1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
11 #include "dm-uevent.h"
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
36 #define DM_MSG_PREFIX "core"
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
48 * ending this fs bio, we will recover its ->bi_private.
50 #define REQ_DM_POLL_LIST REQ_DRV
52 static const char *_name
= DM_NAME
;
54 static unsigned int major
;
55 static unsigned int _major
;
57 static DEFINE_IDR(_minor_idr
);
59 static DEFINE_SPINLOCK(_minor_lock
);
61 static void do_deferred_remove(struct work_struct
*w
);
63 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
65 static struct workqueue_struct
*deferred_remove_workqueue
;
67 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
70 void dm_issue_global_event(void)
72 atomic_inc(&dm_global_event_nr
);
73 wake_up(&dm_global_eventq
);
76 DEFINE_STATIC_KEY_FALSE(stats_enabled
);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled
);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled
);
81 * One of these is allocated (on-stack) per original bio.
88 unsigned int sector_count
;
89 bool is_abnormal_io
:1;
90 bool submit_as_polled
:1;
93 static inline struct dm_target_io
*clone_to_tio(struct bio
*clone
)
95 return container_of(clone
, struct dm_target_io
, clone
);
98 void *dm_per_bio_data(struct bio
*bio
, size_t data_size
)
100 if (!dm_tio_flagged(clone_to_tio(bio
), DM_TIO_INSIDE_DM_IO
))
101 return (char *)bio
- DM_TARGET_IO_BIO_OFFSET
- data_size
;
102 return (char *)bio
- DM_IO_BIO_OFFSET
- data_size
;
104 EXPORT_SYMBOL_GPL(dm_per_bio_data
);
106 struct bio
*dm_bio_from_per_bio_data(void *data
, size_t data_size
)
108 struct dm_io
*io
= (struct dm_io
*)((char *)data
+ data_size
);
110 if (io
->magic
== DM_IO_MAGIC
)
111 return (struct bio
*)((char *)io
+ DM_IO_BIO_OFFSET
);
112 BUG_ON(io
->magic
!= DM_TIO_MAGIC
);
113 return (struct bio
*)((char *)io
+ DM_TARGET_IO_BIO_OFFSET
);
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data
);
117 unsigned int dm_bio_get_target_bio_nr(const struct bio
*bio
)
119 return container_of(bio
, struct dm_target_io
, clone
)->target_bio_nr
;
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr
);
123 #define MINOR_ALLOCED ((void *)-1)
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node
= DM_NUMA_NODE
;
128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
129 static int swap_bios
= DEFAULT_SWAP_BIOS
;
130 static int get_swap_bios(void)
132 int latch
= READ_ONCE(swap_bios
);
134 if (unlikely(latch
<= 0))
135 latch
= DEFAULT_SWAP_BIOS
;
139 struct table_device
{
140 struct list_head list
;
142 struct dm_dev dm_dev
;
146 * Bio-based DM's mempools' reserved IOs set by the user.
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned int reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
151 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
153 int param
= READ_ONCE(*module_param
);
154 int modified_param
= 0;
155 bool modified
= true;
158 modified_param
= min
;
159 else if (param
> max
)
160 modified_param
= max
;
165 (void)cmpxchg(module_param
, param
, modified_param
);
166 param
= modified_param
;
172 unsigned int __dm_get_module_param(unsigned int *module_param
, unsigned int def
, unsigned int max
)
174 unsigned int param
= READ_ONCE(*module_param
);
175 unsigned int modified_param
= 0;
178 modified_param
= def
;
179 else if (param
> max
)
180 modified_param
= max
;
182 if (modified_param
) {
183 (void)cmpxchg(module_param
, param
, modified_param
);
184 param
= modified_param
;
190 unsigned int dm_get_reserved_bio_based_ios(void)
192 return __dm_get_module_param(&reserved_bio_based_ios
,
193 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
197 static unsigned int dm_get_numa_node(void)
199 return __dm_get_module_param_int(&dm_numa_node
,
200 DM_NUMA_NODE
, num_online_nodes() - 1);
203 static int __init
local_init(void)
207 r
= dm_uevent_init();
211 deferred_remove_workqueue
= alloc_ordered_workqueue("kdmremove", 0);
212 if (!deferred_remove_workqueue
) {
214 goto out_uevent_exit
;
218 r
= register_blkdev(_major
, _name
);
220 goto out_free_workqueue
;
228 destroy_workqueue(deferred_remove_workqueue
);
235 static void local_exit(void)
237 destroy_workqueue(deferred_remove_workqueue
);
239 unregister_blkdev(_major
, _name
);
244 DMINFO("cleaned up");
247 static int (*_inits
[])(void) __initdata
= {
258 static void (*_exits
[])(void) = {
269 static int __init
dm_init(void)
271 const int count
= ARRAY_SIZE(_inits
);
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 " Duplicate IMA measurements will not be recorded in the IMA log.");
279 for (i
= 0; i
< count
; i
++) {
293 static void __exit
dm_exit(void)
295 int i
= ARRAY_SIZE(_exits
);
301 * Should be empty by this point.
303 idr_destroy(&_minor_idr
);
307 * Block device functions
309 int dm_deleting_md(struct mapped_device
*md
)
311 return test_bit(DMF_DELETING
, &md
->flags
);
314 static int dm_blk_open(struct gendisk
*disk
, blk_mode_t mode
)
316 struct mapped_device
*md
;
318 spin_lock(&_minor_lock
);
320 md
= disk
->private_data
;
324 if (test_bit(DMF_FREEING
, &md
->flags
) ||
325 dm_deleting_md(md
)) {
331 atomic_inc(&md
->open_count
);
333 spin_unlock(&_minor_lock
);
335 return md
? 0 : -ENXIO
;
338 static void dm_blk_close(struct gendisk
*disk
)
340 struct mapped_device
*md
;
342 spin_lock(&_minor_lock
);
344 md
= disk
->private_data
;
348 if (atomic_dec_and_test(&md
->open_count
) &&
349 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
350 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
354 spin_unlock(&_minor_lock
);
357 int dm_open_count(struct mapped_device
*md
)
359 return atomic_read(&md
->open_count
);
363 * Guarantees nothing is using the device before it's deleted.
365 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
369 spin_lock(&_minor_lock
);
371 if (dm_open_count(md
)) {
374 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
375 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
378 set_bit(DMF_DELETING
, &md
->flags
);
380 spin_unlock(&_minor_lock
);
385 int dm_cancel_deferred_remove(struct mapped_device
*md
)
389 spin_lock(&_minor_lock
);
391 if (test_bit(DMF_DELETING
, &md
->flags
))
394 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
396 spin_unlock(&_minor_lock
);
401 static void do_deferred_remove(struct work_struct
*w
)
403 dm_deferred_remove();
406 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
408 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
410 return dm_get_geometry(md
, geo
);
413 static int dm_prepare_ioctl(struct mapped_device
*md
, int *srcu_idx
,
414 struct block_device
**bdev
)
416 struct dm_target
*ti
;
417 struct dm_table
*map
;
422 map
= dm_get_live_table(md
, srcu_idx
);
423 if (!map
|| !dm_table_get_size(map
))
426 /* We only support devices that have a single target */
427 if (map
->num_targets
!= 1)
430 ti
= dm_table_get_target(map
, 0);
431 if (!ti
->type
->prepare_ioctl
)
434 if (dm_suspended_md(md
))
437 r
= ti
->type
->prepare_ioctl(ti
, bdev
);
438 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
439 dm_put_live_table(md
, *srcu_idx
);
447 static void dm_unprepare_ioctl(struct mapped_device
*md
, int srcu_idx
)
449 dm_put_live_table(md
, srcu_idx
);
452 static int dm_blk_ioctl(struct block_device
*bdev
, blk_mode_t mode
,
453 unsigned int cmd
, unsigned long arg
)
455 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
458 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
464 * Target determined this ioctl is being issued against a
465 * subset of the parent bdev; require extra privileges.
467 if (!capable(CAP_SYS_RAWIO
)) {
469 "%s: sending ioctl %x to DM device without required privilege.",
476 if (!bdev
->bd_disk
->fops
->ioctl
)
479 r
= bdev
->bd_disk
->fops
->ioctl(bdev
, mode
, cmd
, arg
);
481 dm_unprepare_ioctl(md
, srcu_idx
);
485 u64
dm_start_time_ns_from_clone(struct bio
*bio
)
487 return jiffies_to_nsecs(clone_to_tio(bio
)->io
->start_time
);
489 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone
);
491 static inline bool bio_is_flush_with_data(struct bio
*bio
)
493 return ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
);
496 static inline unsigned int dm_io_sectors(struct dm_io
*io
, struct bio
*bio
)
499 * If REQ_PREFLUSH set, don't account payload, it will be
500 * submitted (and accounted) after this flush completes.
502 if (bio_is_flush_with_data(bio
))
504 if (unlikely(dm_io_flagged(io
, DM_IO_WAS_SPLIT
)))
506 return bio_sectors(bio
);
509 static void dm_io_acct(struct dm_io
*io
, bool end
)
511 struct bio
*bio
= io
->orig_bio
;
513 if (dm_io_flagged(io
, DM_IO_BLK_STAT
)) {
515 bdev_start_io_acct(bio
->bi_bdev
, bio_op(bio
),
518 bdev_end_io_acct(bio
->bi_bdev
, bio_op(bio
),
519 dm_io_sectors(io
, bio
),
523 if (static_branch_unlikely(&stats_enabled
) &&
524 unlikely(dm_stats_used(&io
->md
->stats
))) {
527 if (unlikely(dm_io_flagged(io
, DM_IO_WAS_SPLIT
)))
528 sector
= bio_end_sector(bio
) - io
->sector_offset
;
530 sector
= bio
->bi_iter
.bi_sector
;
532 dm_stats_account_io(&io
->md
->stats
, bio_data_dir(bio
),
533 sector
, dm_io_sectors(io
, bio
),
534 end
, io
->start_time
, &io
->stats_aux
);
538 static void __dm_start_io_acct(struct dm_io
*io
)
540 dm_io_acct(io
, false);
543 static void dm_start_io_acct(struct dm_io
*io
, struct bio
*clone
)
546 * Ensure IO accounting is only ever started once.
