1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
59 #define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
64 #define RAID5_MAX_REQ_STRIPES 256
66 static bool devices_handle_discard_safely
= false;
67 module_param(devices_handle_discard_safely
, bool, 0644);
68 MODULE_PARM_DESC(devices_handle_discard_safely
,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70 static struct workqueue_struct
*raid5_wq
;
72 static void raid5_quiesce(struct mddev
*mddev
, int quiesce
);
74 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
76 int hash
= (sect
>> RAID5_STRIPE_SHIFT(conf
)) & HASH_MASK
;
77 return &conf
->stripe_hashtbl
[hash
];
80 static inline int stripe_hash_locks_hash(struct r5conf
*conf
, sector_t sect
)
82 return (sect
>> RAID5_STRIPE_SHIFT(conf
)) & STRIPE_HASH_LOCKS_MASK
;
85 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
86 __acquires(&conf
->device_lock
)
88 spin_lock_irq(conf
->hash_locks
+ hash
);
89 spin_lock(&conf
->device_lock
);
92 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
93 __releases(&conf
->device_lock
)
95 spin_unlock(&conf
->device_lock
);
96 spin_unlock_irq(conf
->hash_locks
+ hash
);
99 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
100 __acquires(&conf
->device_lock
)
103 spin_lock_irq(conf
->hash_locks
);
104 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
105 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
106 spin_lock(&conf
->device_lock
);
109 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
110 __releases(&conf
->device_lock
)
113 spin_unlock(&conf
->device_lock
);
114 for (i
= NR_STRIPE_HASH_LOCKS
- 1; i
; i
--)
115 spin_unlock(conf
->hash_locks
+ i
);
116 spin_unlock_irq(conf
->hash_locks
);
119 /* Find first data disk in a raid6 stripe */
120 static inline int raid6_d0(struct stripe_head
*sh
)
123 /* ddf always start from first device */
125 /* md starts just after Q block */
126 if (sh
->qd_idx
== sh
->disks
- 1)
129 return sh
->qd_idx
+ 1;
131 static inline int raid6_next_disk(int disk
, int raid_disks
)
134 return (disk
< raid_disks
) ? disk
: 0;
137 /* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
142 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
143 int *count
, int syndrome_disks
)
149 if (idx
== sh
->pd_idx
)
150 return syndrome_disks
;
151 if (idx
== sh
->qd_idx
)
152 return syndrome_disks
+ 1;
158 static void print_raid5_conf(struct r5conf
*conf
);
160 static int stripe_operations_active(struct stripe_head
*sh
)
162 return sh
->check_state
|| sh
->reconstruct_state
||
163 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
164 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
167 static bool stripe_is_lowprio(struct stripe_head
*sh
)
169 return (test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
)) &&
171 !test_bit(STRIPE_R5C_CACHING
, &sh
->state
);
174 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
175 __must_hold(&sh
->raid_conf
->device_lock
)
177 struct r5conf
*conf
= sh
->raid_conf
;
178 struct r5worker_group
*group
;
180 int i
, cpu
= sh
->cpu
;
182 if (!cpu_online(cpu
)) {
183 cpu
= cpumask_any(cpu_online_mask
);
187 if (list_empty(&sh
->lru
)) {
188 struct r5worker_group
*group
;
189 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
190 if (stripe_is_lowprio(sh
))
191 list_add_tail(&sh
->lru
, &group
->loprio_list
);
193 list_add_tail(&sh
->lru
, &group
->handle_list
);
194 group
->stripes_cnt
++;
198 if (conf
->worker_cnt_per_group
== 0) {
199 md_wakeup_thread(conf
->mddev
->thread
);
203 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
205 group
->workers
[0].working
= true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
209 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
210 /* wakeup more workers */
211 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
212 if (group
->workers
[i
].working
== false) {
213 group
->workers
[i
].working
= true;
214 queue_work_on(sh
->cpu
, raid5_wq
,
215 &group
->workers
[i
].work
);
221 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
222 struct list_head
*temp_inactive_list
)
223 __must_hold(&conf
->device_lock
)
226 int injournal
= 0; /* number of date pages with R5_InJournal */
228 BUG_ON(!list_empty(&sh
->lru
));
229 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
231 if (r5c_is_writeback(conf
->log
))
232 for (i
= sh
->disks
; i
--; )
233 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
242 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) ||
243 (conf
->quiesce
&& r5c_is_writeback(conf
->log
) &&
244 !test_bit(STRIPE_HANDLE
, &sh
->state
) && injournal
!= 0)) {
245 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
246 r5c_make_stripe_write_out(sh
);
247 set_bit(STRIPE_HANDLE
, &sh
->state
);
250 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
251 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
253 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
254 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
255 sh
->bm_seq
- conf
->seq_write
> 0)
256 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
258 clear_bit(STRIPE_DELAYED
, &sh
->state
);
259 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
260 if (conf
->worker_cnt_per_group
== 0) {
261 if (stripe_is_lowprio(sh
))
262 list_add_tail(&sh
->lru
,
265 list_add_tail(&sh
->lru
,
268 raid5_wakeup_stripe_thread(sh
);
272 md_wakeup_thread(conf
->mddev
->thread
);
274 BUG_ON(stripe_operations_active(sh
));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
276 if (atomic_dec_return(&conf
->preread_active_stripes
)
278 md_wakeup_thread(conf
->mddev
->thread
);
279 atomic_dec(&conf
->active_stripes
);
280 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
281 if (!r5c_is_writeback(conf
->log
))
282 list_add_tail(&sh
->lru
, temp_inactive_list
);
284 WARN_ON(test_bit(R5_InJournal
, &sh
->dev
[sh
->pd_idx
].flags
));
286 list_add_tail(&sh
->lru
, temp_inactive_list
);
287 else if (injournal
== conf
->raid_disks
- conf
->max_degraded
) {
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
))
290 atomic_inc(&conf
->r5c_cached_full_stripes
);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
))
292 atomic_dec(&conf
->r5c_cached_partial_stripes
);
293 list_add_tail(&sh
->lru
, &conf
->r5c_full_stripe_list
);
294 r5c_check_cached_full_stripe(conf
);
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
301 list_add_tail(&sh
->lru
, &conf
->r5c_partial_stripe_list
);
307 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
308 struct list_head
*temp_inactive_list
)
309 __must_hold(&conf
->device_lock
)
311 if (atomic_dec_and_test(&sh
->count
))
312 do_release_stripe(conf
, sh
, temp_inactive_list
);
316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319 * given time. Adding stripes only takes device lock, while deleting stripes
320 * only takes hash lock.
322 static void release_inactive_stripe_list(struct r5conf
*conf
,
323 struct list_head
*temp_inactive_list
,
327 bool do_wakeup
= false;
330 if (hash
== NR_STRIPE_HASH_LOCKS
) {
331 size
= NR_STRIPE_HASH_LOCKS
;
332 hash
= NR_STRIPE_HASH_LOCKS
- 1;
336 struct list_head
*list
= &temp_inactive_list
[size
- 1];
339 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 * remove stripes from the list
342 if (!list_empty_careful(list
)) {
343 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
344 if (list_empty(conf
->inactive_list
+ hash
) &&
346 atomic_dec(&conf
->empty_inactive_list_nr
);
347 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
349 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
356 wake_up(&conf
->wait_for_stripe
);
357 if (atomic_read(&conf
->active_stripes
) == 0)
358 wake_up(&conf
->wait_for_quiescent
);
359 if (conf
->retry_read_aligned
)
360 md_wakeup_thread(conf
->mddev
->thread
);
364 static int release_stripe_list(struct r5conf
*conf
,
365 struct list_head
*temp_inactive_list
)
366 __must_hold(&conf
->device_lock
)
368 struct stripe_head
*sh
, *t
;
370 struct llist_node
*head
;
372 head
= llist_del_all(&conf
->released_stripes
);
373 head
= llist_reverse_order(head
);
374 llist_for_each_entry_safe(sh
, t
, head
, release_list
) {
377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
379 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
381 * Don't worry the bit is set here, because if the bit is set
382 * again, the count is always > 1. This is true for
383 * STRIPE_ON_UNPLUG_LIST bit too.
385 hash
= sh
->hash_lock_index
;
386 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
393 void raid5_release_stripe(struct stripe_head
*sh
)
395 struct r5conf
*conf
= sh
->raid_conf
;
397 struct list_head list
;
401 /* Avoid release_list until the last reference.
