Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / md / dm.c
blob12ecf07a38410a37afff76037b25c6a17c605c69
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
30 #include <linux/pr.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
36 #define DM_MSG_PREFIX "core"
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
48 * ending this fs bio, we will recover its ->bi_private.
50 #define REQ_DM_POLL_LIST REQ_DRV
52 static const char *_name = DM_NAME;
54 static unsigned int major;
55 static unsigned int _major;
57 static DEFINE_IDR(_minor_idr);
59 static DEFINE_SPINLOCK(_minor_lock);
61 static void do_deferred_remove(struct work_struct *w);
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
65 static struct workqueue_struct *deferred_remove_workqueue;
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
70 void dm_issue_global_event(void)
72 atomic_inc(&dm_global_event_nr);
73 wake_up(&dm_global_eventq);
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
81 * One of these is allocated (on-stack) per original bio.
83 struct clone_info {
84 struct dm_table *map;
85 struct bio *bio;
86 struct dm_io *io;
87 sector_t sector;
88 unsigned int sector_count;
89 bool is_abnormal_io:1;
90 bool submit_as_polled:1;
93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
95 return container_of(clone, struct dm_target_io, clone);
98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
108 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
110 if (io->magic == DM_IO_MAGIC)
111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 BUG_ON(io->magic != DM_TIO_MAGIC);
113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
123 #define MINOR_ALLOCED ((void *)-1)
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
130 static int get_swap_bios(void)
132 int latch = READ_ONCE(swap_bios);
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
136 return latch;
139 struct table_device {
140 struct list_head list;
141 refcount_t count;
142 struct dm_dev dm_dev;
146 * Bio-based DM's mempools' reserved IOs set by the user.
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
151 static int __dm_get_module_param_int(int *module_param, int min, int max)
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
157 if (param < min)
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
161 else
162 modified = false;
164 if (modified) {
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
169 return param;
172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
174 unsigned int param = READ_ONCE(*module_param);
175 unsigned int modified_param = 0;
177 if (!param)
178 modified_param = def;
179 else if (param > max)
180 modified_param = max;
182 if (modified_param) {
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
187 return param;
190 unsigned int dm_get_reserved_bio_based_ios(void)
192 return __dm_get_module_param(&reserved_bio_based_ios,
193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
197 static unsigned int dm_get_numa_node(void)
199 return __dm_get_module_param_int(&dm_numa_node,
200 DM_NUMA_NODE, num_online_nodes() - 1);
203 static int __init local_init(void)
205 int r;
207 r = dm_uevent_init();
208 if (r)
209 return r;
211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 if (!deferred_remove_workqueue) {
213 r = -ENOMEM;
214 goto out_uevent_exit;
217 _major = major;
218 r = register_blkdev(_major, _name);
219 if (r < 0)
220 goto out_free_workqueue;
222 if (!_major)
223 _major = r;
225 return 0;
227 out_free_workqueue:
228 destroy_workqueue(deferred_remove_workqueue);
229 out_uevent_exit:
230 dm_uevent_exit();
232 return r;
235 static void local_exit(void)
237 destroy_workqueue(deferred_remove_workqueue);
239 unregister_blkdev(_major, _name);
240 dm_uevent_exit();
242 _major = 0;
244 DMINFO("cleaned up");
247 static int (*_inits[])(void) __initdata = {
248 local_init,
249 dm_target_init,
250 dm_linear_init,
251 dm_stripe_init,
252 dm_io_init,
253 dm_kcopyd_init,
254 dm_interface_init,
255 dm_statistics_init,
258 static void (*_exits[])(void) = {
259 local_exit,
260 dm_target_exit,
261 dm_linear_exit,
262 dm_stripe_exit,
263 dm_io_exit,
264 dm_kcopyd_exit,
265 dm_interface_exit,
266 dm_statistics_exit,
269 static int __init dm_init(void)
271 const int count = ARRAY_SIZE(_inits);
272 int r, i;
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 " Duplicate IMA measurements will not be recorded in the IMA log.");
277 #endif
279 for (i = 0; i < count; i++) {
280 r = _inits[i]();
281 if (r)
282 goto bad;
285 return 0;
286 bad:
287 while (i--)
288 _exits[i]();
290 return r;
293 static void __exit dm_exit(void)
295 int i = ARRAY_SIZE(_exits);
297 while (i--)
298 _exits[i]();
301 * Should be empty by this point.
303 idr_destroy(&_minor_idr);
307 * Block device functions
309 int dm_deleting_md(struct mapped_device *md)
311 return test_bit(DMF_DELETING, &md->flags);
314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
316 struct mapped_device *md;
318 spin_lock(&_minor_lock);
320 md = disk->private_data;
321 if (!md)
322 goto out;
324 if (test_bit(DMF_FREEING, &md->flags) ||
325 dm_deleting_md(md)) {
326 md = NULL;
327 goto out;
330 dm_get(md);
331 atomic_inc(&md->open_count);
332 out:
333 spin_unlock(&_minor_lock);
335 return md ? 0 : -ENXIO;
338 static void dm_blk_close(struct gendisk *disk)
340 struct mapped_device *md;
342 spin_lock(&_minor_lock);
344 md = disk->private_data;
345 if (WARN_ON(!md))
346 goto out;
348 if (atomic_dec_and_test(&md->open_count) &&
349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 queue_work(deferred_remove_workqueue, &deferred_remove_work);
352 dm_put(md);
353 out:
354 spin_unlock(&_minor_lock);
357 int dm_open_count(struct mapped_device *md)
359 return atomic_read(&md->open_count);
363 * Guarantees nothing is using the device before it's deleted.
365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
367 int r = 0;
369 spin_lock(&_minor_lock);
371 if (dm_open_count(md)) {
372 r = -EBUSY;
373 if (mark_deferred)
374 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 r = -EEXIST;
377 else
378 set_bit(DMF_DELETING, &md->flags);
380 spin_unlock(&_minor_lock);
382 return r;
385 int dm_cancel_deferred_remove(struct mapped_device *md)
387 int r = 0;
389 spin_lock(&_minor_lock);
391 if (test_bit(DMF_DELETING, &md->flags))
392 r = -EBUSY;
393 else
394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
396 spin_unlock(&_minor_lock);
398 return r;
401 static void do_deferred_remove(struct work_struct *w)
403 dm_deferred_remove();
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
408 struct mapped_device *md = bdev->bd_disk->private_data;
410 return dm_get_geometry(md, geo);
413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 struct block_device **bdev)
416 struct dm_target *ti;
417 struct dm_table *map;
418 int r;
420 retry:
421 r = -ENOTTY;
422 map = dm_get_live_table(md, srcu_idx);
423 if (!map || !dm_table_get_size(map))
424 return r;
426 /* We only support devices that have a single target */
427 if (map->num_targets != 1)
428 return r;
430 ti = dm_table_get_target(map, 0);
431 if (!ti->type->prepare_ioctl)
432 return r;
434 if (dm_suspended_md(md))
435 return -EAGAIN;
437 r = ti->type->prepare_ioctl(ti, bdev);
438 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
439 dm_put_live_table(md, *srcu_idx);
440 fsleep(10000);
441 goto retry;
444 return r;
447 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
449 dm_put_live_table(md, srcu_idx);
452 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
453 unsigned int cmd, unsigned long arg)
455 struct mapped_device *md = bdev->bd_disk->private_data;
456 int r, srcu_idx;
458 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
459 if (r < 0)
460 goto out;
462 if (r > 0) {
464 * Target determined this ioctl is being issued against a
465 * subset of the parent bdev; require extra privileges.
467 if (!capable(CAP_SYS_RAWIO)) {
468 DMDEBUG_LIMIT(
469 "%s: sending ioctl %x to DM device without required privilege.",
470 current->comm, cmd);
471 r = -ENOIOCTLCMD;
472 goto out;
476 if (!bdev->bd_disk->fops->ioctl)
477 r = -ENOTTY;
478 else
479 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
480 out:
481 dm_unprepare_ioctl(md, srcu_idx);
482 return r;
485 u64 dm_start_time_ns_from_clone(struct bio *bio)
487 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
489 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
491 static inline bool bio_is_flush_with_data(struct bio *bio)
493 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
499 * If REQ_PREFLUSH set, don't account payload, it will be
500 * submitted (and accounted) after this flush completes.
502 if (bio_is_flush_with_data(bio))
503 return 0;
504 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
505 return io->sectors;
506 return bio_sectors(bio);
509 static void dm_io_acct(struct dm_io *io, bool end)
511 struct bio *bio = io->orig_bio;
513 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
514 if (!end)
515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
516 io->start_time);
517 else
518 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
519 dm_io_sectors(io, bio),
520 io->start_time);
523 if (static_branch_unlikely(&stats_enabled) &&
524 unlikely(dm_stats_used(&io->md->stats))) {
525 sector_t sector;
527 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 sector = bio_end_sector(bio) - io->sector_offset;
529 else
530 sector = bio->bi_iter.bi_sector;
532 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
533 sector, dm_io_sectors(io, bio),
534 end, io->start_time, &io->stats_aux);
538 static void __dm_start_io_acct(struct dm_io *io)
540 dm_io_acct(io, false);
543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
546 * Ensure IO accounting is only ever started once.
548 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 return;
551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 } else {
555 unsigned long flags;
556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 spin_lock_irqsave(&io->lock, flags);
558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 spin_unlock_irqrestore(&io->lock, flags);
560 return;
562 dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 spin_unlock_irqrestore(&io->lock, flags);
566 __dm_start_io_acct(io);
569 static void dm_end_io_acct(struct dm_io *io)
571 dm_io_acct(io, true);
574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
576 struct dm_io *io;
577 struct dm_target_io *tio;
578 struct bio *clone;
580 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
581 if (unlikely(!clone))
582 return NULL;
583 tio = clone_to_tio(clone);
584 tio->flags = 0;
585 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
586 tio->io = NULL;
588 io = container_of(tio, struct dm_io, tio);
589 io->magic = DM_IO_MAGIC;
590 io->status = BLK_STS_OK;
592 /* one ref is for submission, the other is for completion */
593 atomic_set(&io->io_count, 2);
594 this_cpu_inc(*md->pending_io);
595 io->orig_bio = bio;
596 io->md = md;
597 spin_lock_init(&io->lock);
598 io->start_time = jiffies;
599 io->flags = 0;
600 if (blk_queue_io_stat(md->queue))
601 dm_io_set_flag(io, DM_IO_BLK_STAT);
603 if (static_branch_unlikely(&stats_enabled) &&
604 unlikely(dm_stats_used(&md->stats)))
605 dm_stats_record_start(&md->stats, &io->stats_aux);
607 return io;
610 static void free_io(struct dm_io *io)
612 bio_put(&io->tio.clone);
615 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
616 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
618 struct mapped_device *md = ci->io->md;
619 struct dm_target_io *tio;
620 struct bio *clone;
622 if (!ci->io->tio.io) {
623 /* the dm_target_io embedded in ci->io is available */
624 tio = &ci->io->tio;
625 /* alloc_io() already initialized embedded clone */
626 clone = &tio->clone;
627 } else {
628 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
629 &md->mempools->bs);
630 if (!clone)
631 return NULL;
633 /* REQ_DM_POLL_LIST shouldn't be inherited */
634 clone->bi_opf &= ~REQ_DM_POLL_LIST;
636 tio = clone_to_tio(clone);
637 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
640 tio->magic = DM_TIO_MAGIC;
641 tio->io = ci->io;
642 tio->ti = ti;
643 tio->target_bio_nr = target_bio_nr;
644 tio->len_ptr = len;
645 tio->old_sector = 0;
647 /* Set default bdev, but target must bio_set_dev() before issuing IO */
648 clone->bi_bdev = md->disk->part0;
649 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
650 bio_set_dev(clone, md->disk->part0);
652 if (len) {
653 clone->bi_iter.bi_size = to_bytes(*len);
654 if (bio_integrity(clone))
655 bio_integrity_trim(clone);
658 return clone;
661 static void free_tio(struct bio *clone)
663 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
664 return;
665 bio_put(clone);
669 * Add the bio to the list of deferred io.
