Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / md / dm-vdo / slab-depot.c
blob8f0a35c63af686df306880d92a4ae3a6b03578e9
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2023 Red Hat
4 */
6 #include "slab-depot.h"
8 #include <linux/atomic.h>
9 #include <linux/bio.h>
10 #include <linux/err.h>
11 #include <linux/log2.h>
12 #include <linux/min_heap.h>
13 #include <linux/minmax.h>
15 #include "logger.h"
16 #include "memory-alloc.h"
17 #include "numeric.h"
18 #include "permassert.h"
19 #include "string-utils.h"
21 #include "action-manager.h"
22 #include "admin-state.h"
23 #include "completion.h"
24 #include "constants.h"
25 #include "data-vio.h"
26 #include "encodings.h"
27 #include "io-submitter.h"
28 #include "physical-zone.h"
29 #include "priority-table.h"
30 #include "recovery-journal.h"
31 #include "repair.h"
32 #include "status-codes.h"
33 #include "types.h"
34 #include "vdo.h"
35 #include "vio.h"
36 #include "wait-queue.h"
38 static const u64 BYTES_PER_WORD = sizeof(u64);
39 static const bool NORMAL_OPERATION = true;
41 /**
42 * get_lock() - Get the lock object for a slab journal block by sequence number.
43 * @journal: vdo_slab journal to retrieve from.
44 * @sequence_number: Sequence number of the block.
46 * Return: The lock object for the given sequence number.
48 static inline struct journal_lock * __must_check get_lock(struct slab_journal *journal,
49 sequence_number_t sequence_number)
51 return &journal->locks[sequence_number % journal->size];
54 static bool is_slab_open(struct vdo_slab *slab)
56 return (!vdo_is_state_quiescing(&slab->state) &&
57 !vdo_is_state_quiescent(&slab->state));
60 /**
61 * must_make_entries_to_flush() - Check whether there are entry waiters which should delay a flush.
62 * @journal: The journal to check.
64 * Return: true if there are no entry waiters, or if the slab is unrecovered.
66 static inline bool __must_check must_make_entries_to_flush(struct slab_journal *journal)
68 return ((journal->slab->status != VDO_SLAB_REBUILDING) &&
69 vdo_waitq_has_waiters(&journal->entry_waiters));
72 /**
73 * is_reaping() - Check whether a reap is currently in progress.
74 * @journal: The journal which may be reaping.
76 * Return: true if the journal is reaping.
78 static inline bool __must_check is_reaping(struct slab_journal *journal)
80 return (journal->head != journal->unreapable);
83 /**
84 * initialize_tail_block() - Initialize tail block as a new block.
85 * @journal: The journal whose tail block is being initialized.
87 static void initialize_tail_block(struct slab_journal *journal)
89 struct slab_journal_block_header *header = &journal->tail_header;
91 header->sequence_number = journal->tail;
92 header->entry_count = 0;
93 header->has_block_map_increments = false;
96 /**
97 * initialize_journal_state() - Set all journal fields appropriately to start journaling.
98 * @journal: The journal to be reset, based on its tail sequence number.
100 static void initialize_journal_state(struct slab_journal *journal)
102 journal->unreapable = journal->head;
103 journal->reap_lock = get_lock(journal, journal->unreapable);
104 journal->next_commit = journal->tail;
105 journal->summarized = journal->last_summarized = journal->tail;
106 initialize_tail_block(journal);
110 * block_is_full() - Check whether a journal block is full.
111 * @journal: The slab journal for the block.
113 * Return: true if the tail block is full.
115 static bool __must_check block_is_full(struct slab_journal *journal)
117 journal_entry_count_t count = journal->tail_header.entry_count;
119 return (journal->tail_header.has_block_map_increments ?
120 (journal->full_entries_per_block == count) :
121 (journal->entries_per_block == count));
124 static void add_entries(struct slab_journal *journal);
125 static void update_tail_block_location(struct slab_journal *journal);
126 static void release_journal_locks(struct vdo_waiter *waiter, void *context);
129 * is_slab_journal_blank() - Check whether a slab's journal is blank.
131 * A slab journal is blank if it has never had any entries recorded in it.
133 * Return: true if the slab's journal has never been modified.
135 static bool is_slab_journal_blank(const struct vdo_slab *slab)
137 return ((slab->journal.tail == 1) &&
138 (slab->journal.tail_header.entry_count == 0));
142 * mark_slab_journal_dirty() - Put a slab journal on the dirty ring of its allocator in the correct
143 * order.
144 * @journal: The journal to be marked dirty.
145 * @lock: The recovery journal lock held by the slab journal.
147 static void mark_slab_journal_dirty(struct slab_journal *journal, sequence_number_t lock)
149 struct slab_journal *dirty_journal;
150 struct list_head *dirty_list = &journal->slab->allocator->dirty_slab_journals;
152 VDO_ASSERT_LOG_ONLY(journal->recovery_lock == 0, "slab journal was clean");
154 journal->recovery_lock = lock;
155 list_for_each_entry_reverse(dirty_journal, dirty_list, dirty_entry) {
156 if (dirty_journal->recovery_lock <= journal->recovery_lock)
157 break;
160 list_move_tail(&journal->dirty_entry, dirty_journal->dirty_entry.next);
163 static void mark_slab_journal_clean(struct slab_journal *journal)
165 journal->recovery_lock = 0;
166 list_del_init(&journal->dirty_entry);
169 static void check_if_slab_drained(struct vdo_slab *slab)
171 bool read_only;
172 struct slab_journal *journal = &slab->journal;
173 const struct admin_state_code *code;
175 if (!vdo_is_state_draining(&slab->state) ||
176 must_make_entries_to_flush(journal) ||
177 is_reaping(journal) ||
178 journal->waiting_to_commit ||
179 !list_empty(&journal->uncommitted_blocks) ||
180 journal->updating_slab_summary ||
181 (slab->active_count > 0))
182 return;
184 /* When not suspending or recovering, the slab must be clean. */
185 code = vdo_get_admin_state_code(&slab->state);
186 read_only = vdo_is_read_only(slab->allocator->depot->vdo);
187 if (!read_only &&
188 vdo_waitq_has_waiters(&slab->dirty_blocks) &&
189 (code != VDO_ADMIN_STATE_SUSPENDING) &&
190 (code != VDO_ADMIN_STATE_RECOVERING))
191 return;
193 vdo_finish_draining_with_result(&slab->state,
194 (read_only ? VDO_READ_ONLY : VDO_SUCCESS));
197 /* FULLNESS HINT COMPUTATION */
200 * compute_fullness_hint() - Translate a slab's free block count into a 'fullness hint' that can be
201 * stored in a slab_summary_entry's 7 bits that are dedicated to its free
202 * count.
203 * @depot: The depot whose summary being updated.
204 * @free_blocks: The number of free blocks.
206 * Note: the number of free blocks must be strictly less than 2^23 blocks, even though
207 * theoretically slabs could contain precisely 2^23 blocks; there is an assumption that at least
208 * one block is used by metadata. This assumption is necessary; otherwise, the fullness hint might
209 * overflow. The fullness hint formula is roughly (fullness >> 16) & 0x7f, but (2^23 >> 16) & 0x7f
210 * is 0, which would make it impossible to distinguish completely full from completely empty.
212 * Return: A fullness hint, which can be stored in 7 bits.
214 static u8 __must_check compute_fullness_hint(struct slab_depot *depot,
215 block_count_t free_blocks)
217 block_count_t hint;
219 VDO_ASSERT_LOG_ONLY((free_blocks < (1 << 23)), "free blocks must be less than 2^23");
221 if (free_blocks == 0)
222 return 0;
224 hint = free_blocks >> depot->hint_shift;
225 return ((hint == 0) ? 1 : hint);
229 * check_summary_drain_complete() - Check whether an allocators summary has finished draining.
231 static void check_summary_drain_complete(struct block_allocator *allocator)
233 if (!vdo_is_state_draining(&allocator->summary_state) ||
234 (allocator->summary_write_count > 0))
235 return;
237 vdo_finish_operation(&allocator->summary_state,
238 (vdo_is_read_only(allocator->depot->vdo) ?
239 VDO_READ_ONLY : VDO_SUCCESS));
243 * notify_summary_waiters() - Wake all the waiters in a given queue.
244 * @allocator: The block allocator summary which owns the queue.
245 * @queue: The queue to notify.
247 static void notify_summary_waiters(struct block_allocator *allocator,
248 struct vdo_wait_queue *queue)
250 int result = (vdo_is_read_only(allocator->depot->vdo) ?
251 VDO_READ_ONLY : VDO_SUCCESS);
253 vdo_waitq_notify_all_waiters(queue, NULL, &result);
256 static void launch_write(struct slab_summary_block *summary_block);
259 * finish_updating_slab_summary_block() - Finish processing a block which attempted to write,
260 * whether or not the attempt succeeded.
261 * @block: The block.
263 static void finish_updating_slab_summary_block(struct slab_summary_block *block)
265 notify_summary_waiters(block->allocator, &block->current_update_waiters);
266 block->writing = false;
267 block->allocator->summary_write_count--;
268 if (vdo_waitq_has_waiters(&block->next_update_waiters))
269 launch_write(block);
270 else
271 check_summary_drain_complete(block->allocator);
275 * finish_update() - This is the callback for a successful summary block write.
276 * @completion: The write vio.
278 static void finish_update(struct vdo_completion *completion)
280 struct slab_summary_block *block =
281 container_of(as_vio(completion), struct slab_summary_block, vio);
283 atomic64_inc(&block->allocator->depot->summary_statistics.blocks_written);
284 finish_updating_slab_summary_block(block);
288 * handle_write_error() - Handle an error writing a slab summary block.
289 * @completion: The write VIO.
291 static void handle_write_error(struct vdo_completion *completion)
293 struct slab_summary_block *block =
294 container_of(as_vio(completion), struct slab_summary_block, vio);
296 vio_record_metadata_io_error(as_vio(completion));
297 vdo_enter_read_only_mode(completion->vdo, completion->result);
298 finish_updating_slab_summary_block(block);
301 static void write_slab_summary_endio(struct bio *bio)
303 struct vio *vio = bio->bi_private;
304 struct slab_summary_block *block =
305 container_of(vio, struct slab_summary_block, vio);
307 continue_vio_after_io(vio, finish_update, block->allocator->thread_id);
311 * launch_write() - Write a slab summary block unless it is currently out for writing.
312 * @block: The block that needs to be committed.
314 static void launch_write(struct slab_summary_block *block)
316 struct block_allocator *allocator = block->allocator;
317 struct slab_depot *depot = allocator->depot;
318 physical_block_number_t pbn;
320 if (block->writing)
321 return;
323 allocator->summary_write_count++;
324 vdo_waitq_transfer_all_waiters(&block->next_update_waiters,
325 &block->current_update_waiters);
326 block->writing = true;
328 if (vdo_is_read_only(depot->vdo)) {
329 finish_updating_slab_summary_block(block);
330 return;
333 memcpy(block->outgoing_entries, block->entries, VDO_BLOCK_SIZE);
336 * Flush before writing to ensure that the slab journal tail blocks and reference updates
337 * covered by this summary update are stable. Otherwise, a subsequent recovery could
338 * encounter a slab summary update that refers to a slab journal tail block that has not
339 * actually been written. In such cases, the slab journal referenced will be treated as
340 * empty, causing any data within the slab which predates the existing recovery journal
341 * entries to be lost.
343 pbn = (depot->summary_origin +
344 (VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE * allocator->zone_number) +
345 block->index);
346 vdo_submit_metadata_vio(&block->vio, pbn, write_slab_summary_endio,
347 handle_write_error, REQ_OP_WRITE | REQ_PREFLUSH);
351 * update_slab_summary_entry() - Update the entry for a slab.
352 * @slab: The slab whose entry is to be updated
353 * @waiter: The waiter that is updating the summary.
354 * @tail_block_offset: The offset of the slab journal's tail block.
355 * @load_ref_counts: Whether the reference counts must be loaded from disk on the vdo load.
356 * @is_clean: Whether the slab is clean.
357 * @free_blocks: The number of free blocks.
359 static void update_slab_summary_entry(struct vdo_slab *slab, struct vdo_waiter *waiter,
360 tail_block_offset_t tail_block_offset,
361 bool load_ref_counts, bool is_clean,
362 block_count_t free_blocks)
364 u8 index = slab->slab_number / VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK;
365 struct block_allocator *allocator = slab->allocator;
366 struct slab_summary_block *block = &allocator->summary_blocks[index];
367 int result;
368 struct slab_summary_entry *entry;
370 if (vdo_is_read_only(block->vio.completion.vdo)) {
371 result = VDO_READ_ONLY;
372 waiter->callback(waiter, &result);
373 return;
376 if (vdo_is_state_draining(&allocator->summary_state) ||
377 vdo_is_state_quiescent(&allocator->summary_state)) {
378 result = VDO_INVALID_ADMIN_STATE;
379 waiter->callback(waiter, &result);
380 return;
383 entry = &allocator->summary_entries[slab->slab_number];
384 *entry = (struct slab_summary_entry) {
385 .tail_block_offset = tail_block_offset,
386 .load_ref_counts = (entry->load_ref_counts || load_ref_counts),
387 .is_dirty = !is_clean,
388 .fullness_hint = compute_fullness_hint(allocator->depot, free_blocks),
390 vdo_waitq_enqueue_waiter(&block->next_update_waiters, waiter);
391 launch_write(block);
395 * finish_reaping() - Actually advance the head of the journal now that any necessary flushes are
396 * complete.
397 * @journal: The journal to be reaped.
399 static void finish_reaping(struct slab_journal *journal)
401 journal->head = journal->unreapable;
402 add_entries(journal);
403 check_if_slab_drained(journal->slab);
406 static void reap_slab_journal(struct slab_journal *journal);
409 * complete_reaping() - Finish reaping now that we have flushed the lower layer and then try
410 * reaping again in case we deferred reaping due to an outstanding vio.
411 * @completion: The flush vio.
413 static void complete_reaping(struct vdo_completion *completion)
415 struct slab_journal *journal = completion->parent;
417 return_vio_to_pool(journal->slab->allocator->vio_pool,
418 vio_as_pooled_vio(as_vio(vdo_forget(completion))));
419 finish_reaping(journal);
420 reap_slab_journal(journal);
424 * handle_flush_error() - Handle an error flushing the lower layer.
425 * @completion: The flush vio.
427 static void handle_flush_error(struct vdo_completion *completion)
429 vio_record_metadata_io_error(as_vio(completion));
430 vdo_enter_read_only_mode(completion->vdo, completion->result);
431 complete_reaping(completion);
434 static void flush_endio(struct bio *bio)
436 struct vio *vio = bio->bi_private;
437 struct slab_journal *journal = vio->completion.parent;
439 continue_vio_after_io(vio, complete_reaping,
440 journal->slab->allocator->thread_id);
444 * flush_for_reaping() - A waiter callback for getting a vio with which to flush the lower layer
445 * prior to reaping.
446 * @waiter: The journal as a flush waiter.
447 * @context: The newly acquired flush vio.
449 static void flush_for_reaping(struct vdo_waiter *waiter, void *context)
451 struct slab_journal *journal =
452 container_of(waiter, struct slab_journal, flush_waiter);
453 struct pooled_vio *pooled = context;
454 struct vio *vio = &pooled->vio;
456 vio->completion.parent = journal;
457 vdo_submit_flush_vio(vio, flush_endio, handle_flush_error);
461 * reap_slab_journal() - Conduct a reap on a slab journal to reclaim unreferenced blocks.
462 * @journal: The slab journal.
464 static void reap_slab_journal(struct slab_journal *journal)
466 bool reaped = false;
468 if (is_reaping(journal)) {
469 /* We already have a reap in progress so wait for it to finish. */
470 return;
473 if ((journal->slab->status != VDO_SLAB_REBUILT) ||
474 !vdo_is_state_normal(&journal->slab->state) ||
475 vdo_is_read_only(journal->slab->allocator->depot->vdo)) {
477 * We must not reap in the first two cases, and there's no point in read-only mode.
479 return;
483 * Start reclaiming blocks only when the journal head has no references. Then stop when a
484 * block is referenced or reap reaches the most recently written block, referenced by the
485 * slab summary, which has the sequence number just before the tail.
487 while ((journal->unreapable < journal->tail) && (journal->reap_lock->count == 0)) {
488 reaped = true;
489 journal->unreapable++;
490 journal->reap_lock++;
491 if (journal->reap_lock == &journal->locks[journal->size])
492 journal->reap_lock = &journal->locks[0];
495 if (!reaped)
496 return;
499 * It is never safe to reap a slab journal block without first issuing a flush, regardless
500 * of whether a user flush has been received or not. In the absence of the flush, the
501 * reference block write which released the locks allowing the slab journal to reap may not
502 * be persisted. Although slab summary writes will eventually issue flushes, multiple slab
503 * journal block writes can be issued while previous slab summary updates have not yet been
504 * made. Even though those slab journal block writes will be ignored if the slab summary
505 * update is not persisted, they may still overwrite the to-be-reaped slab journal block
506 * resulting in a loss of reference count updates.
508 journal->flush_waiter.callback = flush_for_reaping;
509 acquire_vio_from_pool(journal->slab->allocator->vio_pool,
510 &journal->flush_waiter);
514 * adjust_slab_journal_block_reference() - Adjust the reference count for a slab journal block.
515 * @journal: The slab journal.
516 * @sequence_number: The journal sequence number of the referenced block.
517 * @adjustment: Amount to adjust the reference counter.
519 * Note that when the adjustment is negative, the slab journal will be reaped.
521 static void adjust_slab_journal_block_reference(struct slab_journal *journal,
522 sequence_number_t sequence_number,
523 int adjustment)
525 struct journal_lock *lock;
527 if (sequence_number == 0)
528 return;
530 if (journal->slab->status == VDO_SLAB_REPLAYING) {
531 /* Locks should not be used during offline replay. */
532 return;
535 VDO_ASSERT_LOG_ONLY((adjustment != 0), "adjustment must be non-zero");
536 lock = get_lock(journal, sequence_number);
537 if (adjustment < 0) {
538 VDO_ASSERT_LOG_ONLY((-adjustment <= lock->count),
539 "adjustment %d of lock count %u for slab journal block %llu must not underflow",
540 adjustment, lock->count,
541 (unsigned long long) sequence_number);
544 lock->count += adjustment;
545 if (lock->count == 0)
546 reap_slab_journal(journal);
550 * release_journal_locks() - Callback invoked after a slab summary update completes.
551 * @waiter: The slab summary waiter that has just been notified.
552 * @context: The result code of the update.
554 * Registered in the constructor on behalf of update_tail_block_location().
556 * Implements waiter_callback_fn.
558 static void release_journal_locks(struct vdo_waiter *waiter, void *context)
560 sequence_number_t first, i;
561 struct slab_journal *journal =
562 container_of(waiter, struct slab_journal, slab_summary_waiter);
563 int result = *((int *) context);
565 if (result != VDO_SUCCESS) {
566 if (result != VDO_READ_ONLY) {
568 * Don't bother logging what might be lots of errors if we are already in
569 * read-only mode.
571 vdo_log_error_strerror(result, "failed slab summary update %llu",
572 (unsigned long long) journal->summarized);
575 journal->updating_slab_summary = false;
576 vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result);
577 check_if_slab_drained(journal->slab);
578 return;
581 if (journal->partial_write_in_progress && (journal->summarized == journal->tail)) {
582 journal->partial_write_in_progress = false;
583 add_entries(journal);
586 first = journal->last_summarized;
587 journal->last_summarized = journal->summarized;
588 for (i = journal->summarized - 1; i >= first; i--) {
590 * Release the lock the summarized block held on the recovery journal. (During
591 * replay, recovery_start will always be 0.)
593 if (journal->recovery_journal != NULL) {
594 zone_count_t zone_number = journal->slab->allocator->zone_number;
595 struct journal_lock *lock = get_lock(journal, i);
597 vdo_release_recovery_journal_block_reference(journal->recovery_journal,
598 lock->recovery_start,
599 VDO_ZONE_TYPE_PHYSICAL,
600 zone_number);
604 * Release our own lock against reaping for blocks that are committed. (This
605 * function will not change locks during replay.)
607 adjust_slab_journal_block_reference(journal, i, -1);
610 journal->updating_slab_summary = false;
612 reap_slab_journal(journal);
614 /* Check if the slab summary needs to be updated again. */
615 update_tail_block_location(journal);
619 * update_tail_block_location() - Update the tail block location in the slab summary, if necessary.
620 * @journal: The slab journal that is updating its tail block location.
622 static void update_tail_block_location(struct slab_journal *journal)
624 block_count_t free_block_count;
625 struct vdo_slab *slab = journal->slab;
627 if (journal->updating_slab_summary ||
628 vdo_is_read_only(journal->slab->allocator->depot->vdo) ||
629 (journal->last_summarized >= journal->next_commit)) {
630 check_if_slab_drained(slab);
631 return;
634 if (slab->status != VDO_SLAB_REBUILT) {
635 u8 hint = slab->allocator->summary_entries[slab->slab_number].fullness_hint;
637 free_block_count = ((block_count_t) hint) << slab->allocator->depot->hint_shift;
638 } else {
639 free_block_count = slab->free_blocks;
642 journal->summarized = journal->next_commit;
643 journal->updating_slab_summary = true;
646 * Update slab summary as dirty.
647 * vdo_slab journal can only reap past sequence number 1 when all the ref counts for this
648 * slab have been written to the layer. Therefore, indicate that the ref counts must be
649 * loaded when the journal head has reaped past sequence number 1.
651 update_slab_summary_entry(slab, &journal->slab_summary_waiter,
652 journal->summarized % journal->size,
653 (journal->head > 1), false, free_block_count);
657 * reopen_slab_journal() - Reopen a slab's journal by emptying it and then adding pending entries.
