1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
6 #include <linux/kernel.h>
7 #include <linux/wait.h>
8 #include <linux/blkdev.h>
9 #include <linux/slab.h>
10 #include <linux/raid/md_p.h>
11 #include <linux/crc32c.h>
12 #include <linux/random.h>
13 #include <linux/kthread.h>
14 #include <linux/types.h>
17 #include "md-bitmap.h"
18 #include "raid5-log.h"
21 * metadata/data stored in disk with 4k size unit (a block) regardless
22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
24 #define BLOCK_SECTORS (8)
25 #define BLOCK_SECTOR_SHIFT (3)
28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
30 * In write through mode, the reclaim runs every log->max_free_space.
31 * This can prevent the recovery scans for too long
33 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
36 /* wake up reclaim thread periodically */
37 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38 /* start flush with these full stripes */
39 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40 /* reclaim stripes in groups */
41 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
44 * We only need 2 bios per I/O unit to make progress, but ensure we
45 * have a few more available to not get too tight.
47 #define R5L_POOL_SIZE 4
49 static char *r5c_journal_mode_str
[] = {"write-through",
52 * raid5 cache state machine
54 * With the RAID cache, each stripe works in two phases:
58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
62 * When there is no journal, or the journal is in write-through mode,
63 * the stripe is always in writing-out phase.
65 * For write-back journal, the stripe is sent to caching phase on write
66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67 * the write-out phase by clearing STRIPE_R5C_CACHING.
69 * Stripes in caching phase do not write the raid disks. Instead, all
70 * writes are committed from the log device. Therefore, a stripe in
71 * caching phase handles writes as:
72 * - write to log device
75 * Stripes in writing-out phase handle writes as:
77 * - write pending data and parity to journal
78 * - write data and parity to raid disks
79 * - return IO for pending writes
87 sector_t device_size
; /* log device size, round to
89 sector_t max_free_space
; /* reclaim run if free space is at
92 sector_t last_checkpoint
; /* log tail. where recovery scan
94 u64 last_cp_seq
; /* log tail sequence */
96 sector_t log_start
; /* log head. where new data appends */
97 u64 seq
; /* log head sequence */
99 sector_t next_checkpoint
;
101 struct mutex io_mutex
;
102 struct r5l_io_unit
*current_io
; /* current io_unit accepting new data */
104 spinlock_t io_list_lock
;
105 struct list_head running_ios
; /* io_units which are still running,
106 * and have not yet been completely
107 * written to the log */
108 struct list_head io_end_ios
; /* io_units which have been completely
109 * written to the log but not yet written
111 struct list_head flushing_ios
; /* io_units which are waiting for log
113 struct list_head finished_ios
; /* io_units which settle down in log disk */
114 struct bio flush_bio
;
116 struct list_head no_mem_stripes
; /* pending stripes, -ENOMEM */
118 struct kmem_cache
*io_kc
;
123 struct md_thread __rcu
*reclaim_thread
;
124 unsigned long reclaim_target
; /* number of space that need to be
125 * reclaimed. if it's 0, reclaim spaces
126 * used by io_units which are in
127 * IO_UNIT_STRIPE_END state (eg, reclaim
128 * doesn't wait for specific io_unit
129 * switching to IO_UNIT_STRIPE_END
131 wait_queue_head_t iounit_wait
;
133 struct list_head no_space_stripes
; /* pending stripes, log has no space */
134 spinlock_t no_space_stripes_lock
;
136 bool need_cache_flush
;
139 enum r5c_journal_mode r5c_journal_mode
;
141 /* all stripes in r5cache, in the order of seq at sh->log_start */
142 struct list_head stripe_in_journal_list
;
144 spinlock_t stripe_in_journal_lock
;
145 atomic_t stripe_in_journal_count
;
147 /* to submit async io_units, to fulfill ordering of flush */
148 struct work_struct deferred_io_work
;
149 /* to disable write back during in degraded mode */
150 struct work_struct disable_writeback_work
;
152 /* to for chunk_aligned_read in writeback mode, details below */
153 spinlock_t tree_lock
;
154 struct radix_tree_root big_stripe_tree
;
158 * Enable chunk_aligned_read() with write back cache.
160 * Each chunk may contain more than one stripe (for example, a 256kB
161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163 * For each big_stripe, we count how many stripes of this big_stripe
164 * are in the write back cache. These data are tracked in a radix tree
165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
166 * r5c_tree_index() is used to calculate keys for the radix tree.
168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169 * big_stripe of each chunk in the tree. If this big_stripe is in the
170 * tree, chunk_aligned_read() aborts. This look up is protected by
173 * It is necessary to remember whether a stripe is counted in
174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176 * two flags are set, the stripe is counted in big_stripe_tree. This
177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178 * r5c_try_caching_write(); and moving clear_bit of
179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180 * r5c_finish_stripe_write_out().
184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185 * So it is necessary to left shift the counter by 2 bits before using it
186 * as data pointer of the tree.
188 #define R5C_RADIX_COUNT_SHIFT 2
191 * calculate key for big_stripe_tree
193 * sect: align_bi->bi_iter.bi_sector or sh->sector
195 static inline sector_t
r5c_tree_index(struct r5conf
*conf
,
198 sector_div(sect
, conf
->chunk_sectors
);
203 * an IO range starts from a meta data block and end at the next meta data
204 * block. The io unit's the meta data block tracks data/parity followed it. io
205 * unit is written to log disk with normal write, as we always flush log disk
206 * first and then start move data to raid disks, there is no requirement to
207 * write io unit with FLUSH/FUA
212 struct page
*meta_page
; /* store meta block */
213 int meta_offset
; /* current offset in meta_page */
215 struct bio
*current_bio
;/* current_bio accepting new data */
217 atomic_t pending_stripe
;/* how many stripes not flushed to raid */
218 u64 seq
; /* seq number of the metablock */
219 sector_t log_start
; /* where the io_unit starts */
220 sector_t log_end
; /* where the io_unit ends */
221 struct list_head log_sibling
; /* log->running_ios */
222 struct list_head stripe_list
; /* stripes added to the io_unit */
226 struct bio
*split_bio
;
228 unsigned int has_flush
:1; /* include flush request */
229 unsigned int has_fua
:1; /* include fua request */
230 unsigned int has_null_flush
:1; /* include null flush request */
231 unsigned int has_flush_payload
:1; /* include flush payload */
233 * io isn't sent yet, flush/fua request can only be submitted till it's
234 * the first IO in running_ios list
236 unsigned int io_deferred
:1;
238 struct bio_list flush_barriers
; /* size == 0 flush bios */
241 /* r5l_io_unit state */
242 enum r5l_io_unit_state
{
243 IO_UNIT_RUNNING
= 0, /* accepting new IO */
244 IO_UNIT_IO_START
= 1, /* io_unit bio start writing to log,
245 * don't accepting new bio */
246 IO_UNIT_IO_END
= 2, /* io_unit bio finish writing to log */
247 IO_UNIT_STRIPE_END
= 3, /* stripes data finished writing to raid */
250 bool r5c_is_writeback(struct r5l_log
*log
)
252 return (log
!= NULL
&&
253 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
);
256 static sector_t
r5l_ring_add(struct r5l_log
*log
, sector_t start
, sector_t inc
)
259 if (start
>= log
->device_size
)
260 start
= start
- log
->device_size
;
264 static sector_t
r5l_ring_distance(struct r5l_log
*log
, sector_t start
,
270 return end
+ log
->device_size
- start
;
273 static bool r5l_has_free_space(struct r5l_log
*log
, sector_t size
)
277 used_size
= r5l_ring_distance(log
, log
->last_checkpoint
,
280 return log
->device_size
> used_size
+ size
;
283 static void __r5l_set_io_unit_state(struct r5l_io_unit
*io
,
284 enum r5l_io_unit_state state
)
286 if (WARN_ON(io
->state
>= state
))
292 r5c_return_dev_pending_writes(struct r5conf
*conf
, struct r5dev
*dev
)
294 struct bio
*wbi
, *wbi2
;
298 while (wbi
&& wbi
->bi_iter
.bi_sector
<
299 dev
->sector
+ RAID5_STRIPE_SECTORS(conf
)) {
300 wbi2
= r5_next_bio(conf
, wbi
, dev
->sector
);
301 md_write_end(conf
->mddev
);
307 void r5c_handle_cached_data_endio(struct r5conf
*conf
,
308 struct stripe_head
*sh
, int disks
)
312 for (i
= sh
->disks
; i
--; ) {
313 if (sh
->dev
[i
].written
) {
314 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
315 r5c_return_dev_pending_writes(conf
, &sh
->dev
[i
]);
316 conf
->mddev
->bitmap_ops
->endwrite(conf
->mddev
,
317 sh
->sector
, RAID5_STRIPE_SECTORS(conf
),
318 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
324 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
);
326 /* Check whether we should flush some stripes to free up stripe cache */
327 void r5c_check_stripe_cache_usage(struct r5conf
*conf
)
330 struct r5l_log
*log
= READ_ONCE(conf
->log
);
332 if (!r5c_is_writeback(log
))
335 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
336 atomic_read(&conf
->r5c_cached_full_stripes
);
339 * The following condition is true for either of the following:
340 * - stripe cache pressure high:
341 * total_cached > 3/4 min_nr_stripes ||
342 * empty_inactive_list_nr > 0
343 * - stripe cache pressure moderate:
344 * total_cached > 1/2 min_nr_stripes
346 if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
347 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
348 r5l_wake_reclaim(log
, 0);
352 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
353 * stripes in the cache
355 void r5c_check_cached_full_stripe(struct r5conf
*conf
)
357 struct r5l_log
*log
= READ_ONCE(conf
->log
);
359 if (!r5c_is_writeback(log
))
363 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
364 * or a full stripe (chunk size / 4k stripes).
366 if (atomic_read(&conf
->r5c_cached_full_stripes
) >=
367 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf
),
368 conf
->chunk_sectors
>> RAID5_STRIPE_SHIFT(conf
)))
369 r5l_wake_reclaim(log
, 0);
373 * Total log space (in sectors) needed to flush all data in cache
375 * To avoid deadlock due to log space, it is necessary to reserve log
376 * space to flush critical stripes (stripes that occupying log space near
377 * last_checkpoint). This function helps check how much log space is
378 * required to flush all cached stripes.
380 * To reduce log space requirements, two mechanisms are used to give cache
381 * flush higher priorities:
382 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
383 * stripes ALREADY in journal can be flushed w/o pending writes;
384 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
385 * can be delayed (r5l_add_no_space_stripe).
387 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
388 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
389 * pages of journal space. For stripes that has not passed 1, flushing it
390 * requires (conf->raid_disks + 1) pages of journal space. There are at
391 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
392 * required to flush all cached stripes (in pages) is:
394 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
395 * (group_cnt + 1) * (raid_disks + 1)
397 * (stripe_in_journal_count) * (max_degraded + 1) +
398 * (group_cnt + 1) * (raid_disks - max_degraded)
400 static sector_t
r5c_log_required_to_flush_cache(struct r5conf
*conf
)
402 struct r5l_log
*log
= READ_ONCE(conf
->log
);
404 if (!r5c_is_writeback(log
))
407 return BLOCK_SECTORS
*
408 ((conf
->max_degraded
+ 1) * atomic_read(&log
->stripe_in_journal_count
) +
409 (conf
->raid_disks
- conf
->max_degraded
) * (conf
->group_cnt
+ 1));
413 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
415 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
416 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
417 * device is less than 2x of reclaim_required_space.
419 static inline void r5c_update_log_state(struct r5l_log
*log
)
421 struct r5conf
*conf
= log
->rdev
->mddev
->private;
423 sector_t reclaim_space
;
424 bool wake_reclaim
= false;
426 if (!r5c_is_writeback(log
))
429 free_space
= r5l_ring_distance(log
, log
->log_start
,
430 log
->last_checkpoint
);
431 reclaim_space
= r5c_log_required_to_flush_cache(conf
);
432 if (free_space
< 2 * reclaim_space
)
433 set_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
435 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
437 clear_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
);
439 if (free_space
< 3 * reclaim_space
)
440 set_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
442 clear_bit(R5C_LOG_TIGHT
, &conf
->cache_state
);
445 r5l_wake_reclaim(log
, 0);
449 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
450 * This function should only be called in write-back mode.