548 if (dm_io_flagged(io
, DM_IO_ACCOUNTED
))
551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 if (!clone
|| likely(dm_tio_is_normal(clone_to_tio(clone
)))) {
553 dm_io_set_flag(io
, DM_IO_ACCOUNTED
);
556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 spin_lock_irqsave(&io
->lock
, flags
);
558 if (dm_io_flagged(io
, DM_IO_ACCOUNTED
)) {
559 spin_unlock_irqrestore(&io
->lock
, flags
);
562 dm_io_set_flag(io
, DM_IO_ACCOUNTED
);
563 spin_unlock_irqrestore(&io
->lock
, flags
);
566 __dm_start_io_acct(io
);
569 static void dm_end_io_acct(struct dm_io
*io
)
571 dm_io_acct(io
, true);
574 static struct dm_io
*alloc_io(struct mapped_device
*md
, struct bio
*bio
, gfp_t gfp_mask
)
577 struct dm_target_io
*tio
;
580 clone
= bio_alloc_clone(NULL
, bio
, gfp_mask
, &md
->mempools
->io_bs
);
581 if (unlikely(!clone
))
583 tio
= clone_to_tio(clone
);
585 dm_tio_set_flag(tio
, DM_TIO_INSIDE_DM_IO
);
588 io
= container_of(tio
, struct dm_io
, tio
);
589 io
->magic
= DM_IO_MAGIC
;
590 io
->status
= BLK_STS_OK
;
592 /* one ref is for submission, the other is for completion */
593 atomic_set(&io
->io_count
, 2);
594 this_cpu_inc(*md
->pending_io
);
597 spin_lock_init(&io
->lock
);
598 io
->start_time
= jiffies
;
600 if (blk_queue_io_stat(md
->queue
))
601 dm_io_set_flag(io
, DM_IO_BLK_STAT
);
603 if (static_branch_unlikely(&stats_enabled
) &&
604 unlikely(dm_stats_used(&md
->stats
)))
605 dm_stats_record_start(&md
->stats
, &io
->stats_aux
);
610 static void free_io(struct dm_io
*io
)
612 bio_put(&io
->tio
.clone
);
615 static struct bio
*alloc_tio(struct clone_info
*ci
, struct dm_target
*ti
,
616 unsigned int target_bio_nr
, unsigned int *len
, gfp_t gfp_mask
)
618 struct mapped_device
*md
= ci
->io
->md
;
619 struct dm_target_io
*tio
;
622 if (!ci
->io
->tio
.io
) {
623 /* the dm_target_io embedded in ci->io is available */
625 /* alloc_io() already initialized embedded clone */
628 clone
= bio_alloc_clone(NULL
, ci
->bio
, gfp_mask
,
633 /* REQ_DM_POLL_LIST shouldn't be inherited */
634 clone
->bi_opf
&= ~REQ_DM_POLL_LIST
;
636 tio
= clone_to_tio(clone
);
637 tio
->flags
= 0; /* also clears DM_TIO_INSIDE_DM_IO */
640 tio
->magic
= DM_TIO_MAGIC
;
643 tio
->target_bio_nr
= target_bio_nr
;
647 /* Set default bdev, but target must bio_set_dev() before issuing IO */
648 clone
->bi_bdev
= md
->disk
->part0
;
649 if (likely(ti
!= NULL
) && unlikely(ti
->needs_bio_set_dev
))
650 bio_set_dev(clone
, md
->disk
->part0
);
653 clone
->bi_iter
.bi_size
= to_bytes(*len
);
654 if (bio_integrity(clone
))
655 bio_integrity_trim(clone
);
661 static void free_tio(struct bio
*clone
)
663 if (dm_tio_flagged(clone_to_tio(clone
), DM_TIO_INSIDE_DM_IO
))
669 * Add the bio to the list of deferred io.
671 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
675 spin_lock_irqsave(&md
->deferred_lock
, flags
);
676 bio_list_add(&md
->deferred
, bio
);
677 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
678 queue_work(md
->wq
, &md
->work
);
682 * Everyone (including functions in this file), should use this
683 * function to access the md->map field, and make sure they call
684 * dm_put_live_table() when finished.
686 struct dm_table
*dm_get_live_table(struct mapped_device
*md
,
687 int *srcu_idx
) __acquires(md
->io_barrier
)
689 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
691 return srcu_dereference(md
->map
, &md
->io_barrier
);
694 void dm_put_live_table(struct mapped_device
*md
,
695 int srcu_idx
) __releases(md
->io_barrier
)
697 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
700 void dm_sync_table(struct mapped_device
*md
)
702 synchronize_srcu(&md
->io_barrier
);
703 synchronize_rcu_expedited();
707 * A fast alternative to dm_get_live_table/dm_put_live_table.
708 * The caller must not block between these two functions.
710 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
713 return rcu_dereference(md
->map
);
716 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
721 static char *_dm_claim_ptr
= "I belong to device-mapper";
724 * Open a table device so we can use it as a map destination.
726 static struct table_device
*open_table_device(struct mapped_device
*md
,
727 dev_t dev
, blk_mode_t mode
)
729 struct table_device
*td
;
730 struct file
*bdev_file
;
731 struct block_device
*bdev
;
735 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
737 return ERR_PTR(-ENOMEM
);
738 refcount_set(&td
->count
, 1);
740 bdev_file
= bdev_file_open_by_dev(dev
, mode
, _dm_claim_ptr
, NULL
);
741 if (IS_ERR(bdev_file
)) {
742 r
= PTR_ERR(bdev_file
);
746 bdev
= file_bdev(bdev_file
);
749 * We can be called before the dm disk is added. In that case we can't
750 * register the holder relation here. It will be done once add_disk was
753 if (md
->disk
->slave_dir
) {
754 r
= bd_link_disk_holder(bdev
, md
->disk
);
759 td
->dm_dev
.mode
= mode
;
760 td
->dm_dev
.bdev
= bdev
;
761 td
->dm_dev
.bdev_file
= bdev_file
;
762 td
->dm_dev
.dax_dev
= fs_dax_get_by_bdev(bdev
, &part_off
,
764 format_dev_t(td
->dm_dev
.name
, dev
);
765 list_add(&td
->list
, &md
->table_devices
);
769 __fput_sync(bdev_file
);
776 * Close a table device that we've been using.
778 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
780 if (md
->disk
->slave_dir
)
781 bd_unlink_disk_holder(td
->dm_dev
.bdev
, md
->disk
);
783 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
784 if (unlikely(test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
785 fput(td
->dm_dev
.bdev_file
);
787 __fput_sync(td
->dm_dev
.bdev_file
);
789 put_dax(td
->dm_dev
.dax_dev
);
794 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
797 struct table_device
*td
;
799 list_for_each_entry(td
, l
, list
)
800 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
806 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, blk_mode_t mode
,
807 struct dm_dev
**result
)
809 struct table_device
*td
;
811 mutex_lock(&md
->table_devices_lock
);
812 td
= find_table_device(&md
->table_devices
, dev
, mode
);
814 td
= open_table_device(md
, dev
, mode
);
816 mutex_unlock(&md
->table_devices_lock
);
820 refcount_inc(&td
->count
);
822 mutex_unlock(&md
->table_devices_lock
);
824 *result
= &td
->dm_dev
;
828 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
830 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
832 mutex_lock(&md
->table_devices_lock
);
833 if (refcount_dec_and_test(&td
->count
))
834 close_table_device(td
, md
);
835 mutex_unlock(&md
->table_devices_lock
);
839 * Get the geometry associated with a dm device
841 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
849 * Set the geometry of a device.
851 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
853 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
855 if (geo
->start
> sz
) {
856 DMERR("Start sector is beyond the geometry limits.");
865 static int __noflush_suspending(struct mapped_device
*md
)
867 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
870 static void dm_requeue_add_io(struct dm_io
*io
, bool first_stage
)
872 struct mapped_device
*md
= io
->md
;
875 struct dm_io
*next
= md
->requeue_list
;
877 md
->requeue_list
= io
;
880 bio_list_add_head(&md
->deferred
, io
->orig_bio
);
884 static void dm_kick_requeue(struct mapped_device
*md
, bool first_stage
)
887 queue_work(md
->wq
, &md
->requeue_work
);
889 queue_work(md
->wq
, &md
->work
);
893 * Return true if the dm_io's original bio is requeued.
894 * io->status is updated with error if requeue disallowed.
896 static bool dm_handle_requeue(struct dm_io
*io
, bool first_stage
)
898 struct bio
*bio
= io
->orig_bio
;
899 bool handle_requeue
= (io
->status
== BLK_STS_DM_REQUEUE
);
900 bool handle_polled_eagain
= ((io
->status
== BLK_STS_AGAIN
) &&
901 (bio
->bi_opf
& REQ_POLLED
));
902 struct mapped_device
*md
= io
->md
;
903 bool requeued
= false;
905 if (handle_requeue
|| handle_polled_eagain
) {
908 if (bio
->bi_opf
& REQ_POLLED
) {
910 * Upper layer won't help us poll split bio
911 * (io->orig_bio may only reflect a subset of the
912 * pre-split original) so clear REQ_POLLED.
914 bio_clear_polled(bio
);
918 * Target requested pushing back the I/O or
919 * polled IO hit BLK_STS_AGAIN.
921 spin_lock_irqsave(&md
->deferred_lock
, flags
);
922 if ((__noflush_suspending(md
) &&
923 !WARN_ON_ONCE(dm_is_zone_write(md
, bio
))) ||
924 handle_polled_eagain
|| first_stage
) {
925 dm_requeue_add_io(io
, first_stage
);
929 * noflush suspend was interrupted or this is
930 * a write to a zoned target.
932 io
->status
= BLK_STS_IOERR
;
934 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
938 dm_kick_requeue(md
, first_stage
);
943 static void __dm_io_complete(struct dm_io
*io
, bool first_stage
)
945 struct bio
*bio
= io
->orig_bio
;
946 struct mapped_device
*md
= io
->md
;
947 blk_status_t io_error
;
950 requeued
= dm_handle_requeue(io
, first_stage
);
951 if (requeued
&& first_stage
)
954 io_error
= io
->status
;
955 if (dm_io_flagged(io
, DM_IO_ACCOUNTED
))
957 else if (!io_error
) {
959 * Must handle target that DM_MAPIO_SUBMITTED only to
960 * then bio_endio() rather than dm_submit_bio_remap()
962 __dm_start_io_acct(io
);
967 this_cpu_dec(*md
->pending_io
);
969 /* nudge anyone waiting on suspend queue */
970 if (unlikely(wq_has_sleeper(&md
->wait
)))
973 /* Return early if the original bio was requeued */
977 if (bio_is_flush_with_data(bio
)) {
979 * Preflush done for flush with data, reissue
980 * without REQ_PREFLUSH.
982 bio
->bi_opf
&= ~REQ_PREFLUSH
;
985 /* done with normal IO or empty flush */
987 bio
->bi_status
= io_error
;
992 static void dm_wq_requeue_work(struct work_struct
*work
)
994 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
999 /* reuse deferred lock to simplify dm_handle_requeue */
1000 spin_lock_irqsave(&md
->deferred_lock
, flags
);
1001 io
= md
->requeue_list
;
1002 md
->requeue_list
= NULL
;
1003 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
1006 struct dm_io
*next
= io
->next
;
1008 dm_io_rewind(io
, &md
->disk
->bio_split
);
1011 __dm_io_complete(io
, false);
1018 * Two staged requeue:
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 * this io must be requeued, instead of other parts of the original bio.
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1025 static void dm_io_complete(struct dm_io
*io
)
1030 * Only dm_io that has been split needs two stage requeue, otherwise
1031 * we may run into long bio clone chain during suspend and OOM could
1034 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035 * also aren't handled via the first stage requeue.
1037 if (dm_io_flagged(io
, DM_IO_WAS_SPLIT
))
1038 first_requeue
= true;
1040 first_requeue
= false;
1042 __dm_io_complete(io
, first_requeue
);
1046 * Decrements the number of outstanding ios that a bio has been
1047 * cloned into, completing the original io if necc.
