Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / md / raid10.c
blob7d7a8a2524dcab91c7d84bb9af49d827fd370122
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * raid10.c : Multiple Devices driver for Linux
5 * Copyright (C) 2000-2004 Neil Brown
7 * RAID-10 support for md.
9 * Base on code in raid1.c. See raid1.c for further copyright information.
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/blkdev.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/ratelimit.h>
18 #include <linux/kthread.h>
19 #include <linux/raid/md_p.h>
20 #include <trace/events/block.h>
21 #include "md.h"
23 #define RAID_1_10_NAME "raid10"
24 #include "raid10.h"
25 #include "raid0.h"
26 #include "md-bitmap.h"
29 * RAID10 provides a combination of RAID0 and RAID1 functionality.
30 * The layout of data is defined by
31 * chunk_size
32 * raid_disks
33 * near_copies (stored in low byte of layout)
34 * far_copies (stored in second byte of layout)
35 * far_offset (stored in bit 16 of layout )
36 * use_far_sets (stored in bit 17 of layout )
37 * use_far_sets_bugfixed (stored in bit 18 of layout )
39 * The data to be stored is divided into chunks using chunksize. Each device
40 * is divided into far_copies sections. In each section, chunks are laid out
41 * in a style similar to raid0, but near_copies copies of each chunk is stored
42 * (each on a different drive). The starting device for each section is offset
43 * near_copies from the starting device of the previous section. Thus there
44 * are (near_copies * far_copies) of each chunk, and each is on a different
45 * drive. near_copies and far_copies must be at least one, and their product
46 * is at most raid_disks.
48 * If far_offset is true, then the far_copies are handled a bit differently.
49 * The copies are still in different stripes, but instead of being very far
50 * apart on disk, there are adjacent stripes.
52 * The far and offset algorithms are handled slightly differently if
53 * 'use_far_sets' is true. In this case, the array's devices are grouped into
54 * sets that are (near_copies * far_copies) in size. The far copied stripes
55 * are still shifted by 'near_copies' devices, but this shifting stays confined
56 * to the set rather than the entire array. This is done to improve the number
57 * of device combinations that can fail without causing the array to fail.
58 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
59 * on a device):
60 * A B C D A B C D E
61 * ... ...
62 * D A B C E A B C D
63 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
64 * [A B] [C D] [A B] [C D E]
65 * |...| |...| |...| | ... |
66 * [B A] [D C] [B A] [E C D]
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int _enough(struct r10conf *conf, int previous, int ignore);
72 static int enough(struct r10conf *conf, int ignore);
73 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
74 int *skipped);
75 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
76 static void end_reshape_write(struct bio *bio);
77 static void end_reshape(struct r10conf *conf);
79 #include "raid1-10.c"
81 #define NULL_CMD
82 #define cmd_before(conf, cmd) \
83 do { \
84 write_sequnlock_irq(&(conf)->resync_lock); \
85 cmd; \
86 } while (0)
87 #define cmd_after(conf) write_seqlock_irq(&(conf)->resync_lock)
89 #define wait_event_barrier_cmd(conf, cond, cmd) \
90 wait_event_cmd((conf)->wait_barrier, cond, cmd_before(conf, cmd), \
91 cmd_after(conf))
93 #define wait_event_barrier(conf, cond) \
94 wait_event_barrier_cmd(conf, cond, NULL_CMD)
97 * for resync bio, r10bio pointer can be retrieved from the per-bio
98 * 'struct resync_pages'.
100 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
102 return get_resync_pages(bio)->raid_bio;
105 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
107 struct r10conf *conf = data;
108 int size = offsetof(struct r10bio, devs[conf->geo.raid_disks]);
110 /* allocate a r10bio with room for raid_disks entries in the
111 * bios array */
112 return kzalloc(size, gfp_flags);
115 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
116 /* amount of memory to reserve for resync requests */
117 #define RESYNC_WINDOW (1024*1024)
118 /* maximum number of concurrent requests, memory permitting */
119 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
120 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
124 * When performing a resync, we need to read and compare, so
125 * we need as many pages are there are copies.
126 * When performing a recovery, we need 2 bios, one for read,
127 * one for write (we recover only one drive per r10buf)
130 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
132 struct r10conf *conf = data;
133 struct r10bio *r10_bio;
134 struct bio *bio;
135 int j;
136 int nalloc, nalloc_rp;
137 struct resync_pages *rps;
139 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
140 if (!r10_bio)
141 return NULL;
143 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
144 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
145 nalloc = conf->copies; /* resync */
146 else
147 nalloc = 2; /* recovery */
149 /* allocate once for all bios */
150 if (!conf->have_replacement)
151 nalloc_rp = nalloc;
152 else
153 nalloc_rp = nalloc * 2;
154 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
155 if (!rps)
156 goto out_free_r10bio;
159 * Allocate bios.
161 for (j = nalloc ; j-- ; ) {
162 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
163 if (!bio)
164 goto out_free_bio;
165 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
166 r10_bio->devs[j].bio = bio;
167 if (!conf->have_replacement)
168 continue;
169 bio = bio_kmalloc(RESYNC_PAGES, gfp_flags);
170 if (!bio)
171 goto out_free_bio;
172 bio_init(bio, NULL, bio->bi_inline_vecs, RESYNC_PAGES, 0);
173 r10_bio->devs[j].repl_bio = bio;
176 * Allocate RESYNC_PAGES data pages and attach them
177 * where needed.
179 for (j = 0; j < nalloc; j++) {
180 struct bio *rbio = r10_bio->devs[j].repl_bio;
181 struct resync_pages *rp, *rp_repl;
183 rp = &rps[j];
184 if (rbio)
185 rp_repl = &rps[nalloc + j];
187 bio = r10_bio->devs[j].bio;
189 if (!j || test_bit(MD_RECOVERY_SYNC,
190 &conf->mddev->recovery)) {
191 if (resync_alloc_pages(rp, gfp_flags))
192 goto out_free_pages;
193 } else {
194 memcpy(rp, &rps[0], sizeof(*rp));
195 resync_get_all_pages(rp);
198 rp->raid_bio = r10_bio;
199 bio->bi_private = rp;
200 if (rbio) {
201 memcpy(rp_repl, rp, sizeof(*rp));
202 rbio->bi_private = rp_repl;
206 return r10_bio;
208 out_free_pages:
209 while (--j >= 0)
210 resync_free_pages(&rps[j]);
212 j = 0;
213 out_free_bio:
214 for ( ; j < nalloc; j++) {
215 if (r10_bio->devs[j].bio)
216 bio_uninit(r10_bio->devs[j].bio);
217 kfree(r10_bio->devs[j].bio);
218 if (r10_bio->devs[j].repl_bio)
219 bio_uninit(r10_bio->devs[j].repl_bio);
220 kfree(r10_bio->devs[j].repl_bio);
222 kfree(rps);
223 out_free_r10bio:
224 rbio_pool_free(r10_bio, conf);
225 return NULL;
228 static void r10buf_pool_free(void *__r10_bio, void *data)
230 struct r10conf *conf = data;
231 struct r10bio *r10bio = __r10_bio;
232 int j;
233 struct resync_pages *rp = NULL;
235 for (j = conf->copies; j--; ) {
236 struct bio *bio = r10bio->devs[j].bio;
238 if (bio) {
239 rp = get_resync_pages(bio);
240 resync_free_pages(rp);
241 bio_uninit(bio);
242 kfree(bio);
245 bio = r10bio->devs[j].repl_bio;
246 if (bio) {
247 bio_uninit(bio);
248 kfree(bio);
252 /* resync pages array stored in the 1st bio's .bi_private */
253 kfree(rp);
255 rbio_pool_free(r10bio, conf);
258 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
260 int i;
262 for (i = 0; i < conf->geo.raid_disks; i++) {
263 struct bio **bio = & r10_bio->devs[i].bio;
264 if (!BIO_SPECIAL(*bio))
265 bio_put(*bio);
266 *bio = NULL;
267 bio = &r10_bio->devs[i].repl_bio;
268 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
269 bio_put(*bio);
270 *bio = NULL;
274 static void free_r10bio(struct r10bio *r10_bio)
276 struct r10conf *conf = r10_bio->mddev->private;
278 put_all_bios(conf, r10_bio);
279 mempool_free(r10_bio, &conf->r10bio_pool);
282 static void put_buf(struct r10bio *r10_bio)
284 struct r10conf *conf = r10_bio->mddev->private;
286 mempool_free(r10_bio, &conf->r10buf_pool);
288 lower_barrier(conf);
291 static void wake_up_barrier(struct r10conf *conf)
293 if (wq_has_sleeper(&conf->wait_barrier))
294 wake_up(&conf->wait_barrier);
297 static void reschedule_retry(struct r10bio *r10_bio)
299 unsigned long flags;
300 struct mddev *mddev = r10_bio->mddev;
301 struct r10conf *conf = mddev->private;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 list_add(&r10_bio->retry_list, &conf->retry_list);
305 conf->nr_queued ++;
306 spin_unlock_irqrestore(&conf->device_lock, flags);
308 /* wake up frozen array... */
309 wake_up(&conf->wait_barrier);
311 md_wakeup_thread(mddev->thread);
315 * raid_end_bio_io() is called when we have finished servicing a mirrored
316 * operation and are ready to return a success/failure code to the buffer
317 * cache layer.
319 static void raid_end_bio_io(struct r10bio *r10_bio)
321 struct bio *bio = r10_bio->master_bio;
322 struct r10conf *conf = r10_bio->mddev->private;
324 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
325 bio->bi_status = BLK_STS_IOERR;
327 bio_endio(bio);
329 * Wake up any possible resync thread that waits for the device
330 * to go idle.
332 allow_barrier(conf);
334 free_r10bio(r10_bio);
338 * Update disk head position estimator based on IRQ completion info.
340 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
342 struct r10conf *conf = r10_bio->mddev->private;
344 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
345 r10_bio->devs[slot].addr + (r10_bio->sectors);
349 * Find the disk number which triggered given bio
351 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
352 struct bio *bio, int *slotp, int *replp)
354 int slot;
355 int repl = 0;
357 for (slot = 0; slot < conf->geo.raid_disks; slot++) {
358 if (r10_bio->devs[slot].bio == bio)
359 break;
360 if (r10_bio->devs[slot].repl_bio == bio) {
361 repl = 1;
362 break;
366 update_head_pos(slot, r10_bio);
368 if (slotp)
369 *slotp = slot;
370 if (replp)
371 *replp = repl;
372 return r10_bio->devs[slot].devnum;
375 static void raid10_end_read_request(struct bio *bio)
377 int uptodate = !bio->bi_status;
378 struct r10bio *r10_bio = bio->bi_private;
379 int slot;
380 struct md_rdev *rdev;
381 struct r10conf *conf = r10_bio->mddev->private;
383 slot = r10_bio->read_slot;
384 rdev = r10_bio->devs[slot].rdev;
386 * this branch is our 'one mirror IO has finished' event handler:
388 update_head_pos(slot, r10_bio);
390 if (uptodate) {
392 * Set R10BIO_Uptodate in our master bio, so that
393 * we will return a good error code to the higher
394 * levels even if IO on some other mirrored buffer fails.
396 * The 'master' represents the composite IO operation to
397 * user-side. So if something waits for IO, then it will
398 * wait for the 'master' bio.
400 set_bit(R10BIO_Uptodate, &r10_bio->state);
401 } else {
402 /* If all other devices that store this block have
403 * failed, we want to return the error upwards rather
404 * than fail the last device. Here we redefine
405 * "uptodate" to mean "Don't want to retry"
407 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
408 rdev->raid_disk))
409 uptodate = 1;
411 if (uptodate) {
412 raid_end_bio_io(r10_bio);
413 rdev_dec_pending(rdev, conf->mddev);
414 } else {
416 * oops, read error - keep the refcount on the rdev
418 pr_err_ratelimited("md/raid10:%s: %pg: rescheduling sector %llu\n",
419 mdname(conf->mddev),
420 rdev->bdev,
421 (unsigned long long)r10_bio->sector);
422 set_bit(R10BIO_ReadError, &r10_bio->state);
423 reschedule_retry(r10_bio);
427 static void close_write(struct r10bio *r10_bio)
429 struct mddev *mddev = r10_bio->mddev;
431 /* clear the bitmap if all writes complete successfully */
432 mddev->bitmap_ops->endwrite(mddev, r10_bio->sector, r10_bio->sectors,
433 !test_bit(R10BIO_Degraded, &r10_bio->state),
434 false);
435 md_write_end(mddev);
438 static void one_write_done(struct r10bio *r10_bio)
440 if (atomic_dec_and_test(&r10_bio->remaining)) {
441 if (test_bit(R10BIO_WriteError, &r10_bio->state))
442 reschedule_retry(r10_bio);
443 else {
444 close_write(r10_bio);
445 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
446 reschedule_retry(r10_bio);
447 else
448 raid_end_bio_io(r10_bio);
453 static void raid10_end_write_request(struct bio *bio)
455 struct r10bio *r10_bio = bio->bi_private;
456 int dev;
457 int dec_rdev = 1;
458 struct r10conf *conf = r10_bio->mddev->private;
459 int slot, repl;
460 struct md_rdev *rdev = NULL;
461 struct bio *to_put = NULL;
462 bool discard_error;
464 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
466 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
468 if (repl)
469 rdev = conf->mirrors[dev].replacement;
470 if (!rdev) {
471 smp_rmb();
472 repl = 0;
473 rdev = conf->mirrors[dev].rdev;
476 * this branch is our 'one mirror IO has finished' event handler:
478 if (bio->bi_status && !discard_error) {
479 if (repl)
480 /* Never record new bad blocks to replacement,
481 * just fail it.
483 md_error(rdev->mddev, rdev);
484 else {
485 set_bit(WriteErrorSeen, &rdev->flags);
486 if (!test_and_set_bit(WantReplacement, &rdev->flags))
487 set_bit(MD_RECOVERY_NEEDED,
488 &rdev->mddev->recovery);
490 dec_rdev = 0;
491 if (test_bit(FailFast, &rdev->flags) &&
492 (bio->bi_opf & MD_FAILFAST)) {
493 md_error(rdev->mddev, rdev);
497 * When the device is faulty, it is not necessary to
498 * handle write error.
500 if (!test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_WriteError, &r10_bio->state);
502 else {
503 /* Fail the request */
504 set_bit(R10BIO_Degraded, &r10_bio->state);
505 r10_bio->devs[slot].bio = NULL;
506 to_put = bio;
507 dec_rdev = 1;
510 } else {
512 * Set R10BIO_Uptodate in our master bio, so that
513 * we will return a good error code for to the higher
514 * levels even if IO on some other mirrored buffer fails.
516 * The 'master' represents the composite IO operation to
517 * user-side. So if something waits for IO, then it will
518 * wait for the 'master' bio.
520 * Do not set R10BIO_Uptodate if the current device is
521 * rebuilding or Faulty. This is because we cannot use
522 * such device for properly reading the data back (we could
523 * potentially use it, if the current write would have felt
524 * before rdev->recovery_offset, but for simplicity we don't
525 * check this here.
527 if (test_bit(In_sync, &rdev->flags) &&
528 !test_bit(Faulty, &rdev->flags))
529 set_bit(R10BIO_Uptodate, &r10_bio->state);
531 /* Maybe we can clear some bad blocks. */
532 if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
533 r10_bio->sectors) &&
534 !discard_error) {
535 bio_put(bio);
536 if (repl)
537 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
538 else
539 r10_bio->devs[slot].bio = IO_MADE_GOOD;
540 dec_rdev = 0;
541 set_bit(R10BIO_MadeGood, &r10_bio->state);
547 * Let's see if all mirrored write operations have finished
548 * already.
550 one_write_done(r10_bio);
551 if (dec_rdev)
552 rdev_dec_pending(rdev, conf->mddev);
553 if (to_put)
554 bio_put(to_put);
558 * RAID10 layout manager
559 * As well as the chunksize and raid_disks count, there are two
560 * parameters: near_copies and far_copies.
561 * near_copies * far_copies must be <= raid_disks.
562 * Normally one of these will be 1.
563 * If both are 1, we get raid0.
564 * If near_copies == raid_disks, we get raid1.
566 * Chunks are laid out in raid0 style with near_copies copies of the
567 * first chunk, followed by near_copies copies of the next chunk and
568 * so on.
569 * If far_copies > 1, then after 1/far_copies of the array has been assigned
570 * as described above, we start again with a device offset of near_copies.
571 * So we effectively have another copy of the whole array further down all
572 * the drives, but with blocks on different drives.
573 * With this layout, and block is never stored twice on the one device.
575 * raid10_find_phys finds the sector offset of a given virtual sector
576 * on each device that it is on.
578 * raid10_find_virt does the reverse mapping, from a device and a
579 * sector offset to a virtual address
582 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
584 int n,f;
585 sector_t sector;
586 sector_t chunk;
587 sector_t stripe;
588 int dev;
589 int slot = 0;
590 int last_far_set_start, last_far_set_size;
592 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
593 last_far_set_start *= geo->far_set_size;
595 last_far_set_size = geo->far_set_size;
596 last_far_set_size += (geo->raid_disks % geo->far_set_size);
598 /* now calculate first sector/dev */
599 chunk = r10bio->sector >> geo->chunk_shift;
600 sector = r10bio->sector & geo->chunk_mask;
602 chunk *= geo->near_copies;
603 stripe = chunk;
604 dev = sector_div(stripe, geo->raid_disks);
605 if (geo->far_offset)
606 stripe *= geo->far_copies;
608 sector += stripe << geo->chunk_shift;
610 /* and calculate all the others */
611 for (n = 0; n < geo->near_copies; n++) {
612 int d = dev;
613 int set;
614 sector_t s = sector;
615 r10bio->devs[slot].devnum = d;
616 r10bio->devs[slot].addr = s;
617 slot++;
619 for (f = 1; f < geo->far_copies; f++) {
620 set = d / geo->far_set_size;
621 d += geo->near_copies;
623 if ((geo->raid_disks % geo->far_set_size) &&
624 (d > last_far_set_start)) {
625 d -= last_far_set_start;
626 d %= last_far_set_size;
627 d += last_far_set_start;
628 } else {
629 d %= geo->far_set_size;
630 d += geo->far_set_size * set;
632 s += geo->stride;
633 r10bio->devs[slot].devnum = d;
634 r10bio->devs[slot].addr = s;
635 slot++;
637 dev++;
638 if (dev >= geo->raid_disks) {
639 dev = 0;
640 sector += (geo->chunk_mask + 1);
645 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
647 struct geom *geo = &conf->geo;
649 if (conf->reshape_progress != MaxSector &&
650 ((r10bio->sector >= conf->reshape_progress) !=
651 conf->mddev->reshape_backwards)) {
652 set_bit(R10BIO_Previous, &r10bio->state);
653 geo = &conf->prev;
654 } else
655 clear_bit(R10BIO_Previous, &r10bio->state);
657 __raid10_find_phys(geo, r10bio);
660 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
662 sector_t offset, chunk, vchunk;
663 /* Never use conf->prev as this is only called during resync
664 * or recovery, so reshape isn't happening
666 struct geom *geo = &conf->geo;
667 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
668 int far_set_size = geo->far_set_size;
669 int last_far_set_start;
671 if (geo->raid_disks % geo->far_set_size) {
672 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
673 last_far_set_start *= geo->far_set_size;
675 if (dev >= last_far_set_start) {
676 far_set_size = geo->far_set_size;
677 far_set_size += (geo->raid_disks % geo->far_set_size);
678 far_set_start = last_far_set_start;
682 offset = sector & geo->chunk_mask;
683 if (geo->far_offset) {
684 int fc;
685 chunk = sector >> geo->chunk_shift;
686 fc = sector_div(chunk, geo->far_copies);
687 dev -= fc * geo->near_copies;
688 if (dev < far_set_start)
689 dev += far_set_size;
690 } else {
691 while (sector >= geo->stride) {
692 sector -= geo->stride;
693 if (dev < (geo->near_copies + far_set_start))
694 dev += far_set_size - geo->near_copies;
695 else
696 dev -= geo->near_copies;
698 chunk = sector >> geo->chunk_shift;
700 vchunk = chunk * geo->raid_disks + dev;
701 sector_div(vchunk, geo->near_copies);
702 return (vchunk << geo->chunk_shift) + offset;
706 * This routine returns the disk from which the requested read should
707 * be done. There is a per-array 'next expected sequential IO' sector
708 * number - if this matches on the next IO then we use the last disk.
709 * There is also a per-disk 'last know head position' sector that is
710 * maintained from IRQ contexts, both the normal and the resync IO
711 * completion handlers update this position correctly. If there is no
712 * perfect sequential match then we pick the disk whose head is closest.