452 void r5c_make_stripe_write_out(struct stripe_head
*sh
)
454 struct r5conf
*conf
= sh
->raid_conf
;
455 struct r5l_log
*log
= READ_ONCE(conf
->log
);
457 BUG_ON(!r5c_is_writeback(log
));
459 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
460 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
462 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
463 atomic_inc(&conf
->preread_active_stripes
);
466 static void r5c_handle_data_cached(struct stripe_head
*sh
)
470 for (i
= sh
->disks
; i
--; )
471 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
472 set_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
473 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
475 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
479 * this journal write must contain full parity,
480 * it may also contain some data pages
482 static void r5c_handle_parity_cached(struct stripe_head
*sh
)
486 for (i
= sh
->disks
; i
--; )
487 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
488 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
492 * Setting proper flags after writing (or flushing) data and/or parity to the
493 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
495 static void r5c_finish_cache_stripe(struct stripe_head
*sh
)
497 struct r5l_log
*log
= READ_ONCE(sh
->raid_conf
->log
);
499 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
500 BUG_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
502 * Set R5_InJournal for parity dev[pd_idx]. This means
503 * all data AND parity in the journal. For RAID 6, it is
504 * NOT necessary to set the flag for dev[qd_idx], as the
505 * two parities are written out together.
507 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
508 } else if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
509 r5c_handle_data_cached(sh
);
511 r5c_handle_parity_cached(sh
);
512 set_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
516 static void r5l_io_run_stripes(struct r5l_io_unit
*io
)
518 struct stripe_head
*sh
, *next
;
520 list_for_each_entry_safe(sh
, next
, &io
->stripe_list
, log_list
) {
521 list_del_init(&sh
->log_list
);
523 r5c_finish_cache_stripe(sh
);
525 set_bit(STRIPE_HANDLE
, &sh
->state
);
526 raid5_release_stripe(sh
);
530 static void r5l_log_run_stripes(struct r5l_log
*log
)
532 struct r5l_io_unit
*io
, *next
;
534 lockdep_assert_held(&log
->io_list_lock
);
536 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
537 /* don't change list order */
538 if (io
->state
< IO_UNIT_IO_END
)
541 list_move_tail(&io
->log_sibling
, &log
->finished_ios
);
542 r5l_io_run_stripes(io
);
546 static void r5l_move_to_end_ios(struct r5l_log
*log
)
548 struct r5l_io_unit
*io
, *next
;
550 lockdep_assert_held(&log
->io_list_lock
);
552 list_for_each_entry_safe(io
, next
, &log
->running_ios
, log_sibling
) {
553 /* don't change list order */
554 if (io
->state
< IO_UNIT_IO_END
)
556 list_move_tail(&io
->log_sibling
, &log
->io_end_ios
);
560 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
);
561 static void r5l_log_endio(struct bio
*bio
)
563 struct r5l_io_unit
*io
= bio
->bi_private
;
564 struct r5l_io_unit
*io_deferred
;
565 struct r5l_log
*log
= io
->log
;
568 bool has_flush_payload
;
571 md_error(log
->rdev
->mddev
, log
->rdev
);
574 mempool_free(io
->meta_page
, &log
->meta_pool
);
576 spin_lock_irqsave(&log
->io_list_lock
, flags
);
577 __r5l_set_io_unit_state(io
, IO_UNIT_IO_END
);
580 * if the io doesn't not have null_flush or flush payload,
581 * it is not safe to access it after releasing io_list_lock.
582 * Therefore, it is necessary to check the condition with
585 has_null_flush
= io
->has_null_flush
;
586 has_flush_payload
= io
->has_flush_payload
;
588 if (log
->need_cache_flush
&& !list_empty(&io
->stripe_list
))
589 r5l_move_to_end_ios(log
);
591 r5l_log_run_stripes(log
);
592 if (!list_empty(&log
->running_ios
)) {
594 * FLUSH/FUA io_unit is deferred because of ordering, now we
597 io_deferred
= list_first_entry(&log
->running_ios
,
598 struct r5l_io_unit
, log_sibling
);
599 if (io_deferred
->io_deferred
)
600 schedule_work(&log
->deferred_io_work
);
603 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
605 if (log
->need_cache_flush
)
606 md_wakeup_thread(log
->rdev
->mddev
->thread
);
608 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
609 if (has_null_flush
) {
612 WARN_ON(bio_list_empty(&io
->flush_barriers
));
613 while ((bi
= bio_list_pop(&io
->flush_barriers
)) != NULL
) {
615 if (atomic_dec_and_test(&io
->pending_stripe
)) {
616 __r5l_stripe_write_finished(io
);
621 /* decrease pending_stripe for flush payload */
622 if (has_flush_payload
)
623 if (atomic_dec_and_test(&io
->pending_stripe
))
624 __r5l_stripe_write_finished(io
);
627 static void r5l_do_submit_io(struct r5l_log
*log
, struct r5l_io_unit
*io
)
631 spin_lock_irqsave(&log
->io_list_lock
, flags
);
632 __r5l_set_io_unit_state(io
, IO_UNIT_IO_START
);
633 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
636 * In case of journal device failures, submit_bio will get error
637 * and calls endio, then active stripes will continue write
638 * process. Therefore, it is not necessary to check Faulty bit
639 * of journal device here.
641 * We can't check split_bio after current_bio is submitted. If
642 * io->split_bio is null, after current_bio is submitted, current_bio
643 * might already be completed and the io_unit is freed. We submit
644 * split_bio first to avoid the issue.
648 io
->split_bio
->bi_opf
|= REQ_PREFLUSH
;
650 io
->split_bio
->bi_opf
|= REQ_FUA
;
651 submit_bio(io
->split_bio
);
655 io
->current_bio
->bi_opf
|= REQ_PREFLUSH
;
657 io
->current_bio
->bi_opf
|= REQ_FUA
;
658 submit_bio(io
->current_bio
);
661 /* deferred io_unit will be dispatched here */
662 static void r5l_submit_io_async(struct work_struct
*work
)
664 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
666 struct r5l_io_unit
*io
= NULL
;
669 spin_lock_irqsave(&log
->io_list_lock
, flags
);
670 if (!list_empty(&log
->running_ios
)) {
671 io
= list_first_entry(&log
->running_ios
, struct r5l_io_unit
,
673 if (!io
->io_deferred
)
678 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
680 r5l_do_submit_io(log
, io
);
683 static void r5c_disable_writeback_async(struct work_struct
*work
)
685 struct r5l_log
*log
= container_of(work
, struct r5l_log
,
686 disable_writeback_work
);
687 struct mddev
*mddev
= log
->rdev
->mddev
;
688 struct r5conf
*conf
= mddev
->private;
690 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
692 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
695 /* wait superblock change before suspend */
696 wait_event(mddev
->sb_wait
,
697 !READ_ONCE(conf
->log
) ||
698 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
));
700 log
= READ_ONCE(conf
->log
);
702 mddev_suspend(mddev
, false);
703 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
708 static void r5l_submit_current_io(struct r5l_log
*log
)
710 struct r5l_io_unit
*io
= log
->current_io
;
711 struct r5l_meta_block
*block
;
714 bool do_submit
= true;
719 block
= page_address(io
->meta_page
);
720 block
->meta_size
= cpu_to_le32(io
->meta_offset
);
721 crc
= crc32c_le(log
->uuid_checksum
, block
, PAGE_SIZE
);
722 block
->checksum
= cpu_to_le32(crc
);
724 log
->current_io
= NULL
;
725 spin_lock_irqsave(&log
->io_list_lock
, flags
);
726 if (io
->has_flush
|| io
->has_fua
) {
727 if (io
!= list_first_entry(&log
->running_ios
,
728 struct r5l_io_unit
, log_sibling
)) {
733 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
735 r5l_do_submit_io(log
, io
);
738 static struct bio
*r5l_bio_alloc(struct r5l_log
*log
)
740 struct bio
*bio
= bio_alloc_bioset(log
->rdev
->bdev
, BIO_MAX_VECS
,
741 REQ_OP_WRITE
, GFP_NOIO
, &log
->bs
);
743 bio
->bi_iter
.bi_sector
= log
->rdev
->data_offset
+ log
->log_start
;
748 static void r5_reserve_log_entry(struct r5l_log
*log
, struct r5l_io_unit
*io
)
750 log
->log_start
= r5l_ring_add(log
, log
->log_start
, BLOCK_SECTORS
);
752 r5c_update_log_state(log
);
754 * If we filled up the log device start from the beginning again,
755 * which will require a new bio.
757 * Note: for this to work properly the log size needs to me a multiple
760 if (log
->log_start
== 0)
761 io
->need_split_bio
= true;
763 io
->log_end
= log
->log_start
;
766 static struct r5l_io_unit
*r5l_new_meta(struct r5l_log
*log
)
768 struct r5l_io_unit
*io
;
769 struct r5l_meta_block
*block
;
771 io
= mempool_alloc(&log
->io_pool
, GFP_ATOMIC
);
774 memset(io
, 0, sizeof(*io
));
777 INIT_LIST_HEAD(&io
->log_sibling
);
778 INIT_LIST_HEAD(&io
->stripe_list
);
779 bio_list_init(&io
->flush_barriers
);
780 io
->state
= IO_UNIT_RUNNING
;
782 io
->meta_page
= mempool_alloc(&log
->meta_pool
, GFP_NOIO
);
783 block
= page_address(io
->meta_page
);
785 block
->magic
= cpu_to_le32(R5LOG_MAGIC
);
786 block
->version
= R5LOG_VERSION
;
787 block
->seq
= cpu_to_le64(log
->seq
);
788 block
->position
= cpu_to_le64(log
->log_start
);
790 io
->log_start
= log
->log_start
;
791 io
->meta_offset
= sizeof(struct r5l_meta_block
);
792 io
->seq
= log
->seq
++;
794 io
->current_bio
= r5l_bio_alloc(log
);
795 io
->current_bio
->bi_end_io
= r5l_log_endio
;
796 io
->current_bio
->bi_private
= io
;
797 __bio_add_page(io
->current_bio
, io
->meta_page
, PAGE_SIZE
, 0);
799 r5_reserve_log_entry(log
, io
);
801 spin_lock_irq(&log
->io_list_lock
);
802 list_add_tail(&io
->log_sibling
, &log
->running_ios
);
803 spin_unlock_irq(&log
->io_list_lock
);
808 static int r5l_get_meta(struct r5l_log
*log
, unsigned int payload_size
)
810 if (log
->current_io
&&
811 log
->current_io
->meta_offset
+ payload_size
> PAGE_SIZE
)
812 r5l_submit_current_io(log
);
814 if (!log
->current_io
) {
815 log
->current_io
= r5l_new_meta(log
);
816 if (!log
->current_io
)
823 static void r5l_append_payload_meta(struct r5l_log
*log
, u16 type
,
825 u32 checksum1
, u32 checksum2
,
826 bool checksum2_valid
)
828 struct r5l_io_unit
*io
= log
->current_io
;
829 struct r5l_payload_data_parity
*payload
;
831 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
832 payload
->header
.type
= cpu_to_le16(type
);
833 payload
->header
.flags
= cpu_to_le16(0);
834 payload
->size
= cpu_to_le32((1 + !!checksum2_valid
) <<
836 payload
->location
= cpu_to_le64(location
);
837 payload
->checksum
[0] = cpu_to_le32(checksum1
);
839 payload
->checksum
[1] = cpu_to_le32(checksum2
);
841 io
->meta_offset
+= sizeof(struct r5l_payload_data_parity
) +
842 sizeof(__le32
) * (1 + !!checksum2_valid
);
845 static void r5l_append_payload_page(struct r5l_log
*log
, struct page
*page
)
847 struct r5l_io_unit
*io
= log
->current_io
;
849 if (io
->need_split_bio
) {
850 BUG_ON(io
->split_bio
);
851 io
->split_bio
= io
->current_bio
;
852 io
->current_bio
= r5l_bio_alloc(log
);
853 bio_chain(io
->current_bio
, io
->split_bio
);
854 io
->need_split_bio
= false;
857 if (!bio_add_page(io
->current_bio
, page
, PAGE_SIZE
, 0))
860 r5_reserve_log_entry(log
, io
);
863 static void r5l_append_flush_payload(struct r5l_log
*log
, sector_t sect
)
865 struct mddev
*mddev
= log
->rdev
->mddev
;
866 struct r5conf
*conf
= mddev
->private;
867 struct r5l_io_unit
*io
;
868 struct r5l_payload_flush
*payload
;
872 * payload_flush requires extra writes to the journal.
