Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / md / persistent-data / dm-btree.c
blob0c7a2e8d18468a1dba780124dd530f9de5cefe4d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2011 Red Hat, Inc.
5 * This file is released under the GPL.
6 */
8 #include "dm-btree-internal.h"
9 #include "dm-space-map.h"
10 #include "dm-transaction-manager.h"
12 #include <linux/export.h>
13 #include <linux/device-mapper.h>
15 #define DM_MSG_PREFIX "btree"
18 *--------------------------------------------------------------
19 * Array manipulation
20 *--------------------------------------------------------------
22 static void memcpy_disk(void *dest, const void *src, size_t len)
23 __dm_written_to_disk(src)
25 memcpy(dest, src, len);
26 __dm_unbless_for_disk(src);
29 static void array_insert(void *base, size_t elt_size, unsigned int nr_elts,
30 unsigned int index, void *elt)
31 __dm_written_to_disk(elt)
33 if (index < nr_elts)
34 memmove(base + (elt_size * (index + 1)),
35 base + (elt_size * index),
36 (nr_elts - index) * elt_size);
38 memcpy_disk(base + (elt_size * index), elt, elt_size);
41 /*----------------------------------------------------------------*/
43 /* makes the assumption that no two keys are the same. */
44 static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
46 int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
48 while (hi - lo > 1) {
49 int mid = lo + ((hi - lo) / 2);
50 uint64_t mid_key = le64_to_cpu(n->keys[mid]);
52 if (mid_key == key)
53 return mid;
55 if (mid_key < key)
56 lo = mid;
57 else
58 hi = mid;
61 return want_hi ? hi : lo;
64 int lower_bound(struct btree_node *n, uint64_t key)
66 return bsearch(n, key, 0);
69 static int upper_bound(struct btree_node *n, uint64_t key)
71 return bsearch(n, key, 1);
74 void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
75 struct dm_btree_value_type *vt)
77 uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
79 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
80 dm_tm_with_runs(tm, value_ptr(n, 0), nr_entries, dm_tm_inc_range);
82 else if (vt->inc)
83 vt->inc(vt->context, value_ptr(n, 0), nr_entries);
86 static int insert_at(size_t value_size, struct btree_node *node, unsigned int index,
87 uint64_t key, void *value)
88 __dm_written_to_disk(value)
90 uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
91 uint32_t max_entries = le32_to_cpu(node->header.max_entries);
92 __le64 key_le = cpu_to_le64(key);
94 if (index > nr_entries ||
95 index >= max_entries ||
96 nr_entries >= max_entries) {
97 DMERR("too many entries in btree node for insert");
98 __dm_unbless_for_disk(value);
99 return -ENOMEM;
102 __dm_bless_for_disk(&key_le);
104 array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
105 array_insert(value_base(node), value_size, nr_entries, index, value);
106 node->header.nr_entries = cpu_to_le32(nr_entries + 1);
108 return 0;
111 /*----------------------------------------------------------------*/
114 * We want 3n entries (for some n). This works more nicely for repeated
115 * insert remove loops than (2n + 1).
117 static uint32_t calc_max_entries(size_t value_size, size_t block_size)
119 uint32_t total, n;
120 size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
122 block_size -= sizeof(struct node_header);
123 total = block_size / elt_size;
124 n = total / 3; /* rounds down */
126 return 3 * n;
129 int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
131 int r;
132 struct dm_block *b;
133 struct btree_node *n;
134 size_t block_size;
135 uint32_t max_entries;
137 r = new_block(info, &b);
138 if (r < 0)
139 return r;
141 block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
142 max_entries = calc_max_entries(info->value_type.size, block_size);
144 n = dm_block_data(b);
145 memset(n, 0, block_size);
146 n->header.flags = cpu_to_le32(LEAF_NODE);
147 n->header.nr_entries = cpu_to_le32(0);
148 n->header.max_entries = cpu_to_le32(max_entries);
149 n->header.value_size = cpu_to_le32(info->value_type.size);
151 *root = dm_block_location(b);
152 unlock_block(info, b);
154 return 0;
156 EXPORT_SYMBOL_GPL(dm_btree_empty);
158 /*----------------------------------------------------------------*/
161 * Deletion uses a recursive algorithm, since we have limited stack space
162 * we explicitly manage our own stack on the heap.
164 #define MAX_SPINE_DEPTH 64
165 struct frame {
166 struct dm_block *b;
167 struct btree_node *n;
168 unsigned int level;
169 unsigned int nr_children;
170 unsigned int current_child;
173 struct del_stack {
174 struct dm_btree_info *info;
175 struct dm_transaction_manager *tm;
176 int top;
177 struct frame spine[MAX_SPINE_DEPTH];
180 static int top_frame(struct del_stack *s, struct frame **f)
182 if (s->top < 0) {
183 DMERR("btree deletion stack empty");
184 return -EINVAL;
187 *f = s->spine + s->top;
189 return 0;
192 static int unprocessed_frames(struct del_stack *s)
194 return s->top >= 0;
197 static void prefetch_children(struct del_stack *s, struct frame *f)
199 unsigned int i;
200 struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
202 for (i = 0; i < f->nr_children; i++)
203 dm_bm_prefetch(bm, value64(f->n, i));
206 static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
208 return f->level < (info->levels - 1);
211 static int push_frame(struct del_stack *s, dm_block_t b, unsigned int level)
213 int r;
214 uint32_t ref_count;
216 if (s->top >= MAX_SPINE_DEPTH - 1) {
217 DMERR("btree deletion stack out of memory");
218 return -ENOMEM;
221 r = dm_tm_ref(s->tm, b, &ref_count);
222 if (r)
223 return r;
225 if (ref_count > 1)
227 * This is a shared node, so we can just decrement it's
228 * reference counter and leave the children.