659 static void reopen_slab_journal(struct vdo_slab *slab)
661 struct slab_journal *journal = &slab->journal;
662 sequence_number_t block;
664 VDO_ASSERT_LOG_ONLY(journal->tail_header.entry_count == 0,
665 "vdo_slab journal's active block empty before reopening");
666 journal->head = journal->tail;
667 initialize_journal_state(journal);
669 /* Ensure no locks are spuriously held on an empty journal. */
670 for (block = 1; block <= journal->size; block++) {
671 VDO_ASSERT_LOG_ONLY((get_lock(journal, block)->count == 0),
672 "Scrubbed journal's block %llu is not locked",
673 (unsigned long long) block);
676 add_entries(journal);
679 static sequence_number_t get_committing_sequence_number(const struct pooled_vio *vio)
681 const struct packed_slab_journal_block *block =
682 (const struct packed_slab_journal_block *) vio->vio.data;
684 return __le64_to_cpu(block->header.sequence_number);
688 * complete_write() - Handle post-commit processing.
689 * @completion: The write vio as a completion.
691 * This is the callback registered by write_slab_journal_block().
693 static void complete_write(struct vdo_completion *completion)
695 int result = completion->result;
696 struct pooled_vio *pooled = vio_as_pooled_vio(as_vio(completion));
697 struct slab_journal *journal = completion->parent;
698 sequence_number_t committed = get_committing_sequence_number(pooled);
700 list_del_init(&pooled->list_entry);
701 return_vio_to_pool(journal->slab->allocator->vio_pool, vdo_forget(pooled));
703 if (result != VDO_SUCCESS) {
704 vio_record_metadata_io_error(as_vio(completion));
705 vdo_log_error_strerror(result, "cannot write slab journal block %llu",
706 (unsigned long long) committed);
707 vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result);
708 check_if_slab_drained(journal->slab);
709 return;
712 WRITE_ONCE(journal->events->blocks_written, journal->events->blocks_written + 1);
714 if (list_empty(&journal->uncommitted_blocks)) {
715 /* If no blocks are outstanding, then the commit point is at the tail. */
716 journal->next_commit = journal->tail;
717 } else {
718 /* The commit point is always the beginning of the oldest incomplete block. */
719 pooled = container_of(journal->uncommitted_blocks.next,
720 struct pooled_vio, list_entry);
721 journal->next_commit = get_committing_sequence_number(pooled);
724 update_tail_block_location(journal);
727 static void write_slab_journal_endio(struct bio *bio)
729 struct vio *vio = bio->bi_private;
730 struct slab_journal *journal = vio->completion.parent;
732 continue_vio_after_io(vio, complete_write, journal->slab->allocator->thread_id);
736 * write_slab_journal_block() - Write a slab journal block.
737 * @waiter: The vio pool waiter which was just notified.
738 * @context: The vio pool entry for the write.
740 * Callback from acquire_vio_from_pool() registered in commit_tail().
742 static void write_slab_journal_block(struct vdo_waiter *waiter, void *context)
744 struct pooled_vio *pooled = context;
745 struct vio *vio = &pooled->vio;
746 struct slab_journal *journal =
747 container_of(waiter, struct slab_journal, resource_waiter);
748 struct slab_journal_block_header *header = &journal->tail_header;
749 int unused_entries = journal->entries_per_block - header->entry_count;
750 physical_block_number_t block_number;
751 const struct admin_state_code *operation;
753 header->head = journal->head;
754 list_add_tail(&pooled->list_entry, &journal->uncommitted_blocks);
755 vdo_pack_slab_journal_block_header(header, &journal->block->header);
757 /* Copy the tail block into the vio. */
758 memcpy(pooled->vio.data, journal->block, VDO_BLOCK_SIZE);
760 VDO_ASSERT_LOG_ONLY(unused_entries >= 0, "vdo_slab journal block is not overfull");
761 if (unused_entries > 0) {
763 * Release the per-entry locks for any unused entries in the block we are about to
764 * write.
766 adjust_slab_journal_block_reference(journal, header->sequence_number,
767 -unused_entries);
768 journal->partial_write_in_progress = !block_is_full(journal);
771 block_number = journal->slab->journal_origin +
772 (header->sequence_number % journal->size);
773 vio->completion.parent = journal;
776 * This block won't be read in recovery until the slab summary is updated to refer to it.
777 * The slab summary update does a flush which is sufficient to protect us from corruption
778 * due to out of order slab journal, reference block, or block map writes.
780 vdo_submit_metadata_vio(vdo_forget(vio), block_number, write_slab_journal_endio,
781 complete_write, REQ_OP_WRITE);
783 /* Since the write is submitted, the tail block structure can be reused. */
784 journal->tail++;
785 initialize_tail_block(journal);
786 journal->waiting_to_commit = false;
788 operation = vdo_get_admin_state_code(&journal->slab->state);
789 if (operation == VDO_ADMIN_STATE_WAITING_FOR_RECOVERY) {
790 vdo_finish_operation(&journal->slab->state,
791 (vdo_is_read_only(journal->slab->allocator->depot->vdo) ?
792 VDO_READ_ONLY : VDO_SUCCESS));
793 return;
796 add_entries(journal);
800 * commit_tail() - Commit the tail block of the slab journal.
801 * @journal: The journal whose tail block should be committed.
803 static void commit_tail(struct slab_journal *journal)
805 if ((journal->tail_header.entry_count == 0) && must_make_entries_to_flush(journal)) {
807 * There are no entries at the moment, but there are some waiters, so defer
808 * initiating the flush until those entries are ready to write.
810 return;
813 if (vdo_is_read_only(journal->slab->allocator->depot->vdo) ||
814 journal->waiting_to_commit ||
815 (journal->tail_header.entry_count == 0)) {
817 * There is nothing to do since the tail block is empty, or writing, or the journal
818 * is in read-only mode.
820 return;
824 * Since we are about to commit the tail block, this journal no longer needs to be on the
825 * ring of journals which the recovery journal might ask to commit.
827 mark_slab_journal_clean(journal);
829 journal->waiting_to_commit = true;
831 journal->resource_waiter.callback = write_slab_journal_block;
832 acquire_vio_from_pool(journal->slab->allocator->vio_pool,
833 &journal->resource_waiter);
837 * encode_slab_journal_entry() - Encode a slab journal entry.
838 * @tail_header: The unpacked header for the block.
839 * @payload: The journal block payload to hold the entry.
840 * @sbn: The slab block number of the entry to encode.
841 * @operation: The type of the entry.
842 * @increment: True if this is an increment.
844 * Exposed for unit tests.
846 static void encode_slab_journal_entry(struct slab_journal_block_header *tail_header,
847 slab_journal_payload *payload,
848 slab_block_number sbn,
849 enum journal_operation operation,
850 bool increment)
852 journal_entry_count_t entry_number = tail_header->entry_count++;
854 if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) {
855 if (!tail_header->has_block_map_increments) {
856 memset(payload->full_entries.entry_types, 0,
857 VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE);
858 tail_header->has_block_map_increments = true;
861 payload->full_entries.entry_types[entry_number / 8] |=
862 ((u8)1 << (entry_number % 8));
865 vdo_pack_slab_journal_entry(&payload->entries[entry_number], sbn, increment);
869 * expand_journal_point() - Convert a recovery journal journal_point which refers to both an
870 * increment and a decrement to a single point which refers to one or the
871 * other.
872 * @recovery_point: The journal point to convert.
873 * @increment: Whether the current entry is an increment.
875 * Return: The expanded journal point
877 * Because each data_vio has but a single recovery journal point, but may need to make both
878 * increment and decrement entries in the same slab journal. In order to distinguish the two
879 * entries, the entry count of the expanded journal point is twice the actual recovery journal
880 * entry count for increments, and one more than that for decrements.
882 static struct journal_point expand_journal_point(struct journal_point recovery_point,
883 bool increment)
885 recovery_point.entry_count *= 2;
886 if (!increment)
887 recovery_point.entry_count++;
889 return recovery_point;
893 * add_entry() - Actually add an entry to the slab journal, potentially firing off a write if a
894 * block becomes full.
895 * @journal: The slab journal to append to.
896 * @pbn: The pbn being adjusted.
897 * @operation: The type of entry to make.
898 * @increment: True if this is an increment.
899 * @recovery_point: The expanded recovery point.
901 * This function is synchronous.
903 static void add_entry(struct slab_journal *journal, physical_block_number_t pbn,
904 enum journal_operation operation, bool increment,
905 struct journal_point recovery_point)
907 struct packed_slab_journal_block *block = journal->block;
908 int result;
910 result = VDO_ASSERT(vdo_before_journal_point(&journal->tail_header.recovery_point,
911 &recovery_point),
912 "recovery journal point is monotonically increasing, recovery point: %llu.%u, block recovery point: %llu.%u",
913 (unsigned long long) recovery_point.sequence_number,
914 recovery_point.entry_count,
915 (unsigned long long) journal->tail_header.recovery_point.sequence_number,
916 journal->tail_header.recovery_point.entry_count);
917 if (result != VDO_SUCCESS) {
918 vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result);
919 return;
922 if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) {
923 result = VDO_ASSERT((journal->tail_header.entry_count <
924 journal->full_entries_per_block),
925 "block has room for full entries");
926 if (result != VDO_SUCCESS) {
927 vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo,
928 result);
929 return;
933 encode_slab_journal_entry(&journal->tail_header, &block->payload,
934 pbn - journal->slab->start, operation, increment);
935 journal->tail_header.recovery_point = recovery_point;
936 if (block_is_full(journal))
937 commit_tail(journal);
940 static inline block_count_t journal_length(const struct slab_journal *journal)
942 return journal->tail - journal->head;
946 * vdo_attempt_replay_into_slab() - Replay a recovery journal entry into a slab's journal.
947 * @slab: The slab to play into.
948 * @pbn: The PBN for the entry.
949 * @operation: The type of entry to add.
950 * @increment: True if this entry is an increment.
951 * @recovery_point: The recovery journal point corresponding to this entry.
952 * @parent: The completion to notify when there is space to add the entry if the entry could not be
953 * added immediately.
955 * Return: true if the entry was added immediately.
957 bool vdo_attempt_replay_into_slab(struct vdo_slab *slab, physical_block_number_t pbn,
958 enum journal_operation operation, bool increment,
959 struct journal_point *recovery_point,
960 struct vdo_completion *parent)
962 struct slab_journal *journal = &slab->journal;
963 struct slab_journal_block_header *header = &journal->tail_header;
964 struct journal_point expanded = expand_journal_point(*recovery_point, increment);
966 /* Only accept entries after the current recovery point. */
967 if (!vdo_before_journal_point(&journal->tail_header.recovery_point, &expanded))
968 return true;
970 if ((header->entry_count >= journal->full_entries_per_block) &&
971 (header->has_block_map_increments || (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING))) {
973 * The tail block does not have room for the entry we are attempting to add so
974 * commit the tail block now.
976 commit_tail(journal);
979 if (journal->waiting_to_commit) {
980 vdo_start_operation_with_waiter(&journal->slab->state,
981 VDO_ADMIN_STATE_WAITING_FOR_RECOVERY,
982 parent, NULL);
983 return false;
986 if (journal_length(journal) >= journal->size) {
988 * We must have reaped the current head before the crash, since the blocked
989 * threshold keeps us from having more entries than fit in a slab journal; hence we
990 * can just advance the head (and unreapable block), as needed.
992 journal->head++;
993 journal->unreapable++;
996 if (journal->slab->status == VDO_SLAB_REBUILT)
997 journal->slab->status = VDO_SLAB_REPLAYING;
999 add_entry(journal, pbn, operation, increment, expanded);
1000 return true;
1004 * requires_reaping() - Check whether the journal must be reaped before adding new entries.
1005 * @journal: The journal to check.
1007 * Return: true if the journal must be reaped.
1009 static bool requires_reaping(const struct slab_journal *journal)
1011 return (journal_length(journal) >= journal->blocking_threshold);
1014 /** finish_summary_update() - A waiter callback that resets the writing state of a slab. */
1015 static void finish_summary_update(struct vdo_waiter *waiter, void *context)
1017 struct vdo_slab *slab = container_of(waiter, struct vdo_slab, summary_waiter);
1018 int result = *((int *) context);
1020 slab->active_count--;
1022 if ((result != VDO_SUCCESS) && (result != VDO_READ_ONLY)) {
1023 vdo_log_error_strerror(result, "failed to update slab summary");
1024 vdo_enter_read_only_mode(slab->allocator->depot->vdo, result);
1027 check_if_slab_drained(slab);
1030 static void write_reference_block(struct vdo_waiter *waiter, void *context);
1033 * launch_reference_block_write() - Launch the write of a dirty reference block by first acquiring
1034 * a VIO for it from the pool.
1035 * @waiter: The waiter of the block which is starting to write.
1036 * @context: The parent slab of the block.
1038 * This can be asynchronous since the writer will have to wait if all VIOs in the pool are
1039 * currently in use.
1041 static void launch_reference_block_write(struct vdo_waiter *waiter, void *context)
1043 struct vdo_slab *slab = context;
1045 if (vdo_is_read_only(slab->allocator->depot->vdo))
1046 return;
1048 slab->active_count++;
1049 container_of(waiter, struct reference_block, waiter)->is_writing = true;
1050 waiter->callback = write_reference_block;
1051 acquire_vio_from_pool(slab->allocator->vio_pool, waiter);
1054 static void save_dirty_reference_blocks(struct vdo_slab *slab)
1056 vdo_waitq_notify_all_waiters(&slab->dirty_blocks,
1057 launch_reference_block_write, slab);
1058 check_if_slab_drained(slab);
1062 * finish_reference_block_write() - After a reference block has written, clean it, release its
1063 * locks, and return its VIO to the pool.
1064 * @completion: The VIO that just finished writing.
1066 static void finish_reference_block_write(struct vdo_completion *completion)
1068 struct vio *vio = as_vio(completion);
1069 struct pooled_vio *pooled = vio_as_pooled_vio(vio);
1070 struct reference_block *block = completion->parent;
1071 struct vdo_slab *slab = block->slab;
1072 tail_block_offset_t offset;
1074 slab->active_count--;
1076 /* Release the slab journal lock. */
1077 adjust_slab_journal_block_reference(&slab->journal,
1078 block->slab_journal_lock_to_release, -1);
1079 return_vio_to_pool(slab->allocator->vio_pool, pooled);
1082 * We can't clear the is_writing flag earlier as releasing the slab journal lock may cause
1083 * us to be dirtied again, but we don't want to double enqueue.
1085 block->is_writing = false;
1087 if (vdo_is_read_only(completion->vdo)) {
1088 check_if_slab_drained(slab);
1089 return;
1092 /* Re-queue the block if it was re-dirtied while it was writing. */
1093 if (block->is_dirty) {
1094 vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter);
1095 if (vdo_is_state_draining(&slab->state)) {
1096 /* We must be saving, and this block will otherwise not be relaunched. */
1097 save_dirty_reference_blocks(slab);
1100 return;
1104 * Mark the slab as clean in the slab summary if there are no dirty or writing blocks
1105 * and no summary update in progress.
1107 if ((slab->active_count > 0) || vdo_waitq_has_waiters(&slab->dirty_blocks)) {
1108 check_if_slab_drained(slab);
1109 return;
1112 offset = slab->allocator->summary_entries[slab->slab_number].tail_block_offset;
1113 slab->active_count++;
1114 slab->summary_waiter.callback = finish_summary_update;
1115 update_slab_summary_entry(slab, &slab->summary_waiter, offset,
1116 true, true, slab->free_blocks);
1120 * get_reference_counters_for_block() - Find the reference counters for a given block.
1121 * @block: The reference_block in question.
1123 * Return: A pointer to the reference counters for this block.
1125 static vdo_refcount_t * __must_check get_reference_counters_for_block(struct reference_block *block)
1127 size_t block_index = block - block->slab->reference_blocks;
1129 return &block->slab->counters[block_index * COUNTS_PER_BLOCK];
1133 * pack_reference_block() - Copy data from a reference block to a buffer ready to be written out.
1134 * @block: The block to copy.
1135 * @buffer: The char buffer to fill with the packed block.
1137 static void pack_reference_block(struct reference_block *block, void *buffer)
1139 struct packed_reference_block *packed = buffer;
1140 vdo_refcount_t *counters = get_reference_counters_for_block(block);
1141 sector_count_t i;
1142 struct packed_journal_point commit_point;
1144 vdo_pack_journal_point(&block->slab->slab_journal_point, &commit_point);
1146 for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) {
1147 packed->sectors[i].commit_point = commit_point;
1148 memcpy(packed->sectors[i].counts, counters + (i * COUNTS_PER_SECTOR),
1149 (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR));
1153 static void write_reference_block_endio(struct bio *bio)
1155 struct vio *vio = bio->bi_private;
1156 struct reference_block *block = vio->completion.parent;
1157 thread_id_t thread_id = block->slab->allocator->thread_id;
1159 continue_vio_after_io(vio, finish_reference_block_write, thread_id);
1163 * handle_io_error() - Handle an I/O error reading or writing a reference count block.
1164 * @completion: The VIO doing the I/O as a completion.
1166 static void handle_io_error(struct vdo_completion *completion)
1168 int result = completion->result;
1169 struct vio *vio = as_vio(completion);
1170 struct vdo_slab *slab = ((struct reference_block *) completion->parent)->slab;
1172 vio_record_metadata_io_error(vio);
1173 return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio));
1174 slab->active_count--;
1175 vdo_enter_read_only_mode(slab->allocator->depot->vdo, result);
1176 check_if_slab_drained(slab);
1180 * write_reference_block() - After a dirty block waiter has gotten a VIO from the VIO pool, copy
1181 * its counters and associated data into the VIO, and launch the write.
1182 * @waiter: The waiter of the dirty block.
1183 * @context: The VIO returned by the pool.
1185 static void write_reference_block(struct vdo_waiter *waiter, void *context)
1187 size_t block_offset;
1188 physical_block_number_t pbn;
1189 struct pooled_vio *pooled = context;
1190 struct vdo_completion *completion = &pooled->vio.completion;
1191 struct reference_block *block = container_of(waiter, struct reference_block,
1192 waiter);
1194 pack_reference_block(block, pooled->vio.data);
1195 block_offset = (block - block->slab->reference_blocks);
1196 pbn = (block->slab->ref_counts_origin + block_offset);
1197 block->slab_journal_lock_to_release = block->slab_journal_lock;
1198 completion->parent = block;
1201 * Mark the block as clean, since we won't be committing any updates that happen after this
1202 * moment. As long as VIO order is preserved, two VIOs updating this block at once will not
1203 * cause complications.
1205 block->is_dirty = false;
1208 * Flush before writing to ensure that the recovery journal and slab journal entries which
1209 * cover this reference update are stable. This prevents data corruption that can be caused
1210 * by out of order writes.
1212 WRITE_ONCE(block->slab->allocator->ref_counts_statistics.blocks_written,
1213 block->slab->allocator->ref_counts_statistics.blocks_written + 1);
1215 completion->callback_thread_id = ((struct block_allocator *) pooled->context)->thread_id;
1216 vdo_submit_metadata_vio(&pooled->vio, pbn, write_reference_block_endio,
1217 handle_io_error, REQ_OP_WRITE | REQ_PREFLUSH);
1220 static void reclaim_journal_space(struct slab_journal *journal)
1222 block_count_t length = journal_length(journal);
1223 struct vdo_slab *slab = journal->slab;
1224 block_count_t write_count = vdo_waitq_num_waiters(&slab->dirty_blocks);
1225 block_count_t written;
1227 if ((length < journal->flushing_threshold) || (write_count == 0))
1228 return;
1230 /* The slab journal is over the first threshold, schedule some reference block writes. */
1231 WRITE_ONCE(journal->events->flush_count, journal->events->flush_count + 1);
1232 if (length < journal->flushing_deadline) {
1233 /* Schedule more writes the closer to the deadline we get. */
1234 write_count /= journal->flushing_deadline - length + 1;
1235 write_count = max_t(block_count_t, write_count, 1);
1238 for (written = 0; written < write_count; written++) {
1239 vdo_waitq_notify_next_waiter(&slab->dirty_blocks,
1240 launch_reference_block_write, slab);
1245 * reference_count_to_status() - Convert a reference count to a reference status.
1246 * @count: The count to convert.
1248 * Return: The appropriate reference status.
1250 static enum reference_status __must_check reference_count_to_status(vdo_refcount_t count)
1252 if (count == EMPTY_REFERENCE_COUNT)
1253 return RS_FREE;
1254 else if (count == 1)
1255 return RS_SINGLE;
1256 else if (count == PROVISIONAL_REFERENCE_COUNT)
1257 return RS_PROVISIONAL;
1258 else
1259 return RS_SHARED;
1263 * dirty_block() - Mark a reference count block as dirty, potentially adding it to the dirty queue
1264 * if it wasn't already dirty.
1265 * @block: The reference block to mark as dirty.
1267 static void dirty_block(struct reference_block *block)
1269 if (block->is_dirty)
1270 return;
1272 block->is_dirty = true;
1273 if (!block->is_writing)
1274 vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter);
1278 * get_reference_block() - Get the reference block that covers the given block index.
1280 static struct reference_block * __must_check get_reference_block(struct vdo_slab *slab,
1281 slab_block_number index)
1283 return &slab->reference_blocks[index / COUNTS_PER_BLOCK];
1287 * slab_block_number_from_pbn() - Determine the index within the slab of a particular physical
1288 * block number.
1289 * @slab: The slab.
1290 * @pbn: The physical block number.
1291 * @slab_block_number_ptr: A pointer to the slab block number.
1293 * Return: VDO_SUCCESS or an error code.
1295 static int __must_check slab_block_number_from_pbn(struct vdo_slab *slab,
1296 physical_block_number_t pbn,
1297 slab_block_number *slab_block_number_ptr)
1299 u64 slab_block_number;
1301 if (pbn < slab->start)
1302 return VDO_OUT_OF_RANGE;
1304 slab_block_number = pbn - slab->start;
1305 if (slab_block_number >= slab->allocator->depot->slab_config.data_blocks)
1306 return VDO_OUT_OF_RANGE;
1308 *slab_block_number_ptr = slab_block_number;
1309 return VDO_SUCCESS;
1313 * get_reference_counter() - Get the reference counter that covers the given physical block number.
1314 * @slab: The slab to query.