403 if (atomic_add_unless(&sh
->count
, -1, 1))
406 if (unlikely(!conf
->mddev
->thread
) ||
407 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
409 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
411 md_wakeup_thread(conf
->mddev
->thread
);
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock_irqsave(&sh
->count
, &conf
->device_lock
, flags
)) {
416 INIT_LIST_HEAD(&list
);
417 hash
= sh
->hash_lock_index
;
418 do_release_stripe(conf
, sh
, &list
);
419 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
420 release_inactive_stripe_list(conf
, &list
, hash
);
424 static inline void remove_hash(struct stripe_head
*sh
)
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh
->sector
);
429 hlist_del_init(&sh
->hash
);
432 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
434 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh
->sector
);
439 hlist_add_head(&sh
->hash
, hp
);
442 /* find an idle stripe, make sure it is unhashed, and return it. */
443 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
445 struct stripe_head
*sh
= NULL
;
446 struct list_head
*first
;
448 if (list_empty(conf
->inactive_list
+ hash
))
450 first
= (conf
->inactive_list
+ hash
)->next
;
451 sh
= list_entry(first
, struct stripe_head
, lru
);
452 list_del_init(first
);
454 atomic_inc(&conf
->active_stripes
);
455 BUG_ON(hash
!= sh
->hash_lock_index
);
456 if (list_empty(conf
->inactive_list
+ hash
))
457 atomic_inc(&conf
->empty_inactive_list_nr
);
462 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
463 static void free_stripe_pages(struct stripe_head
*sh
)
468 /* Have not allocate page pool */
472 for (i
= 0; i
< sh
->nr_pages
; i
++) {
480 static int alloc_stripe_pages(struct stripe_head
*sh
, gfp_t gfp
)
485 for (i
= 0; i
< sh
->nr_pages
; i
++) {
486 /* The page have allocated. */
492 free_stripe_pages(sh
);
501 init_stripe_shared_pages(struct stripe_head
*sh
, struct r5conf
*conf
, int disks
)
508 /* Each of the sh->dev[i] need one conf->stripe_size */
509 cnt
= PAGE_SIZE
/ conf
->stripe_size
;
510 nr_pages
= (disks
+ cnt
- 1) / cnt
;
512 sh
->pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
515 sh
->nr_pages
= nr_pages
;
516 sh
->stripes_per_page
= cnt
;
521 static void shrink_buffers(struct stripe_head
*sh
)
524 int num
= sh
->raid_conf
->pool_size
;
526 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 for (i
= 0; i
< num
; i
++) {
530 WARN_ON(sh
->dev
[i
].page
!= sh
->dev
[i
].orig_page
);
534 sh
->dev
[i
].page
= NULL
;
538 for (i
= 0; i
< num
; i
++)
539 sh
->dev
[i
].page
= NULL
;
540 free_stripe_pages(sh
); /* Free pages */
544 static int grow_buffers(struct stripe_head
*sh
, gfp_t gfp
)
547 int num
= sh
->raid_conf
->pool_size
;
549 #if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 for (i
= 0; i
< num
; i
++) {
553 if (!(page
= alloc_page(gfp
))) {
556 sh
->dev
[i
].page
= page
;
557 sh
->dev
[i
].orig_page
= page
;
558 sh
->dev
[i
].offset
= 0;
561 if (alloc_stripe_pages(sh
, gfp
))
564 for (i
= 0; i
< num
; i
++) {
565 sh
->dev
[i
].page
= raid5_get_dev_page(sh
, i
);
566 sh
->dev
[i
].orig_page
= sh
->dev
[i
].page
;
567 sh
->dev
[i
].offset
= raid5_get_page_offset(sh
, i
);
573 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
574 struct stripe_head
*sh
);
576 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
578 struct r5conf
*conf
= sh
->raid_conf
;
581 BUG_ON(atomic_read(&sh
->count
) != 0);
582 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
583 BUG_ON(stripe_operations_active(sh
));
584 BUG_ON(sh
->batch_head
);
586 pr_debug("init_stripe called, stripe %llu\n",
587 (unsigned long long)sector
);
589 seq
= read_seqcount_begin(&conf
->gen_lock
);
590 sh
->generation
= conf
->generation
- previous
;
591 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
593 stripe_set_idx(sector
, conf
, previous
, sh
);
596 for (i
= sh
->disks
; i
--; ) {
597 struct r5dev
*dev
= &sh
->dev
[i
];
599 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
600 test_bit(R5_LOCKED
, &dev
->flags
)) {
601 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 (unsigned long long)sh
->sector
, i
, dev
->toread
,
603 dev
->read
, dev
->towrite
, dev
->written
,
604 test_bit(R5_LOCKED
, &dev
->flags
));
608 dev
->sector
= raid5_compute_blocknr(sh
, i
, previous
);
610 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
612 sh
->overwrite_disks
= 0;
613 insert_hash(conf
, sh
);
614 sh
->cpu
= smp_processor_id();
615 set_bit(STRIPE_BATCH_READY
, &sh
->state
);
618 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
621 struct stripe_head
*sh
;
623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
624 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
625 if (sh
->sector
== sector
&& sh
->generation
== generation
)
627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
631 static struct stripe_head
*find_get_stripe(struct r5conf
*conf
,
632 sector_t sector
, short generation
, int hash
)
634 int inc_empty_inactive_list_flag
;
635 struct stripe_head
*sh
;
637 sh
= __find_stripe(conf
, sector
, generation
);
641 if (atomic_inc_not_zero(&sh
->count
))
645 * Slow path. The reference count is zero which means the stripe must
646 * be on a list (sh->lru). Must remove the stripe from the list that
647 * references it with the device_lock held.
650 spin_lock(&conf
->device_lock
);
651 if (!atomic_read(&sh
->count
)) {
652 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
653 atomic_inc(&conf
->active_stripes
);
654 BUG_ON(list_empty(&sh
->lru
) &&
655 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
656 inc_empty_inactive_list_flag
= 0;
657 if (!list_empty(conf
->inactive_list
+ hash
))
658 inc_empty_inactive_list_flag
= 1;
659 list_del_init(&sh
->lru
);
660 if (list_empty(conf
->inactive_list
+ hash
) &&
661 inc_empty_inactive_list_flag
)
662 atomic_inc(&conf
->empty_inactive_list_nr
);
664 sh
->group
->stripes_cnt
--;
668 atomic_inc(&sh
->count
);
669 spin_unlock(&conf
->device_lock
);
675 * Need to check if array has failed when deciding whether to:
677 * - remove non-faulty devices
680 * This determination is simple when no reshape is happening.
681 * However if there is a reshape, we need to carefully check
682 * both the before and after sections.
683 * This is because some failed devices may only affect one
684 * of the two sections, and some non-in_sync devices may
685 * be insync in the section most affected by failed devices.
687 * Most calls to this function hold &conf->device_lock. Calls
688 * in raid5_run() do not require the lock as no other threads
689 * have been started yet.
691 int raid5_calc_degraded(struct r5conf
*conf
)
693 int degraded
, degraded2
;
697 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
698 struct md_rdev
*rdev
= READ_ONCE(conf
->disks
[i
].rdev
);
700 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
701 rdev
= READ_ONCE(conf
->disks
[i
].replacement
);
702 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
704 else if (test_bit(In_sync
, &rdev
->flags
))
707 /* not in-sync or faulty.
708 * If the reshape increases the number of devices,
709 * this is being recovered by the reshape, so
710 * this 'previous' section is not in_sync.
711 * If the number of devices is being reduced however,
712 * the device can only be part of the array if
713 * we are reverting a reshape, so this section will
716 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
719 if (conf
->raid_disks
== conf
->previous_raid_disks
)
722 for (i
= 0; i
< conf
->raid_disks
; i
++) {
723 struct md_rdev
*rdev
= READ_ONCE(conf
->disks
[i
].rdev
);
725 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
726 rdev
= READ_ONCE(conf
->disks
[i
].replacement
);
727 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
729 else if (test_bit(In_sync
, &rdev
->flags
))
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
737 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
740 if (degraded2
> degraded
)
745 static bool has_failed(struct r5conf
*conf
)
747 int degraded
= conf
->mddev
->degraded
;
749 if (test_bit(MD_BROKEN
, &conf
->mddev
->flags
))
752 if (conf
->mddev
->reshape_position
!= MaxSector
)
753 degraded
= raid5_calc_degraded(conf
);
755 return degraded
> conf
->max_degraded
;
761 STRIPE_SCHEDULE_AND_RETRY
,
766 struct stripe_request_ctx
{
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head
*batch_last
;
770 /* first sector in the request */
771 sector_t first_sector
;
773 /* last sector in the request */
774 sector_t last_sector
;
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
780 DECLARE_BITMAP(sectors_to_do
, RAID5_MAX_REQ_STRIPES
+ 1);
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
791 static bool is_inactive_blocked(struct r5conf
*conf
, int hash
)
793 if (list_empty(conf
->inactive_list
+ hash
))
796 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
))
799 return (atomic_read(&conf
->active_stripes
) <
800 (conf
->max_nr_stripes
* 3 / 4));
803 struct stripe_head
*raid5_get_active_stripe(struct r5conf
*conf
,
804 struct stripe_request_ctx
*ctx
, sector_t sector
,
807 struct stripe_head
*sh
;
808 int hash
= stripe_hash_locks_hash(conf
, sector
);
809 int previous
= !!(flags
& R5_GAS_PREVIOUS
);
811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
813 spin_lock_irq(conf
->hash_locks
+ hash
);
816 if (!(flags
& R5_GAS_NOQUIESCE
) && conf
->quiesce
) {
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
824 if (ctx
&& ctx
->batch_last
) {
825 raid5_release_stripe(ctx
->batch_last
);
826 ctx
->batch_last
= NULL
;
829 wait_event_lock_irq(conf
->wait_for_quiescent
,
831 *(conf
->hash_locks
+ hash
));
834 sh
= find_get_stripe(conf
, sector
, conf
->generation
- previous
,
839 if (!test_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
)) {
840 sh
= get_free_stripe(conf
, hash
);
842 r5c_check_stripe_cache_usage(conf
);
843 init_stripe(sh
, sector
, previous
);
844 atomic_inc(&sh
->count
);
848 if (!test_bit(R5_DID_ALLOC
, &conf
->cache_state
))
849 set_bit(R5_ALLOC_MORE
, &conf
->cache_state
);
