATA_MAX_SECTORS);
3236 static sector_t get_metadata_dev_size(struct block_device *bdev)
3238 sector_t metadata_dev_size = get_dev_size(bdev);
3240 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3241 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3243 return metadata_dev_size;
3246 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3248 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3250 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3252 return metadata_dev_size;
3256 * When a metadata threshold is crossed a dm event is triggered, and
3257 * userland should respond by growing the metadata device. We could let
3258 * userland set the threshold, like we do with the data threshold, but I'm
3259 * not sure they know enough to do this well.
3261 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3264 * 4M is ample for all ops with the possible exception of thin
3265 * device deletion which is harmless if it fails (just retry the
3266 * delete after you've grown the device).
3268 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3270 return min((dm_block_t)1024ULL /* 4M */, quarter);
3274 * thin-pool <metadata dev> <data dev>
3275 * <data block size (sectors)>
3276 * <low water mark (blocks)>
3277 * [<#feature args> [<arg>]*]
3279 * Optional feature arguments are:
3280 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3281 * ignore_discard: disable discard
3282 * no_discard_passdown: don't pass discards down to the data device
3283 * read_only: Don't allow any changes to be made to the pool metadata.
3284 * error_if_no_space: error IOs, instead of queueing, if no space.
3286 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3288 int r, pool_created = 0;
3289 struct pool_c *pt;
3290 struct pool *pool;
3291 struct pool_features pf;
3292 struct dm_arg_set as;
3293 struct dm_dev *data_dev;
3294 unsigned long block_size;
3295 dm_block_t low_water_blocks;
3296 struct dm_dev *metadata_dev;
3297 blk_mode_t metadata_mode;
3300 * FIXME Remove validation from scope of lock.
3302 mutex_lock(&dm_thin_pool_table.mutex);
3304 if (argc < 4) {
3305 ti->error = "Invalid argument count";
3306 r = -EINVAL;
3307 goto out_unlock;
3310 as.argc = argc;
3311 as.argv = argv;
3313 /* make sure metadata and data are different devices */
3314 if (!strcmp(argv[0], argv[1])) {
3315 ti->error = "Error setting metadata or data device";
3316 r = -EINVAL;
3317 goto out_unlock;
3321 * Set default pool features.
3323 pool_features_init(&pf);
3325 dm_consume_args(&as, 4);
3326 r = parse_pool_features(&as, &pf, ti);
3327 if (r)
3328 goto out_unlock;
3330 metadata_mode = BLK_OPEN_READ |
3331 ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3332 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3333 if (r) {
3334 ti->error = "Error opening metadata block device";
3335 goto out_unlock;
3337 warn_if_metadata_device_too_big(metadata_dev->bdev);
3339 r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3340 if (r) {
3341 ti->error = "Error getting data device";
3342 goto out_metadata;
3345 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3346 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3347 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3348 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3349 ti->error = "Invalid block size";
3350 r = -EINVAL;
3351 goto out;
3354 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3355 ti->error = "Invalid low water mark";
3356 r = -EINVAL;
3357 goto out;
3360 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3361 if (!pt) {
3362 r = -ENOMEM;
3363 goto out;
3366 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3367 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3368 if (IS_ERR(pool)) {
3369 r = PTR_ERR(pool);
3370 goto out_free_pt;
3374 * 'pool_created' reflects whether this is the first table load.
3375 * Top level discard support is not allowed to be changed after
3376 * initial load. This would require a pool reload to trigger thin
3377 * device changes.
3379 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3380 ti->error = "Discard support cannot be disabled once enabled";
3381 r = -EINVAL;
3382 goto out_flags_changed;
3385 pt->pool = pool;
3386 pt->ti = ti;
3387 pt->metadata_dev = metadata_dev;
3388 pt->data_dev = data_dev;
3389 pt->low_water_blocks = low_water_blocks;
3390 pt->adjusted_pf = pt->requested_pf = pf;
3391 ti->num_flush_bios = 1;
3392 ti->limit_swap_bios = true;
3395 * Only need to enable discards if the pool should pass
3396 * them down to the data device. The thin device's discard
3397 * processing will cause mappings to be removed from the btree.
3399 if (pf.discard_enabled && pf.discard_passdown) {
3400 ti->num_discard_bios = 1;
3402 * Setting 'discards_supported' circumvents the normal
3403 * stacking of discard limits (this keeps the pool and
3404 * thin devices' discard limits consistent).