1315 * @pbn: The physical block number.
1316 * @counter_ptr: A pointer to the reference counter.
1318 static int __must_check get_reference_counter(struct vdo_slab *slab,
1319 physical_block_number_t pbn,
1320 vdo_refcount_t **counter_ptr)
1322 slab_block_number index;
1323 int result = slab_block_number_from_pbn(slab, pbn, &index);
1325 if (result != VDO_SUCCESS)
1326 return result;
1328 *counter_ptr = &slab->counters[index];
1330 return VDO_SUCCESS;
1333 static unsigned int calculate_slab_priority(struct vdo_slab *slab)
1335 block_count_t free_blocks = slab->free_blocks;
1336 unsigned int unopened_slab_priority = slab->allocator->unopened_slab_priority;
1337 unsigned int priority;
1340 * Wholly full slabs must be the only ones with lowest priority, 0.
1342 * Slabs that have never been opened (empty, newly initialized, and never been written to)
1343 * have lower priority than previously opened slabs that have a significant number of free
1344 * blocks. This ranking causes VDO to avoid writing physical blocks for the first time
1345 * unless there are very few free blocks that have been previously written to.
1347 * Since VDO doesn't discard blocks currently, reusing previously written blocks makes VDO
1348 * a better client of any underlying storage that is thinly-provisioned (though discarding
1349 * would be better).
1351 * For all other slabs, the priority is derived from the logarithm of the number of free
1352 * blocks. Slabs with the same order of magnitude of free blocks have the same priority.
1353 * With 2^23 blocks, the priority will range from 1 to 25. The reserved
1354 * unopened_slab_priority divides the range and is skipped by the logarithmic mapping.
1357 if (free_blocks == 0)
1358 return 0;
1360 if (is_slab_journal_blank(slab))
1361 return unopened_slab_priority;
1363 priority = (1 + ilog2(free_blocks));
1364 return ((priority < unopened_slab_priority) ? priority : priority + 1);
1368 * Slabs are essentially prioritized by an approximation of the number of free blocks in the slab
1369 * so slabs with lots of free blocks will be opened for allocation before slabs that have few free
1370 * blocks.
1372 static void prioritize_slab(struct vdo_slab *slab)
1374 VDO_ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry),
1375 "a slab must not already be on a ring when prioritizing");
1376 slab->priority = calculate_slab_priority(slab);
1377 vdo_priority_table_enqueue(slab->allocator->prioritized_slabs,
1378 slab->priority, &slab->allocq_entry);
1382 * adjust_free_block_count() - Adjust the free block count and (if needed) reprioritize the slab.
1383 * @incremented: true if the free block count went up.
1385 static void adjust_free_block_count(struct vdo_slab *slab, bool incremented)
1387 struct block_allocator *allocator = slab->allocator;
1389 WRITE_ONCE(allocator->allocated_blocks,
1390 allocator->allocated_blocks + (incremented ? -1 : 1));
1392 /* The open slab doesn't need to be reprioritized until it is closed. */
1393 if (slab == allocator->open_slab)
1394 return;
1396 /* Don't bother adjusting the priority table if unneeded. */
1397 if (slab->priority == calculate_slab_priority(slab))
1398 return;
1401 * Reprioritize the slab to reflect the new free block count by removing it from the table
1402 * and re-enqueuing it with the new priority.
1404 vdo_priority_table_remove(allocator->prioritized_slabs, &slab->allocq_entry);
1405 prioritize_slab(slab);
1409 * increment_for_data() - Increment the reference count for a data block.
1410 * @slab: The slab which owns the block.
1411 * @block: The reference block which contains the block being updated.
1412 * @block_number: The block to update.
1413 * @old_status: The reference status of the data block before this increment.
1414 * @lock: The pbn_lock associated with this increment (may be NULL).
1415 * @counter_ptr: A pointer to the count for the data block (in, out).
1416 * @adjust_block_count: Whether to update the allocator's free block count.
1418 * Return: VDO_SUCCESS or an error.
1420 static int increment_for_data(struct vdo_slab *slab, struct reference_block *block,
1421 slab_block_number block_number,
1422 enum reference_status old_status,
1423 struct pbn_lock *lock, vdo_refcount_t *counter_ptr,
1424 bool adjust_block_count)
1426 switch (old_status) {
1427 case RS_FREE:
1428 *counter_ptr = 1;
1429 block->allocated_count++;
1430 slab->free_blocks--;
1431 if (adjust_block_count)
1432 adjust_free_block_count(slab, false);
1434 break;
1436 case RS_PROVISIONAL:
1437 *counter_ptr = 1;
1438 break;
1440 default:
1441 /* Single or shared */
1442 if (*counter_ptr >= MAXIMUM_REFERENCE_COUNT) {
1443 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1444 "Incrementing a block already having 254 references (slab %u, offset %u)",
1445 slab->slab_number, block_number);
1447 (*counter_ptr)++;
1450 if (lock != NULL)
1451 vdo_unassign_pbn_lock_provisional_reference(lock);
1452 return VDO_SUCCESS;
1456 * decrement_for_data() - Decrement the reference count for a data block.
1457 * @slab: The slab which owns the block.
1458 * @block: The reference block which contains the block being updated.
1459 * @block_number: The block to update.
1460 * @old_status: The reference status of the data block before this decrement.
1461 * @updater: The reference updater doing this operation in case we need to look up the pbn lock.
1462 * @counter_ptr: A pointer to the count for the data block (in, out).
1463 * @adjust_block_count: Whether to update the allocator's free block count.
1465 * Return: VDO_SUCCESS or an error.
1467 static int decrement_for_data(struct vdo_slab *slab, struct reference_block *block,
1468 slab_block_number block_number,
1469 enum reference_status old_status,
1470 struct reference_updater *updater,
1471 vdo_refcount_t *counter_ptr, bool adjust_block_count)
1473 switch (old_status) {
1474 case RS_FREE:
1475 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1476 "Decrementing free block at offset %u in slab %u",
1477 block_number, slab->slab_number);
1479 case RS_PROVISIONAL:
1480 case RS_SINGLE:
1481 if (updater->zpbn.zone != NULL) {
1482 struct pbn_lock *lock = vdo_get_physical_zone_pbn_lock(updater->zpbn.zone,
1483 updater->zpbn.pbn);
1485 if (lock != NULL) {
1487 * There is a read lock on this block, so the block must not become
1488 * unreferenced.
1490 *counter_ptr = PROVISIONAL_REFERENCE_COUNT;
1491 vdo_assign_pbn_lock_provisional_reference(lock);
1492 break;
1496 *counter_ptr = EMPTY_REFERENCE_COUNT;
1497 block->allocated_count--;
1498 slab->free_blocks++;
1499 if (adjust_block_count)
1500 adjust_free_block_count(slab, true);
1502 break;
1504 default:
1505 /* Shared */
1506 (*counter_ptr)--;
1509 return VDO_SUCCESS;
1513 * increment_for_block_map() - Increment the reference count for a block map page.
1514 * @slab: The slab which owns the block.
1515 * @block: The reference block which contains the block being updated.
1516 * @block_number: The block to update.
1517 * @old_status: The reference status of the block before this increment.
1518 * @lock: The pbn_lock associated with this increment (may be NULL).
1519 * @normal_operation: Whether we are in normal operation vs. recovery or rebuild.
1520 * @counter_ptr: A pointer to the count for the block (in, out).
1521 * @adjust_block_count: Whether to update the allocator's free block count.
1523 * All block map increments should be from provisional to MAXIMUM_REFERENCE_COUNT. Since block map
1524 * blocks never dedupe they should never be adjusted from any other state. The adjustment always
1525 * results in MAXIMUM_REFERENCE_COUNT as this value is used to prevent dedupe against block map
1526 * blocks.
1528 * Return: VDO_SUCCESS or an error.
1530 static int increment_for_block_map(struct vdo_slab *slab, struct reference_block *block,
1531 slab_block_number block_number,
1532 enum reference_status old_status,
1533 struct pbn_lock *lock, bool normal_operation,
1534 vdo_refcount_t *counter_ptr, bool adjust_block_count)
1536 switch (old_status) {
1537 case RS_FREE:
1538 if (normal_operation) {
1539 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1540 "Incrementing unallocated block map block (slab %u, offset %u)",
1541 slab->slab_number, block_number);
1544 *counter_ptr = MAXIMUM_REFERENCE_COUNT;
1545 block->allocated_count++;
1546 slab->free_blocks--;
1547 if (adjust_block_count)
1548 adjust_free_block_count(slab, false);
1550 return VDO_SUCCESS;
1552 case RS_PROVISIONAL:
1553 if (!normal_operation)
1554 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1555 "Block map block had provisional reference during replay (slab %u, offset %u)",
1556 slab->slab_number, block_number);
1558 *counter_ptr = MAXIMUM_REFERENCE_COUNT;
1559 if (lock != NULL)
1560 vdo_unassign_pbn_lock_provisional_reference(lock);
1561 return VDO_SUCCESS;
1563 default:
1564 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1565 "Incrementing a block map block which is already referenced %u times (slab %u, offset %u)",
1566 *counter_ptr, slab->slab_number,
1567 block_number);
1571 static bool __must_check is_valid_journal_point(const struct journal_point *point)
1573 return ((point != NULL) && (point->sequence_number > 0));
1577 * update_reference_count() - Update the reference count of a block.
1578 * @slab: The slab which owns the block.
1579 * @block: The reference block which contains the block being updated.
1580 * @block_number: The block to update.
1581 * @slab_journal_point: The slab journal point at which this update is journaled.
1582 * @updater: The reference updater.
1583 * @normal_operation: Whether we are in normal operation vs. recovery or rebuild.
1584 * @adjust_block_count: Whether to update the slab's free block count.
1585 * @provisional_decrement_ptr: A pointer which will be set to true if this update was a decrement
1586 * of a provisional reference.
1588 * Return: VDO_SUCCESS or an error.
1590 static int update_reference_count(struct vdo_slab *slab, struct reference_block *block,
1591 slab_block_number block_number,
1592 const struct journal_point *slab_journal_point,
1593 struct reference_updater *updater,
1594 bool normal_operation, bool adjust_block_count,
1595 bool *provisional_decrement_ptr)
1597 vdo_refcount_t *counter_ptr = &slab->counters[block_number];
1598 enum reference_status old_status = reference_count_to_status(*counter_ptr);
1599 int result;
1601 if (!updater->increment) {
1602 result = decrement_for_data(slab, block, block_number, old_status,
1603 updater, counter_ptr, adjust_block_count);
1604 if ((result == VDO_SUCCESS) && (old_status == RS_PROVISIONAL)) {
1605 if (provisional_decrement_ptr != NULL)
1606 *provisional_decrement_ptr = true;
1607 return VDO_SUCCESS;
1609 } else if (updater->operation == VDO_JOURNAL_DATA_REMAPPING) {
1610 result = increment_for_data(slab, block, block_number, old_status,
1611 updater->lock, counter_ptr, adjust_block_count);
1612 } else {
1613 result = increment_for_block_map(slab, block, block_number, old_status,
1614 updater->lock, normal_operation,
1615 counter_ptr, adjust_block_count);
1618 if (result != VDO_SUCCESS)
1619 return result;
1621 if (is_valid_journal_point(slab_journal_point))
1622 slab->slab_journal_point = *slab_journal_point;
1624 return VDO_SUCCESS;
1627 static int __must_check adjust_reference_count(struct vdo_slab *slab,
1628 struct reference_updater *updater,
1629 const struct journal_point *slab_journal_point)
1631 slab_block_number block_number;
1632 int result;
1633 struct reference_block *block;
1634 bool provisional_decrement = false;
1636 if (!is_slab_open(slab))
1637 return VDO_INVALID_ADMIN_STATE;
1639 result = slab_block_number_from_pbn(slab, updater->zpbn.pbn, &block_number);
1640 if (result != VDO_SUCCESS)
1641 return result;
1643 block = get_reference_block(slab, block_number);
1644 result = update_reference_count(slab, block, block_number, slab_journal_point,
1645 updater, NORMAL_OPERATION, true,
1646 &provisional_decrement);
1647 if ((result != VDO_SUCCESS) || provisional_decrement)
1648 return result;
1650 if (block->is_dirty && (block->slab_journal_lock > 0)) {
1651 sequence_number_t entry_lock = slab_journal_point->sequence_number;
1653 * This block is already dirty and a slab journal entry has been made for it since
1654 * the last time it was clean. We must release the per-entry slab journal lock for
1655 * the entry associated with the update we are now doing.
1657 result = VDO_ASSERT(is_valid_journal_point(slab_journal_point),
1658 "Reference count adjustments need slab journal points.");
1659 if (result != VDO_SUCCESS)
1660 return result;
1662 adjust_slab_journal_block_reference(&slab->journal, entry_lock, -1);
1663 return VDO_SUCCESS;
1667 * This may be the first time we are applying an update for which there is a slab journal
1668 * entry to this block since the block was cleaned. Therefore, we convert the per-entry
1669 * slab journal lock to an uncommitted reference block lock, if there is a per-entry lock.
1671 if (is_valid_journal_point(slab_journal_point))
1672 block->slab_journal_lock = slab_journal_point->sequence_number;
1673 else
1674 block->slab_journal_lock = 0;
1676 dirty_block(block);
1677 return VDO_SUCCESS;
1681 * add_entry_from_waiter() - Add an entry to the slab journal.
1682 * @waiter: The vio which should make an entry now.
1683 * @context: The slab journal to make an entry in.
1685 * This callback is invoked by add_entries() once it has determined that we are ready to make
1686 * another entry in the slab journal. Implements waiter_callback_fn.
1688 static void add_entry_from_waiter(struct vdo_waiter *waiter, void *context)
1690 int result;
1691 struct reference_updater *updater =
1692 container_of(waiter, struct reference_updater, waiter);
1693 struct data_vio *data_vio = data_vio_from_reference_updater(updater);
1694 struct slab_journal *journal = context;
1695 struct slab_journal_block_header *header = &journal->tail_header;
1696 struct journal_point slab_journal_point = {
1697 .sequence_number = header->sequence_number,
1698 .entry_count = header->entry_count,
1700 sequence_number_t recovery_block = data_vio->recovery_journal_point.sequence_number;
1702 if (header->entry_count == 0) {
1704 * This is the first entry in the current tail block, so get a lock on the recovery
1705 * journal which we will hold until this tail block is committed.
1707 get_lock(journal, header->sequence_number)->recovery_start = recovery_block;
1708 if (journal->recovery_journal != NULL) {
1709 zone_count_t zone_number = journal->slab->allocator->zone_number;
1711 vdo_acquire_recovery_journal_block_reference(journal->recovery_journal,
1712 recovery_block,
1713 VDO_ZONE_TYPE_PHYSICAL,
1714 zone_number);
1717 mark_slab_journal_dirty(journal, recovery_block);
1718 reclaim_journal_space(journal);
1721 add_entry(journal, updater->zpbn.pbn, updater->operation, updater->increment,
1722 expand_journal_point(data_vio->recovery_journal_point,
1723 updater->increment));
1725 if (journal->slab->status != VDO_SLAB_REBUILT) {
1727 * If the slab is unrecovered, scrubbing will take care of the count since the
1728 * update is now recorded in the journal.
1730 adjust_slab_journal_block_reference(journal,
1731 slab_journal_point.sequence_number, -1);
1732 result = VDO_SUCCESS;
1733 } else {
1734 /* Now that an entry has been made in the slab journal, update the counter. */
1735 result = adjust_reference_count(journal->slab, updater,
1736 &slab_journal_point);
1739 if (updater->increment)
1740 continue_data_vio_with_error(data_vio, result);
1741 else
1742 vdo_continue_completion(&data_vio->decrement_completion, result);
1746 * is_next_entry_a_block_map_increment() - Check whether the next entry to be made is a block map
1747 * increment.
1748 * @journal: The journal.
1750 * Return: true if the first entry waiter's operation is a block map increment.
1752 static inline bool is_next_entry_a_block_map_increment(struct slab_journal *journal)
1754 struct vdo_waiter *waiter = vdo_waitq_get_first_waiter(&journal->entry_waiters);
1755 struct reference_updater *updater =
1756 container_of(waiter, struct reference_updater, waiter);
1758 return (updater->operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING);
1762 * add_entries() - Add as many entries as possible from the queue of vios waiting to make entries.
1763 * @journal: The journal to which entries may be added.
1765 * By processing the queue in order, we ensure that slab journal entries are made in the same order
1766 * as recovery journal entries for the same increment or decrement.
1768 static void add_entries(struct slab_journal *journal)
1770 if (journal->adding_entries) {
1771 /* Protect against re-entrancy. */
1772 return;
1775 journal->adding_entries = true;
1776 while (vdo_waitq_has_waiters(&journal->entry_waiters)) {
1777 struct slab_journal_block_header *header = &journal->tail_header;
1779 if (journal->partial_write_in_progress ||
1780 (journal->slab->status == VDO_SLAB_REBUILDING)) {
1782 * Don't add entries while rebuilding or while a partial write is
1783 * outstanding, as it could result in reference count corruption.
1785 break;
1788 if (journal->waiting_to_commit) {
1790 * If we are waiting for resources to write the tail block, and the tail
1791 * block is full, we can't make another entry.
1793 WRITE_ONCE(journal->events->tail_busy_count,
1794 journal->events->tail_busy_count + 1);
1795 break;
1796 } else if (is_next_entry_a_block_map_increment(journal) &&
1797 (header->entry_count >= journal->full_entries_per_block)) {
1799 * The tail block does not have room for a block map increment, so commit
1800 * it now.
1802 commit_tail(journal);
1803 if (journal->waiting_to_commit) {
1804 WRITE_ONCE(journal->events->tail_busy_count,
1805 journal->events->tail_busy_count + 1);
1806 break;
1810 /* If the slab is over the blocking threshold, make the vio wait. */
1811 if (requires_reaping(journal)) {
1812 WRITE_ONCE(journal->events->blocked_count,
1813 journal->events->blocked_count + 1);
1814 save_dirty_reference_blocks(journal->slab);
1815 break;
1818 if (header->entry_count == 0) {
1819 struct journal_lock *lock =
1820 get_lock(journal, header->sequence_number);
1823 * Check if the on disk slab journal is full. Because of the blocking and
1824 * scrubbing thresholds, this should never happen.
1826 if (lock->count > 0) {
1827 VDO_ASSERT_LOG_ONLY((journal->head + journal->size) == journal->tail,
1828 "New block has locks, but journal is not full");
1831 * The blocking threshold must let the journal fill up if the new
1832 * block has locks; if the blocking threshold is smaller than the
1833 * journal size, the new block cannot possibly have locks already.
1835 VDO_ASSERT_LOG_ONLY((journal->blocking_threshold >= journal->size),
1836 "New block can have locks already iff blocking threshold is at the end of the journal");
1838 WRITE_ONCE(journal->events->disk_full_count,
1839 journal->events->disk_full_count + 1);
1840 save_dirty_reference_blocks(journal->slab);
1841 break;
1845 * Don't allow the new block to be reaped until all of the reference count
1846 * blocks are written and the journal block has been fully committed as
1847 * well.
1849 lock->count = journal->entries_per_block + 1;
1851 if (header->sequence_number == 1) {
1852 struct vdo_slab *slab = journal->slab;
1853 block_count_t i;
1856 * This is the first entry in this slab journal, ever. Dirty all of
1857 * the reference count blocks. Each will acquire a lock on the tail
1858 * block so that the journal won't be reaped until the reference
1859 * counts are initialized. The lock acquisition must be done by the
1860 * ref_counts since here we don't know how many reference blocks
1861 * the ref_counts has.
1863 for (i = 0; i < slab->reference_block_count; i++) {
1864 slab->reference_blocks[i].slab_journal_lock = 1;
1865 dirty_block(&slab->reference_blocks[i]);
1868 adjust_slab_journal_block_reference(journal, 1,
1869 slab->reference_block_count);
1873 vdo_waitq_notify_next_waiter(&journal->entry_waiters,
1874 add_entry_from_waiter, journal);
1877 journal->adding_entries = false;
1879 /* If there are no waiters, and we are flushing or saving, commit the tail block. */
1880 if (vdo_is_state_draining(&journal->slab->state) &&
1881 !vdo_is_state_suspending(&journal->slab->state) &&
1882 !vdo_waitq_has_waiters(&journal->entry_waiters))
1883 commit_tail(journal);
1887 * reset_search_cursor() - Reset the free block search back to the first reference counter in the
1888 * first reference block of a slab.
1890 static void reset_search_cursor(struct vdo_slab *slab)
1892 struct search_cursor *cursor = &slab->search_cursor;
1894 cursor->block = cursor->first_block;
1895 cursor->index = 0;
1896 /* Unit tests have slabs with only one reference block (and it's a runt). */
1897 cursor->end_index = min_t(u32, COUNTS_PER_BLOCK, slab->block_count);
1901 * advance_search_cursor() - Advance the search cursor to the start of the next reference block in
1902 * a slab,
1904 * Wraps around to the first reference block if the current block is the last reference block.
1906 * Return: true unless the cursor was at the last reference block.
1908 static bool advance_search_cursor(struct vdo_slab *slab)
1910 struct search_cursor *cursor = &slab->search_cursor;
1913 * If we just finished searching the last reference block, then wrap back around to the
1914 * start of the array.
1916 if (cursor->block == cursor->last_block) {
1917 reset_search_cursor(slab);
1918 return false;
1921 /* We're not already at the end, so advance to cursor to the next block. */
1922 cursor->block++;
1923 cursor->index = cursor->end_index;
1925 if (cursor->block == cursor->last_block) {
1926 /* The last reference block will usually be a runt. */
1927 cursor->end_index = slab->block_count;
1928 } else {
1929 cursor->end_index += COUNTS_PER_BLOCK;
1932 return true;
1936 * vdo_adjust_reference_count_for_rebuild() - Adjust the reference count of a block during rebuild.
1938 * Return: VDO_SUCCESS or an error.