1049 static inline void __dm_io_dec_pending(struct dm_io
*io
)
1051 if (atomic_dec_and_test(&io
->io_count
))
1055 static void dm_io_set_error(struct dm_io
*io
, blk_status_t error
)
1057 unsigned long flags
;
1059 /* Push-back supersedes any I/O errors */
1060 spin_lock_irqsave(&io
->lock
, flags
);
1061 if (!(io
->status
== BLK_STS_DM_REQUEUE
&&
1062 __noflush_suspending(io
->md
))) {
1065 spin_unlock_irqrestore(&io
->lock
, flags
);
1068 static void dm_io_dec_pending(struct dm_io
*io
, blk_status_t error
)
1070 if (unlikely(error
))
1071 dm_io_set_error(io
, error
);
1073 __dm_io_dec_pending(io
);
1077 * The queue_limits are only valid as long as you have a reference
1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1080 static inline struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
1082 return &md
->queue
->limits
;
1085 void disable_discard(struct mapped_device
*md
)
1087 struct queue_limits
*limits
= dm_get_queue_limits(md
);
1089 /* device doesn't really support DISCARD, disable it */
1090 limits
->max_hw_discard_sectors
= 0;
1093 void disable_write_zeroes(struct mapped_device
*md
)
1095 struct queue_limits
*limits
= dm_get_queue_limits(md
);
1097 /* device doesn't really support WRITE ZEROES, disable it */
1098 limits
->max_write_zeroes_sectors
= 0;
1101 static bool swap_bios_limit(struct dm_target
*ti
, struct bio
*bio
)
1103 return unlikely((bio
->bi_opf
& REQ_SWAP
) != 0) && unlikely(ti
->limit_swap_bios
);
1106 static void clone_endio(struct bio
*bio
)
1108 blk_status_t error
= bio
->bi_status
;
1109 struct dm_target_io
*tio
= clone_to_tio(bio
);
1110 struct dm_target
*ti
= tio
->ti
;
1111 dm_endio_fn endio
= likely(ti
!= NULL
) ? ti
->type
->end_io
: NULL
;
1112 struct dm_io
*io
= tio
->io
;
1113 struct mapped_device
*md
= io
->md
;
1115 if (unlikely(error
== BLK_STS_TARGET
)) {
1116 if (bio_op(bio
) == REQ_OP_DISCARD
&&
1117 !bdev_max_discard_sectors(bio
->bi_bdev
))
1118 disable_discard(md
);
1119 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
1120 !bdev_write_zeroes_sectors(bio
->bi_bdev
))
1121 disable_write_zeroes(md
);
1124 if (static_branch_unlikely(&zoned_enabled
) &&
1125 unlikely(bdev_is_zoned(bio
->bi_bdev
)))
1126 dm_zone_endio(io
, bio
);
1129 int r
= endio(ti
, bio
, &error
);
1132 case DM_ENDIO_REQUEUE
:
1133 if (static_branch_unlikely(&zoned_enabled
)) {
1135 * Requeuing writes to a sequential zone of a zoned
1136 * target will break the sequential write pattern:
1139 if (WARN_ON_ONCE(dm_is_zone_write(md
, bio
)))
1140 error
= BLK_STS_IOERR
;
1142 error
= BLK_STS_DM_REQUEUE
;
1144 error
= BLK_STS_DM_REQUEUE
;
1148 case DM_ENDIO_INCOMPLETE
:
1149 /* The target will handle the io */
1152 DMCRIT("unimplemented target endio return value: %d", r
);
1157 if (static_branch_unlikely(&swap_bios_enabled
) &&
1158 likely(ti
!= NULL
) && unlikely(swap_bios_limit(ti
, bio
)))
1159 up(&md
->swap_bios_semaphore
);
1162 dm_io_dec_pending(io
, error
);
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1169 static inline sector_t
max_io_len_target_boundary(struct dm_target
*ti
,
1170 sector_t target_offset
)
1172 return ti
->len
- target_offset
;
1175 static sector_t
__max_io_len(struct dm_target
*ti
, sector_t sector
,
1176 unsigned int max_granularity
,
1177 unsigned int max_sectors
)
1179 sector_t target_offset
= dm_target_offset(ti
, sector
);
1180 sector_t len
= max_io_len_target_boundary(ti
, target_offset
);
1183 * Does the target need to split IO even further?
1184 * - varied (per target) IO splitting is a tenet of DM; this
1185 * explains why stacked chunk_sectors based splitting via
1186 * bio_split_to_limits() isn't possible here.
1188 if (!max_granularity
)
1190 return min_t(sector_t
, len
,
1191 min(max_sectors
? : queue_max_sectors(ti
->table
->md
->queue
),
1192 blk_boundary_sectors_left(target_offset
, max_granularity
)));
1195 static inline sector_t
max_io_len(struct dm_target
*ti
, sector_t sector
)
1197 return __max_io_len(ti
, sector
, ti
->max_io_len
, 0);
1200 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1202 if (len
> UINT_MAX
) {
1203 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204 (unsigned long long)len
, UINT_MAX
);
1205 ti
->error
= "Maximum size of target IO is too large";
1209 ti
->max_io_len
= (uint32_t) len
;
1213 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1215 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
1216 sector_t sector
, int *srcu_idx
)
1217 __acquires(md
->io_barrier
)
1219 struct dm_table
*map
;
1220 struct dm_target
*ti
;
1222 map
= dm_get_live_table(md
, srcu_idx
);
1226 ti
= dm_table_find_target(map
, sector
);
1233 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1234 long nr_pages
, enum dax_access_mode mode
, void **kaddr
,
1237 struct mapped_device
*md
= dax_get_private(dax_dev
);
1238 sector_t sector
= pgoff
* PAGE_SECTORS
;
1239 struct dm_target
*ti
;
1240 long len
, ret
= -EIO
;
1243 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1247 if (!ti
->type
->direct_access
)
1249 len
= max_io_len(ti
, sector
) / PAGE_SECTORS
;
1252 nr_pages
= min(len
, nr_pages
);
1253 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, mode
, kaddr
, pfn
);
1256 dm_put_live_table(md
, srcu_idx
);
1261 static int dm_dax_zero_page_range(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1264 struct mapped_device
*md
= dax_get_private(dax_dev
);
1265 sector_t sector
= pgoff
* PAGE_SECTORS
;
1266 struct dm_target
*ti
;
1270 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1274 if (WARN_ON(!ti
->type
->dax_zero_page_range
)) {
1276 * ->zero_page_range() is mandatory dax operation. If we are
1277 * here, something is wrong.
1281 ret
= ti
->type
->dax_zero_page_range(ti
, pgoff
, nr_pages
);
1283 dm_put_live_table(md
, srcu_idx
);
1288 static size_t dm_dax_recovery_write(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1289 void *addr
, size_t bytes
, struct iov_iter
*i
)
1291 struct mapped_device
*md
= dax_get_private(dax_dev
);
1292 sector_t sector
= pgoff
* PAGE_SECTORS
;
1293 struct dm_target
*ti
;
1297 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1298 if (!ti
|| !ti
->type
->dax_recovery_write
)
1301 ret
= ti
->type
->dax_recovery_write(ti
, pgoff
, addr
, bytes
, i
);
1303 dm_put_live_table(md
, srcu_idx
);
1308 * A target may call dm_accept_partial_bio only from the map routine. It is
1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1311 * __send_duplicate_bios().
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1320 * +--------------------+---------------+-------+
1322 * <-------------- *tio->len_ptr --------------->
1323 * <----- bio_sectors ----->
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 * (it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 * (it may be empty if region 1 is non-empty, although there is no reason
1331 * The target requires that region 3 is to be sent in the next bio.
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1337 void dm_accept_partial_bio(struct bio
*bio
, unsigned int n_sectors
)
1339 struct dm_target_io
*tio
= clone_to_tio(bio
);
1340 struct dm_io
*io
= tio
->io
;
1341 unsigned int bio_sectors
= bio_sectors(bio
);
1343 BUG_ON(dm_tio_flagged(tio
, DM_TIO_IS_DUPLICATE_BIO
));
1344 BUG_ON(op_is_zone_mgmt(bio_op(bio
)));
1345 BUG_ON(bio_op(bio
) == REQ_OP_ZONE_APPEND
);
1346 BUG_ON(bio_sectors
> *tio
->len_ptr
);
1347 BUG_ON(n_sectors
> bio_sectors
);
1349 *tio
->len_ptr
-= bio_sectors
- n_sectors
;
1350 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1353 * __split_and_process_bio() may have already saved mapped part
1354 * for accounting but it is being reduced so update accordingly.
1356 dm_io_set_flag(io
, DM_IO_WAS_SPLIT
);
1357 io
->sectors
= n_sectors
;
1358 io
->sector_offset
= bio_sectors(io
->orig_bio
);
1360 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1363 * @clone: clone bio that DM core passed to target's .map function
1364 * @tgt_clone: clone of @clone bio that target needs submitted
1366 * Targets should use this interface to submit bios they take
1367 * ownership of when returning DM_MAPIO_SUBMITTED.
1369 * Target should also enable ti->accounts_remapped_io
1371 void dm_submit_bio_remap(struct bio
*clone
, struct bio
*tgt_clone
)
1373 struct dm_target_io
*tio
= clone_to_tio(clone
);
1374 struct dm_io
*io
= tio
->io
;
1376 /* establish bio that will get submitted */
1381 * Account io->origin_bio to DM dev on behalf of target
1382 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1384 dm_start_io_acct(io
, clone
);
1386 trace_block_bio_remap(tgt_clone
, disk_devt(io
->md
->disk
),
1388 submit_bio_noacct(tgt_clone
);
1390 EXPORT_SYMBOL_GPL(dm_submit_bio_remap
);
1392 static noinline
void __set_swap_bios_limit(struct mapped_device
*md
, int latch
)
1394 mutex_lock(&md
->swap_bios_lock
);
1395 while (latch
< md
->swap_bios
) {
1397 down(&md
->swap_bios_semaphore
);
1400 while (latch
> md
->swap_bios
) {
1402 up(&md
->swap_bios_semaphore
);
1405 mutex_unlock(&md
->swap_bios_lock
);
1408 static void __map_bio(struct bio
*clone
)
1410 struct dm_target_io
*tio
= clone_to_tio(clone
);
1411 struct dm_target
*ti
= tio
->ti
;
1412 struct dm_io
*io
= tio
->io
;
1413 struct mapped_device
*md
= io
->md
;
1416 clone
->bi_end_io
= clone_endio
;
1421 tio
->old_sector
= clone
->bi_iter
.bi_sector
;
1423 if (static_branch_unlikely(&swap_bios_enabled
) &&
1424 unlikely(swap_bios_limit(ti
, clone
))) {
1425 int latch
= get_swap_bios();
1427 if (unlikely(latch
!= md
->swap_bios
))
1428 __set_swap_bios_limit(md
, latch
);
1429 down(&md
->swap_bios_semaphore
);
1432 if (likely(ti
->type
->map
== linear_map
))
1433 r
= linear_map(ti
, clone
);
1434 else if (ti
->type
->map
== stripe_map
)
1435 r
= stripe_map(ti
, clone
);
1437 r
= ti
->type
->map(ti
, clone
);
1440 case DM_MAPIO_SUBMITTED
:
1441 /* target has assumed ownership of this io */
1442 if (!ti
->accounts_remapped_io
)
1443 dm_start_io_acct(io
, clone
);
1445 case DM_MAPIO_REMAPPED
:
1446 dm_submit_bio_remap(clone
, NULL
);
1449 case DM_MAPIO_REQUEUE
:
1450 if (static_branch_unlikely(&swap_bios_enabled
) &&
1451 unlikely(swap_bios_limit(ti
, clone
)))
1452 up(&md
->swap_bios_semaphore
);
1454 if (r
== DM_MAPIO_KILL
)
1455 dm_io_dec_pending(io
, BLK_STS_IOERR
);
1457 dm_io_dec_pending(io
, BLK_STS_DM_REQUEUE
);
1460 DMCRIT("unimplemented target map return value: %d", r
);
1465 static void setup_split_accounting(struct clone_info
*ci
, unsigned int len
)
1467 struct dm_io
*io
= ci
->io
;
1469 if (ci
->sector_count
> len
) {
1471 * Split needed, save the mapped part for accounting.