714 * If there are 2 mirrors in the same 2 devices, performance degrades
715 * because position is mirror, not device based.
717 * The rdev for the device selected will have nr_pending incremented.
721 * FIXME: possibly should rethink readbalancing and do it differently
722 * depending on near_copies / far_copies geometry.
724 static struct md_rdev *read_balance(struct r10conf *conf,
725 struct r10bio *r10_bio,
726 int *max_sectors)
728 const sector_t this_sector = r10_bio->sector;
729 int disk, slot;
730 int sectors = r10_bio->sectors;
731 int best_good_sectors;
732 sector_t new_distance, best_dist;
733 struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
734 int do_balance;
735 int best_dist_slot, best_pending_slot;
736 bool has_nonrot_disk = false;
737 unsigned int min_pending;
738 struct geom *geo = &conf->geo;
740 raid10_find_phys(conf, r10_bio);
741 best_dist_slot = -1;
742 min_pending = UINT_MAX;
743 best_dist_rdev = NULL;
744 best_pending_rdev = NULL;
745 best_dist = MaxSector;
746 best_good_sectors = 0;
747 do_balance = 1;
748 clear_bit(R10BIO_FailFast, &r10_bio->state);
750 if (raid1_should_read_first(conf->mddev, this_sector, sectors))
751 do_balance = 0;
753 for (slot = 0; slot < conf->copies ; slot++) {
754 sector_t first_bad;
755 int bad_sectors;
756 sector_t dev_sector;
757 unsigned int pending;
758 bool nonrot;
760 if (r10_bio->devs[slot].bio == IO_BLOCKED)
761 continue;
762 disk = r10_bio->devs[slot].devnum;
763 rdev = conf->mirrors[disk].replacement;
764 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
765 r10_bio->devs[slot].addr + sectors >
766 rdev->recovery_offset)
767 rdev = conf->mirrors[disk].rdev;
768 if (rdev == NULL ||
769 test_bit(Faulty, &rdev->flags))
770 continue;
771 if (!test_bit(In_sync, &rdev->flags) &&
772 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
773 continue;
775 dev_sector = r10_bio->devs[slot].addr;
776 if (is_badblock(rdev, dev_sector, sectors,
777 &first_bad, &bad_sectors)) {
778 if (best_dist < MaxSector)
779 /* Already have a better slot */
780 continue;
781 if (first_bad <= dev_sector) {
782 /* Cannot read here. If this is the
783 * 'primary' device, then we must not read
784 * beyond 'bad_sectors' from another device.
786 bad_sectors -= (dev_sector - first_bad);
787 if (!do_balance && sectors > bad_sectors)
788 sectors = bad_sectors;
789 if (best_good_sectors > sectors)
790 best_good_sectors = sectors;
791 } else {
792 sector_t good_sectors =
793 first_bad - dev_sector;
794 if (good_sectors > best_good_sectors) {
795 best_good_sectors = good_sectors;
796 best_dist_slot = slot;
797 best_dist_rdev = rdev;
799 if (!do_balance)
800 /* Must read from here */
801 break;
803 continue;
804 } else
805 best_good_sectors = sectors;
807 if (!do_balance)
808 break;
810 nonrot = bdev_nonrot(rdev->bdev);
811 has_nonrot_disk |= nonrot;
812 pending = atomic_read(&rdev->nr_pending);
813 if (min_pending > pending && nonrot) {
814 min_pending = pending;
815 best_pending_slot = slot;
816 best_pending_rdev = rdev;
819 if (best_dist_slot >= 0)
820 /* At least 2 disks to choose from so failfast is OK */
821 set_bit(R10BIO_FailFast, &r10_bio->state);
822 /* This optimisation is debatable, and completely destroys
823 * sequential read speed for 'far copies' arrays. So only
824 * keep it for 'near' arrays, and review those later.
826 if (geo->near_copies > 1 && !pending)
827 new_distance = 0;
829 /* for far > 1 always use the lowest address */
830 else if (geo->far_copies > 1)
831 new_distance = r10_bio->devs[slot].addr;
832 else
833 new_distance = abs(r10_bio->devs[slot].addr -
834 conf->mirrors[disk].head_position);
836 if (new_distance < best_dist) {
837 best_dist = new_distance;
838 best_dist_slot = slot;
839 best_dist_rdev = rdev;
842 if (slot >= conf->copies) {
843 if (has_nonrot_disk) {
844 slot = best_pending_slot;
845 rdev = best_pending_rdev;
846 } else {
847 slot = best_dist_slot;
848 rdev = best_dist_rdev;
852 if (slot >= 0) {
853 atomic_inc(&rdev->nr_pending);
854 r10_bio->read_slot = slot;
855 } else
856 rdev = NULL;
857 *max_sectors = best_good_sectors;
859 return rdev;
862 static void flush_pending_writes(struct r10conf *conf)
864 /* Any writes that have been queued but are awaiting
865 * bitmap updates get flushed here.
867 spin_lock_irq(&conf->device_lock);
869 if (conf->pending_bio_list.head) {
870 struct blk_plug plug;
871 struct bio *bio;
873 bio = bio_list_get(&conf->pending_bio_list);
874 spin_unlock_irq(&conf->device_lock);
877 * As this is called in a wait_event() loop (see freeze_array),
878 * current->state might be TASK_UNINTERRUPTIBLE which will
879 * cause a warning when we prepare to wait again. As it is
880 * rare that this path is taken, it is perfectly safe to force
881 * us to go around the wait_event() loop again, so the warning
882 * is a false-positive. Silence the warning by resetting
883 * thread state
885 __set_current_state(TASK_RUNNING);
887 blk_start_plug(&plug);
888 raid1_prepare_flush_writes(conf->mddev);
889 wake_up(&conf->wait_barrier);
891 while (bio) { /* submit pending writes */
892 struct bio *next = bio->bi_next;
894 raid1_submit_write(bio);
895 bio = next;
896 cond_resched();
898 blk_finish_plug(&plug);
899 } else
900 spin_unlock_irq(&conf->device_lock);
903 /* Barriers....
904 * Sometimes we need to suspend IO while we do something else,
905 * either some resync/recovery, or reconfigure the array.
906 * To do this we raise a 'barrier'.
907 * The 'barrier' is a counter that can be raised multiple times
908 * to count how many activities are happening which preclude
909 * normal IO.
910 * We can only raise the barrier if there is no pending IO.
911 * i.e. if nr_pending == 0.
912 * We choose only to raise the barrier if no-one is waiting for the
913 * barrier to go down. This means that as soon as an IO request
914 * is ready, no other operations which require a barrier will start
915 * until the IO request has had a chance.
917 * So: regular IO calls 'wait_barrier'. When that returns there
918 * is no backgroup IO happening, It must arrange to call
919 * allow_barrier when it has finished its IO.
920 * backgroup IO calls must call raise_barrier. Once that returns
921 * there is no normal IO happeing. It must arrange to call
922 * lower_barrier when the particular background IO completes.
925 static void raise_barrier(struct r10conf *conf, int force)
927 write_seqlock_irq(&conf->resync_lock);
929 if (WARN_ON_ONCE(force && !conf->barrier))
930 force = false;
932 /* Wait until no block IO is waiting (unless 'force') */
933 wait_event_barrier(conf, force || !conf->nr_waiting);
935 /* block any new IO from starting */
936 WRITE_ONCE(conf->barrier, conf->barrier + 1);
938 /* Now wait for all pending IO to complete */
939 wait_event_barrier(conf, !atomic_read(&conf->nr_pending) &&
940 conf->barrier < RESYNC_DEPTH);
942 write_sequnlock_irq(&conf->resync_lock);
945 static void lower_barrier(struct r10conf *conf)
947 unsigned long flags;
949 write_seqlock_irqsave(&conf->resync_lock, flags);
950 WRITE_ONCE(conf->barrier, conf->barrier - 1);
951 write_sequnlock_irqrestore(&conf->resync_lock, flags);
952 wake_up(&conf->wait_barrier);
955 static bool stop_waiting_barrier(struct r10conf *conf)
957 struct bio_list *bio_list = current->bio_list;
958 struct md_thread *thread;
960 /* barrier is dropped */
961 if (!conf->barrier)
962 return true;
965 * If there are already pending requests (preventing the barrier from
966 * rising completely), and the pre-process bio queue isn't empty, then
967 * don't wait, as we need to empty that queue to get the nr_pending
968 * count down.
970 if (atomic_read(&conf->nr_pending) && bio_list &&
971 (!bio_list_empty(&bio_list[0]) || !bio_list_empty(&bio_list[1])))
972 return true;
974 /* daemon thread must exist while handling io */
975 thread = rcu_dereference_protected(conf->mddev->thread, true);
977 * move on if io is issued from raid10d(), nr_pending is not released
978 * from original io(see handle_read_error()). All raise barrier is
979 * blocked until this io is done.
981 if (thread->tsk == current) {
982 WARN_ON_ONCE(atomic_read(&conf->nr_pending) == 0);
983 return true;
986 return false;
989 static bool wait_barrier_nolock(struct r10conf *conf)
991 unsigned int seq = read_seqbegin(&conf->resync_lock);
993 if (READ_ONCE(conf->barrier))
994 return false;
996 atomic_inc(&conf->nr_pending);
997 if (!read_seqretry(&conf->resync_lock, seq))
998 return true;
1000 if (atomic_dec_and_test(&conf->nr_pending))
1001 wake_up_barrier(conf);
1003 return false;
1006 static bool wait_barrier(struct r10conf *conf, bool nowait)
1008 bool ret = true;
1010 if (wait_barrier_nolock(conf))
1011 return true;
1013 write_seqlock_irq(&conf->resync_lock);
1014 if (conf->barrier) {
1015 /* Return false when nowait flag is set */
1016 if (nowait) {
1017 ret = false;
1018 } else {
1019 conf->nr_waiting++;
1020 mddev_add_trace_msg(conf->mddev, "raid10 wait barrier");
1021 wait_event_barrier(conf, stop_waiting_barrier(conf));
1022 conf->nr_waiting--;
1024 if (!conf->nr_waiting)
1025 wake_up(&conf->wait_barrier);
1027 /* Only increment nr_pending when we wait */
1028 if (ret)
1029 atomic_inc(&conf->nr_pending);
1030 write_sequnlock_irq(&conf->resync_lock);
1031 return ret;
1034 static void allow_barrier(struct r10conf *conf)
1036 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1037 (conf->array_freeze_pending))
1038 wake_up_barrier(conf);
1041 static void freeze_array(struct r10conf *conf, int extra)
1043 /* stop syncio and normal IO and wait for everything to
1044 * go quiet.
1045 * We increment barrier and nr_waiting, and then
1046 * wait until nr_pending match nr_queued+extra
1047 * This is called in the context of one normal IO request
1048 * that has failed. Thus any sync request that might be pending
1049 * will be blocked by nr_pending, and we need to wait for
1050 * pending IO requests to complete or be queued for re-try.
1051 * Thus the number queued (nr_queued) plus this request (extra)
1052 * must match the number of pending IOs (nr_pending) before
1053 * we continue.
1055 write_seqlock_irq(&conf->resync_lock);
1056 conf->array_freeze_pending++;
1057 WRITE_ONCE(conf->barrier, conf->barrier + 1);
1058 conf->nr_waiting++;
1059 wait_event_barrier_cmd(conf, atomic_read(&conf->nr_pending) ==
1060 conf->nr_queued + extra, flush_pending_writes(conf));
1061 conf->array_freeze_pending--;
1062 write_sequnlock_irq(&conf->resync_lock);
1065 static void unfreeze_array(struct r10conf *conf)
1067 /* reverse the effect of the freeze */
1068 write_seqlock_irq(&conf->resync_lock);
1069 WRITE_ONCE(conf->barrier, conf->barrier - 1);
1070 conf->nr_waiting--;
1071 wake_up(&conf->wait_barrier);
1072 write_sequnlock_irq(&conf->resync_lock);
1075 static sector_t choose_data_offset(struct r10bio *r10_bio,
1076 struct md_rdev *rdev)
1078 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1079 test_bit(R10BIO_Previous, &r10_bio->state))
1080 return rdev->data_offset;
1081 else
1082 return rdev->new_data_offset;
1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1087 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb, cb);
1088 struct mddev *mddev = plug->cb.data;
1089 struct r10conf *conf = mddev->private;
1090 struct bio *bio;
1092 if (from_schedule) {
1093 spin_lock_irq(&conf->device_lock);
1094 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095 spin_unlock_irq(&conf->device_lock);
1096 wake_up_barrier(conf);
1097 md_wakeup_thread(mddev->thread);
1098 kfree(plug);
1099 return;
1102 /* we aren't scheduling, so we can do the write-out directly. */
1103 bio = bio_list_get(&plug->pending);
1104 raid1_prepare_flush_writes(mddev);
1105 wake_up_barrier(conf);
1107 while (bio) { /* submit pending writes */
1108 struct bio *next = bio->bi_next;
1110 raid1_submit_write(bio);
1111 bio = next;
1112 cond_resched();
1114 kfree(plug);
1118 * 1. Register the new request and wait if the reconstruction thread has put
1119 * up a bar for new requests. Continue immediately if no resync is active
1120 * currently.
1121 * 2. If IO spans the reshape position. Need to wait for reshape to pass.
1123 static bool regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1124 struct bio *bio, sector_t sectors)
1126 /* Bail out if REQ_NOWAIT is set for the bio */
1127 if (!wait_barrier(conf, bio->bi_opf & REQ_NOWAIT)) {
1128 bio_wouldblock_error(bio);
1129 return false;
1131 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1132 bio->bi_iter.bi_sector < conf->reshape_progress &&
1133 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1134 allow_barrier(conf);
1135 if (bio->bi_opf & REQ_NOWAIT) {
1136 bio_wouldblock_error(bio);
1137 return false;
1139 mddev_add_trace_msg(conf->mddev, "raid10 wait reshape");
1140 wait_event(conf->wait_barrier,
1141 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1142 conf->reshape_progress >= bio->bi_iter.bi_sector +
1143 sectors);
1144 wait_barrier(conf, false);
1146 return true;
1149 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1150 struct r10bio *r10_bio, bool io_accounting)
1152 struct r10conf *conf = mddev->private;
1153 struct bio *read_bio;
1154 const enum req_op op = bio_op(bio);
1155 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1156 int max_sectors;
1157 struct md_rdev *rdev;
1158 char b[BDEVNAME_SIZE];
1159 int slot = r10_bio->read_slot;
1160 struct md_rdev *err_rdev = NULL;
1161 gfp_t gfp = GFP_NOIO;
1162 int error;
1164 if (slot >= 0 && r10_bio->devs[slot].rdev) {
1166 * This is an error retry, but we cannot
1167 * safely dereference the rdev in the r10_bio,
1168 * we must use the one in conf.
1169 * If it has already been disconnected (unlikely)
1170 * we lose the device name in error messages.
1172 int disk;
1174 * As we are blocking raid10, it is a little safer to
1175 * use __GFP_HIGH.
1177 gfp = GFP_NOIO | __GFP_HIGH;
1179 disk = r10_bio->devs[slot].devnum;
1180 err_rdev = conf->mirrors[disk].rdev;
1181 if (err_rdev)
1182 snprintf(b, sizeof(b), "%pg", err_rdev->bdev);
1183 else {
1184 strcpy(b, "???");
1185 /* This never gets dereferenced */
1186 err_rdev = r10_bio->devs[slot].rdev;
1190 if (!regular_request_wait(mddev, conf, bio, r10_bio->sectors))
1191 return;
1192 rdev = read_balance(conf, r10_bio, &max_sectors);
1193 if (!rdev) {
1194 if (err_rdev) {
1195 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196 mdname(mddev), b,
1197 (unsigned long long)r10_bio->sector);
1199 raid_end_bio_io(r10_bio);
1200 return;
1202 if (err_rdev)
1203 pr_err_ratelimited("md/raid10:%s: %pg: redirecting sector %llu to another mirror\n",
1204 mdname(mddev),
1205 rdev->bdev,
1206 (unsigned long long)r10_bio->sector);
1207 if (max_sectors < bio_sectors(bio)) {
1208 struct bio *split = bio_split(bio, max_sectors,
1209 gfp, &conf->bio_split);
1210 if (IS_ERR(split)) {
1211 error = PTR_ERR(split);
1212 goto err_handle;
1214 bio_chain(split, bio);
1215 allow_barrier(conf);
1216 submit_bio_noacct(bio);
1217 wait_barrier(conf, false);
1218 bio = split;
1219 r10_bio->master_bio = bio;
1220 r10_bio->sectors = max_sectors;
1222 slot = r10_bio->read_slot;
1224 if (io_accounting) {
1225 md_account_bio(mddev, &bio);
1226 r10_bio->master_bio = bio;
1228 read_bio = bio_alloc_clone(rdev->bdev, bio, gfp, &mddev->bio_set);
1230 r10_bio->devs[slot].bio = read_bio;
1231 r10_bio->devs[slot].rdev = rdev;
1233 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1234 choose_data_offset(r10_bio, rdev);
1235 read_bio->bi_end_io = raid10_end_read_request;
1236 read_bio->bi_opf = op | do_sync;
1237 if (test_bit(FailFast, &rdev->flags) &&
1238 test_bit(R10BIO_FailFast, &r10_bio->state))
1239 read_bio->bi_opf |= MD_FAILFAST;
1240 read_bio->bi_private = r10_bio;
1241 mddev_trace_remap(mddev, read_bio, r10_bio->sector);
1242 submit_bio_noacct(read_bio);
1243 return;
1244 err_handle:
1245 atomic_dec(&rdev->nr_pending);
1246 bio->bi_status = errno_to_blk_status(error);
1247 set_bit(R10BIO_Uptodate, &r10_bio->state);
1248 raid_end_bio_io(r10_bio);
1251 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1252 struct bio *bio, bool replacement,
1253 int n_copy)
1255 const enum req_op op = bio_op(bio);
1256 const blk_opf_t do_sync = bio->bi_opf & REQ_SYNC;
1257 const blk_opf_t do_fua = bio->bi_opf & REQ_FUA;
1258 const blk_opf_t do_atomic = bio->bi_opf & REQ_ATOMIC;
1259 unsigned long flags;
1260 struct r10conf *conf = mddev->private;
1261 struct md_rdev *rdev;
1262 int devnum = r10_bio->devs[n_copy].devnum;
1263 struct bio *mbio;
1265 rdev = replacement ? conf->mirrors[devnum].replacement :
1266 conf->mirrors[devnum].rdev;
1268 mbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO, &mddev->bio_set);
1269 if (replacement)
1270 r10_bio->devs[n_copy].repl_bio = mbio;
1271 else
1272 r10_bio->devs[n_copy].bio = mbio;
1274 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1275 choose_data_offset(r10_bio, rdev));
1276 mbio->bi_end_io = raid10_end_write_request;
1277 mbio->bi_opf = op | do_sync | do_fua | do_atomic;
1278 if (!replacement && test_bit(FailFast,
1279 &conf->mirrors[devnum].rdev->flags)
1280 && enough(conf, devnum))
1281 mbio->bi_opf |= MD_FAILFAST;
1282 mbio->bi_private = r10_bio;
1283 mddev_trace_remap(mddev, mbio, r10_bio->sector);
1284 /* flush_pending_writes() needs access to the rdev so...*/
1285 mbio->bi_bdev = (void *)rdev;
1287 atomic_inc(&r10_bio->remaining);
1289 if (!raid1_add_bio_to_plug(mddev, mbio, raid10_unplug, conf->copies)) {
1290 spin_lock_irqsave(&conf->device_lock, flags);
1291 bio_list_add(&conf->pending_bio_list, mbio);
1292 spin_unlock_irqrestore(&conf->device_lock, flags);
1293 md_wakeup_thread(mddev->thread);
1297 static void wait_blocked_dev(struct mddev *mddev, struct r10bio *r10_bio)
1299 struct r10conf *conf = mddev->private;
1300 struct md_rdev *blocked_rdev;
1301 int i;
1303 retry_wait:
1304 blocked_rdev = NULL;
1305 for (i = 0; i < conf->copies; i++) {
1306 struct md_rdev *rdev, *rrdev;
1308 rdev = conf->mirrors[i].rdev;
1309 if (rdev) {
1310 sector_t dev_sector = r10_bio->devs[i].addr;
1313 * Discard request doesn't care the write result
1314 * so it doesn't need to wait blocked disk here.