1940 int vdo_adjust_reference_count_for_rebuild(struct slab_depot *depot,
1941 physical_block_number_t pbn,
1942 enum journal_operation operation)
1944 int result;
1945 slab_block_number block_number;
1946 struct reference_block *block;
1947 struct vdo_slab *slab = vdo_get_slab(depot, pbn);
1948 struct reference_updater updater = {
1949 .operation = operation,
1950 .increment = true,
1953 result = slab_block_number_from_pbn(slab, pbn, &block_number);
1954 if (result != VDO_SUCCESS)
1955 return result;
1957 block = get_reference_block(slab, block_number);
1958 result = update_reference_count(slab, block, block_number, NULL,
1959 &updater, !NORMAL_OPERATION, false, NULL);
1960 if (result != VDO_SUCCESS)
1961 return result;
1963 dirty_block(block);
1964 return VDO_SUCCESS;
1968 * replay_reference_count_change() - Replay the reference count adjustment from a slab journal
1969 * entry into the reference count for a block.
1970 * @slab: The slab.
1971 * @entry_point: The slab journal point for the entry.
1972 * @entry: The slab journal entry being replayed.
1974 * The adjustment will be ignored if it was already recorded in the reference count.
1976 * Return: VDO_SUCCESS or an error code.
1978 static int replay_reference_count_change(struct vdo_slab *slab,
1979 const struct journal_point *entry_point,
1980 struct slab_journal_entry entry)
1982 int result;
1983 struct reference_block *block = get_reference_block(slab, entry.sbn);
1984 sector_count_t sector = (entry.sbn % COUNTS_PER_BLOCK) / COUNTS_PER_SECTOR;
1985 struct reference_updater updater = {
1986 .operation = entry.operation,
1987 .increment = entry.increment,
1990 if (!vdo_before_journal_point(&block->commit_points[sector], entry_point)) {
1991 /* This entry is already reflected in the existing counts, so do nothing. */
1992 return VDO_SUCCESS;
1995 /* This entry is not yet counted in the reference counts. */
1996 result = update_reference_count(slab, block, entry.sbn, entry_point,
1997 &updater, !NORMAL_OPERATION, false, NULL);
1998 if (result != VDO_SUCCESS)
1999 return result;
2001 dirty_block(block);
2002 return VDO_SUCCESS;
2006 * find_zero_byte_in_word() - Find the array index of the first zero byte in word-sized range of
2007 * reference counters.
2008 * @word_ptr: A pointer to the eight counter bytes to check.
2009 * @start_index: The array index corresponding to word_ptr[0].
2010 * @fail_index: The array index to return if no zero byte is found.
2012 * The search does no bounds checking; the function relies on the array being sufficiently padded.
2014 * Return: The array index of the first zero byte in the word, or the value passed as fail_index if
2015 * no zero byte was found.
2017 static inline slab_block_number find_zero_byte_in_word(const u8 *word_ptr,
2018 slab_block_number start_index,
2019 slab_block_number fail_index)
2021 u64 word = get_unaligned_le64(word_ptr);
2023 /* This looks like a loop, but GCC will unroll the eight iterations for us. */
2024 unsigned int offset;
2026 for (offset = 0; offset < BYTES_PER_WORD; offset++) {
2027 /* Assumes little-endian byte order, which we have on X86. */
2028 if ((word & 0xFF) == 0)
2029 return (start_index + offset);
2030 word >>= 8;
2033 return fail_index;
2037 * find_free_block() - Find the first block with a reference count of zero in the specified
2038 * range of reference counter indexes.
2039 * @slab: The slab counters to scan.
2040 * @index_ptr: A pointer to hold the array index of the free block.
2042 * Exposed for unit testing.
2044 * Return: true if a free block was found in the specified range.
2046 static bool find_free_block(const struct vdo_slab *slab, slab_block_number *index_ptr)
2048 slab_block_number zero_index;
2049 slab_block_number next_index = slab->search_cursor.index;
2050 slab_block_number end_index = slab->search_cursor.end_index;
2051 u8 *next_counter = &slab->counters[next_index];
2052 u8 *end_counter = &slab->counters[end_index];
2055 * Search every byte of the first unaligned word. (Array is padded so reading past end is
2056 * safe.)
2058 zero_index = find_zero_byte_in_word(next_counter, next_index, end_index);
2059 if (zero_index < end_index) {
2060 *index_ptr = zero_index;
2061 return true;
2065 * On architectures where unaligned word access is expensive, this would be a good place to
2066 * advance to an alignment boundary.
2068 next_index += BYTES_PER_WORD;
2069 next_counter += BYTES_PER_WORD;
2072 * Now we're word-aligned; check an word at a time until we find a word containing a zero.
2073 * (Array is padded so reading past end is safe.)
2075 while (next_counter < end_counter) {
2077 * The following code is currently an exact copy of the code preceding the loop,
2078 * but if you try to merge them by using a do loop, it runs slower because a jump
2079 * instruction gets added at the start of the iteration.
2081 zero_index = find_zero_byte_in_word(next_counter, next_index, end_index);
2082 if (zero_index < end_index) {
2083 *index_ptr = zero_index;
2084 return true;
2087 next_index += BYTES_PER_WORD;
2088 next_counter += BYTES_PER_WORD;
2091 return false;
2095 * search_current_reference_block() - Search the reference block currently saved in the search
2096 * cursor for a reference count of zero, starting at the saved
2097 * counter index.
2098 * @slab: The slab to search.
2099 * @free_index_ptr: A pointer to receive the array index of the zero reference count.
2101 * Return: true if an unreferenced counter was found.
2103 static bool search_current_reference_block(const struct vdo_slab *slab,
2104 slab_block_number *free_index_ptr)
2106 /* Don't bother searching if the current block is known to be full. */
2107 return ((slab->search_cursor.block->allocated_count < COUNTS_PER_BLOCK) &&
2108 find_free_block(slab, free_index_ptr));
2112 * search_reference_blocks() - Search each reference block for a reference count of zero.
2113 * @slab: The slab to search.
2114 * @free_index_ptr: A pointer to receive the array index of the zero reference count.
2116 * Searches each reference block for a reference count of zero, starting at the reference block and
2117 * counter index saved in the search cursor and searching up to the end of the last reference
2118 * block. The search does not wrap.
2120 * Return: true if an unreferenced counter was found.
2122 static bool search_reference_blocks(struct vdo_slab *slab,
2123 slab_block_number *free_index_ptr)
2125 /* Start searching at the saved search position in the current block. */
2126 if (search_current_reference_block(slab, free_index_ptr))
2127 return true;
2129 /* Search each reference block up to the end of the slab. */
2130 while (advance_search_cursor(slab)) {
2131 if (search_current_reference_block(slab, free_index_ptr))
2132 return true;
2135 return false;
2139 * make_provisional_reference() - Do the bookkeeping for making a provisional reference.
2141 static void make_provisional_reference(struct vdo_slab *slab,
2142 slab_block_number block_number)
2144 struct reference_block *block = get_reference_block(slab, block_number);
2147 * Make the initial transition from an unreferenced block to a
2148 * provisionally allocated block.
2150 slab->counters[block_number] = PROVISIONAL_REFERENCE_COUNT;
2152 /* Account for the allocation. */
2153 block->allocated_count++;
2154 slab->free_blocks--;
2158 * dirty_all_reference_blocks() - Mark all reference count blocks in a slab as dirty.
2160 static void dirty_all_reference_blocks(struct vdo_slab *slab)
2162 block_count_t i;
2164 for (i = 0; i < slab->reference_block_count; i++)
2165 dirty_block(&slab->reference_blocks[i]);
2169 * clear_provisional_references() - Clear the provisional reference counts from a reference block.
2170 * @block: The block to clear.
2172 static void clear_provisional_references(struct reference_block *block)
2174 vdo_refcount_t *counters = get_reference_counters_for_block(block);
2175 block_count_t j;
2177 for (j = 0; j < COUNTS_PER_BLOCK; j++) {
2178 if (counters[j] == PROVISIONAL_REFERENCE_COUNT) {
2179 counters[j] = EMPTY_REFERENCE_COUNT;
2180 block->allocated_count--;
2185 static inline bool journal_points_equal(struct journal_point first,
2186 struct journal_point second)
2188 return ((first.sequence_number == second.sequence_number) &&
2189 (first.entry_count == second.entry_count));
2193 * unpack_reference_block() - Unpack reference counts blocks into the internal memory structure.
2194 * @packed: The written reference block to be unpacked.
2195 * @block: The internal reference block to be loaded.
2197 static void unpack_reference_block(struct packed_reference_block *packed,
2198 struct reference_block *block)
2200 block_count_t index;
2201 sector_count_t i;
2202 struct vdo_slab *slab = block->slab;
2203 vdo_refcount_t *counters = get_reference_counters_for_block(block);
2205 for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) {
2206 struct packed_reference_sector *sector = &packed->sectors[i];
2208 vdo_unpack_journal_point(&sector->commit_point, &block->commit_points[i]);
2209 memcpy(counters + (i * COUNTS_PER_SECTOR), sector->counts,
2210 (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR));
2211 /* The slab_journal_point must be the latest point found in any sector. */
2212 if (vdo_before_journal_point(&slab->slab_journal_point,
2213 &block->commit_points[i]))
2214 slab->slab_journal_point = block->commit_points[i];
2216 if ((i > 0) &&
2217 !journal_points_equal(block->commit_points[0],
2218 block->commit_points[i])) {
2219 size_t block_index = block - block->slab->reference_blocks;
2221 vdo_log_warning("Torn write detected in sector %u of reference block %zu of slab %u",
2222 i, block_index, block->slab->slab_number);
2226 block->allocated_count = 0;
2227 for (index = 0; index < COUNTS_PER_BLOCK; index++) {
2228 if (counters[index] != EMPTY_REFERENCE_COUNT)
2229 block->allocated_count++;
2234 * finish_reference_block_load() - After a reference block has been read, unpack it.
2235 * @completion: The VIO that just finished reading.
2237 static void finish_reference_block_load(struct vdo_completion *completion)
2239 struct vio *vio = as_vio(completion);
2240 struct pooled_vio *pooled = vio_as_pooled_vio(vio);
2241 struct reference_block *block = completion->parent;
2242 struct vdo_slab *slab = block->slab;
2244 unpack_reference_block((struct packed_reference_block *) vio->data, block);
2245 return_vio_to_pool(slab->allocator->vio_pool, pooled);
2246 slab->active_count--;
2247 clear_provisional_references(block);
2249 slab->free_blocks -= block->allocated_count;
2250 check_if_slab_drained(slab);
2253 static void load_reference_block_endio(struct bio *bio)
2255 struct vio *vio = bio->bi_private;
2256 struct reference_block *block = vio->completion.parent;
2258 continue_vio_after_io(vio, finish_reference_block_load,
2259 block->slab->allocator->thread_id);
2263 * load_reference_block() - After a block waiter has gotten a VIO from the VIO pool, load the
2264 * block.
2265 * @waiter: The waiter of the block to load.
2266 * @context: The VIO returned by the pool.
2268 static void load_reference_block(struct vdo_waiter *waiter, void *context)
2270 struct pooled_vio *pooled = context;
2271 struct vio *vio = &pooled->vio;
2272 struct reference_block *block =
2273 container_of(waiter, struct reference_block, waiter);
2274 size_t block_offset = (block - block->slab->reference_blocks);
2276 vio->completion.parent = block;
2277 vdo_submit_metadata_vio(vio, block->slab->ref_counts_origin + block_offset,
2278 load_reference_block_endio, handle_io_error,
2279 REQ_OP_READ);
2283 * load_reference_blocks() - Load a slab's reference blocks from the underlying storage into a
2284 * pre-allocated reference counter.
2286 static void load_reference_blocks(struct vdo_slab *slab)
2288 block_count_t i;
2290 slab->free_blocks = slab->block_count;
2291 slab->active_count = slab->reference_block_count;
2292 for (i = 0; i < slab->reference_block_count; i++) {
2293 struct vdo_waiter *waiter = &slab->reference_blocks[i].waiter;
2295 waiter->callback = load_reference_block;
2296 acquire_vio_from_pool(slab->allocator->vio_pool, waiter);
2301 * drain_slab() - Drain all reference count I/O.
2303 * Depending upon the type of drain being performed (as recorded in the ref_count's vdo_slab), the
2304 * reference blocks may be loaded from disk or dirty reference blocks may be written out.
2306 static void drain_slab(struct vdo_slab *slab)
2308 bool save;
2309 bool load;
2310 const struct admin_state_code *state = vdo_get_admin_state_code(&slab->state);
2312 if (state == VDO_ADMIN_STATE_SUSPENDING)
2313 return;
2315 if ((state != VDO_ADMIN_STATE_REBUILDING) &&
2316 (state != VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING))
2317 commit_tail(&slab->journal);
2319 if ((state == VDO_ADMIN_STATE_RECOVERING) || (slab->counters == NULL))
2320 return;
2322 save = false;
2323 load = slab->allocator->summary_entries[slab->slab_number].load_ref_counts;
2324 if (state == VDO_ADMIN_STATE_SCRUBBING) {
2325 if (load) {
2326 load_reference_blocks(slab);
2327 return;
2329 } else if (state == VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING) {
2330 if (!load) {
2331 /* These reference counts were never written, so mark them all dirty. */
2332 dirty_all_reference_blocks(slab);
2334 save = true;
2335 } else if (state == VDO_ADMIN_STATE_REBUILDING) {
2337 * Write out the counters if the slab has written them before, or it has any
2338 * non-zero reference counts, or there are any slab journal blocks.
2340 block_count_t data_blocks = slab->allocator->depot->slab_config.data_blocks;
2342 if (load || (slab->free_blocks != data_blocks) ||
2343 !is_slab_journal_blank(slab)) {
2344 dirty_all_reference_blocks(slab);
2345 save = true;
2347 } else if (state == VDO_ADMIN_STATE_SAVING) {
2348 save = (slab->status == VDO_SLAB_REBUILT);
2349 } else {
2350 vdo_finish_draining_with_result(&slab->state, VDO_SUCCESS);
2351 return;
2354 if (save)
2355 save_dirty_reference_blocks(slab);
2358 static int allocate_slab_counters(struct vdo_slab *slab)
2360 int result;
2361 size_t index, bytes;
2363 result = VDO_ASSERT(slab->reference_blocks == NULL,
2364 "vdo_slab %u doesn't allocate refcounts twice",
2365 slab->slab_number);
2366 if (result != VDO_SUCCESS)
2367 return result;
2369 result = vdo_allocate(slab->reference_block_count, struct reference_block,
2370 __func__, &slab->reference_blocks);
2371 if (result != VDO_SUCCESS)
2372 return result;
2375 * Allocate such that the runt slab has a full-length memory array, plus a little padding
2376 * so we can word-search even at the very end.
2378 bytes = (slab->reference_block_count * COUNTS_PER_BLOCK) + (2 * BYTES_PER_WORD);
2379 result = vdo_allocate(bytes, vdo_refcount_t, "ref counts array",
2380 &slab->counters);
2381 if (result != VDO_SUCCESS) {
2382 vdo_free(vdo_forget(slab->reference_blocks));
2383 return result;
2386 slab->search_cursor.first_block = slab->reference_blocks;
2387 slab->search_cursor.last_block = &slab->reference_blocks[slab->reference_block_count - 1];
2388 reset_search_cursor(slab);
2390 for (index = 0; index < slab->reference_block_count; index++) {
2391 slab->reference_blocks[index] = (struct reference_block) {
2392 .slab = slab,
2396 return VDO_SUCCESS;
2399 static int allocate_counters_if_clean(struct vdo_slab *slab)
2401 if (vdo_is_state_clean_load(&slab->state))
2402 return allocate_slab_counters(slab);
2404 return VDO_SUCCESS;
2407 static void finish_loading_journal(struct vdo_completion *completion)
2409 struct vio *vio = as_vio(completion);
2410 struct slab_journal *journal = completion->parent;
2411 struct vdo_slab *slab = journal->slab;
2412 struct packed_slab_journal_block *block = (struct packed_slab_journal_block *) vio->data;
2413 struct slab_journal_block_header header;
2415 vdo_unpack_slab_journal_block_header(&block->header, &header);
2417 /* FIXME: should it be an error if the following conditional fails? */
2418 if ((header.metadata_type == VDO_METADATA_SLAB_JOURNAL) &&
2419 (header.nonce == slab->allocator->nonce)) {
2420 journal->tail = header.sequence_number + 1;
2423 * If the slab is clean, this implies the slab journal is empty, so advance the
2424 * head appropriately.
2426 journal->head = (slab->allocator->summary_entries[slab->slab_number].is_dirty ?
2427 header.head : journal->tail);
2428 journal->tail_header = header;
2429 initialize_journal_state(journal);
2432 return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio));
2433 vdo_finish_loading_with_result(&slab->state, allocate_counters_if_clean(slab));
2436 static void read_slab_journal_tail_endio(struct bio *bio)
2438 struct vio *vio = bio->bi_private;
2439 struct slab_journal *journal = vio->completion.parent;
2441 continue_vio_after_io(vio, finish_loading_journal,
2442 journal->slab->allocator->thread_id);
2445 static void handle_load_error(struct vdo_completion *completion)
2447 int result = completion->result;
2448 struct slab_journal *journal = completion->parent;
2449 struct vio *vio = as_vio(completion);
2451 vio_record_metadata_io_error(vio);
2452 return_vio_to_pool(journal->slab->allocator->vio_pool, vio_as_pooled_vio(vio));
2453 vdo_finish_loading_with_result(&journal->slab->state, result);
2457 * read_slab_journal_tail() - Read the slab journal tail block by using a vio acquired from the vio
2458 * pool.
2459 * @waiter: The vio pool waiter which has just been notified.
2460 * @context: The vio pool entry given to the waiter.
2462 * This is the success callback from acquire_vio_from_pool() when loading a slab journal.
2464 static void read_slab_journal_tail(struct vdo_waiter *waiter, void *context)
2466 struct slab_journal *journal =
2467 container_of(waiter, struct slab_journal, resource_waiter);
2468 struct vdo_slab *slab = journal->slab;
2469 struct pooled_vio *pooled = context;
2470 struct vio *vio = &pooled->vio;
2471 tail_block_offset_t last_commit_point =
2472 slab->allocator->summary_entries[slab->slab_number].tail_block_offset;
2475 * Slab summary keeps the commit point offset, so the tail block is the block before that.
2476 * Calculation supports small journals in unit tests.
2478 tail_block_offset_t tail_block = ((last_commit_point == 0) ?
2479 (tail_block_offset_t)(journal->size - 1) :
2480 (last_commit_point - 1));
2482 vio->completion.parent = journal;
2483 vio->completion.callback_thread_id = slab->allocator->thread_id;
2484 vdo_submit_metadata_vio(vio, slab->journal_origin + tail_block,
2485 read_slab_journal_tail_endio, handle_load_error,
2486 REQ_OP_READ);
2490 * load_slab_journal() - Load a slab's journal by reading the journal's tail.
2492 static void load_slab_journal(struct vdo_slab *slab)
2494 struct slab_journal *journal = &slab->journal;
2495 tail_block_offset_t last_commit_point;
2497 last_commit_point = slab->allocator->summary_entries[slab->slab_number].tail_block_offset;
2498 if ((last_commit_point == 0) &&
2499 !slab->allocator->summary_entries[slab->slab_number].load_ref_counts) {
2501 * This slab claims that it has a tail block at (journal->size - 1), but a head of
2502 * 1. This is impossible, due to the scrubbing threshold, on a real system, so
2503 * don't bother reading the (bogus) data off disk.
2505 VDO_ASSERT_LOG_ONLY(((journal->size < 16) ||
2506 (journal->scrubbing_threshold < (journal->size - 1))),
2507 "Scrubbing threshold protects against reads of unwritten slab journal blocks");
2508 vdo_finish_loading_with_result(&slab->state,
2509 allocate_counters_if_clean(slab));
2510 return;
2513 journal->resource_waiter.callback = read_slab_journal_tail;
2514 acquire_vio_from_pool(slab->allocator->vio_pool, &journal->resource_waiter);
2517 static void register_slab_for_scrubbing(struct vdo_slab *slab, bool high_priority)
2519 struct slab_scrubber *scrubber = &slab->allocator->scrubber;
2521 VDO_ASSERT_LOG_ONLY((slab->status != VDO_SLAB_REBUILT),
2522 "slab to be scrubbed is unrecovered");
2524 if (slab->status != VDO_SLAB_REQUIRES_SCRUBBING)
2525 return;
2527 list_del_init(&slab->allocq_entry);
2528 if (!slab->was_queued_for_scrubbing) {
2529 WRITE_ONCE(scrubber->slab_count, scrubber->slab_count + 1);
2530 slab->was_queued_for_scrubbing = true;
2533 if (high_priority) {
2534 slab->status = VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING;
2535 list_add_tail(&slab->allocq_entry, &scrubber->high_priority_slabs);
2536 return;
2539 list_add_tail(&slab->allocq_entry, &scrubber->slabs);
2542 /* Queue a slab for allocation or scrubbing. */
2543 static void queue_slab(struct vdo_slab *slab)
2545 struct block_allocator *allocator = slab->allocator;
2546 block_count_t free_blocks;
2547 int result;
2549 VDO_ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry),
2550 "a requeued slab must not already be on a ring");
2552 if (vdo_is_read_only(allocator->depot->vdo))
2553 return;
2555 free_blocks = slab->free_blocks;
2556 result = VDO_ASSERT((free_blocks <= allocator->depot->slab_config.data_blocks),
2557 "rebuilt slab %u must have a valid free block count (has %llu, expected maximum %llu)",
2558 slab->slab_number, (unsigned long long) free_blocks,
2559 (unsigned long long) allocator->depot->slab_config.data_blocks);
2560 if (result != VDO_SUCCESS) {
2561 vdo_enter_read_only_mode(allocator->depot->vdo, result);
2562 return;
2565 if (slab->status != VDO_SLAB_REBUILT) {
2566 register_slab_for_scrubbing(slab, false);
2567 return;
2570 if (!vdo_is_state_resuming(&slab->state)) {
2572 * If the slab is resuming, we've already accounted for it here, so don't do it
2573 * again.
2574 * FIXME: under what situation would the slab be resuming here?