230 dm_tm_dec(s->tm, b);
232 else {
233 uint32_t flags;
234 struct frame *f = s->spine + ++s->top;
236 r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
237 if (r) {
238 s->top--;
239 return r;
242 f->n = dm_block_data(f->b);
243 f->level = level;
244 f->nr_children = le32_to_cpu(f->n->header.nr_entries);
245 f->current_child = 0;
247 flags = le32_to_cpu(f->n->header.flags);
248 if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
249 prefetch_children(s, f);
252 return 0;
255 static void pop_frame(struct del_stack *s)
257 struct frame *f = s->spine + s->top--;
259 dm_tm_dec(s->tm, dm_block_location(f->b));
260 dm_tm_unlock(s->tm, f->b);
263 static void unlock_all_frames(struct del_stack *s)
265 struct frame *f;
267 while (unprocessed_frames(s)) {
268 f = s->spine + s->top--;
269 dm_tm_unlock(s->tm, f->b);
273 int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
275 int r;
276 struct del_stack *s;
279 * dm_btree_del() is called via an ioctl, as such should be
280 * considered an FS op. We can't recurse back into the FS, so we
281 * allocate GFP_NOFS.
283 s = kmalloc(sizeof(*s), GFP_NOFS);
284 if (!s)
285 return -ENOMEM;
286 s->info = info;
287 s->tm = info->tm;
288 s->top = -1;
290 r = push_frame(s, root, 0);
291 if (r)
292 goto out;
294 while (unprocessed_frames(s)) {
295 uint32_t flags;
296 struct frame *f;
297 dm_block_t b;
299 r = top_frame(s, &f);
300 if (r)
301 goto out;
303 if (f->current_child >= f->nr_children) {
304 pop_frame(s);
305 continue;
308 flags = le32_to_cpu(f->n->header.flags);
309 if (flags & INTERNAL_NODE) {
310 b = value64(f->n, f->current_child);
311 f->current_child++;
312 r = push_frame(s, b, f->level);
313 if (r)
314 goto out;
316 } else if (is_internal_level(info, f)) {
317 b = value64(f->n, f->current_child);
318 f->current_child++;
319 r = push_frame(s, b, f->level + 1);
320 if (r)
321 goto out;
323 } else {
324 if (info->value_type.dec)
325 info->value_type.dec(info->value_type.context,
326 value_ptr(f->n, 0), f->nr_children);
327 pop_frame(s);
330 out:
331 if (r) {
332 /* cleanup all frames of del_stack */
333 unlock_all_frames(s);
335 kfree(s);
337 return r;
339 EXPORT_SYMBOL_GPL(dm_btree_del);
341 /*----------------------------------------------------------------*/
343 static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
344 int (*search_fn)(struct btree_node *, uint64_t),
345 uint64_t *result_key, void *v, size_t value_size)
347 int i, r;
348 uint32_t flags, nr_entries;
350 do {
351 r = ro_step(s, block);
352 if (r < 0)
353 return r;
355 i = search_fn(ro_node(s), key);
357 flags = le32_to_cpu(ro_node(s)->header.flags);
358 nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
359 if (i < 0 || i >= nr_entries)
360 return -ENODATA;
362 if (flags & INTERNAL_NODE)
363 block = value64(ro_node(s), i);
365 } while (!(flags & LEAF_NODE));
367 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
368 if (v)
369 memcpy(v, value_ptr(ro_node(s), i), value_size);
371 return 0;
374 int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
375 uint64_t *keys, void *value_le)
377 unsigned int level, last_level = info->levels - 1;
378 int r = -ENODATA;
379 uint64_t rkey;
380 __le64 internal_value_le;
381 struct ro_spine spine;
383 init_ro_spine(&spine, info);
384 for (level = 0; level < info->levels; level++) {
385 size_t size;
386 void *value_p;
388 if (level == last_level) {
389 value_p = value_le;
390 size = info->value_type.size;
392 } else {
393 value_p = &internal_value_le;
394 size = sizeof(uint64_t);
397 r = btree_lookup_raw(&spine, root, keys[level],
398 lower_bound, &rkey,
399 value_p, size);
401 if (!r) {
402 if (rkey != keys[level]) {
403 exit_ro_spine(&spine);
404 return -ENODATA;
406 } else {
407 exit_ro_spine(&spine);
408 return r;
411 root = le64_to_cpu(internal_value_le);
413 exit_ro_spine(&spine);
415 return r;
417 EXPORT_SYMBOL_GPL(dm_btree_lookup);
419 static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
420 uint64_t key, uint64_t *rkey, void *value_le)
422 int r, i;
423 uint32_t flags, nr_entries;
424 struct dm_block *node;
425 struct btree_node *n;
427 r = bn_read_lock(info, root, &node);
428 if (r)
429 return r;
431 n = dm_block_data(node);
432 flags = le32_to_cpu(n->header.flags);
433 nr_entries = le32_to_cpu(n->header.nr_entries);
435 if (flags & INTERNAL_NODE) {
436 i = lower_bound(n, key);
437 if (i < 0) {
439 * avoid early -ENODATA return when all entries are
440 * higher than the search @key.