671 static void queue_io(struct mapped_device *md, struct bio *bio)
673 unsigned long flags;
675 spin_lock_irqsave(&md->deferred_lock, flags);
676 bio_list_add(&md->deferred, bio);
677 spin_unlock_irqrestore(&md->deferred_lock, flags);
678 queue_work(md->wq, &md->work);
682 * Everyone (including functions in this file), should use this
683 * function to access the md->map field, and make sure they call
684 * dm_put_live_table() when finished.
686 struct dm_table *dm_get_live_table(struct mapped_device *md,
687 int *srcu_idx) __acquires(md->io_barrier)
689 *srcu_idx = srcu_read_lock(&md->io_barrier);
691 return srcu_dereference(md->map, &md->io_barrier);
694 void dm_put_live_table(struct mapped_device *md,
695 int srcu_idx) __releases(md->io_barrier)
697 srcu_read_unlock(&md->io_barrier, srcu_idx);
700 void dm_sync_table(struct mapped_device *md)
702 synchronize_srcu(&md->io_barrier);
703 synchronize_rcu_expedited();
707 * A fast alternative to dm_get_live_table/dm_put_live_table.
708 * The caller must not block between these two functions.
710 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
712 rcu_read_lock();
713 return rcu_dereference(md->map);
716 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
718 rcu_read_unlock();
721 static char *_dm_claim_ptr = "I belong to device-mapper";
724 * Open a table device so we can use it as a map destination.
726 static struct table_device *open_table_device(struct mapped_device *md,
727 dev_t dev, blk_mode_t mode)
729 struct table_device *td;
730 struct file *bdev_file;
731 struct block_device *bdev;
732 u64 part_off;
733 int r;
735 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
736 if (!td)
737 return ERR_PTR(-ENOMEM);
738 refcount_set(&td->count, 1);
740 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
741 if (IS_ERR(bdev_file)) {
742 r = PTR_ERR(bdev_file);
743 goto out_free_td;
746 bdev = file_bdev(bdev_file);
749 * We can be called before the dm disk is added. In that case we can't
750 * register the holder relation here. It will be done once add_disk was
751 * called.
753 if (md->disk->slave_dir) {
754 r = bd_link_disk_holder(bdev, md->disk);
755 if (r)
756 goto out_blkdev_put;
759 td->dm_dev.mode = mode;
760 td->dm_dev.bdev = bdev;
761 td->dm_dev.bdev_file = bdev_file;
762 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
763 NULL, NULL);
764 format_dev_t(td->dm_dev.name, dev);
765 list_add(&td->list, &md->table_devices);
766 return td;
768 out_blkdev_put:
769 __fput_sync(bdev_file);
770 out_free_td:
771 kfree(td);
772 return ERR_PTR(r);
776 * Close a table device that we've been using.
778 static void close_table_device(struct table_device *td, struct mapped_device *md)
780 if (md->disk->slave_dir)
781 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
783 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
784 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
785 fput(td->dm_dev.bdev_file);
786 else
787 __fput_sync(td->dm_dev.bdev_file);
789 put_dax(td->dm_dev.dax_dev);
790 list_del(&td->list);
791 kfree(td);
794 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
795 blk_mode_t mode)
797 struct table_device *td;
799 list_for_each_entry(td, l, list)
800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
801 return td;
803 return NULL;
806 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
807 struct dm_dev **result)
809 struct table_device *td;
811 mutex_lock(&md->table_devices_lock);
812 td = find_table_device(&md->table_devices, dev, mode);
813 if (!td) {
814 td = open_table_device(md, dev, mode);
815 if (IS_ERR(td)) {
816 mutex_unlock(&md->table_devices_lock);
817 return PTR_ERR(td);
819 } else {
820 refcount_inc(&td->count);
822 mutex_unlock(&md->table_devices_lock);
824 *result = &td->dm_dev;
825 return 0;
828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
830 struct table_device *td = container_of(d, struct table_device, dm_dev);
832 mutex_lock(&md->table_devices_lock);
833 if (refcount_dec_and_test(&td->count))
834 close_table_device(td, md);
835 mutex_unlock(&md->table_devices_lock);
839 * Get the geometry associated with a dm device
841 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
843 *geo = md->geometry;
845 return 0;
849 * Set the geometry of a device.
851 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
853 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
855 if (geo->start > sz) {
856 DMERR("Start sector is beyond the geometry limits.");
857 return -EINVAL;
860 md->geometry = *geo;
862 return 0;
865 static int __noflush_suspending(struct mapped_device *md)
867 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
870 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
872 struct mapped_device *md = io->md;
874 if (first_stage) {
875 struct dm_io *next = md->requeue_list;
877 md->requeue_list = io;
878 io->next = next;
879 } else {
880 bio_list_add_head(&md->deferred, io->orig_bio);
884 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
886 if (first_stage)
887 queue_work(md->wq, &md->requeue_work);
888 else
889 queue_work(md->wq, &md->work);
893 * Return true if the dm_io's original bio is requeued.
894 * io->status is updated with error if requeue disallowed.
896 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
898 struct bio *bio = io->orig_bio;
899 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
900 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
901 (bio->bi_opf & REQ_POLLED));
902 struct mapped_device *md = io->md;
903 bool requeued = false;
905 if (handle_requeue || handle_polled_eagain) {
906 unsigned long flags;
908 if (bio->bi_opf & REQ_POLLED) {
910 * Upper layer won't help us poll split bio
911 * (io->orig_bio may only reflect a subset of the
912 * pre-split original) so clear REQ_POLLED.
914 bio_clear_polled(bio);
918 * Target requested pushing back the I/O or
919 * polled IO hit BLK_STS_AGAIN.
921 spin_lock_irqsave(&md->deferred_lock, flags);
922 if ((__noflush_suspending(md) &&
923 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
924 handle_polled_eagain || first_stage) {
925 dm_requeue_add_io(io, first_stage);
926 requeued = true;
927 } else {
929 * noflush suspend was interrupted or this is
930 * a write to a zoned target.
932 io->status = BLK_STS_IOERR;
934 spin_unlock_irqrestore(&md->deferred_lock, flags);
937 if (requeued)
938 dm_kick_requeue(md, first_stage);
940 return requeued;
943 static void __dm_io_complete(struct dm_io *io, bool first_stage)
945 struct bio *bio = io->orig_bio;
946 struct mapped_device *md = io->md;
947 blk_status_t io_error;
948 bool requeued;
950 requeued = dm_handle_requeue(io, first_stage);
951 if (requeued && first_stage)
952 return;
954 io_error = io->status;
955 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
956 dm_end_io_acct(io);
957 else if (!io_error) {
959 * Must handle target that DM_MAPIO_SUBMITTED only to
960 * then bio_endio() rather than dm_submit_bio_remap()
962 __dm_start_io_acct(io);
963 dm_end_io_acct(io);
965 free_io(io);
966 smp_wmb();
967 this_cpu_dec(*md->pending_io);
969 /* nudge anyone waiting on suspend queue */
970 if (unlikely(wq_has_sleeper(&md->wait)))
971 wake_up(&md->wait);
973 /* Return early if the original bio was requeued */
974 if (requeued)
975 return;
977 if (bio_is_flush_with_data(bio)) {
979 * Preflush done for flush with data, reissue
980 * without REQ_PREFLUSH.
982 bio->bi_opf &= ~REQ_PREFLUSH;
983 queue_io(md, bio);
984 } else {
985 /* done with normal IO or empty flush */
986 if (io_error)
987 bio->bi_status = io_error;
988 bio_endio(bio);
992 static void dm_wq_requeue_work(struct work_struct *work)
994 struct mapped_device *md = container_of(work, struct mapped_device,
995 requeue_work);
996 unsigned long flags;
997 struct dm_io *io;
999 /* reuse deferred lock to simplify dm_handle_requeue */
1000 spin_lock_irqsave(&md->deferred_lock, flags);
1001 io = md->requeue_list;
1002 md->requeue_list = NULL;
1003 spin_unlock_irqrestore(&md->deferred_lock, flags);
1005 while (io) {
1006 struct dm_io *next = io->next;
1008 dm_io_rewind(io, &md->disk->bio_split);
1010 io->next = NULL;
1011 __dm_io_complete(io, false);
1012 io = next;
1013 cond_resched();
1018 * Two staged requeue:
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 * this io must be requeued, instead of other parts of the original bio.
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1025 static void dm_io_complete(struct dm_io *io)
1027 bool first_requeue;
1030 * Only dm_io that has been split needs two stage requeue, otherwise
1031 * we may run into long bio clone chain during suspend and OOM could
1032 * be triggered.
1034 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1035 * also aren't handled via the first stage requeue.
1037 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1038 first_requeue = true;
1039 else
1040 first_requeue = false;
1042 __dm_io_complete(io, first_requeue);
1046 * Decrements the number of outstanding ios that a bio has been
1047 * cloned into, completing the original io if necc.
1049 static inline void __dm_io_dec_pending(struct dm_io *io)
1051 if (atomic_dec_and_test(&io->io_count))
1052 dm_io_complete(io);
1055 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1057 unsigned long flags;
1059 /* Push-back supersedes any I/O errors */
1060 spin_lock_irqsave(&io->lock, flags);
1061 if (!(io->status == BLK_STS_DM_REQUEUE &&
1062 __noflush_suspending(io->md))) {
1063 io->status = error;
1065 spin_unlock_irqrestore(&io->lock, flags);
1068 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1070 if (unlikely(error))
1071 dm_io_set_error(io, error);
1073 __dm_io_dec_pending(io);
1077 * The queue_limits are only valid as long as you have a reference
1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1080 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1082 return &md->queue->limits;
1085 void disable_discard(struct mapped_device *md)
1087 struct queue_limits *limits = dm_get_queue_limits(md);
1089 /* device doesn't really support DISCARD, disable it */
1090 limits->max_hw_discard_sectors = 0;
1093 void disable_write_zeroes(struct mapped_device *md)
1095 struct queue_limits *limits = dm_get_queue_limits(md);
1097 /* device doesn't really support WRITE ZEROES, disable it */
1098 limits->max_write_zeroes_sectors = 0;
1101 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1103 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1106 static void clone_endio(struct bio *bio)
1108 blk_status_t error = bio->bi_status;
1109 struct dm_target_io *tio = clone_to_tio(bio);
1110 struct dm_target *ti = tio->ti;
1111 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1112 struct dm_io *io = tio->io;
1113 struct mapped_device *md = io->md;
1115 if (unlikely(error == BLK_STS_TARGET)) {
1116 if (bio_op(bio) == REQ_OP_DISCARD &&
1117 !bdev_max_discard_sectors(bio->bi_bdev))
1118 disable_discard(md);
1119 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1120 !bdev_write_zeroes_sectors(bio->bi_bdev))
1121 disable_write_zeroes(md);
1124 if (static_branch_unlikely(&zoned_enabled) &&
1125 unlikely(bdev_is_zoned(bio->bi_bdev)))
1126 dm_zone_endio(io, bio);
1128 if (endio) {
1129 int r = endio(ti, bio, &error);
1131 switch (r) {
1132 case DM_ENDIO_REQUEUE:
1133 if (static_branch_unlikely(&zoned_enabled)) {
1135 * Requeuing writes to a sequential zone of a zoned
1136 * target will break the sequential write pattern:
1137 * fail such IO.