852 if (flags
& R5_GAS_NOBLOCK
)
855 set_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
);
856 r5l_wake_reclaim(conf
->log
, 0);
858 /* release batch_last before wait to avoid risk of deadlock */
859 if (ctx
&& ctx
->batch_last
) {
860 raid5_release_stripe(ctx
->batch_last
);
861 ctx
->batch_last
= NULL
;
864 wait_event_lock_irq(conf
->wait_for_stripe
,
865 is_inactive_blocked(conf
, hash
),
866 *(conf
->hash_locks
+ hash
));
867 clear_bit(R5_INACTIVE_BLOCKED
, &conf
->cache_state
);
870 spin_unlock_irq(conf
->hash_locks
+ hash
);
874 static bool is_full_stripe_write(struct stripe_head
*sh
)
876 BUG_ON(sh
->overwrite_disks
> (sh
->disks
- sh
->raid_conf
->max_degraded
));
877 return sh
->overwrite_disks
== (sh
->disks
- sh
->raid_conf
->max_degraded
);
880 static void lock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
881 __acquires(&sh1
->stripe_lock
)
882 __acquires(&sh2
->stripe_lock
)
885 spin_lock_irq(&sh2
->stripe_lock
);
886 spin_lock_nested(&sh1
->stripe_lock
, 1);
888 spin_lock_irq(&sh1
->stripe_lock
);
889 spin_lock_nested(&sh2
->stripe_lock
, 1);
893 static void unlock_two_stripes(struct stripe_head
*sh1
, struct stripe_head
*sh2
)
894 __releases(&sh1
->stripe_lock
)
895 __releases(&sh2
->stripe_lock
)
897 spin_unlock(&sh1
->stripe_lock
);
898 spin_unlock_irq(&sh2
->stripe_lock
);
901 /* Only freshly new full stripe normal write stripe can be added to a batch list */
902 static bool stripe_can_batch(struct stripe_head
*sh
)
904 struct r5conf
*conf
= sh
->raid_conf
;
906 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
908 return test_bit(STRIPE_BATCH_READY
, &sh
->state
) &&
909 !test_bit(STRIPE_BITMAP_PENDING
, &sh
->state
) &&
910 is_full_stripe_write(sh
);
913 /* we only do back search */
914 static void stripe_add_to_batch_list(struct r5conf
*conf
,
915 struct stripe_head
*sh
, struct stripe_head
*last_sh
)
917 struct stripe_head
*head
;
918 sector_t head_sector
, tmp_sec
;
922 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
923 tmp_sec
= sh
->sector
;
924 if (!sector_div(tmp_sec
, conf
->chunk_sectors
))
926 head_sector
= sh
->sector
- RAID5_STRIPE_SECTORS(conf
);
928 if (last_sh
&& head_sector
== last_sh
->sector
) {
930 atomic_inc(&head
->count
);
932 hash
= stripe_hash_locks_hash(conf
, head_sector
);
933 spin_lock_irq(conf
->hash_locks
+ hash
);
934 head
= find_get_stripe(conf
, head_sector
, conf
->generation
,
936 spin_unlock_irq(conf
->hash_locks
+ hash
);
939 if (!stripe_can_batch(head
))
943 lock_two_stripes(head
, sh
);
944 /* clear_batch_ready clear the flag */
945 if (!stripe_can_batch(head
) || !stripe_can_batch(sh
))
952 while (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
954 if (head
->dev
[dd_idx
].towrite
->bi_opf
!= sh
->dev
[dd_idx
].towrite
->bi_opf
||
955 bio_op(head
->dev
[dd_idx
].towrite
) != bio_op(sh
->dev
[dd_idx
].towrite
))
958 if (head
->batch_head
) {
959 spin_lock(&head
->batch_head
->batch_lock
);
960 /* This batch list is already running */
961 if (!stripe_can_batch(head
)) {
962 spin_unlock(&head
->batch_head
->batch_lock
);
966 * We must assign batch_head of this stripe within the
967 * batch_lock, otherwise clear_batch_ready of batch head
968 * stripe could clear BATCH_READY bit of this stripe and
969 * this stripe->batch_head doesn't get assigned, which
970 * could confuse clear_batch_ready for this stripe
972 sh
->batch_head
= head
->batch_head
;
975 * at this point, head's BATCH_READY could be cleared, but we
976 * can still add the stripe to batch list
978 list_add(&sh
->batch_list
, &head
->batch_list
);
979 spin_unlock(&head
->batch_head
->batch_lock
);
981 head
->batch_head
= head
;
982 sh
->batch_head
= head
->batch_head
;
983 spin_lock(&head
->batch_lock
);
984 list_add_tail(&sh
->batch_list
, &head
->batch_list
);
985 spin_unlock(&head
->batch_lock
);
988 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
989 if (atomic_dec_return(&conf
->preread_active_stripes
)
991 md_wakeup_thread(conf
->mddev
->thread
);
993 if (test_and_clear_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
994 int seq
= sh
->bm_seq
;
995 if (test_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
) &&
996 sh
->batch_head
->bm_seq
> seq
)
997 seq
= sh
->batch_head
->bm_seq
;
998 set_bit(STRIPE_BIT_DELAY
, &sh
->batch_head
->state
);
999 sh
->batch_head
->bm_seq
= seq
;
1002 atomic_inc(&sh
->count
);
1004 unlock_two_stripes(head
, sh
);
1006 raid5_release_stripe(head
);
1009 /* Determine if 'data_offset' or 'new_data_offset' should be used
1010 * in this stripe_head.
1012 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
1014 sector_t progress
= conf
->reshape_progress
;
1015 /* Need a memory barrier to make sure we see the value
1016 * of conf->generation, or ->data_offset that was set before
1017 * reshape_progress was updated.
1020 if (progress
== MaxSector
)
1022 if (sh
->generation
== conf
->generation
- 1)
1024 /* We are in a reshape, and this is a new-generation stripe,
1025 * so use new_data_offset.
1030 static void dispatch_bio_list(struct bio_list
*tmp
)
1034 while ((bio
= bio_list_pop(tmp
)))
1035 submit_bio_noacct(bio
);
1038 static int cmp_stripe(void *priv
, const struct list_head
*a
,
1039 const struct list_head
*b
)
1041 const struct r5pending_data
*da
= list_entry(a
,
1042 struct r5pending_data
, sibling
);
1043 const struct r5pending_data
*db
= list_entry(b
,
1044 struct r5pending_data
, sibling
);
1045 if (da
->sector
> db
->sector
)
1047 if (da
->sector
< db
->sector
)
1052 static void dispatch_defer_bios(struct r5conf
*conf
, int target
,
1053 struct bio_list
*list
)
1055 struct r5pending_data
*data
;
1056 struct list_head
*first
, *next
= NULL
;
1059 if (conf
->pending_data_cnt
== 0)
1062 list_sort(NULL
, &conf
->pending_list
, cmp_stripe
);
1064 first
= conf
->pending_list
.next
;
1066 /* temporarily move the head */
1067 if (conf
->next_pending_data
)
1068 list_move_tail(&conf
->pending_list
,
1069 &conf
->next_pending_data
->sibling
);
1071 while (!list_empty(&conf
->pending_list
)) {
1072 data
= list_first_entry(&conf
->pending_list
,
1073 struct r5pending_data
, sibling
);
1074 if (&data
->sibling
== first
)
1075 first
= data
->sibling
.next
;
1076 next
= data
->sibling
.next
;
1078 bio_list_merge(list
, &data
->bios
);
1079 list_move(&data
->sibling
, &conf
->free_list
);
1084 conf
->pending_data_cnt
-= cnt
;
1085 BUG_ON(conf
->pending_data_cnt
< 0 || cnt
< target
);
1087 if (next
!= &conf
->pending_list
)
1088 conf
->next_pending_data
= list_entry(next
,
1089 struct r5pending_data
, sibling
);
1091 conf
->next_pending_data
= NULL
;
1092 /* list isn't empty */
1093 if (first
!= &conf
->pending_list
)
1094 list_move_tail(&conf
->pending_list
, first
);
1097 static void flush_deferred_bios(struct r5conf
*conf
)
1099 struct bio_list tmp
= BIO_EMPTY_LIST
;
1101 if (conf
->pending_data_cnt
== 0)
1104 spin_lock(&conf
->pending_bios_lock
);
1105 dispatch_defer_bios(conf
, conf
->pending_data_cnt
, &tmp
);
1106 BUG_ON(conf
->pending_data_cnt
!= 0);
1107 spin_unlock(&conf
->pending_bios_lock
);
1109 dispatch_bio_list(&tmp
);
1112 static void defer_issue_bios(struct r5conf
*conf
, sector_t sector
,
1113 struct bio_list
*bios
)
1115 struct bio_list tmp
= BIO_EMPTY_LIST
;
1116 struct r5pending_data
*ent
;
1118 spin_lock(&conf
->pending_bios_lock
);
1119 ent
= list_first_entry(&conf
->free_list
, struct r5pending_data
,
1121 list_move_tail(&ent
->sibling
, &conf
->pending_list
);
1122 ent
->sector
= sector
;
1123 bio_list_init(&ent
->bios
);
1124 bio_list_merge(&ent
->bios
, bios
);
1125 conf
->pending_data_cnt
++;
1126 if (conf
->pending_data_cnt
>= PENDING_IO_MAX
)
1127 dispatch_defer_bios(conf
, PENDING_IO_ONE_FLUSH
, &tmp
);
1129 spin_unlock(&conf
->pending_bios_lock
);
1131 dispatch_bio_list(&tmp
);
1135 raid5_end_read_request(struct bio
*bi
);
1137 raid5_end_write_request(struct bio
*bi
);
1139 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
1141 struct r5conf
*conf
= sh
->raid_conf
;
1142 int i
, disks
= sh
->disks
;
1143 struct stripe_head
*head_sh
= sh
;
1144 struct bio_list pending_bios
= BIO_EMPTY_LIST
;
1150 if (log_stripe(sh
, s
) == 0)
1153 should_defer
= conf
->batch_bio_dispatch
&& conf
->group_cnt
;
1155 for (i
= disks
; i
--; ) {
1157 blk_opf_t op_flags
= 0;
1158 int replace_only
= 0;
1159 struct bio
*bi
, *rbi
;
1160 struct md_rdev
*rdev
, *rrdev
= NULL
;
1163 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
1165 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
1167 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1168 op
= REQ_OP_DISCARD
;
1169 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
1171 else if (test_and_clear_bit(R5_WantReplace
,
1172 &sh
->dev
[i
].flags
)) {
1177 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
1178 op_flags
|= REQ_SYNC
;
1183 rbi
= &dev
->rreq
; /* For writing to replacement */
1185 rdev
= conf
->disks
[i
].rdev
;
1186 rrdev
= conf
->disks
[i
].replacement
;
1187 if (op_is_write(op
)) {
1191 /* We raced and saw duplicates */
1194 if (test_bit(R5_ReadRepl
, &head_sh
->dev
[i
].flags
) && rrdev
)
1199 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
1202 atomic_inc(&rdev
->nr_pending
);
1203 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
1206 atomic_inc(&rrdev
->nr_pending
);
1208 /* We have already checked bad blocks for reads. Now
1209 * need to check for writes. We never accept write errors
1210 * on the replacement, so we don't to check rrdev.
1212 while (op_is_write(op
) && rdev
&&
1213 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1214 int bad
= rdev_has_badblock(rdev
, sh
->sector
,
1215 RAID5_STRIPE_SECTORS(conf
));
1220 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1221 if (!conf
->mddev
->external
&&
1222 conf
->mddev
->sb_flags
) {
1223 /* It is very unlikely, but we might
1224 * still need to write out the
1225 * bad block log - better give it
1227 md_check_recovery(conf
->mddev
);
1230 * Because md_wait_for_blocked_rdev
1231 * will dec nr_pending, we must
1232 * increment it first.