442 i = 0;
444 if (i >= nr_entries) {
445 r = -ENODATA;
446 goto out;
449 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
450 if (r == -ENODATA && i < (nr_entries - 1)) {
451 i++;
452 r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
455 } else {
456 i = upper_bound(n, key);
457 if (i < 0 || i >= nr_entries) {
458 r = -ENODATA;
459 goto out;
462 *rkey = le64_to_cpu(n->keys[i]);
463 memcpy(value_le, value_ptr(n, i), info->value_type.size);
465 out:
466 dm_tm_unlock(info->tm, node);
467 return r;
470 int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
471 uint64_t *keys, uint64_t *rkey, void *value_le)
473 unsigned int level;
474 int r = -ENODATA;
475 __le64 internal_value_le;
476 struct ro_spine spine;
478 init_ro_spine(&spine, info);
479 for (level = 0; level < info->levels - 1u; level++) {
480 r = btree_lookup_raw(&spine, root, keys[level],
481 lower_bound, rkey,
482 &internal_value_le, sizeof(uint64_t));
483 if (r)
484 goto out;
486 if (*rkey != keys[level]) {
487 r = -ENODATA;
488 goto out;
491 root = le64_to_cpu(internal_value_le);
494 r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
495 out:
496 exit_ro_spine(&spine);
497 return r;
499 EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
501 /*----------------------------------------------------------------*/
504 * Copies entries from one region of a btree node to another. The regions
505 * must not overlap.
507 static void copy_entries(struct btree_node *dest, unsigned int dest_offset,
508 struct btree_node *src, unsigned int src_offset,
509 unsigned int count)
511 size_t value_size = le32_to_cpu(dest->header.value_size);
513 memcpy(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
514 memcpy(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
518 * Moves entries from one region fo a btree node to another. The regions
519 * may overlap.
521 static void move_entries(struct btree_node *dest, unsigned int dest_offset,
522 struct btree_node *src, unsigned int src_offset,
523 unsigned int count)
525 size_t value_size = le32_to_cpu(dest->header.value_size);
527 memmove(dest->keys + dest_offset, src->keys + src_offset, count * sizeof(uint64_t));
528 memmove(value_ptr(dest, dest_offset), value_ptr(src, src_offset), count * value_size);
532 * Erases the first 'count' entries of a btree node, shifting following
533 * entries down into their place.
535 static void shift_down(struct btree_node *n, unsigned int count)
537 move_entries(n, 0, n, count, le32_to_cpu(n->header.nr_entries) - count);
541 * Moves entries in a btree node up 'count' places, making space for
542 * new entries at the start of the node.
544 static void shift_up(struct btree_node *n, unsigned int count)
546 move_entries(n, count, n, 0, le32_to_cpu(n->header.nr_entries));
550 * Redistributes entries between two btree nodes to make them
551 * have similar numbers of entries.
553 static void redistribute2(struct btree_node *left, struct btree_node *right)
555 unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
556 unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
557 unsigned int total = nr_left + nr_right;
558 unsigned int target_left = total / 2;
559 unsigned int target_right = total - target_left;
561 if (nr_left < target_left) {
562 unsigned int delta = target_left - nr_left;
564 copy_entries(left, nr_left, right, 0, delta);
565 shift_down(right, delta);
566 } else if (nr_left > target_left) {
567 unsigned int delta = nr_left - target_left;
569 if (nr_right)
570 shift_up(right, delta);
571 copy_entries(right, 0, left, target_left, delta);
574 left->header.nr_entries = cpu_to_le32(target_left);
575 right->header.nr_entries = cpu_to_le32(target_right);
579 * Redistribute entries between three nodes. Assumes the central
580 * node is empty.
582 static void redistribute3(struct btree_node *left, struct btree_node *center,
583 struct btree_node *right)
585 unsigned int nr_left = le32_to_cpu(left->header.nr_entries);
586 unsigned int nr_center = le32_to_cpu(center->header.nr_entries);
587 unsigned int nr_right = le32_to_cpu(right->header.nr_entries);
588 unsigned int total, target_left, target_center, target_right;
590 BUG_ON(nr_center);
592 total = nr_left + nr_right;
593 target_left = total / 3;
594 target_center = (total - target_left) / 2;
595 target_right = (total - target_left - target_center);
597 if (nr_left < target_left) {
598 unsigned int left_short = target_left - nr_left;
600 copy_entries(left, nr_left, right, 0, left_short);
601 copy_entries(center, 0, right, left_short, target_center);
602 shift_down(right, nr_right - target_right);
604 } else if (nr_left < (target_left + target_center)) {
605 unsigned int left_to_center = nr_left - target_left;
607 copy_entries(center, 0, left, target_left, left_to_center);
608 copy_entries(center, left_to_center, right, 0, target_center - left_to_center);
609 shift_down(right, nr_right - target_right);
611 } else {
612 unsigned int right_short = target_right - nr_right;
614 shift_up(right, right_short);
615 copy_entries(right, 0, left, nr_left - right_short, right_short);
616 copy_entries(center, 0, left, target_left, nr_left - target_left);
619 left->header.nr_entries = cpu_to_le32(target_left);
620 center->header.nr_entries = cpu_to_le32(target_center);
621 right->header.nr_entries = cpu_to_le32(target_right);
625 * Splits a node by creating a sibling node and shifting half the nodes
626 * contents across. Assumes there is a parent node, and it has room for
627 * another child.