1316 if (test_bit(WriteErrorSeen, &rdev->flags) &&
1317 r10_bio->sectors &&
1318 rdev_has_badblock(rdev, dev_sector,
1319 r10_bio->sectors) < 0)
1321 * Mustn't write here until the bad
1322 * block is acknowledged
1324 set_bit(BlockedBadBlocks, &rdev->flags);
1326 if (rdev_blocked(rdev)) {
1327 blocked_rdev = rdev;
1328 atomic_inc(&rdev->nr_pending);
1329 break;
1333 rrdev = conf->mirrors[i].replacement;
1334 if (rrdev && rdev_blocked(rrdev)) {
1335 atomic_inc(&rrdev->nr_pending);
1336 blocked_rdev = rrdev;
1337 break;
1341 if (unlikely(blocked_rdev)) {
1342 /* Have to wait for this device to get unblocked, then retry */
1343 allow_barrier(conf);
1344 mddev_add_trace_msg(conf->mddev,
1345 "raid10 %s wait rdev %d blocked",
1346 __func__, blocked_rdev->raid_disk);
1347 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1348 wait_barrier(conf, false);
1349 goto retry_wait;
1353 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1354 struct r10bio *r10_bio)
1356 struct r10conf *conf = mddev->private;
1357 int i, k;
1358 sector_t sectors;
1359 int max_sectors;
1360 int error;
1362 if ((mddev_is_clustered(mddev) &&
1363 md_cluster_ops->area_resyncing(mddev, WRITE,
1364 bio->bi_iter.bi_sector,
1365 bio_end_sector(bio)))) {
1366 DEFINE_WAIT(w);
1367 /* Bail out if REQ_NOWAIT is set for the bio */
1368 if (bio->bi_opf & REQ_NOWAIT) {
1369 bio_wouldblock_error(bio);
1370 return;
1372 for (;;) {
1373 prepare_to_wait(&conf->wait_barrier,
1374 &w, TASK_IDLE);
1375 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1376 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1377 break;
1378 schedule();
1380 finish_wait(&conf->wait_barrier, &w);
1383 sectors = r10_bio->sectors;
1384 if (!regular_request_wait(mddev, conf, bio, sectors))
1385 return;
1386 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1387 (mddev->reshape_backwards
1388 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1389 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1390 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1391 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1392 /* Need to update reshape_position in metadata */
1393 mddev->reshape_position = conf->reshape_progress;
1394 set_mask_bits(&mddev->sb_flags, 0,
1395 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1396 md_wakeup_thread(mddev->thread);
1397 if (bio->bi_opf & REQ_NOWAIT) {
1398 allow_barrier(conf);
1399 bio_wouldblock_error(bio);
1400 return;
1402 mddev_add_trace_msg(conf->mddev,
1403 "raid10 wait reshape metadata");
1404 wait_event(mddev->sb_wait,
1405 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1407 conf->reshape_safe = mddev->reshape_position;
1410 /* first select target devices under rcu_lock and
1411 * inc refcount on their rdev. Record them by setting
1412 * bios[x] to bio
1413 * If there are known/acknowledged bad blocks on any device
1414 * on which we have seen a write error, we want to avoid
1415 * writing to those blocks. This potentially requires several
1416 * writes to write around the bad blocks. Each set of writes
1417 * gets its own r10_bio with a set of bios attached.
1420 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1421 raid10_find_phys(conf, r10_bio);
1423 wait_blocked_dev(mddev, r10_bio);
1425 max_sectors = r10_bio->sectors;
1427 for (i = 0; i < conf->copies; i++) {
1428 int d = r10_bio->devs[i].devnum;
1429 struct md_rdev *rdev, *rrdev;
1431 rdev = conf->mirrors[d].rdev;
1432 rrdev = conf->mirrors[d].replacement;
1433 if (rdev && (test_bit(Faulty, &rdev->flags)))
1434 rdev = NULL;
1435 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1436 rrdev = NULL;
1438 r10_bio->devs[i].bio = NULL;
1439 r10_bio->devs[i].repl_bio = NULL;
1441 if (!rdev && !rrdev) {
1442 set_bit(R10BIO_Degraded, &r10_bio->state);
1443 continue;
1445 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1446 sector_t first_bad;
1447 sector_t dev_sector = r10_bio->devs[i].addr;
1448 int bad_sectors;
1449 int is_bad;
1451 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1452 &first_bad, &bad_sectors);
1453 if (is_bad && first_bad <= dev_sector) {
1454 /* Cannot write here at all */
1455 bad_sectors -= (dev_sector - first_bad);
1456 if (bad_sectors < max_sectors)
1457 /* Mustn't write more than bad_sectors
1458 * to other devices yet
1460 max_sectors = bad_sectors;
1461 /* We don't set R10BIO_Degraded as that
1462 * only applies if the disk is missing,
1463 * so it might be re-added, and we want to
1464 * know to recover this chunk.
1465 * In this case the device is here, and the
1466 * fact that this chunk is not in-sync is
1467 * recorded in the bad block log.
1469 continue;
1471 if (is_bad) {
1472 int good_sectors;
1475 * We cannot atomically write this, so just
1476 * error in that case. It could be possible to
1477 * atomically write other mirrors, but the
1478 * complexity of supporting that is not worth
1479 * the benefit.
1481 if (bio->bi_opf & REQ_ATOMIC) {
1482 error = -EIO;
1483 goto err_handle;
1486 good_sectors = first_bad - dev_sector;
1487 if (good_sectors < max_sectors)
1488 max_sectors = good_sectors;
1491 if (rdev) {
1492 r10_bio->devs[i].bio = bio;
1493 atomic_inc(&rdev->nr_pending);
1495 if (rrdev) {
1496 r10_bio->devs[i].repl_bio = bio;
1497 atomic_inc(&rrdev->nr_pending);
1501 if (max_sectors < r10_bio->sectors)
1502 r10_bio->sectors = max_sectors;
1504 if (r10_bio->sectors < bio_sectors(bio)) {
1505 struct bio *split = bio_split(bio, r10_bio->sectors,
1506 GFP_NOIO, &conf->bio_split);
1507 if (IS_ERR(split)) {
1508 error = PTR_ERR(split);
1509 goto err_handle;
1511 bio_chain(split, bio);
1512 allow_barrier(conf);
1513 submit_bio_noacct(bio);
1514 wait_barrier(conf, false);
1515 bio = split;
1516 r10_bio->master_bio = bio;
1519 md_account_bio(mddev, &bio);
1520 r10_bio->master_bio = bio;
1521 atomic_set(&r10_bio->remaining, 1);
1522 mddev->bitmap_ops->startwrite(mddev, r10_bio->sector, r10_bio->sectors,
1523 false);
1525 for (i = 0; i < conf->copies; i++) {
1526 if (r10_bio->devs[i].bio)
1527 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1528 if (r10_bio->devs[i].repl_bio)
1529 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1531 one_write_done(r10_bio);
1532 return;
1533 err_handle:
1534 for (k = 0; k < i; k++) {
1535 int d = r10_bio->devs[k].devnum;
1536 struct md_rdev *rdev = conf->mirrors[d].rdev;
1537 struct md_rdev *rrdev = conf->mirrors[d].replacement;
1539 if (r10_bio->devs[k].bio) {
1540 rdev_dec_pending(rdev, mddev);
1541 r10_bio->devs[k].bio = NULL;
1543 if (r10_bio->devs[k].repl_bio) {
1544 rdev_dec_pending(rrdev, mddev);
1545 r10_bio->devs[k].repl_bio = NULL;
1549 bio->bi_status = errno_to_blk_status(error);
1550 set_bit(R10BIO_Uptodate, &r10_bio->state);
1551 raid_end_bio_io(r10_bio);
1554 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1556 struct r10conf *conf = mddev->private;
1557 struct r10bio *r10_bio;
1559 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1561 r10_bio->master_bio = bio;
1562 r10_bio->sectors = sectors;
1564 r10_bio->mddev = mddev;
1565 r10_bio->sector = bio->bi_iter.bi_sector;
1566 r10_bio->state = 0;
1567 r10_bio->read_slot = -1;
1568 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) *
1569 conf->geo.raid_disks);
1571 if (bio_data_dir(bio) == READ)
1572 raid10_read_request(mddev, bio, r10_bio, true);
1573 else
1574 raid10_write_request(mddev, bio, r10_bio);
1577 static void raid_end_discard_bio(struct r10bio *r10bio)
1579 struct r10conf *conf = r10bio->mddev->private;
1580 struct r10bio *first_r10bio;
1582 while (atomic_dec_and_test(&r10bio->remaining)) {
1584 allow_barrier(conf);
1586 if (!test_bit(R10BIO_Discard, &r10bio->state)) {
1587 first_r10bio = (struct r10bio *)r10bio->master_bio;
1588 free_r10bio(r10bio);
1589 r10bio = first_r10bio;
1590 } else {
1591 md_write_end(r10bio->mddev);
1592 bio_endio(r10bio->master_bio);
1593 free_r10bio(r10bio);
1594 break;
1599 static void raid10_end_discard_request(struct bio *bio)
1601 struct r10bio *r10_bio = bio->bi_private;
1602 struct r10conf *conf = r10_bio->mddev->private;
1603 struct md_rdev *rdev = NULL;
1604 int dev;
1605 int slot, repl;
1608 * We don't care the return value of discard bio
1610 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
1611 set_bit(R10BIO_Uptodate, &r10_bio->state);
1613 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1614 rdev = repl ? conf->mirrors[dev].replacement :
1615 conf->mirrors[dev].rdev;
1617 raid_end_discard_bio(r10_bio);
1618 rdev_dec_pending(rdev, conf->mddev);
1622 * There are some limitations to handle discard bio
1623 * 1st, the discard size is bigger than stripe_size*2.
1624 * 2st, if the discard bio spans reshape progress, we use the old way to
1625 * handle discard bio
1627 static int raid10_handle_discard(struct mddev *mddev, struct bio *bio)
1629 struct r10conf *conf = mddev->private;
1630 struct geom *geo = &conf->geo;
1631 int far_copies = geo->far_copies;
1632 bool first_copy = true;
1633 struct r10bio *r10_bio, *first_r10bio;
1634 struct bio *split;
1635 int disk;
1636 sector_t chunk;
1637 unsigned int stripe_size;
1638 unsigned int stripe_data_disks;
1639 sector_t split_size;
1640 sector_t bio_start, bio_end;
1641 sector_t first_stripe_index, last_stripe_index;
1642 sector_t start_disk_offset;
1643 unsigned int start_disk_index;
1644 sector_t end_disk_offset;
1645 unsigned int end_disk_index;
1646 unsigned int remainder;
1648 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1649 return -EAGAIN;
1651 if (WARN_ON_ONCE(bio->bi_opf & REQ_NOWAIT)) {
1652 bio_wouldblock_error(bio);
1653 return 0;
1655 wait_barrier(conf, false);
1658 * Check reshape again to avoid reshape happens after checking
1659 * MD_RECOVERY_RESHAPE and before wait_barrier
1661 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1662 goto out;
1664 if (geo->near_copies)
1665 stripe_data_disks = geo->raid_disks / geo->near_copies +
1666 geo->raid_disks % geo->near_copies;
1667 else
1668 stripe_data_disks = geo->raid_disks;
1670 stripe_size = stripe_data_disks << geo->chunk_shift;
1672 bio_start = bio->bi_iter.bi_sector;
1673 bio_end = bio_end_sector(bio);
1676 * Maybe one discard bio is smaller than strip size or across one
1677 * stripe and discard region is larger than one stripe size. For far
1678 * offset layout, if the discard region is not aligned with stripe
1679 * size, there is hole when we submit discard bio to member disk.
1680 * For simplicity, we only handle discard bio which discard region
1681 * is bigger than stripe_size * 2
1683 if (bio_sectors(bio) < stripe_size*2)
1684 goto out;
1687 * Keep bio aligned with strip size.
1689 div_u64_rem(bio_start, stripe_size, &remainder);
1690 if (remainder) {
1691 split_size = stripe_size - remainder;
1692 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1693 if (IS_ERR(split)) {
1694 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1695 bio_endio(bio);
1696 return 0;
1698 bio_chain(split, bio);
1699 allow_barrier(conf);
1700 /* Resend the fist split part */
1701 submit_bio_noacct(split);
1702 wait_barrier(conf, false);
1704 div_u64_rem(bio_end, stripe_size, &remainder);
1705 if (remainder) {
1706 split_size = bio_sectors(bio) - remainder;
1707 split = bio_split(bio, split_size, GFP_NOIO, &conf->bio_split);
1708 if (IS_ERR(split)) {
1709 bio->bi_status = errno_to_blk_status(PTR_ERR(split));
1710 bio_endio(bio);
1711 return 0;
1713 bio_chain(split, bio);
1714 allow_barrier(conf);
1715 /* Resend the second split part */
1716 submit_bio_noacct(bio);
1717 bio = split;
1718 wait_barrier(conf, false);
1721 bio_start = bio->bi_iter.bi_sector;
1722 bio_end = bio_end_sector(bio);
1725 * Raid10 uses chunk as the unit to store data. It's similar like raid0.
1726 * One stripe contains the chunks from all member disk (one chunk from
1727 * one disk at the same HBA address). For layout detail, see 'man md 4'
1729 chunk = bio_start >> geo->chunk_shift;
1730 chunk *= geo->near_copies;
1731 first_stripe_index = chunk;
1732 start_disk_index = sector_div(first_stripe_index, geo->raid_disks);
1733 if (geo->far_offset)
1734 first_stripe_index *= geo->far_copies;
1735 start_disk_offset = (bio_start & geo->chunk_mask) +
1736 (first_stripe_index << geo->chunk_shift);
1738 chunk = bio_end >> geo->chunk_shift;
1739 chunk *= geo->near_copies;
1740 last_stripe_index = chunk;
1741 end_disk_index = sector_div(last_stripe_index, geo->raid_disks);
1742 if (geo->far_offset)
1743 last_stripe_index *= geo->far_copies;
1744 end_disk_offset = (bio_end & geo->chunk_mask) +
1745 (last_stripe_index << geo->chunk_shift);
1747 retry_discard:
1748 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1749 r10_bio->mddev = mddev;
1750 r10_bio->state = 0;
1751 r10_bio->sectors = 0;
1752 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * geo->raid_disks);
1753 wait_blocked_dev(mddev, r10_bio);
1756 * For far layout it needs more than one r10bio to cover all regions.
1757 * Inspired by raid10_sync_request, we can use the first r10bio->master_bio
1758 * to record the discard bio. Other r10bio->master_bio record the first
1759 * r10bio. The first r10bio only release after all other r10bios finish.
1760 * The discard bio returns only first r10bio finishes
1762 if (first_copy) {
1763 r10_bio->master_bio = bio;
1764 set_bit(R10BIO_Discard, &r10_bio->state);
1765 first_copy = false;
1766 first_r10bio = r10_bio;
1767 } else
1768 r10_bio->master_bio = (struct bio *)first_r10bio;
1771 * first select target devices under rcu_lock and
1772 * inc refcount on their rdev. Record them by setting
1773 * bios[x] to bio
1775 for (disk = 0; disk < geo->raid_disks; disk++) {
1776 struct md_rdev *rdev, *rrdev;
1778 rdev = conf->mirrors[disk].rdev;
1779 rrdev = conf->mirrors[disk].replacement;
1780 r10_bio->devs[disk].bio = NULL;
1781 r10_bio->devs[disk].repl_bio = NULL;
1783 if (rdev && (test_bit(Faulty, &rdev->flags)))
1784 rdev = NULL;
1785 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1786 rrdev = NULL;
1787 if (!rdev && !rrdev)
1788 continue;
1790 if (rdev) {
1791 r10_bio->devs[disk].bio = bio;
1792 atomic_inc(&rdev->nr_pending);
1794 if (rrdev) {
1795 r10_bio->devs[disk].repl_bio = bio;
1796 atomic_inc(&rrdev->nr_pending);
1800 atomic_set(&r10_bio->remaining, 1);
1801 for (disk = 0; disk < geo->raid_disks; disk++) {
1802 sector_t dev_start, dev_end;
1803 struct bio *mbio, *rbio = NULL;
1806 * Now start to calculate the start and end address for each disk.
1807 * The space between dev_start and dev_end is the discard region.
1809 * For dev_start, it needs to consider three conditions:
1810 * 1st, the disk is before start_disk, you can imagine the disk in
1811 * the next stripe. So the dev_start is the start address of next
1812 * stripe.
1813 * 2st, the disk is after start_disk, it means the disk is at the
1814 * same stripe of first disk
1815 * 3st, the first disk itself, we can use start_disk_offset directly
1817 if (disk < start_disk_index)
1818 dev_start = (first_stripe_index + 1) * mddev->chunk_sectors;
1819 else if (disk > start_disk_index)
1820 dev_start = first_stripe_index * mddev->chunk_sectors;
1821 else
1822 dev_start = start_disk_offset;
1824 if (disk < end_disk_index)
1825 dev_end = (last_stripe_index + 1) * mddev->chunk_sectors;
1826 else if (disk > end_disk_index)
1827 dev_end = last_stripe_index * mddev->chunk_sectors;
1828 else
1829 dev_end = end_disk_offset;
1832 * It only handles discard bio which size is >= stripe size, so
1833 * dev_end > dev_start all the time.
1834 * It doesn't need to use rcu lock to get rdev here. We already
1835 * add rdev->nr_pending in the first loop.
1837 if (r10_bio->devs[disk].bio) {
1838 struct md_rdev *rdev = conf->mirrors[disk].rdev;
1839 mbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1840 &mddev->bio_set);
1841 mbio->bi_end_io = raid10_end_discard_request;
1842 mbio->bi_private = r10_bio;
1843 r10_bio->devs[disk].bio = mbio;
1844 r10_bio->devs[disk].devnum = disk;
1845 atomic_inc(&r10_bio->remaining);
1846 md_submit_discard_bio(mddev, rdev, mbio,
1847 dev_start + choose_data_offset(r10_bio, rdev),
1848 dev_end - dev_start);
1849 bio_endio(mbio);
1851 if (r10_bio->devs[disk].repl_bio) {
1852 struct md_rdev *rrdev = conf->mirrors[disk].replacement;
1853 rbio = bio_alloc_clone(bio->bi_bdev, bio, GFP_NOIO,
1854 &mddev->bio_set);
1855 rbio->bi_end_io = raid10_end_discard_request;
1856 rbio->bi_private = r10_bio;
1857 r10_bio->devs[disk].repl_bio = rbio;
1858 r10_bio->devs[disk].devnum = disk;
1859 atomic_inc(&r10_bio->remaining);
1860 md_submit_discard_bio(mddev, rrdev, rbio,
1861 dev_start + choose_data_offset(r10_bio, rrdev),
1862 dev_end - dev_start);
1863 bio_endio(rbio);
1867 if (!geo->far_offset && --far_copies) {
1868 first_stripe_index += geo->stride >> geo->chunk_shift;
1869 start_disk_offset += geo->stride;
1870 last_stripe_index += geo->stride >> geo->chunk_shift;
1871 end_disk_offset += geo->stride;
1872 atomic_inc(&first_r10bio->remaining);
1873 raid_end_discard_bio(r10_bio);
1874 wait_barrier(conf, false);
1875 goto retry_discard;
1878 raid_end_discard_bio(r10_bio);
1880 return 0;
1881 out:
1882 allow_barrier(conf);
1883 return -EAGAIN;
1886 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1888 struct r10conf *conf = mddev->private;
1889 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1890 int chunk_sects = chunk_mask + 1;
1891 int sectors = bio_sectors(bio);
1893 if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1894 && md_flush_request(mddev, bio))
1895 return true;
1897 md_write_start(mddev, bio);
1899 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1900 if (!raid10_handle_discard(mddev, bio))
1901 return true;
1904 * If this request crosses a chunk boundary, we need to split
1905 * it.
1907 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1908 sectors > chunk_sects
1909 && (conf->geo.near_copies < conf->geo.raid_disks
1910 || conf->prev.near_copies <
1911 conf->prev.raid_disks)))
1912 sectors = chunk_sects -
1913 (bio->bi_iter.bi_sector &
1914 (chunk_sects - 1));
1915 __make_request(mddev, bio, sectors);
1917 /* In case raid10d snuck in to freeze_array */
1918 wake_up_barrier(conf);
1919 return true;
1922 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1924 struct r10conf *conf = mddev->private;
1925 int i;
1927 lockdep_assert_held(&mddev->lock);
1929 if (conf->geo.near_copies < conf->geo.raid_disks)
1930 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1931 if (conf->geo.near_copies > 1)
1932 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1933 if (conf->geo.far_copies > 1) {
1934 if (conf->geo.far_offset)
1935 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1936 else
1937 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1938 if (conf->geo.far_set_size != conf->geo.raid_disks)
1939 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1941 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1942 conf->geo.raid_disks - mddev->degraded);
1943 for (i = 0; i < conf->geo.raid_disks; i++) {
1944 struct md_rdev *rdev = READ_ONCE(conf->mirrors[i].rdev);
1946 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1948 seq_printf(seq, "]");
1951 /* check if there are enough drives for
1952 * every block to appear on atleast one.