3406 ti->discards_supported = true;
3407 ti->max_discard_granularity = true;
3409 ti->private = pt;
3411 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3412 calc_metadata_threshold(pt),
3413 metadata_low_callback,
3414 pool);
3415 if (r) {
3416 ti->error = "Error registering metadata threshold";
3417 goto out_flags_changed;
3420 dm_pool_register_pre_commit_callback(pool->pmd,
3421 metadata_pre_commit_callback, pool);
3423 mutex_unlock(&dm_thin_pool_table.mutex);
3425 return 0;
3427 out_flags_changed:
3428 __pool_dec(pool);
3429 out_free_pt:
3430 kfree(pt);
3431 out:
3432 dm_put_device(ti, data_dev);
3433 out_metadata:
3434 dm_put_device(ti, metadata_dev);
3435 out_unlock:
3436 mutex_unlock(&dm_thin_pool_table.mutex);
3438 return r;
3441 static int pool_map(struct dm_target *ti, struct bio *bio)
3443 struct pool_c *pt = ti->private;
3444 struct pool *pool = pt->pool;
3447 * As this is a singleton target, ti->begin is always zero.
3449 spin_lock_irq(&pool->lock);
3450 bio_set_dev(bio, pt->data_dev->bdev);
3451 spin_unlock_irq(&pool->lock);
3453 return DM_MAPIO_REMAPPED;
3456 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3458 int r;
3459 struct pool_c *pt = ti->private;
3460 struct pool *pool = pt->pool;
3461 sector_t data_size = ti->len;
3462 dm_block_t sb_data_size;
3464 *need_commit = false;
3466 (void) sector_div(data_size, pool->sectors_per_block);
3468 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3469 if (r) {
3470 DMERR("%s: failed to retrieve data device size",
3471 dm_device_name(pool->pool_md));
3472 return r;
3475 if (data_size < sb_data_size) {
3476 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3477 dm_device_name(pool->pool_md),
3478 (unsigned long long)data_size, sb_data_size);
3479 return -EINVAL;
3481 } else if (data_size > sb_data_size) {
3482 if (dm_pool_metadata_needs_check(pool->pmd)) {
3483 DMERR("%s: unable to grow the data device until repaired.",
3484 dm_device_name(pool->pool_md));
3485 return 0;
3488 if (sb_data_size)
3489 DMINFO("%s: growing the data device from %llu to %llu blocks",
3490 dm_device_name(pool->pool_md),
3491 sb_data_size, (unsigned long long)data_size);
3492 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3493 if (r) {
3494 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3495 return r;
3498 *need_commit = true;
3501 return 0;
3504 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3506 int r;
3507 struct pool_c *pt = ti->private;
3508 struct pool *pool = pt->pool;
3509 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3511 *need_commit = false;
3513 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3515 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3516 if (r) {
3517 DMERR("%s: failed to retrieve metadata device size",
3518 dm_device_name(pool->pool_md));
3519 return r;
3522 if (metadata_dev_size < sb_metadata_dev_size) {
3523 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3524 dm_device_name(pool->pool_md),
3525 metadata_dev_size, sb_metadata_dev_size);
3526 return -EINVAL;
3528 } else if (metadata_dev_size > sb_metadata_dev_size) {
3529 if (dm_pool_metadata_needs_check(pool->pmd)) {
3530 DMERR("%s: unable to grow the metadata device until repaired.",
3531 dm_device_name(pool->pool_md));
3532 return 0;
3535 warn_if_metadata_device_too_big(pool->md_dev);
3536 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3537 dm_device_name(pool->pool_md),
3538 sb_metadata_dev_size, metadata_dev_size);
3540 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3541 set_pool_mode(pool, PM_WRITE);
3543 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3544 if (r) {
3545 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3546 return r;
3549 *need_commit = true;
3552 return 0;
3556 * Retrieves the number of blocks of the data device from
3557 * the superblock and compares it to the actual device size,
3558 * thus resizing the data device in case it has grown.
3560 * This both copes with opening preallocated data devices in the ctr
3561 * being followed by a resume
3562 * -and-
3563 * calling the resume method individually after userspace has
3564 * grown the data device in reaction to a table event.
3566 static int pool_preresume(struct dm_target *ti)
3568 int r;
3569 bool need_commit1, need_commit2;
3570 struct pool_c *pt = ti->private;
3571 struct pool *pool = pt->pool;
3574 * Take control of the pool object.