1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1140 error = BLK_STS_IOERR;
1141 else
1142 error = BLK_STS_DM_REQUEUE;
1143 } else
1144 error = BLK_STS_DM_REQUEUE;
1145 fallthrough;
1146 case DM_ENDIO_DONE:
1147 break;
1148 case DM_ENDIO_INCOMPLETE:
1149 /* The target will handle the io */
1150 return;
1151 default:
1152 DMCRIT("unimplemented target endio return value: %d", r);
1153 BUG();
1157 if (static_branch_unlikely(&swap_bios_enabled) &&
1158 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1159 up(&md->swap_bios_semaphore);
1161 free_tio(bio);
1162 dm_io_dec_pending(io, error);
1166 * Return maximum size of I/O possible at the supplied sector up to the current
1167 * target boundary.
1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1170 sector_t target_offset)
1172 return ti->len - target_offset;
1175 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1176 unsigned int max_granularity,
1177 unsigned int max_sectors)
1179 sector_t target_offset = dm_target_offset(ti, sector);
1180 sector_t len = max_io_len_target_boundary(ti, target_offset);
1183 * Does the target need to split IO even further?
1184 * - varied (per target) IO splitting is a tenet of DM; this
1185 * explains why stacked chunk_sectors based splitting via
1186 * bio_split_to_limits() isn't possible here.
1188 if (!max_granularity)
1189 return len;
1190 return min_t(sector_t, len,
1191 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1192 blk_boundary_sectors_left(target_offset, max_granularity)));
1195 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1197 return __max_io_len(ti, sector, ti->max_io_len, 0);
1200 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1202 if (len > UINT_MAX) {
1203 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1204 (unsigned long long)len, UINT_MAX);
1205 ti->error = "Maximum size of target IO is too large";
1206 return -EINVAL;
1209 ti->max_io_len = (uint32_t) len;
1211 return 0;
1213 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1215 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1216 sector_t sector, int *srcu_idx)
1217 __acquires(md->io_barrier)
1219 struct dm_table *map;
1220 struct dm_target *ti;
1222 map = dm_get_live_table(md, srcu_idx);
1223 if (!map)
1224 return NULL;
1226 ti = dm_table_find_target(map, sector);
1227 if (!ti)
1228 return NULL;
1230 return ti;
1233 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1234 long nr_pages, enum dax_access_mode mode, void **kaddr,
1235 pfn_t *pfn)
1237 struct mapped_device *md = dax_get_private(dax_dev);
1238 sector_t sector = pgoff * PAGE_SECTORS;
1239 struct dm_target *ti;
1240 long len, ret = -EIO;
1241 int srcu_idx;
1243 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1245 if (!ti)
1246 goto out;
1247 if (!ti->type->direct_access)
1248 goto out;
1249 len = max_io_len(ti, sector) / PAGE_SECTORS;
1250 if (len < 1)
1251 goto out;
1252 nr_pages = min(len, nr_pages);
1253 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1255 out:
1256 dm_put_live_table(md, srcu_idx);
1258 return ret;
1261 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1262 size_t nr_pages)
1264 struct mapped_device *md = dax_get_private(dax_dev);
1265 sector_t sector = pgoff * PAGE_SECTORS;
1266 struct dm_target *ti;
1267 int ret = -EIO;
1268 int srcu_idx;
1270 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1272 if (!ti)
1273 goto out;
1274 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1276 * ->zero_page_range() is mandatory dax operation. If we are
1277 * here, something is wrong.
1279 goto out;
1281 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1282 out:
1283 dm_put_live_table(md, srcu_idx);
1285 return ret;
1288 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1289 void *addr, size_t bytes, struct iov_iter *i)
1291 struct mapped_device *md = dax_get_private(dax_dev);
1292 sector_t sector = pgoff * PAGE_SECTORS;
1293 struct dm_target *ti;
1294 int srcu_idx;
1295 long ret = 0;
1297 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1298 if (!ti || !ti->type->dax_recovery_write)
1299 goto out;
1301 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1302 out:
1303 dm_put_live_table(md, srcu_idx);
1304 return ret;
1308 * A target may call dm_accept_partial_bio only from the map routine. It is
1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1311 * __send_duplicate_bios().
1313 * dm_accept_partial_bio informs the dm that the target only wants to process
1314 * additional n_sectors sectors of the bio and the rest of the data should be
1315 * sent in a next bio.
1317 * A diagram that explains the arithmetics:
1318 * +--------------------+---------------+-------+
1319 * | 1 | 2 | 3 |
1320 * +--------------------+---------------+-------+
1322 * <-------------- *tio->len_ptr --------------->
1323 * <----- bio_sectors ----->
1324 * <-- n_sectors -->
1326 * Region 1 was already iterated over with bio_advance or similar function.
1327 * (it may be empty if the target doesn't use bio_advance)
1328 * Region 2 is the remaining bio size that the target wants to process.
1329 * (it may be empty if region 1 is non-empty, although there is no reason
1330 * to make it empty)
1331 * The target requires that region 3 is to be sent in the next bio.
1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1334 * the partially processed part (the sum of regions 1+2) must be the same for all
1335 * copies of the bio.
1337 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1339 struct dm_target_io *tio = clone_to_tio(bio);
1340 struct dm_io *io = tio->io;
1341 unsigned int bio_sectors = bio_sectors(bio);
1343 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1344 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1345 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1346 BUG_ON(bio_sectors > *tio->len_ptr);
1347 BUG_ON(n_sectors > bio_sectors);
1349 *tio->len_ptr -= bio_sectors - n_sectors;
1350 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1353 * __split_and_process_bio() may have already saved mapped part
1354 * for accounting but it is being reduced so update accordingly.
1356 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1357 io->sectors = n_sectors;
1358 io->sector_offset = bio_sectors(io->orig_bio);
1360 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1363 * @clone: clone bio that DM core passed to target's .map function
1364 * @tgt_clone: clone of @clone bio that target needs submitted
1366 * Targets should use this interface to submit bios they take
1367 * ownership of when returning DM_MAPIO_SUBMITTED.
1369 * Target should also enable ti->accounts_remapped_io
1371 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1373 struct dm_target_io *tio = clone_to_tio(clone);
1374 struct dm_io *io = tio->io;
1376 /* establish bio that will get submitted */
1377 if (!tgt_clone)
1378 tgt_clone = clone;
1381 * Account io->origin_bio to DM dev on behalf of target
1382 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1384 dm_start_io_acct(io, clone);
1386 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1387 tio->old_sector);
1388 submit_bio_noacct(tgt_clone);
1390 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1392 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1394 mutex_lock(&md->swap_bios_lock);
1395 while (latch < md->swap_bios) {
1396 cond_resched();
1397 down(&md->swap_bios_semaphore);
1398 md->swap_bios--;
1400 while (latch > md->swap_bios) {
1401 cond_resched();
1402 up(&md->swap_bios_semaphore);
1403 md->swap_bios++;
1405 mutex_unlock(&md->swap_bios_lock);
1408 static void __map_bio(struct bio *clone)
1410 struct dm_target_io *tio = clone_to_tio(clone);
1411 struct dm_target *ti = tio->ti;
1412 struct dm_io *io = tio->io;
1413 struct mapped_device *md = io->md;
1414 int r;
1416 clone->bi_end_io = clone_endio;
1419 * Map the clone.
1421 tio->old_sector = clone->bi_iter.bi_sector;
1423 if (static_branch_unlikely(&swap_bios_enabled) &&
1424 unlikely(swap_bios_limit(ti, clone))) {
1425 int latch = get_swap_bios();
1427 if (unlikely(latch != md->swap_bios))
1428 __set_swap_bios_limit(md, latch);
1429 down(&md->swap_bios_semaphore);
1432 if (likely(ti->type->map == linear_map))
1433 r = linear_map(ti, clone);
1434 else if (ti->type->map == stripe_map)
1435 r = stripe_map(ti, clone);
1436 else
1437 r = ti->type->map(ti, clone);
1439 switch (r) {
1440 case DM_MAPIO_SUBMITTED:
1441 /* target has assumed ownership of this io */
1442 if (!ti->accounts_remapped_io)
1443 dm_start_io_acct(io, clone);
1444 break;
1445 case DM_MAPIO_REMAPPED:
1446 dm_submit_bio_remap(clone, NULL);
1447 break;
1448 case DM_MAPIO_KILL:
1449 case DM_MAPIO_REQUEUE:
1450 if (static_branch_unlikely(&swap_bios_enabled) &&
1451 unlikely(swap_bios_limit(ti, clone)))
1452 up(&md->swap_bios_semaphore);
1453 free_tio(clone);
1454 if (r == DM_MAPIO_KILL)
1455 dm_io_dec_pending(io, BLK_STS_IOERR);
1456 else
1457 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1458 break;
1459 default:
1460 DMCRIT("unimplemented target map return value: %d", r);
1461 BUG();
1465 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1467 struct dm_io *io = ci->io;
1469 if (ci->sector_count > len) {
1471 * Split needed, save the mapped part for accounting.
1472 * NOTE: dm_accept_partial_bio() will update accordingly.