873 * To avoid handling the extra IO in quiesce, just skip
879 mutex_lock(&log
->io_mutex
);
880 meta_size
= sizeof(struct r5l_payload_flush
) + sizeof(__le64
);
882 if (r5l_get_meta(log
, meta_size
)) {
883 mutex_unlock(&log
->io_mutex
);
887 /* current implementation is one stripe per flush payload */
888 io
= log
->current_io
;
889 payload
= page_address(io
->meta_page
) + io
->meta_offset
;
890 payload
->header
.type
= cpu_to_le16(R5LOG_PAYLOAD_FLUSH
);
891 payload
->header
.flags
= cpu_to_le16(0);
892 payload
->size
= cpu_to_le32(sizeof(__le64
));
893 payload
->flush_stripes
[0] = cpu_to_le64(sect
);
894 io
->meta_offset
+= meta_size
;
895 /* multiple flush payloads count as one pending_stripe */
896 if (!io
->has_flush_payload
) {
897 io
->has_flush_payload
= 1;
898 atomic_inc(&io
->pending_stripe
);
900 mutex_unlock(&log
->io_mutex
);
903 static int r5l_log_stripe(struct r5l_log
*log
, struct stripe_head
*sh
,
904 int data_pages
, int parity_pages
)
909 struct r5l_io_unit
*io
;
912 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
))
914 sizeof(struct r5l_payload_data_parity
) +
915 sizeof(__le32
) * parity_pages
;
917 ret
= r5l_get_meta(log
, meta_size
);
921 io
= log
->current_io
;
923 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
))
926 for (i
= 0; i
< sh
->disks
; i
++) {
927 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
928 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
930 if (i
== sh
->pd_idx
|| i
== sh
->qd_idx
)
932 if (test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
) &&
933 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
) {
936 * we need to flush journal to make sure recovery can
937 * reach the data with fua flag
941 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_DATA
,
942 raid5_compute_blocknr(sh
, i
, 0),
943 sh
->dev
[i
].log_checksum
, 0, false);
944 r5l_append_payload_page(log
, sh
->dev
[i
].page
);
947 if (parity_pages
== 2) {
948 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
949 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
950 sh
->dev
[sh
->qd_idx
].log_checksum
, true);
951 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
952 r5l_append_payload_page(log
, sh
->dev
[sh
->qd_idx
].page
);
953 } else if (parity_pages
== 1) {
954 r5l_append_payload_meta(log
, R5LOG_PAYLOAD_PARITY
,
955 sh
->sector
, sh
->dev
[sh
->pd_idx
].log_checksum
,
957 r5l_append_payload_page(log
, sh
->dev
[sh
->pd_idx
].page
);
958 } else /* Just writing data, not parity, in caching phase */
959 BUG_ON(parity_pages
!= 0);
961 list_add_tail(&sh
->log_list
, &io
->stripe_list
);
962 atomic_inc(&io
->pending_stripe
);
965 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
968 if (sh
->log_start
== MaxSector
) {
969 BUG_ON(!list_empty(&sh
->r5c
));
970 sh
->log_start
= io
->log_start
;
971 spin_lock_irq(&log
->stripe_in_journal_lock
);
972 list_add_tail(&sh
->r5c
,
973 &log
->stripe_in_journal_list
);
974 spin_unlock_irq(&log
->stripe_in_journal_lock
);
975 atomic_inc(&log
->stripe_in_journal_count
);
980 /* add stripe to no_space_stripes, and then wake up reclaim */
981 static inline void r5l_add_no_space_stripe(struct r5l_log
*log
,
982 struct stripe_head
*sh
)
984 spin_lock(&log
->no_space_stripes_lock
);
985 list_add_tail(&sh
->log_list
, &log
->no_space_stripes
);
986 spin_unlock(&log
->no_space_stripes_lock
);
990 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
991 * data from log to raid disks), so we shouldn't wait for reclaim here
993 int r5l_write_stripe(struct r5l_log
*log
, struct stripe_head
*sh
)
995 struct r5conf
*conf
= sh
->raid_conf
;
997 int data_pages
, parity_pages
;
1001 bool wake_reclaim
= false;
1005 /* Don't support stripe batch */
1006 if (sh
->log_io
|| !test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
) ||
1007 test_bit(STRIPE_SYNCING
, &sh
->state
)) {
1008 /* the stripe is written to log, we start writing it to raid */
1009 clear_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
1013 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1015 for (i
= 0; i
< sh
->disks
; i
++) {
1018 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
) ||
1019 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
1023 /* checksum is already calculated in last run */
1024 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
1026 addr
= kmap_atomic(sh
->dev
[i
].page
);
1027 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
1029 kunmap_atomic(addr
);
1031 parity_pages
= 1 + !!(sh
->qd_idx
>= 0);
1032 data_pages
= write_disks
- parity_pages
;
1034 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
1036 * The stripe must enter state machine again to finish the write, so
1039 clear_bit(STRIPE_DELAYED
, &sh
->state
);
1040 atomic_inc(&sh
->count
);
1042 mutex_lock(&log
->io_mutex
);
1044 reserve
= (1 + write_disks
) << (PAGE_SHIFT
- 9);
1046 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
1047 if (!r5l_has_free_space(log
, reserve
)) {
1048 r5l_add_no_space_stripe(log
, sh
);
1049 wake_reclaim
= true;
1051 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
1053 spin_lock_irq(&log
->io_list_lock
);
1054 list_add_tail(&sh
->log_list
,
1055 &log
->no_mem_stripes
);
1056 spin_unlock_irq(&log
->io_list_lock
);
1059 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1061 * log space critical, do not process stripes that are
1062 * not in cache yet (sh->log_start == MaxSector).
1064 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
1065 sh
->log_start
== MaxSector
) {
1066 r5l_add_no_space_stripe(log
, sh
);
1067 wake_reclaim
= true;
1069 } else if (!r5l_has_free_space(log
, reserve
)) {
1070 if (sh
->log_start
== log
->last_checkpoint
)
1073 r5l_add_no_space_stripe(log
, sh
);
1075 ret
= r5l_log_stripe(log
, sh
, data_pages
, parity_pages
);
1077 spin_lock_irq(&log
->io_list_lock
);
1078 list_add_tail(&sh
->log_list
,
1079 &log
->no_mem_stripes
);
1080 spin_unlock_irq(&log
->io_list_lock
);
1085 mutex_unlock(&log
->io_mutex
);
1087 r5l_wake_reclaim(log
, reserve
);
1091 void r5l_write_stripe_run(struct r5l_log
*log
)
1095 mutex_lock(&log
->io_mutex
);
1096 r5l_submit_current_io(log
);
1097 mutex_unlock(&log
->io_mutex
);
1100 int r5l_handle_flush_request(struct r5l_log
*log
, struct bio
*bio
)
1102 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
) {
1104 * in write through (journal only)
1105 * we flush log disk cache first, then write stripe data to
1106 * raid disks. So if bio is finished, the log disk cache is
1107 * flushed already. The recovery guarantees we can recovery
1108 * the bio from log disk, so we don't need to flush again
1110 if (bio
->bi_iter
.bi_size
== 0) {
1114 bio
->bi_opf
&= ~REQ_PREFLUSH
;
1116 /* write back (with cache) */
1117 if (bio
->bi_iter
.bi_size
== 0) {
1118 mutex_lock(&log
->io_mutex
);
1119 r5l_get_meta(log
, 0);
1120 bio_list_add(&log
->current_io
->flush_barriers
, bio
);
1121 log
->current_io
->has_flush
= 1;
1122 log
->current_io
->has_null_flush
= 1;
1123 atomic_inc(&log
->current_io
->pending_stripe
);
1124 r5l_submit_current_io(log
);
1125 mutex_unlock(&log
->io_mutex
);
1132 /* This will run after log space is reclaimed */
1133 static void r5l_run_no_space_stripes(struct r5l_log
*log
)
1135 struct stripe_head
*sh
;
1137 spin_lock(&log
->no_space_stripes_lock
);
1138 while (!list_empty(&log
->no_space_stripes
)) {
1139 sh
= list_first_entry(&log
->no_space_stripes
,
1140 struct stripe_head
, log_list
);
1141 list_del_init(&sh
->log_list
);
1142 set_bit(STRIPE_HANDLE
, &sh
->state
);
1143 raid5_release_stripe(sh
);
1145 spin_unlock(&log
->no_space_stripes_lock
);
1149 * calculate new last_checkpoint
1150 * for write through mode, returns log->next_checkpoint
1151 * for write back, returns log_start of first sh in stripe_in_journal_list
1153 static sector_t
r5c_calculate_new_cp(struct r5conf
*conf
)
1155 struct stripe_head
*sh
;
1156 struct r5l_log
*log
= READ_ONCE(conf
->log
);
1158 unsigned long flags
;
1160 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
1161 return log
->next_checkpoint
;
1163 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1164 if (list_empty(&log
->stripe_in_journal_list
)) {
1165 /* all stripes flushed */
1166 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1167 return log
->next_checkpoint
;
1169 sh
= list_first_entry(&log
->stripe_in_journal_list
,
1170 struct stripe_head
, r5c
);
1171 new_cp
= sh
->log_start
;
1172 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1176 static sector_t
r5l_reclaimable_space(struct r5l_log
*log
)
1178 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1180 return r5l_ring_distance(log
, log
->last_checkpoint
,
1181 r5c_calculate_new_cp(conf
));
1184 static void r5l_run_no_mem_stripe(struct r5l_log
*log
)
1186 struct stripe_head
*sh
;
1188 lockdep_assert_held(&log
->io_list_lock
);
1190 if (!list_empty(&log
->no_mem_stripes
)) {
1191 sh
= list_first_entry(&log
->no_mem_stripes
,
1192 struct stripe_head
, log_list
);
1193 list_del_init(&sh
->log_list
);
1194 set_bit(STRIPE_HANDLE
, &sh
->state
);
1195 raid5_release_stripe(sh
);
1199 static bool r5l_complete_finished_ios(struct r5l_log
*log
)
1201 struct r5l_io_unit
*io
, *next
;
1204 lockdep_assert_held(&log
->io_list_lock
);
1206 list_for_each_entry_safe(io
, next
, &log
->finished_ios
, log_sibling
) {
1207 /* don't change list order */
1208 if (io
->state
< IO_UNIT_STRIPE_END
)
1211 log
->next_checkpoint
= io
->log_start
;
1213 list_del(&io
->log_sibling
);
1214 mempool_free(io
, &log
->io_pool
);
1215 r5l_run_no_mem_stripe(log
);
1223 static void __r5l_stripe_write_finished(struct r5l_io_unit
*io
)
1225 struct r5l_log
*log
= io
->log
;
1226 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1227 unsigned long flags
;
1229 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1230 __r5l_set_io_unit_state(io
, IO_UNIT_STRIPE_END
);
1232 if (!r5l_complete_finished_ios(log
)) {
1233 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1237 if (r5l_reclaimable_space(log
) > log
->max_free_space
||
1238 test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
))
1239 r5l_wake_reclaim(log
, 0);
1241 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1242 wake_up(&log
->iounit_wait
);
1245 void r5l_stripe_write_finished(struct stripe_head
*sh
)
1247 struct r5l_io_unit
*io
;
1252 if (io
&& atomic_dec_and_test(&io
->pending_stripe
))
1253 __r5l_stripe_write_finished(io
);
1256 static void r5l_log_flush_endio(struct bio
*bio
)
1258 struct r5l_log
*log
= container_of(bio
, struct r5l_log
,
1260 unsigned long flags
;
1261 struct r5l_io_unit
*io
;
1264 md_error(log
->rdev
->mddev
, log
->rdev
);
1267 spin_lock_irqsave(&log
->io_list_lock
, flags
);
1268 list_for_each_entry(io
, &log
->flushing_ios
, log_sibling
)
1269 r5l_io_run_stripes(io
);
1270 list_splice_tail_init(&log
->flushing_ios
, &log
->finished_ios
);
1271 spin_unlock_irqrestore(&log
->io_list_lock
, flags
);
1275 * Starting dispatch IO to raid.