3576 r = bind_control_target(pool, ti);
3577 if (r)
3578 goto out;
3580 r = maybe_resize_data_dev(ti, &need_commit1);
3581 if (r)
3582 goto out;
3584 r = maybe_resize_metadata_dev(ti, &need_commit2);
3585 if (r)
3586 goto out;
3588 if (need_commit1 || need_commit2)
3589 (void) commit(pool);
3590 out:
3592 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3593 * bio is in deferred list. Therefore need to return 0
3594 * to allow pool_resume() to flush IO.
3596 if (r && get_pool_mode(pool) == PM_FAIL)
3597 r = 0;
3599 return r;
3602 static void pool_suspend_active_thins(struct pool *pool)
3604 struct thin_c *tc;
3606 /* Suspend all active thin devices */
3607 tc = get_first_thin(pool);
3608 while (tc) {
3609 dm_internal_suspend_noflush(tc->thin_md);
3610 tc = get_next_thin(pool, tc);
3614 static void pool_resume_active_thins(struct pool *pool)
3616 struct thin_c *tc;
3618 /* Resume all active thin devices */
3619 tc = get_first_thin(pool);
3620 while (tc) {
3621 dm_internal_resume(tc->thin_md);
3622 tc = get_next_thin(pool, tc);
3626 static void pool_resume(struct dm_target *ti)
3628 struct pool_c *pt = ti->private;
3629 struct pool *pool = pt->pool;
3632 * Must requeue active_thins' bios and then resume
3633 * active_thins _before_ clearing 'suspend' flag.
3635 requeue_bios(pool);
3636 pool_resume_active_thins(pool);
3638 spin_lock_irq(&pool->lock);
3639 pool->low_water_triggered = false;
3640 pool->suspended = false;
3641 spin_unlock_irq(&pool->lock);
3643 do_waker(&pool->waker.work);
3646 static void pool_presuspend(struct dm_target *ti)
3648 struct pool_c *pt = ti->private;
3649 struct pool *pool = pt->pool;
3651 spin_lock_irq(&pool->lock);
3652 pool->suspended = true;
3653 spin_unlock_irq(&pool->lock);
3655 pool_suspend_active_thins(pool);
3658 static void pool_presuspend_undo(struct dm_target *ti)
3660 struct pool_c *pt = ti->private;
3661 struct pool *pool = pt->pool;
3663 pool_resume_active_thins(pool);
3665 spin_lock_irq(&pool->lock);
3666 pool->suspended = false;
3667 spin_unlock_irq(&pool->lock);
3670 static void pool_postsuspend(struct dm_target *ti)
3672 struct pool_c *pt = ti->private;
3673 struct pool *pool = pt->pool;
3675 cancel_delayed_work_sync(&pool->waker);
3676 cancel_delayed_work_sync(&pool->no_space_timeout);
3677 flush_workqueue(pool->wq);
3678 (void) commit(pool);
3681 static int check_arg_count(unsigned int argc, unsigned int args_required)
3683 if (argc != args_required) {
3684 DMWARN("Message received with %u arguments instead of %u.",
3685 argc, args_required);
3686 return -EINVAL;
3689 return 0;
3692 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3694 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3695 *dev_id <= MAX_DEV_ID)
3696 return 0;
3698 if (warning)
3699 DMWARN("Message received with invalid device id: %s", arg);
3701 return -EINVAL;
3704 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3706 dm_thin_id dev_id;
3707 int r;
3709 r = check_arg_count(argc, 2);
3710 if (r)
3711 return r;
3713 r = read_dev_id(argv[1], &dev_id, 1);
3714 if (r)
3715 return r;
3717 r = dm_pool_create_thin(pool->pmd, dev_id);
3718 if (r) {
3719 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3720 argv[1]);
3721 return r;
3724 return 0;
3727 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3729 dm_thin_id dev_id;
3730 dm_thin_id origin_dev_id;
3731 int r;
3733 r = check_arg_count(argc, 3);
3734 if (r)
3735 return r;
3737 r = read_dev_id(argv[1], &dev_id, 1);
3738 if (r)
3739 return r;
3741 r = read_dev_id(argv[2], &origin_dev_id, 1);
3742 if (r)
3743 return r;
3745 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3746 if (r) {
3747 DMWARN("Creation of new snapshot %s of device %s failed.",
3748 argv[1], argv[2]);
3749 return r;
3752 return 0;
3755 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3757 dm_thin_id dev_id;
3758 int r;
3760 r = check_arg_count(argc, 2);
3761 if (r)
3762 return r;
3764 r = read_dev_id(argv[1], &dev_id, 1);
3765 if (r)
3766 return r;
3768 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3769 if (r)
3770 DMWARN("Deletion of thin device %s failed.", argv[1]);
3772 return r;
3775 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3777 dm_thin_id old_id, new_id;
3778 int r;