1474 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1475 io->sectors = len;
1476 io->sector_offset = bio_sectors(ci->bio);
1480 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1481 struct dm_target *ti, unsigned int num_bios,
1482 unsigned *len, gfp_t gfp_flag)
1484 struct bio *bio;
1485 int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
1487 for (; try < 2; try++) {
1488 int bio_nr;
1490 if (try && num_bios > 1)
1491 mutex_lock(&ci->io->md->table_devices_lock);
1492 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1493 bio = alloc_tio(ci, ti, bio_nr, len,
1494 try ? GFP_NOIO : GFP_NOWAIT);
1495 if (!bio)
1496 break;
1498 bio_list_add(blist, bio);
1500 if (try && num_bios > 1)
1501 mutex_unlock(&ci->io->md->table_devices_lock);
1502 if (bio_nr == num_bios)
1503 return;
1505 while ((bio = bio_list_pop(blist)))
1506 free_tio(bio);
1510 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1511 unsigned int num_bios, unsigned int *len,
1512 gfp_t gfp_flag)
1514 struct bio_list blist = BIO_EMPTY_LIST;
1515 struct bio *clone;
1516 unsigned int ret = 0;
1518 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1519 return 0;
1521 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1522 if (len)
1523 setup_split_accounting(ci, *len);
1526 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1527 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1529 alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
1530 while ((clone = bio_list_pop(&blist))) {
1531 if (num_bios > 1)
1532 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1533 __map_bio(clone);
1534 ret += 1;
1537 return ret;
1540 static void __send_empty_flush(struct clone_info *ci)
1542 struct dm_table *t = ci->map;
1543 struct bio flush_bio;
1546 * Use an on-stack bio for this, it's safe since we don't
1547 * need to reference it after submit. It's just used as
1548 * the basis for the clone(s).
1550 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1551 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1553 ci->bio = &flush_bio;
1554 ci->sector_count = 0;
1555 ci->io->tio.clone.bi_iter.bi_size = 0;
1557 if (!t->flush_bypasses_map) {
1558 for (unsigned int i = 0; i < t->num_targets; i++) {
1559 unsigned int bios;
1560 struct dm_target *ti = dm_table_get_target(t, i);
1562 if (unlikely(ti->num_flush_bios == 0))
1563 continue;
1565 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1566 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1567 NULL, GFP_NOWAIT);
1568 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1570 } else {
1572 * Note that there's no need to grab t->devices_lock here
1573 * because the targets that support flush optimization don't
1574 * modify the list of devices.
1576 struct list_head *devices = dm_table_get_devices(t);
1577 unsigned int len = 0;
1578 struct dm_dev_internal *dd;
1579 list_for_each_entry(dd, devices, list) {
1580 struct bio *clone;
1582 * Note that the structure dm_target_io is not
1583 * associated with any target (because the device may be
1584 * used by multiple targets), so we set tio->ti = NULL.
1585 * We must check for NULL in the I/O processing path, to
1586 * avoid NULL pointer dereference.
1588 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1589 atomic_add(1, &ci->io->io_count);
1590 bio_set_dev(clone, dd->dm_dev->bdev);
1591 clone->bi_end_io = clone_endio;
1592 dm_submit_bio_remap(clone, NULL);
1597 * alloc_io() takes one extra reference for submission, so the
1598 * reference won't reach 0 without the following subtraction
1600 atomic_sub(1, &ci->io->io_count);
1602 bio_uninit(ci->bio);
1605 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1606 unsigned int num_bios, unsigned int max_granularity,
1607 unsigned int max_sectors)
1609 unsigned int len, bios;
1611 len = min_t(sector_t, ci->sector_count,
1612 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1614 atomic_add(num_bios, &ci->io->io_count);
1615 bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
1617 * alloc_io() takes one extra reference for submission, so the
1618 * reference won't reach 0 without the following (+1) subtraction
1620 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1622 ci->sector += len;
1623 ci->sector_count -= len;
1626 static bool is_abnormal_io(struct bio *bio)
1628 switch (bio_op(bio)) {
1629 case REQ_OP_READ:
1630 case REQ_OP_WRITE:
1631 case REQ_OP_FLUSH:
1632 return false;
1633 case REQ_OP_DISCARD:
1634 case REQ_OP_SECURE_ERASE:
1635 case REQ_OP_WRITE_ZEROES:
1636 case REQ_OP_ZONE_RESET_ALL:
1637 return true;
1638 default:
1639 return false;
1643 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1644 struct dm_target *ti)
1646 unsigned int num_bios = 0;
1647 unsigned int max_granularity = 0;
1648 unsigned int max_sectors = 0;
1649 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1651 switch (bio_op(ci->bio)) {
1652 case REQ_OP_DISCARD:
1653 num_bios = ti->num_discard_bios;
1654 max_sectors = limits->max_discard_sectors;
1655 if (ti->max_discard_granularity)
1656 max_granularity = max_sectors;
1657 break;
1658 case REQ_OP_SECURE_ERASE:
1659 num_bios = ti->num_secure_erase_bios;
1660 max_sectors = limits->max_secure_erase_sectors;
1661 break;
1662 case REQ_OP_WRITE_ZEROES:
1663 num_bios = ti->num_write_zeroes_bios;
1664 max_sectors = limits->max_write_zeroes_sectors;
1665 break;
1666 default:
1667 break;
1671 * Even though the device advertised support for this type of
1672 * request, that does not mean every target supports it, and
1673 * reconfiguration might also have changed that since the
1674 * check was performed.
1676 if (unlikely(!num_bios))
1677 return BLK_STS_NOTSUPP;
1679 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1681 return BLK_STS_OK;
1685 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1686 * associated with this bio, and this bio's bi_private needs to be
1687 * stored in dm_io->data before the reuse.
1689 * bio->bi_private is owned by fs or upper layer, so block layer won't
1690 * touch it after splitting. Meantime it won't be changed by anyone after
1691 * bio is submitted. So this reuse is safe.
1693 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1695 return (struct dm_io **)&bio->bi_private;
1698 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1700 struct dm_io **head = dm_poll_list_head(bio);
1702 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1703 bio->bi_opf |= REQ_DM_POLL_LIST;
1705 * Save .bi_private into dm_io, so that we can reuse
1706 * .bi_private as dm_io list head for storing dm_io list
1708 io->data = bio->bi_private;
1710 /* tell block layer to poll for completion */
1711 bio->bi_cookie = ~BLK_QC_T_NONE;
1713 io->next = NULL;
1714 } else {
1716 * bio recursed due to split, reuse original poll list,
1717 * and save bio->bi_private too.
1719 io->data = (*head)->data;
1720 io->next = *head;
1723 *head = io;
1727 * Select the correct strategy for processing a non-flush bio.
1729 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1731 struct bio *clone;
1732 struct dm_target *ti;
1733 unsigned int len;
1735 ti = dm_table_find_target(ci->map, ci->sector);
1736 if (unlikely(!ti))
1737 return BLK_STS_IOERR;
1739 if (unlikely(ci->is_abnormal_io))
1740 return __process_abnormal_io(ci, ti);
1743 * Only support bio polling for normal IO, and the target io is
1744 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1746 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1748 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1749 setup_split_accounting(ci, len);
1751 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1752 if (unlikely(!dm_target_supports_nowait(ti->type)))
1753 return BLK_STS_NOTSUPP;
1755 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1756 if (unlikely(!clone))
1757 return BLK_STS_AGAIN;
1758 } else {
1759 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1761 __map_bio(clone);
1763 ci->sector += len;
1764 ci->sector_count -= len;
1766 return BLK_STS_OK;
1769 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1770 struct dm_table *map, struct bio *bio, bool is_abnormal)
1772 ci->map = map;
1773 ci->io = io;
1774 ci->bio = bio;
1775 ci->is_abnormal_io = is_abnormal;
1776 ci->submit_as_polled = false;
1777 ci->sector = bio->bi_iter.bi_sector;
1778 ci->sector_count = bio_sectors(bio);
1780 /* Shouldn't happen but sector_count was being set to 0 so... */
1781 if (static_branch_unlikely(&zoned_enabled) &&
1782 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1783 ci->sector_count = 0;
1786 #ifdef CONFIG_BLK_DEV_ZONED
1787 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1788 struct bio *bio)
1791 * For mapped device that need zone append emulation, we must
1792 * split any large BIO that straddles zone boundaries.
1794 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
1795 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
1797 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1799 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
1802 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1803 struct dm_target *ti)
1805 struct bio_list blist = BIO_EMPTY_LIST;
1806 struct mapped_device *md = ci->io->md;
1807 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1808 unsigned long *need_reset;
1809 unsigned int i, nr_zones, nr_reset;
1810 unsigned int num_bios = 0;
1811 blk_status_t sts = BLK_STS_OK;
1812 sector_t sector = ti->begin;
1813 struct bio *clone;
1814 int ret;
1816 nr_zones = ti->len >> ilog2(zone_sectors);
1817 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1818 if (!need_reset)
1819 return BLK_STS_RESOURCE;
1821 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1822 nr_zones, need_reset);
1823 if (ret) {
1824 sts = BLK_STS_IOERR;
1825 goto free_bitmap;
1828 /* If we have no zone to reset, we are done. */
1829 nr_reset = bitmap_weight(need_reset, nr_zones);
1830 if (!nr_reset)
1831 goto free_bitmap;
1833 atomic_add(nr_zones, &ci->io->io_count);
1835 for (i = 0; i < nr_zones; i++) {
1837 if (!test_bit(i, need_reset)) {
1838 sector += zone_sectors;
1839 continue;
1842 if (bio_list_empty(&blist)) {
1843 /* This may take a while, so be nice to others */
1844 if (num_bios)
1845 cond_resched();
1848 * We may need to reset thousands of zones, so let's
1849 * not go crazy with the clone allocation.
1851 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1852 NULL, GFP_NOIO);
1855 /* Get a clone and change it to a regular reset operation. */
1856 clone = bio_list_pop(&blist);
1857 clone->bi_opf &= ~REQ_OP_MASK;
1858 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1859 clone->bi_iter.bi_sector = sector;
1860 clone->bi_iter.bi_size = 0;
1861 __map_bio(clone);
1863 sector += zone_sectors;
1864 num_bios++;
1865 nr_reset--;
1868 WARN_ON_ONCE(!bio_list_empty(&blist));
1869 atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1870 ci->sector_count = 0;
1872 free_bitmap:
1873 bitmap_free(need_reset);
1875 return sts;
1878 static void __send_zone_reset_all_native(struct clone_info *ci,
1879 struct dm_target *ti)
1881 unsigned int bios;
1883 atomic_add(1, &ci->io->io_count);
1884 bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
1885 atomic_sub(1 - bios, &ci->io->io_count);
1887 ci->sector_count = 0;
1890 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1892 struct dm_table *t = ci->map;
1893 blk_status_t sts = BLK_STS_OK;
1895 for (unsigned int i = 0; i < t->num_targets; i++) {
1896 struct dm_target *ti = dm_table_get_target(t, i);
1898 if (ti->zone_reset_all_supported) {
1899 __send_zone_reset_all_native(ci, ti);
1900 continue;
1903 sts = __send_zone_reset_all_emulated(ci, ti);
1904 if (sts != BLK_STS_OK)
1905 break;
1908 /* Release the reference that alloc_io() took for submission. */
1909 atomic_sub(1, &ci->io->io_count);
1911 return sts;
1914 #else
1915 static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
1916 struct bio *bio)
1918 return false;
1920 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1922 return false;
1924 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1926 return BLK_STS_NOTSUPP;
1928 #endif
1931 * Entry point to split a bio into clones and submit them to the targets.
1933 static void dm_split_and_process_bio(struct mapped_device *md,
1934 struct dm_table *map, struct bio *bio)
1936 struct clone_info ci;
1937 struct dm_io *io;
1938 blk_status_t error = BLK_STS_OK;
1939 bool is_abnormal, need_split;
1941 is_abnormal = is_abnormal_io(bio);
1942 if (static_branch_unlikely(&zoned_enabled)) {
1943 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
1944 need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
1945 (is_abnormal || dm_zone_bio_needs_split(md, bio));
1946 } else {
1947 need_split = is_abnormal;
1950 if (unlikely(need_split)) {
1952 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1953 * otherwise associated queue_limits won't be imposed.