2576 WRITE_ONCE(allocator->allocated_blocks,
2577 allocator->allocated_blocks - free_blocks);
2578 if (!is_slab_journal_blank(slab)) {
2579 WRITE_ONCE(allocator->statistics.slabs_opened,
2580 allocator->statistics.slabs_opened + 1);
2584 if (allocator->depot->vdo->suspend_type == VDO_ADMIN_STATE_SAVING)
2585 reopen_slab_journal(slab);
2587 prioritize_slab(slab);
2591 * initiate_slab_action() - Initiate a slab action.
2593 * Implements vdo_admin_initiator_fn.
2595 static void initiate_slab_action(struct admin_state *state)
2597 struct vdo_slab *slab = container_of(state, struct vdo_slab, state);
2599 if (vdo_is_state_draining(state)) {
2600 const struct admin_state_code *operation = vdo_get_admin_state_code(state);
2602 if (operation == VDO_ADMIN_STATE_SCRUBBING)
2603 slab->status = VDO_SLAB_REBUILDING;
2605 drain_slab(slab);
2606 check_if_slab_drained(slab);
2607 return;
2610 if (vdo_is_state_loading(state)) {
2611 load_slab_journal(slab);
2612 return;
2615 if (vdo_is_state_resuming(state)) {
2616 queue_slab(slab);
2617 vdo_finish_resuming(state);
2618 return;
2621 vdo_finish_operation(state, VDO_INVALID_ADMIN_STATE);
2625 * get_next_slab() - Get the next slab to scrub.
2626 * @scrubber: The slab scrubber.
2628 * Return: The next slab to scrub or NULL if there are none.
2630 static struct vdo_slab *get_next_slab(struct slab_scrubber *scrubber)
2632 struct vdo_slab *slab;
2634 slab = list_first_entry_or_null(&scrubber->high_priority_slabs,
2635 struct vdo_slab, allocq_entry);
2636 if (slab != NULL)
2637 return slab;
2639 return list_first_entry_or_null(&scrubber->slabs, struct vdo_slab,
2640 allocq_entry);
2644 * has_slabs_to_scrub() - Check whether a scrubber has slabs to scrub.
2645 * @scrubber: The scrubber to check.
2647 * Return: true if the scrubber has slabs to scrub.
2649 static inline bool __must_check has_slabs_to_scrub(struct slab_scrubber *scrubber)
2651 return (get_next_slab(scrubber) != NULL);
2655 * uninitialize_scrubber_vio() - Clean up the slab_scrubber's vio.
2656 * @scrubber: The scrubber.
2658 static void uninitialize_scrubber_vio(struct slab_scrubber *scrubber)
2660 vdo_free(vdo_forget(scrubber->vio.data));
2661 free_vio_components(&scrubber->vio);
2665 * finish_scrubbing() - Stop scrubbing, either because there are no more slabs to scrub or because
2666 * there's been an error.
2667 * @scrubber: The scrubber.
2669 static void finish_scrubbing(struct slab_scrubber *scrubber, int result)
2671 bool notify = vdo_waitq_has_waiters(&scrubber->waiters);
2672 bool done = !has_slabs_to_scrub(scrubber);
2673 struct block_allocator *allocator =
2674 container_of(scrubber, struct block_allocator, scrubber);
2676 if (done)
2677 uninitialize_scrubber_vio(scrubber);
2679 if (scrubber->high_priority_only) {
2680 scrubber->high_priority_only = false;
2681 vdo_fail_completion(vdo_forget(scrubber->vio.completion.parent), result);
2682 } else if (done && (atomic_add_return(-1, &allocator->depot->zones_to_scrub) == 0)) {
2683 /* All of our slabs were scrubbed, and we're the last allocator to finish. */
2684 enum vdo_state prior_state =
2685 atomic_cmpxchg(&allocator->depot->vdo->state, VDO_RECOVERING,
2686 VDO_DIRTY);
2689 * To be safe, even if the CAS failed, ensure anything that follows is ordered with
2690 * respect to whatever state change did happen.
2692 smp_mb__after_atomic();
2695 * We must check the VDO state here and not the depot's read_only_notifier since
2696 * the compare-swap-above could have failed due to a read-only entry which our own
2697 * thread does not yet know about.
2699 if (prior_state == VDO_DIRTY)
2700 vdo_log_info("VDO commencing normal operation");
2701 else if (prior_state == VDO_RECOVERING)
2702 vdo_log_info("Exiting recovery mode");
2706 * Note that the scrubber has stopped, and inform anyone who might be waiting for that to
2707 * happen.
2709 if (!vdo_finish_draining(&scrubber->admin_state))
2710 WRITE_ONCE(scrubber->admin_state.current_state,
2711 VDO_ADMIN_STATE_SUSPENDED);
2714 * We can't notify waiters until after we've finished draining or they'll just requeue.
2715 * Fortunately if there were waiters, we can't have been freed yet.
2717 if (notify)
2718 vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL);
2721 static void scrub_next_slab(struct slab_scrubber *scrubber);
2724 * slab_scrubbed() - Notify the scrubber that a slab has been scrubbed.
2725 * @completion: The slab rebuild completion.
2727 * This callback is registered in apply_journal_entries().
2729 static void slab_scrubbed(struct vdo_completion *completion)
2731 struct slab_scrubber *scrubber =
2732 container_of(as_vio(completion), struct slab_scrubber, vio);
2733 struct vdo_slab *slab = scrubber->slab;
2735 slab->status = VDO_SLAB_REBUILT;
2736 queue_slab(slab);
2737 reopen_slab_journal(slab);
2738 WRITE_ONCE(scrubber->slab_count, scrubber->slab_count - 1);
2739 scrub_next_slab(scrubber);
2743 * abort_scrubbing() - Abort scrubbing due to an error.
2744 * @scrubber: The slab scrubber.
2745 * @result: The error.
2747 static void abort_scrubbing(struct slab_scrubber *scrubber, int result)
2749 vdo_enter_read_only_mode(scrubber->vio.completion.vdo, result);
2750 finish_scrubbing(scrubber, result);
2754 * handle_scrubber_error() - Handle errors while rebuilding a slab.
2755 * @completion: The slab rebuild completion.
2757 static void handle_scrubber_error(struct vdo_completion *completion)
2759 struct vio *vio = as_vio(completion);
2761 vio_record_metadata_io_error(vio);
2762 abort_scrubbing(container_of(vio, struct slab_scrubber, vio),
2763 completion->result);
2767 * apply_block_entries() - Apply all the entries in a block to the reference counts.
2768 * @block: A block with entries to apply.
2769 * @entry_count: The number of entries to apply.
2770 * @block_number: The sequence number of the block.
2771 * @slab: The slab to apply the entries to.
2773 * Return: VDO_SUCCESS or an error code.
2775 static int apply_block_entries(struct packed_slab_journal_block *block,
2776 journal_entry_count_t entry_count,
2777 sequence_number_t block_number, struct vdo_slab *slab)
2779 struct journal_point entry_point = {
2780 .sequence_number = block_number,
2781 .entry_count = 0,
2783 int result;
2784 slab_block_number max_sbn = slab->end - slab->start;
2786 while (entry_point.entry_count < entry_count) {
2787 struct slab_journal_entry entry =
2788 vdo_decode_slab_journal_entry(block, entry_point.entry_count);
2790 if (entry.sbn > max_sbn) {
2791 /* This entry is out of bounds. */
2792 return vdo_log_error_strerror(VDO_CORRUPT_JOURNAL,
2793 "vdo_slab journal entry (%llu, %u) had invalid offset %u in slab (size %u blocks)",
2794 (unsigned long long) block_number,
2795 entry_point.entry_count,
2796 entry.sbn, max_sbn);
2799 result = replay_reference_count_change(slab, &entry_point, entry);
2800 if (result != VDO_SUCCESS) {
2801 vdo_log_error_strerror(result,
2802 "vdo_slab journal entry (%llu, %u) (%s of offset %u) could not be applied in slab %u",
2803 (unsigned long long) block_number,
2804 entry_point.entry_count,
2805 vdo_get_journal_operation_name(entry.operation),
2806 entry.sbn, slab->slab_number);
2807 return result;
2809 entry_point.entry_count++;
2812 return VDO_SUCCESS;
2816 * apply_journal_entries() - Find the relevant vio of the slab journal and apply all valid entries.
2817 * @completion: The metadata read vio completion.
2819 * This is a callback registered in start_scrubbing().
2821 static void apply_journal_entries(struct vdo_completion *completion)
2823 int result;
2824 struct slab_scrubber *scrubber =
2825 container_of(as_vio(completion), struct slab_scrubber, vio);
2826 struct vdo_slab *slab = scrubber->slab;
2827 struct slab_journal *journal = &slab->journal;
2829 /* Find the boundaries of the useful part of the journal. */
2830 sequence_number_t tail = journal->tail;
2831 tail_block_offset_t end_index = (tail - 1) % journal->size;
2832 char *end_data = scrubber->vio.data + (end_index * VDO_BLOCK_SIZE);
2833 struct packed_slab_journal_block *end_block =
2834 (struct packed_slab_journal_block *) end_data;
2836 sequence_number_t head = __le64_to_cpu(end_block->header.head);
2837 tail_block_offset_t head_index = head % journal->size;
2838 block_count_t index = head_index;
2840 struct journal_point ref_counts_point = slab->slab_journal_point;
2841 struct journal_point last_entry_applied = ref_counts_point;
2842 sequence_number_t sequence;
2844 for (sequence = head; sequence < tail; sequence++) {
2845 char *block_data = scrubber->vio.data + (index * VDO_BLOCK_SIZE);
2846 struct packed_slab_journal_block *block =
2847 (struct packed_slab_journal_block *) block_data;
2848 struct slab_journal_block_header header;
2850 vdo_unpack_slab_journal_block_header(&block->header, &header);
2852 if ((header.nonce != slab->allocator->nonce) ||
2853 (header.metadata_type != VDO_METADATA_SLAB_JOURNAL) ||
2854 (header.sequence_number != sequence) ||
2855 (header.entry_count > journal->entries_per_block) ||
2856 (header.has_block_map_increments &&
2857 (header.entry_count > journal->full_entries_per_block))) {
2858 /* The block is not what we expect it to be. */
2859 vdo_log_error("vdo_slab journal block for slab %u was invalid",
2860 slab->slab_number);
2861 abort_scrubbing(scrubber, VDO_CORRUPT_JOURNAL);
2862 return;
2865 result = apply_block_entries(block, header.entry_count, sequence, slab);
2866 if (result != VDO_SUCCESS) {
2867 abort_scrubbing(scrubber, result);
2868 return;
2871 last_entry_applied.sequence_number = sequence;
2872 last_entry_applied.entry_count = header.entry_count - 1;
2873 index++;
2874 if (index == journal->size)
2875 index = 0;
2879 * At the end of rebuild, the reference counters should be accurate to the end of the
2880 * journal we just applied.
2882 result = VDO_ASSERT(!vdo_before_journal_point(&last_entry_applied,
2883 &ref_counts_point),
2884 "Refcounts are not more accurate than the slab journal");
2885 if (result != VDO_SUCCESS) {
2886 abort_scrubbing(scrubber, result);
2887 return;
2890 /* Save out the rebuilt reference blocks. */
2891 vdo_prepare_completion(completion, slab_scrubbed, handle_scrubber_error,
2892 slab->allocator->thread_id, completion->parent);
2893 vdo_start_operation_with_waiter(&slab->state,
2894 VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING,
2895 completion, initiate_slab_action);
2898 static void read_slab_journal_endio(struct bio *bio)
2900 struct vio *vio = bio->bi_private;
2901 struct slab_scrubber *scrubber = container_of(vio, struct slab_scrubber, vio);
2903 continue_vio_after_io(bio->bi_private, apply_journal_entries,
2904 scrubber->slab->allocator->thread_id);
2908 * start_scrubbing() - Read the current slab's journal from disk now that it has been flushed.
2909 * @completion: The scrubber's vio completion.
2911 * This callback is registered in scrub_next_slab().
2913 static void start_scrubbing(struct vdo_completion *completion)
2915 struct slab_scrubber *scrubber =
2916 container_of(as_vio(completion), struct slab_scrubber, vio);
2917 struct vdo_slab *slab = scrubber->slab;
2919 if (!slab->allocator->summary_entries[slab->slab_number].is_dirty) {
2920 slab_scrubbed(completion);
2921 return;
2924 vdo_submit_metadata_vio(&scrubber->vio, slab->journal_origin,
2925 read_slab_journal_endio, handle_scrubber_error,
2926 REQ_OP_READ);
2930 * scrub_next_slab() - Scrub the next slab if there is one.
2931 * @scrubber: The scrubber.
2933 static void scrub_next_slab(struct slab_scrubber *scrubber)
2935 struct vdo_completion *completion = &scrubber->vio.completion;
2936 struct vdo_slab *slab;
2939 * Note: this notify call is always safe only because scrubbing can only be started when
2940 * the VDO is quiescent.
2942 vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL);
2944 if (vdo_is_read_only(completion->vdo)) {
2945 finish_scrubbing(scrubber, VDO_READ_ONLY);
2946 return;
2949 slab = get_next_slab(scrubber);
2950 if ((slab == NULL) ||
2951 (scrubber->high_priority_only && list_empty(&scrubber->high_priority_slabs))) {
2952 finish_scrubbing(scrubber, VDO_SUCCESS);
2953 return;
2956 if (vdo_finish_draining(&scrubber->admin_state))
2957 return;
2959 list_del_init(&slab->allocq_entry);
2960 scrubber->slab = slab;
2961 vdo_prepare_completion(completion, start_scrubbing, handle_scrubber_error,
2962 slab->allocator->thread_id, completion->parent);
2963 vdo_start_operation_with_waiter(&slab->state, VDO_ADMIN_STATE_SCRUBBING,
2964 completion, initiate_slab_action);
2968 * scrub_slabs() - Scrub all of an allocator's slabs that are eligible for scrubbing.
2969 * @allocator: The block_allocator to scrub.
2970 * @parent: The completion to notify when scrubbing is done, implies high_priority, may be NULL.
2972 static void scrub_slabs(struct block_allocator *allocator, struct vdo_completion *parent)
2974 struct slab_scrubber *scrubber = &allocator->scrubber;
2976 scrubber->vio.completion.parent = parent;
2977 scrubber->high_priority_only = (parent != NULL);
2978 if (!has_slabs_to_scrub(scrubber)) {
2979 finish_scrubbing(scrubber, VDO_SUCCESS);
2980 return;
2983 if (scrubber->high_priority_only &&
2984 vdo_is_priority_table_empty(allocator->prioritized_slabs) &&
2985 list_empty(&scrubber->high_priority_slabs))
2986 register_slab_for_scrubbing(get_next_slab(scrubber), true);
2988 vdo_resume_if_quiescent(&scrubber->admin_state);
2989 scrub_next_slab(scrubber);
2992 static inline void assert_on_allocator_thread(thread_id_t thread_id,
2993 const char *function_name)
2995 VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == thread_id),
2996 "%s called on correct thread", function_name);
2999 static void register_slab_with_allocator(struct block_allocator *allocator,
3000 struct vdo_slab *slab)
3002 allocator->slab_count++;
3003 allocator->last_slab = slab->slab_number;
3007 * get_depot_slab_iterator() - Return a slab_iterator over the slabs in a slab_depot.
3008 * @depot: The depot over which to iterate.
3009 * @start: The number of the slab to start iterating from.
3010 * @end: The number of the last slab which may be returned.
3011 * @stride: The difference in slab number between successive slabs.
3013 * Iteration always occurs from higher to lower numbered slabs.
3015 * Return: An initialized iterator structure.
3017 static struct slab_iterator get_depot_slab_iterator(struct slab_depot *depot,
3018 slab_count_t start, slab_count_t end,
3019 slab_count_t stride)
3021 struct vdo_slab **slabs = depot->slabs;
3023 return (struct slab_iterator) {
3024 .slabs = slabs,
3025 .next = (((slabs == NULL) || (start < end)) ? NULL : slabs[start]),
3026 .end = end,
3027 .stride = stride,
3031 static struct slab_iterator get_slab_iterator(const struct block_allocator *allocator)
3033 return get_depot_slab_iterator(allocator->depot, allocator->last_slab,
3034 allocator->zone_number,
3035 allocator->depot->zone_count);
3039 * next_slab() - Get the next slab from a slab_iterator and advance the iterator
3040 * @iterator: The slab_iterator.
3042 * Return: The next slab or NULL if the iterator is exhausted.
3044 static struct vdo_slab *next_slab(struct slab_iterator *iterator)
3046 struct vdo_slab *slab = iterator->next;
3048 if ((slab == NULL) || (slab->slab_number < iterator->end + iterator->stride))
3049 iterator->next = NULL;
3050 else
3051 iterator->next = iterator->slabs[slab->slab_number - iterator->stride];
3053 return slab;
3057 * abort_waiter() - Abort vios waiting to make journal entries when read-only.
3059 * This callback is invoked on all vios waiting to make slab journal entries after the VDO has gone
3060 * into read-only mode. Implements waiter_callback_fn.
3062 static void abort_waiter(struct vdo_waiter *waiter, void *context __always_unused)
3064 struct reference_updater *updater =
3065 container_of(waiter, struct reference_updater, waiter);
3066 struct data_vio *data_vio = data_vio_from_reference_updater(updater);
3068 if (updater->increment) {
3069 continue_data_vio_with_error(data_vio, VDO_READ_ONLY);
3070 return;
3073 vdo_continue_completion(&data_vio->decrement_completion, VDO_READ_ONLY);
3076 /* Implements vdo_read_only_notification_fn. */
3077 static void notify_block_allocator_of_read_only_mode(void *listener,
3078 struct vdo_completion *parent)
3080 struct block_allocator *allocator = listener;
3081 struct slab_iterator iterator;
3083 assert_on_allocator_thread(allocator->thread_id, __func__);
3084 iterator = get_slab_iterator(allocator);
3085 while (iterator.next != NULL) {
3086 struct vdo_slab *slab = next_slab(&iterator);
3088 vdo_waitq_notify_all_waiters(&slab->journal.entry_waiters,
3089 abort_waiter, &slab->journal);
3090 check_if_slab_drained(slab);
3093 vdo_finish_completion(parent);
3097 * vdo_acquire_provisional_reference() - Acquire a provisional reference on behalf of a PBN lock if
3098 * the block it locks is unreferenced.
3099 * @slab: The slab which contains the block.
3100 * @pbn: The physical block to reference.
3101 * @lock: The lock.
3103 * Return: VDO_SUCCESS or an error.
3105 int vdo_acquire_provisional_reference(struct vdo_slab *slab, physical_block_number_t pbn,
3106 struct pbn_lock *lock)
3108 slab_block_number block_number;
3109 int result;
3111 if (vdo_pbn_lock_has_provisional_reference(lock))
3112 return VDO_SUCCESS;
3114 if (!is_slab_open(slab))
3115 return VDO_INVALID_ADMIN_STATE;
3117 result = slab_block_number_from_pbn(slab, pbn, &block_number);
3118 if (result != VDO_SUCCESS)
3119 return result;
3121 if (slab->counters[block_number] == EMPTY_REFERENCE_COUNT) {
3122 make_provisional_reference(slab, block_number);
3123 if (lock != NULL)
3124 vdo_assign_pbn_lock_provisional_reference(lock);
3127 if (vdo_pbn_lock_has_provisional_reference(lock))
3128 adjust_free_block_count(slab, false);
3130 return VDO_SUCCESS;
3133 static int __must_check allocate_slab_block(struct vdo_slab *slab,
3134 physical_block_number_t *block_number_ptr)
3136 slab_block_number free_index;
3138 if (!is_slab_open(slab))
3139 return VDO_INVALID_ADMIN_STATE;
3141 if (!search_reference_blocks(slab, &free_index))
3142 return VDO_NO_SPACE;
3144 VDO_ASSERT_LOG_ONLY((slab->counters[free_index] == EMPTY_REFERENCE_COUNT),
3145 "free block must have ref count of zero");
3146 make_provisional_reference(slab, free_index);
3147 adjust_free_block_count(slab, false);
3150 * Update the search hint so the next search will start at the array index just past the
3151 * free block we just found.
3153 slab->search_cursor.index = (free_index + 1);
3155 *block_number_ptr = slab->start + free_index;
3156 return VDO_SUCCESS;
3160 * open_slab() - Prepare a slab to be allocated from.
3161 * @slab: The slab.
3163 static void open_slab(struct vdo_slab *slab)
3165 reset_search_cursor(slab);
3166 if (is_slab_journal_blank(slab)) {
3167 WRITE_ONCE(slab->allocator->statistics.slabs_opened,
3168 slab->allocator->statistics.slabs_opened + 1);
3169 dirty_all_reference_blocks(slab);
3170 } else {
3171 WRITE_ONCE(slab->allocator->statistics.slabs_reopened,
3172 slab->allocator->statistics.slabs_reopened + 1);
3175 slab->allocator->open_slab = slab;
3180 * The block allocated will have a provisional reference and the reference must be either confirmed
3181 * with a subsequent increment or vacated with a subsequent decrement via
3182 * vdo_release_block_reference().
3184 int vdo_allocate_block(struct block_allocator *allocator,
3185 physical_block_number_t *block_number_ptr)
3187 int result;
3189 if (allocator->open_slab != NULL) {
3190 /* Try to allocate the next block in the currently open slab. */
3191 result = allocate_slab_block(allocator->open_slab, block_number_ptr);
3192 if ((result == VDO_SUCCESS) || (result != VDO_NO_SPACE))
3193 return result;
3195 /* Put the exhausted open slab back into the priority table. */
3196 prioritize_slab(allocator->open_slab);
3199 /* Remove the highest priority slab from the priority table and make it the open slab. */
3200 open_slab(list_entry(vdo_priority_table_dequeue(allocator->prioritized_slabs),
3201 struct vdo_slab, allocq_entry));
3204 * Try allocating again. If we're out of space immediately after opening a slab, then every
3205 * slab must be fully allocated.
3207 return allocate_slab_block(allocator->open_slab, block_number_ptr);
3211 * vdo_enqueue_clean_slab_waiter() - Wait for a clean slab.