3780 r = check_arg_count(argc, 3);
3781 if (r)
3782 return r;
3784 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3785 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3786 return -EINVAL;
3789 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3790 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3791 return -EINVAL;
3794 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3795 if (r) {
3796 DMWARN("Failed to change transaction id from %s to %s.",
3797 argv[1], argv[2]);
3798 return r;
3801 return 0;
3804 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3806 int r;
3808 r = check_arg_count(argc, 1);
3809 if (r)
3810 return r;
3812 (void) commit(pool);
3814 r = dm_pool_reserve_metadata_snap(pool->pmd);
3815 if (r)
3816 DMWARN("reserve_metadata_snap message failed.");
3818 return r;
3821 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3823 int r;
3825 r = check_arg_count(argc, 1);
3826 if (r)
3827 return r;
3829 r = dm_pool_release_metadata_snap(pool->pmd);
3830 if (r)
3831 DMWARN("release_metadata_snap message failed.");
3833 return r;
3837 * Messages supported:
3838 * create_thin <dev_id>
3839 * create_snap <dev_id> <origin_id>
3840 * delete <dev_id>
3841 * set_transaction_id <current_trans_id> <new_trans_id>
3842 * reserve_metadata_snap
3843 * release_metadata_snap
3845 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3846 char *result, unsigned int maxlen)
3848 int r = -EINVAL;
3849 struct pool_c *pt = ti->private;
3850 struct pool *pool = pt->pool;
3852 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3853 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3854 dm_device_name(pool->pool_md));
3855 return -EOPNOTSUPP;
3858 if (!strcasecmp(argv[0], "create_thin"))
3859 r = process_create_thin_mesg(argc, argv, pool);
3861 else if (!strcasecmp(argv[0], "create_snap"))
3862 r = process_create_snap_mesg(argc, argv, pool);
3864 else if (!strcasecmp(argv[0], "delete"))
3865 r = process_delete_mesg(argc, argv, pool);
3867 else if (!strcasecmp(argv[0], "set_transaction_id"))
3868 r = process_set_transaction_id_mesg(argc, argv, pool);
3870 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3871 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3873 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3874 r = process_release_metadata_snap_mesg(argc, argv, pool);
3876 else
3877 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3879 if (!r)
3880 (void) commit(pool);
3882 return r;
3885 static void emit_flags(struct pool_features *pf, char *result,
3886 unsigned int sz, unsigned int maxlen)
3888 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3889 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3890 pf->error_if_no_space;
3891 DMEMIT("%u ", count);
3893 if (!pf->zero_new_blocks)
3894 DMEMIT("skip_block_zeroing ");
3896 if (!pf->discard_enabled)
3897 DMEMIT("ignore_discard ");
3899 if (!pf->discard_passdown)
3900 DMEMIT("no_discard_passdown ");
3902 if (pf->mode == PM_READ_ONLY)
3903 DMEMIT("read_only ");
3905 if (pf->error_if_no_space)
3906 DMEMIT("error_if_no_space ");
3910 * Status line is:
3911 * <transaction id> <used metadata sectors>/<total metadata sectors>
3912 * <used data sectors>/<total data sectors> <held metadata root>
3913 * <pool mode> <discard config> <no space config> <needs_check>
3915 static void pool_status(struct dm_target *ti, status_type_t type,
3916 unsigned int status_flags, char *result, unsigned int maxlen)
3918 int r;
3919 unsigned int sz = 0;
3920 uint64_t transaction_id;
3921 dm_block_t nr_free_blocks_data;
3922 dm_block_t nr_free_blocks_metadata;
3923 dm_block_t nr_blocks_data;
3924 dm_block_t nr_blocks_metadata;
3925 dm_block_t held_root;
3926 enum pool_mode mode;
3927 char buf[BDEVNAME_SIZE];
3928 char buf2[BDEVNAME_SIZE];
3929 struct pool_c *pt = ti->private;
3930 struct pool *pool = pt->pool;
3932 switch (type) {
3933 case STATUSTYPE_INFO:
3934 if (get_pool_mode(pool) == PM_FAIL) {
3935 DMEMIT("Fail");
3936 break;
3939 /* Commit to ensure statistics aren't out-of-date */
3940 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3941 (void) commit(pool);
3943 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3944 if (r) {
3945 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3946 dm_device_name(pool->pool_md), r);