1276 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1277 * broken meta in the middle of a log causes recovery can't find meta at the
1278 * head of log. If operations require meta at the head persistent in log, we
1279 * must make sure meta before it persistent in log too. A case is:
1281 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1282 * data/parity must be persistent in log before we do the write to raid disks.
1284 * The solution is we restrictly maintain io_unit list order. In this case, we
1285 * only write stripes of an io_unit to raid disks till the io_unit is the first
1286 * one whose data/parity is in log.
1288 void r5l_flush_stripe_to_raid(struct r5l_log
*log
)
1292 if (!log
|| !log
->need_cache_flush
)
1295 spin_lock_irq(&log
->io_list_lock
);
1296 /* flush bio is running */
1297 if (!list_empty(&log
->flushing_ios
)) {
1298 spin_unlock_irq(&log
->io_list_lock
);
1301 list_splice_tail_init(&log
->io_end_ios
, &log
->flushing_ios
);
1302 do_flush
= !list_empty(&log
->flushing_ios
);
1303 spin_unlock_irq(&log
->io_list_lock
);
1307 bio_init(&log
->flush_bio
, log
->rdev
->bdev
, NULL
, 0,
1308 REQ_OP_WRITE
| REQ_PREFLUSH
);
1309 log
->flush_bio
.bi_end_io
= r5l_log_flush_endio
;
1310 submit_bio(&log
->flush_bio
);
1313 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
);
1314 static void r5l_write_super_and_discard_space(struct r5l_log
*log
,
1317 struct block_device
*bdev
= log
->rdev
->bdev
;
1318 struct mddev
*mddev
;
1320 r5l_write_super(log
, end
);
1322 if (!bdev_max_discard_sectors(bdev
))
1325 mddev
= log
->rdev
->mddev
;
1327 * Discard could zero data, so before discard we must make sure
1328 * superblock is updated to new log tail. Updating superblock (either
1329 * directly call md_update_sb() or depend on md thread) must hold
1330 * reconfig mutex. On the other hand, raid5_quiesce is called with
1331 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1332 * for all IO finish, hence waiting for reclaim thread, while reclaim
1333 * thread is calling this function and waiting for reconfig mutex. So
1334 * there is a deadlock. We workaround this issue with a trylock.
1335 * FIXME: we could miss discard if we can't take reconfig mutex
1337 set_mask_bits(&mddev
->sb_flags
, 0,
1338 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1339 if (!mddev_trylock(mddev
))
1341 md_update_sb(mddev
, 1);
1342 mddev_unlock(mddev
);
1344 /* discard IO error really doesn't matter, ignore it */
1345 if (log
->last_checkpoint
< end
) {
1346 blkdev_issue_discard(bdev
,
1347 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1348 end
- log
->last_checkpoint
, GFP_NOIO
);
1350 blkdev_issue_discard(bdev
,
1351 log
->last_checkpoint
+ log
->rdev
->data_offset
,
1352 log
->device_size
- log
->last_checkpoint
,
1354 blkdev_issue_discard(bdev
, log
->rdev
->data_offset
, end
,
1360 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1361 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1363 * must hold conf->device_lock
1365 static void r5c_flush_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
1367 BUG_ON(list_empty(&sh
->lru
));
1368 BUG_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
1369 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
1372 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1373 * raid5_release_stripe() while holding conf->device_lock
1375 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
));
1376 lockdep_assert_held(&conf
->device_lock
);
1378 list_del_init(&sh
->lru
);
1379 atomic_inc(&sh
->count
);
1381 set_bit(STRIPE_HANDLE
, &sh
->state
);
1382 atomic_inc(&conf
->active_stripes
);
1383 r5c_make_stripe_write_out(sh
);
1385 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
1386 atomic_inc(&conf
->r5c_flushing_partial_stripes
);
1388 atomic_inc(&conf
->r5c_flushing_full_stripes
);
1389 raid5_release_stripe(sh
);
1393 * if num == 0, flush all full stripes
1394 * if num > 0, flush all full stripes. If less than num full stripes are
1395 * flushed, flush some partial stripes until totally num stripes are
1396 * flushed or there is no more cached stripes.
1398 void r5c_flush_cache(struct r5conf
*conf
, int num
)
1401 struct stripe_head
*sh
, *next
;
1403 lockdep_assert_held(&conf
->device_lock
);
1404 if (!READ_ONCE(conf
->log
))
1408 list_for_each_entry_safe(sh
, next
, &conf
->r5c_full_stripe_list
, lru
) {
1409 r5c_flush_stripe(conf
, sh
);
1415 list_for_each_entry_safe(sh
, next
,
1416 &conf
->r5c_partial_stripe_list
, lru
) {
1417 r5c_flush_stripe(conf
, sh
);
1423 static void r5c_do_reclaim(struct r5conf
*conf
)
1425 struct r5l_log
*log
= READ_ONCE(conf
->log
);
1426 struct stripe_head
*sh
;
1428 unsigned long flags
;
1430 int stripes_to_flush
;
1431 int flushing_partial
, flushing_full
;
1433 if (!r5c_is_writeback(log
))
1436 flushing_partial
= atomic_read(&conf
->r5c_flushing_partial_stripes
);
1437 flushing_full
= atomic_read(&conf
->r5c_flushing_full_stripes
);
1438 total_cached
= atomic_read(&conf
->r5c_cached_partial_stripes
) +
1439 atomic_read(&conf
->r5c_cached_full_stripes
) -
1440 flushing_full
- flushing_partial
;
1442 if (total_cached
> conf
->min_nr_stripes
* 3 / 4 ||
1443 atomic_read(&conf
->empty_inactive_list_nr
) > 0)
1445 * if stripe cache pressure high, flush all full stripes and
1446 * some partial stripes
1448 stripes_to_flush
= R5C_RECLAIM_STRIPE_GROUP
;
1449 else if (total_cached
> conf
->min_nr_stripes
* 1 / 2 ||
1450 atomic_read(&conf
->r5c_cached_full_stripes
) - flushing_full
>
1451 R5C_FULL_STRIPE_FLUSH_BATCH(conf
))
1453 * if stripe cache pressure moderate, or if there is many full
1454 * stripes,flush all full stripes
1456 stripes_to_flush
= 0;
1458 /* no need to flush */
1459 stripes_to_flush
= -1;
1461 if (stripes_to_flush
>= 0) {
1462 spin_lock_irqsave(&conf
->device_lock
, flags
);
1463 r5c_flush_cache(conf
, stripes_to_flush
);
1464 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1467 /* if log space is tight, flush stripes on stripe_in_journal_list */
1468 if (test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
)) {
1469 spin_lock_irqsave(&log
->stripe_in_journal_lock
, flags
);
1470 spin_lock(&conf
->device_lock
);
1471 list_for_each_entry(sh
, &log
->stripe_in_journal_list
, r5c
) {
1473 * stripes on stripe_in_journal_list could be in any
1474 * state of the stripe_cache state machine. In this
1475 * case, we only want to flush stripe on
1476 * r5c_cached_full/partial_stripes. The following
1477 * condition makes sure the stripe is on one of the
1480 if (!list_empty(&sh
->lru
) &&
1481 !test_bit(STRIPE_HANDLE
, &sh
->state
) &&
1482 atomic_read(&sh
->count
) == 0) {
1483 r5c_flush_stripe(conf
, sh
);
1484 if (count
++ >= R5C_RECLAIM_STRIPE_GROUP
)
1488 spin_unlock(&conf
->device_lock
);
1489 spin_unlock_irqrestore(&log
->stripe_in_journal_lock
, flags
);
1492 if (!test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
))
1493 r5l_run_no_space_stripes(log
);
1495 md_wakeup_thread(conf
->mddev
->thread
);
1498 static void r5l_do_reclaim(struct r5l_log
*log
)
1500 struct r5conf
*conf
= log
->rdev
->mddev
->private;
1501 sector_t reclaim_target
= xchg(&log
->reclaim_target
, 0);
1502 sector_t reclaimable
;
1503 sector_t next_checkpoint
;
1506 spin_lock_irq(&log
->io_list_lock
);
1507 write_super
= r5l_reclaimable_space(log
) > log
->max_free_space
||
1508 reclaim_target
!= 0 || !list_empty(&log
->no_space_stripes
);
1510 * move proper io_unit to reclaim list. We should not change the order.
1511 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1512 * shouldn't reuse space of an unreclaimable io_unit
1515 reclaimable
= r5l_reclaimable_space(log
);
1516 if (reclaimable
>= reclaim_target
||
1517 (list_empty(&log
->running_ios
) &&
1518 list_empty(&log
->io_end_ios
) &&
1519 list_empty(&log
->flushing_ios
) &&
1520 list_empty(&log
->finished_ios
)))
1523 md_wakeup_thread(log
->rdev
->mddev
->thread
);
1524 wait_event_lock_irq(log
->iounit_wait
,
1525 r5l_reclaimable_space(log
) > reclaimable
,
1529 next_checkpoint
= r5c_calculate_new_cp(conf
);
1530 spin_unlock_irq(&log
->io_list_lock
);
1532 if (reclaimable
== 0 || !write_super
)
1536 * write_super will flush cache of each raid disk. We must write super
1537 * here, because the log area might be reused soon and we don't want to
1540 r5l_write_super_and_discard_space(log
, next_checkpoint
);
1542 mutex_lock(&log
->io_mutex
);
1543 log
->last_checkpoint
= next_checkpoint
;
1544 r5c_update_log_state(log
);
1545 mutex_unlock(&log
->io_mutex
);
1547 r5l_run_no_space_stripes(log
);
1550 static void r5l_reclaim_thread(struct md_thread
*thread
)
1552 struct mddev
*mddev
= thread
->mddev
;
1553 struct r5conf
*conf
= mddev
->private;
1554 struct r5l_log
*log
= READ_ONCE(conf
->log
);
1558 r5c_do_reclaim(conf
);
1559 r5l_do_reclaim(log
);
1562 void r5l_wake_reclaim(struct r5l_log
*log
, sector_t space
)
1564 unsigned long target
;
1565 unsigned long new = (unsigned long)space
; /* overflow in theory */
1570 target
= READ_ONCE(log
->reclaim_target
);
1574 } while (!try_cmpxchg(&log
->reclaim_target
, &target
, new));
1575 md_wakeup_thread(log
->reclaim_thread
);
1578 void r5l_quiesce(struct r5l_log
*log
, int quiesce
)
1580 struct mddev
*mddev
= log
->rdev
->mddev
;
1581 struct md_thread
*thread
= rcu_dereference_protected(
1582 log
->reclaim_thread
, lockdep_is_held(&mddev
->reconfig_mutex
));
1585 /* make sure r5l_write_super_and_discard_space exits */
1586 wake_up(&mddev
->sb_wait
);
1587 kthread_park(thread
->tsk
);
1588 r5l_wake_reclaim(log
, MaxSector
);
1589 r5l_do_reclaim(log
);
1591 kthread_unpark(thread
->tsk
);
1594 bool r5l_log_disk_error(struct r5conf
*conf
)
1596 struct r5l_log
*log
= READ_ONCE(conf
->log
);
1598 /* don't allow write if journal disk is missing */
1600 return test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
1602 return test_bit(Faulty
, &log
->rdev
->flags
);
1605 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1607 struct r5l_recovery_ctx
{
1608 struct page
*meta_page
; /* current meta */
1609 sector_t meta_total_blocks
; /* total size of current meta and data */
1610 sector_t pos
; /* recovery position */
1611 u64 seq
; /* recovery position seq */
1612 int data_parity_stripes
; /* number of data_parity stripes */
1613 int data_only_stripes
; /* number of data_only stripes */
1614 struct list_head cached_list
;
1617 * read ahead page pool (ra_pool)
1618 * in recovery, log is read sequentially. It is not efficient to
1619 * read every page with sync_page_io(). The read ahead page pool
1620 * reads multiple pages with one IO, so further log read can
1621 * just copy data from the pool.