1953 * Don't consider the device numbered 'ignore'
1954 * as we might be about to remove it.
1956 static int _enough(struct r10conf *conf, int previous, int ignore)
1958 int first = 0;
1959 int has_enough = 0;
1960 int disks, ncopies;
1961 if (previous) {
1962 disks = conf->prev.raid_disks;
1963 ncopies = conf->prev.near_copies;
1964 } else {
1965 disks = conf->geo.raid_disks;
1966 ncopies = conf->geo.near_copies;
1969 do {
1970 int n = conf->copies;
1971 int cnt = 0;
1972 int this = first;
1973 while (n--) {
1974 struct md_rdev *rdev;
1975 if (this != ignore &&
1976 (rdev = conf->mirrors[this].rdev) &&
1977 test_bit(In_sync, &rdev->flags))
1978 cnt++;
1979 this = (this+1) % disks;
1981 if (cnt == 0)
1982 goto out;
1983 first = (first + ncopies) % disks;
1984 } while (first != 0);
1985 has_enough = 1;
1986 out:
1987 return has_enough;
1990 static int enough(struct r10conf *conf, int ignore)
1992 /* when calling 'enough', both 'prev' and 'geo' must
1993 * be stable.
1994 * This is ensured if ->reconfig_mutex or ->device_lock
1995 * is held.
1997 return _enough(conf, 0, ignore) &&
1998 _enough(conf, 1, ignore);
2002 * raid10_error() - RAID10 error handler.
2003 * @mddev: affected md device.
2004 * @rdev: member device to fail.
2006 * The routine acknowledges &rdev failure and determines new @mddev state.
2007 * If it failed, then:
2008 * - &MD_BROKEN flag is set in &mddev->flags.
2009 * Otherwise, it must be degraded:
2010 * - recovery is interrupted.
2011 * - &mddev->degraded is bumped.
2013 * @rdev is marked as &Faulty excluding case when array is failed and
2014 * &mddev->fail_last_dev is off.
2016 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
2018 struct r10conf *conf = mddev->private;
2019 unsigned long flags;
2021 spin_lock_irqsave(&conf->device_lock, flags);
2023 if (test_bit(In_sync, &rdev->flags) && !enough(conf, rdev->raid_disk)) {
2024 set_bit(MD_BROKEN, &mddev->flags);
2026 if (!mddev->fail_last_dev) {
2027 spin_unlock_irqrestore(&conf->device_lock, flags);
2028 return;
2031 if (test_and_clear_bit(In_sync, &rdev->flags))
2032 mddev->degraded++;
2034 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2035 set_bit(Blocked, &rdev->flags);
2036 set_bit(Faulty, &rdev->flags);
2037 set_mask_bits(&mddev->sb_flags, 0,
2038 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2039 spin_unlock_irqrestore(&conf->device_lock, flags);
2040 pr_crit("md/raid10:%s: Disk failure on %pg, disabling device.\n"
2041 "md/raid10:%s: Operation continuing on %d devices.\n",
2042 mdname(mddev), rdev->bdev,
2043 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
2046 static void print_conf(struct r10conf *conf)
2048 int i;
2049 struct md_rdev *rdev;
2051 pr_debug("RAID10 conf printout:\n");
2052 if (!conf) {
2053 pr_debug("(!conf)\n");
2054 return;
2056 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
2057 conf->geo.raid_disks);
2059 lockdep_assert_held(&conf->mddev->reconfig_mutex);
2060 for (i = 0; i < conf->geo.raid_disks; i++) {
2061 rdev = conf->mirrors[i].rdev;
2062 if (rdev)
2063 pr_debug(" disk %d, wo:%d, o:%d, dev:%pg\n",
2064 i, !test_bit(In_sync, &rdev->flags),
2065 !test_bit(Faulty, &rdev->flags),
2066 rdev->bdev);
2070 static void close_sync(struct r10conf *conf)
2072 wait_barrier(conf, false);
2073 allow_barrier(conf);
2075 mempool_exit(&conf->r10buf_pool);
2078 static int raid10_spare_active(struct mddev *mddev)
2080 int i;
2081 struct r10conf *conf = mddev->private;
2082 struct raid10_info *tmp;
2083 int count = 0;
2084 unsigned long flags;
2087 * Find all non-in_sync disks within the RAID10 configuration
2088 * and mark them in_sync
2090 for (i = 0; i < conf->geo.raid_disks; i++) {
2091 tmp = conf->mirrors + i;
2092 if (tmp->replacement
2093 && tmp->replacement->recovery_offset == MaxSector
2094 && !test_bit(Faulty, &tmp->replacement->flags)
2095 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
2096 /* Replacement has just become active */
2097 if (!tmp->rdev
2098 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
2099 count++;
2100 if (tmp->rdev) {
2101 /* Replaced device not technically faulty,
2102 * but we need to be sure it gets removed
2103 * and never re-added.
2105 set_bit(Faulty, &tmp->rdev->flags);
2106 sysfs_notify_dirent_safe(
2107 tmp->rdev->sysfs_state);
2109 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
2110 } else if (tmp->rdev
2111 && tmp->rdev->recovery_offset == MaxSector
2112 && !test_bit(Faulty, &tmp->rdev->flags)
2113 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
2114 count++;
2115 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
2118 spin_lock_irqsave(&conf->device_lock, flags);
2119 mddev->degraded -= count;
2120 spin_unlock_irqrestore(&conf->device_lock, flags);
2122 print_conf(conf);
2123 return count;
2126 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
2128 struct r10conf *conf = mddev->private;
2129 int err = -EEXIST;
2130 int mirror, repl_slot = -1;
2131 int first = 0;
2132 int last = conf->geo.raid_disks - 1;
2133 struct raid10_info *p;
2135 if (mddev->recovery_cp < MaxSector)
2136 /* only hot-add to in-sync arrays, as recovery is
2137 * very different from resync
2139 return -EBUSY;
2140 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
2141 return -EINVAL;
2143 if (rdev->raid_disk >= 0)
2144 first = last = rdev->raid_disk;
2146 if (rdev->saved_raid_disk >= first &&
2147 rdev->saved_raid_disk < conf->geo.raid_disks &&
2148 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
2149 mirror = rdev->saved_raid_disk;
2150 else
2151 mirror = first;
2152 for ( ; mirror <= last ; mirror++) {
2153 p = &conf->mirrors[mirror];
2154 if (p->recovery_disabled == mddev->recovery_disabled)
2155 continue;
2156 if (p->rdev) {
2157 if (test_bit(WantReplacement, &p->rdev->flags) &&
2158 p->replacement == NULL && repl_slot < 0)
2159 repl_slot = mirror;
2160 continue;
2163 err = mddev_stack_new_rdev(mddev, rdev);
2164 if (err)
2165 return err;
2166 p->head_position = 0;
2167 p->recovery_disabled = mddev->recovery_disabled - 1;
2168 rdev->raid_disk = mirror;
2169 err = 0;
2170 if (rdev->saved_raid_disk != mirror)
2171 conf->fullsync = 1;
2172 WRITE_ONCE(p->rdev, rdev);
2173 break;
2176 if (err && repl_slot >= 0) {
2177 p = &conf->mirrors[repl_slot];
2178 clear_bit(In_sync, &rdev->flags);
2179 set_bit(Replacement, &rdev->flags);
2180 rdev->raid_disk = repl_slot;
2181 err = mddev_stack_new_rdev(mddev, rdev);
2182 if (err)
2183 return err;
2184 conf->fullsync = 1;
2185 WRITE_ONCE(p->replacement, rdev);
2188 print_conf(conf);
2189 return err;
2192 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
2194 struct r10conf *conf = mddev->private;
2195 int err = 0;
2196 int number = rdev->raid_disk;
2197 struct md_rdev **rdevp;
2198 struct raid10_info *p;
2200 print_conf(conf);
2201 if (unlikely(number >= mddev->raid_disks))
2202 return 0;
2203 p = conf->mirrors + number;
2204 if (rdev == p->rdev)
2205 rdevp = &p->rdev;
2206 else if (rdev == p->replacement)
2207 rdevp = &p->replacement;
2208 else
2209 return 0;
2211 if (test_bit(In_sync, &rdev->flags) ||
2212 atomic_read(&rdev->nr_pending)) {
2213 err = -EBUSY;
2214 goto abort;
2216 /* Only remove non-faulty devices if recovery
2217 * is not possible.
2219 if (!test_bit(Faulty, &rdev->flags) &&
2220 mddev->recovery_disabled != p->recovery_disabled &&
2221 (!p->replacement || p->replacement == rdev) &&
2222 number < conf->geo.raid_disks &&
2223 enough(conf, -1)) {
2224 err = -EBUSY;
2225 goto abort;
2227 WRITE_ONCE(*rdevp, NULL);
2228 if (p->replacement) {
2229 /* We must have just cleared 'rdev' */
2230 WRITE_ONCE(p->rdev, p->replacement);
2231 clear_bit(Replacement, &p->replacement->flags);
2232 WRITE_ONCE(p->replacement, NULL);
2235 clear_bit(WantReplacement, &rdev->flags);
2236 err = md_integrity_register(mddev);
2238 abort:
2240 print_conf(conf);
2241 return err;
2244 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
2246 struct r10conf *conf = r10_bio->mddev->private;
2248 if (!bio->bi_status)
2249 set_bit(R10BIO_Uptodate, &r10_bio->state);
2250 else
2251 /* The write handler will notice the lack of
2252 * R10BIO_Uptodate and record any errors etc
2254 atomic_add(r10_bio->sectors,
2255 &conf->mirrors[d].rdev->corrected_errors);
2257 /* for reconstruct, we always reschedule after a read.
2258 * for resync, only after all reads
2260 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
2261 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
2262 atomic_dec_and_test(&r10_bio->remaining)) {
2263 /* we have read all the blocks,
2264 * do the comparison in process context in raid10d
2266 reschedule_retry(r10_bio);
2270 static void end_sync_read(struct bio *bio)
2272 struct r10bio *r10_bio = get_resync_r10bio(bio);
2273 struct r10conf *conf = r10_bio->mddev->private;
2274 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
2276 __end_sync_read(r10_bio, bio, d);
2279 static void end_reshape_read(struct bio *bio)
2281 /* reshape read bio isn't allocated from r10buf_pool */
2282 struct r10bio *r10_bio = bio->bi_private;
2284 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
2287 static void end_sync_request(struct r10bio *r10_bio)
2289 struct mddev *mddev = r10_bio->mddev;
2291 while (atomic_dec_and_test(&r10_bio->remaining)) {
2292 if (r10_bio->master_bio == NULL) {
2293 /* the primary of several recovery bios */
2294 sector_t s = r10_bio->sectors;
2295 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2296 test_bit(R10BIO_WriteError, &r10_bio->state))
2297 reschedule_retry(r10_bio);
2298 else
2299 put_buf(r10_bio);
2300 md_done_sync(mddev, s, 1);
2301 break;
2302 } else {
2303 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2304 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2305 test_bit(R10BIO_WriteError, &r10_bio->state))
2306 reschedule_retry(r10_bio);
2307 else
2308 put_buf(r10_bio);
2309 r10_bio = r10_bio2;
2314 static void end_sync_write(struct bio *bio)
2316 struct r10bio *r10_bio = get_resync_r10bio(bio);
2317 struct mddev *mddev = r10_bio->mddev;
2318 struct r10conf *conf = mddev->private;
2319 int d;
2320 int slot;
2321 int repl;
2322 struct md_rdev *rdev = NULL;
2324 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2325 if (repl)
2326 rdev = conf->mirrors[d].replacement;
2327 else
2328 rdev = conf->mirrors[d].rdev;
2330 if (bio->bi_status) {
2331 if (repl)
2332 md_error(mddev, rdev);
2333 else {
2334 set_bit(WriteErrorSeen, &rdev->flags);
2335 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2336 set_bit(MD_RECOVERY_NEEDED,
2337 &rdev->mddev->recovery);
2338 set_bit(R10BIO_WriteError, &r10_bio->state);
2340 } else if (rdev_has_badblock(rdev, r10_bio->devs[slot].addr,
2341 r10_bio->sectors)) {
2342 set_bit(R10BIO_MadeGood, &r10_bio->state);
2345 rdev_dec_pending(rdev, mddev);
2347 end_sync_request(r10_bio);
2351 * Note: sync and recover and handled very differently for raid10
2352 * This code is for resync.
2353 * For resync, we read through virtual addresses and read all blocks.
2354 * If there is any error, we schedule a write. The lowest numbered
2355 * drive is authoritative.
2356 * However requests come for physical address, so we need to map.
2357 * For every physical address there are raid_disks/copies virtual addresses,
2358 * which is always are least one, but is not necessarly an integer.
2359 * This means that a physical address can span multiple chunks, so we may
2360 * have to submit multiple io requests for a single sync request.
2363 * We check if all blocks are in-sync and only write to blocks that
2364 * aren't in sync
2366 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2368 struct r10conf *conf = mddev->private;
2369 int i, first;
2370 struct bio *tbio, *fbio;
2371 int vcnt;
2372 struct page **tpages, **fpages;
2374 atomic_set(&r10_bio->remaining, 1);
2376 /* find the first device with a block */
2377 for (i=0; i<conf->copies; i++)
2378 if (!r10_bio->devs[i].bio->bi_status)
2379 break;
2381 if (i == conf->copies)
2382 goto done;
2384 first = i;
2385 fbio = r10_bio->devs[i].bio;
2386 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2387 fbio->bi_iter.bi_idx = 0;
2388 fpages = get_resync_pages(fbio)->pages;
2390 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2391 /* now find blocks with errors */
2392 for (i=0 ; i < conf->copies ; i++) {
2393 int j, d;
2394 struct md_rdev *rdev;
2395 struct resync_pages *rp;
2397 tbio = r10_bio->devs[i].bio;
2399 if (tbio->bi_end_io != end_sync_read)
2400 continue;
2401 if (i == first)
2402 continue;
2404 tpages = get_resync_pages(tbio)->pages;
2405 d = r10_bio->devs[i].devnum;
2406 rdev = conf->mirrors[d].rdev;
2407 if (!r10_bio->devs[i].bio->bi_status) {
2408 /* We know that the bi_io_vec layout is the same for
2409 * both 'first' and 'i', so we just compare them.
2410 * All vec entries are PAGE_SIZE;
2412 int sectors = r10_bio->sectors;
2413 for (j = 0; j < vcnt; j++) {
2414 int len = PAGE_SIZE;
2415 if (sectors < (len / 512))
2416 len = sectors * 512;
2417 if (memcmp(page_address(fpages[j]),
2418 page_address(tpages[j]),
2419 len))
2420 break;
2421 sectors -= len/512;
2423 if (j == vcnt)
2424 continue;
2425 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2426 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2427 /* Don't fix anything. */
2428 continue;
2429 } else if (test_bit(FailFast, &rdev->flags)) {
2430 /* Just give up on this device */
2431 md_error(rdev->mddev, rdev);
2432 continue;
2434 /* Ok, we need to write this bio, either to correct an
2435 * inconsistency or to correct an unreadable block.
2436 * First we need to fixup bv_offset, bv_len and
2437 * bi_vecs, as the read request might have corrupted these
2439 rp = get_resync_pages(tbio);
2440 bio_reset(tbio, conf->mirrors[d].rdev->bdev, REQ_OP_WRITE);
2442 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2444 rp->raid_bio = r10_bio;
2445 tbio->bi_private = rp;
2446 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2447 tbio->bi_end_io = end_sync_write;
2449 bio_copy_data(tbio, fbio);
2451 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2452 atomic_inc(&r10_bio->remaining);
2453 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2455 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2456 tbio->bi_opf |= MD_FAILFAST;
2457 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2458 submit_bio_noacct(tbio);
2461 /* Now write out to any replacement devices
2462 * that are active
2464 for (i = 0; i < conf->copies; i++) {
2465 int d;
2467 tbio = r10_bio->devs[i].repl_bio;
2468 if (!tbio || !tbio->bi_end_io)
2469 continue;
2470 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2471 && r10_bio->devs[i].bio != fbio)
2472 bio_copy_data(tbio, fbio);
2473 d = r10_bio->devs[i].devnum;
2474 atomic_inc(&r10_bio->remaining);
2475 md_sync_acct(conf->mirrors[d].replacement->bdev,
2476 bio_sectors(tbio));
2477 submit_bio_noacct(tbio);
2480 done:
2481 if (atomic_dec_and_test(&r10_bio->remaining)) {
2482 md_done_sync(mddev, r10_bio->sectors, 1);
2483 put_buf(r10_bio);
2488 * Now for the recovery code.
2489 * Recovery happens across physical sectors.
2490 * We recover all non-is_sync drives by finding the virtual address of
2491 * each, and then choose a working drive that also has that virt address.
2492 * There is a separate r10_bio for each non-in_sync drive.
2493 * Only the first two slots are in use. The first for reading,
2494 * The second for writing.
2497 static void fix_recovery_read_error(struct r10bio *r10_bio)
2499 /* We got a read error during recovery.
2500 * We repeat the read in smaller page-sized sections.
2501 * If a read succeeds, write it to the new device or record
2502 * a bad block if we cannot.
2503 * If a read fails, record a bad block on both old and
2504 * new devices.
2506 struct mddev *mddev = r10_bio->mddev;
2507 struct r10conf *conf = mddev->private;
2508 struct bio *bio = r10_bio->devs[0].bio;
2509 sector_t sect = 0;
2510 int sectors = r10_bio->sectors;
2511 int idx = 0;
2512 int dr = r10_bio->devs[0].devnum;
2513 int dw = r10_bio->devs[1].devnum;
2514 struct page **pages = get_resync_pages(bio)->pages;
2516 while (sectors) {
2517 int s = sectors;
2518 struct md_rdev *rdev;
2519 sector_t addr;
2520 int ok;
2522 if (s > (PAGE_SIZE>>9))
2523 s = PAGE_SIZE >> 9;
2525 rdev = conf->mirrors[dr].rdev;
2526 addr = r10_bio->devs[0].addr + sect;
2527 ok = sync_page_io(rdev,
2528 addr,
2529 s << 9,
2530 pages[idx],
2531 REQ_OP_READ, false);
2532 if (ok) {
2533 rdev = conf->mirrors[dw].rdev;
2534 addr = r10_bio->devs[1].addr + sect;
2535 ok = sync_page_io(rdev,
2536 addr,
2537 s << 9,
2538 pages[idx],
2539 REQ_OP_WRITE, false);
2540 if (!ok) {
2541 set_bit(WriteErrorSeen, &rdev->flags);
2542 if (!test_and_set_bit(WantReplacement,
2543 &rdev->flags))
2544 set_bit(MD_RECOVERY_NEEDED,
2545 &rdev->mddev->recovery);
2548 if (!ok) {
2549 /* We don't worry if we cannot set a bad block -
2550 * it really is bad so there is no loss in not
2551 * recording it yet
2553 rdev_set_badblocks(rdev, addr, s, 0);
2555 if (rdev != conf->mirrors[dw].rdev) {
2556 /* need bad block on destination too */
2557 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2558 addr = r10_bio->devs[1].addr + sect;
2559 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2560 if (!ok) {
2561 /* just abort the recovery */
2562 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2563 mdname(mddev));
2565 conf->mirrors[dw].recovery_disabled
2566 = mddev->recovery_disabled;
2567 set_bit(MD_RECOVERY_INTR,
2568 &mddev->recovery);
2569 break;
2574 sectors -= s;
2575 sect += s;
2576 idx++;
2580 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2582 struct r10conf *conf = mddev->private;
2583 int d;
2584 struct bio *wbio = r10_bio->devs[1].bio;
2585 struct bio *wbio2 = r10_bio->devs[1].repl_bio;
2587 /* Need to test wbio2->bi_end_io before we call
2588 * submit_bio_noacct as if the former is NULL,
2589 * the latter is free to free wbio2.