3947 goto err;
3950 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3951 if (r) {
3952 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3953 dm_device_name(pool->pool_md), r);
3954 goto err;
3957 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3958 if (r) {
3959 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3960 dm_device_name(pool->pool_md), r);
3961 goto err;
3964 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3965 if (r) {
3966 DMERR("%s: dm_pool_get_free_block_count returned %d",
3967 dm_device_name(pool->pool_md), r);
3968 goto err;
3971 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3972 if (r) {
3973 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3974 dm_device_name(pool->pool_md), r);
3975 goto err;
3978 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3979 if (r) {
3980 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3981 dm_device_name(pool->pool_md), r);
3982 goto err;
3985 DMEMIT("%llu %llu/%llu %llu/%llu ",
3986 (unsigned long long)transaction_id,
3987 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3988 (unsigned long long)nr_blocks_metadata,
3989 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3990 (unsigned long long)nr_blocks_data);
3992 if (held_root)
3993 DMEMIT("%llu ", held_root);
3994 else
3995 DMEMIT("- ");
3997 mode = get_pool_mode(pool);
3998 if (mode == PM_OUT_OF_DATA_SPACE)
3999 DMEMIT("out_of_data_space ");
4000 else if (is_read_only_pool_mode(mode))
4001 DMEMIT("ro ");
4002 else
4003 DMEMIT("rw ");
4005 if (!pool->pf.discard_enabled)
4006 DMEMIT("ignore_discard ");
4007 else if (pool->pf.discard_passdown)
4008 DMEMIT("discard_passdown ");
4009 else
4010 DMEMIT("no_discard_passdown ");
4012 if (pool->pf.error_if_no_space)
4013 DMEMIT("error_if_no_space ");
4014 else
4015 DMEMIT("queue_if_no_space ");
4017 if (dm_pool_metadata_needs_check(pool->pmd))
4018 DMEMIT("needs_check ");
4019 else
4020 DMEMIT("- ");
4022 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4024 break;
4026 case STATUSTYPE_TABLE:
4027 DMEMIT("%s %s %lu %llu ",
4028 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4029 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4030 (unsigned long)pool->sectors_per_block,
4031 (unsigned long long)pt->low_water_blocks);
4032 emit_flags(&pt->requested_pf, result, sz, maxlen);
4033 break;
4035 case STATUSTYPE_IMA:
4036 *result = '\0';
4037 break;
4039 return;
4041 err:
4042 DMEMIT("Error");
4045 static int pool_iterate_devices(struct dm_target *ti,
4046 iterate_devices_callout_fn fn, void *data)
4048 struct pool_c *pt = ti->private;
4050 return fn(ti, pt->data_dev, 0, ti->len, data);
4053 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4055 struct pool_c *pt = ti->private;
4056 struct pool *pool = pt->pool;
4057 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4060 * If max_sectors is smaller than pool->sectors_per_block adjust it
4061 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4062 * This is especially beneficial when the pool's data device is a RAID
4063 * device that has a full stripe width that matches pool->sectors_per_block
4064 * -- because even though partial RAID stripe-sized IOs will be issued to a
4065 * single RAID stripe; when aggregated they will end on a full RAID stripe
4066 * boundary.. which avoids additional partial RAID stripe writes cascading
4068 if (limits->max_sectors < pool->sectors_per_block) {
4069 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4070 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4071 limits->max_sectors--;
4072 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4077 * If the system-determined stacked limits are compatible with the
4078 * pool's blocksize (io_opt is a factor) do not override them.
4080 if (io_opt_sectors < pool->sectors_per_block ||
4081 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4082 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4083 limits->io_min = limits->max_sectors << SECTOR_SHIFT;
4084 else
4085 limits->io_min = pool->sectors_per_block << SECTOR_SHIFT;
4086 limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT;
4090 * pt->adjusted_pf is a staging area for the actual features to use.