1234 atomic_inc(&rdev
->nr_pending
);
1235 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
1237 /* Acknowledged bad block - skip the write */
1238 rdev_dec_pending(rdev
, conf
->mddev
);
1244 if (s
->syncing
|| s
->expanding
|| s
->expanded
1246 md_sync_acct(rdev
->bdev
, RAID5_STRIPE_SECTORS(conf
));
1248 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1250 bio_init(bi
, rdev
->bdev
, &dev
->vec
, 1, op
| op_flags
);
1251 bi
->bi_end_io
= op_is_write(op
)
1252 ? raid5_end_write_request
1253 : raid5_end_read_request
;
1254 bi
->bi_private
= sh
;
1256 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1257 __func__
, (unsigned long long)sh
->sector
,
1259 atomic_inc(&sh
->count
);
1261 atomic_inc(&head_sh
->count
);
1262 if (use_new_offset(conf
, sh
))
1263 bi
->bi_iter
.bi_sector
= (sh
->sector
1264 + rdev
->new_data_offset
);
1266 bi
->bi_iter
.bi_sector
= (sh
->sector
1267 + rdev
->data_offset
);
1268 if (test_bit(R5_ReadNoMerge
, &head_sh
->dev
[i
].flags
))
1269 bi
->bi_opf
|= REQ_NOMERGE
;
1271 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1272 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1274 if (!op_is_write(op
) &&
1275 test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
1277 * issuing read for a page in journal, this
1278 * must be preparing for prexor in rmw; read
1279 * the data into orig_page
1281 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].orig_page
;
1283 sh
->dev
[i
].vec
.bv_page
= sh
->dev
[i
].page
;
1285 bi
->bi_io_vec
[0].bv_len
= RAID5_STRIPE_SIZE(conf
);
1286 bi
->bi_io_vec
[0].bv_offset
= sh
->dev
[i
].offset
;
1287 bi
->bi_iter
.bi_size
= RAID5_STRIPE_SIZE(conf
);
1289 * If this is discard request, set bi_vcnt 0. We don't
1290 * want to confuse SCSI because SCSI will replace payload
1292 if (op
== REQ_OP_DISCARD
)
1295 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
1297 mddev_trace_remap(conf
->mddev
, bi
, sh
->dev
[i
].sector
);
1298 if (should_defer
&& op_is_write(op
))
1299 bio_list_add(&pending_bios
, bi
);
1301 submit_bio_noacct(bi
);
1304 if (s
->syncing
|| s
->expanding
|| s
->expanded
1306 md_sync_acct(rrdev
->bdev
, RAID5_STRIPE_SECTORS(conf
));
1308 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
1310 bio_init(rbi
, rrdev
->bdev
, &dev
->rvec
, 1, op
| op_flags
);
1311 BUG_ON(!op_is_write(op
));
1312 rbi
->bi_end_io
= raid5_end_write_request
;
1313 rbi
->bi_private
= sh
;
1315 pr_debug("%s: for %llu schedule op %d on "
1316 "replacement disc %d\n",
1317 __func__
, (unsigned long long)sh
->sector
,
1319 atomic_inc(&sh
->count
);
1321 atomic_inc(&head_sh
->count
);
1322 if (use_new_offset(conf
, sh
))
1323 rbi
->bi_iter
.bi_sector
= (sh
->sector
1324 + rrdev
->new_data_offset
);
1326 rbi
->bi_iter
.bi_sector
= (sh
->sector
1327 + rrdev
->data_offset
);
1328 if (test_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
))
1329 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
1330 sh
->dev
[i
].rvec
.bv_page
= sh
->dev
[i
].page
;
1332 rbi
->bi_io_vec
[0].bv_len
= RAID5_STRIPE_SIZE(conf
);
1333 rbi
->bi_io_vec
[0].bv_offset
= sh
->dev
[i
].offset
;
1334 rbi
->bi_iter
.bi_size
= RAID5_STRIPE_SIZE(conf
);
1336 * If this is discard request, set bi_vcnt 0. We don't
1337 * want to confuse SCSI because SCSI will replace payload
1339 if (op
== REQ_OP_DISCARD
)
1341 mddev_trace_remap(conf
->mddev
, rbi
, sh
->dev
[i
].sector
);
1342 if (should_defer
&& op_is_write(op
))
1343 bio_list_add(&pending_bios
, rbi
);
1345 submit_bio_noacct(rbi
);
1347 if (!rdev
&& !rrdev
) {
1348 if (op_is_write(op
))
1349 set_bit(STRIPE_DEGRADED
, &sh
->state
);
1350 pr_debug("skip op %d on disc %d for sector %llu\n",
1351 bi
->bi_opf
, i
, (unsigned long long)sh
->sector
);
1352 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1353 set_bit(STRIPE_HANDLE
, &sh
->state
);
1356 if (!head_sh
->batch_head
)
1358 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
1364 if (should_defer
&& !bio_list_empty(&pending_bios
))
1365 defer_issue_bios(conf
, head_sh
->sector
, &pending_bios
);
1368 static struct dma_async_tx_descriptor
*
1369 async_copy_data(int frombio
, struct bio
*bio
, struct page
**page
,
1370 unsigned int poff
, sector_t sector
, struct dma_async_tx_descriptor
*tx
,
1371 struct stripe_head
*sh
, int no_skipcopy
)
1374 struct bvec_iter iter
;
1375 struct page
*bio_page
;
1377 struct async_submit_ctl submit
;
1378 enum async_tx_flags flags
= 0;
1379 struct r5conf
*conf
= sh
->raid_conf
;
1381 if (bio
->bi_iter
.bi_sector
>= sector
)
1382 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
1384 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
1387 flags
|= ASYNC_TX_FENCE
;
1388 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
1390 bio_for_each_segment(bvl
, bio
, iter
) {
1391 int len
= bvl
.bv_len
;
1395 if (page_offset
< 0) {
1396 b_offset
= -page_offset
;
1397 page_offset
+= b_offset
;
1401 if (len
> 0 && page_offset
+ len
> RAID5_STRIPE_SIZE(conf
))
1402 clen
= RAID5_STRIPE_SIZE(conf
) - page_offset
;
1407 b_offset
+= bvl
.bv_offset
;
1408 bio_page
= bvl
.bv_page
;
1410 if (conf
->skip_copy
&&
1411 b_offset
== 0 && page_offset
== 0 &&
1412 clen
== RAID5_STRIPE_SIZE(conf
) &&
1416 tx
= async_memcpy(*page
, bio_page
, page_offset
+ poff
,
1417 b_offset
, clen
, &submit
);
1419 tx
= async_memcpy(bio_page
, *page
, b_offset
,
1420 page_offset
+ poff
, clen
, &submit
);
1422 /* chain the operations */
1423 submit
.depend_tx
= tx
;
1425 if (clen
< len
) /* hit end of page */
1433 static void ops_complete_biofill(void *stripe_head_ref
)
1435 struct stripe_head
*sh
= stripe_head_ref
;
1437 struct r5conf
*conf
= sh
->raid_conf
;
1439 pr_debug("%s: stripe %llu\n", __func__
,
1440 (unsigned long long)sh
->sector
);
1442 /* clear completed biofills */
1443 for (i
= sh
->disks
; i
--; ) {
1444 struct r5dev
*dev
= &sh
->dev
[i
];
1446 /* acknowledge completion of a biofill operation */
1447 /* and check if we need to reply to a read request,
1448 * new R5_Wantfill requests are held off until
1449 * !STRIPE_BIOFILL_RUN
1451 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1452 struct bio
*rbi
, *rbi2
;
1457 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1458 dev
->sector
+ RAID5_STRIPE_SECTORS(conf
)) {
1459 rbi2
= r5_next_bio(conf
, rbi
, dev
->sector
);
1465 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1467 set_bit(STRIPE_HANDLE
, &sh
->state
);
1468 raid5_release_stripe(sh
);
1471 static void ops_run_biofill(struct stripe_head
*sh
)
1473 struct dma_async_tx_descriptor
*tx
= NULL
;
1474 struct async_submit_ctl submit
;
1476 struct r5conf
*conf
= sh
->raid_conf
;
1478 BUG_ON(sh
->batch_head
);
1479 pr_debug("%s: stripe %llu\n", __func__
,
1480 (unsigned long long)sh
->sector
);
1482 for (i
= sh
->disks
; i
--; ) {
1483 struct r5dev
*dev
= &sh
->dev
[i
];
1484 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1486 spin_lock_irq(&sh
->stripe_lock
);
1487 dev
->read
= rbi
= dev
->toread
;
1489 spin_unlock_irq(&sh
->stripe_lock
);
1490 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1491 dev
->sector
+ RAID5_STRIPE_SECTORS(conf
)) {
1492 tx
= async_copy_data(0, rbi
, &dev
->page
,
1494 dev
->sector
, tx
, sh
, 0);
1495 rbi
= r5_next_bio(conf
, rbi
, dev
->sector
);
1500 atomic_inc(&sh
->count
);
1501 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1502 async_trigger_callback(&submit
);
1505 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1512 tgt
= &sh
->dev
[target
];
1513 set_bit(R5_UPTODATE
, &tgt
->flags
);
1514 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1515 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1518 static void ops_complete_compute(void *stripe_head_ref
)
1520 struct stripe_head
*sh
= stripe_head_ref
;
1522 pr_debug("%s: stripe %llu\n", __func__
,
1523 (unsigned long long)sh
->sector
);
1525 /* mark the computed target(s) as uptodate */
1526 mark_target_uptodate(sh
, sh
->ops
.target
);
1527 mark_target_uptodate(sh
, sh
->ops
.target2
);
1529 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1530 if (sh
->check_state
== check_state_compute_run
)
1531 sh
->check_state
= check_state_compute_result
;
1532 set_bit(STRIPE_HANDLE
, &sh
->state
);
1533 raid5_release_stripe(sh
);
1536 /* return a pointer to the address conversion region of the scribble buffer */
1537 static struct page
**to_addr_page(struct raid5_percpu
*percpu
, int i
)
1539 return percpu
->scribble
+ i
* percpu
->scribble_obj_size
;
1542 /* return a pointer to the address conversion region of the scribble buffer */
1543 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1544 struct raid5_percpu
*percpu
, int i
)
1546 return (void *) (to_addr_page(percpu
, i
) + sh
->disks
+ 2);
1550 * Return a pointer to record offset address.