2591 if (wbio2 && !wbio2->bi_end_io)
2592 wbio2 = NULL;
2594 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2595 fix_recovery_read_error(r10_bio);
2596 if (wbio->bi_end_io)
2597 end_sync_request(r10_bio);
2598 if (wbio2)
2599 end_sync_request(r10_bio);
2600 return;
2604 * share the pages with the first bio
2605 * and submit the write request
2607 d = r10_bio->devs[1].devnum;
2608 if (wbio->bi_end_io) {
2609 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2610 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2611 submit_bio_noacct(wbio);
2613 if (wbio2) {
2614 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2615 md_sync_acct(conf->mirrors[d].replacement->bdev,
2616 bio_sectors(wbio2));
2617 submit_bio_noacct(wbio2);
2621 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2622 int sectors, struct page *page, enum req_op op)
2624 if (rdev_has_badblock(rdev, sector, sectors) &&
2625 (op == REQ_OP_READ || test_bit(WriteErrorSeen, &rdev->flags)))
2626 return -1;
2627 if (sync_page_io(rdev, sector, sectors << 9, page, op, false))
2628 /* success */
2629 return 1;
2630 if (op == REQ_OP_WRITE) {
2631 set_bit(WriteErrorSeen, &rdev->flags);
2632 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2633 set_bit(MD_RECOVERY_NEEDED,
2634 &rdev->mddev->recovery);
2636 /* need to record an error - either for the block or the device */
2637 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2638 md_error(rdev->mddev, rdev);
2639 return 0;
2643 * This is a kernel thread which:
2645 * 1. Retries failed read operations on working mirrors.
2646 * 2. Updates the raid superblock when problems encounter.
2647 * 3. Performs writes following reads for array synchronising.
2650 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2652 int sect = 0; /* Offset from r10_bio->sector */
2653 int sectors = r10_bio->sectors, slot = r10_bio->read_slot;
2654 struct md_rdev *rdev;
2655 int d = r10_bio->devs[slot].devnum;
2657 /* still own a reference to this rdev, so it cannot
2658 * have been cleared recently.
2660 rdev = conf->mirrors[d].rdev;
2662 if (test_bit(Faulty, &rdev->flags))
2663 /* drive has already been failed, just ignore any
2664 more fix_read_error() attempts */
2665 return;
2667 if (exceed_read_errors(mddev, rdev)) {
2668 r10_bio->devs[slot].bio = IO_BLOCKED;
2669 return;
2672 while(sectors) {
2673 int s = sectors;
2674 int sl = slot;
2675 int success = 0;
2676 int start;
2678 if (s > (PAGE_SIZE>>9))
2679 s = PAGE_SIZE >> 9;
2681 do {
2682 d = r10_bio->devs[sl].devnum;
2683 rdev = conf->mirrors[d].rdev;
2684 if (rdev &&
2685 test_bit(In_sync, &rdev->flags) &&
2686 !test_bit(Faulty, &rdev->flags) &&
2687 rdev_has_badblock(rdev,
2688 r10_bio->devs[sl].addr + sect,
2689 s) == 0) {
2690 atomic_inc(&rdev->nr_pending);
2691 success = sync_page_io(rdev,
2692 r10_bio->devs[sl].addr +
2693 sect,
2694 s<<9,
2695 conf->tmppage,
2696 REQ_OP_READ, false);
2697 rdev_dec_pending(rdev, mddev);
2698 if (success)
2699 break;
2701 sl++;
2702 if (sl == conf->copies)
2703 sl = 0;
2704 } while (sl != slot);
2706 if (!success) {
2707 /* Cannot read from anywhere, just mark the block
2708 * as bad on the first device to discourage future
2709 * reads.
2711 int dn = r10_bio->devs[slot].devnum;
2712 rdev = conf->mirrors[dn].rdev;
2714 if (!rdev_set_badblocks(
2715 rdev,
2716 r10_bio->devs[slot].addr
2717 + sect,
2718 s, 0)) {
2719 md_error(mddev, rdev);
2720 r10_bio->devs[slot].bio
2721 = IO_BLOCKED;
2723 break;
2726 start = sl;
2727 /* write it back and re-read */
2728 while (sl != slot) {
2729 if (sl==0)
2730 sl = conf->copies;
2731 sl--;
2732 d = r10_bio->devs[sl].devnum;
2733 rdev = conf->mirrors[d].rdev;
2734 if (!rdev ||
2735 test_bit(Faulty, &rdev->flags) ||
2736 !test_bit(In_sync, &rdev->flags))
2737 continue;
2739 atomic_inc(&rdev->nr_pending);
2740 if (r10_sync_page_io(rdev,
2741 r10_bio->devs[sl].addr +
2742 sect,
2743 s, conf->tmppage, REQ_OP_WRITE)
2744 == 0) {
2745 /* Well, this device is dead */
2746 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %pg)\n",
2747 mdname(mddev), s,
2748 (unsigned long long)(
2749 sect +
2750 choose_data_offset(r10_bio,
2751 rdev)),
2752 rdev->bdev);
2753 pr_notice("md/raid10:%s: %pg: failing drive\n",
2754 mdname(mddev),
2755 rdev->bdev);
2757 rdev_dec_pending(rdev, mddev);
2759 sl = start;
2760 while (sl != slot) {
2761 if (sl==0)
2762 sl = conf->copies;
2763 sl--;
2764 d = r10_bio->devs[sl].devnum;
2765 rdev = conf->mirrors[d].rdev;
2766 if (!rdev ||
2767 test_bit(Faulty, &rdev->flags) ||
2768 !test_bit(In_sync, &rdev->flags))
2769 continue;
2771 atomic_inc(&rdev->nr_pending);
2772 switch (r10_sync_page_io(rdev,
2773 r10_bio->devs[sl].addr +
2774 sect,
2775 s, conf->tmppage, REQ_OP_READ)) {
2776 case 0:
2777 /* Well, this device is dead */
2778 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %pg)\n",
2779 mdname(mddev), s,
2780 (unsigned long long)(
2781 sect +
2782 choose_data_offset(r10_bio, rdev)),
2783 rdev->bdev);
2784 pr_notice("md/raid10:%s: %pg: failing drive\n",
2785 mdname(mddev),
2786 rdev->bdev);
2787 break;
2788 case 1:
2789 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %pg)\n",
2790 mdname(mddev), s,
2791 (unsigned long long)(
2792 sect +
2793 choose_data_offset(r10_bio, rdev)),
2794 rdev->bdev);
2795 atomic_add(s, &rdev->corrected_errors);
2798 rdev_dec_pending(rdev, mddev);
2801 sectors -= s;
2802 sect += s;
2806 static int narrow_write_error(struct r10bio *r10_bio, int i)
2808 struct bio *bio = r10_bio->master_bio;
2809 struct mddev *mddev = r10_bio->mddev;
2810 struct r10conf *conf = mddev->private;
2811 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2812 /* bio has the data to be written to slot 'i' where
2813 * we just recently had a write error.
2814 * We repeatedly clone the bio and trim down to one block,
2815 * then try the write. Where the write fails we record
2816 * a bad block.
2817 * It is conceivable that the bio doesn't exactly align with
2818 * blocks. We must handle this.
2820 * We currently own a reference to the rdev.
2823 int block_sectors;
2824 sector_t sector;
2825 int sectors;
2826 int sect_to_write = r10_bio->sectors;
2827 int ok = 1;
2829 if (rdev->badblocks.shift < 0)
2830 return 0;
2832 block_sectors = roundup(1 << rdev->badblocks.shift,
2833 bdev_logical_block_size(rdev->bdev) >> 9);
2834 sector = r10_bio->sector;
2835 sectors = ((r10_bio->sector + block_sectors)
2836 & ~(sector_t)(block_sectors - 1))
2837 - sector;
2839 while (sect_to_write) {
2840 struct bio *wbio;
2841 sector_t wsector;
2842 if (sectors > sect_to_write)
2843 sectors = sect_to_write;
2844 /* Write at 'sector' for 'sectors' */
2845 wbio = bio_alloc_clone(rdev->bdev, bio, GFP_NOIO,
2846 &mddev->bio_set);
2847 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2848 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2849 wbio->bi_iter.bi_sector = wsector +
2850 choose_data_offset(r10_bio, rdev);
2851 wbio->bi_opf = REQ_OP_WRITE;
2853 if (submit_bio_wait(wbio) < 0)
2854 /* Failure! */
2855 ok = rdev_set_badblocks(rdev, wsector,
2856 sectors, 0)
2857 && ok;
2859 bio_put(wbio);
2860 sect_to_write -= sectors;
2861 sector += sectors;
2862 sectors = block_sectors;
2864 return ok;
2867 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2869 int slot = r10_bio->read_slot;
2870 struct bio *bio;
2871 struct r10conf *conf = mddev->private;
2872 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2874 /* we got a read error. Maybe the drive is bad. Maybe just
2875 * the block and we can fix it.
2876 * We freeze all other IO, and try reading the block from
2877 * other devices. When we find one, we re-write
2878 * and check it that fixes the read error.
2879 * This is all done synchronously while the array is
2880 * frozen.
2882 bio = r10_bio->devs[slot].bio;
2883 bio_put(bio);
2884 r10_bio->devs[slot].bio = NULL;
2886 if (mddev->ro)
2887 r10_bio->devs[slot].bio = IO_BLOCKED;
2888 else if (!test_bit(FailFast, &rdev->flags)) {
2889 freeze_array(conf, 1);
2890 fix_read_error(conf, mddev, r10_bio);
2891 unfreeze_array(conf);
2892 } else
2893 md_error(mddev, rdev);
2895 rdev_dec_pending(rdev, mddev);
2896 r10_bio->state = 0;
2897 raid10_read_request(mddev, r10_bio->master_bio, r10_bio, false);
2899 * allow_barrier after re-submit to ensure no sync io
2900 * can be issued while regular io pending.
2902 allow_barrier(conf);
2905 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2907 /* Some sort of write request has finished and it
2908 * succeeded in writing where we thought there was a
2909 * bad block. So forget the bad block.
2910 * Or possibly if failed and we need to record
2911 * a bad block.
2913 int m;
2914 struct md_rdev *rdev;
2916 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2917 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2918 for (m = 0; m < conf->copies; m++) {
2919 int dev = r10_bio->devs[m].devnum;
2920 rdev = conf->mirrors[dev].rdev;
2921 if (r10_bio->devs[m].bio == NULL ||
2922 r10_bio->devs[m].bio->bi_end_io == NULL)
2923 continue;
2924 if (!r10_bio->devs[m].bio->bi_status) {
2925 rdev_clear_badblocks(
2926 rdev,
2927 r10_bio->devs[m].addr,
2928 r10_bio->sectors, 0);
2929 } else {
2930 if (!rdev_set_badblocks(
2931 rdev,
2932 r10_bio->devs[m].addr,
2933 r10_bio->sectors, 0))
2934 md_error(conf->mddev, rdev);
2936 rdev = conf->mirrors[dev].replacement;
2937 if (r10_bio->devs[m].repl_bio == NULL ||
2938 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2939 continue;
2941 if (!r10_bio->devs[m].repl_bio->bi_status) {
2942 rdev_clear_badblocks(
2943 rdev,
2944 r10_bio->devs[m].addr,
2945 r10_bio->sectors, 0);
2946 } else {
2947 if (!rdev_set_badblocks(
2948 rdev,
2949 r10_bio->devs[m].addr,
2950 r10_bio->sectors, 0))
2951 md_error(conf->mddev, rdev);
2954 put_buf(r10_bio);
2955 } else {
2956 bool fail = false;
2957 for (m = 0; m < conf->copies; m++) {
2958 int dev = r10_bio->devs[m].devnum;
2959 struct bio *bio = r10_bio->devs[m].bio;
2960 rdev = conf->mirrors[dev].rdev;
2961 if (bio == IO_MADE_GOOD) {
2962 rdev_clear_badblocks(
2963 rdev,
2964 r10_bio->devs[m].addr,
2965 r10_bio->sectors, 0);
2966 rdev_dec_pending(rdev, conf->mddev);
2967 } else if (bio != NULL && bio->bi_status) {
2968 fail = true;
2969 if (!narrow_write_error(r10_bio, m)) {
2970 md_error(conf->mddev, rdev);
2971 set_bit(R10BIO_Degraded,
2972 &r10_bio->state);
2974 rdev_dec_pending(rdev, conf->mddev);
2976 bio = r10_bio->devs[m].repl_bio;
2977 rdev = conf->mirrors[dev].replacement;
2978 if (rdev && bio == IO_MADE_GOOD) {
2979 rdev_clear_badblocks(
2980 rdev,
2981 r10_bio->devs[m].addr,
2982 r10_bio->sectors, 0);
2983 rdev_dec_pending(rdev, conf->mddev);
2986 if (fail) {
2987 spin_lock_irq(&conf->device_lock);
2988 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2989 conf->nr_queued++;
2990 spin_unlock_irq(&conf->device_lock);
2992 * In case freeze_array() is waiting for condition
2993 * nr_pending == nr_queued + extra to be true.
2995 wake_up(&conf->wait_barrier);
2996 md_wakeup_thread(conf->mddev->thread);
2997 } else {
2998 if (test_bit(R10BIO_WriteError,
2999 &r10_bio->state))
3000 close_write(r10_bio);
3001 raid_end_bio_io(r10_bio);
3006 static void raid10d(struct md_thread *thread)
3008 struct mddev *mddev = thread->mddev;
3009 struct r10bio *r10_bio;
3010 unsigned long flags;
3011 struct r10conf *conf = mddev->private;
3012 struct list_head *head = &conf->retry_list;
3013 struct blk_plug plug;
3015 md_check_recovery(mddev);
3017 if (!list_empty_careful(&conf->bio_end_io_list) &&
3018 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3019 LIST_HEAD(tmp);
3020 spin_lock_irqsave(&conf->device_lock, flags);
3021 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
3022 while (!list_empty(&conf->bio_end_io_list)) {
3023 list_move(conf->bio_end_io_list.prev, &tmp);
3024 conf->nr_queued--;
3027 spin_unlock_irqrestore(&conf->device_lock, flags);
3028 while (!list_empty(&tmp)) {
3029 r10_bio = list_first_entry(&tmp, struct r10bio,
3030 retry_list);
3031 list_del(&r10_bio->retry_list);
3032 if (mddev->degraded)
3033 set_bit(R10BIO_Degraded, &r10_bio->state);
3035 if (test_bit(R10BIO_WriteError,
3036 &r10_bio->state))
3037 close_write(r10_bio);
3038 raid_end_bio_io(r10_bio);
3042 blk_start_plug(&plug);
3043 for (;;) {
3045 flush_pending_writes(conf);
3047 spin_lock_irqsave(&conf->device_lock, flags);
3048 if (list_empty(head)) {
3049 spin_unlock_irqrestore(&conf->device_lock, flags);
3050 break;
3052 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
3053 list_del(head->prev);
3054 conf->nr_queued--;
3055 spin_unlock_irqrestore(&conf->device_lock, flags);
3057 mddev = r10_bio->mddev;
3058 conf = mddev->private;
3059 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
3060 test_bit(R10BIO_WriteError, &r10_bio->state))
3061 handle_write_completed(conf, r10_bio);
3062 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
3063 reshape_request_write(mddev, r10_bio);
3064 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
3065 sync_request_write(mddev, r10_bio);
3066 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
3067 recovery_request_write(mddev, r10_bio);
3068 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
3069 handle_read_error(mddev, r10_bio);
3070 else
3071 WARN_ON_ONCE(1);
3073 cond_resched();
3074 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
3075 md_check_recovery(mddev);
3077 blk_finish_plug(&plug);
3080 static int init_resync(struct r10conf *conf)
3082 int ret, buffs, i;
3084 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
3085 BUG_ON(mempool_initialized(&conf->r10buf_pool));
3086 conf->have_replacement = 0;
3087 for (i = 0; i < conf->geo.raid_disks; i++)
3088 if (conf->mirrors[i].replacement)
3089 conf->have_replacement = 1;
3090 ret = mempool_init(&conf->r10buf_pool, buffs,
3091 r10buf_pool_alloc, r10buf_pool_free, conf);
3092 if (ret)
3093 return ret;
3094 conf->next_resync = 0;
3095 return 0;
3098 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
3100 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
3101 struct rsync_pages *rp;
3102 struct bio *bio;
3103 int nalloc;
3104 int i;
3106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
3107 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
3108 nalloc = conf->copies; /* resync */
3109 else
3110 nalloc = 2; /* recovery */
3112 for (i = 0; i < nalloc; i++) {
3113 bio = r10bio->devs[i].bio;
3114 rp = bio->bi_private;
3115 bio_reset(bio, NULL, 0);
3116 bio->bi_private = rp;
3117 bio = r10bio->devs[i].repl_bio;
3118 if (bio) {
3119 rp = bio->bi_private;
3120 bio_reset(bio, NULL, 0);
3121 bio->bi_private = rp;
3124 return r10bio;
3128 * Set cluster_sync_high since we need other nodes to add the
3129 * range [cluster_sync_low, cluster_sync_high] to suspend list.
3131 static void raid10_set_cluster_sync_high(struct r10conf *conf)
3133 sector_t window_size;
3134 int extra_chunk, chunks;
3137 * First, here we define "stripe" as a unit which across
3138 * all member devices one time, so we get chunks by use
3139 * raid_disks / near_copies. Otherwise, if near_copies is
3140 * close to raid_disks, then resync window could increases
3141 * linearly with the increase of raid_disks, which means
3142 * we will suspend a really large IO window while it is not
3143 * necessary. If raid_disks is not divisible by near_copies,
3144 * an extra chunk is needed to ensure the whole "stripe" is
3145 * covered.
3148 chunks = conf->geo.raid_disks / conf->geo.near_copies;
3149 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
3150 extra_chunk = 0;
3151 else
3152 extra_chunk = 1;
3153 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
3156 * At least use a 32M window to align with raid1's resync window
3158 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
3159 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
3161 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
3165 * perform a "sync" on one "block"
3167 * We need to make sure that no normal I/O request - particularly write
3168 * requests - conflict with active sync requests.
3170 * This is achieved by tracking pending requests and a 'barrier' concept
3171 * that can be installed to exclude normal IO requests.
3173 * Resync and recovery are handled very differently.
3174 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
3176 * For resync, we iterate over virtual addresses, read all copies,
3177 * and update if there are differences. If only one copy is live,
3178 * skip it.
3179 * For recovery, we iterate over physical addresses, read a good
3180 * value for each non-in_sync drive, and over-write.
3182 * So, for recovery we may have several outstanding complex requests for a
3183 * given address, one for each out-of-sync device. We model this by allocating
3184 * a number of r10_bio structures, one for each out-of-sync device.
3185 * As we setup these structures, we collect all bio's together into a list
3186 * which we then process collectively to add pages, and then process again
3187 * to pass to submit_bio_noacct.
3189 * The r10_bio structures are linked using a borrowed master_bio pointer.
3190 * This link is counted in ->remaining. When the r10_bio that points to NULL
3191 * has its remaining count decremented to 0, the whole complex operation
3192 * is complete.
3196 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
3197 sector_t max_sector, int *skipped)
3199 struct r10conf *conf = mddev->private;
3200 struct r10bio *r10_bio;
3201 struct bio *biolist = NULL, *bio;
3202 sector_t nr_sectors;
3203 int i;
3204 int max_sync;
3205 sector_t sync_blocks;
3206 sector_t sectors_skipped = 0;
3207 int chunks_skipped = 0;
3208 sector_t chunk_mask = conf->geo.chunk_mask;
3209 int page_idx = 0;
3210 int error_disk = -1;
3213 * Allow skipping a full rebuild for incremental assembly
3214 * of a clean array, like RAID1 does.
3216 if (mddev->bitmap == NULL &&
3217 mddev->recovery_cp == MaxSector &&
3218 mddev->reshape_position == MaxSector &&
3219 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3220 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3221 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3222 conf->fullsync == 0) {
3223 *skipped = 1;
3224 return mddev->dev_sectors - sector_nr;
3227 if (!mempool_initialized(&conf->r10buf_pool))
3228 if (init_resync(conf))
3229 return 0;
3231 skipped:
3232 if (sector_nr >= max_sector) {
3233 conf->cluster_sync_low = 0;
3234 conf->cluster_sync_high = 0;
3236 /* If we aborted, we need to abort the
3237 * sync on the 'current' bitmap chucks (there can
3238 * be several when recovering multiple devices).
3239 * as we may have started syncing it but not finished.
3240 * We can find the current address in
3241 * mddev->curr_resync, but for recovery,
3242 * we need to convert that to several
3243 * virtual addresses.