4091 * They get transferred to the live pool in bind_control_target()
4092 * called from pool_preresume().
4095 if (pt->adjusted_pf.discard_enabled) {
4096 disable_discard_passdown_if_not_supported(pt);
4097 if (!pt->adjusted_pf.discard_passdown)
4098 limits->max_hw_discard_sectors = 0;
4100 * The pool uses the same discard limits as the underlying data
4101 * device. DM core has already set this up.
4103 } else {
4105 * Must explicitly disallow stacking discard limits otherwise the
4106 * block layer will stack them if pool's data device has support.
4108 limits->discard_granularity = 0;
4112 static struct target_type pool_target = {
4113 .name = "thin-pool",
4114 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4115 DM_TARGET_IMMUTABLE,
4116 .version = {1, 23, 0},
4117 .module = THIS_MODULE,
4118 .ctr = pool_ctr,
4119 .dtr = pool_dtr,
4120 .map = pool_map,
4121 .presuspend = pool_presuspend,
4122 .presuspend_undo = pool_presuspend_undo,
4123 .postsuspend = pool_postsuspend,
4124 .preresume = pool_preresume,
4125 .resume = pool_resume,
4126 .message = pool_message,
4127 .status = pool_status,
4128 .iterate_devices = pool_iterate_devices,
4129 .io_hints = pool_io_hints,
4133 *--------------------------------------------------------------
4134 * Thin target methods
4135 *--------------------------------------------------------------
4137 static void thin_get(struct thin_c *tc)
4139 refcount_inc(&tc->refcount);
4142 static void thin_put(struct thin_c *tc)
4144 if (refcount_dec_and_test(&tc->refcount))
4145 complete(&tc->can_destroy);
4148 static void thin_dtr(struct dm_target *ti)
4150 struct thin_c *tc = ti->private;
4152 spin_lock_irq(&tc->pool->lock);
4153 list_del_rcu(&tc->list);
4154 spin_unlock_irq(&tc->pool->lock);
4155 synchronize_rcu();
4157 thin_put(tc);
4158 wait_for_completion(&tc->can_destroy);
4160 mutex_lock(&dm_thin_pool_table.mutex);
4162 __pool_dec(tc->pool);
4163 dm_pool_close_thin_device(tc->td);
4164 dm_put_device(ti, tc->pool_dev);
4165 if (tc->origin_dev)
4166 dm_put_device(ti, tc->origin_dev);
4167 kfree(tc);
4169 mutex_unlock(&dm_thin_pool_table.mutex);
4173 * Thin target parameters:
4175 * <pool_dev> <dev_id> [origin_dev]
4177 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4178 * dev_id: the internal device identifier
4179 * origin_dev: a device external to the pool that should act as the origin
4181 * If the pool device has discards disabled, they get disabled for the thin
4182 * device as well.
4184 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4186 int r;
4187 struct thin_c *tc;
4188 struct dm_dev *pool_dev, *origin_dev;
4189 struct mapped_device *pool_md;
4191 mutex_lock(&dm_thin_pool_table.mutex);
4193 if (argc != 2 && argc != 3) {
4194 ti->error = "Invalid argument count";
4195 r = -EINVAL;
4196 goto out_unlock;
4199 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4200 if (!tc) {
4201 ti->error = "Out of memory";
4202 r = -ENOMEM;
4203 goto out_unlock;
4205 tc->thin_md = dm_table_get_md(ti->table);
4206 spin_lock_init(&tc->lock);
4207 INIT_LIST_HEAD(&tc->deferred_cells);
4208 bio_list_init(&tc->deferred_bio_list);
4209 bio_list_init(&tc->retry_on_resume_list);
4210 tc->sort_bio_list = RB_ROOT;
4212 if (argc == 3) {
4213 if (!strcmp(argv[0], argv[2])) {
4214 ti->error = "Error setting origin device";
4215 r = -EINVAL;
4216 goto bad_origin_dev;
4219 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4220 if (r) {
4221 ti->error = "Error opening origin device";
4222 goto bad_origin_dev;
4224 tc->origin_dev = origin_dev;
4227 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4228 if (r) {
4229 ti->error = "Error opening pool device";
4230 goto bad_pool_dev;
4232 tc->pool_dev = pool_dev;
4234 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4235 ti->error = "Invalid device id";
4236 r = -EINVAL;
4237 goto bad_common;
4240 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4241 if (!pool_md) {