1552 static unsigned int *
1553 to_addr_offs(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1555 return (unsigned int *) (to_addr_conv(sh
, percpu
, 0) + sh
->disks
+ 2);
1558 static struct dma_async_tx_descriptor
*
1559 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1561 int disks
= sh
->disks
;
1562 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1563 unsigned int *off_srcs
= to_addr_offs(sh
, percpu
);
1564 int target
= sh
->ops
.target
;
1565 struct r5dev
*tgt
= &sh
->dev
[target
];
1566 struct page
*xor_dest
= tgt
->page
;
1567 unsigned int off_dest
= tgt
->offset
;
1569 struct dma_async_tx_descriptor
*tx
;
1570 struct async_submit_ctl submit
;
1573 BUG_ON(sh
->batch_head
);
1575 pr_debug("%s: stripe %llu block: %d\n",
1576 __func__
, (unsigned long long)sh
->sector
, target
);
1577 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1579 for (i
= disks
; i
--; ) {
1581 off_srcs
[count
] = sh
->dev
[i
].offset
;
1582 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1586 atomic_inc(&sh
->count
);
1588 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1589 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
, 0));
1590 if (unlikely(count
== 1))
1591 tx
= async_memcpy(xor_dest
, xor_srcs
[0], off_dest
, off_srcs
[0],
1592 RAID5_STRIPE_SIZE(sh
->raid_conf
), &submit
);
1594 tx
= async_xor_offs(xor_dest
, off_dest
, xor_srcs
, off_srcs
, count
,
1595 RAID5_STRIPE_SIZE(sh
->raid_conf
), &submit
);
1600 /* set_syndrome_sources - populate source buffers for gen_syndrome
1601 * @srcs - (struct page *) array of size sh->disks
1602 * @offs - (unsigned int) array of offset for each page
1603 * @sh - stripe_head to parse
1605 * Populates srcs in proper layout order for the stripe and returns the
1606 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1607 * destination buffer is recorded in srcs[count] and the Q destination
1608 * is recorded in srcs[count+1]].
1610 static int set_syndrome_sources(struct page
**srcs
,
1612 struct stripe_head
*sh
,
1615 int disks
= sh
->disks
;
1616 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1617 int d0_idx
= raid6_d0(sh
);
1621 for (i
= 0; i
< disks
; i
++)
1627 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1628 struct r5dev
*dev
= &sh
->dev
[i
];
1630 if (i
== sh
->qd_idx
|| i
== sh
->pd_idx
||
1631 (srctype
== SYNDROME_SRC_ALL
) ||
1632 (srctype
== SYNDROME_SRC_WANT_DRAIN
&&
1633 (test_bit(R5_Wantdrain
, &dev
->flags
) ||
1634 test_bit(R5_InJournal
, &dev
->flags
))) ||
1635 (srctype
== SYNDROME_SRC_WRITTEN
&&
1637 test_bit(R5_InJournal
, &dev
->flags
)))) {
1638 if (test_bit(R5_InJournal
, &dev
->flags
))
1639 srcs
[slot
] = sh
->dev
[i
].orig_page
;
1641 srcs
[slot
] = sh
->dev
[i
].page
;
1643 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1644 * not shared page. In that case, dev[i].offset
1647 offs
[slot
] = sh
->dev
[i
].offset
;
1649 i
= raid6_next_disk(i
, disks
);
1650 } while (i
!= d0_idx
);
1652 return syndrome_disks
;
1655 static struct dma_async_tx_descriptor
*
1656 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1658 int disks
= sh
->disks
;
1659 struct page
**blocks
= to_addr_page(percpu
, 0);
1660 unsigned int *offs
= to_addr_offs(sh
, percpu
);
1662 int qd_idx
= sh
->qd_idx
;
1663 struct dma_async_tx_descriptor
*tx
;
1664 struct async_submit_ctl submit
;
1667 unsigned int dest_off
;
1671 BUG_ON(sh
->batch_head
);
1672 if (sh
->ops
.target
< 0)
1673 target
= sh
->ops
.target2
;
1674 else if (sh
->ops
.target2
< 0)
1675 target
= sh
->ops
.target
;
1677 /* we should only have one valid target */
1680 pr_debug("%s: stripe %llu block: %d\n",
1681 __func__
, (unsigned long long)sh
->sector
, target
);
1683 tgt
= &sh
->dev
[target
];
1684 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1686 dest_off
= tgt
->offset
;
1688 atomic_inc(&sh
->count
);
1690 if (target
== qd_idx
) {
1691 count
= set_syndrome_sources(blocks
, offs
, sh
, SYNDROME_SRC_ALL
);
1692 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1693 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1694 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1695 ops_complete_compute
, sh
,
1696 to_addr_conv(sh
, percpu
, 0));
1697 tx
= async_gen_syndrome(blocks
, offs
, count
+2,
1698 RAID5_STRIPE_SIZE(sh
->raid_conf
), &submit
);
1700 /* Compute any data- or p-drive using XOR */
1702 for (i
= disks
; i
-- ; ) {
1703 if (i
== target
|| i
== qd_idx
)
1705 offs
[count
] = sh
->dev
[i
].offset
;
1706 blocks
[count
++] = sh
->dev
[i
].page
;
1709 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1710 NULL
, ops_complete_compute
, sh
,
1711 to_addr_conv(sh
, percpu
, 0));
1712 tx
= async_xor_offs(dest
, dest_off
, blocks
, offs
, count
,
1713 RAID5_STRIPE_SIZE(sh
->raid_conf
), &submit
);
1719 static struct dma_async_tx_descriptor
*
1720 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1722 int i
, count
, disks
= sh
->disks
;
1723 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1724 int d0_idx
= raid6_d0(sh
);
1725 int faila
= -1, failb
= -1;
1726 int target
= sh
->ops
.target
;
1727 int target2
= sh
->ops
.target2
;
1728 struct r5dev
*tgt
= &sh
->dev
[target
];
1729 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1730 struct dma_async_tx_descriptor
*tx
;
1731 struct page
**blocks
= to_addr_page(percpu
, 0);
1732 unsigned int *offs
= to_addr_offs(sh
, percpu
);
1733 struct async_submit_ctl submit
;
1735 BUG_ON(sh
->batch_head
);
1736 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1737 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1738 BUG_ON(target
< 0 || target2
< 0);
1739 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1740 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1742 /* we need to open-code set_syndrome_sources to handle the
1743 * slot number conversion for 'faila' and 'failb'
1745 for (i
= 0; i
< disks
; i
++) {
1752 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1754 offs
[slot
] = sh
->dev
[i
].offset
;
1755 blocks
[slot
] = sh
->dev
[i
].page
;
1761 i
= raid6_next_disk(i
, disks
);
1762 } while (i
!= d0_idx
);
1764 BUG_ON(faila
== failb
);
1767 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1768 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1770 atomic_inc(&sh
->count
);
1772 if (failb
== syndrome_disks
+1) {
1773 /* Q disk is one of the missing disks */
1774 if (faila
== syndrome_disks
) {
1775 /* Missing P+Q, just recompute */
1776 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1777 ops_complete_compute
, sh
,
1778 to_addr_conv(sh
, percpu
, 0));
1779 return async_gen_syndrome(blocks
, offs
, syndrome_disks
+2,
1780 RAID5_STRIPE_SIZE(sh
->raid_conf
),
1784 unsigned int dest_off
;
1786 int qd_idx
= sh
->qd_idx
;
1788 /* Missing D+Q: recompute D from P, then recompute Q */
1789 if (target
== qd_idx
)
1790 data_target
= target2
;
1792 data_target
= target
;
1795 for (i
= disks
; i
-- ; ) {
1796 if (i
== data_target
|| i
== qd_idx
)
1798 offs
[count
] = sh
->dev
[i
].offset
;
1799 blocks
[count
++] = sh
->dev
[i
].page
;
1801 dest
= sh
->dev
[data_target
].page
;
1802 dest_off
= sh
->dev
[data_target
].offset
;
1803 init_async_submit(&submit
,
1804 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1806 to_addr_conv(sh
, percpu
, 0));
1807 tx
= async_xor_offs(dest
, dest_off
, blocks
, offs
, count
,
1808 RAID5_STRIPE_SIZE(sh
->raid_conf
),
1811 count
= set_syndrome_sources(blocks
, offs
, sh
, SYNDROME_SRC_ALL
);
1812 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1813 ops_complete_compute
, sh
,
1814 to_addr_conv(sh
, percpu
, 0));
1815 return async_gen_syndrome(blocks
, offs
, count
+2,
1816 RAID5_STRIPE_SIZE(sh
->raid_conf
),
1820 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1821 ops_complete_compute
, sh
,
1822 to_addr_conv(sh
, percpu
, 0));
1823 if (failb
== syndrome_disks
) {
1824 /* We're missing D+P. */
1825 return async_raid6_datap_recov(syndrome_disks
+2,
1826 RAID5_STRIPE_SIZE(sh
->raid_conf
),
1828 blocks
, offs
, &submit
);
1830 /* We're missing D+D. */
1831 return async_raid6_2data_recov(syndrome_disks
+2,
1832 RAID5_STRIPE_SIZE(sh
->raid_conf
),
1834 blocks
, offs
, &submit
);
1839 static void ops_complete_prexor(void *stripe_head_ref
)
1841 struct stripe_head
*sh
= stripe_head_ref
;
1843 pr_debug("%s: stripe %llu\n", __func__
,
1844 (unsigned long long)sh
->sector
);
1846 if (r5c_is_writeback(sh
->raid_conf
->log
))
1848 * raid5-cache write back uses orig_page during prexor.
1849 * After prexor, it is time to free orig_page
1851 r5c_release_extra_page(sh
);
1854 static struct dma_async_tx_descriptor
*
1855 ops_run_prexor5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1856 struct dma_async_tx_descriptor
*tx
)
1858 int disks
= sh
->disks
;
1859 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
1860 unsigned int *off_srcs
= to_addr_offs(sh
, percpu
);
1861 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1862 struct async_submit_ctl submit
;
1864 /* existing parity data subtracted */
1865 unsigned int off_dest
= off_srcs
[count
] = sh
->dev
[pd_idx
].offset
;
1866 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1868 BUG_ON(sh
->batch_head
);
1869 pr_debug("%s: stripe %llu\n", __func__
,
1870 (unsigned long long)sh
->sector
);
1872 for (i
= disks
; i
--; ) {
1873 struct r5dev
*dev
= &sh
->dev
[i
];
1874 /* Only process blocks that are known to be uptodate */
1875 if (test_bit(R5_InJournal
, &dev
->flags
)) {
1877 * For this case, PAGE_SIZE must be equal to 4KB and
1878 * page offset is zero.