1623 struct page
*ra_pool
[R5L_RECOVERY_PAGE_POOL_SIZE
];
1624 struct bio_vec ra_bvec
[R5L_RECOVERY_PAGE_POOL_SIZE
];
1625 sector_t pool_offset
; /* offset of first page in the pool */
1626 int total_pages
; /* total allocated pages */
1627 int valid_pages
; /* pages with valid data */
1630 static int r5l_recovery_allocate_ra_pool(struct r5l_log
*log
,
1631 struct r5l_recovery_ctx
*ctx
)
1635 ctx
->valid_pages
= 0;
1636 ctx
->total_pages
= 0;
1637 while (ctx
->total_pages
< R5L_RECOVERY_PAGE_POOL_SIZE
) {
1638 page
= alloc_page(GFP_KERNEL
);
1642 ctx
->ra_pool
[ctx
->total_pages
] = page
;
1643 ctx
->total_pages
+= 1;
1646 if (ctx
->total_pages
== 0)
1649 ctx
->pool_offset
= 0;
1653 static void r5l_recovery_free_ra_pool(struct r5l_log
*log
,
1654 struct r5l_recovery_ctx
*ctx
)
1658 for (i
= 0; i
< ctx
->total_pages
; ++i
)
1659 put_page(ctx
->ra_pool
[i
]);
1663 * fetch ctx->valid_pages pages from offset
1664 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1665 * However, if the offset is close to the end of the journal device,
1666 * ctx->valid_pages could be smaller than ctx->total_pages
1668 static int r5l_recovery_fetch_ra_pool(struct r5l_log
*log
,
1669 struct r5l_recovery_ctx
*ctx
,
1675 bio_init(&bio
, log
->rdev
->bdev
, ctx
->ra_bvec
,
1676 R5L_RECOVERY_PAGE_POOL_SIZE
, REQ_OP_READ
);
1677 bio
.bi_iter
.bi_sector
= log
->rdev
->data_offset
+ offset
;
1679 ctx
->valid_pages
= 0;
1680 ctx
->pool_offset
= offset
;
1682 while (ctx
->valid_pages
< ctx
->total_pages
) {
1683 __bio_add_page(&bio
, ctx
->ra_pool
[ctx
->valid_pages
], PAGE_SIZE
,
1685 ctx
->valid_pages
+= 1;
1687 offset
= r5l_ring_add(log
, offset
, BLOCK_SECTORS
);
1689 if (offset
== 0) /* reached end of the device */
1693 ret
= submit_bio_wait(&bio
);
1699 * try read a page from the read ahead page pool, if the page is not in the
1700 * pool, call r5l_recovery_fetch_ra_pool
1702 static int r5l_recovery_read_page(struct r5l_log
*log
,
1703 struct r5l_recovery_ctx
*ctx
,
1709 if (offset
< ctx
->pool_offset
||
1710 offset
>= ctx
->pool_offset
+ ctx
->valid_pages
* BLOCK_SECTORS
) {
1711 ret
= r5l_recovery_fetch_ra_pool(log
, ctx
, offset
);
1716 BUG_ON(offset
< ctx
->pool_offset
||
1717 offset
>= ctx
->pool_offset
+ ctx
->valid_pages
* BLOCK_SECTORS
);
1719 memcpy(page_address(page
),
1720 page_address(ctx
->ra_pool
[(offset
- ctx
->pool_offset
) >>
1721 BLOCK_SECTOR_SHIFT
]),
1726 static int r5l_recovery_read_meta_block(struct r5l_log
*log
,
1727 struct r5l_recovery_ctx
*ctx
)
1729 struct page
*page
= ctx
->meta_page
;
1730 struct r5l_meta_block
*mb
;
1731 u32 crc
, stored_crc
;
1734 ret
= r5l_recovery_read_page(log
, ctx
, page
, ctx
->pos
);
1738 mb
= page_address(page
);
1739 stored_crc
= le32_to_cpu(mb
->checksum
);
1742 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
1743 le64_to_cpu(mb
->seq
) != ctx
->seq
||
1744 mb
->version
!= R5LOG_VERSION
||
1745 le64_to_cpu(mb
->position
) != ctx
->pos
)
1748 crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
1749 if (stored_crc
!= crc
)
1752 if (le32_to_cpu(mb
->meta_size
) > PAGE_SIZE
)
1755 ctx
->meta_total_blocks
= BLOCK_SECTORS
;
1761 r5l_recovery_create_empty_meta_block(struct r5l_log
*log
,
1763 sector_t pos
, u64 seq
)
1765 struct r5l_meta_block
*mb
;
1767 mb
= page_address(page
);
1769 mb
->magic
= cpu_to_le32(R5LOG_MAGIC
);
1770 mb
->version
= R5LOG_VERSION
;
1771 mb
->meta_size
= cpu_to_le32(sizeof(struct r5l_meta_block
));
1772 mb
->seq
= cpu_to_le64(seq
);
1773 mb
->position
= cpu_to_le64(pos
);
1776 static int r5l_log_write_empty_meta_block(struct r5l_log
*log
, sector_t pos
,
1780 struct r5l_meta_block
*mb
;
1782 page
= alloc_page(GFP_KERNEL
);
1785 r5l_recovery_create_empty_meta_block(log
, page
, pos
, seq
);
1786 mb
= page_address(page
);
1787 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
1789 if (!sync_page_io(log
->rdev
, pos
, PAGE_SIZE
, page
, REQ_OP_WRITE
|
1790 REQ_SYNC
| REQ_FUA
, false)) {
1799 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1800 * to mark valid (potentially not flushed) data in the journal.
1802 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1803 * so there should not be any mismatch here.
1805 static void r5l_recovery_load_data(struct r5l_log
*log
,
1806 struct stripe_head
*sh
,
1807 struct r5l_recovery_ctx
*ctx
,
1808 struct r5l_payload_data_parity
*payload
,
1809 sector_t log_offset
)
1811 struct mddev
*mddev
= log
->rdev
->mddev
;
1812 struct r5conf
*conf
= mddev
->private;
1815 raid5_compute_sector(conf
,
1816 le64_to_cpu(payload
->location
), 0,
1818 r5l_recovery_read_page(log
, ctx
, sh
->dev
[dd_idx
].page
, log_offset
);
1819 sh
->dev
[dd_idx
].log_checksum
=
1820 le32_to_cpu(payload
->checksum
[0]);
1821 ctx
->meta_total_blocks
+= BLOCK_SECTORS
;
1823 set_bit(R5_Wantwrite
, &sh
->dev
[dd_idx
].flags
);
1824 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1827 static void r5l_recovery_load_parity(struct r5l_log
*log
,
1828 struct stripe_head
*sh
,
1829 struct r5l_recovery_ctx
*ctx
,
1830 struct r5l_payload_data_parity
*payload
,
1831 sector_t log_offset
)
1833 struct mddev
*mddev
= log
->rdev
->mddev
;
1834 struct r5conf
*conf
= mddev
->private;
1836 ctx
->meta_total_blocks
+= BLOCK_SECTORS
* conf
->max_degraded
;
1837 r5l_recovery_read_page(log
, ctx
, sh
->dev
[sh
->pd_idx
].page
, log_offset
);
1838 sh
->dev
[sh
->pd_idx
].log_checksum
=
1839 le32_to_cpu(payload
->checksum
[0]);
1840 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
);
1842 if (sh
->qd_idx
>= 0) {
1843 r5l_recovery_read_page(
1844 log
, ctx
, sh
->dev
[sh
->qd_idx
].page
,
1845 r5l_ring_add(log
, log_offset
, BLOCK_SECTORS
));
1846 sh
->dev
[sh
->qd_idx
].log_checksum
=
1847 le32_to_cpu(payload
->checksum
[1]);
1848 set_bit(R5_Wantwrite
, &sh
->dev
[sh
->qd_idx
].flags
);
1850 clear_bit(STRIPE_R5C_CACHING
, &sh
->state
);
1853 static void r5l_recovery_reset_stripe(struct stripe_head
*sh
)
1858 sh
->log_start
= MaxSector
;
1859 for (i
= sh
->disks
; i
--; )
1860 sh
->dev
[i
].flags
= 0;
1864 r5l_recovery_replay_one_stripe(struct r5conf
*conf
,
1865 struct stripe_head
*sh
,
1866 struct r5l_recovery_ctx
*ctx
)
1868 struct md_rdev
*rdev
, *rrdev
;
1872 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1873 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1875 if (disk_index
== sh
->qd_idx
|| disk_index
== sh
->pd_idx
)
1881 * stripes that only have parity must have been flushed
1882 * before the crash that we are now recovering from, so
1883 * there is nothing more to recovery.