629 * Before:
630 * +--------+
631 * | Parent |
632 * +--------+
635 * +----------+
636 * | A ++++++ |
637 * +----------+
640 * After:
641 * +--------+
642 * | Parent |
643 * +--------+
644 * | |
645 * v +------+
646 * +---------+ |
647 * | A* +++ | v
648 * +---------+ +-------+
649 * | B +++ |
650 * +-------+
652 * Where A* is a shadow of A.
654 static int split_one_into_two(struct shadow_spine *s, unsigned int parent_index,
655 struct dm_btree_value_type *vt, uint64_t key)
657 int r;
658 struct dm_block *left, *right, *parent;
659 struct btree_node *ln, *rn, *pn;
660 __le64 location;
662 left = shadow_current(s);
664 r = new_block(s->info, &right);
665 if (r < 0)
666 return r;
668 ln = dm_block_data(left);
669 rn = dm_block_data(right);
671 rn->header.flags = ln->header.flags;
672 rn->header.nr_entries = cpu_to_le32(0);
673 rn->header.max_entries = ln->header.max_entries;
674 rn->header.value_size = ln->header.value_size;
675 redistribute2(ln, rn);
677 /* patch up the parent */
678 parent = shadow_parent(s);
679 pn = dm_block_data(parent);
681 location = cpu_to_le64(dm_block_location(right));
682 __dm_bless_for_disk(&location);
683 r = insert_at(sizeof(__le64), pn, parent_index + 1,
684 le64_to_cpu(rn->keys[0]), &location);
685 if (r) {
686 unlock_block(s->info, right);
687 return r;
690 /* patch up the spine */
691 if (key < le64_to_cpu(rn->keys[0])) {
692 unlock_block(s->info, right);
693 s->nodes[1] = left;
694 } else {
695 unlock_block(s->info, left);
696 s->nodes[1] = right;
699 return 0;
703 * We often need to modify a sibling node. This function shadows a particular
704 * child of the given parent node. Making sure to update the parent to point
705 * to the new shadow.
707 static int shadow_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
708 struct btree_node *parent, unsigned int index,
709 struct dm_block **result)
711 int r, inc;
712 dm_block_t root;
713 struct btree_node *node;
715 root = value64(parent, index);
717 r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
718 result, &inc);
719 if (r)
720 return r;
722 node = dm_block_data(*result);
724 if (inc)
725 inc_children(info->tm, node, vt);
727 *((__le64 *) value_ptr(parent, index)) =
728 cpu_to_le64(dm_block_location(*result));
730 return 0;
734 * Splits two nodes into three. This is more work, but results in fuller
735 * nodes, so saves metadata space.
737 static int split_two_into_three(struct shadow_spine *s, unsigned int parent_index,
738 struct dm_btree_value_type *vt, uint64_t key)
740 int r;
741 unsigned int middle_index;
742 struct dm_block *left, *middle, *right, *parent;
743 struct btree_node *ln, *rn, *mn, *pn;
744 __le64 location;
746 parent = shadow_parent(s);
747 pn = dm_block_data(parent);
749 if (parent_index == 0) {
750 middle_index = 1;
751 left = shadow_current(s);
752 r = shadow_child(s->info, vt, pn, parent_index + 1, &right);
753 if (r)
754 return r;
755 } else {
756 middle_index = parent_index;
757 right = shadow_current(s);
758 r = shadow_child(s->info, vt, pn, parent_index - 1, &left);
759 if (r)
760 return r;
763 r = new_block(s->info, &middle);
764 if (r < 0)
765 return r;
767 ln = dm_block_data(left);
768 mn = dm_block_data(middle);
769 rn = dm_block_data(right);
771 mn->header.nr_entries = cpu_to_le32(0);
772 mn->header.flags = ln->header.flags;
773 mn->header.max_entries = ln->header.max_entries;
774 mn->header.value_size = ln->header.value_size;
776 redistribute3(ln, mn, rn);
778 /* patch up the parent */
779 pn->keys[middle_index] = rn->keys[0];
780 location = cpu_to_le64(dm_block_location(middle));
781 __dm_bless_for_disk(&location);
782 r = insert_at(sizeof(__le64), pn, middle_index,
783 le64_to_cpu(mn->keys[0]), &location);
784 if (r) {
785 if (shadow_current(s) != left)
786 unlock_block(s->info, left);
788 unlock_block(s->info, middle);
790 if (shadow_current(s) != right)
791 unlock_block(s->info, right);
793 return r;
797 /* patch up the spine */
798 if (key < le64_to_cpu(mn->keys[0])) {
799 unlock_block(s->info, middle);
800 unlock_block(s->info, right);
801 s->nodes[1] = left;
802 } else if (key < le64_to_cpu(rn->keys[0])) {
803 unlock_block(s->info, left);
804 unlock_block(s->info, right);
805 s->nodes[1] = middle;
806 } else {
807 unlock_block(s->info, left);
808 unlock_block(s->info, middle);
809 s->nodes[1] = right;
812 return 0;
815 /*----------------------------------------------------------------*/
818 * Splits a node by creating two new children beneath the given node.