1880 off_srcs
[count
] = dev
->offset
;
1881 xor_srcs
[count
++] = dev
->orig_page
;
1882 } else if (test_bit(R5_Wantdrain
, &dev
->flags
)) {
1883 off_srcs
[count
] = dev
->offset
;
1884 xor_srcs
[count
++] = dev
->page
;
1888 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1889 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1890 tx
= async_xor_offs(xor_dest
, off_dest
, xor_srcs
, off_srcs
, count
,
1891 RAID5_STRIPE_SIZE(sh
->raid_conf
), &submit
);
1896 static struct dma_async_tx_descriptor
*
1897 ops_run_prexor6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1898 struct dma_async_tx_descriptor
*tx
)
1900 struct page
**blocks
= to_addr_page(percpu
, 0);
1901 unsigned int *offs
= to_addr_offs(sh
, percpu
);
1903 struct async_submit_ctl submit
;
1905 pr_debug("%s: stripe %llu\n", __func__
,
1906 (unsigned long long)sh
->sector
);
1908 count
= set_syndrome_sources(blocks
, offs
, sh
, SYNDROME_SRC_WANT_DRAIN
);
1910 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_PQ_XOR_DST
, tx
,
1911 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
, 0));
1912 tx
= async_gen_syndrome(blocks
, offs
, count
+2,
1913 RAID5_STRIPE_SIZE(sh
->raid_conf
), &submit
);
1918 static struct dma_async_tx_descriptor
*
1919 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1921 struct r5conf
*conf
= sh
->raid_conf
;
1922 int disks
= sh
->disks
;
1924 struct stripe_head
*head_sh
= sh
;
1926 pr_debug("%s: stripe %llu\n", __func__
,
1927 (unsigned long long)sh
->sector
);
1929 for (i
= disks
; i
--; ) {
1934 if (test_and_clear_bit(R5_Wantdrain
, &head_sh
->dev
[i
].flags
)) {
1940 * clear R5_InJournal, so when rewriting a page in
1941 * journal, it is not skipped by r5l_log_stripe()
1943 clear_bit(R5_InJournal
, &dev
->flags
);
1944 spin_lock_irq(&sh
->stripe_lock
);
1945 chosen
= dev
->towrite
;
1946 dev
->towrite
= NULL
;
1947 sh
->overwrite_disks
= 0;
1948 BUG_ON(dev
->written
);
1949 wbi
= dev
->written
= chosen
;
1950 spin_unlock_irq(&sh
->stripe_lock
);
1951 WARN_ON(dev
->page
!= dev
->orig_page
);
1953 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1954 dev
->sector
+ RAID5_STRIPE_SECTORS(conf
)) {
1955 if (wbi
->bi_opf
& REQ_FUA
)
1956 set_bit(R5_WantFUA
, &dev
->flags
);
1957 if (wbi
->bi_opf
& REQ_SYNC
)
1958 set_bit(R5_SyncIO
, &dev
->flags
);
1959 if (bio_op(wbi
) == REQ_OP_DISCARD
)
1960 set_bit(R5_Discard
, &dev
->flags
);
1962 tx
= async_copy_data(1, wbi
, &dev
->page
,
1964 dev
->sector
, tx
, sh
,
1965 r5c_is_writeback(conf
->log
));
1966 if (dev
->page
!= dev
->orig_page
&&
1967 !r5c_is_writeback(conf
->log
)) {
1968 set_bit(R5_SkipCopy
, &dev
->flags
);
1969 clear_bit(R5_UPTODATE
, &dev
->flags
);
1970 clear_bit(R5_OVERWRITE
, &dev
->flags
);
1973 wbi
= r5_next_bio(conf
, wbi
, dev
->sector
);
1976 if (head_sh
->batch_head
) {
1977 sh
= list_first_entry(&sh
->batch_list
,
1990 static void ops_complete_reconstruct(void *stripe_head_ref
)
1992 struct stripe_head
*sh
= stripe_head_ref
;
1993 int disks
= sh
->disks
;
1994 int pd_idx
= sh
->pd_idx
;
1995 int qd_idx
= sh
->qd_idx
;
1997 bool fua
= false, sync
= false, discard
= false;
1999 pr_debug("%s: stripe %llu\n", __func__
,
2000 (unsigned long long)sh
->sector
);
2002 for (i
= disks
; i
--; ) {
2003 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
2004 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
2005 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
2008 for (i
= disks
; i
--; ) {
2009 struct r5dev
*dev
= &sh
->dev
[i
];
2011 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
2012 if (!discard
&& !test_bit(R5_SkipCopy
, &dev
->flags
)) {
2013 set_bit(R5_UPTODATE
, &dev
->flags
);
2014 if (test_bit(STRIPE_EXPAND_READY
, &sh
->state
))
2015 set_bit(R5_Expanded
, &dev
->flags
);
2018 set_bit(R5_WantFUA
, &dev
->flags
);
2020 set_bit(R5_SyncIO
, &dev
->flags
);
2024 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
2025 sh
->reconstruct_state
= reconstruct_state_drain_result
;
2026 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
2027 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
2029 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
2030 sh
->reconstruct_state
= reconstruct_state_result
;
2033 set_bit(STRIPE_HANDLE
, &sh
->state
);
2034 raid5_release_stripe(sh
);
2038 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
2039 struct dma_async_tx_descriptor
*tx
)
2041 int disks
= sh
->disks
;
2042 struct page
**xor_srcs
;
2043 unsigned int *off_srcs
;
2044 struct async_submit_ctl submit
;
2045 int count
, pd_idx
= sh
->pd_idx
, i
;
2046 struct page
*xor_dest
;
2047 unsigned int off_dest
;
2049 unsigned long flags
;
2051 struct stripe_head
*head_sh
= sh
;
2054 pr_debug("%s: stripe %llu\n", __func__
,
2055 (unsigned long long)sh
->sector
);
2057 for (i
= 0; i
< sh
->disks
; i
++) {
2060 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
2063 if (i
>= sh
->disks
) {
2064 atomic_inc(&sh
->count
);
2065 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
2066 ops_complete_reconstruct(sh
);
2071 xor_srcs
= to_addr_page(percpu
, j
);
2072 off_srcs
= to_addr_offs(sh
, percpu
);
2073 /* check if prexor is active which means only process blocks
2074 * that are part of a read-modify-write (written)
2076 if (head_sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
2078 off_dest
= off_srcs
[count
] = sh
->dev
[pd_idx
].offset
;
2079 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
2080 for (i
= disks
; i
--; ) {
2081 struct r5dev
*dev
= &sh
->dev
[i
];
2082 if (head_sh
->dev
[i
].written
||
2083 test_bit(R5_InJournal
, &head_sh
->dev
[i
].flags
)) {
2084 off_srcs
[count
] = dev
->offset
;
2085 xor_srcs
[count
++] = dev
->page
;
2089 xor_dest
= sh
->dev
[pd_idx
].page
;
2090 off_dest
= sh
->dev
[pd_idx
].offset
;
2091 for (i
= disks
; i
--; ) {
2092 struct r5dev
*dev
= &sh
->dev
[i
];
2094 off_srcs
[count
] = dev
->offset
;
2095 xor_srcs
[count
++] = dev
->page
;
2100 /* 1/ if we prexor'd then the dest is reused as a source
2101 * 2/ if we did not prexor then we are redoing the parity
2102 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2103 * for the synchronous xor case
2105 last_stripe
= !head_sh
->batch_head
||
2106 list_first_entry(&sh
->batch_list
,
2107 struct stripe_head
, batch_list
) == head_sh
;
2109 flags
= ASYNC_TX_ACK
|
2110 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
2112 atomic_inc(&head_sh
->count
);
2113 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, head_sh
,
2114 to_addr_conv(sh
, percpu
, j
));
2116 flags
= prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
;
2117 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
,
2118 to_addr_conv(sh
, percpu
, j
));
2121 if (unlikely(count
== 1))
2122 tx
= async_memcpy(xor_dest
, xor_srcs
[0], off_dest
, off_srcs
[0],
2123 RAID5_STRIPE_SIZE(sh
->raid_conf
), &submit
);
2125 tx
= async_xor_offs(xor_dest
, off_dest
, xor_srcs
, off_srcs
, count
,
2126 RAID5_STRIPE_SIZE(sh
->raid_conf
), &submit
);
2129 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
2136 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
2137 struct dma_async_tx_descriptor
*tx
)
2139 struct async_submit_ctl submit
;
2140 struct page
**blocks
;
2142 int count
, i
, j
= 0;
2143 struct stripe_head
*head_sh
= sh
;
2146 unsigned long txflags
;
2148 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
2150 for (i
= 0; i
< sh
->disks
; i
++) {
2151 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
2153 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
2156 if (i
>= sh
->disks
) {
2157 atomic_inc(&sh
->count
);
2158 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
2159 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
2160 ops_complete_reconstruct(sh
);
2165 blocks
= to_addr_page(percpu
, j
);
2166 offs
= to_addr_offs(sh
, percpu
);
2168 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
2169 synflags
= SYNDROME_SRC_WRITTEN
;
2170 txflags
= ASYNC_TX_ACK
| ASYNC_TX_PQ_XOR_DST
;
2172 synflags
= SYNDROME_SRC_ALL
;
2173 txflags
= ASYNC_TX_ACK
;
2176 count
= set_syndrome_sources(blocks
, offs
, sh
, synflags
);
2177 last_stripe
= !head_sh
->batch_head
||
2178 list_first_entry(&sh
->batch_list
,
2179 struct stripe_head
, batch_list
) == head_sh
;
2182 atomic_inc(&head_sh
->count
);
2183 init_async_submit(&submit
, txflags
, tx
, ops_complete_reconstruct
,
2184 head_sh
, to_addr_conv(sh
, percpu
, j
));
2186 init_async_submit(&submit
, 0, tx
, NULL
, NULL
,
2187 to_addr_conv(sh
, percpu
, j
));
2188 tx
= async_gen_syndrome(blocks
, offs
, count
+2,
2189 RAID5_STRIPE_SIZE(sh
->raid_conf
), &submit
);
2192 sh