1885 if (data_count
== 0)
1888 for (disk_index
= 0; disk_index
< sh
->disks
; disk_index
++) {
1889 if (!test_bit(R5_Wantwrite
, &sh
->dev
[disk_index
].flags
))
1892 /* in case device is broken */
1893 rdev
= conf
->disks
[disk_index
].rdev
;
1895 atomic_inc(&rdev
->nr_pending
);
1896 sync_page_io(rdev
, sh
->sector
, PAGE_SIZE
,
1897 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
,
1899 rdev_dec_pending(rdev
, rdev
->mddev
);
1901 rrdev
= conf
->disks
[disk_index
].replacement
;
1903 atomic_inc(&rrdev
->nr_pending
);
1904 sync_page_io(rrdev
, sh
->sector
, PAGE_SIZE
,
1905 sh
->dev
[disk_index
].page
, REQ_OP_WRITE
,
1907 rdev_dec_pending(rrdev
, rrdev
->mddev
);
1910 ctx
->data_parity_stripes
++;
1912 r5l_recovery_reset_stripe(sh
);
1915 static struct stripe_head
*
1916 r5c_recovery_alloc_stripe(
1917 struct r5conf
*conf
,
1918 sector_t stripe_sect
,
1921 struct stripe_head
*sh
;
1923 sh
= raid5_get_active_stripe(conf
, NULL
, stripe_sect
,
1924 noblock
? R5_GAS_NOBLOCK
: 0);
1926 return NULL
; /* no more stripe available */
1928 r5l_recovery_reset_stripe(sh
);
1933 static struct stripe_head
*
1934 r5c_recovery_lookup_stripe(struct list_head
*list
, sector_t sect
)
1936 struct stripe_head
*sh
;
1938 list_for_each_entry(sh
, list
, lru
)
1939 if (sh
->sector
== sect
)
1945 r5c_recovery_drop_stripes(struct list_head
*cached_stripe_list
,
1946 struct r5l_recovery_ctx
*ctx
)
1948 struct stripe_head
*sh
, *next
;
1950 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
) {
1951 r5l_recovery_reset_stripe(sh
);
1952 list_del_init(&sh
->lru
);
1953 raid5_release_stripe(sh
);
1958 r5c_recovery_replay_stripes(struct list_head
*cached_stripe_list
,
1959 struct r5l_recovery_ctx
*ctx
)
1961 struct stripe_head
*sh
, *next
;
1963 list_for_each_entry_safe(sh
, next
, cached_stripe_list
, lru
)
1964 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
1965 r5l_recovery_replay_one_stripe(sh
->raid_conf
, sh
, ctx
);
1966 list_del_init(&sh
->lru
);
1967 raid5_release_stripe(sh
);
1971 /* if matches return 0; otherwise return -EINVAL */
1973 r5l_recovery_verify_data_checksum(struct r5l_log
*log
,
1974 struct r5l_recovery_ctx
*ctx
,
1976 sector_t log_offset
, __le32 log_checksum
)
1981 r5l_recovery_read_page(log
, ctx
, page
, log_offset
);
1982 addr
= kmap_atomic(page
);
1983 checksum
= crc32c_le(log
->uuid_checksum
, addr
, PAGE_SIZE
);
1984 kunmap_atomic(addr
);
1985 return (le32_to_cpu(log_checksum
) == checksum
) ? 0 : -EINVAL
;
1989 * before loading data to stripe cache, we need verify checksum for all data,
1990 * if there is mismatch for any data page, we drop all data in the mata block
1993 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log
*log
,
1994 struct r5l_recovery_ctx
*ctx
)
1996 struct mddev
*mddev
= log
->rdev
->mddev
;
1997 struct r5conf
*conf
= mddev
->private;
1998 struct r5l_meta_block
*mb
= page_address(ctx
->meta_page
);
1999 sector_t mb_offset
= sizeof(struct r5l_meta_block
);
2000 sector_t log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2002 struct r5l_payload_data_parity
*payload
;
2003 struct r5l_payload_flush
*payload_flush
;
2005 page
= alloc_page(GFP_KERNEL
);
2009 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
2010 payload
= (void *)mb
+ mb_offset
;
2011 payload_flush
= (void *)mb
+ mb_offset
;
2013 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
2014 if (r5l_recovery_verify_data_checksum(
2015 log
, ctx
, page
, log_offset
,
2016 payload
->checksum
[0]) < 0)
2018 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
) {
2019 if (r5l_recovery_verify_data_checksum(
2020 log
, ctx
, page
, log_offset
,
2021 payload
->checksum
[0]) < 0)
2023 if (conf
->max_degraded
== 2 && /* q for RAID 6 */
2024 r5l_recovery_verify_data_checksum(
2026 r5l_ring_add(log
, log_offset
,
2028 payload
->checksum
[1]) < 0)
2030 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2031 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2032 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2035 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2036 mb_offset
+= sizeof(struct r5l_payload_flush
) +
2037 le32_to_cpu(payload_flush
->size
);
2039 /* DATA or PARITY payload */
2040 log_offset
= r5l_ring_add(log
, log_offset
,
2041 le32_to_cpu(payload
->size
));
2042 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
2044 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
2058 * Analyze all data/parity pages in one meta block
2061 * -EINVAL for unknown playload type
2062 * -EAGAIN for checksum mismatch of data page
2063 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2066 r5c_recovery_analyze_meta_block(struct r5l_log
*log
,
2067 struct r5l_recovery_ctx
*ctx
,
2068 struct list_head
*cached_stripe_list
)
2070 struct mddev
*mddev
= log
->rdev
->mddev
;
2071 struct r5conf
*conf
= mddev
->private;
2072 struct r5l_meta_block
*mb
;
2073 struct r5l_payload_data_parity
*payload
;
2074 struct r5l_payload_flush
*payload_flush
;
2076 sector_t log_offset
;
2077 sector_t stripe_sect
;
2078 struct stripe_head
*sh
;
2082 * for mismatch in data blocks, we will drop all data in this mb, but
2083 * we will still read next mb for other data with FLUSH flag, as
2084 * io_unit could finish out of order.
2086 ret
= r5l_recovery_verify_data_checksum_for_mb(log
, ctx
);
2090 return ret
; /* -ENOMEM duo to alloc_page() failed */
2092 mb
= page_address(ctx
->meta_page
);
2093 mb_offset
= sizeof(struct r5l_meta_block
);
2094 log_offset
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2096 while (mb_offset
< le32_to_cpu(mb
->meta_size
)) {
2099 payload
= (void *)mb
+ mb_offset
;
2100 payload_flush
= (void *)mb
+ mb_offset
;
2102 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_FLUSH
) {
2105 count
= le32_to_cpu(payload_flush
->size
) / sizeof(__le64
);
2106 for (i
= 0; i
< count
; ++i
) {
2107 stripe_sect
= le64_to_cpu(payload_flush
->flush_stripes
[i
]);
2108 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
2111 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2112 r5l_recovery_reset_stripe(sh
);
2113 list_del_init(&sh
->lru
);
2114 raid5_release_stripe(sh
);
2118 mb_offset
+= sizeof(struct r5l_payload_flush
) +
2119 le32_to_cpu(payload_flush
->size
);
2123 /* DATA or PARITY payload */
2124 stripe_sect
= (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) ?
2125 raid5_compute_sector(
2126 conf
, le64_to_cpu(payload
->location
), 0, &dd
,
2128 : le64_to_cpu(payload
->location
);
2130 sh
= r5c_recovery_lookup_stripe(cached_stripe_list
,
2134 sh
= r5c_recovery_alloc_stripe(conf
, stripe_sect
, 1);
2136 * cannot get stripe from raid5_get_active_stripe
2137 * try replay some stripes
2140 r5c_recovery_replay_stripes(
2141 cached_stripe_list
, ctx
);
2142 sh
= r5c_recovery_alloc_stripe(
2143 conf
, stripe_sect
, 1);
2146 int new_size
= conf
->min_nr_stripes
* 2;
2147 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2150 ret
= raid5_set_cache_size(mddev
, new_size
);
2151 if (conf
->min_nr_stripes
<= new_size
/ 2) {
2152 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2156 conf
->min_nr_stripes
,
2157 conf
->max_nr_stripes
);
2160 sh
= r5c_recovery_alloc_stripe(
2161 conf
, stripe_sect
, 0);
2164 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2168 list_add_tail(&sh
->lru
, cached_stripe_list
);
2171 if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_DATA
) {
2172 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
2173 test_bit(R5_Wantwrite
, &sh
->dev
[sh
->pd_idx
].flags
)) {
2174 r5l_recovery_replay_one_stripe(conf
, sh
, ctx
);
2175 list_move_tail(&sh
->lru
, cached_stripe_list
);
2177 r5l_recovery_load_data(log
, sh
, ctx
, payload
,
2179 } else if (le16_to_cpu(payload
->header
.type
) == R5LOG_PAYLOAD_PARITY
)
2180 r5l_recovery_load_parity(log
, sh
, ctx
, payload
,
2185 log_offset
= r5l_ring_add(log
, log_offset
,
2186 le32_to_cpu(payload
->size
));
2188 mb_offset
+= sizeof(struct r5l_payload_data_parity
) +
2190 (le32_to_cpu(payload
->size
) >> (PAGE_SHIFT
- 9));
2197 * Load the stripe into cache. The stripe will be written out later by
2198 * the stripe cache state machine.
2200 static void r5c_recovery_load_one_stripe(struct r5l_log
*log
,
2201 struct stripe_head
*sh
)
2206 for (i
= sh
->disks
; i
--; ) {
2208 if (test_and_clear_bit(R5_Wantwrite
, &dev
->flags
)) {
2209 set_bit(R5_InJournal
, &dev
->flags
);
2210 set_bit(R5_UPTODATE
, &dev
->flags
);
2216 * Scan through the log for all to-be-flushed data
2218 * For stripes with data and parity, namely Data-Parity stripe
2219 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2221 * For stripes with only data, namely Data-Only stripe
2222 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2224 * For a stripe, if we see data after parity, we should discard all previous
2225 * data and parity for this stripe, as these data are already flushed to
2228 * At the end of the scan, we return the new journal_tail, which points to
2229 * first data-only stripe on the journal device, or next invalid meta block.
2231 static int r5c_recovery_flush_log(struct r5l_log
*log
,
2232 struct r5l_recovery_ctx
*ctx
)
2234 struct stripe_head
*sh
;
2237 /* scan through the log */
2239 if (r5l_recovery_read_meta_block(log
, ctx
))
2242 ret
= r5c_recovery_analyze_meta_block(log
, ctx
,
2245 * -EAGAIN means mismatch in data block, in this case, we still
2246 * try scan the next metablock
2248 if (ret
&& ret
!= -EAGAIN
)
2249 break; /* ret == -EINVAL or -ENOMEM */
2251 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, ctx
->meta_total_blocks
);
2254 if (ret
== -ENOMEM
) {
2255 r5c_recovery_drop_stripes(&ctx
->cached_list
, ctx
);
2259 /* replay data-parity stripes */
2260 r5c_recovery_replay_stripes(&ctx
->cached_list
, ctx
);
2262 /* load data-only stripes to stripe cache */
2263 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2264 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2265 r5c_recovery_load_one_stripe(log
, sh
);
2266 ctx
->data_only_stripes
++;
2273 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2274 * log will start here. but we can't let superblock point to last valid
2275 * meta block. The log might looks like:
2276 * | meta 1| meta 2| meta 3|
2277 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2278 * superblock points to meta 1, we write a new valid meta 2n. if crash
2279 * happens again, new recovery will start from meta 1. Since meta 2n is
2280 * valid now, recovery will think meta 3 is valid, which is wrong.
2281 * The solution is we create a new meta in meta2 with its seq == meta
2282 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2283 * will not think meta 3 is a valid meta, because its seq doesn't match
2287 * Before recovery, the log looks like the following
2289 * ---------------------------------------------
2290 * | valid log | invalid log |
2291 * ---------------------------------------------
2293 * |- log->last_checkpoint
2294 * |- log->last_cp_seq
2296 * Now we scan through the log until we see invalid entry
2298 * ---------------------------------------------
2299 * | valid log | invalid log |
2300 * ---------------------------------------------
2302 * |- log->last_checkpoint |- ctx->pos
2303 * |- log->last_cp_seq |- ctx->seq
2305 * From this point, we need to increase seq number by 10 to avoid
2306 * confusing next recovery.
2308 * ---------------------------------------------
2309 * | valid log | invalid log |
2310 * ---------------------------------------------
2312 * |- log->last_checkpoint |- ctx->pos+1
2313 * |- log->last_cp_seq |- ctx->seq+10001
2315 * However, it is not safe to start the state machine yet, because data only
2316 * parities are not yet secured in RAID. To save these data only parities, we
2317 * rewrite them from seq+11.
2319 * -----------------------------------------------------------------
2320 * | valid log | data only stripes | invalid log |
2321 * -----------------------------------------------------------------
2323 * |- log->last_checkpoint |- ctx->pos+n
2324 * |- log->last_cp_seq |- ctx->seq+10000+n
2326 * If failure happens again during this process, the recovery can safe start
2327 * again from log->last_checkpoint.
2329 * Once data only stripes are rewritten to journal, we move log_tail
2331 * -----------------------------------------------------------------
2332 * | old log | data only stripes | invalid log |
2333 * -----------------------------------------------------------------
2335 * |- log->last_checkpoint |- ctx->pos+n
2336 * |- log->last_cp_seq |- ctx->seq+10000+n
2338 * Then we can safely start the state machine. If failure happens from this
2339 * point on, the recovery will start from new log->last_checkpoint.