3212 * @allocator: The block_allocator on which to wait.
3213 * @waiter: The waiter.
3215 * Return: VDO_SUCCESS if the waiter was queued, VDO_NO_SPACE if there are no slabs to scrub, and
3216 * some other error otherwise.
3218 int vdo_enqueue_clean_slab_waiter(struct block_allocator *allocator,
3219 struct vdo_waiter *waiter)
3221 if (vdo_is_read_only(allocator->depot->vdo))
3222 return VDO_READ_ONLY;
3224 if (vdo_is_state_quiescent(&allocator->scrubber.admin_state))
3225 return VDO_NO_SPACE;
3227 vdo_waitq_enqueue_waiter(&allocator->scrubber.waiters, waiter);
3228 return VDO_SUCCESS;
3232 * vdo_modify_reference_count() - Modify the reference count of a block by first making a slab
3233 * journal entry and then updating the reference counter.
3234 * @completion: The data_vio completion for which to add the entry.
3235 * @updater: Which of the data_vio's reference updaters is being submitted.
3237 void vdo_modify_reference_count(struct vdo_completion *completion,
3238 struct reference_updater *updater)
3240 struct vdo_slab *slab = vdo_get_slab(completion->vdo->depot, updater->zpbn.pbn);
3242 if (!is_slab_open(slab)) {
3243 vdo_continue_completion(completion, VDO_INVALID_ADMIN_STATE);
3244 return;
3247 if (vdo_is_read_only(completion->vdo)) {
3248 vdo_continue_completion(completion, VDO_READ_ONLY);
3249 return;
3252 vdo_waitq_enqueue_waiter(&slab->journal.entry_waiters, &updater->waiter);
3253 if ((slab->status != VDO_SLAB_REBUILT) && requires_reaping(&slab->journal))
3254 register_slab_for_scrubbing(slab, true);
3256 add_entries(&slab->journal);
3259 /* Release an unused provisional reference. */
3260 int vdo_release_block_reference(struct block_allocator *allocator,
3261 physical_block_number_t pbn)
3263 struct reference_updater updater;
3265 if (pbn == VDO_ZERO_BLOCK)
3266 return VDO_SUCCESS;
3268 updater = (struct reference_updater) {
3269 .operation = VDO_JOURNAL_DATA_REMAPPING,
3270 .increment = false,
3271 .zpbn = {
3272 .pbn = pbn,
3276 return adjust_reference_count(vdo_get_slab(allocator->depot, pbn),
3277 &updater, NULL);
3281 * This is a min_heap callback function orders slab_status structures using the 'is_clean' field as
3282 * the primary key and the 'emptiness' field as the secondary key.
3284 * Slabs need to be pushed onto the rings in the same order they are to be popped off. Popping
3285 * should always get the most empty first, so pushing should be from most empty to least empty.
3286 * Thus, the ordering is reversed from the usual sense since min_heap returns smaller elements
3287 * before larger ones.
3289 static bool slab_status_is_less_than(const void *item1, const void *item2,
3290 void __always_unused *args)
3292 const struct slab_status *info1 = item1;
3293 const struct slab_status *info2 = item2;
3295 if (info1->is_clean != info2->is_clean)
3296 return info1->is_clean;
3297 if (info1->emptiness != info2->emptiness)
3298 return info1->emptiness > info2->emptiness;
3299 return info1->slab_number < info2->slab_number;
3302 static const struct min_heap_callbacks slab_status_min_heap = {
3303 .less = slab_status_is_less_than,
3304 .swp = NULL,
3307 /* Inform the slab actor that a action has finished on some slab; used by apply_to_slabs(). */
3308 static void slab_action_callback(struct vdo_completion *completion)
3310 struct block_allocator *allocator = vdo_as_block_allocator(completion);
3311 struct slab_actor *actor = &allocator->slab_actor;
3313 if (--actor->slab_action_count == 0) {
3314 actor->callback(completion);
3315 return;
3318 vdo_reset_completion(completion);
3321 /* Preserve the error from part of an action and continue. */
3322 static void handle_operation_error(struct vdo_completion *completion)
3324 struct block_allocator *allocator = vdo_as_block_allocator(completion);
3326 if (allocator->state.waiter != NULL)
3327 vdo_set_completion_result(allocator->state.waiter, completion->result);
3328 completion->callback(completion);
3331 /* Perform an action on each of an allocator's slabs in parallel. */
3332 static void apply_to_slabs(struct block_allocator *allocator, vdo_action_fn callback)
3334 struct slab_iterator iterator;
3336 vdo_prepare_completion(&allocator->completion, slab_action_callback,
3337 handle_operation_error, allocator->thread_id, NULL);
3338 allocator->completion.requeue = false;
3341 * Since we are going to dequeue all of the slabs, the open slab will become invalid, so
3342 * clear it.
3344 allocator->open_slab = NULL;
3346 /* Ensure that we don't finish before we're done starting. */
3347 allocator->slab_actor = (struct slab_actor) {
3348 .slab_action_count = 1,
3349 .callback = callback,
3352 iterator = get_slab_iterator(allocator);
3353 while (iterator.next != NULL) {
3354 const struct admin_state_code *operation =
3355 vdo_get_admin_state_code(&allocator->state);
3356 struct vdo_slab *slab = next_slab(&iterator);
3358 list_del_init(&slab->allocq_entry);
3359 allocator->slab_actor.slab_action_count++;
3360 vdo_start_operation_with_waiter(&slab->state, operation,
3361 &allocator->completion,
3362 initiate_slab_action);
3365 slab_action_callback(&allocator->completion);
3368 static void finish_loading_allocator(struct vdo_completion *completion)
3370 struct block_allocator *allocator = vdo_as_block_allocator(completion);
3371 const struct admin_state_code *operation =
3372 vdo_get_admin_state_code(&allocator->state);
3374 if (allocator->eraser != NULL)
3375 dm_kcopyd_client_destroy(vdo_forget(allocator->eraser));
3377 if (operation == VDO_ADMIN_STATE_LOADING_FOR_RECOVERY) {
3378 void *context =
3379 vdo_get_current_action_context(allocator->depot->action_manager);
3381 vdo_replay_into_slab_journals(allocator, context);
3382 return;
3385 vdo_finish_loading(&allocator->state);
3388 static void erase_next_slab_journal(struct block_allocator *allocator);
3390 static void copy_callback(int read_err, unsigned long write_err, void *context)
3392 struct block_allocator *allocator = context;
3393 int result = (((read_err == 0) && (write_err == 0)) ? VDO_SUCCESS : -EIO);
3395 if (result != VDO_SUCCESS) {
3396 vdo_fail_completion(&allocator->completion, result);
3397 return;
3400 erase_next_slab_journal(allocator);
3403 /* erase_next_slab_journal() - Erase the next slab journal. */
3404 static void erase_next_slab_journal(struct block_allocator *allocator)
3406 struct vdo_slab *slab;
3407 physical_block_number_t pbn;
3408 struct dm_io_region regions[1];
3409 struct slab_depot *depot = allocator->depot;
3410 block_count_t blocks = depot->slab_config.slab_journal_blocks;
3412 if (allocator->slabs_to_erase.next == NULL) {
3413 vdo_finish_completion(&allocator->completion);
3414 return;
3417 slab = next_slab(&allocator->slabs_to_erase);
3418 pbn = slab->journal_origin - depot->vdo->geometry.bio_offset;
3419 regions[0] = (struct dm_io_region) {
3420 .bdev = vdo_get_backing_device(depot->vdo),
3421 .sector = pbn * VDO_SECTORS_PER_BLOCK,
3422 .count = blocks * VDO_SECTORS_PER_BLOCK,
3424 dm_kcopyd_zero(allocator->eraser, 1, regions, 0, copy_callback, allocator);
3427 /* Implements vdo_admin_initiator_fn. */
3428 static void initiate_load(struct admin_state *state)
3430 struct block_allocator *allocator =
3431 container_of(state, struct block_allocator, state);
3432 const struct admin_state_code *operation = vdo_get_admin_state_code(state);
3434 if (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD) {
3436 * Must requeue because the kcopyd client cannot be freed in the same stack frame
3437 * as the kcopyd callback, lest it deadlock.
3439 vdo_prepare_completion_for_requeue(&allocator->completion,
3440 finish_loading_allocator,
3441 handle_operation_error,
3442 allocator->thread_id, NULL);
3443 allocator->eraser = dm_kcopyd_client_create(NULL);
3444 if (IS_ERR(allocator->eraser)) {
3445 vdo_fail_completion(&allocator->completion,
3446 PTR_ERR(allocator->eraser));
3447 allocator->eraser = NULL;
3448 return;
3450 allocator->slabs_to_erase = get_slab_iterator(allocator);
3452 erase_next_slab_journal(allocator);
3453 return;
3456 apply_to_slabs(allocator, finish_loading_allocator);
3460 * vdo_notify_slab_journals_are_recovered() - Inform a block allocator that its slab journals have
3461 * been recovered from the recovery journal.
3462 * @completion The allocator completion
3464 void vdo_notify_slab_journals_are_recovered(struct vdo_completion *completion)
3466 struct block_allocator *allocator = vdo_as_block_allocator(completion);
3468 vdo_finish_loading_with_result(&allocator->state, completion->result);
3471 static int get_slab_statuses(struct block_allocator *allocator,
3472 struct slab_status **statuses_ptr)
3474 int result;
3475 struct slab_status *statuses;
3476 struct slab_iterator iterator = get_slab_iterator(allocator);
3478 result = vdo_allocate(allocator->slab_count, struct slab_status, __func__,
3479 &statuses);
3480 if (result != VDO_SUCCESS)
3481 return result;
3483 *statuses_ptr = statuses;
3485 while (iterator.next != NULL) {
3486 slab_count_t slab_number = next_slab(&iterator)->slab_number;
3488 *statuses++ = (struct slab_status) {
3489 .slab_number = slab_number,
3490 .is_clean = !allocator->summary_entries[slab_number].is_dirty,
3491 .emptiness = allocator->summary_entries[slab_number].fullness_hint,
3495 return VDO_SUCCESS;
3498 /* Prepare slabs for allocation or scrubbing. */
3499 static int __must_check vdo_prepare_slabs_for_allocation(struct block_allocator *allocator)
3501 struct slab_status current_slab_status;
3502 DEFINE_MIN_HEAP(struct slab_status, heap) heap;
3503 int result;
3504 struct slab_status *slab_statuses;
3505 struct slab_depot *depot = allocator->depot;
3507 WRITE_ONCE(allocator->allocated_blocks,
3508 allocator->slab_count * depot->slab_config.data_blocks);
3509 result = get_slab_statuses(allocator, &slab_statuses);
3510 if (result != VDO_SUCCESS)
3511 return result;
3513 /* Sort the slabs by cleanliness, then by emptiness hint. */
3514 heap = (struct heap) {
3515 .data = slab_statuses,
3516 .nr = allocator->slab_count,
3517 .size = allocator->slab_count,
3519 min_heapify_all(&heap, &slab_status_min_heap, NULL);
3521 while (heap.nr > 0) {
3522 bool high_priority;
3523 struct vdo_slab *slab;
3524 struct slab_journal *journal;
3526 current_slab_status = slab_statuses[0];
3527 min_heap_pop(&heap, &slab_status_min_heap, NULL);
3528 slab = depot->slabs[current_slab_status.slab_number];
3530 if ((depot->load_type == VDO_SLAB_DEPOT_REBUILD_LOAD) ||
3531 (!allocator->summary_entries[slab->slab_number].load_ref_counts &&
3532 current_slab_status.is_clean)) {
3533 queue_slab(slab);
3534 continue;
3537 slab->status = VDO_SLAB_REQUIRES_SCRUBBING;
3538 journal = &slab->journal;
3539 high_priority = ((current_slab_status.is_clean &&
3540 (depot->load_type == VDO_SLAB_DEPOT_NORMAL_LOAD)) ||
3541 (journal_length(journal) >= journal->scrubbing_threshold));
3542 register_slab_for_scrubbing(slab, high_priority);
3545 vdo_free(slab_statuses);
3546 return VDO_SUCCESS;
3549 static const char *status_to_string(enum slab_rebuild_status status)
3551 switch (status) {
3552 case VDO_SLAB_REBUILT:
3553 return "REBUILT";
3554 case VDO_SLAB_REQUIRES_SCRUBBING:
3555 return "SCRUBBING";
3556 case VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING:
3557 return "PRIORITY_SCRUBBING";
3558 case VDO_SLAB_REBUILDING:
3559 return "REBUILDING";
3560 case VDO_SLAB_REPLAYING:
3561 return "REPLAYING";
3562 default:
3563 return "UNKNOWN";
3567 void vdo_dump_block_allocator(const struct block_allocator *allocator)
3569 unsigned int pause_counter = 0;
3570 struct slab_iterator iterator = get_slab_iterator(allocator);
3571 const struct slab_scrubber *scrubber = &allocator->scrubber;
3573 vdo_log_info("block_allocator zone %u", allocator->zone_number);
3574 while (iterator.next != NULL) {
3575 struct vdo_slab *slab = next_slab(&iterator);
3576 struct slab_journal *journal = &slab->journal;
3578 if (slab->reference_blocks != NULL) {
3579 /* Terse because there are a lot of slabs to dump and syslog is lossy. */
3580 vdo_log_info("slab %u: P%u, %llu free", slab->slab_number,
3581 slab->priority,
3582 (unsigned long long) slab->free_blocks);
3583 } else {
3584 vdo_log_info("slab %u: status %s", slab->slab_number,
3585 status_to_string(slab->status));
3588 vdo_log_info(" slab journal: entry_waiters=%zu waiting_to_commit=%s updating_slab_summary=%s head=%llu unreapable=%llu tail=%llu next_commit=%llu summarized=%llu last_summarized=%llu recovery_lock=%llu dirty=%s",
3589 vdo_waitq_num_waiters(&journal->entry_waiters),
3590 vdo_bool_to_string(journal->waiting_to_commit),
3591 vdo_bool_to_string(journal->updating_slab_summary),
3592 (unsigned long long) journal->head,
3593 (unsigned long long) journal->unreapable,
3594 (unsigned long long) journal->tail,
3595 (unsigned long long) journal->next_commit,
3596 (unsigned long long) journal->summarized,
3597 (unsigned long long) journal->last_summarized,
3598 (unsigned long long) journal->recovery_lock,
3599 vdo_bool_to_string(journal->recovery_lock != 0));
3601 * Given the frequency with which the locks are just a tiny bit off, it might be
3602 * worth dumping all the locks, but that might be too much logging.
3605 if (slab->counters != NULL) {
3606 /* Terse because there are a lot of slabs to dump and syslog is lossy. */
3607 vdo_log_info(" slab: free=%u/%u blocks=%u dirty=%zu active=%zu journal@(%llu,%u)",
3608 slab->free_blocks, slab->block_count,
3609 slab->reference_block_count,
3610 vdo_waitq_num_waiters(&slab->dirty_blocks),
3611 slab->active_count,
3612 (unsigned long long) slab->slab_journal_point.sequence_number,
3613 slab->slab_journal_point.entry_count);
3614 } else {
3615 vdo_log_info(" no counters");
3619 * Wait for a while after each batch of 32 slabs dumped, an arbitrary number,
3620 * allowing the kernel log a chance to be flushed instead of being overrun.
3622 if (pause_counter++ == 31) {
3623 pause_counter = 0;
3624 vdo_pause_for_logger();
3628 vdo_log_info("slab_scrubber slab_count %u waiters %zu %s%s",
3629 READ_ONCE(scrubber->slab_count),
3630 vdo_waitq_num_waiters(&scrubber->waiters),
3631 vdo_get_admin_state_code(&scrubber->admin_state)->name,
3632 scrubber->high_priority_only ? ", high_priority_only " : "");
3635 static void free_slab(struct vdo_slab *slab)
3637 if (slab == NULL)
3638 return;
3640 list_del(&slab->allocq_entry);
3641 vdo_free(vdo_forget(slab->journal.block));
3642 vdo_free(vdo_forget(slab->journal.locks));
3643 vdo_free(vdo_forget(slab->counters));
3644 vdo_free(vdo_forget(slab->reference_blocks));
3645 vdo_free(slab);
3648 static int initialize_slab_journal(struct vdo_slab *slab)
3650 struct slab_journal *journal = &slab->journal;
3651 const struct slab_config *slab_config = &slab->allocator->depot->slab_config;
3652 int result;
3654 result = vdo_allocate(slab_config->slab_journal_blocks, struct journal_lock,
3655 __func__, &journal->locks);
3656 if (result != VDO_SUCCESS)
3657 return result;
3659 result = vdo_allocate(VDO_BLOCK_SIZE, char, "struct packed_slab_journal_block",
3660 (char **) &journal->block);
3661 if (result != VDO_SUCCESS)
3662 return result;
3664 journal->slab = slab;
3665 journal->size = slab_config->slab_journal_blocks;
3666 journal->flushing_threshold = slab_config->slab_journal_flushing_threshold;
3667 journal->blocking_threshold = slab_config->slab_journal_blocking_threshold;
3668 journal->scrubbing_threshold = slab_config->slab_journal_scrubbing_threshold;
3669 journal->entries_per_block = VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK;
3670 journal->full_entries_per_block = VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK;
3671 journal->events = &slab->allocator->slab_journal_statistics;
3672 journal->recovery_journal = slab->allocator->depot->vdo->recovery_journal;
3673 journal->tail = 1;
3674 journal->head = 1;
3676 journal->flushing_deadline = journal->flushing_threshold;
3678 * Set there to be some time between the deadline and the blocking threshold, so that
3679 * hopefully all are done before blocking.
3681 if ((journal->blocking_threshold - journal->flushing_threshold) > 5)
3682 journal->flushing_deadline = journal->blocking_threshold - 5;
3684 journal->slab_summary_waiter.callback = release_journal_locks;
3686 INIT_LIST_HEAD(&journal->dirty_entry);
3687 INIT_LIST_HEAD(&journal->uncommitted_blocks);
3689 journal->tail_header.nonce = slab->allocator->nonce;
3690 journal->tail_header.metadata_type = VDO_METADATA_SLAB_JOURNAL;
3691 initialize_journal_state(journal);
3692 return VDO_SUCCESS;
3696 * make_slab() - Construct a new, empty slab.
3697 * @slab_origin: The physical block number within the block allocator partition of the first block
3698 * in the slab.
3699 * @allocator: The block allocator to which the slab belongs.
3700 * @slab_number: The slab number of the slab.
3701 * @is_new: true if this slab is being allocated as part of a resize.
3702 * @slab_ptr: A pointer to receive the new slab.
3704 * Return: VDO_SUCCESS or an error code.
3706 static int __must_check make_slab(physical_block_number_t slab_origin,
3707 struct block_allocator *allocator,
3708 slab_count_t slab_number, bool is_new,
3709 struct vdo_slab **slab_ptr)
3711 const struct slab_config *slab_config = &allocator->depot->slab_config;
3712 struct vdo_slab *slab;
3713 int result;
3715 result = vdo_allocate(1, struct vdo_slab, __func__, &slab);
3716 if (result != VDO_SUCCESS)
3717 return result;
3719 *slab = (struct vdo_slab) {
3720 .allocator = allocator,
3721 .start = slab_origin,
3722 .end = slab_origin + slab_config->slab_blocks,
3723 .slab_number = slab_number,
3724 .ref_counts_origin = slab_origin + slab_config->data_blocks,
3725 .journal_origin =
3726 vdo_get_slab_journal_start_block(slab_config, slab_origin),
3727 .block_count = slab_config->data_blocks,
3728 .free_blocks = slab_config->data_blocks,
3729 .reference_block_count =
3730 vdo_get_saved_reference_count_size(slab_config->data_blocks),
3732 INIT_LIST_HEAD(&slab->allocq_entry);
3734 result = initialize_slab_journal(slab);
3735 if (result != VDO_SUCCESS) {
3736 free_slab(slab);
3737 return result;
3740 if (is_new) {
3741 vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NEW);
3742 result = allocate_slab_counters(slab);
3743 if (result != VDO_SUCCESS) {
3744 free_slab(slab);
3745 return result;
3747 } else {
3748 vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
3751 *slab_ptr = slab;
3752 return VDO_SUCCESS;
3756 * allocate_slabs() - Allocate a new slab pointer array.
3757 * @depot: The depot.
3758 * @slab_count: The number of slabs the depot should have in the new array.
3760 * Any existing slab pointers will be copied into the new array, and slabs will be allocated as
3761 * needed. The newly allocated slabs will not be distributed for use by the block allocators.
3763 * Return: VDO_SUCCESS or an error code.
3765 static int allocate_slabs(struct slab_depot *depot, slab_count_t slab_count)
3767 block_count_t slab_size;
3768 bool resizing = false;
3769 physical_block_number_t slab_origin;
3770 int result;
3772 result = vdo_allocate(slab_count, struct vdo_slab *,
3773 "slab pointer array", &depot->new_slabs);
3774 if (result != VDO_SUCCESS)
3775 return result;
3777 if (depot->slabs != NULL) {
3778 memcpy(depot->new_slabs, depot->slabs,
3779 depot->slab_count * sizeof(struct vdo_slab *));
3780 resizing = true;
3783 slab_size = depot->slab_config.slab_blocks;
3784 slab_origin = depot->first_block + (depot->slab_count * slab_size);
3786 for (depot->new_slab_count = depot->slab_count;
3787 depot->new_slab_count < slab_count;
3788 depot->new_slab_count++, slab_origin += slab_size) {
3789 struct block_allocator *allocator =
3790 &depot->allocators[depot->new_slab_count % depot->zone_count];
3791 struct vdo_slab **slab_ptr = &depot->new_slabs[depot->new_slab_count];
3793 result = make_slab(slab_origin, allocator, depot->new_slab_count,
3794 resizing, slab_ptr);
3795 if (result != VDO_SUCCESS)
3796 return result;
3799 return VDO_SUCCESS;
3803 * vdo_abandon_new_slabs() - Abandon any new slabs in this depot, freeing them as needed.
3804 * @depot: The depot.