1954 * Also split the BIO for mapped devices needing zone append
1955 * emulation to ensure that the BIO does not cross zone
1956 * boundaries.
1958 bio = bio_split_to_limits(bio);
1959 if (!bio)
1960 return;
1964 * Use the block layer zone write plugging for mapped devices that
1965 * need zone append emulation (e.g. dm-crypt).
1967 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1968 return;
1970 /* Only support nowait for normal IO */
1971 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1972 io = alloc_io(md, bio, GFP_NOWAIT);
1973 if (unlikely(!io)) {
1974 /* Unable to do anything without dm_io. */
1975 bio_wouldblock_error(bio);
1976 return;
1978 } else {
1979 io = alloc_io(md, bio, GFP_NOIO);
1981 init_clone_info(&ci, io, map, bio, is_abnormal);
1983 if (bio->bi_opf & REQ_PREFLUSH) {
1984 __send_empty_flush(&ci);
1985 /* dm_io_complete submits any data associated with flush */
1986 goto out;
1989 if (static_branch_unlikely(&zoned_enabled) &&
1990 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
1991 error = __send_zone_reset_all(&ci);
1992 goto out;
1995 error = __split_and_process_bio(&ci);
1996 if (error || !ci.sector_count)
1997 goto out;
1999 * Remainder must be passed to submit_bio_noacct() so it gets handled
2000 * *after* bios already submitted have been completely processed.
2002 bio_trim(bio, io->sectors, ci.sector_count);
2003 trace_block_split(bio, bio->bi_iter.bi_sector);
2004 bio_inc_remaining(bio);
2005 submit_bio_noacct(bio);
2006 out:
2008 * Drop the extra reference count for non-POLLED bio, and hold one
2009 * reference for POLLED bio, which will be released in dm_poll_bio
2011 * Add every dm_io instance into the dm_io list head which is stored
2012 * in bio->bi_private, so that dm_poll_bio can poll them all.
2014 if (error || !ci.submit_as_polled) {
2016 * In case of submission failure, the extra reference for
2017 * submitting io isn't consumed yet
2019 if (error)
2020 atomic_dec(&io->io_count);
2021 dm_io_dec_pending(io, error);
2022 } else
2023 dm_queue_poll_io(bio, io);
2026 static void dm_submit_bio(struct bio *bio)
2028 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2029 int srcu_idx;
2030 struct dm_table *map;
2032 map = dm_get_live_table(md, &srcu_idx);
2033 if (unlikely(!map)) {
2034 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2035 dm_device_name(md));
2036 bio_io_error(bio);
2037 goto out;
2040 /* If suspended, queue this IO for later */
2041 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2042 if (bio->bi_opf & REQ_NOWAIT)
2043 bio_wouldblock_error(bio);
2044 else if (bio->bi_opf & REQ_RAHEAD)
2045 bio_io_error(bio);
2046 else
2047 queue_io(md, bio);
2048 goto out;
2051 dm_split_and_process_bio(md, map, bio);
2052 out:
2053 dm_put_live_table(md, srcu_idx);
2056 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2057 unsigned int flags)
2059 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2061 /* don't poll if the mapped io is done */
2062 if (atomic_read(&io->io_count) > 1)
2063 bio_poll(&io->tio.clone, iob, flags);
2065 /* bio_poll holds the last reference */
2066 return atomic_read(&io->io_count) == 1;
2069 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2070 unsigned int flags)
2072 struct dm_io **head = dm_poll_list_head(bio);
2073 struct dm_io *list = *head;
2074 struct dm_io *tmp = NULL;
2075 struct dm_io *curr, *next;
2077 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2078 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2079 return 0;
2081 WARN_ON_ONCE(!list);
2084 * Restore .bi_private before possibly completing dm_io.
2086 * bio_poll() is only possible once @bio has been completely
2087 * submitted via submit_bio_noacct()'s depth-first submission.
2088 * So there is no dm_queue_poll_io() race associated with
2089 * clearing REQ_DM_POLL_LIST here.
2091 bio->bi_opf &= ~REQ_DM_POLL_LIST;
2092 bio->bi_private = list->data;
2094 for (curr = list, next = curr->next; curr; curr = next, next =
2095 curr ? curr->next : NULL) {
2096 if (dm_poll_dm_io(curr, iob, flags)) {
2098 * clone_endio() has already occurred, so no
2099 * error handling is needed here.
2101 __dm_io_dec_pending(curr);
2102 } else {
2103 curr->next = tmp;
2104 tmp = curr;
2108 /* Not done? */
2109 if (tmp) {
2110 bio->bi_opf |= REQ_DM_POLL_LIST;
2111 /* Reset bio->bi_private to dm_io list head */
2112 *head = tmp;
2113 return 0;
2115 return 1;
2119 *---------------------------------------------------------------
2120 * An IDR is used to keep track of allocated minor numbers.
2121 *---------------------------------------------------------------
2123 static void free_minor(int minor)
2125 spin_lock(&_minor_lock);
2126 idr_remove(&_minor_idr, minor);
2127 spin_unlock(&_minor_lock);
2131 * See if the device with a specific minor # is free.
2133 static int specific_minor(int minor)
2135 int r;
2137 if (minor >= (1 << MINORBITS))
2138 return -EINVAL;
2140 idr_preload(GFP_KERNEL);
2141 spin_lock(&_minor_lock);
2143 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2145 spin_unlock(&_minor_lock);
2146 idr_preload_end();
2147 if (r < 0)
2148 return r == -ENOSPC ? -EBUSY : r;
2149 return 0;
2152 static int next_free_minor(int *minor)
2154 int r;
2156 idr_preload(GFP_KERNEL);
2157 spin_lock(&_minor_lock);
2159 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2161 spin_unlock(&_minor_lock);
2162 idr_preload_end();
2163 if (r < 0)
2164 return r;
2165 *minor = r;
2166 return 0;
2169 static const struct block_device_operations dm_blk_dops;
2170 static const struct block_device_operations dm_rq_blk_dops;
2171 static const struct dax_operations dm_dax_ops;
2173 static void dm_wq_work(struct work_struct *work);
2175 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
2176 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2178 dm_destroy_crypto_profile(q->crypto_profile);
2181 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2183 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2186 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2188 static void cleanup_mapped_device(struct mapped_device *md)
2190 if (md->wq)
2191 destroy_workqueue(md->wq);
2192 dm_free_md_mempools(md->mempools);
2194 if (md->dax_dev) {
2195 dax_remove_host(md->disk);
2196 kill_dax(md->dax_dev);
2197 put_dax(md->dax_dev);
2198 md->dax_dev = NULL;
2201 if (md->disk) {
2202 spin_lock(&_minor_lock);
2203 md->disk->private_data = NULL;
2204 spin_unlock(&_minor_lock);
2205 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2206 struct table_device *td;
2208 dm_sysfs_exit(md);
2209 list_for_each_entry(td, &md->table_devices, list) {
2210 bd_unlink_disk_holder(td->dm_dev.bdev,
2211 md->disk);
2215 * Hold lock to make sure del_gendisk() won't concurrent
2216 * with open/close_table_device().
2218 mutex_lock(&md->table_devices_lock);
2219 del_gendisk(md->disk);
2220 mutex_unlock(&md->table_devices_lock);
2222 dm_queue_destroy_crypto_profile(md->queue);
2223 put_disk(md->disk);
2226 if (md->pending_io) {
2227 free_percpu(md->pending_io);
2228 md->pending_io = NULL;
2231 cleanup_srcu_struct(&md->io_barrier);
2233 mutex_destroy(&md->suspend_lock);
2234 mutex_destroy(&md->type_lock);
2235 mutex_destroy(&md->table_devices_lock);
2236 mutex_destroy(&md->swap_bios_lock);
2238 dm_mq_cleanup_mapped_device(md);
2242 * Allocate and initialise a blank device with a given minor.
2244 static struct mapped_device *alloc_dev(int minor)
2246 int r, numa_node_id = dm_get_numa_node();
2247 struct dax_device *dax_dev;
2248 struct mapped_device *md;
2249 void *old_md;
2251 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2252 if (!md) {
2253 DMERR("unable to allocate device, out of memory.");
2254 return NULL;
2257 if (!try_module_get(THIS_MODULE))
2258 goto bad_module_get;
2260 /* get a minor number for the dev */
2261 if (minor == DM_ANY_MINOR)
2262 r = next_free_minor(&minor);
2263 else
2264 r = specific_minor(minor);
2265 if (r < 0)
2266 goto bad_minor;
2268 r = init_srcu_struct(&md->io_barrier);
2269 if (r < 0)
2270 goto bad_io_barrier;
2272 md->numa_node_id = numa_node_id;
2273 md->init_tio_pdu = false;
2274 md->type = DM_TYPE_NONE;
2275 mutex_init(&md->suspend_lock);
2276 mutex_init(&md->type_lock);
2277 mutex_init(&md->table_devices_lock);
2278 spin_lock_init(&md->deferred_lock);
2279 atomic_set(&md->holders, 1);
2280 atomic_set(&md->open_count, 0);
2281 atomic_set(&md->event_nr, 0);
2282 atomic_set(&md->uevent_seq, 0);
2283 INIT_LIST_HEAD(&md->uevent_list);
2284 INIT_LIST_HEAD(&md->table_devices);
2285 spin_lock_init(&md->uevent_lock);
2288 * default to bio-based until DM table is loaded and md->type
2289 * established. If request-based table is loaded: blk-mq will
2290 * override accordingly.
2292 md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2293 if (IS_ERR(md->disk)) {
2294 md->disk = NULL;
2295 goto bad;
2297 md->queue = md->disk->queue;
2299 init_waitqueue_head(&md->wait);
2300 INIT_WORK(&md->work, dm_wq_work);
2301 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2302 init_waitqueue_head(&md->eventq);
2303 init_completion(&md->kobj_holder.completion);
2305 md->requeue_list = NULL;
2306 md->swap_bios = get_swap_bios();
2307 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2308 mutex_init(&md->swap_bios_lock);
2310 md->disk->major = _major;
2311 md->disk->first_minor = minor;
2312 md->disk->minors = 1;
2313 md->disk->flags |= GENHD_FL_NO_PART;
2314 md->disk->fops = &dm_blk_dops;
2315 md->disk->private_data = md;
2316 sprintf(md->disk->disk_name, "dm-%d", minor);
2318 dax_dev = alloc_dax(md, &dm_dax_ops);
2319 if (IS_ERR(dax_dev)) {
2320 if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2321 goto bad;
2322 } else {
2323 set_dax_nocache(dax_dev);
2324 set_dax_nomc(dax_dev);
2325 md->dax_dev = dax_dev;
2326 if (dax_add_host(dax_dev, md->disk))
2327 goto bad;
2330 format_dev_t(md->name, MKDEV(_major, minor));
2332 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2333 if (!md->wq)
2334 goto bad;
2336 md->pending_io = alloc_percpu(unsigned long);
2337 if (!md->pending_io)
2338 goto bad;
2340 r = dm_stats_init(&md->stats);
2341 if (r < 0)
2342 goto bad;
2344 /* Populate the mapping, nobody knows we exist yet */
2345 spin_lock(&_minor_lock);
2346 old_md = idr_replace(&_minor_idr, md, minor);
2347 spin_unlock(&_minor_lock);
2349 BUG_ON(old_md != MINOR_ALLOCED);
2351 return md;
2353 bad:
2354 cleanup_mapped_device(md);
2355 bad_io_barrier:
2356 free_minor(minor);
2357 bad_minor:
2358 module_put(THIS_MODULE);
2359 bad_module_get:
2360 kvfree(md);
2361 return NULL;
2364 static void unlock_fs(struct mapped_device *md);
2366 static void free_dev(struct mapped_device *md)
2368 int minor = MINOR(disk_devt(md->disk));
2370 unlock_fs(md);
2372 cleanup_mapped_device(md);
2374 WARN_ON_ONCE(!list_empty(&md->table_devices));
2375 dm_stats_cleanup(&md->stats);
2376 free_minor(minor);
2378 module_put(THIS_MODULE);
2379 kvfree(md);
2383 * Bind a table to the device.