820 * Before:
821 * +----------+
822 * | A ++++++ |
823 * +----------+
826 * After:
827 * +------------+
828 * | A (shadow) |
829 * +------------+
830 * | |
831 * +------+ +----+
832 * | |
833 * v v
834 * +-------+ +-------+
835 * | B +++ | | C +++ |
836 * +-------+ +-------+
838 static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
840 int r;
841 size_t size;
842 unsigned int nr_left, nr_right;
843 struct dm_block *left, *right, *new_parent;
844 struct btree_node *pn, *ln, *rn;
845 __le64 val;
847 new_parent = shadow_current(s);
849 pn = dm_block_data(new_parent);
850 size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
851 sizeof(__le64) : s->info->value_type.size;
853 /* create & init the left block */
854 r = new_block(s->info, &left);
855 if (r < 0)
856 return r;
858 ln = dm_block_data(left);
859 nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
861 ln->header.flags = pn->header.flags;
862 ln->header.nr_entries = cpu_to_le32(nr_left);
863 ln->header.max_entries = pn->header.max_entries;
864 ln->header.value_size = pn->header.value_size;
865 memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
866 memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
868 /* create & init the right block */
869 r = new_block(s->info, &right);
870 if (r < 0) {
871 unlock_block(s->info, left);
872 return r;
875 rn = dm_block_data(right);
876 nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
878 rn->header.flags = pn->header.flags;
879 rn->header.nr_entries = cpu_to_le32(nr_right);
880 rn->header.max_entries = pn->header.max_entries;
881 rn->header.value_size = pn->header.value_size;
882 memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
883 memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
884 nr_right * size);
886 /* new_parent should just point to l and r now */
887 pn->header.flags = cpu_to_le32(INTERNAL_NODE);
888 pn->header.nr_entries = cpu_to_le32(2);
889 pn->header.max_entries = cpu_to_le32(
890 calc_max_entries(sizeof(__le64),
891 dm_bm_block_size(
892 dm_tm_get_bm(s->info->tm))));
893 pn->header.value_size = cpu_to_le32(sizeof(__le64));
895 val = cpu_to_le64(dm_block_location(left));
896 __dm_bless_for_disk(&val);
897 pn->keys[0] = ln->keys[0];
898 memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
900 val = cpu_to_le64(dm_block_location(right));
901 __dm_bless_for_disk(&val);
902 pn->keys[1] = rn->keys[0];
903 memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
905 unlock_block(s->info, left);
906 unlock_block(s->info, right);
907 return 0;
910 /*----------------------------------------------------------------*/
913 * Redistributes a node's entries with its left sibling.
915 static int rebalance_left(struct shadow_spine *s, struct dm_btree_value_type *vt,
916 unsigned int parent_index, uint64_t key)
918 int r;
919 struct dm_block *sib;
920 struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
922 r = shadow_child(s->info, vt, parent, parent_index - 1, &sib);
923 if (r)
924 return r;
926 left = dm_block_data(sib);
927 right = dm_block_data(shadow_current(s));
928 redistribute2(left, right);
929 *key_ptr(parent, parent_index) = right->keys[0];
931 if (key < le64_to_cpu(right->keys[0])) {
932 unlock_block(s->info, s->nodes[1]);
933 s->nodes[1] = sib;
934 } else {
935 unlock_block(s->info, sib);
938 return 0;
942 * Redistributes a nodes entries with its right sibling.
944 static int rebalance_right(struct shadow_spine *s, struct dm_btree_value_type *vt,
945 unsigned int parent_index, uint64_t key)
947 int r;
948 struct dm_block *sib;
949 struct btree_node *left, *right, *parent = dm_block_data(shadow_parent(s));
951 r = shadow_child(s->info, vt, parent, parent_index + 1, &sib);
952 if (r)
953 return r;
955 left = dm_block_data(shadow_current(s));
956 right = dm_block_data(sib);
957 redistribute2(left, right);
958 *key_ptr(parent, parent_index + 1) = right->keys[0];
960 if (key < le64_to_cpu(right->keys[0])) {
961 unlock_block(s->info, sib);
962 } else {
963 unlock_block(s->info, s->nodes[1]);
964 s->nodes[1] = sib;
967 return 0;
971 * Returns the number of spare entries in a node.
973 static int get_node_free_space(struct dm_btree_info *info, dm_block_t b, unsigned int *space)
975 int r;
976 unsigned int nr_entries;
977 struct dm_block *block;
978 struct btree_node *node;
980 r = bn_read_lock(info, b, &block);
981 if (r)
982 return r;
984 node = dm_block_data(block);
985 nr_entries = le32_to_cpu(node->header.nr_entries);
986 *space = le32_to_cpu(node->header.max_entries) - nr_entries;
988 unlock_block(info, block);
989 return 0;
993 * Make space in a node, either by moving some entries to a sibling,
994 * or creating a new sibling node. SPACE_THRESHOLD defines the minimum
995 * number of free entries that must be in the sibling to make the move
996 * worth while. If the siblings are shared (eg, part of a snapshot),
997 * then they are not touched, since this break sharing and so consume
998 * more space than we save.