3806 void vdo_abandon_new_slabs(struct slab_depot *depot)
3808 slab_count_t i;
3810 if (depot->new_slabs == NULL)
3811 return;
3813 for (i = depot->slab_count; i < depot->new_slab_count; i++)
3814 free_slab(vdo_forget(depot->new_slabs[i]));
3815 depot->new_slab_count = 0;
3816 depot->new_size = 0;
3817 vdo_free(vdo_forget(depot->new_slabs));
3821 * get_allocator_thread_id() - Get the ID of the thread on which a given allocator operates.
3823 * Implements vdo_zone_thread_getter_fn.
3825 static thread_id_t get_allocator_thread_id(void *context, zone_count_t zone_number)
3827 return ((struct slab_depot *) context)->allocators[zone_number].thread_id;
3831 * release_recovery_journal_lock() - Request the slab journal to release the recovery journal lock
3832 * it may hold on a specified recovery journal block.
3833 * @journal: The slab journal.
3834 * @recovery_lock: The sequence number of the recovery journal block whose locks should be
3835 * released.
3837 * Return: true if the journal does hold a lock on the specified block (which it will release).
3839 static bool __must_check release_recovery_journal_lock(struct slab_journal *journal,
3840 sequence_number_t recovery_lock)
3842 if (recovery_lock > journal->recovery_lock) {
3843 VDO_ASSERT_LOG_ONLY((recovery_lock < journal->recovery_lock),
3844 "slab journal recovery lock is not older than the recovery journal head");
3845 return false;
3848 if ((recovery_lock < journal->recovery_lock) ||
3849 vdo_is_read_only(journal->slab->allocator->depot->vdo))
3850 return false;
3852 /* All locks are held by the block which is in progress; write it. */
3853 commit_tail(journal);
3854 return true;
3858 * Request a commit of all dirty tail blocks which are locking the recovery journal block the depot
3859 * is seeking to release.
3861 * Implements vdo_zone_action_fn.
3863 static void release_tail_block_locks(void *context, zone_count_t zone_number,
3864 struct vdo_completion *parent)
3866 struct slab_journal *journal, *tmp;
3867 struct slab_depot *depot = context;
3868 struct list_head *list = &depot->allocators[zone_number].dirty_slab_journals;
3870 list_for_each_entry_safe(journal, tmp, list, dirty_entry) {
3871 if (!release_recovery_journal_lock(journal,
3872 depot->active_release_request))
3873 break;
3876 vdo_finish_completion(parent);
3880 * prepare_for_tail_block_commit() - Prepare to commit oldest tail blocks.
3882 * Implements vdo_action_preamble_fn.
3884 static void prepare_for_tail_block_commit(void *context, struct vdo_completion *parent)
3886 struct slab_depot *depot = context;
3888 depot->active_release_request = depot->new_release_request;
3889 vdo_finish_completion(parent);
3893 * schedule_tail_block_commit() - Schedule a tail block commit if necessary.
3895 * This method should not be called directly. Rather, call vdo_schedule_default_action() on the
3896 * depot's action manager.
3898 * Implements vdo_action_scheduler_fn.
3900 static bool schedule_tail_block_commit(void *context)
3902 struct slab_depot *depot = context;
3904 if (depot->new_release_request == depot->active_release_request)
3905 return false;
3907 return vdo_schedule_action(depot->action_manager,
3908 prepare_for_tail_block_commit,
3909 release_tail_block_locks,
3910 NULL, NULL);
3914 * initialize_slab_scrubber() - Initialize an allocator's slab scrubber.
3915 * @allocator: The allocator being initialized
3917 * Return: VDO_SUCCESS or an error.
3919 static int initialize_slab_scrubber(struct block_allocator *allocator)
3921 struct slab_scrubber *scrubber = &allocator->scrubber;
3922 block_count_t slab_journal_size =
3923 allocator->depot->slab_config.slab_journal_blocks;
3924 char *journal_data;
3925 int result;
3927 result = vdo_allocate(VDO_BLOCK_SIZE * slab_journal_size,
3928 char, __func__, &journal_data);
3929 if (result != VDO_SUCCESS)
3930 return result;
3932 result = allocate_vio_components(allocator->completion.vdo,
3933 VIO_TYPE_SLAB_JOURNAL,
3934 VIO_PRIORITY_METADATA,
3935 allocator, slab_journal_size,
3936 journal_data, &scrubber->vio);
3937 if (result != VDO_SUCCESS) {
3938 vdo_free(journal_data);
3939 return result;
3942 INIT_LIST_HEAD(&scrubber->high_priority_slabs);
3943 INIT_LIST_HEAD(&scrubber->slabs);
3944 vdo_set_admin_state_code(&scrubber->admin_state, VDO_ADMIN_STATE_SUSPENDED);
3945 return VDO_SUCCESS;
3949 * initialize_slab_summary_block() - Initialize a slab_summary_block.
3950 * @allocator: The allocator which owns the block.
3951 * @index: The index of this block in its zone's summary.
3953 * Return: VDO_SUCCESS or an error.
3955 static int __must_check initialize_slab_summary_block(struct block_allocator *allocator,
3956 block_count_t index)
3958 struct slab_summary_block *block = &allocator->summary_blocks[index];
3959 int result;
3961 result = vdo_allocate(VDO_BLOCK_SIZE, char, __func__, &block->outgoing_entries);
3962 if (result != VDO_SUCCESS)
3963 return result;
3965 result = allocate_vio_components(allocator->depot->vdo, VIO_TYPE_SLAB_SUMMARY,
3966 VIO_PRIORITY_METADATA, NULL, 1,
3967 block->outgoing_entries, &block->vio);
3968 if (result != VDO_SUCCESS)
3969 return result;
3971 block->allocator = allocator;
3972 block->entries = &allocator->summary_entries[VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK * index];
3973 block->index = index;
3974 return VDO_SUCCESS;
3977 static int __must_check initialize_block_allocator(struct slab_depot *depot,
3978 zone_count_t zone)
3980 int result;
3981 block_count_t i;
3982 struct block_allocator *allocator = &depot->allocators[zone];
3983 struct vdo *vdo = depot->vdo;
3984 block_count_t max_free_blocks = depot->slab_config.data_blocks;
3985 unsigned int max_priority = (2 + ilog2(max_free_blocks));
3987 *allocator = (struct block_allocator) {
3988 .depot = depot,
3989 .zone_number = zone,
3990 .thread_id = vdo->thread_config.physical_threads[zone],
3991 .nonce = vdo->states.vdo.nonce,
3994 INIT_LIST_HEAD(&allocator->dirty_slab_journals);
3995 vdo_set_admin_state_code(&allocator->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
3996 result = vdo_register_read_only_listener(vdo, allocator,
3997 notify_block_allocator_of_read_only_mode,
3998 allocator->thread_id);
3999 if (result != VDO_SUCCESS)
4000 return result;
4002 vdo_initialize_completion(&allocator->completion, vdo, VDO_BLOCK_ALLOCATOR_COMPLETION);
4003 result = make_vio_pool(vdo, BLOCK_ALLOCATOR_VIO_POOL_SIZE, allocator->thread_id,
4004 VIO_TYPE_SLAB_JOURNAL, VIO_PRIORITY_METADATA,
4005 allocator, &allocator->vio_pool);
4006 if (result != VDO_SUCCESS)
4007 return result;
4009 result = initialize_slab_scrubber(allocator);
4010 if (result != VDO_SUCCESS)
4011 return result;
4013 result = vdo_make_priority_table(max_priority, &allocator->prioritized_slabs);
4014 if (result != VDO_SUCCESS)
4015 return result;
4017 result = vdo_allocate(VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE,
4018 struct slab_summary_block, __func__,
4019 &allocator->summary_blocks);
4020 if (result != VDO_SUCCESS)
4021 return result;
4023 vdo_set_admin_state_code(&allocator->summary_state,
4024 VDO_ADMIN_STATE_NORMAL_OPERATION);
4025 allocator->summary_entries = depot->summary_entries + (MAX_VDO_SLABS * zone);
4027 /* Initialize each summary block. */
4028 for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) {
4029 result = initialize_slab_summary_block(allocator, i);
4030 if (result != VDO_SUCCESS)
4031 return result;
4035 * Performing well atop thin provisioned storage requires either that VDO discards freed
4036 * blocks, or that the block allocator try to use slabs that already have allocated blocks
4037 * in preference to slabs that have never been opened. For reasons we have not been able to
4038 * fully understand, some SSD machines have been have been very sensitive (50% reduction in
4039 * test throughput) to very slight differences in the timing and locality of block
4040 * allocation. Assigning a low priority to unopened slabs (max_priority/2, say) would be
4041 * ideal for the story, but anything less than a very high threshold (max_priority - 1)
4042 * hurts on these machines.
4044 * This sets the free block threshold for preferring to open an unopened slab to the binary
4045 * floor of 3/4ths the total number of data blocks in a slab, which will generally evaluate
4046 * to about half the slab size.
4048 allocator->unopened_slab_priority = (1 + ilog2((max_free_blocks * 3) / 4));
4050 return VDO_SUCCESS;
4053 static int allocate_components(struct slab_depot *depot,
4054 struct partition *summary_partition)
4056 int result;
4057 zone_count_t zone;
4058 slab_count_t slab_count;
4059 u8 hint;
4060 u32 i;
4061 const struct thread_config *thread_config = &depot->vdo->thread_config;
4063 result = vdo_make_action_manager(depot->zone_count, get_allocator_thread_id,
4064 thread_config->journal_thread, depot,
4065 schedule_tail_block_commit,
4066 depot->vdo, &depot->action_manager);
4067 if (result != VDO_SUCCESS)
4068 return result;
4070 depot->origin = depot->first_block;
4072 /* block size must be a multiple of entry size */
4073 BUILD_BUG_ON((VDO_BLOCK_SIZE % sizeof(struct slab_summary_entry)) != 0);
4075 depot->summary_origin = summary_partition->offset;
4076 depot->hint_shift = vdo_get_slab_summary_hint_shift(depot->slab_size_shift);
4077 result = vdo_allocate(MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES,
4078 struct slab_summary_entry, __func__,
4079 &depot->summary_entries);
4080 if (result != VDO_SUCCESS)
4081 return result;
4084 /* Initialize all the entries. */
4085 hint = compute_fullness_hint(depot, depot->slab_config.data_blocks);
4086 for (i = 0; i < MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES; i++) {
4088 * This default tail block offset must be reflected in
4089 * slabJournal.c::read_slab_journal_tail().
4091 depot->summary_entries[i] = (struct slab_summary_entry) {
4092 .tail_block_offset = 0,
4093 .fullness_hint = hint,
4094 .load_ref_counts = false,
4095 .is_dirty = false,
4099 slab_count = vdo_compute_slab_count(depot->first_block, depot->last_block,
4100 depot->slab_size_shift);
4101 if (thread_config->physical_zone_count > slab_count) {
4102 return vdo_log_error_strerror(VDO_BAD_CONFIGURATION,
4103 "%u physical zones exceeds slab count %u",
4104 thread_config->physical_zone_count,
4105 slab_count);
4108 /* Initialize the block allocators. */
4109 for (zone = 0; zone < depot->zone_count; zone++) {
4110 result = initialize_block_allocator(depot, zone);
4111 if (result != VDO_SUCCESS)
4112 return result;
4115 /* Allocate slabs. */
4116 result = allocate_slabs(depot, slab_count);
4117 if (result != VDO_SUCCESS)
4118 return result;
4120 /* Use the new slabs. */
4121 for (i = depot->slab_count; i < depot->new_slab_count; i++) {
4122 struct vdo_slab *slab = depot->new_slabs[i];
4124 register_slab_with_allocator(slab->allocator, slab);
4125 WRITE_ONCE(depot->slab_count, depot->slab_count + 1);
4128 depot->slabs = depot->new_slabs;
4129 depot->new_slabs = NULL;
4130 depot->new_slab_count = 0;
4132 return VDO_SUCCESS;
4136 * vdo_decode_slab_depot() - Make a slab depot and configure it with the state read from the super
4137 * block.
4138 * @state: The slab depot state from the super block.
4139 * @vdo: The VDO which will own the depot.
4140 * @summary_partition: The partition which holds the slab summary.
4141 * @depot_ptr: A pointer to hold the depot.
4143 * Return: A success or error code.
4145 int vdo_decode_slab_depot(struct slab_depot_state_2_0 state, struct vdo *vdo,
4146 struct partition *summary_partition,
4147 struct slab_depot **depot_ptr)
4149 unsigned int slab_size_shift;
4150 struct slab_depot *depot;
4151 int result;
4154 * Calculate the bit shift for efficiently mapping block numbers to slabs. Using a shift
4155 * requires that the slab size be a power of two.
4157 block_count_t slab_size = state.slab_config.slab_blocks;
4159 if (!is_power_of_2(slab_size)) {
4160 return vdo_log_error_strerror(UDS_INVALID_ARGUMENT,
4161 "slab size must be a power of two");
4163 slab_size_shift = ilog2(slab_size);
4165 result = vdo_allocate_extended(struct slab_depot,
4166 vdo->thread_config.physical_zone_count,
4167 struct block_allocator, __func__, &depot);
4168 if (result != VDO_SUCCESS)
4169 return result;
4171 depot->vdo = vdo;
4172 depot->old_zone_count = state.zone_count;
4173 depot->zone_count = vdo->thread_config.physical_zone_count;
4174 depot->slab_config = state.slab_config;
4175 depot->first_block = state.first_block;
4176 depot->last_block = state.last_block;
4177 depot->slab_size_shift = slab_size_shift;
4179 result = allocate_components(depot, summary_partition);
4180 if (result != VDO_SUCCESS) {
4181 vdo_free_slab_depot(depot);
4182 return result;
4185 *depot_ptr = depot;
4186 return VDO_SUCCESS;
4189 static void uninitialize_allocator_summary(struct block_allocator *allocator)
4191 block_count_t i;
4193 if (allocator->summary_blocks == NULL)
4194 return;
4196 for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) {
4197 free_vio_components(&allocator->summary_blocks[i].vio);
4198 vdo_free(vdo_forget(allocator->summary_blocks[i].outgoing_entries));
4201 vdo_free(vdo_forget(allocator->summary_blocks));
4205 * vdo_free_slab_depot() - Destroy a slab depot.
4206 * @depot: The depot to destroy.
4208 void vdo_free_slab_depot(struct slab_depot *depot)
4210 zone_count_t zone = 0;
4212 if (depot == NULL)
4213 return;
4215 vdo_abandon_new_slabs(depot);
4217 for (zone = 0; zone < depot->zone_count; zone++) {
4218 struct block_allocator *allocator = &depot->allocators[zone];
4220 if (allocator->eraser != NULL)
4221 dm_kcopyd_client_destroy(vdo_forget(allocator->eraser));
4223 uninitialize_allocator_summary(allocator);
4224 uninitialize_scrubber_vio(&allocator->scrubber);
4225 free_vio_pool(vdo_forget(allocator->vio_pool));
4226 vdo_free_priority_table(vdo_forget(allocator->prioritized_slabs));
4229 if (depot->slabs != NULL) {
4230 slab_count_t i;
4232 for (i = 0; i < depot->slab_count; i++)
4233 free_slab(vdo_forget(depot->slabs[i]));
4236 vdo_free(vdo_forget(depot->slabs));
4237 vdo_free(vdo_forget(depot->action_manager));
4238 vdo_free(vdo_forget(depot->summary_entries));
4239 vdo_free(depot);
4243 * vdo_record_slab_depot() - Record the state of a slab depot for encoding into the super block.
4244 * @depot: The depot to encode.
4246 * Return: The depot state.
4248 struct slab_depot_state_2_0 vdo_record_slab_depot(const struct slab_depot *depot)
4251 * If this depot is currently using 0 zones, it must have been synchronously loaded by a
4252 * tool and is now being saved. We did not load and combine the slab summary, so we still
4253 * need to do that next time we load with the old zone count rather than 0.
4255 struct slab_depot_state_2_0 state;
4256 zone_count_t zones_to_record = depot->zone_count;
4258 if (depot->zone_count == 0)
4259 zones_to_record = depot->old_zone_count;
4261 state = (struct slab_depot_state_2_0) {
4262 .slab_config = depot->slab_config,
4263 .first_block = depot->first_block,
4264 .last_block = depot->last_block,
4265 .zone_count = zones_to_record,
4268 return state;
4272 * vdo_allocate_reference_counters() - Allocate the reference counters for all slabs in the depot.
4274 * Context: This method may be called only before entering normal operation from the load thread.
4276 * Return: VDO_SUCCESS or an error.
4278 int vdo_allocate_reference_counters(struct slab_depot *depot)
4280 struct slab_iterator iterator =
4281 get_depot_slab_iterator(depot, depot->slab_count - 1, 0, 1);
4283 while (iterator.next != NULL) {
4284 int result = allocate_slab_counters(next_slab(&iterator));
4286 if (result != VDO_SUCCESS)
4287 return result;
4290 return VDO_SUCCESS;
4294 * get_slab_number() - Get the number of the slab that contains a specified block.
4295 * @depot: The slab depot.
4296 * @pbn: The physical block number.
4297 * @slab_number_ptr: A pointer to hold the slab number.
4299 * Return: VDO_SUCCESS or an error.
4301 static int __must_check get_slab_number(const struct slab_depot *depot,
4302 physical_block_number_t pbn,
4303 slab_count_t *slab_number_ptr)
4305 slab_count_t slab_number;
4307 if (pbn < depot->first_block)
4308 return VDO_OUT_OF_RANGE;
4310 slab_number = (pbn - depot->first_block) >> depot->slab_size_shift;
4311 if (slab_number >= depot->slab_count)
4312 return VDO_OUT_OF_RANGE;
4314 *slab_number_ptr = slab_number;
4315 return VDO_SUCCESS;
4319 * vdo_get_slab() - Get the slab object for the slab that contains a specified block.
4320 * @depot: The slab depot.
4321 * @pbn: The physical block number.
4323 * Will put the VDO in read-only mode if the PBN is not a valid data block nor the zero block.
4325 * Return: The slab containing the block, or NULL if the block number is the zero block or
4326 * otherwise out of range.
4328 struct vdo_slab *vdo_get_slab(const struct slab_depot *depot,
4329 physical_block_number_t pbn)
4331 slab_count_t slab_number;
4332 int result;
4334 if (pbn == VDO_ZERO_BLOCK)
4335 return NULL;
4337 result = get_slab_number(depot, pbn, &slab_number);
4338 if (result != VDO_SUCCESS) {
4339 vdo_enter_read_only_mode(depot->vdo, result);
4340 return NULL;
4343 return depot->slabs[slab_number];
4347 * vdo_get_increment_limit() - Determine how many new references a block can acquire.
4348 * @depot: The slab depot.
4349 * @pbn: The physical block number that is being queried.
4351 * Context: This method must be called from the physical zone thread of the PBN.
4353 * Return: The number of available references.
4355 u8 vdo_get_increment_limit(struct slab_depot *depot, physical_block_number_t pbn)
4357 struct vdo_slab *slab = vdo_get_slab(depot, pbn);
4358 vdo_refcount_t *counter_ptr = NULL;
4359 int result;
4361 if ((slab == NULL) || (slab->status != VDO_SLAB_REBUILT))
4362 return 0;
4364 result = get_reference_counter(slab, pbn, &counter_ptr);
4365 if (result != VDO_SUCCESS)
4366 return 0;
4368 if (*counter_ptr == PROVISIONAL_REFERENCE_COUNT)
4369 return (MAXIMUM_REFERENCE_COUNT - 1);
4371 return (MAXIMUM_REFERENCE_COUNT - *counter_ptr);
4375 * vdo_is_physical_data_block() - Determine whether the given PBN refers to a data block.
4376 * @depot: The depot.
4377 * @pbn: The physical block number to ask about.
4379 * Return: True if the PBN corresponds to a data block.
4381 bool vdo_is_physical_data_block(const struct slab_depot *depot,
4382 physical_block_number_t pbn)
4384 slab_count_t slab_number;
4385 slab_block_number sbn;
4387 return ((pbn == VDO_ZERO_BLOCK) ||
4388 ((get_slab_number(depot, pbn, &slab_number) == VDO_SUCCESS) &&
4389 (slab_block_number_from_pbn(depot->slabs[slab_number], pbn, &sbn) ==
4390 VDO_SUCCESS)));
4394 * vdo_get_slab_depot_allocated_blocks() - Get the total number of data blocks allocated across all
4395 * the slabs in the depot.
4396 * @depot: The slab depot.
4398 * This is the total number of blocks with a non-zero reference count.
4400 * Context: This may be called from any thread.
4402 * Return: The total number of blocks with a non-zero reference count.
4404 block_count_t vdo_get_slab_depot_allocated_blocks(const struct slab_depot *depot)
4406 block_count_t total = 0;
4407 zone_count_t zone;
4409 for (zone = 0; zone < depot->zone_count; zone++) {
4410 /* The allocators are responsible for thread safety. */
4411 total += READ_ONCE(depot->allocators[zone].allocated_blocks);
4414 return total;
4418 * vdo_get_slab_depot_data_blocks() - Get the total number of data blocks in all the slabs in the
4419 * depot.
4420 * @depot: The slab depot.
4422 * Context: This may be called from any thread.
4424 * Return: The total number of data blocks in all slabs.
4426 block_count_t vdo_get_slab_depot_data_blocks(const struct slab_depot *depot)
4428 return (READ_ONCE(depot->slab_count) * depot->slab_config.data_blocks);
4432 * finish_combining_zones() - Clean up after saving out the combined slab summary.
4433 * @completion: The vio which was used to write the summary data.
4435 static void finish_combining_zones(struct vdo_completion *completion)
4437 int result = completion->result;
4438 struct vdo_completion *parent = completion->parent;
4440 free_vio(as_vio(vdo_forget(completion)));
4441 vdo_fail_completion(parent, result);
4444 static void handle_combining_error(struct vdo_completion *completion)
4446 vio_record_metadata_io_error(as_vio(completion));
4447 finish_combining_zones(completion);
4450 static void write_summary_endio(struct bio *bio)
4452 struct vio *vio = bio->bi_private;
4453 struct vdo *vdo = vio->completion.vdo;
4455 continue_vio_after_io(vio, finish_combining_zones,
4456 vdo->thread_config.admin_thread);
4460 * combine_summaries() - Treating the current entries buffer as the on-disk value of all zones,
4461 * update every zone to the correct values for every slab.