4242 ti->error = "Couldn't get pool mapped device";
4243 r = -EINVAL;
4244 goto bad_common;
4247 tc->pool = __pool_table_lookup(pool_md);
4248 if (!tc->pool) {
4249 ti->error = "Couldn't find pool object";
4250 r = -EINVAL;
4251 goto bad_pool_lookup;
4253 __pool_inc(tc->pool);
4255 if (get_pool_mode(tc->pool) == PM_FAIL) {
4256 ti->error = "Couldn't open thin device, Pool is in fail mode";
4257 r = -EINVAL;
4258 goto bad_pool;
4261 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4262 if (r) {
4263 ti->error = "Couldn't open thin internal device";
4264 goto bad_pool;
4267 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4268 if (r)
4269 goto bad;
4271 ti->num_flush_bios = 1;
4272 ti->limit_swap_bios = true;
4273 ti->flush_supported = true;
4274 ti->accounts_remapped_io = true;
4275 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4277 /* In case the pool supports discards, pass them on. */
4278 if (tc->pool->pf.discard_enabled) {
4279 ti->discards_supported = true;
4280 ti->num_discard_bios = 1;
4281 ti->max_discard_granularity = true;
4284 mutex_unlock(&dm_thin_pool_table.mutex);
4286 spin_lock_irq(&tc->pool->lock);
4287 if (tc->pool->suspended) {
4288 spin_unlock_irq(&tc->pool->lock);
4289 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4290 ti->error = "Unable to activate thin device while pool is suspended";
4291 r = -EINVAL;
4292 goto bad;
4294 refcount_set(&tc->refcount, 1);
4295 init_completion(&tc->can_destroy);
4296 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4297 spin_unlock_irq(&tc->pool->lock);
4299 * This synchronize_rcu() call is needed here otherwise we risk a
4300 * wake_worker() call finding no bios to process (because the newly
4301 * added tc isn't yet visible). So this reduces latency since we
4302 * aren't then dependent on the periodic commit to wake_worker().
4304 synchronize_rcu();
4306 dm_put(pool_md);
4308 return 0;
4310 bad:
4311 dm_pool_close_thin_device(tc->td);
4312 bad_pool:
4313 __pool_dec(tc->pool);
4314 bad_pool_lookup:
4315 dm_put(pool_md);
4316 bad_common:
4317 dm_put_device(ti, tc->pool_dev);
4318 bad_pool_dev:
4319 if (tc->origin_dev)
4320 dm_put_device(ti, tc->origin_dev);
4321 bad_origin_dev:
4322 kfree(tc);
4323 out_unlock:
4324 mutex_unlock(&dm_thin_pool_table.mutex);
4326 return r;
4329 static int thin_map(struct dm_target *ti, struct bio *bio)
4331 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4333 return thin_bio_map(ti, bio);
4336 static int thin_endio(struct dm_target *ti, struct bio *bio,
4337 blk_status_t *err)
4339 unsigned long flags;
4340 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4341 struct list_head work;
4342 struct dm_thin_new_mapping *m, *tmp;
4343 struct pool *pool = h->tc->pool;
4345 if (h->shared_read_entry) {
4346 INIT_LIST_HEAD(&work);
4347 dm_deferred_entry_dec(h->shared_read_entry, &work);
4349 spin_lock_irqsave(&pool->lock, flags);
4350 list_for_each_entry_safe(m, tmp, &work, list) {
4351 list_del(&m->list);
4352 __complete_mapping_preparation(m);
4354 spin_unlock_irqrestore(&pool->lock, flags);
4357 if (h->all_io_entry) {
4358 INIT_LIST_HEAD(&work);
4359 dm_deferred_entry_dec(h->all_io_entry, &work);
4360 if (!list_empty(&work)) {
4361 spin_lock_irqsave(&pool->lock, flags);
4362 list_for_each_entry_safe(m, tmp, &work, list)
4363 list_add_tail(&m->list, &pool->prepared_discards);
4364 spin_unlock_irqrestore(&pool->lock, flags);
4365 wake_worker(pool);
4369 if (h->cell)
4370 cell_defer_no_holder(h->tc, h->cell);
4372 return DM_ENDIO_DONE;
4375 static void thin_presuspend(struct dm_target *ti)
4377 struct thin_c *tc = ti->private;
4379 if (dm_noflush_suspending(ti))
4380 noflush_work(tc, do_noflush_start);
4383 static void thin_postsuspend(struct dm_target *ti)
4385 struct thin_c *tc = ti->private;
4388 * The dm_noflush_suspending flag has been cleared by now, so
4389 * unfortunately we must always run this.