1472 * NOTE: dm_accept_partial_bio() will update accordingly.
1474 dm_io_set_flag(io
, DM_IO_WAS_SPLIT
);
1476 io
->sector_offset
= bio_sectors(ci
->bio
);
1480 static void alloc_multiple_bios(struct bio_list
*blist
, struct clone_info
*ci
,
1481 struct dm_target
*ti
, unsigned int num_bios
,
1482 unsigned *len
, gfp_t gfp_flag
)
1485 int try = (gfp_flag
& GFP_NOWAIT
) ? 0 : 1;
1487 for (; try < 2; try++) {
1490 if (try && num_bios
> 1)
1491 mutex_lock(&ci
->io
->md
->table_devices_lock
);
1492 for (bio_nr
= 0; bio_nr
< num_bios
; bio_nr
++) {
1493 bio
= alloc_tio(ci
, ti
, bio_nr
, len
,
1494 try ? GFP_NOIO
: GFP_NOWAIT
);
1498 bio_list_add(blist
, bio
);
1500 if (try && num_bios
> 1)
1501 mutex_unlock(&ci
->io
->md
->table_devices_lock
);
1502 if (bio_nr
== num_bios
)
1505 while ((bio
= bio_list_pop(blist
)))
1510 static unsigned int __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1511 unsigned int num_bios
, unsigned int *len
,
1514 struct bio_list blist
= BIO_EMPTY_LIST
;
1516 unsigned int ret
= 0;
1518 if (WARN_ON_ONCE(num_bios
== 0)) /* num_bios = 0 is a bug in caller */
1521 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1523 setup_split_accounting(ci
, *len
);
1526 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1527 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1529 alloc_multiple_bios(&blist
, ci
, ti
, num_bios
, len
, gfp_flag
);
1530 while ((clone
= bio_list_pop(&blist
))) {
1532 dm_tio_set_flag(clone_to_tio(clone
), DM_TIO_IS_DUPLICATE_BIO
);
1540 static void __send_empty_flush(struct clone_info
*ci
)
1542 struct dm_table
*t
= ci
->map
;
1543 struct bio flush_bio
;
1546 * Use an on-stack bio for this, it's safe since we don't
1547 * need to reference it after submit. It's just used as
1548 * the basis for the clone(s).
1550 bio_init(&flush_bio
, ci
->io
->md
->disk
->part0
, NULL
, 0,
1551 REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
);
1553 ci
->bio
= &flush_bio
;
1554 ci
->sector_count
= 0;
1555 ci
->io
->tio
.clone
.bi_iter
.bi_size
= 0;
1557 if (!t
->flush_bypasses_map
) {
1558 for (unsigned int i
= 0; i
< t
->num_targets
; i
++) {
1560 struct dm_target
*ti
= dm_table_get_target(t
, i
);
1562 if (unlikely(ti
->num_flush_bios
== 0))
1565 atomic_add(ti
->num_flush_bios
, &ci
->io
->io_count
);
1566 bios
= __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
,
1568 atomic_sub(ti
->num_flush_bios
- bios
, &ci
->io
->io_count
);
1572 * Note that there's no need to grab t->devices_lock here
1573 * because the targets that support flush optimization don't
1574 * modify the list of devices.
1576 struct list_head
*devices
= dm_table_get_devices(t
);
1577 unsigned int len
= 0;
1578 struct dm_dev_internal
*dd
;
1579 list_for_each_entry(dd
, devices
, list
) {
1582 * Note that the structure dm_target_io is not
1583 * associated with any target (because the device may be
1584 * used by multiple targets), so we set tio->ti = NULL.
1585 * We must check for NULL in the I/O processing path, to
1586 * avoid NULL pointer dereference.
1588 clone
= alloc_tio(ci
, NULL
, 0, &len
, GFP_NOIO
);
1589 atomic_add(1, &ci
->io
->io_count
);
1590 bio_set_dev(clone
, dd
->dm_dev
->bdev
);
1591 clone
->bi_end_io
= clone_endio
;
1592 dm_submit_bio_remap(clone
, NULL
);
1597 * alloc_io() takes one extra reference for submission, so the
1598 * reference won't reach 0 without the following subtraction
1600 atomic_sub(1, &ci
->io
->io_count
);
1602 bio_uninit(ci
->bio
);
1605 static void __send_abnormal_io(struct clone_info
*ci
, struct dm_target
*ti
,
1606 unsigned int num_bios
, unsigned int max_granularity
,
1607 unsigned int max_sectors
)
1609 unsigned int len
, bios
;
1611 len
= min_t(sector_t
, ci
->sector_count
,
1612 __max_io_len(ti
, ci
->sector
, max_granularity
, max_sectors
));
1614 atomic_add(num_bios
, &ci
->io
->io_count
);
1615 bios
= __send_duplicate_bios(ci
, ti
, num_bios
, &len
, GFP_NOIO
);
1617 * alloc_io() takes one extra reference for submission, so the
1618 * reference won't reach 0 without the following (+1) subtraction
1620 atomic_sub(num_bios
- bios
+ 1, &ci
->io
->io_count
);
1623 ci
->sector_count
-= len
;
1626 static bool is_abnormal_io(struct bio
*bio
)
1628 switch (bio_op(bio
)) {
1633 case REQ_OP_DISCARD
:
1634 case REQ_OP_SECURE_ERASE
:
1635 case REQ_OP_WRITE_ZEROES
:
1636 case REQ_OP_ZONE_RESET_ALL
:
1643 static blk_status_t
__process_abnormal_io(struct clone_info
*ci
,
1644 struct dm_target
*ti
)
1646 unsigned int num_bios
= 0;
1647 unsigned int max_granularity
= 0;
1648 unsigned int max_sectors
= 0;
1649 struct queue_limits
*limits
= dm_get_queue_limits(ti
->table
->md
);
1651 switch (bio_op(ci
->bio
)) {
1652 case REQ_OP_DISCARD
:
1653 num_bios
= ti
->num_discard_bios
;
1654 max_sectors
= limits
->max_discard_sectors
;
1655 if (ti
->max_discard_granularity
)
1656 max_granularity
= max_sectors
;
1658 case REQ_OP_SECURE_ERASE
:
1659 num_bios
= ti
->num_secure_erase_bios
;
1660 max_sectors
= limits
->max_secure_erase_sectors
;
1662 case REQ_OP_WRITE_ZEROES
:
1663 num_bios
= ti
->num_write_zeroes_bios
;
1664 max_sectors
= limits
->max_write_zeroes_sectors
;
1671 * Even though the device advertised support for this type of
1672 * request, that does not mean every target supports it, and
1673 * reconfiguration might also have changed that since the
1674 * check was performed.
1676 if (unlikely(!num_bios
))
1677 return BLK_STS_NOTSUPP
;
1679 __send_abnormal_io(ci
, ti
, num_bios
, max_granularity
, max_sectors
);
1685 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1686 * associated with this bio, and this bio's bi_private needs to be
1687 * stored in dm_io->data before the reuse.
1689 * bio->bi_private is owned by fs or upper layer, so block layer won't
1690 * touch it after splitting. Meantime it won't be changed by anyone after
1691 * bio is submitted. So this reuse is safe.
1693 static inline struct dm_io
**dm_poll_list_head(struct bio
*bio
)
1695 return (struct dm_io
**)&bio
->bi_private
;
1698 static void dm_queue_poll_io(struct bio
*bio
, struct dm_io
*io
)
1700 struct dm_io
**head
= dm_poll_list_head(bio
);
1702 if (!(bio
->bi_opf
& REQ_DM_POLL_LIST
)) {
1703 bio
->bi_opf
|= REQ_DM_POLL_LIST
;
1705 * Save .bi_private into dm_io, so that we can reuse
1706 * .bi_private as dm_io list head for storing dm_io list
1708 io
->data
= bio
->bi_private
;
1710 /* tell block layer to poll for completion */
1711 bio
->bi_cookie
= ~BLK_QC_T_NONE
;
1716 * bio recursed due to split, reuse original poll list,
1717 * and save bio->bi_private too.
1719 io
->data
= (*head
)->data
;
1727 * Select the correct strategy for processing a non-flush bio.
1729 static blk_status_t
__split_and_process_bio(struct clone_info
*ci
)
1732 struct dm_target
*ti
;
1735 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1737 return BLK_STS_IOERR
;
1739 if (unlikely(ci
->is_abnormal_io
))
1740 return __process_abnormal_io(ci
, ti
);
1743 * Only support bio polling for normal IO, and the target io is
1744 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1746 ci
->submit_as_polled
= !!(ci
->bio
->bi_opf
& REQ_POLLED
);
1748 len
= min_t(sector_t
, max_io_len(ti
, ci
->sector
), ci
->sector_count
);
1749 setup_split_accounting(ci
, len
);
1751 if (unlikely(ci
->bio
->bi_opf
& REQ_NOWAIT
)) {
1752 if (unlikely(!dm_target_supports_nowait(ti
->type
)))
1753 return BLK_STS_NOTSUPP
;
1755 clone
= alloc_tio(ci
, ti
, 0, &len
, GFP_NOWAIT
);
1756 if (unlikely(!clone
))
1757 return BLK_STS_AGAIN
;
1759 clone
= alloc_tio(ci
, ti
, 0, &len
, GFP_NOIO
);
1764 ci
->sector_count
-= len
;
1769 static void init_clone_info(struct clone_info
*ci
, struct dm_io
*io
,
1770 struct dm_table
*map
, struct bio
*bio
, bool is_abnormal
)
1775 ci
->is_abnormal_io
= is_abnormal
;
1776 ci
->submit_as_polled
= false;
1777 ci
->sector
= bio
->bi_iter
.bi_sector
;
1778 ci
->sector_count
= bio_sectors(bio
);
1780 /* Shouldn't happen but sector_count was being set to 0 so... */
1781 if (static_branch_unlikely(&zoned_enabled
) &&
1782 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio
)) && ci
->sector_count
))
1783 ci
->sector_count
= 0;
1786 #ifdef CONFIG_BLK_DEV_ZONED
1787 static inline bool dm_zone_bio_needs_split(struct mapped_device
*md
,
1791 * For mapped device that need zone append emulation, we must
1792 * split any large BIO that straddles zone boundaries.
1794 return dm_emulate_zone_append(md
) && bio_straddles_zones(bio
) &&
1795 !bio_flagged(bio
, BIO_ZONE_WRITE_PLUGGING
);
1797 static inline bool dm_zone_plug_bio(struct mapped_device
*md
, struct bio
*bio
)
1799 return dm_emulate_zone_append(md
) && blk_zone_plug_bio(bio
, 0);
1802 static blk_status_t
__send_zone_reset_all_emulated(struct clone_info
*ci
,
1803 struct dm_target
*ti
)
1805 struct bio_list blist
= BIO_EMPTY_LIST
;
1806 struct mapped_device
*md
= ci
->io
->md
;
1807 unsigned int zone_sectors
= md
->disk
->queue
->limits
.chunk_sectors
;
1808 unsigned long *need_reset
;
1809 unsigned int i
, nr_zones
, nr_reset
;
1810 unsigned int num_bios
= 0;
1811 blk_status_t sts
= BLK_STS_OK
;
1812 sector_t sector
= ti
->begin
;
1816 nr_zones
= ti
->len
>> ilog2(zone_sectors
);
1817 need_reset
= bitmap_zalloc(nr_zones
, GFP_NOIO
);
1819 return BLK_STS_RESOURCE
;
1821 ret
= dm_zone_get_reset_bitmap(md
, ci
->map
, ti
->begin
,
1822 nr_zones
, need_reset
);
1824 sts
= BLK_STS_IOERR
;
1828 /* If we have no zone to reset, we are done. */
1829 nr_reset
= bitmap_weight(need_reset
, nr_zones
);
1833 atomic_add(nr_zones
, &ci
->io
->io_count
);
1835 for (i
= 0; i
< nr_zones
; i
++) {
1837 if (!test_bit(i
, need_reset
)) {
1838 sector
+= zone_sectors
;
1842 if (bio_list_empty(&blist
)) {
1843 /* This may take a while, so be nice to others */
1848 * We may need to reset thousands of zones, so let's
1849 * not go crazy with the clone allocation.