3245 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3246 end_reshape(conf);
3247 close_sync(conf);
3248 return 0;
3251 if (mddev->curr_resync < max_sector) { /* aborted */
3252 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3253 mddev->bitmap_ops->end_sync(mddev,
3254 mddev->curr_resync,
3255 &sync_blocks);
3256 else for (i = 0; i < conf->geo.raid_disks; i++) {
3257 sector_t sect =
3258 raid10_find_virt(conf, mddev->curr_resync, i);
3260 mddev->bitmap_ops->end_sync(mddev, sect,
3261 &sync_blocks);
3263 } else {
3264 /* completed sync */
3265 if ((!mddev->bitmap || conf->fullsync)
3266 && conf->have_replacement
3267 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3268 /* Completed a full sync so the replacements
3269 * are now fully recovered.
3271 for (i = 0; i < conf->geo.raid_disks; i++) {
3272 struct md_rdev *rdev =
3273 conf->mirrors[i].replacement;
3275 if (rdev)
3276 rdev->recovery_offset = MaxSector;
3279 conf->fullsync = 0;
3281 mddev->bitmap_ops->close_sync(mddev);
3282 close_sync(conf);
3283 *skipped = 1;
3284 return sectors_skipped;
3287 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3288 return reshape_request(mddev, sector_nr, skipped);
3290 if (chunks_skipped >= conf->geo.raid_disks) {
3291 pr_err("md/raid10:%s: %s fails\n", mdname(mddev),
3292 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery");
3293 if (error_disk >= 0 &&
3294 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3296 * recovery fails, set mirrors.recovery_disabled,
3297 * device shouldn't be added to there.
3299 conf->mirrors[error_disk].recovery_disabled =
3300 mddev->recovery_disabled;
3301 return 0;
3304 * if there has been nothing to do on any drive,
3305 * then there is nothing to do at all.
3307 *skipped = 1;
3308 return (max_sector - sector_nr) + sectors_skipped;
3311 if (max_sector > mddev->resync_max)
3312 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3314 /* make sure whole request will fit in a chunk - if chunks
3315 * are meaningful
3317 if (conf->geo.near_copies < conf->geo.raid_disks &&
3318 max_sector > (sector_nr | chunk_mask))
3319 max_sector = (sector_nr | chunk_mask) + 1;
3322 * If there is non-resync activity waiting for a turn, then let it
3323 * though before starting on this new sync request.
3325 if (conf->nr_waiting)
3326 schedule_timeout_uninterruptible(1);
3328 /* Again, very different code for resync and recovery.
3329 * Both must result in an r10bio with a list of bios that
3330 * have bi_end_io, bi_sector, bi_bdev set,
3331 * and bi_private set to the r10bio.
3332 * For recovery, we may actually create several r10bios
3333 * with 2 bios in each, that correspond to the bios in the main one.
3334 * In this case, the subordinate r10bios link back through a
3335 * borrowed master_bio pointer, and the counter in the master
3336 * includes a ref from each subordinate.
3338 /* First, we decide what to do and set ->bi_end_io
3339 * To end_sync_read if we want to read, and
3340 * end_sync_write if we will want to write.
3343 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3344 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3345 /* recovery... the complicated one */
3346 int j;
3347 r10_bio = NULL;
3349 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3350 bool still_degraded;
3351 struct r10bio *rb2;
3352 sector_t sect;
3353 bool must_sync;
3354 int any_working;
3355 struct raid10_info *mirror = &conf->mirrors[i];
3356 struct md_rdev *mrdev, *mreplace;
3358 mrdev = mirror->rdev;
3359 mreplace = mirror->replacement;
3361 if (mrdev && (test_bit(Faulty, &mrdev->flags) ||
3362 test_bit(In_sync, &mrdev->flags)))
3363 mrdev = NULL;
3364 if (mreplace && test_bit(Faulty, &mreplace->flags))
3365 mreplace = NULL;
3367 if (!mrdev && !mreplace)
3368 continue;
3370 still_degraded = false;
3371 /* want to reconstruct this device */
3372 rb2 = r10_bio;
3373 sect = raid10_find_virt(conf, sector_nr, i);
3374 if (sect >= mddev->resync_max_sectors)
3375 /* last stripe is not complete - don't
3376 * try to recover this sector.
3378 continue;
3379 /* Unless we are doing a full sync, or a replacement
3380 * we only need to recover the block if it is set in
3381 * the bitmap
3383 must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3384 &sync_blocks,
3385 true);
3386 if (sync_blocks < max_sync)
3387 max_sync = sync_blocks;
3388 if (!must_sync &&
3389 mreplace == NULL &&
3390 !conf->fullsync) {
3391 /* yep, skip the sync_blocks here, but don't assume
3392 * that there will never be anything to do here
3394 chunks_skipped = -1;
3395 continue;
3397 if (mrdev)
3398 atomic_inc(&mrdev->nr_pending);
3399 if (mreplace)
3400 atomic_inc(&mreplace->nr_pending);
3402 r10_bio = raid10_alloc_init_r10buf(conf);
3403 r10_bio->state = 0;
3404 raise_barrier(conf, rb2 != NULL);
3405 atomic_set(&r10_bio->remaining, 0);
3407 r10_bio->master_bio = (struct bio*)rb2;
3408 if (rb2)
3409 atomic_inc(&rb2->remaining);
3410 r10_bio->mddev = mddev;
3411 set_bit(R10BIO_IsRecover, &r10_bio->state);
3412 r10_bio->sector = sect;
3414 raid10_find_phys(conf, r10_bio);
3416 /* Need to check if the array will still be
3417 * degraded
3419 for (j = 0; j < conf->geo.raid_disks; j++) {
3420 struct md_rdev *rdev = conf->mirrors[j].rdev;
3422 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3423 still_degraded = false;
3424 break;
3428 must_sync = mddev->bitmap_ops->start_sync(mddev, sect,
3429 &sync_blocks, still_degraded);
3431 any_working = 0;
3432 for (j=0; j<conf->copies;j++) {
3433 int k;
3434 int d = r10_bio->devs[j].devnum;
3435 sector_t from_addr, to_addr;
3436 struct md_rdev *rdev = conf->mirrors[d].rdev;
3437 sector_t sector, first_bad;
3438 int bad_sectors;
3439 if (!rdev ||
3440 !test_bit(In_sync, &rdev->flags))
3441 continue;
3442 /* This is where we read from */
3443 any_working = 1;
3444 sector = r10_bio->devs[j].addr;
3446 if (is_badblock(rdev, sector, max_sync,
3447 &first_bad, &bad_sectors)) {
3448 if (first_bad > sector)
3449 max_sync = first_bad - sector;
3450 else {
3451 bad_sectors -= (sector
3452 - first_bad);
3453 if (max_sync > bad_sectors)
3454 max_sync = bad_sectors;
3455 continue;
3458 bio = r10_bio->devs[0].bio;
3459 bio->bi_next = biolist;
3460 biolist = bio;
3461 bio->bi_end_io = end_sync_read;
3462 bio->bi_opf = REQ_OP_READ;
3463 if (test_bit(FailFast, &rdev->flags))
3464 bio->bi_opf |= MD_FAILFAST;
3465 from_addr = r10_bio->devs[j].addr;
3466 bio->bi_iter.bi_sector = from_addr +
3467 rdev->data_offset;
3468 bio_set_dev(bio, rdev->bdev);
3469 atomic_inc(&rdev->nr_pending);
3470 /* and we write to 'i' (if not in_sync) */
3472 for (k=0; k<conf->copies; k++)
3473 if (r10_bio->devs[k].devnum == i)
3474 break;
3475 BUG_ON(k == conf->copies);
3476 to_addr = r10_bio->devs[k].addr;
3477 r10_bio->devs[0].devnum = d;
3478 r10_bio->devs[0].addr = from_addr;
3479 r10_bio->devs[1].devnum = i;
3480 r10_bio->devs[1].addr = to_addr;
3482 if (mrdev) {
3483 bio = r10_bio->devs[1].bio;
3484 bio->bi_next = biolist;
3485 biolist = bio;
3486 bio->bi_end_io = end_sync_write;
3487 bio->bi_opf = REQ_OP_WRITE;
3488 bio->bi_iter.bi_sector = to_addr
3489 + mrdev->data_offset;
3490 bio_set_dev(bio, mrdev->bdev);
3491 atomic_inc(&r10_bio->remaining);
3492 } else
3493 r10_bio->devs[1].bio->bi_end_io = NULL;
3495 /* and maybe write to replacement */
3496 bio = r10_bio->devs[1].repl_bio;
3497 if (bio)
3498 bio->bi_end_io = NULL;
3499 /* Note: if replace is not NULL, then bio
3500 * cannot be NULL as r10buf_pool_alloc will
3501 * have allocated it.
3503 if (!mreplace)
3504 break;
3505 bio->bi_next = biolist;
3506 biolist = bio;
3507 bio->bi_end_io = end_sync_write;
3508 bio->bi_opf = REQ_OP_WRITE;
3509 bio->bi_iter.bi_sector = to_addr +
3510 mreplace->data_offset;
3511 bio_set_dev(bio, mreplace->bdev);
3512 atomic_inc(&r10_bio->remaining);
3513 break;
3515 if (j == conf->copies) {
3516 /* Cannot recover, so abort the recovery or
3517 * record a bad block */
3518 if (any_working) {
3519 /* problem is that there are bad blocks
3520 * on other device(s)
3522 int k;
3523 for (k = 0; k < conf->copies; k++)
3524 if (r10_bio->devs[k].devnum == i)
3525 break;
3526 if (mrdev && !test_bit(In_sync,
3527 &mrdev->flags)
3528 && !rdev_set_badblocks(
3529 mrdev,
3530 r10_bio->devs[k].addr,
3531 max_sync, 0))
3532 any_working = 0;
3533 if (mreplace &&
3534 !rdev_set_badblocks(
3535 mreplace,
3536 r10_bio->devs[k].addr,
3537 max_sync, 0))
3538 any_working = 0;
3540 if (!any_working) {
3541 if (!test_and_set_bit(MD_RECOVERY_INTR,
3542 &mddev->recovery))
3543 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3544 mdname(mddev));
3545 mirror->recovery_disabled
3546 = mddev->recovery_disabled;
3547 } else {
3548 error_disk = i;
3550 put_buf(r10_bio);
3551 if (rb2)
3552 atomic_dec(&rb2->remaining);
3553 r10_bio = rb2;
3554 if (mrdev)
3555 rdev_dec_pending(mrdev, mddev);
3556 if (mreplace)
3557 rdev_dec_pending(mreplace, mddev);
3558 break;
3560 if (mrdev)
3561 rdev_dec_pending(mrdev, mddev);
3562 if (mreplace)
3563 rdev_dec_pending(mreplace, mddev);
3564 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3565 /* Only want this if there is elsewhere to
3566 * read from. 'j' is currently the first
3567 * readable copy.
3569 int targets = 1;
3570 for (; j < conf->copies; j++) {
3571 int d = r10_bio->devs[j].devnum;
3572 if (conf->mirrors[d].rdev &&
3573 test_bit(In_sync,
3574 &conf->mirrors[d].rdev->flags))
3575 targets++;
3577 if (targets == 1)
3578 r10_bio->devs[0].bio->bi_opf
3579 &= ~MD_FAILFAST;
3582 if (biolist == NULL) {
3583 while (r10_bio) {
3584 struct r10bio *rb2 = r10_bio;
3585 r10_bio = (struct r10bio*) rb2->master_bio;
3586 rb2->master_bio = NULL;
3587 put_buf(rb2);
3589 goto giveup;
3591 } else {
3592 /* resync. Schedule a read for every block at this virt offset */
3593 int count = 0;
3596 * Since curr_resync_completed could probably not update in
3597 * time, and we will set cluster_sync_low based on it.
3598 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3599 * safety reason, which ensures curr_resync_completed is
3600 * updated in bitmap_cond_end_sync.
3602 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr,
3603 mddev_is_clustered(mddev) &&
3604 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3606 if (!mddev->bitmap_ops->start_sync(mddev, sector_nr,
3607 &sync_blocks,
3608 mddev->degraded) &&
3609 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3610 &mddev->recovery)) {
3611 /* We can skip this block */
3612 *skipped = 1;
3613 return sync_blocks + sectors_skipped;
3615 if (sync_blocks < max_sync)
3616 max_sync = sync_blocks;
3617 r10_bio = raid10_alloc_init_r10buf(conf);
3618 r10_bio->state = 0;
3620 r10_bio->mddev = mddev;
3621 atomic_set(&r10_bio->remaining, 0);
3622 raise_barrier(conf, 0);
3623 conf->next_resync = sector_nr;
3625 r10_bio->master_bio = NULL;
3626 r10_bio->sector = sector_nr;
3627 set_bit(R10BIO_IsSync, &r10_bio->state);
3628 raid10_find_phys(conf, r10_bio);
3629 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3631 for (i = 0; i < conf->copies; i++) {
3632 int d = r10_bio->devs[i].devnum;
3633 sector_t first_bad, sector;
3634 int bad_sectors;
3635 struct md_rdev *rdev;
3637 if (r10_bio->devs[i].repl_bio)
3638 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3640 bio = r10_bio->devs[i].bio;
3641 bio->bi_status = BLK_STS_IOERR;
3642 rdev = conf->mirrors[d].rdev;
3643 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3644 continue;
3646 sector = r10_bio->devs[i].addr;
3647 if (is_badblock(rdev, sector, max_sync,
3648 &first_bad, &bad_sectors)) {
3649 if (first_bad > sector)
3650 max_sync = first_bad - sector;
3651 else {
3652 bad_sectors -= (sector - first_bad);
3653 if (max_sync > bad_sectors)
3654 max_sync = bad_sectors;
3655 continue;
3658 atomic_inc(&rdev->nr_pending);
3659 atomic_inc(&r10_bio->remaining);
3660 bio->bi_next = biolist;
3661 biolist = bio;
3662 bio->bi_end_io = end_sync_read;
3663 bio->bi_opf = REQ_OP_READ;
3664 if (test_bit(FailFast, &rdev->flags))
3665 bio->bi_opf |= MD_FAILFAST;
3666 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3667 bio_set_dev(bio, rdev->bdev);
3668 count++;
3670 rdev = conf->mirrors[d].replacement;
3671 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
3672 continue;
3674 atomic_inc(&rdev->nr_pending);
3676 /* Need to set up for writing to the replacement */
3677 bio = r10_bio->devs[i].repl_bio;
3678 bio->bi_status = BLK_STS_IOERR;
3680 sector = r10_bio->devs[i].addr;
3681 bio->bi_next = biolist;
3682 biolist = bio;
3683 bio->bi_end_io = end_sync_write;
3684 bio->bi_opf = REQ_OP_WRITE;
3685 if (test_bit(FailFast, &rdev->flags))
3686 bio->bi_opf |= MD_FAILFAST;
3687 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3688 bio_set_dev(bio, rdev->bdev);
3689 count++;
3692 if (count < 2) {
3693 for (i=0; i<conf->copies; i++) {
3694 int d = r10_bio->devs[i].devnum;
3695 if (r10_bio->devs[i].bio->bi_end_io)
3696 rdev_dec_pending(conf->mirrors[d].rdev,
3697 mddev);
3698 if (r10_bio->devs[i].repl_bio &&
3699 r10_bio->devs[i].repl_bio->bi_end_io)
3700 rdev_dec_pending(
3701 conf->mirrors[d].replacement,
3702 mddev);
3704 put_buf(r10_bio);
3705 biolist = NULL;
3706 goto giveup;
3710 nr_sectors = 0;
3711 if (sector_nr + max_sync < max_sector)
3712 max_sector = sector_nr + max_sync;
3713 do {
3714 struct page *page;
3715 int len = PAGE_SIZE;
3716 if (sector_nr + (len>>9) > max_sector)
3717 len = (max_sector - sector_nr) << 9;
3718 if (len == 0)
3719 break;
3720 for (bio= biolist ; bio ; bio=bio->bi_next) {
3721 struct resync_pages *rp = get_resync_pages(bio);
3722 page = resync_fetch_page(rp, page_idx);
3723 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
3724 bio->bi_status = BLK_STS_RESOURCE;
3725 bio_endio(bio);
3726 goto giveup;
3729 nr_sectors += len>>9;
3730 sector_nr += len>>9;
3731 } while (++page_idx < RESYNC_PAGES);
3732 r10_bio->sectors = nr_sectors;
3734 if (mddev_is_clustered(mddev) &&
3735 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3736 /* It is resync not recovery */
3737 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3738 conf->cluster_sync_low = mddev->curr_resync_completed;
3739 raid10_set_cluster_sync_high(conf);
3740 /* Send resync message */
3741 md_cluster_ops->resync_info_update(mddev,
3742 conf->cluster_sync_low,
3743 conf->cluster_sync_high);
3745 } else if (mddev_is_clustered(mddev)) {
3746 /* This is recovery not resync */
3747 sector_t sect_va1, sect_va2;
3748 bool broadcast_msg = false;
3750 for (i = 0; i < conf->geo.raid_disks; i++) {
3752 * sector_nr is a device address for recovery, so we
3753 * need translate it to array address before compare
3754 * with cluster_sync_high.
3756 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3758 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3759 broadcast_msg = true;
3761 * curr_resync_completed is similar as
3762 * sector_nr, so make the translation too.
3764 sect_va2 = raid10_find_virt(conf,
3765 mddev->curr_resync_completed, i);
3767 if (conf->cluster_sync_low == 0 ||
3768 conf->cluster_sync_low > sect_va2)
3769 conf->cluster_sync_low = sect_va2;
3772 if (broadcast_msg) {
3773 raid10_set_cluster_sync_high(conf);
3774 md_cluster_ops->resync_info_update(mddev,
3775 conf->cluster_sync_low,
3776 conf->cluster_sync_high);
3780 while (biolist) {
3781 bio = biolist;
3782 biolist = biolist->bi_next;
3784 bio->bi_next = NULL;
3785 r10_bio = get_resync_r10bio(bio);
3786 r10_bio->sectors = nr_sectors;
3788 if (bio->bi_end_io == end_sync_read) {
3789 md_sync_acct_bio(bio, nr_sectors);
3790 bio->bi_status = 0;
3791 submit_bio_noacct(bio);
3795 if (sectors_skipped)
3796 /* pretend they weren't skipped, it makes
3797 * no important difference in this case
3799 md_done_sync(mddev, sectors_skipped, 1);
3801 return sectors_skipped + nr_sectors;
3802 giveup:
3803 /* There is nowhere to write, so all non-sync
3804 * drives must be failed or in resync, all drives
3805 * have a bad block, so try the next chunk...
3807 if (sector_nr + max_sync < max_sector)
3808 max_sector = sector_nr + max_sync;
3810 sectors_skipped += (max_sector - sector_nr);
3811 chunks_skipped ++;
3812 sector_nr = max_sector;
3813 goto skipped;
3816 static sector_t
3817 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3819 sector_t size;
3820 struct r10conf *conf = mddev->private;
3822 if (!raid_disks)
3823 raid_disks = min(conf->geo.raid_disks,
3824 conf->prev.raid_disks);
3825 if (!sectors)
3826 sectors = conf->dev_sectors;
3828 size = sectors >> conf->geo.chunk_shift;
3829 sector_div(size, conf->geo.far_copies);
3830 size = size * raid_disks;
3831 sector_div(size, conf->geo.near_copies);
3833 return size << conf->geo.chunk_shift;
3836 static void calc_sectors(struct r10conf *conf, sector_t size)
3838 /* Calculate the number of sectors-per-device that will
3839 * actually be used, and set conf->dev_sectors and
3840 * conf->stride
3843 size = size >> conf->geo.chunk_shift;
3844 sector_div(size, conf->geo.far_copies);
3845 size = size * conf->geo.raid_disks;
3846 sector_div(size, conf->geo.near_copies);
3847 /* 'size' is now the number of chunks in the array */
3848 /* calculate "used chunks per device" */
3849 size = size * conf->copies;
3851 /* We need to round up when dividing by raid_disks to
3852 * get the stride size.