4462 * @depot: The depot whose summary entries should be combined.
4464 static void combine_summaries(struct slab_depot *depot)
4467 * Combine all the old summary data into the portion of the buffer corresponding to the
4468 * first zone.
4470 zone_count_t zone = 0;
4471 struct slab_summary_entry *entries = depot->summary_entries;
4473 if (depot->old_zone_count > 1) {
4474 slab_count_t entry_number;
4476 for (entry_number = 0; entry_number < MAX_VDO_SLABS; entry_number++) {
4477 if (zone != 0) {
4478 memcpy(entries + entry_number,
4479 entries + (zone * MAX_VDO_SLABS) + entry_number,
4480 sizeof(struct slab_summary_entry));
4483 zone++;
4484 if (zone == depot->old_zone_count)
4485 zone = 0;
4489 /* Copy the combined data to each zones's region of the buffer. */
4490 for (zone = 1; zone < MAX_VDO_PHYSICAL_ZONES; zone++) {
4491 memcpy(entries + (zone * MAX_VDO_SLABS), entries,
4492 MAX_VDO_SLABS * sizeof(struct slab_summary_entry));
4497 * finish_loading_summary() - Finish loading slab summary data.
4498 * @completion: The vio which was used to read the summary data.
4500 * Combines the slab summary data from all the previously written zones and copies the combined
4501 * summary to each partition's data region. Then writes the combined summary back out to disk. This
4502 * callback is registered in load_summary_endio().
4504 static void finish_loading_summary(struct vdo_completion *completion)
4506 struct slab_depot *depot = completion->vdo->depot;
4508 /* Combine the summary from each zone so each zone is correct for all slabs. */
4509 combine_summaries(depot);
4511 /* Write the combined summary back out. */
4512 vdo_submit_metadata_vio(as_vio(completion), depot->summary_origin,
4513 write_summary_endio, handle_combining_error,
4514 REQ_OP_WRITE);
4517 static void load_summary_endio(struct bio *bio)
4519 struct vio *vio = bio->bi_private;
4520 struct vdo *vdo = vio->completion.vdo;
4522 continue_vio_after_io(vio, finish_loading_summary,
4523 vdo->thread_config.admin_thread);
4527 * load_slab_summary() - The preamble of a load operation.
4529 * Implements vdo_action_preamble_fn.
4531 static void load_slab_summary(void *context, struct vdo_completion *parent)
4533 int result;
4534 struct vio *vio;
4535 struct slab_depot *depot = context;
4536 const struct admin_state_code *operation =
4537 vdo_get_current_manager_operation(depot->action_manager);
4539 result = create_multi_block_metadata_vio(depot->vdo, VIO_TYPE_SLAB_SUMMARY,
4540 VIO_PRIORITY_METADATA, parent,
4541 VDO_SLAB_SUMMARY_BLOCKS,
4542 (char *) depot->summary_entries, &vio);
4543 if (result != VDO_SUCCESS) {
4544 vdo_fail_completion(parent, result);
4545 return;
4548 if ((operation == VDO_ADMIN_STATE_FORMATTING) ||
4549 (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD)) {
4550 finish_loading_summary(&vio->completion);
4551 return;
4554 vdo_submit_metadata_vio(vio, depot->summary_origin, load_summary_endio,
4555 handle_combining_error, REQ_OP_READ);
4558 /* Implements vdo_zone_action_fn. */
4559 static void load_allocator(void *context, zone_count_t zone_number,
4560 struct vdo_completion *parent)
4562 struct slab_depot *depot = context;
4564 vdo_start_loading(&depot->allocators[zone_number].state,
4565 vdo_get_current_manager_operation(depot->action_manager),
4566 parent, initiate_load);
4570 * vdo_load_slab_depot() - Asynchronously load any slab depot state that isn't included in the
4571 * super_block component.
4572 * @depot: The depot to load.
4573 * @operation: The type of load to perform.
4574 * @parent: The completion to notify when the load is complete.
4575 * @context: Additional context for the load operation; may be NULL.
4577 * This method may be called only before entering normal operation from the load thread.
4579 void vdo_load_slab_depot(struct slab_depot *depot,
4580 const struct admin_state_code *operation,
4581 struct vdo_completion *parent, void *context)
4583 if (!vdo_assert_load_operation(operation, parent))
4584 return;
4586 vdo_schedule_operation_with_context(depot->action_manager, operation,
4587 load_slab_summary, load_allocator,
4588 NULL, context, parent);
4591 /* Implements vdo_zone_action_fn. */
4592 static void prepare_to_allocate(void *context, zone_count_t zone_number,
4593 struct vdo_completion *parent)
4595 struct slab_depot *depot = context;
4596 struct block_allocator *allocator = &depot->allocators[zone_number];
4597 int result;
4599 result = vdo_prepare_slabs_for_allocation(allocator);
4600 if (result != VDO_SUCCESS) {
4601 vdo_fail_completion(parent, result);
4602 return;
4605 scrub_slabs(allocator, parent);
4609 * vdo_prepare_slab_depot_to_allocate() - Prepare the slab depot to come online and start
4610 * allocating blocks.
4611 * @depot: The depot to prepare.
4612 * @load_type: The load type.
4613 * @parent: The completion to notify when the operation is complete.
4615 * This method may be called only before entering normal operation from the load thread. It must be
4616 * called before allocation may proceed.
4618 void vdo_prepare_slab_depot_to_allocate(struct slab_depot *depot,
4619 enum slab_depot_load_type load_type,
4620 struct vdo_completion *parent)
4622 depot->load_type = load_type;
4623 atomic_set(&depot->zones_to_scrub, depot->zone_count);
4624 vdo_schedule_action(depot->action_manager, NULL,
4625 prepare_to_allocate, NULL, parent);
4629 * vdo_update_slab_depot_size() - Update the slab depot to reflect its new size in memory.
4630 * @depot: The depot to update.
4632 * This size is saved to disk as part of the super block.
4634 void vdo_update_slab_depot_size(struct slab_depot *depot)
4636 depot->last_block = depot->new_last_block;
4640 * vdo_prepare_to_grow_slab_depot() - Allocate new memory needed for a resize of a slab depot to
4641 * the given size.
4642 * @depot: The depot to prepare to resize.
4643 * @partition: The new depot partition
4645 * Return: VDO_SUCCESS or an error.
4647 int vdo_prepare_to_grow_slab_depot(struct slab_depot *depot,
4648 const struct partition *partition)
4650 struct slab_depot_state_2_0 new_state;
4651 int result;
4652 slab_count_t new_slab_count;
4654 if ((partition->count >> depot->slab_size_shift) <= depot->slab_count)
4655 return VDO_INCREMENT_TOO_SMALL;
4657 /* Generate the depot configuration for the new block count. */
4658 VDO_ASSERT_LOG_ONLY(depot->first_block == partition->offset,
4659 "New slab depot partition doesn't change origin");
4660 result = vdo_configure_slab_depot(partition, depot->slab_config,
4661 depot->zone_count, &new_state);
4662 if (result != VDO_SUCCESS)
4663 return result;
4665 new_slab_count = vdo_compute_slab_count(depot->first_block,
4666 new_state.last_block,
4667 depot->slab_size_shift);
4668 if (new_slab_count <= depot->slab_count)
4669 return vdo_log_error_strerror(VDO_INCREMENT_TOO_SMALL,
4670 "Depot can only grow");
4671 if (new_slab_count == depot->new_slab_count) {
4672 /* Check it out, we've already got all the new slabs allocated! */
4673 return VDO_SUCCESS;
4676 vdo_abandon_new_slabs(depot);
4677 result = allocate_slabs(depot, new_slab_count);
4678 if (result != VDO_SUCCESS) {
4679 vdo_abandon_new_slabs(depot);
4680 return result;
4683 depot->new_size = partition->count;
4684 depot->old_last_block = depot->last_block;
4685 depot->new_last_block = new_state.last_block;
4687 return VDO_SUCCESS;
4691 * finish_registration() - Finish registering new slabs now that all of the allocators have
4692 * received their new slabs.
4694 * Implements vdo_action_conclusion_fn.
4696 static int finish_registration(void *context)
4698 struct slab_depot *depot = context;
4700 WRITE_ONCE(depot->slab_count, depot->new_slab_count);
4701 vdo_free(depot->slabs);
4702 depot->slabs = depot->new_slabs;
4703 depot->new_slabs = NULL;
4704 depot->new_slab_count = 0;
4705 return VDO_SUCCESS;
4708 /* Implements vdo_zone_action_fn. */
4709 static void register_new_slabs(void *context, zone_count_t zone_number,
4710 struct vdo_completion *parent)
4712 struct slab_depot *depot = context;
4713 struct block_allocator *allocator = &depot->allocators[zone_number];
4714 slab_count_t i;
4716 for (i = depot->slab_count; i < depot->new_slab_count; i++) {
4717 struct vdo_slab *slab = depot->new_slabs[i];
4719 if (slab->allocator == allocator)
4720 register_slab_with_allocator(allocator, slab);
4723 vdo_finish_completion(parent);
4727 * vdo_use_new_slabs() - Use the new slabs allocated for resize.
4728 * @depot: The depot.
4729 * @parent: The object to notify when complete.
4731 void vdo_use_new_slabs(struct slab_depot *depot, struct vdo_completion *parent)
4733 VDO_ASSERT_LOG_ONLY(depot->new_slabs != NULL, "Must have new slabs to use");
4734 vdo_schedule_operation(depot->action_manager,
4735 VDO_ADMIN_STATE_SUSPENDED_OPERATION,
4736 NULL, register_new_slabs,
4737 finish_registration, parent);
4741 * stop_scrubbing() - Tell the scrubber to stop scrubbing after it finishes the slab it is
4742 * currently working on.
4743 * @allocator: The block allocator owning the scrubber to stop.
4745 static void stop_scrubbing(struct block_allocator *allocator)
4747 struct slab_scrubber *scrubber = &allocator->scrubber;
4749 if (vdo_is_state_quiescent(&scrubber->admin_state)) {
4750 vdo_finish_completion(&allocator->completion);
4751 } else {
4752 vdo_start_draining(&scrubber->admin_state,
4753 VDO_ADMIN_STATE_SUSPENDING,
4754 &allocator->completion, NULL);
4758 /* Implements vdo_admin_initiator_fn. */
4759 static void initiate_summary_drain(struct admin_state *state)
4761 check_summary_drain_complete(container_of(state, struct block_allocator,
4762 summary_state));
4765 static void do_drain_step(struct vdo_completion *completion)
4767 struct block_allocator *allocator = vdo_as_block_allocator(completion);
4769 vdo_prepare_completion_for_requeue(&allocator->completion, do_drain_step,
4770 handle_operation_error, allocator->thread_id,
4771 NULL);
4772 switch (++allocator->drain_step) {
4773 case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER:
4774 stop_scrubbing(allocator);
4775 return;
4777 case VDO_DRAIN_ALLOCATOR_STEP_SLABS:
4778 apply_to_slabs(allocator, do_drain_step);
4779 return;
4781 case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY:
4782 vdo_start_draining(&allocator->summary_state,
4783 vdo_get_admin_state_code(&allocator->state),
4784 completion, initiate_summary_drain);
4785 return;
4787 case VDO_DRAIN_ALLOCATOR_STEP_FINISHED:
4788 VDO_ASSERT_LOG_ONLY(!is_vio_pool_busy(allocator->vio_pool),
4789 "vio pool not busy");
4790 vdo_finish_draining_with_result(&allocator->state, completion->result);
4791 return;
4793 default:
4794 vdo_finish_draining_with_result(&allocator->state, UDS_BAD_STATE);
4798 /* Implements vdo_admin_initiator_fn. */
4799 static void initiate_drain(struct admin_state *state)
4801 struct block_allocator *allocator =
4802 container_of(state, struct block_allocator, state);
4804 allocator->drain_step = VDO_DRAIN_ALLOCATOR_START;
4805 do_drain_step(&allocator->completion);
4809 * Drain all allocator I/O. Depending upon the type of drain, some or all dirty metadata may be
4810 * written to disk. The type of drain will be determined from the state of the allocator's depot.
4812 * Implements vdo_zone_action_fn.
4814 static void drain_allocator(void *context, zone_count_t zone_number,
4815 struct vdo_completion *parent)
4817 struct slab_depot *depot = context;
4819 vdo_start_draining(&depot->allocators[zone_number].state,
4820 vdo_get_current_manager_operation(depot->action_manager),
4821 parent, initiate_drain);
4825 * vdo_drain_slab_depot() - Drain all slab depot I/O.
4826 * @depot: The depot to drain.
4827 * @operation: The drain operation (flush, rebuild, suspend, or save).
4828 * @parent: The completion to finish when the drain is complete.
4830 * If saving, or flushing, all dirty depot metadata will be written out. If saving or suspending,
4831 * the depot will be left in a suspended state.
4833 void vdo_drain_slab_depot(struct slab_depot *depot,
4834 const struct admin_state_code *operation,
4835 struct vdo_completion *parent)
4837 vdo_schedule_operation(depot->action_manager, operation,
4838 NULL, drain_allocator, NULL, parent);
4842 * resume_scrubbing() - Tell the scrubber to resume scrubbing if it has been stopped.
4843 * @allocator: The allocator being resumed.
4845 static void resume_scrubbing(struct block_allocator *allocator)
4847 int result;
4848 struct slab_scrubber *scrubber = &allocator->scrubber;
4850 if (!has_slabs_to_scrub(scrubber)) {
4851 vdo_finish_completion(&allocator->completion);
4852 return;
4855 result = vdo_resume_if_quiescent(&scrubber->admin_state);
4856 if (result != VDO_SUCCESS) {
4857 vdo_fail_completion(&allocator->completion, result);
4858 return;
4861 scrub_next_slab(scrubber);
4862 vdo_finish_completion(&allocator->completion);
4865 static void do_resume_step(struct vdo_completion *completion)
4867 struct block_allocator *allocator = vdo_as_block_allocator(completion);
4869 vdo_prepare_completion_for_requeue(&allocator->completion, do_resume_step,
4870 handle_operation_error,
4871 allocator->thread_id, NULL);
4872 switch (--allocator->drain_step) {
4873 case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY:
4874 vdo_fail_completion(completion,
4875 vdo_resume_if_quiescent(&allocator->summary_state));
4876 return;
4878 case VDO_DRAIN_ALLOCATOR_STEP_SLABS:
4879 apply_to_slabs(allocator, do_resume_step);
4880 return;
4882 case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER:
4883 resume_scrubbing(allocator);
4884 return;
4886 case VDO_DRAIN_ALLOCATOR_START:
4887 vdo_finish_resuming_with_result(&allocator->state, completion->result);
4888 return;
4890 default:
4891 vdo_finish_resuming_with_result(&allocator->state, UDS_BAD_STATE);
4895 /* Implements vdo_admin_initiator_fn. */
4896 static void initiate_resume(struct admin_state *state)
4898 struct block_allocator *allocator =
4899 container_of(state, struct block_allocator, state);
4901 allocator->drain_step = VDO_DRAIN_ALLOCATOR_STEP_FINISHED;
4902 do_resume_step(&allocator->completion);
4905 /* Implements vdo_zone_action_fn. */
4906 static void resume_allocator(void *context, zone_count_t zone_number,
4907 struct vdo_completion *parent)
4909 struct slab_depot *depot = context;
4911 vdo_start_resuming(&depot->allocators[zone_number].state,
4912 vdo_get_current_manager_operation(depot->action_manager),
4913 parent, initiate_resume);
4917 * vdo_resume_slab_depot() - Resume a suspended slab depot.
4918 * @depot: The depot to resume.
4919 * @parent: The completion to finish when the depot has resumed.
4921 void vdo_resume_slab_depot(struct slab_depot *depot, struct vdo_completion *parent)
4923 if (vdo_is_read_only(depot->vdo)) {
4924 vdo_continue_completion(parent, VDO_READ_ONLY);
4925 return;
4928 vdo_schedule_operation(depot->action_manager, VDO_ADMIN_STATE_RESUMING,
4929 NULL, resume_allocator, NULL, parent);
4933 * vdo_commit_oldest_slab_journal_tail_blocks() - Commit all dirty tail blocks which are locking a
4934 * given recovery journal block.
4935 * @depot: The depot.
4936 * @recovery_block_number: The sequence number of the recovery journal block whose locks should be
4937 * released.
4939 * Context: This method must be called from the journal zone thread.
4941 void vdo_commit_oldest_slab_journal_tail_blocks(struct slab_depot *depot,
4942 sequence_number_t recovery_block_number)
4944 if (depot == NULL)
4945 return;
4947 depot->new_release_request = recovery_block_number;
4948 vdo_schedule_default_action(depot->action_manager);
4951 /* Implements vdo_zone_action_fn. */
4952 static void scrub_all_unrecovered_slabs(void *context, zone_count_t zone_number,
4953 struct vdo_completion *parent)
4955 struct slab_depot *depot = context;
4957 scrub_slabs(&depot->allocators[zone_number], NULL);
4958 vdo_launch_completion(parent);
4962 * vdo_scrub_all_unrecovered_slabs() - Scrub all unrecovered slabs.
4963 * @depot: The depot to scrub.
4964 * @parent: The object to notify when scrubbing has been launched for all zones.
4966 void vdo_scrub_all_unrecovered_slabs(struct slab_depot *depot,
4967 struct vdo_completion *parent)
4969 vdo_schedule_action(depot->action_manager, NULL,
4970 scrub_all_unrecovered_slabs,
4971 NULL, parent);
4975 * get_block_allocator_statistics() - Get the total of the statistics from all the block allocators
4976 * in the depot.
4977 * @depot: The slab depot.
4979 * Return: The statistics from all block allocators in the depot.
4981 static struct block_allocator_statistics __must_check
4982 get_block_allocator_statistics(const struct slab_depot *depot)
4984 struct block_allocator_statistics totals;
4985 zone_count_t zone;
4987 memset(&totals, 0, sizeof(totals));
4989 for (zone = 0; zone < depot->zone_count; zone++) {
4990 const struct block_allocator *allocator = &depot->allocators[zone];
4991 const struct block_allocator_statistics *stats = &allocator->statistics;
4993 totals.slab_count += allocator->slab_count;
4994 totals.slabs_opened += READ_ONCE(stats->slabs_opened);
4995 totals.slabs_reopened += READ_ONCE(stats->slabs_reopened);
4998 return totals;
5002 * get_ref_counts_statistics() - Get the cumulative ref_counts statistics for the depot.
5003 * @depot: The slab depot.
5005 * Return: The cumulative statistics for all ref_counts in the depot.
5007 static struct ref_counts_statistics __must_check
5008 get_ref_counts_statistics(const struct slab_depot *depot)
5010 struct ref_counts_statistics totals;
5011 zone_count_t zone;
5013 memset(&totals, 0, sizeof(totals));
5015 for (zone = 0; zone < depot->zone_count; zone++) {
5016 totals.blocks_written +=
5017 READ_ONCE(depot->allocators[zone].ref_counts_statistics.blocks_written);
5020 return totals;
5024 * get_slab_journal_statistics() - Get the aggregated slab journal statistics for the depot.
5025 * @depot: The slab depot.
5027 * Return: The aggregated statistics for all slab journals in the depot.
5029 static struct slab_journal_statistics __must_check
5030 get_slab_journal_statistics(const struct slab_depot *depot)
5032 struct slab_journal_statistics totals;
5033 zone_count_t zone;
5035 memset(&totals, 0, sizeof(totals));
5037 for (zone = 0; zone < depot->zone_count; zone++) {
5038 const struct slab_journal_statistics *stats =
5039 &depot->allocators[zone].slab_journal_statistics;
5041 totals.disk_full_count += READ_ONCE(stats->disk_full_count);
5042 totals.flush_count += READ_ONCE(stats->flush_count);
5043 totals.blocked_count += READ_ONCE(stats->blocked_count);
5044 totals.blocks_written += READ_ONCE(stats->blocks_written);
5045 totals.tail_busy_count += READ_ONCE(stats->tail_busy_count);
5048 return totals;
5052 * vdo_get_slab_depot_statistics() - Get all the vdo_statistics fields that are properties of the
5053 * slab depot.
5054 * @depot: The slab depot.
5055 * @stats: The vdo statistics structure to partially fill.
5057 void vdo_get_slab_depot_statistics(const struct slab_depot *depot,
5058 struct vdo_statistics *stats)
5060 slab_count_t slab_count = READ_ONCE(depot->slab_count);
5061 slab_count_t unrecovered = 0;
5062 zone_count_t zone;
5064 for (zone = 0; zone < depot->zone_count; zone++) {
5065 /* The allocators are responsible for thread safety. */
5066 unrecovered += READ_ONCE(depot->allocators[zone].scrubber.slab_count);
5069 stats->recovery_percentage = (slab_count - unrecovered) * 100 / slab_count;
5070 stats->allocator = get_block_allocator_statistics(depot);
5071 stats->ref_counts = get_ref_counts_statistics(depot);
5072 stats->slab_journal = get_slab_journal_statistics(depot);
5073 stats->slab_summary = (struct slab_summary_statistics) {
5074 .blocks_written = atomic64_read(&depot->summary_statistics.blocks_written),
5079 * vdo_dump_slab_depot() - Dump the slab depot, in a thread-unsafe fashion.
5080 * @depot: The slab depot.
5082 void vdo_dump_slab_depot(const struct slab_depot *depot)
5084 vdo_log_info("vdo slab depot");
5085 vdo_log_info(" zone_count=%u old_zone_count=%u slabCount=%u active_release_request=%llu new_release_request=%llu",
5086 (unsigned int) depot->zone_count,
5087 (unsigned int) depot->old_zone_count, READ_ONCE(depot->slab_count),
5088 (unsigned long long) depot->active_release_request,
5089 (unsigned long long) depot->new_release_request);