2342 r5c_recovery_rewrite_data_only_stripes(struct r5l_log
*log
,
2343 struct r5l_recovery_ctx
*ctx
)
2345 struct stripe_head
*sh
;
2346 struct mddev
*mddev
= log
->rdev
->mddev
;
2348 sector_t next_checkpoint
= MaxSector
;
2350 page
= alloc_page(GFP_KERNEL
);
2352 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2357 WARN_ON(list_empty(&ctx
->cached_list
));
2359 list_for_each_entry(sh
, &ctx
->cached_list
, lru
) {
2360 struct r5l_meta_block
*mb
;
2365 WARN_ON(!test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2366 r5l_recovery_create_empty_meta_block(log
, page
,
2367 ctx
->pos
, ctx
->seq
);
2368 mb
= page_address(page
);
2369 offset
= le32_to_cpu(mb
->meta_size
);
2370 write_pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2372 for (i
= sh
->disks
; i
--; ) {
2373 struct r5dev
*dev
= &sh
->dev
[i
];
2374 struct r5l_payload_data_parity
*payload
;
2377 if (test_bit(R5_InJournal
, &dev
->flags
)) {
2378 payload
= (void *)mb
+ offset
;
2379 payload
->header
.type
= cpu_to_le16(
2380 R5LOG_PAYLOAD_DATA
);
2381 payload
->size
= cpu_to_le32(BLOCK_SECTORS
);
2382 payload
->location
= cpu_to_le64(
2383 raid5_compute_blocknr(sh
, i
, 0));
2384 addr
= kmap_atomic(dev
->page
);
2385 payload
->checksum
[0] = cpu_to_le32(
2386 crc32c_le(log
->uuid_checksum
, addr
,
2388 kunmap_atomic(addr
);
2389 sync_page_io(log
->rdev
, write_pos
, PAGE_SIZE
,
2390 dev
->page
, REQ_OP_WRITE
, false);
2391 write_pos
= r5l_ring_add(log
, write_pos
,
2393 offset
+= sizeof(__le32
) +
2394 sizeof(struct r5l_payload_data_parity
);
2398 mb
->meta_size
= cpu_to_le32(offset
);
2399 mb
->checksum
= cpu_to_le32(crc32c_le(log
->uuid_checksum
,
2401 sync_page_io(log
->rdev
, ctx
->pos
, PAGE_SIZE
, page
,
2402 REQ_OP_WRITE
| REQ_SYNC
| REQ_FUA
, false);
2403 sh
->log_start
= ctx
->pos
;
2404 list_add_tail(&sh
->r5c
, &log
->stripe_in_journal_list
);
2405 atomic_inc(&log
->stripe_in_journal_count
);
2406 ctx
->pos
= write_pos
;
2408 next_checkpoint
= sh
->log_start
;
2410 log
->next_checkpoint
= next_checkpoint
;
2415 static void r5c_recovery_flush_data_only_stripes(struct r5l_log
*log
,
2416 struct r5l_recovery_ctx
*ctx
)
2418 struct mddev
*mddev
= log
->rdev
->mddev
;
2419 struct r5conf
*conf
= mddev
->private;
2420 struct stripe_head
*sh
, *next
;
2421 bool cleared_pending
= false;
2423 if (ctx
->data_only_stripes
== 0)
2426 if (test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2427 cleared_pending
= true;
2428 clear_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
);
2430 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_BACK
;
2432 list_for_each_entry_safe(sh
, next
, &ctx
->cached_list
, lru
) {
2433 r5c_make_stripe_write_out(sh
);
2434 set_bit(STRIPE_HANDLE
, &sh
->state
);
2435 list_del_init(&sh
->lru
);
2436 raid5_release_stripe(sh
);
2439 /* reuse conf->wait_for_quiescent in recovery */
2440 wait_event(conf
->wait_for_quiescent
,
2441 atomic_read(&conf
->active_stripes
) == 0);
2443 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
2444 if (cleared_pending
)
2445 set_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
);
2448 static int r5l_recovery_log(struct r5l_log
*log
)
2450 struct mddev
*mddev
= log
->rdev
->mddev
;
2451 struct r5l_recovery_ctx
*ctx
;
2455 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
2459 ctx
->pos
= log
->last_checkpoint
;
2460 ctx
->seq
= log
->last_cp_seq
;
2461 INIT_LIST_HEAD(&ctx
->cached_list
);
2462 ctx
->meta_page
= alloc_page(GFP_KERNEL
);
2464 if (!ctx
->meta_page
) {
2469 if (r5l_recovery_allocate_ra_pool(log
, ctx
) != 0) {
2474 ret
= r5c_recovery_flush_log(log
, ctx
);
2482 if ((ctx
->data_only_stripes
== 0) && (ctx
->data_parity_stripes
== 0))
2483 pr_info("md/raid:%s: starting from clean shutdown\n",
2486 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2487 mdname(mddev
), ctx
->data_only_stripes
,
2488 ctx
->data_parity_stripes
);
2490 if (ctx
->data_only_stripes
== 0) {
2491 log
->next_checkpoint
= ctx
->pos
;
2492 r5l_log_write_empty_meta_block(log
, ctx
->pos
, ctx
->seq
++);
2493 ctx
->pos
= r5l_ring_add(log
, ctx
->pos
, BLOCK_SECTORS
);
2494 } else if (r5c_recovery_rewrite_data_only_stripes(log
, ctx
)) {
2495 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2501 log
->log_start
= ctx
->pos
;
2502 log
->seq
= ctx
->seq
;
2503 log
->last_checkpoint
= pos
;
2504 r5l_write_super(log
, pos
);
2506 r5c_recovery_flush_data_only_stripes(log
, ctx
);
2509 r5l_recovery_free_ra_pool(log
, ctx
);
2511 __free_page(ctx
->meta_page
);
2517 static void r5l_write_super(struct r5l_log
*log
, sector_t cp
)
2519 struct mddev
*mddev
= log
->rdev
->mddev
;
2521 log
->rdev
->journal_tail
= cp
;
2522 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2525 static ssize_t
r5c_journal_mode_show(struct mddev
*mddev
, char *page
)
2527 struct r5conf
*conf
;
2530 ret
= mddev_lock(mddev
);
2534 conf
= mddev
->private;
2535 if (!conf
|| !conf
->log
)
2538 switch (conf
->log
->r5c_journal_mode
) {
2539 case R5C_JOURNAL_MODE_WRITE_THROUGH
:
2541 page
, PAGE_SIZE
, "[%s] %s\n",
2542 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2543 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2545 case R5C_JOURNAL_MODE_WRITE_BACK
:
2547 page
, PAGE_SIZE
, "%s [%s]\n",
2548 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_THROUGH
],
2549 r5c_journal_mode_str
[R5C_JOURNAL_MODE_WRITE_BACK
]);
2556 mddev_unlock(mddev
);
2561 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2563 * @mode as defined in 'enum r5c_journal_mode'.
2566 int r5c_journal_mode_set(struct mddev
*mddev
, int mode
)
2568 struct r5conf
*conf
;
2570 if (mode
< R5C_JOURNAL_MODE_WRITE_THROUGH
||
2571 mode
> R5C_JOURNAL_MODE_WRITE_BACK
)
2574 conf
= mddev
->private;
2575 if (!conf
|| !conf
->log
)
2578 if (raid5_calc_degraded(conf
) > 0 &&
2579 mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
2582 conf
->log
->r5c_journal_mode
= mode
;
2584 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2585 mdname(mddev
), mode
, r5c_journal_mode_str
[mode
]);
2588 EXPORT_SYMBOL(r5c_journal_mode_set
);
2590 static ssize_t
r5c_journal_mode_store(struct mddev
*mddev
,
2591 const char *page
, size_t length
)
2593 int mode
= ARRAY_SIZE(r5c_journal_mode_str
);
2594 size_t len
= length
;
2600 if (page
[len
- 1] == '\n')
2604 if (strlen(r5c_journal_mode_str
[mode
]) == len
&&
2605 !strncmp(page
, r5c_journal_mode_str
[mode
], len
))
2607 ret
= mddev_suspend_and_lock(mddev
);
2610 ret
= r5c_journal_mode_set(mddev
, mode
);
2611 mddev_unlock_and_resume(mddev
);
2612 return ret
?: length
;
2615 struct md_sysfs_entry
2616 r5c_journal_mode
= __ATTR(journal_mode
, 0644,
2617 r5c_journal_mode_show
, r5c_journal_mode_store
);
2620 * Try handle write operation in caching phase. This function should only
2621 * be called in write-back mode.
2623 * If all outstanding writes can be handled in caching phase, returns 0
2624 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2625 * and returns -EAGAIN
2627 int r5c_try_caching_write(struct r5conf
*conf
,
2628 struct stripe_head
*sh
,
2629 struct stripe_head_state
*s
,
2632 struct r5l_log
*log
= READ_ONCE(conf
->log
);
2637 sector_t tree_index
;
2641 BUG_ON(!r5c_is_writeback(log
));
2643 if (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
)) {
2645 * There are two different scenarios here:
2646 * 1. The stripe has some data cached, and it is sent to
2647 * write-out phase for reclaim
2648 * 2. The stripe is clean, and this is the first write
2650 * For 1, return -EAGAIN, so we continue with
2651 * handle_stripe_dirtying().
2653 * For 2, set STRIPE_R5C_CACHING and continue with caching
2657 /* case 1: anything injournal or anything in written */
2658 if (s
->injournal
> 0 || s
->written
> 0)
2661 set_bit(STRIPE_R5C_CACHING
, &sh
->state
);
2665 * When run in degraded mode, array is set to write-through mode.
2666 * This check helps drain pending write safely in the transition to
2667 * write-through mode.
2669 * When a stripe is syncing, the write is also handled in write
2672 if (s
->failed
|| test_bit(STRIPE_SYNCING
, &sh
->state
)) {
2673 r5c_make_stripe_write_out(sh
);
2677 for (i
= disks
; i
--; ) {
2679 /* if non-overwrite, use writing-out phase */
2680 if (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2681 !test_bit(R5_InJournal
, &dev
->flags
)) {
2682 r5c_make_stripe_write_out(sh
);
2687 /* if the stripe is not counted in big_stripe_tree, add it now */
2688 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
2689 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2690 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2691 spin_lock(&log
->tree_lock
);
2692 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2695 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2696 pslot
, &log
->tree_lock
) >>
2697 R5C_RADIX_COUNT_SHIFT
;
2698 radix_tree_replace_slot(
2699 &log
->big_stripe_tree
, pslot
,
2700 (void *)((refcount
+ 1) << R5C_RADIX_COUNT_SHIFT
));
2703 * this radix_tree_insert can fail safely, so no
2704 * need to call radix_tree_preload()
2706 ret
= radix_tree_insert(
2707 &log
->big_stripe_tree
, tree_index
,
2708 (void *)(1 << R5C_RADIX_COUNT_SHIFT
));
2710 spin_unlock(&log
->tree_lock
);
2711 r5c_make_stripe_write_out(sh
);
2715 spin_unlock(&log
->tree_lock
);
2718 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2719 * counted in the radix tree
2721 set_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
);
2722 atomic_inc(&conf
->r5c_cached_partial_stripes
);
2725 for (i
= disks
; i
--; ) {
2728 set_bit(R5_Wantwrite
, &dev
->flags
);
2729 set_bit(R5_Wantdrain
, &dev
->flags
);
2730 set_bit(R5_LOCKED
, &dev
->flags
);
2736 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2738 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2739 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2740 * r5c_handle_data_cached()
2742 set_bit(STRIPE_LOG_TRAPPED
, &sh
->state
);
2749 * free extra pages (orig_page) we allocated for prexor
2751 void r5c_release_extra_page(struct stripe_head
*sh
)
2753 struct r5conf
*conf
= sh
->raid_conf
;
2755 bool using_disk_info_extra_page
;
2757 using_disk_info_extra_page
=
2758 sh
->dev
[0].orig_page
== conf
->disks
[0].extra_page
;
2760 for (i
= sh
->disks
; i
--; )
2761 if (sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
) {
2762 struct page
*p
= sh
->dev
[i
].orig_page
;
2764 sh
->dev
[i
].orig_page
= sh
->dev
[i
].page
;
2765 clear_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2767 if (!using_disk_info_extra_page
)
2771 if (using_disk_info_extra_page
) {
2772 clear_bit(R5C_EXTRA_PAGE_IN_USE
, &conf
->cache_state
);
2773 md_wakeup_thread(conf
->mddev
->thread
);
2777 void r5c_use_extra_page(struct stripe_head
*sh
)
2779 struct r5conf
*conf
= sh
->raid_conf
;
2783 for (i
= sh
->disks
; i
--; ) {
2785 if (dev
->orig_page
!= dev
->page
)
2786 put_page(dev
->orig_page
);
2787 dev
->orig_page
= conf
->disks
[i
].extra_page
;
2792 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2793 * stripe is committed to RAID disks.