3854 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3856 conf->dev_sectors = size << conf->geo.chunk_shift;
3858 if (conf->geo.far_offset)
3859 conf->geo.stride = 1 << conf->geo.chunk_shift;
3860 else {
3861 sector_div(size, conf->geo.far_copies);
3862 conf->geo.stride = size << conf->geo.chunk_shift;
3866 enum geo_type {geo_new, geo_old, geo_start};
3867 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3869 int nc, fc, fo;
3870 int layout, chunk, disks;
3871 switch (new) {
3872 case geo_old:
3873 layout = mddev->layout;
3874 chunk = mddev->chunk_sectors;
3875 disks = mddev->raid_disks - mddev->delta_disks;
3876 break;
3877 case geo_new:
3878 layout = mddev->new_layout;
3879 chunk = mddev->new_chunk_sectors;
3880 disks = mddev->raid_disks;
3881 break;
3882 default: /* avoid 'may be unused' warnings */
3883 case geo_start: /* new when starting reshape - raid_disks not
3884 * updated yet. */
3885 layout = mddev->new_layout;
3886 chunk = mddev->new_chunk_sectors;
3887 disks = mddev->raid_disks + mddev->delta_disks;
3888 break;
3890 if (layout >> 19)
3891 return -1;
3892 if (chunk < (PAGE_SIZE >> 9) ||
3893 !is_power_of_2(chunk))
3894 return -2;
3895 nc = layout & 255;
3896 fc = (layout >> 8) & 255;
3897 fo = layout & (1<<16);
3898 geo->raid_disks = disks;
3899 geo->near_copies = nc;
3900 geo->far_copies = fc;
3901 geo->far_offset = fo;
3902 switch (layout >> 17) {
3903 case 0: /* original layout. simple but not always optimal */
3904 geo->far_set_size = disks;
3905 break;
3906 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3907 * actually using this, but leave code here just in case.*/
3908 geo->far_set_size = disks/fc;
3909 WARN(geo->far_set_size < fc,
3910 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3911 break;
3912 case 2: /* "improved" layout fixed to match documentation */
3913 geo->far_set_size = fc * nc;
3914 break;
3915 default: /* Not a valid layout */
3916 return -1;
3918 geo->chunk_mask = chunk - 1;
3919 geo->chunk_shift = ffz(~chunk);
3920 return nc*fc;
3923 static void raid10_free_conf(struct r10conf *conf)
3925 if (!conf)
3926 return;
3928 mempool_exit(&conf->r10bio_pool);
3929 kfree(conf->mirrors);
3930 kfree(conf->mirrors_old);
3931 kfree(conf->mirrors_new);
3932 safe_put_page(conf->tmppage);
3933 bioset_exit(&conf->bio_split);
3934 kfree(conf);
3937 static struct r10conf *setup_conf(struct mddev *mddev)
3939 struct r10conf *conf = NULL;
3940 int err = -EINVAL;
3941 struct geom geo;
3942 int copies;
3944 copies = setup_geo(&geo, mddev, geo_new);
3946 if (copies == -2) {
3947 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3948 mdname(mddev), PAGE_SIZE);
3949 goto out;
3952 if (copies < 2 || copies > mddev->raid_disks) {
3953 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3954 mdname(mddev), mddev->new_layout);
3955 goto out;
3958 err = -ENOMEM;
3959 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3960 if (!conf)
3961 goto out;
3963 /* FIXME calc properly */
3964 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3965 sizeof(struct raid10_info),
3966 GFP_KERNEL);
3967 if (!conf->mirrors)
3968 goto out;
3970 conf->tmppage = alloc_page(GFP_KERNEL);
3971 if (!conf->tmppage)
3972 goto out;
3974 conf->geo = geo;
3975 conf->copies = copies;
3976 err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3977 rbio_pool_free, conf);
3978 if (err)
3979 goto out;
3981 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3982 if (err)
3983 goto out;
3985 calc_sectors(conf, mddev->dev_sectors);
3986 if (mddev->reshape_position == MaxSector) {
3987 conf->prev = conf->geo;
3988 conf->reshape_progress = MaxSector;
3989 } else {
3990 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3991 err = -EINVAL;
3992 goto out;
3994 conf->reshape_progress = mddev->reshape_position;
3995 if (conf->prev.far_offset)
3996 conf->prev.stride = 1 << conf->prev.chunk_shift;
3997 else
3998 /* far_copies must be 1 */
3999 conf->prev.stride = conf->dev_sectors;
4001 conf->reshape_safe = conf->reshape_progress;
4002 spin_lock_init(&conf->device_lock);
4003 INIT_LIST_HEAD(&conf->retry_list);
4004 INIT_LIST_HEAD(&conf->bio_end_io_list);
4006 seqlock_init(&conf->resync_lock);
4007 init_waitqueue_head(&conf->wait_barrier);
4008 atomic_set(&conf->nr_pending, 0);
4010 err = -ENOMEM;
4011 rcu_assign_pointer(conf->thread,
4012 md_register_thread(raid10d, mddev, "raid10"));
4013 if (!conf->thread)
4014 goto out;
4016 conf->mddev = mddev;
4017 return conf;
4019 out:
4020 raid10_free_conf(conf);
4021 return ERR_PTR(err);
4024 static unsigned int raid10_nr_stripes(struct r10conf *conf)
4026 unsigned int raid_disks = conf->geo.raid_disks;
4028 if (conf->geo.raid_disks % conf->geo.near_copies)
4029 return raid_disks;
4030 return raid_disks / conf->geo.near_copies;
4033 static int raid10_set_queue_limits(struct mddev *mddev)
4035 struct r10conf *conf = mddev->private;
4036 struct queue_limits lim;
4037 int err;
4039 md_init_stacking_limits(&lim);
4040 lim.max_write_zeroes_sectors = 0;
4041 lim.io_min = mddev->chunk_sectors << 9;
4042 lim.io_opt = lim.io_min * raid10_nr_stripes(conf);
4043 lim.features |= BLK_FEAT_ATOMIC_WRITES_STACKED;
4044 err = mddev_stack_rdev_limits(mddev, &lim, MDDEV_STACK_INTEGRITY);
4045 if (err) {
4046 queue_limits_cancel_update(mddev->gendisk->queue);
4047 return err;
4049 return queue_limits_set(mddev->gendisk->queue, &lim);
4052 static int raid10_run(struct mddev *mddev)
4054 struct r10conf *conf;
4055 int i, disk_idx;
4056 struct raid10_info *disk;
4057 struct md_rdev *rdev;
4058 sector_t size;
4059 sector_t min_offset_diff = 0;
4060 int first = 1;
4061 int ret = -EIO;
4063 if (mddev->private == NULL) {
4064 conf = setup_conf(mddev);
4065 if (IS_ERR(conf))
4066 return PTR_ERR(conf);
4067 mddev->private = conf;
4069 conf = mddev->private;
4070 if (!conf)
4071 goto out;
4073 rcu_assign_pointer(mddev->thread, conf->thread);
4074 rcu_assign_pointer(conf->thread, NULL);
4076 if (mddev_is_clustered(conf->mddev)) {
4077 int fc, fo;
4079 fc = (mddev->layout >> 8) & 255;
4080 fo = mddev->layout & (1<<16);
4081 if (fc > 1 || fo > 0) {
4082 pr_err("only near layout is supported by clustered"
4083 " raid10\n");
4084 goto out_free_conf;
4088 rdev_for_each(rdev, mddev) {
4089 long long diff;
4091 disk_idx = rdev->raid_disk;
4092 if (disk_idx < 0)
4093 continue;
4094 if (disk_idx >= conf->geo.raid_disks &&
4095 disk_idx >= conf->prev.raid_disks)
4096 continue;
4097 disk = conf->mirrors + disk_idx;
4099 if (test_bit(Replacement, &rdev->flags)) {
4100 if (disk->replacement)
4101 goto out_free_conf;
4102 disk->replacement = rdev;
4103 } else {
4104 if (disk->rdev)
4105 goto out_free_conf;
4106 disk->rdev = rdev;
4108 diff = (rdev->new_data_offset - rdev->data_offset);
4109 if (!mddev->reshape_backwards)
4110 diff = -diff;
4111 if (diff < 0)
4112 diff = 0;
4113 if (first || diff < min_offset_diff)
4114 min_offset_diff = diff;
4116 disk->head_position = 0;
4117 first = 0;
4120 if (!mddev_is_dm(conf->mddev)) {
4121 int err = raid10_set_queue_limits(mddev);
4123 if (err) {
4124 ret = err;
4125 goto out_free_conf;
4129 /* need to check that every block has at least one working mirror */
4130 if (!enough(conf, -1)) {
4131 pr_err("md/raid10:%s: not enough operational mirrors.\n",
4132 mdname(mddev));
4133 goto out_free_conf;
4136 if (conf->reshape_progress != MaxSector) {
4137 /* must ensure that shape change is supported */
4138 if (conf->geo.far_copies != 1 &&
4139 conf->geo.far_offset == 0)
4140 goto out_free_conf;
4141 if (conf->prev.far_copies != 1 &&
4142 conf->prev.far_offset == 0)
4143 goto out_free_conf;
4146 mddev->degraded = 0;
4147 for (i = 0;
4148 i < conf->geo.raid_disks
4149 || i < conf->prev.raid_disks;
4150 i++) {
4152 disk = conf->mirrors + i;
4154 if (!disk->rdev && disk->replacement) {
4155 /* The replacement is all we have - use it */
4156 disk->rdev = disk->replacement;
4157 disk->replacement = NULL;
4158 clear_bit(Replacement, &disk->rdev->flags);
4161 if (!disk->rdev ||
4162 !test_bit(In_sync, &disk->rdev->flags)) {
4163 disk->head_position = 0;
4164 mddev->degraded++;
4165 if (disk->rdev &&
4166 disk->rdev->saved_raid_disk < 0)
4167 conf->fullsync = 1;
4170 if (disk->replacement &&
4171 !test_bit(In_sync, &disk->replacement->flags) &&
4172 disk->replacement->saved_raid_disk < 0) {
4173 conf->fullsync = 1;
4176 disk->recovery_disabled = mddev->recovery_disabled - 1;
4179 if (mddev->recovery_cp != MaxSector)
4180 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
4181 mdname(mddev));
4182 pr_info("md/raid10:%s: active with %d out of %d devices\n",
4183 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
4184 conf->geo.raid_disks);
4186 * Ok, everything is just fine now
4188 mddev->dev_sectors = conf->dev_sectors;
4189 size = raid10_size(mddev, 0, 0);
4190 md_set_array_sectors(mddev, size);
4191 mddev->resync_max_sectors = size;
4192 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
4194 if (md_integrity_register(mddev))
4195 goto out_free_conf;
4197 if (conf->reshape_progress != MaxSector) {
4198 unsigned long before_length, after_length;
4200 before_length = ((1 << conf->prev.chunk_shift) *
4201 conf->prev.far_copies);
4202 after_length = ((1 << conf->geo.chunk_shift) *
4203 conf->geo.far_copies);
4205 if (max(before_length, after_length) > min_offset_diff) {
4206 /* This cannot work */
4207 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
4208 goto out_free_conf;
4210 conf->offset_diff = min_offset_diff;
4212 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4213 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4214 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4215 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4218 return 0;
4220 out_free_conf:
4221 md_unregister_thread(mddev, &mddev->thread);
4222 raid10_free_conf(conf);
4223 mddev->private = NULL;
4224 out:
4225 return ret;
4228 static void raid10_free(struct mddev *mddev, void *priv)
4230 raid10_free_conf(priv);
4233 static void raid10_quiesce(struct mddev *mddev, int quiesce)
4235 struct r10conf *conf = mddev->private;
4237 if (quiesce)
4238 raise_barrier(conf, 0);
4239 else
4240 lower_barrier(conf);
4243 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4245 /* Resize of 'far' arrays is not supported.
4246 * For 'near' and 'offset' arrays we can set the
4247 * number of sectors used to be an appropriate multiple
4248 * of the chunk size.
4249 * For 'offset', this is far_copies*chunksize.
4250 * For 'near' the multiplier is the LCM of
4251 * near_copies and raid_disks.
4252 * So if far_copies > 1 && !far_offset, fail.
4253 * Else find LCM(raid_disks, near_copy)*far_copies and
4254 * multiply by chunk_size. Then round to this number.
4255 * This is mostly done by raid10_size()
4257 struct r10conf *conf = mddev->private;
4258 sector_t oldsize, size;
4259 int ret;
4261 if (mddev->reshape_position != MaxSector)
4262 return -EBUSY;
4264 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4265 return -EINVAL;
4267 oldsize = raid10_size(mddev, 0, 0);
4268 size = raid10_size(mddev, sectors, 0);
4269 if (mddev->external_size &&
4270 mddev->array_sectors > size)
4271 return -EINVAL;
4273 ret = mddev->bitmap_ops->resize(mddev, size, 0, false);
4274 if (ret)
4275 return ret;
4277 md_set_array_sectors(mddev, size);
4278 if (sectors > mddev->dev_sectors &&
4279 mddev->recovery_cp > oldsize) {
4280 mddev->recovery_cp = oldsize;
4281 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4283 calc_sectors(conf, sectors);
4284 mddev->dev_sectors = conf->dev_sectors;
4285 mddev->resync_max_sectors = size;
4286 return 0;
4289 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4291 struct md_rdev *rdev;
4292 struct r10conf *conf;
4294 if (mddev->degraded > 0) {
4295 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4296 mdname(mddev));
4297 return ERR_PTR(-EINVAL);
4299 sector_div(size, devs);
4301 /* Set new parameters */
4302 mddev->new_level = 10;
4303 /* new layout: far_copies = 1, near_copies = 2 */
4304 mddev->new_layout = (1<<8) + 2;
4305 mddev->new_chunk_sectors = mddev->chunk_sectors;
4306 mddev->delta_disks = mddev->raid_disks;
4307 mddev->raid_disks *= 2;
4308 /* make sure it will be not marked as dirty */
4309 mddev->recovery_cp = MaxSector;
4310 mddev->dev_sectors = size;
4312 conf = setup_conf(mddev);
4313 if (!IS_ERR(conf)) {
4314 rdev_for_each(rdev, mddev)
4315 if (rdev->raid_disk >= 0) {
4316 rdev->new_raid_disk = rdev->raid_disk * 2;
4317 rdev->sectors = size;
4321 return conf;
4324 static void *raid10_takeover(struct mddev *mddev)
4326 struct r0conf *raid0_conf;
4328 /* raid10 can take over:
4329 * raid0 - providing it has only two drives
4331 if (mddev->level == 0) {
4332 /* for raid0 takeover only one zone is supported */
4333 raid0_conf = mddev->private;
4334 if (raid0_conf->nr_strip_zones > 1) {
4335 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4336 mdname(mddev));
4337 return ERR_PTR(-EINVAL);
4339 return raid10_takeover_raid0(mddev,
4340 raid0_conf->strip_zone->zone_end,
4341 raid0_conf->strip_zone->nb_dev);
4343 return ERR_PTR(-EINVAL);
4346 static int raid10_check_reshape(struct mddev *mddev)
4348 /* Called when there is a request to change
4349 * - layout (to ->new_layout)
4350 * - chunk size (to ->new_chunk_sectors)
4351 * - raid_disks (by delta_disks)
4352 * or when trying to restart a reshape that was ongoing.
4354 * We need to validate the request and possibly allocate
4355 * space if that might be an issue later.
4357 * Currently we reject any reshape of a 'far' mode array,
4358 * allow chunk size to change if new is generally acceptable,
4359 * allow raid_disks to increase, and allow
4360 * a switch between 'near' mode and 'offset' mode.
4362 struct r10conf *conf = mddev->private;
4363 struct geom geo;
4365 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4366 return -EINVAL;
4368 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4369 /* mustn't change number of copies */
4370 return -EINVAL;
4371 if (geo.far_copies > 1 && !geo.far_offset)
4372 /* Cannot switch to 'far' mode */
4373 return -EINVAL;
4375 if (mddev->array_sectors & geo.chunk_mask)
4376 /* not factor of array size */
4377 return -EINVAL;
4379 if (!enough(conf, -1))
4380 return -EINVAL;
4382 kfree(conf->mirrors_new);
4383 conf->mirrors_new = NULL;
4384 if (mddev->delta_disks > 0) {
4385 /* allocate new 'mirrors' list */
4386 conf->mirrors_new =
4387 kcalloc(mddev->raid_disks + mddev->delta_disks,
4388 sizeof(struct raid10_info),
4389 GFP_KERNEL);
4390 if (!conf->mirrors_new)
4391 return -ENOMEM;
4393 return 0;
4397 * Need to check if array has failed when deciding whether to:
4398 * - start an array
4399 * - remove non-faulty devices
4400 * - add a spare
4401 * - allow a reshape
4402 * This determination is simple when no reshape is happening.
4403 * However if there is a reshape, we need to carefully check
4404 * both the before and after sections.
4405 * This is because some failed devices may only affect one
4406 * of the two sections, and some non-in_sync devices may
4407 * be insync in the section most affected by failed devices.
4409 static int calc_degraded(struct r10conf *conf)
4411 int degraded, degraded2;
4412 int i;
4414 degraded = 0;
4415 /* 'prev' section first */
4416 for (i = 0; i < conf->prev.raid_disks; i++) {
4417 struct md_rdev *rdev = conf->mirrors[i].rdev;
4419 if (!rdev || test_bit(Faulty, &rdev->flags))
4420 degraded++;
4421 else if (!test_bit(In_sync, &rdev->flags))
4422 /* When we can reduce the number of devices in
4423 * an array, this might not contribute to
4424 * 'degraded'. It does now.
4426 degraded++;
4428 if (conf->geo.raid_disks == conf->prev.raid_disks)
4429 return degraded;
4430 degraded2 = 0;
4431 for (i = 0; i < conf->geo.raid_disks; i++) {
4432 struct md_rdev *rdev = conf->mirrors[i].rdev;
4434 if (!rdev || test_bit(Faulty, &rdev->flags))
4435 degraded2++;
4436 else if (!test_bit(In_sync, &rdev->flags)) {
4437 /* If reshape is increasing the number of devices,
4438 * this section has already been recovered, so
4439 * it doesn't contribute to degraded.
4440 * else it does.
4442 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4443 degraded2++;
4446 if (degraded2 > degraded)
4447 return degraded2;
4448 return degraded;
4451 static int raid10_start_reshape(struct mddev *mddev)
4453 /* A 'reshape' has been requested. This commits
4454 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4455 * This also checks if there are enough spares and adds them
4456 * to the array.
4457 * We currently require enough spares to make the final
4458 * array non-degraded. We also require that the difference
4459 * between old and new data_offset - on each device - is
4460 * enough that we never risk over-writing.
4463 unsigned long before_length, after_length;
4464 sector_t min_offset_diff = 0;
4465 int first = 1;
4466 struct geom new;
4467 struct r10conf *conf = mddev->private;
4468 struct md_rdev *rdev;
4469 int spares = 0;
4470 int ret;
4472 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4473 return -EBUSY;
4475 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4476 return -EINVAL;
4478 before_length = ((1 << conf->prev.chunk_shift) *
4479 conf->prev.far_copies);
4480 after_length = ((1 << conf->geo.chunk_shift) *
4481 conf->geo.far_copies);
4483 rdev_for_each(rdev, mddev) {
4484 if (!test_bit(In_sync, &rdev->flags)
4485 && !test_bit(Faulty, &rdev->flags))
4486 spares++;
4487 if (rdev->raid_disk >= 0) {
4488 long long diff = (rdev->new_data_offset
4489 - rdev->data_offset);
4490 if (!mddev->reshape_backwards)
4491 diff = -diff;
4492 if (diff < 0)
4493 diff = 0;
4494 if (first || diff < min_offset_diff)
4495 min_offset_diff = diff;
4496 first = 0;
4500 if (max(before_length, after_length) > min_offset_diff)
4501 return -EINVAL;
4503 if (spares < mddev->delta_disks)
4504 return -EINVAL;
4506 conf->offset_diff = min_offset_diff;
4507 spin_lock_irq(&conf->device_lock);
4508 if (conf->mirrors_new) {
4509 memcpy(conf->mirrors_new, conf->mirrors,
4510 sizeof(struct raid10_info)*conf->prev.raid_disks);
4511 smp_mb();
4512 kfree(conf->mirrors_old);
4513 conf->mirrors_old = conf->mirrors;
4514 conf->mirrors = conf->mirrors_new;
4515 conf->mirrors_new = NULL;
4517 setup_geo(&conf->geo, mddev, geo_start);
4518 smp_mb();
4519 if (mddev->reshape_backwards) {
4520 sector_t size = raid10_size(mddev, 0, 0);
4521 if (size < mddev->array_sectors) {
4522 spin_unlock_irq(&conf->device_lock);
4523 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4524 mdname(mddev));
4525 return -EINVAL;
4527 mddev->resync_max_sectors = size;
4528 conf->reshape_progress = size;
4529 } else
4530 conf->reshape_progress = 0;
4531 conf->reshape_safe = conf->reshape_progress;
4532 spin_unlock_irq(&conf->device_lock);
4534 if (mddev->delta_disks && mddev->bitmap) {
4535 struct mdp_superblock_1 *sb = NULL;
4536 sector_t oldsize, newsize;
4538 oldsize = raid10_size(mddev, 0, 0);
4539 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4541 if (!mddev_is_clustered(mddev)) {
4542 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4543 if (ret)
4544 goto abort;
4545 else
4546 goto out;
4549 rdev_for_each(rdev, mddev) {
4550 if (rdev->raid_disk > -1 &&
4551 !test_bit(Faulty, &rdev->flags))
4552 sb = page_address(rdev->sb_page);
4556 * some node is already performing reshape, and no need to
4557 * call bitmap_ops->resize again since it should be called when
4558 * receiving BITMAP_RESIZE msg
4560 if ((sb && (le32_to_cpu(sb->feature_map) &
4561 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4562 goto out;
4564 ret = mddev->bitmap_ops->resize(mddev, newsize, 0, false);
4565 if (ret)
4566 goto abort;
4568 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4569 if (ret) {
4570 mddev->bitmap_ops->resize(mddev, oldsize, 0, false);
4571 goto abort;
4574 out:
4575 if (mddev->delta_disks > 0) {
4576 rdev_for_each(rdev, mddev)
4577 if (rdev->raid_disk < 0 &&
4578 !test_bit(Faulty, &rdev->flags)) {
4579 if (raid10_add_disk(mddev, rdev) == 0) {
4580 if (rdev->raid_disk >=
4581 conf->prev.raid_disks)
4582 set_bit(In_sync, &rdev->flags);
4583 else
4584 rdev->recovery_offset = 0;
4586 /* Failure here is OK */
4587 sysfs_link_rdev(mddev, rdev);
4589 } else if (rdev->raid_disk >= conf->prev.raid_disks
4590 && !test_bit(Faulty, &rdev->flags)) {
4591 /* This is a spare that was manually added */
4592 set_bit(In_sync, &rdev->flags);
4595 /* When a reshape changes the number of devices,
4596 * ->degraded is measured against the larger of the
4597 * pre and post numbers.