1000 #define SPACE_THRESHOLD 8
1001 static int rebalance_or_split(struct shadow_spine *s, struct dm_btree_value_type *vt,
1002 unsigned int parent_index, uint64_t key)
1004 int r;
1005 struct btree_node *parent = dm_block_data(shadow_parent(s));
1006 unsigned int nr_parent = le32_to_cpu(parent->header.nr_entries);
1007 unsigned int free_space;
1008 int left_shared = 0, right_shared = 0;
1010 /* Should we move entries to the left sibling? */
1011 if (parent_index > 0) {
1012 dm_block_t left_b = value64(parent, parent_index - 1);
1014 r = dm_tm_block_is_shared(s->info->tm, left_b, &left_shared);
1015 if (r)
1016 return r;
1018 if (!left_shared) {
1019 r = get_node_free_space(s->info, left_b, &free_space);
1020 if (r)
1021 return r;
1023 if (free_space >= SPACE_THRESHOLD)
1024 return rebalance_left(s, vt, parent_index, key);
1028 /* Should we move entries to the right sibling? */
1029 if (parent_index < (nr_parent - 1)) {
1030 dm_block_t right_b = value64(parent, parent_index + 1);
1032 r = dm_tm_block_is_shared(s->info->tm, right_b, &right_shared);
1033 if (r)
1034 return r;
1036 if (!right_shared) {
1037 r = get_node_free_space(s->info, right_b, &free_space);
1038 if (r)
1039 return r;
1041 if (free_space >= SPACE_THRESHOLD)
1042 return rebalance_right(s, vt, parent_index, key);
1047 * We need to split the node, normally we split two nodes
1048 * into three. But when inserting a sequence that is either
1049 * monotonically increasing or decreasing it's better to split
1050 * a single node into two.
1052 if (left_shared || right_shared || (nr_parent <= 2) ||
1053 (parent_index == 0) || (parent_index + 1 == nr_parent)) {
1054 return split_one_into_two(s, parent_index, vt, key);
1055 } else {
1056 return split_two_into_three(s, parent_index, vt, key);
1061 * Does the node contain a particular key?
1063 static bool contains_key(struct btree_node *node, uint64_t key)
1065 int i = lower_bound(node, key);
1067 if (i >= 0 && le64_to_cpu(node->keys[i]) == key)
1068 return true;
1070 return false;
1074 * In general we preemptively make sure there's a free entry in every
1075 * node on the spine when doing an insert. But we can avoid that with
1076 * leaf nodes if we know it's an overwrite.
1078 static bool has_space_for_insert(struct btree_node *node, uint64_t key)
1080 if (node->header.nr_entries == node->header.max_entries) {
1081 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1082 /* we don't need space if it's an overwrite */
1083 return contains_key(node, key);
1086 return false;
1089 return true;
1092 static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
1093 struct dm_btree_value_type *vt,
1094 uint64_t key, unsigned int *index)
1096 int r, i = *index, top = 1;
1097 struct btree_node *node;
1099 for (;;) {
1100 r = shadow_step(s, root, vt);
1101 if (r < 0)
1102 return r;
1104 node = dm_block_data(shadow_current(s));
1107 * We have to patch up the parent node, ugly, but I don't
1108 * see a way to do this automatically as part of the spine
1109 * op.
1111 if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
1112 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1114 __dm_bless_for_disk(&location);
1115 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1116 &location, sizeof(__le64));
1119 node = dm_block_data(shadow_current(s));
1121 if (!has_space_for_insert(node, key)) {
1122 if (top)
1123 r = btree_split_beneath(s, key);
1124 else
1125 r = rebalance_or_split(s, vt, i, key);
1127 if (r < 0)
1128 return r;
1130 /* making space can cause the current node to change */
1131 node = dm_block_data(shadow_current(s));
1134 i = lower_bound(node, key);
1136 if (le32_to_cpu(node->header.flags) & LEAF_NODE)
1137 break;
1139 if (i < 0) {
1140 /* change the bounds on the lowest key */
1141 node->keys[0] = cpu_to_le64(key);
1142 i = 0;
1145 root = value64(node, i);
1146 top = 0;
1149 if (i < 0 || le64_to_cpu(node->keys[i]) != key)
1150 i++;
1152 *index = i;
1153 return 0;
1156 static int __btree_get_overwrite_leaf(struct shadow_spine *s, dm_block_t root,
1157 uint64_t key, int *index)
1159 int r, i = -1;
1160 struct btree_node *node;
1162 *index = 0;
1163 for (;;) {
1164 r = shadow_step(s, root, &s->info->value_type);
1165 if (r < 0)
1166 return r;
1168 node = dm_block_data(shadow_current(s));
1171 * We have to patch up the parent node, ugly, but I don't
1172 * see a way to do this automatically as part of the spine
1173 * op.
1175 if (shadow_has_parent(s) && i >= 0) {
1176 __le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
1178 __dm_bless_for_disk(&location);
1179 memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
1180 &location, sizeof(__le64));
1183 node = dm_block_data(shadow_current(s));
1184 i = lower_bound(node, key);
1186 BUG_ON(i < 0);
1187 BUG_ON(i >= le32_to_cpu(node->header.nr_entries));
1189 if (le32_to_cpu(node->header.flags) & LEAF_NODE) {
1190 if (key != le64_to_cpu(node->keys[i]))
1191 return -EINVAL;
1192 break;
1195 root = value64(node, i);
1198 *index = i;
1199 return 0;
1202 int btree_get_overwrite_leaf(struct dm_btree_info *info, dm_block_t root,
1203 uint64_t key, int *index,
1204 dm_block_t *new_root, struct dm_block **leaf)
1206 int r;
1207 struct shadow_spine spine;
1209 BUG_ON(info->levels > 1);
1210 init_shadow_spine(&spine, info);
1211 r = __btree_get_overwrite_leaf(&spine, root, key, index);
1212 if (!r) {
1213 *new_root = shadow_root(&spine);
1214 *leaf = shadow_current(&spine);
1217 * Decrement the count so exit_shadow_spine() doesn't
1218 * unlock the leaf.