2385 static void event_callback(void *context)
2387 unsigned long flags;
2388 LIST_HEAD(uevents);
2389 struct mapped_device *md = context;
2391 spin_lock_irqsave(&md->uevent_lock, flags);
2392 list_splice_init(&md->uevent_list, &uevents);
2393 spin_unlock_irqrestore(&md->uevent_lock, flags);
2395 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2397 atomic_inc(&md->event_nr);
2398 wake_up(&md->eventq);
2399 dm_issue_global_event();
2403 * Returns old map, which caller must destroy.
2405 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2406 struct queue_limits *limits)
2408 struct dm_table *old_map;
2409 sector_t size;
2410 int ret;
2412 lockdep_assert_held(&md->suspend_lock);
2414 size = dm_table_get_size(t);
2417 * Wipe any geometry if the size of the table changed.
2419 if (size != dm_get_size(md))
2420 memset(&md->geometry, 0, sizeof(md->geometry));
2422 set_capacity(md->disk, size);
2424 dm_table_event_callback(t, event_callback, md);
2426 if (dm_table_request_based(t)) {
2428 * Leverage the fact that request-based DM targets are
2429 * immutable singletons - used to optimize dm_mq_queue_rq.
2431 md->immutable_target = dm_table_get_immutable_target(t);
2434 * There is no need to reload with request-based dm because the
2435 * size of front_pad doesn't change.
2437 * Note for future: If you are to reload bioset, prep-ed
2438 * requests in the queue may refer to bio from the old bioset,
2439 * so you must walk through the queue to unprep.
2441 if (!md->mempools) {
2442 md->mempools = t->mempools;
2443 t->mempools = NULL;
2445 } else {
2447 * The md may already have mempools that need changing.
2448 * If so, reload bioset because front_pad may have changed
2449 * because a different table was loaded.
2451 dm_free_md_mempools(md->mempools);
2452 md->mempools = t->mempools;
2453 t->mempools = NULL;
2456 ret = dm_table_set_restrictions(t, md->queue, limits);
2457 if (ret) {
2458 old_map = ERR_PTR(ret);
2459 goto out;
2462 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2463 rcu_assign_pointer(md->map, (void *)t);
2464 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2466 if (old_map)
2467 dm_sync_table(md);
2468 out:
2469 return old_map;
2473 * Returns unbound table for the caller to free.
2475 static struct dm_table *__unbind(struct mapped_device *md)
2477 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2479 if (!map)
2480 return NULL;
2482 dm_table_event_callback(map, NULL, NULL);
2483 RCU_INIT_POINTER(md->map, NULL);
2484 dm_sync_table(md);
2486 return map;
2490 * Constructor for a new device.
2492 int dm_create(int minor, struct mapped_device **result)
2494 struct mapped_device *md;
2496 md = alloc_dev(minor);
2497 if (!md)
2498 return -ENXIO;
2500 dm_ima_reset_data(md);
2502 *result = md;
2503 return 0;
2507 * Functions to manage md->type.
2508 * All are required to hold md->type_lock.
2510 void dm_lock_md_type(struct mapped_device *md)
2512 mutex_lock(&md->type_lock);
2515 void dm_unlock_md_type(struct mapped_device *md)
2517 mutex_unlock(&md->type_lock);
2520 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2522 return md->type;
2525 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2527 return md->immutable_target_type;
2531 * Setup the DM device's queue based on md's type
2533 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2535 enum dm_queue_mode type = dm_table_get_type(t);
2536 struct queue_limits limits;
2537 struct table_device *td;
2538 int r;
2540 WARN_ON_ONCE(type == DM_TYPE_NONE);
2542 if (type == DM_TYPE_REQUEST_BASED) {
2543 md->disk->fops = &dm_rq_blk_dops;
2544 r = dm_mq_init_request_queue(md, t);
2545 if (r) {
2546 DMERR("Cannot initialize queue for request-based dm mapped device");
2547 return r;
2551 r = dm_calculate_queue_limits(t, &limits);
2552 if (r) {
2553 DMERR("Cannot calculate initial queue limits");
2554 return r;
2556 r = dm_table_set_restrictions(t, md->queue, &limits);
2557 if (r)
2558 return r;
2561 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2562 * with open_table_device() and close_table_device().
2564 mutex_lock(&md->table_devices_lock);
2565 r = add_disk(md->disk);
2566 mutex_unlock(&md->table_devices_lock);
2567 if (r)
2568 return r;
2571 * Register the holder relationship for devices added before the disk
2572 * was live.
2574 list_for_each_entry(td, &md->table_devices, list) {
2575 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2576 if (r)
2577 goto out_undo_holders;
2580 r = dm_sysfs_init(md);
2581 if (r)
2582 goto out_undo_holders;
2584 md->type = type;
2585 return 0;
2587 out_undo_holders:
2588 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2589 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2590 mutex_lock(&md->table_devices_lock);
2591 del_gendisk(md->disk);
2592 mutex_unlock(&md->table_devices_lock);
2593 return r;
2596 struct mapped_device *dm_get_md(dev_t dev)
2598 struct mapped_device *md;
2599 unsigned int minor = MINOR(dev);
2601 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2602 return NULL;
2604 spin_lock(&_minor_lock);
2606 md = idr_find(&_minor_idr, minor);
2607 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2608 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2609 md = NULL;
2610 goto out;
2612 dm_get(md);
2613 out:
2614 spin_unlock(&_minor_lock);
2616 return md;
2618 EXPORT_SYMBOL_GPL(dm_get_md);
2620 void *dm_get_mdptr(struct mapped_device *md)
2622 return md->interface_ptr;
2625 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2627 md->interface_ptr = ptr;
2630 void dm_get(struct mapped_device *md)
2632 atomic_inc(&md->holders);
2633 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2636 int dm_hold(struct mapped_device *md)
2638 spin_lock(&_minor_lock);
2639 if (test_bit(DMF_FREEING, &md->flags)) {
2640 spin_unlock(&_minor_lock);
2641 return -EBUSY;
2643 dm_get(md);
2644 spin_unlock(&_minor_lock);
2645 return 0;
2647 EXPORT_SYMBOL_GPL(dm_hold);
2649 const char *dm_device_name(struct mapped_device *md)
2651 return md->name;
2653 EXPORT_SYMBOL_GPL(dm_device_name);
2655 static void __dm_destroy(struct mapped_device *md, bool wait)
2657 struct dm_table *map;
2658 int srcu_idx;
2660 might_sleep();
2662 spin_lock(&_minor_lock);
2663 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2664 set_bit(DMF_FREEING, &md->flags);
2665 spin_unlock(&_minor_lock);
2667 blk_mark_disk_dead(md->disk);
2670 * Take suspend_lock so that presuspend and postsuspend methods
2671 * do not race with internal suspend.
2673 mutex_lock(&md->suspend_lock);
2674 map = dm_get_live_table(md, &srcu_idx);
2675 if (!dm_suspended_md(md)) {
2676 dm_table_presuspend_targets(map);
2677 set_bit(DMF_SUSPENDED, &md->flags);
2678 set_bit(DMF_POST_SUSPENDING, &md->flags);
2679 dm_table_postsuspend_targets(map);
2681 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2682 dm_put_live_table(md, srcu_idx);
2683 mutex_unlock(&md->suspend_lock);
2686 * Rare, but there may be I/O requests still going to complete,
2687 * for example. Wait for all references to disappear.
2688 * No one should increment the reference count of the mapped_device,
2689 * after the mapped_device state becomes DMF_FREEING.
2691 if (wait)
2692 while (atomic_read(&md->holders))
2693 fsleep(1000);
2694 else if (atomic_read(&md->holders))
2695 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2696 dm_device_name(md), atomic_read(&md->holders));
2698 dm_table_destroy(__unbind(md));
2699 free_dev(md);
2702 void dm_destroy(struct mapped_device *md)
2704 __dm_destroy(md, true);
2707 void dm_destroy_immediate(struct mapped_device *md)
2709 __dm_destroy(md, false);
2712 void dm_put(struct mapped_device *md)
2714 atomic_dec(&md->holders);
2716 EXPORT_SYMBOL_GPL(dm_put);
2718 static bool dm_in_flight_bios(struct mapped_device *md)
2720 int cpu;
2721 unsigned long sum = 0;
2723 for_each_possible_cpu(cpu)
2724 sum += *per_cpu_ptr(md->pending_io, cpu);
2726 return sum != 0;
2729 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2731 int r = 0;
2732 DEFINE_WAIT(wait);
2734 while (true) {
2735 prepare_to_wait(&md->wait, &wait, task_state);
2737 if (!dm_in_flight_bios(md))
2738 break;
2740 if (signal_pending_state(task_state, current)) {
2741 r = -ERESTARTSYS;
2742 break;
2745 io_schedule();
2747 finish_wait(&md->wait, &wait);
2749 smp_rmb();
2751 return r;
2754 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2756 int r = 0;
2758 if (!queue_is_mq(md->queue))
2759 return dm_wait_for_bios_completion(md, task_state);
2761 while (true) {
2762 if (!blk_mq_queue_inflight(md->queue))
2763 break;
2765 if (signal_pending_state(task_state, current)) {
2766 r = -ERESTARTSYS;
2767 break;
2770 fsleep(5000);
2773 return r;
2777 * Process the deferred bios
2779 static void dm_wq_work(struct work_struct *work)
2781 struct mapped_device *md = container_of(work, struct mapped_device, work);
2782 struct bio *bio;
2784 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2785 spin_lock_irq(&md->deferred_lock);
2786 bio = bio_list_pop(&md->deferred);
2787 spin_unlock_irq(&md->deferred_lock);
2789 if (!bio)
2790 break;
2792 submit_bio_noacct(bio);
2793 cond_resched();
2797 static void dm_queue_flush(struct mapped_device *md)
2799 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2800 smp_mb__after_atomic();
2801 queue_work(md->wq, &md->work);
2805 * Swap in a new table, returning the old one for the caller to destroy.