1851 alloc_multiple_bios(&blist
, ci
, ti
, min(nr_reset
, 32),
1855 /* Get a clone and change it to a regular reset operation. */
1856 clone
= bio_list_pop(&blist
);
1857 clone
->bi_opf
&= ~REQ_OP_MASK
;
1858 clone
->bi_opf
|= REQ_OP_ZONE_RESET
| REQ_SYNC
;
1859 clone
->bi_iter
.bi_sector
= sector
;
1860 clone
->bi_iter
.bi_size
= 0;
1863 sector
+= zone_sectors
;
1868 WARN_ON_ONCE(!bio_list_empty(&blist
));
1869 atomic_sub(nr_zones
- num_bios
, &ci
->io
->io_count
);
1870 ci
->sector_count
= 0;
1873 bitmap_free(need_reset
);
1878 static void __send_zone_reset_all_native(struct clone_info
*ci
,
1879 struct dm_target
*ti
)
1883 atomic_add(1, &ci
->io
->io_count
);
1884 bios
= __send_duplicate_bios(ci
, ti
, 1, NULL
, GFP_NOIO
);
1885 atomic_sub(1 - bios
, &ci
->io
->io_count
);
1887 ci
->sector_count
= 0;
1890 static blk_status_t
__send_zone_reset_all(struct clone_info
*ci
)
1892 struct dm_table
*t
= ci
->map
;
1893 blk_status_t sts
= BLK_STS_OK
;
1895 for (unsigned int i
= 0; i
< t
->num_targets
; i
++) {
1896 struct dm_target
*ti
= dm_table_get_target(t
, i
);
1898 if (ti
->zone_reset_all_supported
) {
1899 __send_zone_reset_all_native(ci
, ti
);
1903 sts
= __send_zone_reset_all_emulated(ci
, ti
);
1904 if (sts
!= BLK_STS_OK
)
1908 /* Release the reference that alloc_io() took for submission. */
1909 atomic_sub(1, &ci
->io
->io_count
);
1915 static inline bool dm_zone_bio_needs_split(struct mapped_device
*md
,
1920 static inline bool dm_zone_plug_bio(struct mapped_device
*md
, struct bio
*bio
)
1924 static blk_status_t
__send_zone_reset_all(struct clone_info
*ci
)
1926 return BLK_STS_NOTSUPP
;
1931 * Entry point to split a bio into clones and submit them to the targets.
1933 static void dm_split_and_process_bio(struct mapped_device
*md
,
1934 struct dm_table
*map
, struct bio
*bio
)
1936 struct clone_info ci
;
1938 blk_status_t error
= BLK_STS_OK
;
1939 bool is_abnormal
, need_split
;
1941 is_abnormal
= is_abnormal_io(bio
);
1942 if (static_branch_unlikely(&zoned_enabled
)) {
1943 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1944 need_split
= (bio_op(bio
) != REQ_OP_ZONE_RESET_ALL
) &&
1945 (is_abnormal
|| dm_zone_bio_needs_split(md
, bio
));
1947 need_split
= is_abnormal
;
1950 if (unlikely(need_split
)) {
1952 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1953 * otherwise associated queue_limits won't be imposed.
1954 * Also split the BIO for mapped devices needing zone append
1955 * emulation to ensure that the BIO does not cross zone
1958 bio
= bio_split_to_limits(bio
);
1964 * Use the block layer zone write plugging for mapped devices that
1965 * need zone append emulation (e.g. dm-crypt).
1967 if (static_branch_unlikely(&zoned_enabled
) && dm_zone_plug_bio(md
, bio
))
1970 /* Only support nowait for normal IO */
1971 if (unlikely(bio
->bi_opf
& REQ_NOWAIT
) && !is_abnormal
) {
1972 io
= alloc_io(md
, bio
, GFP_NOWAIT
);
1973 if (unlikely(!io
)) {
1974 /* Unable to do anything without dm_io. */
1975 bio_wouldblock_error(bio
);
1979 io
= alloc_io(md
, bio
, GFP_NOIO
);
1981 init_clone_info(&ci
, io
, map
, bio
, is_abnormal
);
1983 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1984 __send_empty_flush(&ci
);
1985 /* dm_io_complete submits any data associated with flush */
1989 if (static_branch_unlikely(&zoned_enabled
) &&
1990 (bio_op(bio
) == REQ_OP_ZONE_RESET_ALL
)) {
1991 error
= __send_zone_reset_all(&ci
);
1995 error
= __split_and_process_bio(&ci
);
1996 if (error
|| !ci
.sector_count
)
1999 * Remainder must be passed to submit_bio_noacct() so it gets handled
2000 * *after* bios already submitted have been completely processed.
2002 bio_trim(bio
, io
->sectors
, ci
.sector_count
);
2003 trace_block_split(bio
, bio
->bi_iter
.bi_sector
);
2004 bio_inc_remaining(bio
);
2005 submit_bio_noacct(bio
);
2008 * Drop the extra reference count for non-POLLED bio, and hold one
2009 * reference for POLLED bio, which will be released in dm_poll_bio
2011 * Add every dm_io instance into the dm_io list head which is stored
2012 * in bio->bi_private, so that dm_poll_bio can poll them all.
2014 if (error
|| !ci
.submit_as_polled
) {
2016 * In case of submission failure, the extra reference for
2017 * submitting io isn't consumed yet
2020 atomic_dec(&io
->io_count
);
2021 dm_io_dec_pending(io
, error
);
2023 dm_queue_poll_io(bio
, io
);
2026 static void dm_submit_bio(struct bio
*bio
)
2028 struct mapped_device
*md
= bio
->bi_bdev
->bd_disk
->private_data
;
2030 struct dm_table
*map
;
2032 map
= dm_get_live_table(md
, &srcu_idx
);
2033 if (unlikely(!map
)) {
2034 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2035 dm_device_name(md
));
2040 /* If suspended, queue this IO for later */
2041 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
2042 if (bio
->bi_opf
& REQ_NOWAIT
)
2043 bio_wouldblock_error(bio
);
2044 else if (bio
->bi_opf
& REQ_RAHEAD
)
2051 dm_split_and_process_bio(md
, map
, bio
);
2053 dm_put_live_table(md
, srcu_idx
);
2056 static bool dm_poll_dm_io(struct dm_io
*io
, struct io_comp_batch
*iob
,
2059 WARN_ON_ONCE(!dm_tio_is_normal(&io
->tio
));
2061 /* don't poll if the mapped io is done */
2062 if (atomic_read(&io
->io_count
) > 1)
2063 bio_poll(&io
->tio
.clone
, iob
, flags
);
2065 /* bio_poll holds the last reference */
2066 return atomic_read(&io
->io_count
) == 1;
2069 static int dm_poll_bio(struct bio
*bio
, struct io_comp_batch
*iob
,
2072 struct dm_io
**head
= dm_poll_list_head(bio
);
2073 struct dm_io
*list
= *head
;
2074 struct dm_io
*tmp
= NULL
;
2075 struct dm_io
*curr
, *next
;
2077 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2078 if (!(bio
->bi_opf
& REQ_DM_POLL_LIST
))
2081 WARN_ON_ONCE(!list
);
2084 * Restore .bi_private before possibly completing dm_io.
2086 * bio_poll() is only possible once @bio has been completely
2087 * submitted via submit_bio_noacct()'s depth-first submission.
2088 * So there is no dm_queue_poll_io() race associated with
2089 * clearing REQ_DM_POLL_LIST here.
2091 bio
->bi_opf
&= ~REQ_DM_POLL_LIST
;
2092 bio
->bi_private
= list
->data
;
2094 for (curr
= list
, next
= curr
->next
; curr
; curr
= next
, next
=
2095 curr
? curr
->next
: NULL
) {
2096 if (dm_poll_dm_io(curr
, iob
, flags
)) {
2098 * clone_endio() has already occurred, so no
2099 * error handling is needed here.
2101 __dm_io_dec_pending(curr
);
2110 bio
->bi_opf
|= REQ_DM_POLL_LIST
;
2111 /* Reset bio->bi_private to dm_io list head */
2119 *---------------------------------------------------------------
2120 * An IDR is used to keep track of allocated minor numbers.
2121 *---------------------------------------------------------------
2123 static void free_minor(int minor
)
2125 spin_lock(&_minor_lock
);
2126 idr_remove(&_minor_idr
, minor
);
2127 spin_unlock(&_minor_lock
);
2131 * See if the device with a specific minor # is free.
2133 static int specific_minor(int minor
)
2137 if (minor
>= (1 << MINORBITS
))
2140 idr_preload(GFP_KERNEL
);
2141 spin_lock(&_minor_lock
);
2143 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
2145 spin_unlock(&_minor_lock
);
2148 return r
== -ENOSPC
? -EBUSY
: r
;
2152 static int next_free_minor(int *minor
)
2156 idr_preload(GFP_KERNEL
);
2157 spin_lock(&_minor_lock
);
2159 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
2161 spin_unlock(&_minor_lock
);
2169 static const struct block_device_operations dm_blk_dops
;
2170 static const struct block_device_operations dm_rq_blk_dops
;
2171 static const struct dax_operations dm_dax_ops
;
2173 static void dm_wq_work(struct work_struct
*work
);
2175 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
2176 static void dm_queue_destroy_crypto_profile(struct request_queue
*q
)
2178 dm_destroy_crypto_profile(q
->crypto_profile
);
2181 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2183 static inline void dm_queue_destroy_crypto_profile(struct request_queue
*q
)
2186 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2188 static void cleanup_mapped_device(struct mapped_device
*md
)
2191 destroy_workqueue(md
->wq
);
2192 dm_free_md_mempools(md
->mempools
);
2195 dax_remove_host(md
->disk
);
2196 kill_dax(md
->dax_dev
);
2197 put_dax(md
->dax_dev
);
2202 spin_lock(&_minor_lock
);
2203 md
->disk
->private_data
= NULL
;
2204 spin_unlock(&_minor_lock
);
2205 if (dm_get_md_type(md
) != DM_TYPE_NONE
) {
2206 struct table_device
*td
;
2209 list_for_each_entry(td
, &md
->table_devices
, list
) {
2210 bd_unlink_disk_holder(td
->dm_dev
.bdev
,
2215 * Hold lock to make sure del_gendisk() won't concurrent
2216 * with open/close_table_device().