= list_first_entry(&sh
->batch_list
, struct stripe_head
,
2198 static void ops_complete_check(void *stripe_head_ref
)
2200 struct stripe_head
*sh
= stripe_head_ref
;
2202 pr_debug("%s: stripe %llu\n", __func__
,
2203 (unsigned long long)sh
->sector
);
2205 sh
->check_state
= check_state_check_result
;
2206 set_bit(STRIPE_HANDLE
, &sh
->state
);
2207 raid5_release_stripe(sh
);
2210 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
2212 int disks
= sh
->disks
;
2213 int pd_idx
= sh
->pd_idx
;
2214 int qd_idx
= sh
->qd_idx
;
2215 struct page
*xor_dest
;
2216 unsigned int off_dest
;
2217 struct page
**xor_srcs
= to_addr_page(percpu
, 0);
2218 unsigned int *off_srcs
= to_addr_offs(sh
, percpu
);
2219 struct dma_async_tx_descriptor
*tx
;
2220 struct async_submit_ctl submit
;
2224 pr_debug("%s: stripe %llu\n", __func__
,
2225 (unsigned long long)sh
->sector
);
2227 BUG_ON(sh
->batch_head
);
2229 xor_dest
= sh
->dev
[pd_idx
].page
;
2230 off_dest
= sh
->dev
[pd_idx
].offset
;
2231 off_srcs
[count
] = off_dest
;
2232 xor_srcs
[count
++] = xor_dest
;
2233 for (i
= disks
; i
--; ) {
2234 if (i
== pd_idx
|| i
== qd_idx
)
2236 off_srcs
[count
] = sh
->dev
[i
].offset
;
2237 xor_srcs
[count
++] = sh
->dev
[i
].page
;
2240 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
2241 to_addr_conv(sh
, percpu
, 0));
2242 tx
= async_xor_val_offs(xor_dest
, off_dest
, xor_srcs
, off_srcs
, count
,
2243 RAID5_STRIPE_SIZE(sh
->raid_conf
),
2244 &sh
->ops
.zero_sum_result
, &submit
);
2246 atomic_inc(&sh
->count
);
2247 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
2248 tx
= async_trigger_callback(&submit
);
2251 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
2253 struct page
**srcs
= to_addr_page(percpu
, 0);
2254 unsigned int *offs
= to_addr_offs(sh
, percpu
);
2255 struct async_submit_ctl submit
;
2258 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
2259 (unsigned long long)sh
->sector
, checkp
);
2261 BUG_ON(sh
->batch_head
);
2262 count
= set_syndrome_sources(srcs
, offs
, sh
, SYNDROME_SRC_ALL
);
2266 atomic_inc(&sh
->count
);
2267 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
2268 sh
, to_addr_conv(sh
, percpu
, 0));
2269 async_syndrome_val(srcs
, offs
, count
+2,
2270 RAID5_STRIPE_SIZE(sh
->raid_conf
),
2271 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, 0, &submit
);
2274 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
2276 int overlap_clear
= 0, i
, disks
= sh
->disks
;
2277 struct dma_async_tx_descriptor
*tx
= NULL
;
2278 struct r5conf
*conf
= sh
->raid_conf
;
2279 int level
= conf
->level
;
2280 struct raid5_percpu
*percpu
;
2282 local_lock(&conf
->percpu
->lock
);
2283 percpu
= this_cpu_ptr(conf
->percpu
);
2284 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
2285 ops_run_biofill(sh
);
2289 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
2291 tx
= ops_run_compute5(sh
, percpu
);
2293 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
2294 tx
= ops_run_compute6_1(sh
, percpu
);
2296 tx
= ops_run_compute6_2(sh
, percpu
);
2298 /* terminate the chain if reconstruct is not set to be run */
2299 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
2303 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
)) {
2305 tx
= ops_run_prexor5(sh
, percpu
, tx
);
2307 tx
= ops_run_prexor6(sh
, percpu
, tx
);
2310 if (test_bit(STRIPE_OP_PARTIAL_PARITY
, &ops_request
))
2311 tx
= ops_run_partial_parity(sh
, percpu
, tx
);
2313 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
2314 tx
= ops_run_biodrain(sh
, tx
);
2318 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
2320 ops_run_reconstruct5(sh
, percpu
, tx
);
2322 ops_run_reconstruct6(sh
, percpu
, tx
);
2325 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
2326 if (sh
->check_state
== check_state_run
)
2327 ops_run_check_p(sh
, percpu
);
2328 else if (sh
->check_state
== check_state_run_q
)
2329 ops_run_check_pq(sh
, percpu
, 0);
2330 else if (sh
->check_state
== check_state_run_pq
)
2331 ops_run_check_pq(sh
, percpu
, 1);
2336 if (overlap_clear
&& !sh
->batch_head
) {
2337 for (i
= disks
; i
--; ) {
2338 struct r5dev
*dev
= &sh
->dev
[i
];
2339 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
2340 wake_up_bit(&dev
->flags
, R5_Overlap
);
2343 local_unlock(&conf
->percpu
->lock
);
2346 static void free_stripe(struct kmem_cache
*sc
, struct stripe_head
*sh
)
2348 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2352 __free_page(sh
->ppl_page
);
2353 kmem_cache_free(sc
, sh
);
2356 static struct stripe_head
*alloc_stripe(struct kmem_cache
*sc
, gfp_t gfp
,
2357 int disks
, struct r5conf
*conf
)
2359 struct stripe_head
*sh
;
2361 sh
= kmem_cache_zalloc(sc
, gfp
);
2363 spin_lock_init(&sh
->stripe_lock
);
2364 spin_lock_init(&sh
->batch_lock
);
2365 INIT_LIST_HEAD(&sh
->batch_list
);
2366 INIT_LIST_HEAD(&sh
->lru
);
2367 INIT_LIST_HEAD(&sh
->r5c
);
2368 INIT_LIST_HEAD(&sh
->log_list
);
2369 atomic_set(&sh
->count
, 1);
2370 sh
->raid_conf
= conf
;
2371 sh
->log_start
= MaxSector
;
2373 if (raid5_has_ppl(conf
)) {
2374 sh
->ppl_page
= alloc_page(gfp
);
2375 if (!sh
->ppl_page
) {
2376 free_stripe(sc
, sh
);
2380 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2381 if (init_stripe_shared_pages(sh
, conf
, disks
)) {
2382 free_stripe(sc
, sh
);
2389 static int grow_one_stripe(struct r5conf
*conf
, gfp_t gfp
)
2391 struct stripe_head
*sh
;
2393 sh
= alloc_stripe(conf
->slab_cache
, gfp
, conf
->pool_size
, conf
);
2397 if (grow_buffers(sh
, gfp
)) {
2399 free_stripe(conf
->slab_cache
, sh
);
2402 sh
->hash_lock_index
=
2403 conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
2404 /* we just created an active stripe so... */
2405 atomic_inc(&conf
->active_stripes
);
2407 raid5_release_stripe(sh
);
2408 WRITE_ONCE(conf
->max_nr_stripes
, conf
->max_nr_stripes
+ 1);
2412 static int grow_stripes(struct r5conf
*conf
, int num
)
2414 struct kmem_cache
*sc
;
2415 size_t namelen
= sizeof(conf
->cache_name
[0]);
2416 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
2418 if (mddev_is_dm(conf
->mddev
))
2419 snprintf(conf
->cache_name
[0], namelen
,
2420 "raid%d-%p", conf
->level
, conf
->mddev
);
2422 snprintf(conf
->cache_name
[0], namelen
,
2423 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
2424 snprintf(conf
->cache_name
[1], namelen
, "%.27s-alt", conf
->cache_name
[0]);
2426 conf
->active_name
= 0;
2427 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
2428 struct_size_t(struct stripe_head
, dev
, devs
),
2432 conf
->slab_cache
= sc
;
2433 conf
->pool_size
= devs
;
2435 if (!grow_one_stripe(conf
, GFP_KERNEL
))
2442 * scribble_alloc - allocate percpu scribble buffer for required size
2443 * of the scribble region
2444 * @percpu: from for_each_present_cpu() of the caller
2445 * @num: total number of disks in the array
2446 * @cnt: scribble objs count for required size of the scribble region
2448 * The scribble buffer size must be enough to contain:
2449 * 1/ a struct page pointer for each device in the array +2
2450 * 2/ room to convert each entry in (1) to its corresponding dma
2451 * (dma_map_page()) or page (page_address()) address.
2453 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2454 * calculate over all devices (not just the data blocks), using zeros in place
2455 * of the P and Q blocks.
2457 static int scribble_alloc(struct raid5_percpu
*percpu
,
2461 sizeof(struct page
*) * (num
+ 2) +
2462 sizeof(addr_conv_t
) * (num
+ 2) +
2463 sizeof(unsigned int) * (num
+ 2);
2467 * If here is in raid array suspend context, it is in memalloc noio
2468 * context as well, there is no potential recursive memory reclaim
2469 * I/Os with the GFP_KERNEL flag.
2471 scribble
= kvmalloc_array(cnt
, obj_size
, GFP_KERNEL
);
2475 kvfree(percpu
->scribble
);
2477 percpu
->scribble
= scribble
;
2478 percpu
->scribble_obj_size
= obj_size
;
2482 static int resize_chunks(struct r5conf
*conf
, int new_disks
, int new_sectors
)
2488 if (conf
->scribble_disks
>= new_disks
&&
2489 conf
->scribble_sectors
>= new_sectors
)
2492 raid5_quiesce(conf
->mddev
, true);
2495 for_each_present_cpu(cpu
) {
2496 struct raid5_percpu
*percpu
;
2498 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
2499 err
= scribble_alloc(percpu
, new_disks
,
2500 new_sectors
/ RAID5_STRIPE_SECTORS(conf
));
2506 raid5_quiesce(conf
->mddev
, false);
2509 conf
->scribble_disks
= new_disks
;
2510 conf
->scribble_sectors
= new_sectors
;
2515 static int resize_stripes(struct r5conf
*conf
, int newsize
)
2517 /* Make all the stripes able to hold 'newsize' devices.
2518 * New slots in each stripe get 'page' set to a new page.