2807 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2809 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2810 struct queue_limits limits;
2811 int r;
2813 mutex_lock(&md->suspend_lock);
2815 /* device must be suspended */
2816 if (!dm_suspended_md(md))
2817 goto out;
2820 * If the new table has no data devices, retain the existing limits.
2821 * This helps multipath with queue_if_no_path if all paths disappear,
2822 * then new I/O is queued based on these limits, and then some paths
2823 * reappear.
2825 if (dm_table_has_no_data_devices(table)) {
2826 live_map = dm_get_live_table_fast(md);
2827 if (live_map)
2828 limits = md->queue->limits;
2829 dm_put_live_table_fast(md);
2832 if (!live_map) {
2833 r = dm_calculate_queue_limits(table, &limits);
2834 if (r) {
2835 map = ERR_PTR(r);
2836 goto out;
2840 map = __bind(md, table, &limits);
2841 dm_issue_global_event();
2843 out:
2844 mutex_unlock(&md->suspend_lock);
2845 return map;
2849 * Functions to lock and unlock any filesystem running on the
2850 * device.
2852 static int lock_fs(struct mapped_device *md)
2854 int r;
2856 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2858 r = bdev_freeze(md->disk->part0);
2859 if (!r)
2860 set_bit(DMF_FROZEN, &md->flags);
2861 return r;
2864 static void unlock_fs(struct mapped_device *md)
2866 if (!test_bit(DMF_FROZEN, &md->flags))
2867 return;
2868 bdev_thaw(md->disk->part0);
2869 clear_bit(DMF_FROZEN, &md->flags);
2873 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2874 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2875 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2877 * If __dm_suspend returns 0, the device is completely quiescent
2878 * now. There is no request-processing activity. All new requests
2879 * are being added to md->deferred list.
2881 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2882 unsigned int suspend_flags, unsigned int task_state,
2883 int dmf_suspended_flag)
2885 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2886 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2887 int r;
2889 lockdep_assert_held(&md->suspend_lock);
2892 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2893 * This flag is cleared before dm_suspend returns.
2895 if (noflush)
2896 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2897 else
2898 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2901 * This gets reverted if there's an error later and the targets
2902 * provide the .presuspend_undo hook.
2904 dm_table_presuspend_targets(map);
2907 * Flush I/O to the device.
2908 * Any I/O submitted after lock_fs() may not be flushed.
2909 * noflush takes precedence over do_lockfs.
2910 * (lock_fs() flushes I/Os and waits for them to complete.)
2912 if (!noflush && do_lockfs) {
2913 r = lock_fs(md);
2914 if (r) {
2915 dm_table_presuspend_undo_targets(map);
2916 return r;
2921 * Here we must make sure that no processes are submitting requests
2922 * to target drivers i.e. no one may be executing
2923 * dm_split_and_process_bio from dm_submit_bio.
2925 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2926 * we take the write lock. To prevent any process from reentering
2927 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2928 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2929 * flush_workqueue(md->wq).
2931 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2932 if (map)
2933 synchronize_srcu(&md->io_barrier);
2936 * Stop md->queue before flushing md->wq in case request-based
2937 * dm defers requests to md->wq from md->queue.
2939 if (dm_request_based(md))
2940 dm_stop_queue(md->queue);
2942 flush_workqueue(md->wq);
2945 * At this point no more requests are entering target request routines.
2946 * We call dm_wait_for_completion to wait for all existing requests
2947 * to finish.
2949 r = dm_wait_for_completion(md, task_state);
2950 if (!r)
2951 set_bit(dmf_suspended_flag, &md->flags);
2953 if (noflush)
2954 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2955 if (map)
2956 synchronize_srcu(&md->io_barrier);
2958 /* were we interrupted ? */
2959 if (r < 0) {
2960 dm_queue_flush(md);
2962 if (dm_request_based(md))
2963 dm_start_queue(md->queue);
2965 unlock_fs(md);
2966 dm_table_presuspend_undo_targets(map);
2967 /* pushback list is already flushed, so skip flush */
2970 return r;
2974 * We need to be able to change a mapping table under a mounted
2975 * filesystem. For example we might want to move some data in
2976 * the background. Before the table can be swapped with
2977 * dm_bind_table, dm_suspend must be called to flush any in
2978 * flight bios and ensure that any further io gets deferred.
2981 * Suspend mechanism in request-based dm.
2983 * 1. Flush all I/Os by lock_fs() if needed.
2984 * 2. Stop dispatching any I/O by stopping the request_queue.
2985 * 3. Wait for all in-flight I/Os to be completed or requeued.
2987 * To abort suspend, start the request_queue.
2989 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2991 struct dm_table *map = NULL;
2992 int r = 0;
2994 retry:
2995 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2997 if (dm_suspended_md(md)) {
2998 r = -EINVAL;
2999 goto out_unlock;
3002 if (dm_suspended_internally_md(md)) {
3003 /* already internally suspended, wait for internal resume */
3004 mutex_unlock(&md->suspend_lock);
3005 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3006 if (r)
3007 return r;
3008 goto retry;
3011 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3012 if (!map) {
3013 /* avoid deadlock with fs/namespace.c:do_mount() */
3014 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3017 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3018 if (r)
3019 goto out_unlock;
3021 set_bit(DMF_POST_SUSPENDING, &md->flags);
3022 dm_table_postsuspend_targets(map);
3023 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3025 out_unlock:
3026 mutex_unlock(&md->suspend_lock);
3027 return r;
3030 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3032 if (map) {
3033 int r = dm_table_resume_targets(map);
3035 if (r)
3036 return r;
3039 dm_queue_flush(md);
3042 * Flushing deferred I/Os must be done after targets are resumed
3043 * so that mapping of targets can work correctly.
3044 * Request-based dm is queueing the deferred I/Os in its request_queue.
3046 if (dm_request_based(md))
3047 dm_start_queue(md->queue);
3049 unlock_fs(md);
3051 return 0;
3054 int dm_resume(struct mapped_device *md)
3056 int r;
3057 struct dm_table *map = NULL;
3059 retry:
3060 r = -EINVAL;
3061 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3063 if (!dm_suspended_md(md))
3064 goto out;
3066 if (dm_suspended_internally_md(md)) {
3067 /* already internally suspended, wait for internal resume */
3068 mutex_unlock(&md->suspend_lock);
3069 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3070 if (r)
3071 return r;
3072 goto retry;
3075 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3076 if (!map || !dm_table_get_size(map))
3077 goto out;
3079 r = __dm_resume(md, map);
3080 if (r)
3081 goto out;
3083 clear_bit(DMF_SUSPENDED, &md->flags);
3084 out:
3085 mutex_unlock(&md->suspend_lock);
3087 return r;
3091 * Internal suspend/resume works like userspace-driven suspend. It waits
3092 * until all bios finish and prevents issuing new bios to the target drivers.
3093 * It may be used only from the kernel.
3096 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3098 struct dm_table *map = NULL;
3100 lockdep_assert_held(&md->suspend_lock);
3102 if (md->internal_suspend_count++)
3103 return; /* nested internal suspend */
3105 if (dm_suspended_md(md)) {
3106 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3107 return; /* nest suspend */
3110 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3113 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3114 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3115 * would require changing .presuspend to return an error -- avoid this
3116 * until there is a need for more elaborate variants of internal suspend.
3118 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3119 DMF_SUSPENDED_INTERNALLY);
3121 set_bit(DMF_POST_SUSPENDING, &md->flags);
3122 dm_table_postsuspend_targets(map);
3123 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3126 static void __dm_internal_resume(struct mapped_device *md)
3128 int r;
3129 struct dm_table *map;
3131 BUG_ON(!md->internal_suspend_count);
3133 if (--md->internal_suspend_count)
3134 return; /* resume from nested internal suspend */
3136 if (dm_suspended_md(md))
3137 goto done; /* resume from nested suspend */
3139 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3140 r = __dm_resume(md, map);
3141 if (r) {
3143 * If a preresume method of some target failed, we are in a
3144 * tricky situation. We can't return an error to the caller. We
3145 * can't fake success because then the "resume" and
3146 * "postsuspend" methods would not be paired correctly, and it
3147 * would break various targets, for example it would cause list
3148 * corruption in the "origin" target.
3150 * So, we fake normal suspend here, to make sure that the
3151 * "resume" and "postsuspend" methods will be paired correctly.
3153 DMERR("Preresume method failed: %d", r);
3154 set_bit(DMF_SUSPENDED, &md->flags);
3156 done:
3157 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3158 smp_mb__after_atomic();
3159 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3162 void dm_internal_suspend_noflush(struct mapped_device *md)
3164 mutex_lock(&md->suspend_lock);
3165 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3166 mutex_unlock(&md->suspend_lock);
3168 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3170 void dm_internal_resume(struct mapped_device *md)
3172 mutex_lock(&md->suspend_lock);
3173 __dm_internal_resume(md);
3174 mutex_unlock(&md->suspend_lock);
3176 EXPORT_SYMBOL_GPL(dm_internal_resume);
3179 * Fast variants of internal suspend/resume hold md->suspend_lock,
3180 * which prevents interaction with userspace-driven suspend.
3183 void dm_internal_suspend_fast(struct mapped_device *md)
3185 mutex_lock(&md->suspend_lock);
3186 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3187 return;
3189 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3190 synchronize_srcu(&md->io_barrier);
3191 flush_workqueue(md->wq);
3192 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3194 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3196 void dm_internal_resume_fast(struct mapped_device *md)
3198 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3199 goto done;
3201 dm_queue_flush(md);
3203 done:
3204 mutex_unlock(&md->suspend_lock);
3206 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3209 *---------------------------------------------------------------
3210 * Event notification.
3211 *---------------------------------------------------------------
3213 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3214 unsigned int cookie, bool need_resize_uevent)
3216 int r;
3217 unsigned int noio_flag;
3218 char udev_cookie[DM_COOKIE_LENGTH];
3219 char *envp[3] = { NULL, NULL, NULL };
3220 char **envpp = envp;
3221 if (cookie) {
3222 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3223 DM_COOKIE_ENV_VAR_NAME, cookie);
3224 *envpp++ = udev_cookie;
3226 if (need_resize_uevent) {
3227 *envpp++ = "RESIZE=1";
3230 noio_flag = memalloc_noio_save();
3232 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3234 memalloc_noio_restore(noio_flag);
3236 return r;
3239 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3241 return atomic_add_return(1, &md->uevent_seq);
3244 uint32_t dm_get_event_nr(struct mapped_device *md)
3246 return atomic_read(&md->event_nr);
3249 int dm_wait_event(struct mapped_device *md, int event_nr)
3251 return wait_event_interruptible(md->eventq,
3252 (event_nr != atomic_read(&md->event_nr)));
3255 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3257 unsigned long flags;
3259 spin_lock_irqsave(&md->uevent_lock, flags);
3260 list_add(elist, &md->uevent_list);
3261 spin_unlock_irqrestore(&md->uevent_lock, flags);
3265 * The gendisk is only valid as long as you have a reference
3266 * count on 'md'.