2218 mutex_lock(&md
->table_devices_lock
);
2219 del_gendisk(md
->disk
);
2220 mutex_unlock(&md
->table_devices_lock
);
2222 dm_queue_destroy_crypto_profile(md
->queue
);
2226 if (md
->pending_io
) {
2227 free_percpu(md
->pending_io
);
2228 md
->pending_io
= NULL
;
2231 cleanup_srcu_struct(&md
->io_barrier
);
2233 mutex_destroy(&md
->suspend_lock
);
2234 mutex_destroy(&md
->type_lock
);
2235 mutex_destroy(&md
->table_devices_lock
);
2236 mutex_destroy(&md
->swap_bios_lock
);
2238 dm_mq_cleanup_mapped_device(md
);
2242 * Allocate and initialise a blank device with a given minor.
2244 static struct mapped_device
*alloc_dev(int minor
)
2246 int r
, numa_node_id
= dm_get_numa_node();
2247 struct dax_device
*dax_dev
;
2248 struct mapped_device
*md
;
2251 md
= kvzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
2253 DMERR("unable to allocate device, out of memory.");
2257 if (!try_module_get(THIS_MODULE
))
2258 goto bad_module_get
;
2260 /* get a minor number for the dev */
2261 if (minor
== DM_ANY_MINOR
)
2262 r
= next_free_minor(&minor
);
2264 r
= specific_minor(minor
);
2268 r
= init_srcu_struct(&md
->io_barrier
);
2270 goto bad_io_barrier
;
2272 md
->numa_node_id
= numa_node_id
;
2273 md
->init_tio_pdu
= false;
2274 md
->type
= DM_TYPE_NONE
;
2275 mutex_init(&md
->suspend_lock
);
2276 mutex_init(&md
->type_lock
);
2277 mutex_init(&md
->table_devices_lock
);
2278 spin_lock_init(&md
->deferred_lock
);
2279 atomic_set(&md
->holders
, 1);
2280 atomic_set(&md
->open_count
, 0);
2281 atomic_set(&md
->event_nr
, 0);
2282 atomic_set(&md
->uevent_seq
, 0);
2283 INIT_LIST_HEAD(&md
->uevent_list
);
2284 INIT_LIST_HEAD(&md
->table_devices
);
2285 spin_lock_init(&md
->uevent_lock
);
2288 * default to bio-based until DM table is loaded and md->type
2289 * established. If request-based table is loaded: blk-mq will
2290 * override accordingly.
2292 md
->disk
= blk_alloc_disk(NULL
, md
->numa_node_id
);
2293 if (IS_ERR(md
->disk
)) {
2297 md
->queue
= md
->disk
->queue
;
2299 init_waitqueue_head(&md
->wait
);
2300 INIT_WORK(&md
->work
, dm_wq_work
);
2301 INIT_WORK(&md
->requeue_work
, dm_wq_requeue_work
);
2302 init_waitqueue_head(&md
->eventq
);
2303 init_completion(&md
->kobj_holder
.completion
);
2305 md
->requeue_list
= NULL
;
2306 md
->swap_bios
= get_swap_bios();
2307 sema_init(&md
->swap_bios_semaphore
, md
->swap_bios
);
2308 mutex_init(&md
->swap_bios_lock
);
2310 md
->disk
->major
= _major
;
2311 md
->disk
->first_minor
= minor
;
2312 md
->disk
->minors
= 1;
2313 md
->disk
->flags
|= GENHD_FL_NO_PART
;
2314 md
->disk
->fops
= &dm_blk_dops
;
2315 md
->disk
->private_data
= md
;
2316 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
2318 dax_dev
= alloc_dax(md
, &dm_dax_ops
);
2319 if (IS_ERR(dax_dev
)) {
2320 if (PTR_ERR(dax_dev
) != -EOPNOTSUPP
)
2323 set_dax_nocache(dax_dev
);
2324 set_dax_nomc(dax_dev
);
2325 md
->dax_dev
= dax_dev
;
2326 if (dax_add_host(dax_dev
, md
->disk
))
2330 format_dev_t(md
->name
, MKDEV(_major
, minor
));
2332 md
->wq
= alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM
, 0, md
->name
);
2336 md
->pending_io
= alloc_percpu(unsigned long);
2337 if (!md
->pending_io
)
2340 r
= dm_stats_init(&md
->stats
);
2344 /* Populate the mapping, nobody knows we exist yet */
2345 spin_lock(&_minor_lock
);
2346 old_md
= idr_replace(&_minor_idr
, md
, minor
);
2347 spin_unlock(&_minor_lock
);
2349 BUG_ON(old_md
!= MINOR_ALLOCED
);
2354 cleanup_mapped_device(md
);
2358 module_put(THIS_MODULE
);
2364 static void unlock_fs(struct mapped_device
*md
);
2366 static void free_dev(struct mapped_device
*md
)
2368 int minor
= MINOR(disk_devt(md
->disk
));
2372 cleanup_mapped_device(md
);
2374 WARN_ON_ONCE(!list_empty(&md
->table_devices
));
2375 dm_stats_cleanup(&md
->stats
);
2378 module_put(THIS_MODULE
);
2383 * Bind a table to the device.
2385 static void event_callback(void *context
)
2387 unsigned long flags
;
2389 struct mapped_device
*md
= context
;
2391 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2392 list_splice_init(&md
->uevent_list
, &uevents
);
2393 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2395 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2397 atomic_inc(&md
->event_nr
);
2398 wake_up(&md
->eventq
);
2399 dm_issue_global_event();
2403 * Returns old map, which caller must destroy.
2405 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2406 struct queue_limits
*limits
)
2408 struct dm_table
*old_map
;
2412 lockdep_assert_held(&md
->suspend_lock
);
2414 size
= dm_table_get_size(t
);
2417 * Wipe any geometry if the size of the table changed.
2419 if (size
!= dm_get_size(md
))
2420 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2422 set_capacity(md
->disk
, size
);
2424 dm_table_event_callback(t
, event_callback
, md
);
2426 if (dm_table_request_based(t
)) {
2428 * Leverage the fact that request-based DM targets are
2429 * immutable singletons - used to optimize dm_mq_queue_rq.
2431 md
->immutable_target
= dm_table_get_immutable_target(t
);
2434 * There is no need to reload with request-based dm because the
2435 * size of front_pad doesn't change.
2437 * Note for future: If you are to reload bioset, prep-ed
2438 * requests in the queue may refer to bio from the old bioset,
2439 * so you must walk through the queue to unprep.
2441 if (!md
->mempools
) {
2442 md
->mempools
= t
->mempools
;
2447 * The md may already have mempools that need changing.
2448 * If so, reload bioset because front_pad may have changed
2449 * because a different table was loaded.
2451 dm_free_md_mempools(md
->mempools
);
2452 md
->mempools
= t
->mempools
;
2456 ret
= dm_table_set_restrictions(t
, md
->queue
, limits
);
2458 old_map
= ERR_PTR(ret
);
2462 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2463 rcu_assign_pointer(md
->map
, (void *)t
);
2464 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2473 * Returns unbound table for the caller to free.
2475 static struct dm_table
*__unbind(struct mapped_device
*md
)
2477 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2482 dm_table_event_callback(map
, NULL
, NULL
);
2483 RCU_INIT_POINTER(md
->map
, NULL
);
2490 * Constructor for a new device.
2492 int dm_create(int minor
, struct mapped_device
**result
)
2494 struct mapped_device
*md
;
2496 md
= alloc_dev(minor
);
2500 dm_ima_reset_data(md
);
2507 * Functions to manage md->type.
2508 * All are required to hold md->type_lock.
2510 void dm_lock_md_type(struct mapped_device
*md
)
2512 mutex_lock(&md
->type_lock
);
2515 void dm_unlock_md_type(struct mapped_device
*md
)
2517 mutex_unlock(&md
->type_lock
);
2520 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2525 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2527 return md
->immutable_target_type
;
2531 * Setup the DM device's queue based on md's type
2533 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2535 enum dm_queue_mode type
= dm_table_get_type(t
);
2536 struct queue_limits limits
;
2537 struct table_device
*td
;
2540 WARN_ON_ONCE(type
== DM_TYPE_NONE
);
2542 if (type
== DM_TYPE_REQUEST_BASED
) {
2543 md
->disk
->fops
= &dm_rq_blk_dops
;
2544 r
= dm_mq_init_request_queue(md
, t
);
2546 DMERR("Cannot initialize queue for request-based dm mapped device");
2551 r
= dm_calculate_queue_limits(t
, &limits
);
2553 DMERR("Cannot calculate initial queue limits");
2556 r
= dm_table_set_restrictions(t
, md
->queue
, &limits
);
2561 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2562 * with open_table_device() and close_table_device().
2564 mutex_lock(&md
->table_devices_lock
);
2565 r
= add_disk(md
->disk
);
2566 mutex_unlock(&md
->table_devices_lock
);
2571 * Register the holder relationship for devices added before the disk
2574 list_for_each_entry(td
, &md
->table_devices
, list
) {
2575 r
= bd_link_disk_holder(td
->dm_dev
.bdev
, md
->disk
);
2577 goto out_undo_holders
;
2580 r
= dm_sysfs_init(md
);
2582 goto out_undo_holders
;
2588 list_for_each_entry_continue_reverse(td
, &md
->table_devices
, list
)
2589 bd_unlink_disk_holder(td
->dm_dev
.bdev
, md
->disk
);
2590 mutex_lock(&md
->table_devices_lock
);
2591 del_gendisk(md
->disk
);
2592 mutex_unlock(&md
->table_devices_lock
);
2596 struct mapped_device
*dm_get_md(dev_t dev
)
2598 struct mapped_device
*md
;
2599 unsigned int minor
= MINOR(dev
);
2601 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2604 spin_lock(&_minor_lock
);
2606 md
= idr_find(&_minor_idr
, minor
);
2607 if (!md
|| md
== MINOR_ALLOCED
|| (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2608 test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2614 spin_unlock(&_minor_lock
);
2618 EXPORT_SYMBOL_GPL(dm_get_md
);
2620 void *dm_get_mdptr(struct mapped_device
*md
)
2622 return md
->interface_ptr
;
2625 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2627 md
->interface_ptr
= ptr
;
2630 void dm_get(struct mapped_device
*md
)
2632 atomic_inc(&md
->holders
);
2633 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2636 int dm_hold(struct mapped_device
*md
)
2638 spin_lock(&_minor_lock
);
2639 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2640 spin_unlock(&_minor_lock
);
2644 spin_unlock(&_minor_lock
);
2647 EXPORT_SYMBOL_GPL(dm_hold
);
2649 const char *dm_device_name(struct mapped_device
*md
)
2653 EXPORT_SYMBOL_GPL(dm_device_name
);
2655 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2657 struct dm_table
*map
;
2662 spin_lock(&_minor_lock
);
2663 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2664 set_bit(DMF_FREEING
, &md
->flags
);
2665 spin_unlock(&_minor_lock
);
2667 blk_mark_disk_dead(md
->disk
);
2670 * Take suspend_lock so that presuspend and postsuspend methods
2671 * do not race with internal suspend.
2673 mutex_lock(&md
->suspend_lock
);
2674 map
= dm_get_live_table(md
, &srcu_idx
);
2675 if (!dm_suspended_md(md
)) {
2676 dm_table_presuspend_targets(map
);
2677 set_bit(DMF_SUSPENDED
, &md
->flags
);
2678 set_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2679 dm_table_postsuspend_targets(map
);
2681 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2682 dm_put_live_table(md
, srcu_idx
);
2683 mutex_unlock(&md
->suspend_lock
);
2686 * Rare, but there may be I/O requests still going to complete,
2687 * for example. Wait for all references to disappear.