1220 spine.count--;
1222 exit_shadow_spine(&spine);
1224 return r;
1227 static bool need_insert(struct btree_node *node, uint64_t *keys,
1228 unsigned int level, unsigned int index)
1230 return ((index >= le32_to_cpu(node->header.nr_entries)) ||
1231 (le64_to_cpu(node->keys[index]) != keys[level]));
1234 static int insert(struct dm_btree_info *info, dm_block_t root,
1235 uint64_t *keys, void *value, dm_block_t *new_root,
1236 int *inserted)
1237 __dm_written_to_disk(value)
1239 int r;
1240 unsigned int level, index = -1, last_level = info->levels - 1;
1241 dm_block_t block = root;
1242 struct shadow_spine spine;
1243 struct btree_node *n;
1244 struct dm_btree_value_type le64_type;
1246 init_le64_type(info->tm, &le64_type);
1247 init_shadow_spine(&spine, info);
1249 for (level = 0; level < (info->levels - 1); level++) {
1250 r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
1251 if (r < 0)
1252 goto bad;
1254 n = dm_block_data(shadow_current(&spine));
1256 if (need_insert(n, keys, level, index)) {
1257 dm_block_t new_tree;
1258 __le64 new_le;
1260 r = dm_btree_empty(info, &new_tree);
1261 if (r < 0)
1262 goto bad;
1264 new_le = cpu_to_le64(new_tree);
1265 __dm_bless_for_disk(&new_le);
1267 r = insert_at(sizeof(uint64_t), n, index,
1268 keys[level], &new_le);
1269 if (r)
1270 goto bad;
1273 if (level < last_level)
1274 block = value64(n, index);
1277 r = btree_insert_raw(&spine, block, &info->value_type,
1278 keys[level], &index);
1279 if (r < 0)
1280 goto bad;
1282 n = dm_block_data(shadow_current(&spine));
1284 if (need_insert(n, keys, level, index)) {
1285 if (inserted)
1286 *inserted = 1;
1288 r = insert_at(info->value_type.size, n, index,
1289 keys[level], value);
1290 if (r)
1291 goto bad_unblessed;
1292 } else {
1293 if (inserted)
1294 *inserted = 0;
1296 if (info->value_type.dec &&
1297 (!info->value_type.equal ||
1298 !info->value_type.equal(
1299 info->value_type.context,
1300 value_ptr(n, index),
1301 value))) {
1302 info->value_type.dec(info->value_type.context,
1303 value_ptr(n, index), 1);
1305 memcpy_disk(value_ptr(n, index),
1306 value, info->value_type.size);
1309 *new_root = shadow_root(&spine);
1310 exit_shadow_spine(&spine);
1312 return 0;
1314 bad:
1315 __dm_unbless_for_disk(value);
1316 bad_unblessed:
1317 exit_shadow_spine(&spine);
1318 return r;
1321 int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
1322 uint64_t *keys, void *value, dm_block_t *new_root)
1323 __dm_written_to_disk(value)
1325 return insert(info, root, keys, value, new_root, NULL);
1327 EXPORT_SYMBOL_GPL(dm_btree_insert);
1329 int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
1330 uint64_t *keys, void *value, dm_block_t *new_root,
1331 int *inserted)
1332 __dm_written_to_disk(value)
1334 return insert(info, root, keys, value, new_root, inserted);
1336 EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
1338 /*----------------------------------------------------------------*/
1340 static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
1341 uint64_t *result_key, dm_block_t *next_block)
1343 int i, r;
1344 uint32_t flags;
1346 do {
1347 r = ro_step(s, block);
1348 if (r < 0)
1349 return r;
1351 flags = le32_to_cpu(ro_node(s)->header.flags);
1352 i = le32_to_cpu(ro_node(s)->header.nr_entries);
1353 if (!i)
1354 return -ENODATA;
1356 i--;
1358 if (find_highest)
1359 *result_key = le64_to_cpu(ro_node(s)->keys[i]);
1360 else
1361 *result_key = le64_to_cpu(ro_node(s)->keys[0]);
1363 if (next_block || flags & INTERNAL_NODE) {
1364 if (find_highest)
1365 block = value64(ro_node(s), i);
1366 else
1367 block = value64(ro_node(s), 0);
1370 } while (flags & INTERNAL_NODE);
1372 if (next_block)
1373 *next_block = block;
1374 return 0;
1377 static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
1378 bool find_highest, uint64_t *result_keys)
1380 int r = 0, count = 0, level;
1381 struct ro_spine spine;
1383 init_ro_spine(&spine, info);
1384 for (level = 0; level < info->levels; level++) {
1385 r = find_key(&spine, root, find_highest, result_keys + level,
1386 level == info->levels - 1 ? NULL : &root);
1387 if (r == -ENODATA) {
1388 r = 0;
1389 break;
1391 } else if (r)
1392 break;
1394 count++;
1396 exit_ro_spine(&spine);
1398 return r ? r : count;
1401 int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
1402 uint64_t *result_keys)
1404 return dm_btree_find_key(info, root, true, result_keys);
1406 EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
1408 int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
1409 uint64_t *result_keys)
1411 return dm_btree_find_key(info, root, false, result_keys);
1413 EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
1415 /*----------------------------------------------------------------*/
1418 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
1419 * space. Also this only works for single level trees.