2795 void r5c_finish_stripe_write_out(struct r5conf
*conf
,
2796 struct stripe_head
*sh
,
2797 struct stripe_head_state
*s
)
2799 struct r5l_log
*log
= READ_ONCE(conf
->log
);
2801 sector_t tree_index
;
2805 if (!log
|| !test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
))
2808 WARN_ON(test_bit(STRIPE_R5C_CACHING
, &sh
->state
));
2809 clear_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
);
2811 if (log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_THROUGH
)
2814 for (i
= sh
->disks
; i
--; ) {
2815 clear_bit(R5_InJournal
, &sh
->dev
[i
].flags
);
2816 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2817 wake_up_bit(&sh
->dev
[i
].flags
, R5_Overlap
);
2821 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2822 * We updated R5_InJournal, so we also update s->injournal.
2826 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2827 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2828 md_wakeup_thread(conf
->mddev
->thread
);
2830 spin_lock_irq(&log
->stripe_in_journal_lock
);
2831 list_del_init(&sh
->r5c
);
2832 spin_unlock_irq(&log
->stripe_in_journal_lock
);
2833 sh
->log_start
= MaxSector
;
2835 atomic_dec(&log
->stripe_in_journal_count
);
2836 r5c_update_log_state(log
);
2838 /* stop counting this stripe in big_stripe_tree */
2839 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) ||
2840 test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2841 tree_index
= r5c_tree_index(conf
, sh
->sector
);
2842 spin_lock(&log
->tree_lock
);
2843 pslot
= radix_tree_lookup_slot(&log
->big_stripe_tree
,
2845 BUG_ON(pslot
== NULL
);
2846 refcount
= (uintptr_t)radix_tree_deref_slot_protected(
2847 pslot
, &log
->tree_lock
) >>
2848 R5C_RADIX_COUNT_SHIFT
;
2850 radix_tree_delete(&log
->big_stripe_tree
, tree_index
);
2852 radix_tree_replace_slot(
2853 &log
->big_stripe_tree
, pslot
,
2854 (void *)((refcount
- 1) << R5C_RADIX_COUNT_SHIFT
));
2855 spin_unlock(&log
->tree_lock
);
2858 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) {
2859 BUG_ON(atomic_read(&conf
->r5c_cached_partial_stripes
) == 0);
2860 atomic_dec(&conf
->r5c_flushing_partial_stripes
);
2861 atomic_dec(&conf
->r5c_cached_partial_stripes
);
2864 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
)) {
2865 BUG_ON(atomic_read(&conf
->r5c_cached_full_stripes
) == 0);
2866 atomic_dec(&conf
->r5c_flushing_full_stripes
);
2867 atomic_dec(&conf
->r5c_cached_full_stripes
);
2870 r5l_append_flush_payload(log
, sh
->sector
);
2871 /* stripe is flused to raid disks, we can do resync now */
2872 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
2873 set_bit(STRIPE_HANDLE
, &sh
->state
);
2876 int r5c_cache_data(struct r5l_log
*log
, struct stripe_head
*sh
)
2878 struct r5conf
*conf
= sh
->raid_conf
;
2886 for (i
= 0; i
< sh
->disks
; i
++) {
2889 if (!test_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
2891 addr
= kmap_atomic(sh
->dev
[i
].page
);
2892 sh
->dev
[i
].log_checksum
= crc32c_le(log
->uuid_checksum
,
2894 kunmap_atomic(addr
);
2897 WARN_ON(pages
== 0);
2900 * The stripe must enter state machine again to call endio, so
2903 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2904 atomic_inc(&sh
->count
);
2906 mutex_lock(&log
->io_mutex
);
2908 reserve
= (1 + pages
) << (PAGE_SHIFT
- 9);
2910 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
2911 sh
->log_start
== MaxSector
)
2912 r5l_add_no_space_stripe(log
, sh
);
2913 else if (!r5l_has_free_space(log
, reserve
)) {
2914 if (sh
->log_start
== log
->last_checkpoint
)
2917 r5l_add_no_space_stripe(log
, sh
);
2919 ret
= r5l_log_stripe(log
, sh
, pages
, 0);
2921 spin_lock_irq(&log
->io_list_lock
);
2922 list_add_tail(&sh
->log_list
, &log
->no_mem_stripes
);
2923 spin_unlock_irq(&log
->io_list_lock
);
2927 mutex_unlock(&log
->io_mutex
);
2931 /* check whether this big stripe is in write back cache. */
2932 bool r5c_big_stripe_cached(struct r5conf
*conf
, sector_t sect
)
2934 struct r5l_log
*log
= READ_ONCE(conf
->log
);
2935 sector_t tree_index
;
2941 tree_index
= r5c_tree_index(conf
, sect
);
2942 slot
= radix_tree_lookup(&log
->big_stripe_tree
, tree_index
);
2943 return slot
!= NULL
;
2946 static int r5l_load_log(struct r5l_log
*log
)
2948 struct md_rdev
*rdev
= log
->rdev
;
2950 struct r5l_meta_block
*mb
;
2951 sector_t cp
= log
->rdev
->journal_tail
;
2952 u32 stored_crc
, expected_crc
;
2953 bool create_super
= false;
2956 /* Make sure it's valid */
2957 if (cp
>= rdev
->sectors
|| round_down(cp
, BLOCK_SECTORS
) != cp
)
2959 page
= alloc_page(GFP_KERNEL
);
2963 if (!sync_page_io(rdev
, cp
, PAGE_SIZE
, page
, REQ_OP_READ
, false)) {
2967 mb
= page_address(page
);
2969 if (le32_to_cpu(mb
->magic
) != R5LOG_MAGIC
||
2970 mb
->version
!= R5LOG_VERSION
) {
2971 create_super
= true;
2974 stored_crc
= le32_to_cpu(mb
->checksum
);
2976 expected_crc
= crc32c_le(log
->uuid_checksum
, mb
, PAGE_SIZE
);
2977 if (stored_crc
!= expected_crc
) {
2978 create_super
= true;
2981 if (le64_to_cpu(mb
->position
) != cp
) {
2982 create_super
= true;
2987 log
->last_cp_seq
= get_random_u32();
2989 r5l_log_write_empty_meta_block(log
, cp
, log
->last_cp_seq
);
2991 * Make sure super points to correct address. Log might have
2992 * data very soon. If super hasn't correct log tail address,
2993 * recovery can't find the log
2995 r5l_write_super(log
, cp
);
2997 log
->last_cp_seq
= le64_to_cpu(mb
->seq
);
2999 log
->device_size
= round_down(rdev
->sectors
, BLOCK_SECTORS
);
3000 log
->max_free_space
= log
->device_size
>> RECLAIM_MAX_FREE_SPACE_SHIFT
;
3001 if (log
->max_free_space
> RECLAIM_MAX_FREE_SPACE
)
3002 log
->max_free_space
= RECLAIM_MAX_FREE_SPACE
;
3003 log
->last_checkpoint
= cp
;
3008 log
->log_start
= r5l_ring_add(log
, cp
, BLOCK_SECTORS
);
3009 log
->seq
= log
->last_cp_seq
+ 1;
3010 log
->next_checkpoint
= cp
;
3012 ret
= r5l_recovery_log(log
);
3014 r5c_update_log_state(log
);
3021 int r5l_start(struct r5l_log
*log
)
3028 ret
= r5l_load_log(log
);
3030 struct mddev
*mddev
= log
->rdev
->mddev
;
3031 struct r5conf
*conf
= mddev
->private;
3038 void r5c_update_on_rdev_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
3040 struct r5conf
*conf
= mddev
->private;
3041 struct r5l_log
*log
= READ_ONCE(conf
->log
);
3046 if ((raid5_calc_degraded(conf
) > 0 ||
3047 test_bit(Journal
, &rdev
->flags
)) &&
3048 log
->r5c_journal_mode
== R5C_JOURNAL_MODE_WRITE_BACK
)
3049 schedule_work(&log
->disable_writeback_work
);
3052 int r5l_init_log(struct r5conf
*conf
, struct md_rdev
*rdev
)
3054 struct r5l_log
*log
;
3055 struct md_thread
*thread
;
3058 pr_debug("md/raid:%s: using device %pg as journal\n",
3059 mdname(conf
->mddev
), rdev
->bdev
);
3061 if (PAGE_SIZE
!= 4096)
3065 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3066 * raid_disks r5l_payload_data_parity.
3068 * Write journal and cache does not work for very big array
3069 * (raid_disks > 203)
3071 if (sizeof(struct r5l_meta_block
) +
3072 ((sizeof(struct r5l_payload_data_parity
) + sizeof(__le32
)) *
3073 conf
->raid_disks
) > PAGE_SIZE
) {
3074 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3075 mdname(conf
->mddev
), conf
->raid_disks
);
3079 log
= kzalloc(sizeof(*log
), GFP_KERNEL
);
3083 log
->need_cache_flush
= bdev_write_cache(rdev
->bdev
);
3084 log
->uuid_checksum
= crc32c_le(~0, rdev
->mddev
->uuid
,
3085 sizeof(rdev
->mddev
->uuid
));
3087 mutex_init(&log
->io_mutex
);
3089 spin_lock_init(&log
->io_list_lock
);
3090 INIT_LIST_HEAD(&log
->running_ios
);
3091 INIT_LIST_HEAD(&log
->io_end_ios
);
3092 INIT_LIST_HEAD(&log
->flushing_ios
);
3093 INIT_LIST_HEAD(&log
->finished_ios
);
3095 log
->io_kc
= KMEM_CACHE(r5l_io_unit
, 0);
3099 ret
= mempool_init_slab_pool(&log
->io_pool
, R5L_POOL_SIZE
, log
->io_kc
);
3103 ret
= bioset_init(&log
->bs
, R5L_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
3107 ret
= mempool_init_page_pool(&log
->meta_pool
, R5L_POOL_SIZE
, 0);
3111 spin_lock_init(&log
->tree_lock
);
3112 INIT_RADIX_TREE(&log
->big_stripe_tree
, GFP_NOWAIT
| __GFP_NOWARN
);
3114 thread
= md_register_thread(r5l_reclaim_thread
, log
->rdev
->mddev
,
3117 goto reclaim_thread
;
3119 thread
->timeout
= R5C_RECLAIM_WAKEUP_INTERVAL
;
3120 rcu_assign_pointer(log
->reclaim_thread
, thread
);
3122 init_waitqueue_head(&log
->iounit_wait
);
3124 INIT_LIST_HEAD(&log
->no_mem_stripes
);
3126 INIT_LIST_HEAD(&log
->no_space_stripes
);
3127 spin_lock_init(&log
->no_space_stripes_lock
);
3129 INIT_WORK(&log
->deferred_io_work
, r5l_submit_io_async
);
3130 INIT_WORK(&log
->disable_writeback_work
, r5c_disable_writeback_async
);
3132 log
->r5c_journal_mode
= R5C_JOURNAL_MODE_WRITE_THROUGH
;
3133 INIT_LIST_HEAD(&log
->stripe_in_journal_list
);
3134 spin_lock_init(&log
->stripe_in_journal_lock
);
3135 atomic_set(&log
->stripe_in_journal_count
, 0);
3137 WRITE_ONCE(conf
->log
, log
);
3139 set_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
);
3143 mempool_exit(&log
->meta_pool
);
3145 bioset_exit(&log
->bs
);
3147 mempool_exit(&log
->io_pool
);
3149 kmem_cache_destroy(log
->io_kc
);
3155 void r5l_exit_log(struct r5conf
*conf
)
3157 struct r5l_log
*log
= conf
->log
;
3159 md_unregister_thread(conf
->mddev
, &log
->reclaim_thread
);
3162 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to
3163 * ensure disable_writeback_work wakes up and exits.
3165 WRITE_ONCE(conf
->log
, NULL
);
3166 wake_up(&conf
->mddev
->sb_wait
);
3167 flush_work(&log
->disable_writeback_work
);
3169 mempool_exit(&log
->meta_pool
);
3170 bioset_exit(&log
->bs
);
3171 mempool_exit(&log
->io_pool
);
3172 kmem_cache_destroy(log
->io_kc
);