2688 * No one should increment the reference count of the mapped_device,
2689 * after the mapped_device state becomes DMF_FREEING.
2692 while (atomic_read(&md
->holders
))
2694 else if (atomic_read(&md
->holders
))
2695 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2696 dm_device_name(md
), atomic_read(&md
->holders
));
2698 dm_table_destroy(__unbind(md
));
2702 void dm_destroy(struct mapped_device
*md
)
2704 __dm_destroy(md
, true);
2707 void dm_destroy_immediate(struct mapped_device
*md
)
2709 __dm_destroy(md
, false);
2712 void dm_put(struct mapped_device
*md
)
2714 atomic_dec(&md
->holders
);
2716 EXPORT_SYMBOL_GPL(dm_put
);
2718 static bool dm_in_flight_bios(struct mapped_device
*md
)
2721 unsigned long sum
= 0;
2723 for_each_possible_cpu(cpu
)
2724 sum
+= *per_cpu_ptr(md
->pending_io
, cpu
);
2729 static int dm_wait_for_bios_completion(struct mapped_device
*md
, unsigned int task_state
)
2735 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2737 if (!dm_in_flight_bios(md
))
2740 if (signal_pending_state(task_state
, current
)) {
2747 finish_wait(&md
->wait
, &wait
);
2754 static int dm_wait_for_completion(struct mapped_device
*md
, unsigned int task_state
)
2758 if (!queue_is_mq(md
->queue
))
2759 return dm_wait_for_bios_completion(md
, task_state
);
2762 if (!blk_mq_queue_inflight(md
->queue
))
2765 if (signal_pending_state(task_state
, current
)) {
2777 * Process the deferred bios
2779 static void dm_wq_work(struct work_struct
*work
)
2781 struct mapped_device
*md
= container_of(work
, struct mapped_device
, work
);
2784 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2785 spin_lock_irq(&md
->deferred_lock
);
2786 bio
= bio_list_pop(&md
->deferred
);
2787 spin_unlock_irq(&md
->deferred_lock
);
2792 submit_bio_noacct(bio
);
2797 static void dm_queue_flush(struct mapped_device
*md
)
2799 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2800 smp_mb__after_atomic();
2801 queue_work(md
->wq
, &md
->work
);
2805 * Swap in a new table, returning the old one for the caller to destroy.
2807 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2809 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2810 struct queue_limits limits
;
2813 mutex_lock(&md
->suspend_lock
);
2815 /* device must be suspended */
2816 if (!dm_suspended_md(md
))
2820 * If the new table has no data devices, retain the existing limits.
2821 * This helps multipath with queue_if_no_path if all paths disappear,
2822 * then new I/O is queued based on these limits, and then some paths
2825 if (dm_table_has_no_data_devices(table
)) {
2826 live_map
= dm_get_live_table_fast(md
);
2828 limits
= md
->queue
->limits
;
2829 dm_put_live_table_fast(md
);
2833 r
= dm_calculate_queue_limits(table
, &limits
);
2840 map
= __bind(md
, table
, &limits
);
2841 dm_issue_global_event();
2844 mutex_unlock(&md
->suspend_lock
);
2849 * Functions to lock and unlock any filesystem running on the
2852 static int lock_fs(struct mapped_device
*md
)
2856 WARN_ON(test_bit(DMF_FROZEN
, &md
->flags
));
2858 r
= bdev_freeze(md
->disk
->part0
);
2860 set_bit(DMF_FROZEN
, &md
->flags
);
2864 static void unlock_fs(struct mapped_device
*md
)
2866 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2868 bdev_thaw(md
->disk
->part0
);
2869 clear_bit(DMF_FROZEN
, &md
->flags
);
2873 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2874 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2875 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2877 * If __dm_suspend returns 0, the device is completely quiescent
2878 * now. There is no request-processing activity. All new requests
2879 * are being added to md->deferred list.
2881 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2882 unsigned int suspend_flags
, unsigned int task_state
,
2883 int dmf_suspended_flag
)
2885 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2886 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2889 lockdep_assert_held(&md
->suspend_lock
);
2892 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2893 * This flag is cleared before dm_suspend returns.
2896 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2898 DMDEBUG("%s: suspending with flush", dm_device_name(md
));
2901 * This gets reverted if there's an error later and the targets
2902 * provide the .presuspend_undo hook.
2904 dm_table_presuspend_targets(map
);
2907 * Flush I/O to the device.
2908 * Any I/O submitted after lock_fs() may not be flushed.
2909 * noflush takes precedence over do_lockfs.
2910 * (lock_fs() flushes I/Os and waits for them to complete.)
2912 if (!noflush
&& do_lockfs
) {
2915 dm_table_presuspend_undo_targets(map
);
2921 * Here we must make sure that no processes are submitting requests
2922 * to target drivers i.e. no one may be executing
2923 * dm_split_and_process_bio from dm_submit_bio.
2925 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2926 * we take the write lock. To prevent any process from reentering
2927 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2928 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2929 * flush_workqueue(md->wq).
2931 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2933 synchronize_srcu(&md
->io_barrier
);
2936 * Stop md->queue before flushing md->wq in case request-based
2937 * dm defers requests to md->wq from md->queue.
2939 if (dm_request_based(md
))
2940 dm_stop_queue(md
->queue
);
2942 flush_workqueue(md
->wq
);
2945 * At this point no more requests are entering target request routines.
2946 * We call dm_wait_for_completion to wait for all existing requests
2949 r
= dm_wait_for_completion(md
, task_state
);
2951 set_bit(dmf_suspended_flag
, &md
->flags
);
2954 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2956 synchronize_srcu(&md
->io_barrier
);
2958 /* were we interrupted ? */
2962 if (dm_request_based(md
))
2963 dm_start_queue(md
->queue
);
2966 dm_table_presuspend_undo_targets(map
);
2967 /* pushback list is already flushed, so skip flush */
2974 * We need to be able to change a mapping table under a mounted
2975 * filesystem. For example we might want to move some data in
2976 * the background. Before the table can be swapped with
2977 * dm_bind_table, dm_suspend must be called to flush any in
2978 * flight bios and ensure that any further io gets deferred.
2981 * Suspend mechanism in request-based dm.
2983 * 1. Flush all I/Os by lock_fs() if needed.
2984 * 2. Stop dispatching any I/O by stopping the request_queue.
2985 * 3. Wait for all in-flight I/Os to be completed or requeued.
2987 * To abort suspend, start the request_queue.
2989 int dm_suspend(struct mapped_device
*md
, unsigned int suspend_flags
)
2991 struct dm_table
*map
= NULL
;
2995 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2997 if (dm_suspended_md(md
)) {
3002 if (dm_suspended_internally_md(md
)) {
3003 /* already internally suspended, wait for internal resume */
3004 mutex_unlock(&md
->suspend_lock
);
3005 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
3011 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3013 /* avoid deadlock with fs/namespace.c:do_mount() */
3014 suspend_flags
&= ~DM_SUSPEND_LOCKFS_FLAG
;
3017 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
3021 set_bit(DMF_POST_SUSPENDING
, &md
->flags
);
3022 dm_table_postsuspend_targets(map
);
3023 clear_bit(DMF_POST_SUSPENDING
, &md
->flags
);
3026 mutex_unlock(&md
->suspend_lock
);
3030 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
3033 int r
= dm_table_resume_targets(map
);
3042 * Flushing deferred I/Os must be done after targets are resumed
3043 * so that mapping of targets can work correctly.
3044 * Request-based dm is queueing the deferred I/Os in its request_queue.
3046 if (dm_request_based(md
))
3047 dm_start_queue(md
->queue
);
3054 int dm_resume(struct mapped_device
*md
)
3057 struct dm_table
*map
= NULL
;
3061 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
3063 if (!dm_suspended_md(md
))
3066 if (dm_suspended_internally_md(md
)) {
3067 /* already internally suspended, wait for internal resume */
3068 mutex_unlock(&md
->suspend_lock
);
3069 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
3075 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3076 if (!map
|| !dm_table_get_size(map
))
3079 r
= __dm_resume(md
, map
);
3083 clear_bit(DMF_SUSPENDED
, &md
->flags
);
3085 mutex_unlock(&md
->suspend_lock
);
3091 * Internal suspend/resume works like userspace-driven suspend. It waits
3092 * until all bios finish and prevents issuing new bios to the target drivers.
3093 * It may be used only from the kernel.
3096 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned int suspend_flags
)
3098 struct dm_table
*map
= NULL
;
3100 lockdep_assert_held(&md
->suspend_lock
);
3102 if (md
->internal_suspend_count
++)
3103 return; /* nested internal suspend */
3105 if (dm_suspended_md(md
)) {
3106 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3107 return; /* nest suspend */
3110 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3113 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3114 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3115 * would require changing .presuspend to return an error -- avoid this
3116 * until there is a need for more elaborate variants of internal suspend.
3118 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
3119 DMF_SUSPENDED_INTERNALLY
);
3121 set_bit(DMF_POST_SUSPENDING
, &md
->flags
);
3122 dm_table_postsuspend_targets(map
);
3123 clear_bit(DMF_POST_SUSPENDING
, &md
->flags
);
3126 static void __dm_internal_resume(struct mapped_device
*md
)
3129 struct dm_table
*map
;
3131 BUG_ON(!md
->internal_suspend_count
);
3133 if (--md
->internal_suspend_count
)
3134 return; /* resume from nested internal suspend */
3136 if (dm_suspended_md(md
))
3137 goto done
; /* resume from nested suspend */
3139 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
3140 r
= __dm_resume(md
, map
);
3143 * If a preresume method of some target failed, we are in a
3144 * tricky situation. We can't return an error to the caller. We
3145 * can't fake success because then the "resume" and
3146 * "postsuspend" methods would not be paired correctly, and it
3147 * would break various targets, for example it would cause list
3148 * corruption in the "origin" target.
3150 * So, we fake normal suspend here, to make sure that the
3151 * "resume" and "postsuspend" methods will be paired correctly.
3153 DMERR("Preresume method failed: %d", r
);
3154 set_bit(DMF_SUSPENDED
, &md
->flags
);
3157 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3158 smp_mb__after_atomic();
3159 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
3162 void dm_internal_suspend_noflush(struct mapped_device
*md
)
3164 mutex_lock(&md
->suspend_lock
);
3165 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
3166 mutex_unlock(&md
->suspend_lock
);
3168 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
3170 void dm_internal_resume(struct mapped_device
*md
)
3172 mutex_lock(&md
->suspend_lock
);
3173 __dm_internal_resume(md
);
3174 mutex_unlock(&md
->suspend_lock
);
3176 EXPORT_SYMBOL_GPL(dm_internal_resume
);
3179 * Fast variants of internal suspend/resume hold md->suspend_lock,
3180 * which prevents interaction with userspace-driven suspend.
3183 void dm_internal_suspend_fast(struct mapped_device
*md
)
3185 mutex_lock(&md
->suspend_lock
);
3186 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
3189 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
3190 synchronize_srcu(&md
->io_barrier
);
3191 flush_workqueue(md
->wq
);
3192 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
3194 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
3196 void dm_internal_resume_fast(struct mapped_device
*md
)
3198 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
3204 mutex_unlock(&md
->suspend_lock
);
3206 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
3209 *---------------------------------------------------------------
3210 * Event notification.