4391 noflush_work(tc, do_noflush_stop);
4394 static int thin_preresume(struct dm_target *ti)
4396 struct thin_c *tc = ti->private;
4398 if (tc->origin_dev)
4399 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4401 return 0;
4405 * <nr mapped sectors> <highest mapped sector>
4407 static void thin_status(struct dm_target *ti, status_type_t type,
4408 unsigned int status_flags, char *result, unsigned int maxlen)
4410 int r;
4411 ssize_t sz = 0;
4412 dm_block_t mapped, highest;
4413 char buf[BDEVNAME_SIZE];
4414 struct thin_c *tc = ti->private;
4416 if (get_pool_mode(tc->pool) == PM_FAIL) {
4417 DMEMIT("Fail");
4418 return;
4421 if (!tc->td)
4422 DMEMIT("-");
4423 else {
4424 switch (type) {
4425 case STATUSTYPE_INFO:
4426 r = dm_thin_get_mapped_count(tc->td, &mapped);
4427 if (r) {
4428 DMERR("dm_thin_get_mapped_count returned %d", r);
4429 goto err;
4432 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4433 if (r < 0) {
4434 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4435 goto err;
4438 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4439 if (r)
4440 DMEMIT("%llu", ((highest + 1) *
4441 tc->pool->sectors_per_block) - 1);
4442 else
4443 DMEMIT("-");
4444 break;
4446 case STATUSTYPE_TABLE:
4447 DMEMIT("%s %lu",
4448 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4449 (unsigned long) tc->dev_id);
4450 if (tc->origin_dev)
4451 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4452 break;
4454 case STATUSTYPE_IMA:
4455 *result = '\0';
4456 break;
4460 return;
4462 err:
4463 DMEMIT("Error");
4466 static int thin_iterate_devices(struct dm_target *ti,
4467 iterate_devices_callout_fn fn, void *data)
4469 sector_t blocks;
4470 struct thin_c *tc = ti->private;
4471 struct pool *pool = tc->pool;
4474 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4475 * we follow a more convoluted path through to the pool's target.
4477 if (!pool->ti)
4478 return 0; /* nothing is bound */
4480 blocks = pool->ti->len;
4481 (void) sector_div(blocks, pool->sectors_per_block);
4482 if (blocks)
4483 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4485 return 0;
4488 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4490 struct thin_c *tc = ti->private;
4491 struct pool *pool = tc->pool;
4493 if (pool->pf.discard_enabled) {
4494 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4495 limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4499 static struct target_type thin_target = {
4500 .name = "thin",
4501 .version = {1, 23, 0},
4502 .module = THIS_MODULE,
4503 .ctr = thin_ctr,
4504 .dtr = thin_dtr,
4505 .map = thin_map,
4506 .end_io = thin_endio,
4507 .preresume = thin_preresume,
4508 .presuspend = thin_presuspend,
4509 .postsuspend = thin_postsuspend,
4510 .status = thin_status,
4511 .iterate_devices = thin_iterate_devices,
4512 .io_hints = thin_io_hints,
4515 /*----------------------------------------------------------------*/
4517 static int __init dm_thin_init(void)
4519 int r = -ENOMEM;
4521 pool_table_init();
4523 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4524 if (!_new_mapping_cache)
4525 return r;
4527 r = dm_register_target(&thin_target);
4528 if (r)
4529 goto bad_new_mapping_cache;
4531 r = dm_register_target(&pool_target);
4532 if (r)
4533 goto bad_thin_target;
4535 return 0;
4537 bad_thin_target:
4538 dm_unregister_target(&thin_target);
4539 bad_new_mapping_cache:
4540 kmem_cache_destroy(_new_mapping_cache);
4542 return r;
4545 static void dm_thin_exit(void)
4547 dm_unregister_target(&thin_target);
4548 dm_unregister_target(&pool_target);
4550 kmem_cache_destroy(_new_mapping_cache);
4552 pool_table_exit();
4555 module_init(dm_thin_init);
4556 module_exit(dm_thin_exit);
4558 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4559 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4561 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4562 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4563 MODULE_LICENSE("GPL");