4599 spin_lock_irq(&conf->device_lock);
4600 mddev->degraded = calc_degraded(conf);
4601 spin_unlock_irq(&conf->device_lock);
4602 mddev->raid_disks = conf->geo.raid_disks;
4603 mddev->reshape_position = conf->reshape_progress;
4604 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4606 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4607 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4608 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4609 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4610 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4611 conf->reshape_checkpoint = jiffies;
4612 md_new_event();
4613 return 0;
4615 abort:
4616 mddev->recovery = 0;
4617 spin_lock_irq(&conf->device_lock);
4618 conf->geo = conf->prev;
4619 mddev->raid_disks = conf->geo.raid_disks;
4620 rdev_for_each(rdev, mddev)
4621 rdev->new_data_offset = rdev->data_offset;
4622 smp_wmb();
4623 conf->reshape_progress = MaxSector;
4624 conf->reshape_safe = MaxSector;
4625 mddev->reshape_position = MaxSector;
4626 spin_unlock_irq(&conf->device_lock);
4627 return ret;
4630 /* Calculate the last device-address that could contain
4631 * any block from the chunk that includes the array-address 's'
4632 * and report the next address.
4633 * i.e. the address returned will be chunk-aligned and after
4634 * any data that is in the chunk containing 's'.
4636 static sector_t last_dev_address(sector_t s, struct geom *geo)
4638 s = (s | geo->chunk_mask) + 1;
4639 s >>= geo->chunk_shift;
4640 s *= geo->near_copies;
4641 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4642 s *= geo->far_copies;
4643 s <<= geo->chunk_shift;
4644 return s;
4647 /* Calculate the first device-address that could contain
4648 * any block from the chunk that includes the array-address 's'.
4649 * This too will be the start of a chunk
4651 static sector_t first_dev_address(sector_t s, struct geom *geo)
4653 s >>= geo->chunk_shift;
4654 s *= geo->near_copies;
4655 sector_div(s, geo->raid_disks);
4656 s *= geo->far_copies;
4657 s <<= geo->chunk_shift;
4658 return s;
4661 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4662 int *skipped)
4664 /* We simply copy at most one chunk (smallest of old and new)
4665 * at a time, possibly less if that exceeds RESYNC_PAGES,
4666 * or we hit a bad block or something.
4667 * This might mean we pause for normal IO in the middle of
4668 * a chunk, but that is not a problem as mddev->reshape_position
4669 * can record any location.
4671 * If we will want to write to a location that isn't
4672 * yet recorded as 'safe' (i.e. in metadata on disk) then
4673 * we need to flush all reshape requests and update the metadata.
4675 * When reshaping forwards (e.g. to more devices), we interpret
4676 * 'safe' as the earliest block which might not have been copied
4677 * down yet. We divide this by previous stripe size and multiply
4678 * by previous stripe length to get lowest device offset that we
4679 * cannot write to yet.
4680 * We interpret 'sector_nr' as an address that we want to write to.
4681 * From this we use last_device_address() to find where we might
4682 * write to, and first_device_address on the 'safe' position.
4683 * If this 'next' write position is after the 'safe' position,
4684 * we must update the metadata to increase the 'safe' position.
4686 * When reshaping backwards, we round in the opposite direction
4687 * and perform the reverse test: next write position must not be
4688 * less than current safe position.
4690 * In all this the minimum difference in data offsets
4691 * (conf->offset_diff - always positive) allows a bit of slack,
4692 * so next can be after 'safe', but not by more than offset_diff
4694 * We need to prepare all the bios here before we start any IO
4695 * to ensure the size we choose is acceptable to all devices.
4696 * The means one for each copy for write-out and an extra one for
4697 * read-in.
4698 * We store the read-in bio in ->master_bio and the others in
4699 * ->devs[x].bio and ->devs[x].repl_bio.
4701 struct r10conf *conf = mddev->private;
4702 struct r10bio *r10_bio;
4703 sector_t next, safe, last;
4704 int max_sectors;
4705 int nr_sectors;
4706 int s;
4707 struct md_rdev *rdev;
4708 int need_flush = 0;
4709 struct bio *blist;
4710 struct bio *bio, *read_bio;
4711 int sectors_done = 0;
4712 struct page **pages;
4714 if (sector_nr == 0) {
4715 /* If restarting in the middle, skip the initial sectors */
4716 if (mddev->reshape_backwards &&
4717 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4718 sector_nr = (raid10_size(mddev, 0, 0)
4719 - conf->reshape_progress);
4720 } else if (!mddev->reshape_backwards &&
4721 conf->reshape_progress > 0)
4722 sector_nr = conf->reshape_progress;
4723 if (sector_nr) {
4724 mddev->curr_resync_completed = sector_nr;
4725 sysfs_notify_dirent_safe(mddev->sysfs_completed);
4726 *skipped = 1;
4727 return sector_nr;
4731 /* We don't use sector_nr to track where we are up to
4732 * as that doesn't work well for ->reshape_backwards.
4733 * So just use ->reshape_progress.
4735 if (mddev->reshape_backwards) {
4736 /* 'next' is the earliest device address that we might
4737 * write to for this chunk in the new layout
4739 next = first_dev_address(conf->reshape_progress - 1,
4740 &conf->geo);
4742 /* 'safe' is the last device address that we might read from
4743 * in the old layout after a restart
4745 safe = last_dev_address(conf->reshape_safe - 1,
4746 &conf->prev);
4748 if (next + conf->offset_diff < safe)
4749 need_flush = 1;
4751 last = conf->reshape_progress - 1;
4752 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4753 & conf->prev.chunk_mask);
4754 if (sector_nr + RESYNC_SECTORS < last)
4755 sector_nr = last + 1 - RESYNC_SECTORS;
4756 } else {
4757 /* 'next' is after the last device address that we
4758 * might write to for this chunk in the new layout
4760 next = last_dev_address(conf->reshape_progress, &conf->geo);
4762 /* 'safe' is the earliest device address that we might
4763 * read from in the old layout after a restart
4765 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4767 /* Need to update metadata if 'next' might be beyond 'safe'
4768 * as that would possibly corrupt data
4770 if (next > safe + conf->offset_diff)
4771 need_flush = 1;
4773 sector_nr = conf->reshape_progress;
4774 last = sector_nr | (conf->geo.chunk_mask
4775 & conf->prev.chunk_mask);
4777 if (sector_nr + RESYNC_SECTORS <= last)
4778 last = sector_nr + RESYNC_SECTORS - 1;
4781 if (need_flush ||
4782 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4783 /* Need to update reshape_position in metadata */
4784 wait_barrier(conf, false);
4785 mddev->reshape_position = conf->reshape_progress;
4786 if (mddev->reshape_backwards)
4787 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4788 - conf->reshape_progress;
4789 else
4790 mddev->curr_resync_completed = conf->reshape_progress;
4791 conf->reshape_checkpoint = jiffies;
4792 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4793 md_wakeup_thread(mddev->thread);
4794 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4795 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4796 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4797 allow_barrier(conf);
4798 return sectors_done;
4800 conf->reshape_safe = mddev->reshape_position;
4801 allow_barrier(conf);
4804 raise_barrier(conf, 0);
4805 read_more:
4806 /* Now schedule reads for blocks from sector_nr to last */
4807 r10_bio = raid10_alloc_init_r10buf(conf);
4808 r10_bio->state = 0;
4809 raise_barrier(conf, 1);
4810 atomic_set(&r10_bio->remaining, 0);
4811 r10_bio->mddev = mddev;
4812 r10_bio->sector = sector_nr;
4813 set_bit(R10BIO_IsReshape, &r10_bio->state);
4814 r10_bio->sectors = last - sector_nr + 1;
4815 rdev = read_balance(conf, r10_bio, &max_sectors);
4816 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4818 if (!rdev) {
4819 /* Cannot read from here, so need to record bad blocks
4820 * on all the target devices.
4822 // FIXME
4823 mempool_free(r10_bio, &conf->r10buf_pool);
4824 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4825 return sectors_done;
4828 read_bio = bio_alloc_bioset(rdev->bdev, RESYNC_PAGES, REQ_OP_READ,
4829 GFP_KERNEL, &mddev->bio_set);
4830 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4831 + rdev->data_offset);
4832 read_bio->bi_private = r10_bio;
4833 read_bio->bi_end_io = end_reshape_read;
4834 r10_bio->master_bio = read_bio;
4835 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4838 * Broadcast RESYNC message to other nodes, so all nodes would not
4839 * write to the region to avoid conflict.
4841 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4842 struct mdp_superblock_1 *sb = NULL;
4843 int sb_reshape_pos = 0;
4845 conf->cluster_sync_low = sector_nr;
4846 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4847 sb = page_address(rdev->sb_page);
4848 if (sb) {
4849 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4851 * Set cluster_sync_low again if next address for array
4852 * reshape is less than cluster_sync_low. Since we can't
4853 * update cluster_sync_low until it has finished reshape.
4855 if (sb_reshape_pos < conf->cluster_sync_low)
4856 conf->cluster_sync_low = sb_reshape_pos;
4859 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4860 conf->cluster_sync_high);
4863 /* Now find the locations in the new layout */
4864 __raid10_find_phys(&conf->geo, r10_bio);
4866 blist = read_bio;
4867 read_bio->bi_next = NULL;
4869 for (s = 0; s < conf->copies*2; s++) {
4870 struct bio *b;
4871 int d = r10_bio->devs[s/2].devnum;
4872 struct md_rdev *rdev2;
4873 if (s&1) {
4874 rdev2 = conf->mirrors[d].replacement;
4875 b = r10_bio->devs[s/2].repl_bio;
4876 } else {
4877 rdev2 = conf->mirrors[d].rdev;
4878 b = r10_bio->devs[s/2].bio;
4880 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4881 continue;
4883 bio_set_dev(b, rdev2->bdev);
4884 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4885 rdev2->new_data_offset;
4886 b->bi_end_io = end_reshape_write;
4887 b->bi_opf = REQ_OP_WRITE;
4888 b->bi_next = blist;
4889 blist = b;
4892 /* Now add as many pages as possible to all of these bios. */
4894 nr_sectors = 0;
4895 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4896 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4897 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4898 int len = (max_sectors - s) << 9;
4899 if (len > PAGE_SIZE)
4900 len = PAGE_SIZE;
4901 for (bio = blist; bio ; bio = bio->bi_next) {
4902 if (WARN_ON(!bio_add_page(bio, page, len, 0))) {
4903 bio->bi_status = BLK_STS_RESOURCE;
4904 bio_endio(bio);
4905 return sectors_done;
4908 sector_nr += len >> 9;
4909 nr_sectors += len >> 9;
4911 r10_bio->sectors = nr_sectors;
4913 /* Now submit the read */
4914 md_sync_acct_bio(read_bio, r10_bio->sectors);
4915 atomic_inc(&r10_bio->remaining);
4916 read_bio->bi_next = NULL;
4917 submit_bio_noacct(read_bio);
4918 sectors_done += nr_sectors;
4919 if (sector_nr <= last)
4920 goto read_more;
4922 lower_barrier(conf);
4924 /* Now that we have done the whole section we can
4925 * update reshape_progress
4927 if (mddev->reshape_backwards)
4928 conf->reshape_progress -= sectors_done;
4929 else
4930 conf->reshape_progress += sectors_done;
4932 return sectors_done;
4935 static void end_reshape_request(struct r10bio *r10_bio);
4936 static int handle_reshape_read_error(struct mddev *mddev,
4937 struct r10bio *r10_bio);
4938 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4940 /* Reshape read completed. Hopefully we have a block
4941 * to write out.
4942 * If we got a read error then we do sync 1-page reads from
4943 * elsewhere until we find the data - or give up.
4945 struct r10conf *conf = mddev->private;
4946 int s;
4948 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4949 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4950 /* Reshape has been aborted */
4951 md_done_sync(mddev, r10_bio->sectors, 0);
4952 return;
4955 /* We definitely have the data in the pages, schedule the
4956 * writes.
4958 atomic_set(&r10_bio->remaining, 1);
4959 for (s = 0; s < conf->copies*2; s++) {
4960 struct bio *b;
4961 int d = r10_bio->devs[s/2].devnum;
4962 struct md_rdev *rdev;
4963 if (s&1) {
4964 rdev = conf->mirrors[d].replacement;
4965 b = r10_bio->devs[s/2].repl_bio;
4966 } else {
4967 rdev = conf->mirrors[d].rdev;
4968 b = r10_bio->devs[s/2].bio;
4970 if (!rdev || test_bit(Faulty, &rdev->flags))
4971 continue;
4973 atomic_inc(&rdev->nr_pending);
4974 md_sync_acct_bio(b, r10_bio->sectors);
4975 atomic_inc(&r10_bio->remaining);
4976 b->bi_next = NULL;
4977 submit_bio_noacct(b);
4979 end_reshape_request(r10_bio);
4982 static void end_reshape(struct r10conf *conf)
4984 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4985 return;
4987 spin_lock_irq(&conf->device_lock);
4988 conf->prev = conf->geo;
4989 md_finish_reshape(conf->mddev);
4990 smp_wmb();
4991 conf->reshape_progress = MaxSector;
4992 conf->reshape_safe = MaxSector;
4993 spin_unlock_irq(&conf->device_lock);
4995 mddev_update_io_opt(conf->mddev, raid10_nr_stripes(conf));
4996 conf->fullsync = 0;
4999 static void raid10_update_reshape_pos(struct mddev *mddev)
5001 struct r10conf *conf = mddev->private;
5002 sector_t lo, hi;
5004 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
5005 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
5006 || mddev->reshape_position == MaxSector)
5007 conf->reshape_progress = mddev->reshape_position;
5008 else
5009 WARN_ON_ONCE(1);
5012 static int handle_reshape_read_error(struct mddev *mddev,
5013 struct r10bio *r10_bio)
5015 /* Use sync reads to get the blocks from somewhere else */
5016 int sectors = r10_bio->sectors;
5017 struct r10conf *conf = mddev->private;
5018 struct r10bio *r10b;
5019 int slot = 0;
5020 int idx = 0;
5021 struct page **pages;
5023 r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
5024 if (!r10b) {
5025 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5026 return -ENOMEM;
5029 /* reshape IOs share pages from .devs[0].bio */
5030 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
5032 r10b->sector = r10_bio->sector;
5033 __raid10_find_phys(&conf->prev, r10b);
5035 while (sectors) {
5036 int s = sectors;
5037 int success = 0;
5038 int first_slot = slot;
5040 if (s > (PAGE_SIZE >> 9))
5041 s = PAGE_SIZE >> 9;
5043 while (!success) {
5044 int d = r10b->devs[slot].devnum;
5045 struct md_rdev *rdev = conf->mirrors[d].rdev;
5046 sector_t addr;
5047 if (rdev == NULL ||
5048 test_bit(Faulty, &rdev->flags) ||
5049 !test_bit(In_sync, &rdev->flags))
5050 goto failed;
5052 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
5053 atomic_inc(&rdev->nr_pending);
5054 success = sync_page_io(rdev,
5055 addr,
5056 s << 9,
5057 pages[idx],
5058 REQ_OP_READ, false);
5059 rdev_dec_pending(rdev, mddev);
5060 if (success)
5061 break;
5062 failed:
5063 slot++;
5064 if (slot >= conf->copies)
5065 slot = 0;
5066 if (slot == first_slot)
5067 break;
5069 if (!success) {
5070 /* couldn't read this block, must give up */
5071 set_bit(MD_RECOVERY_INTR,
5072 &mddev->recovery);
5073 kfree(r10b);
5074 return -EIO;
5076 sectors -= s;
5077 idx++;
5079 kfree(r10b);
5080 return 0;
5083 static void end_reshape_write(struct bio *bio)
5085 struct r10bio *r10_bio = get_resync_r10bio(bio);
5086 struct mddev *mddev = r10_bio->mddev;
5087 struct r10conf *conf = mddev->private;
5088 int d;
5089 int slot;
5090 int repl;
5091 struct md_rdev *rdev = NULL;
5093 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
5094 rdev = repl ? conf->mirrors[d].replacement :
5095 conf->mirrors[d].rdev;
5097 if (bio->bi_status) {
5098 /* FIXME should record badblock */
5099 md_error(mddev, rdev);
5102 rdev_dec_pending(rdev, mddev);
5103 end_reshape_request(r10_bio);
5106 static void end_reshape_request(struct r10bio *r10_bio)
5108 if (!atomic_dec_and_test(&r10_bio->remaining))
5109 return;
5110 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
5111 bio_put(r10_bio->master_bio);
5112 put_buf(r10_bio);
5115 static void raid10_finish_reshape(struct mddev *mddev)
5117 struct r10conf *conf = mddev->private;
5119 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5120 return;
5122 if (mddev->delta_disks > 0) {
5123 if (mddev->recovery_cp > mddev->resync_max_sectors) {
5124 mddev->recovery_cp = mddev->resync_max_sectors;
5125 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5127 mddev->resync_max_sectors = mddev->array_sectors;
5128 } else {
5129 int d;
5130 for (d = conf->geo.raid_disks ;
5131 d < conf->geo.raid_disks - mddev->delta_disks;
5132 d++) {
5133 struct md_rdev *rdev = conf->mirrors[d].rdev;
5134 if (rdev)
5135 clear_bit(In_sync, &rdev->flags);
5136 rdev = conf->mirrors[d].replacement;
5137 if (rdev)
5138 clear_bit(In_sync, &rdev->flags);
5141 mddev->layout = mddev->new_layout;
5142 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
5143 mddev->reshape_position = MaxSector;
5144 mddev->delta_disks = 0;
5145 mddev->reshape_backwards = 0;
5148 static struct md_personality raid10_personality =
5150 .name = "raid10",
5151 .level = 10,
5152 .owner = THIS_MODULE,
5153 .make_request = raid10_make_request,
5154 .run = raid10_run,
5155 .free = raid10_free,
5156 .status = raid10_status,
5157 .error_handler = raid10_error,
5158 .hot_add_disk = raid10_add_disk,
5159 .hot_remove_disk= raid10_remove_disk,
5160 .spare_active = raid10_spare_active,
5161 .sync_request = raid10_sync_request,
5162 .quiesce = raid10_quiesce,
5163 .size = raid10_size,
5164 .resize = raid10_resize,
5165 .takeover = raid10_takeover,
5166 .check_reshape = raid10_check_reshape,
5167 .start_reshape = raid10_start_reshape,
5168 .finish_reshape = raid10_finish_reshape,
5169 .update_reshape_pos = raid10_update_reshape_pos,
5172 static int __init raid_init(void)
5174 return register_md_personality(&raid10_personality);
5177 static void raid_exit(void)
5179 unregister_md_personality(&raid10_personality);
5182 module_init(raid_init);
5183 module_exit(raid_exit);
5184 MODULE_LICENSE("GPL");
5185 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
5186 MODULE_ALIAS("md-personality-9"); /* RAID10 */
5187 MODULE_ALIAS("md-raid10");
5188 MODULE_ALIAS("md-level-10");