3268 struct gendisk *dm_disk(struct mapped_device *md)
3270 return md->disk;
3272 EXPORT_SYMBOL_GPL(dm_disk);
3274 struct kobject *dm_kobject(struct mapped_device *md)
3276 return &md->kobj_holder.kobj;
3279 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3281 struct mapped_device *md;
3283 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3285 spin_lock(&_minor_lock);
3286 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3287 md = NULL;
3288 goto out;
3290 dm_get(md);
3291 out:
3292 spin_unlock(&_minor_lock);
3294 return md;
3297 int dm_suspended_md(struct mapped_device *md)
3299 return test_bit(DMF_SUSPENDED, &md->flags);
3302 static int dm_post_suspending_md(struct mapped_device *md)
3304 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3307 int dm_suspended_internally_md(struct mapped_device *md)
3309 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3312 int dm_test_deferred_remove_flag(struct mapped_device *md)
3314 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3317 int dm_suspended(struct dm_target *ti)
3319 return dm_suspended_md(ti->table->md);
3321 EXPORT_SYMBOL_GPL(dm_suspended);
3323 int dm_post_suspending(struct dm_target *ti)
3325 return dm_post_suspending_md(ti->table->md);
3327 EXPORT_SYMBOL_GPL(dm_post_suspending);
3329 int dm_noflush_suspending(struct dm_target *ti)
3331 return __noflush_suspending(ti->table->md);
3333 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3335 void dm_free_md_mempools(struct dm_md_mempools *pools)
3337 if (!pools)
3338 return;
3340 bioset_exit(&pools->bs);
3341 bioset_exit(&pools->io_bs);
3343 kfree(pools);
3346 struct dm_blkdev_id {
3347 u8 *id;
3348 enum blk_unique_id type;
3351 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3352 sector_t start, sector_t len, void *data)
3354 struct dm_blkdev_id *dm_id = data;
3355 const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3357 if (!fops->get_unique_id)
3358 return 0;
3360 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3364 * Allow access to get_unique_id() for the first device returning a
3365 * non-zero result. Reasonable use expects all devices to have the
3366 * same unique id.
3368 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3369 enum blk_unique_id type)
3371 struct mapped_device *md = disk->private_data;
3372 struct dm_table *table;
3373 struct dm_target *ti;
3374 int ret = 0, srcu_idx;
3376 struct dm_blkdev_id dm_id = {
3377 .id = id,
3378 .type = type,
3381 table = dm_get_live_table(md, &srcu_idx);
3382 if (!table || !dm_table_get_size(table))
3383 goto out;
3385 /* We only support devices that have a single target */
3386 if (table->num_targets != 1)
3387 goto out;
3388 ti = dm_table_get_target(table, 0);
3390 if (!ti->type->iterate_devices)
3391 goto out;
3393 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3394 out:
3395 dm_put_live_table(md, srcu_idx);
3396 return ret;
3399 struct dm_pr {
3400 u64 old_key;
3401 u64 new_key;
3402 u32 flags;
3403 bool abort;
3404 bool fail_early;
3405 int ret;
3406 enum pr_type type;
3407 struct pr_keys *read_keys;
3408 struct pr_held_reservation *rsv;
3411 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3412 struct dm_pr *pr)
3414 struct mapped_device *md = bdev->bd_disk->private_data;
3415 struct dm_table *table;
3416 struct dm_target *ti;
3417 int ret = -ENOTTY, srcu_idx;
3419 table = dm_get_live_table(md, &srcu_idx);
3420 if (!table || !dm_table_get_size(table))
3421 goto out;
3423 /* We only support devices that have a single target */
3424 if (table->num_targets != 1)
3425 goto out;
3426 ti = dm_table_get_target(table, 0);
3428 if (dm_suspended_md(md)) {
3429 ret = -EAGAIN;
3430 goto out;
3433 ret = -EINVAL;
3434 if (!ti->type->iterate_devices)
3435 goto out;
3437 ti->type->iterate_devices(ti, fn, pr);
3438 ret = 0;
3439 out:
3440 dm_put_live_table(md, srcu_idx);
3441 return ret;
3445 * For register / unregister we need to manually call out to every path.
3447 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3448 sector_t start, sector_t len, void *data)
3450 struct dm_pr *pr = data;
3451 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3452 int ret;
3454 if (!ops || !ops->pr_register) {
3455 pr->ret = -EOPNOTSUPP;
3456 return -1;
3459 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3460 if (!ret)
3461 return 0;
3463 if (!pr->ret)
3464 pr->ret = ret;
3466 if (pr->fail_early)
3467 return -1;
3469 return 0;
3472 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3473 u32 flags)
3475 struct dm_pr pr = {
3476 .old_key = old_key,
3477 .new_key = new_key,
3478 .flags = flags,
3479 .fail_early = true,
3480 .ret = 0,
3482 int ret;
3484 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3485 if (ret) {
3486 /* Didn't even get to register a path */
3487 return ret;
3490 if (!pr.ret)
3491 return 0;
3492 ret = pr.ret;
3494 if (!new_key)
3495 return ret;
3497 /* unregister all paths if we failed to register any path */
3498 pr.old_key = new_key;
3499 pr.new_key = 0;
3500 pr.flags = 0;
3501 pr.fail_early = false;
3502 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3503 return ret;
3507 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3508 sector_t start, sector_t len, void *data)
3510 struct dm_pr *pr = data;
3511 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3513 if (!ops || !ops->pr_reserve) {
3514 pr->ret = -EOPNOTSUPP;
3515 return -1;
3518 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3519 if (!pr->ret)
3520 return -1;
3522 return 0;
3525 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3526 u32 flags)
3528 struct dm_pr pr = {
3529 .old_key = key,
3530 .flags = flags,
3531 .type = type,
3532 .fail_early = false,
3533 .ret = 0,
3535 int ret;
3537 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3538 if (ret)
3539 return ret;
3541 return pr.ret;
3545 * If there is a non-All Registrants type of reservation, the release must be
3546 * sent down the holding path. For the cases where there is no reservation or
3547 * the path is not the holder the device will also return success, so we must
3548 * try each path to make sure we got the correct path.
3550 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3551 sector_t start, sector_t len, void *data)
3553 struct dm_pr *pr = data;
3554 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3556 if (!ops || !ops->pr_release) {
3557 pr->ret = -EOPNOTSUPP;
3558 return -1;
3561 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3562 if (pr->ret)
3563 return -1;
3565 return 0;
3568 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3570 struct dm_pr pr = {
3571 .old_key = key,
3572 .type = type,
3573 .fail_early = false,
3575 int ret;
3577 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3578 if (ret)
3579 return ret;
3581 return pr.ret;
3584 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3585 sector_t start, sector_t len, void *data)
3587 struct dm_pr *pr = data;
3588 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3590 if (!ops || !ops->pr_preempt) {
3591 pr->ret = -EOPNOTSUPP;
3592 return -1;
3595 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3596 pr->abort);
3597 if (!pr->ret)
3598 return -1;
3600 return 0;
3603 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3604 enum pr_type type, bool abort)
3606 struct dm_pr pr = {
3607 .new_key = new_key,
3608 .old_key = old_key,
3609 .type = type,
3610 .fail_early = false,
3612 int ret;
3614 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3615 if (ret)
3616 return ret;
3618 return pr.ret;
3621 static int dm_pr_clear(struct block_device *bdev, u64 key)
3623 struct mapped_device *md = bdev->bd_disk->private_data;
3624 const struct pr_ops *ops;
3625 int r, srcu_idx;
3627 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3628 if (r < 0)
3629 goto out;
3631 ops = bdev->bd_disk->fops->pr_ops;
3632 if (ops && ops->pr_clear)
3633 r = ops->pr_clear(bdev, key);
3634 else
3635 r = -EOPNOTSUPP;
3636 out:
3637 dm_unprepare_ioctl(md, srcu_idx);
3638 return r;
3641 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3642 sector_t start, sector_t len, void *data)
3644 struct dm_pr *pr = data;
3645 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3647 if (!ops || !ops->pr_read_keys) {
3648 pr->ret = -EOPNOTSUPP;
3649 return -1;
3652 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3653 if (!pr->ret)
3654 return -1;
3656 return 0;
3659 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3661 struct dm_pr pr = {
3662 .read_keys = keys,
3664 int ret;
3666 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3667 if (ret)
3668 return ret;
3670 return pr.ret;
3673 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3674 sector_t start, sector_t len, void *data)
3676 struct dm_pr *pr = data;
3677 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3679 if (!ops || !ops->pr_read_reservation) {
3680 pr->ret = -EOPNOTSUPP;
3681 return -1;
3684 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3685 if (!pr->ret)
3686 return -1;
3688 return 0;
3691 static int dm_pr_read_reservation(struct block_device *bdev,
3692 struct pr_held_reservation *rsv)
3694 struct dm_pr pr = {
3695 .rsv = rsv,
3697 int ret;
3699 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3700 if (ret)
3701 return ret;
3703 return pr.ret;
3706 static const struct pr_ops dm_pr_ops = {
3707 .pr_register = dm_pr_register,
3708 .pr_reserve = dm_pr_reserve,
3709 .pr_release = dm_pr_release,
3710 .pr_preempt = dm_pr_preempt,
3711 .pr_clear = dm_pr_clear,
3712 .pr_read_keys = dm_pr_read_keys,
3713 .pr_read_reservation = dm_pr_read_reservation,
3716 static const struct block_device_operations dm_blk_dops = {
3717 .submit_bio = dm_submit_bio,
3718 .poll_bio = dm_poll_bio,
3719 .open = dm_blk_open,
3720 .release = dm_blk_close,
3721 .ioctl = dm_blk_ioctl,
3722 .getgeo = dm_blk_getgeo,
3723 .report_zones = dm_blk_report_zones,
3724 .get_unique_id = dm_blk_get_unique_id,
3725 .pr_ops = &dm_pr_ops,
3726 .owner = THIS_MODULE
3729 static const struct block_device_operations dm_rq_blk_dops = {
3730 .open = dm_blk_open,
3731 .release = dm_blk_close,
3732 .ioctl = dm_blk_ioctl,
3733 .getgeo = dm_blk_getgeo,
3734 .get_unique_id = dm_blk_get_unique_id,
3735 .pr_ops = &dm_pr_ops,
3736 .owner = THIS_MODULE
3739 static const struct dax_operations dm_dax_ops = {
3740 .direct_access = dm_dax_direct_access,
3741 .zero_page_range = dm_dax_zero_page_range,
3742 .recovery_write = dm_dax_recovery_write,
3746 * module hooks
3748 module_init(dm_init);
3749 module_exit(dm_exit);
3751 module_param(major, uint, 0);
3752 MODULE_PARM_DESC(major, "The major number of the device mapper");
3754 module_param(reserved_bio_based_ios, uint, 0644);
3755 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3757 module_param(dm_numa_node, int, 0644);
3758 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3760 module_param(swap_bios, int, 0644);
3761 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3763 MODULE_DESCRIPTION(DM_NAME " driver");
3764 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3765 MODULE_LICENSE("GPL");