1421 static int walk_node(struct dm_btree_info *info, dm_block_t block,
1422 int (*fn)(void *context, uint64_t *keys, void *leaf),
1423 void *context)
1425 int r;
1426 unsigned int i, nr;
1427 struct dm_block *node;
1428 struct btree_node *n;
1429 uint64_t keys;
1431 r = bn_read_lock(info, block, &node);
1432 if (r)
1433 return r;
1435 n = dm_block_data(node);
1437 nr = le32_to_cpu(n->header.nr_entries);
1438 for (i = 0; i < nr; i++) {
1439 if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
1440 r = walk_node(info, value64(n, i), fn, context);
1441 if (r)
1442 goto out;
1443 } else {
1444 keys = le64_to_cpu(*key_ptr(n, i));
1445 r = fn(context, &keys, value_ptr(n, i));
1446 if (r)
1447 goto out;
1451 out:
1452 dm_tm_unlock(info->tm, node);
1453 return r;
1456 int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
1457 int (*fn)(void *context, uint64_t *keys, void *leaf),
1458 void *context)
1460 BUG_ON(info->levels > 1);
1461 return walk_node(info, root, fn, context);
1463 EXPORT_SYMBOL_GPL(dm_btree_walk);
1465 /*----------------------------------------------------------------*/
1467 static void prefetch_values(struct dm_btree_cursor *c)
1469 unsigned int i, nr;
1470 __le64 value_le;
1471 struct cursor_node *n = c->nodes + c->depth - 1;
1472 struct btree_node *bn = dm_block_data(n->b);
1473 struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1475 BUG_ON(c->info->value_type.size != sizeof(value_le));
1477 nr = le32_to_cpu(bn->header.nr_entries);
1478 for (i = 0; i < nr; i++) {
1479 memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1480 dm_bm_prefetch(bm, le64_to_cpu(value_le));
1484 static bool leaf_node(struct dm_btree_cursor *c)
1486 struct cursor_node *n = c->nodes + c->depth - 1;
1487 struct btree_node *bn = dm_block_data(n->b);
1489 return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1492 static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1494 int r;
1495 struct cursor_node *n = c->nodes + c->depth;
1497 if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1498 DMERR("couldn't push cursor node, stack depth too high");
1499 return -EINVAL;
1502 r = bn_read_lock(c->info, b, &n->b);
1503 if (r)
1504 return r;
1506 n->index = 0;
1507 c->depth++;
1509 if (c->prefetch_leaves || !leaf_node(c))
1510 prefetch_values(c);
1512 return 0;
1515 static void pop_node(struct dm_btree_cursor *c)
1517 c->depth--;
1518 unlock_block(c->info, c->nodes[c->depth].b);
1521 static int inc_or_backtrack(struct dm_btree_cursor *c)
1523 struct cursor_node *n;
1524 struct btree_node *bn;
1526 for (;;) {
1527 if (!c->depth)
1528 return -ENODATA;
1530 n = c->nodes + c->depth - 1;
1531 bn = dm_block_data(n->b);
1533 n->index++;
1534 if (n->index < le32_to_cpu(bn->header.nr_entries))
1535 break;
1537 pop_node(c);
1540 return 0;
1543 static int find_leaf(struct dm_btree_cursor *c)
1545 int r = 0;
1546 struct cursor_node *n;
1547 struct btree_node *bn;
1548 __le64 value_le;
1550 for (;;) {
1551 n = c->nodes + c->depth - 1;
1552 bn = dm_block_data(n->b);
1554 if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1555 break;
1557 memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1558 r = push_node(c, le64_to_cpu(value_le));
1559 if (r) {
1560 DMERR("push_node failed");
1561 break;
1565 if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1566 return -ENODATA;
1568 return r;
1571 int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1572 bool prefetch_leaves, struct dm_btree_cursor *c)
1574 int r;
1576 c->info = info;
1577 c->root = root;
1578 c->depth = 0;
1579 c->prefetch_leaves = prefetch_leaves;
1581 r = push_node(c, root);
1582 if (r)
1583 return r;
1585 return find_leaf(c);
1587 EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1589 void dm_btree_cursor_end(struct dm_btree_cursor *c)
1591 while (c->depth)
1592 pop_node(c);
1594 EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1596 int dm_btree_cursor_next(struct dm_btree_cursor *c)
1598 int r = inc_or_backtrack(c);
1600 if (!r) {
1601 r = find_leaf(c);
1602 if (r)
1603 DMERR("find_leaf failed");
1606 return r;
1608 EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1610 int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1612 int r = 0;
1614 while (count-- && !r)
1615 r = dm_btree_cursor_next(c);
1617 return r;
1619 EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1621 int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1623 if (c->depth) {
1624 struct cursor_node *n = c->nodes + c->depth - 1;
1625 struct btree_node *bn = dm_block_data(n->b);
1627 if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1628 return -EINVAL;
1630 *key = le64_to_cpu(*key_ptr(bn, n->index));
1631 memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1632 return 0;
1634 } else
1635 return -ENODATA;
1637 EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);