3211 *---------------------------------------------------------------
3213 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
3214 unsigned int cookie
, bool need_resize_uevent
)
3217 unsigned int noio_flag
;
3218 char udev_cookie
[DM_COOKIE_LENGTH
];
3219 char *envp
[3] = { NULL
, NULL
, NULL
};
3220 char **envpp
= envp
;
3222 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
3223 DM_COOKIE_ENV_VAR_NAME
, cookie
);
3224 *envpp
++ = udev_cookie
;
3226 if (need_resize_uevent
) {
3227 *envpp
++ = "RESIZE=1";
3230 noio_flag
= memalloc_noio_save();
3232 r
= kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
, action
, envp
);
3234 memalloc_noio_restore(noio_flag
);
3239 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
3241 return atomic_add_return(1, &md
->uevent_seq
);
3244 uint32_t dm_get_event_nr(struct mapped_device
*md
)
3246 return atomic_read(&md
->event_nr
);
3249 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
3251 return wait_event_interruptible(md
->eventq
,
3252 (event_nr
!= atomic_read(&md
->event_nr
)));
3255 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
3257 unsigned long flags
;
3259 spin_lock_irqsave(&md
->uevent_lock
, flags
);
3260 list_add(elist
, &md
->uevent_list
);
3261 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
3265 * The gendisk is only valid as long as you have a reference
3268 struct gendisk
*dm_disk(struct mapped_device
*md
)
3272 EXPORT_SYMBOL_GPL(dm_disk
);
3274 struct kobject
*dm_kobject(struct mapped_device
*md
)
3276 return &md
->kobj_holder
.kobj
;
3279 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
3281 struct mapped_device
*md
;
3283 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
3285 spin_lock(&_minor_lock
);
3286 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
3292 spin_unlock(&_minor_lock
);
3297 int dm_suspended_md(struct mapped_device
*md
)
3299 return test_bit(DMF_SUSPENDED
, &md
->flags
);
3302 static int dm_post_suspending_md(struct mapped_device
*md
)
3304 return test_bit(DMF_POST_SUSPENDING
, &md
->flags
);
3307 int dm_suspended_internally_md(struct mapped_device
*md
)
3309 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
3312 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
3314 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
3317 int dm_suspended(struct dm_target
*ti
)
3319 return dm_suspended_md(ti
->table
->md
);
3321 EXPORT_SYMBOL_GPL(dm_suspended
);
3323 int dm_post_suspending(struct dm_target
*ti
)
3325 return dm_post_suspending_md(ti
->table
->md
);
3327 EXPORT_SYMBOL_GPL(dm_post_suspending
);
3329 int dm_noflush_suspending(struct dm_target
*ti
)
3331 return __noflush_suspending(ti
->table
->md
);
3333 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
3335 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
3340 bioset_exit(&pools
->bs
);
3341 bioset_exit(&pools
->io_bs
);
3346 struct dm_blkdev_id
{
3348 enum blk_unique_id type
;
3351 static int __dm_get_unique_id(struct dm_target
*ti
, struct dm_dev
*dev
,
3352 sector_t start
, sector_t len
, void *data
)
3354 struct dm_blkdev_id
*dm_id
= data
;
3355 const struct block_device_operations
*fops
= dev
->bdev
->bd_disk
->fops
;
3357 if (!fops
->get_unique_id
)
3360 return fops
->get_unique_id(dev
->bdev
->bd_disk
, dm_id
->id
, dm_id
->type
);
3364 * Allow access to get_unique_id() for the first device returning a
3365 * non-zero result. Reasonable use expects all devices to have the
3368 static int dm_blk_get_unique_id(struct gendisk
*disk
, u8
*id
,
3369 enum blk_unique_id type
)
3371 struct mapped_device
*md
= disk
->private_data
;
3372 struct dm_table
*table
;
3373 struct dm_target
*ti
;
3374 int ret
= 0, srcu_idx
;
3376 struct dm_blkdev_id dm_id
= {
3381 table
= dm_get_live_table(md
, &srcu_idx
);
3382 if (!table
|| !dm_table_get_size(table
))
3385 /* We only support devices that have a single target */
3386 if (table
->num_targets
!= 1)
3388 ti
= dm_table_get_target(table
, 0);
3390 if (!ti
->type
->iterate_devices
)
3393 ret
= ti
->type
->iterate_devices(ti
, __dm_get_unique_id
, &dm_id
);
3395 dm_put_live_table(md
, srcu_idx
);
3407 struct pr_keys
*read_keys
;
3408 struct pr_held_reservation
*rsv
;
3411 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
3414 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3415 struct dm_table
*table
;
3416 struct dm_target
*ti
;
3417 int ret
= -ENOTTY
, srcu_idx
;
3419 table
= dm_get_live_table(md
, &srcu_idx
);
3420 if (!table
|| !dm_table_get_size(table
))
3423 /* We only support devices that have a single target */
3424 if (table
->num_targets
!= 1)
3426 ti
= dm_table_get_target(table
, 0);
3428 if (dm_suspended_md(md
)) {
3434 if (!ti
->type
->iterate_devices
)
3437 ti
->type
->iterate_devices(ti
, fn
, pr
);
3440 dm_put_live_table(md
, srcu_idx
);
3445 * For register / unregister we need to manually call out to every path.
3447 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
3448 sector_t start
, sector_t len
, void *data
)
3450 struct dm_pr
*pr
= data
;
3451 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3454 if (!ops
|| !ops
->pr_register
) {
3455 pr
->ret
= -EOPNOTSUPP
;
3459 ret
= ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
3472 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3484 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3486 /* Didn't even get to register a path */
3497 /* unregister all paths if we failed to register any path */
3498 pr
.old_key
= new_key
;
3501 pr
.fail_early
= false;
3502 (void) dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3507 static int __dm_pr_reserve(struct dm_target
*ti
, struct dm_dev
*dev
,
3508 sector_t start
, sector_t len
, void *data
)
3510 struct dm_pr
*pr
= data
;
3511 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3513 if (!ops
|| !ops
->pr_reserve
) {
3514 pr
->ret
= -EOPNOTSUPP
;
3518 pr
->ret
= ops
->pr_reserve(dev
->bdev
, pr
->old_key
, pr
->type
, pr
->flags
);
3525 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
3532 .fail_early
= false,
3537 ret
= dm_call_pr(bdev
, __dm_pr_reserve
, &pr
);
3545 * If there is a non-All Registrants type of reservation, the release must be
3546 * sent down the holding path. For the cases where there is no reservation or
3547 * the path is not the holder the device will also return success, so we must
3548 * try each path to make sure we got the correct path.
3550 static int __dm_pr_release(struct dm_target
*ti
, struct dm_dev
*dev
,
3551 sector_t start
, sector_t len
, void *data
)
3553 struct dm_pr
*pr
= data
;
3554 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3556 if (!ops
|| !ops
->pr_release
) {
3557 pr
->ret
= -EOPNOTSUPP
;
3561 pr
->ret
= ops
->pr_release(dev
->bdev
, pr
->old_key
, pr
->type
);
3568 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
3573 .fail_early
= false,
3577 ret
= dm_call_pr(bdev
, __dm_pr_release
, &pr
);
3584 static int __dm_pr_preempt(struct dm_target
*ti
, struct dm_dev
*dev
,
3585 sector_t start
, sector_t len
, void *data
)
3587 struct dm_pr
*pr
= data
;
3588 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3590 if (!ops
|| !ops
->pr_preempt
) {
3591 pr
->ret
= -EOPNOTSUPP
;
3595 pr
->ret
= ops
->pr_preempt(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->type
,
3603 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3604 enum pr_type type
, bool abort
)
3610 .fail_early
= false,
3614 ret
= dm_call_pr(bdev
, __dm_pr_preempt
, &pr
);
3621 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3623 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3624 const struct pr_ops
*ops
;
3627 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3631 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3632 if (ops
&& ops
->pr_clear
)
3633 r
= ops
->pr_clear(bdev
, key
);
3637 dm_unprepare_ioctl(md
, srcu_idx
);
3641 static int __dm_pr_read_keys(struct dm_target
*ti
, struct dm_dev
*dev
,
3642 sector_t start
, sector_t len
, void *data
)
3644 struct dm_pr
*pr
= data
;
3645 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3647 if (!ops
|| !ops
->pr_read_keys
) {
3648 pr
->ret
= -EOPNOTSUPP
;
3652 pr
->ret
= ops
->pr_read_keys(dev
->bdev
, pr
->read_keys
);
3659 static int dm_pr_read_keys(struct block_device
*bdev
, struct pr_keys
*keys
)
3666 ret
= dm_call_pr(bdev
, __dm_pr_read_keys
, &pr
);
3673 static int __dm_pr_read_reservation(struct dm_target
*ti
, struct dm_dev
*dev
,
3674 sector_t start
, sector_t len
, void *data
)
3676 struct dm_pr
*pr
= data
;
3677 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3679 if (!ops
|| !ops
->pr_read_reservation
) {
3680 pr
->ret
= -EOPNOTSUPP
;
3684 pr
->ret
= ops
->pr_read_reservation(dev
->bdev
, pr
->rsv
);
3691 static int dm_pr_read_reservation(struct block_device
*bdev
,
3692 struct pr_held_reservation
*rsv
)
3699 ret
= dm_call_pr(bdev
, __dm_pr_read_reservation
, &pr
);
3706 static const struct pr_ops dm_pr_ops
= {
3707 .pr_register
= dm_pr_register
,
3708 .pr_reserve
= dm_pr_reserve
,
3709 .pr_release
= dm_pr_release
,
3710 .pr_preempt
= dm_pr_preempt
,
3711 .pr_clear
= dm_pr_clear
,
3712 .pr_read_keys
= dm_pr_read_keys
,
3713 .pr_read_reservation
= dm_pr_read_reservation
,
3716 static const struct block_device_operations dm_blk_dops
= {
3717 .submit_bio
= dm_submit_bio
,
3718 .poll_bio
= dm_poll_bio
,
3719 .open
= dm_blk_open
,
3720 .release
= dm_blk_close
,
3721 .ioctl
= dm_blk_ioctl
,
3722 .getgeo
= dm_blk_getgeo
,
3723 .report_zones
= dm_blk_report_zones
,
3724 .get_unique_id
= dm_blk_get_unique_id
,
3725 .pr_ops
= &dm_pr_ops
,
3726 .owner
= THIS_MODULE
3729 static const struct block_device_operations dm_rq_blk_dops
= {
3730 .open
= dm_blk_open
,
3731 .release
= dm_blk_close
,
3732 .ioctl
= dm_blk_ioctl
,
3733 .getgeo
= dm_blk_getgeo
,
3734 .get_unique_id
= dm_blk_get_unique_id
,
3735 .pr_ops
= &dm_pr_ops
,
3736 .owner
= THIS_MODULE
3739 static const struct dax_operations dm_dax_ops
= {
3740 .direct_access
= dm_dax_direct_access
,
3741 .zero_page_range
= dm_dax_zero_page_range
,
3742 .recovery_write
= dm_dax_recovery_write
,
3748 module_init(dm_init
);
3749 module_exit(dm_exit
);
3751 module_param(major
, uint
, 0);
3752 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3754 module_param(reserved_bio_based_ios
, uint
, 0644);
3755 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3757 module_param(dm_numa_node
, int, 0644);
3758 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3760 module_param(swap_bios
, int, 0644);
3761 MODULE_PARM_DESC(swap_bios
, "Maximum allowed inflight swap IOs");
3763 MODULE_DESCRIPTION(DM_NAME
" driver");
3764 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3765 MODULE_LICENSE("GPL");