2520 * This happens in stages:
2521 * 1/ create a new kmem_cache and allocate the required number of
2523 * 2/ gather all the old stripe_heads and transfer the pages across
2524 * to the new stripe_heads. This will have the side effect of
2525 * freezing the array as once all stripe_heads have been collected,
2526 * no IO will be possible. Old stripe heads are freed once their
2527 * pages have been transferred over, and the old kmem_cache is
2528 * freed when all stripes are done.
2529 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2530 * we simple return a failure status - no need to clean anything up.
2531 * 4/ allocate new pages for the new slots in the new stripe_heads.
2532 * If this fails, we don't bother trying the shrink the
2533 * stripe_heads down again, we just leave them as they are.
2534 * As each stripe_head is processed the new one is released into
2537 * Once step2 is started, we cannot afford to wait for a write,
2538 * so we use GFP_NOIO allocations.
2540 struct stripe_head
*osh
, *nsh
;
2541 LIST_HEAD(newstripes
);
2542 struct disk_info
*ndisks
;
2544 struct kmem_cache
*sc
;
2548 md_allow_write(conf
->mddev
);
2551 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
2552 struct_size_t(struct stripe_head
, dev
, newsize
),
2557 /* Need to ensure auto-resizing doesn't interfere */
2558 mutex_lock(&conf
->cache_size_mutex
);
2560 for (i
= conf
->max_nr_stripes
; i
; i
--) {
2561 nsh
= alloc_stripe(sc
, GFP_KERNEL
, newsize
, conf
);
2565 list_add(&nsh
->lru
, &newstripes
);
2568 /* didn't get enough, give up */
2569 while (!list_empty(&newstripes
)) {
2570 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2571 list_del(&nsh
->lru
);
2572 free_stripe(sc
, nsh
);
2574 kmem_cache_destroy(sc
);
2575 mutex_unlock(&conf
->cache_size_mutex
);
2578 /* Step 2 - Must use GFP_NOIO now.
2579 * OK, we have enough stripes, start collecting inactive
2580 * stripes and copying them over
2584 list_for_each_entry(nsh
, &newstripes
, lru
) {
2585 lock_device_hash_lock(conf
, hash
);
2586 wait_event_cmd(conf
->wait_for_stripe
,
2587 !list_empty(conf
->inactive_list
+ hash
),
2588 unlock_device_hash_lock(conf
, hash
),
2589 lock_device_hash_lock(conf
, hash
));
2590 osh
= get_free_stripe(conf
, hash
);
2591 unlock_device_hash_lock(conf
, hash
);
2593 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2594 for (i
= 0; i
< osh
->nr_pages
; i
++) {
2595 nsh
->pages
[i
] = osh
->pages
[i
];
2596 osh
->pages
[i
] = NULL
;
2599 for(i
=0; i
<conf
->pool_size
; i
++) {
2600 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
2601 nsh
->dev
[i
].orig_page
= osh
->dev
[i
].page
;
2602 nsh
->dev
[i
].offset
= osh
->dev
[i
].offset
;
2604 nsh
->hash_lock_index
= hash
;
2605 free_stripe(conf
->slab_cache
, osh
);
2607 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
2608 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
2613 kmem_cache_destroy(conf
->slab_cache
);
2616 * At this point, we are holding all the stripes so the array
2617 * is completely stalled, so now is a good time to resize
2618 * conf->disks and the scribble region
2620 ndisks
= kcalloc(newsize
, sizeof(struct disk_info
), GFP_NOIO
);
2622 for (i
= 0; i
< conf
->pool_size
; i
++)
2623 ndisks
[i
] = conf
->disks
[i
];
2625 for (i
= conf
->pool_size
; i
< newsize
; i
++) {
2626 ndisks
[i
].extra_page
= alloc_page(GFP_NOIO
);
2627 if (!ndisks
[i
].extra_page
)
2632 for (i
= conf
->pool_size
; i
< newsize
; i
++)
2633 if (ndisks
[i
].extra_page
)
2634 put_page(ndisks
[i
].extra_page
);
2638 conf
->disks
= ndisks
;
2643 conf
->slab_cache
= sc
;
2644 conf
->active_name
= 1-conf
->active_name
;
2646 /* Step 4, return new stripes to service */
2647 while(!list_empty(&newstripes
)) {
2648 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
2649 list_del_init(&nsh
->lru
);
2651 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2652 for (i
= 0; i
< nsh
->nr_pages
; i
++) {
2655 nsh
->pages
[i
] = alloc_page(GFP_NOIO
);
2660 for (i
= conf
->raid_disks
; i
< newsize
; i
++) {
2661 if (nsh
->dev
[i
].page
)
2663 nsh
->dev
[i
].page
= raid5_get_dev_page(nsh
, i
);
2664 nsh
->dev
[i
].orig_page
= nsh
->dev
[i
].page
;
2665 nsh
->dev
[i
].offset
= raid5_get_page_offset(nsh
, i
);
2668 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
2669 if (nsh
->dev
[i
].page
== NULL
) {
2670 struct page
*p
= alloc_page(GFP_NOIO
);
2671 nsh
->dev
[i
].page
= p
;
2672 nsh
->dev
[i
].orig_page
= p
;
2673 nsh
->dev
[i
].offset
= 0;
2678 raid5_release_stripe(nsh
);
2680 /* critical section pass, GFP_NOIO no longer needed */
2683 conf
->pool_size
= newsize
;
2684 mutex_unlock(&conf
->cache_size_mutex
);
2689 static int drop_one_stripe(struct r5conf
*conf
)
2691 struct stripe_head
*sh
;
2692 int hash
= (conf
->max_nr_stripes
- 1) & STRIPE_HASH_LOCKS_MASK
;
2694 spin_lock_irq(conf
->hash_locks
+ hash
);
2695 sh
= get_free_stripe(conf
, hash
);
2696 spin_unlock_irq(conf
->hash_locks
+ hash
);
2699 BUG_ON(atomic_read(&sh
->count
));
2701 free_stripe(conf
->slab_cache
, sh
);
2702 atomic_dec(&conf
->active_stripes
);
2703 WRITE_ONCE(conf
->max_nr_stripes
, conf
->max_nr_stripes
- 1);
2707 static void shrink_stripes(struct r5conf
*conf
)
2709 while (conf
->max_nr_stripes
&&
2710 drop_one_stripe(conf
))
2713 kmem_cache_destroy(conf
->slab_cache
);
2714 conf
->slab_cache
= NULL
;
2717 static void raid5_end_read_request(struct bio
* bi
)
2719 struct stripe_head
*sh
= bi
->bi_private
;
2720 struct r5conf
*conf
= sh
->raid_conf
;
2721 int disks
= sh
->disks
, i
;
2722 struct md_rdev
*rdev
= NULL
;
2725 for (i
=0 ; i
<disks
; i
++)
2726 if (bi
== &sh
->dev
[i
].req
)
2729 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2730 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2736 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2737 /* If replacement finished while this request was outstanding,
2738 * 'replacement' might be NULL already.
2739 * In that case it moved down to 'rdev'.
2740 * rdev is not removed until all requests are finished.
2742 rdev
= conf
->disks
[i
].replacement
;
2744 rdev
= conf
->disks
[i
].rdev
;
2746 if (use_new_offset(conf
, sh
))
2747 s
= sh
->sector
+ rdev
->new_data_offset
;
2749 s
= sh
->sector
+ rdev
->data_offset
;
2750 if (!bi
->bi_status
) {
2751 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2752 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2753 /* Note that this cannot happen on a
2754 * replacement device. We just fail those on
2757 pr_info_ratelimited(
2758 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2759 mdname(conf
->mddev
), RAID5_STRIPE_SECTORS(conf
),
2760 (unsigned long long)s
,
2762 atomic_add(RAID5_STRIPE_SECTORS(conf
), &rdev
->corrected_errors
);
2763 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2764 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2765 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2766 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2768 if (test_bit(R5_InJournal
, &sh
->dev
[i
].flags
))
2770 * end read for a page in journal, this
2771 * must be preparing for prexor in rmw
2773 set_bit(R5_OrigPageUPTDODATE
, &sh
->dev
[i
].flags
);
2775 if (atomic_read(&rdev
->read_errors
))
2776 atomic_set(&rdev
->read_errors
, 0);
2781 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2782 if (!(bi
->bi_status
== BLK_STS_PROTECTION
))
2783 atomic_inc(&rdev
->read_errors
);
2784 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2785 pr_warn_ratelimited(
2786 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2787 mdname(conf
->mddev
),
2788 (unsigned long long)s
,
2790 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2792 pr_warn_ratelimited(
2793 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2794 mdname(conf
->mddev
),
2795 (unsigned long long)s
,
2797 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2800 pr_warn_ratelimited(
2801 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2802 mdname(conf
->mddev
),
2803 (unsigned long long)s
,
2805 } else if (atomic_read(&rdev
->read_errors
)
2806 > conf
->max_nr_stripes
) {
2807 if (!test_bit(Faulty
, &rdev
->flags
)) {
2808 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2809 mdname(conf
->mddev
),
2810 atomic_read(&rdev
->read_errors
),
2811 conf
->max_nr_stripes
);
2812 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2813 mdname(conf
->mddev
), rdev
->bdev
);
2817 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2818 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2821 if (sh
->qd_idx
>= 0 && sh
->pd_idx
== i
)
2822 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2823 else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2824 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2825 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2827 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2829 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2830 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2832 && test_bit(In_sync
, &rdev
->flags
)
2833 && rdev_set_badblocks(
2834 rdev
, sh
->sector
, RAID5_STRIPE_SECTORS(conf
), 0)))
2835 md_error(conf
->mddev
, rdev
);
2838 rdev_dec_pending(rdev
, conf
->mddev
);
2840 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2841 set_bit(STRIPE_HANDLE
, &sh
->state
);
2842 raid5_release_stripe(sh
);
2845 static void raid5_end_write_request(struct bio
*bi
)
2847 struct stripe_head
*sh
= bi
->bi_private
;
2848 struct r5conf
*conf
= sh
->raid_conf
;
2849 int disks
= sh
->disks
, i
;
2850 struct md_rdev
*rdev
;
2851 int replacement
= 0;
2853 for (i
= 0 ; i
< disks
; i
++) {
2854 if (bi
== &sh
->dev
[i
].req
) {
2855 rdev
= conf
->disks
[i
].rdev
;
2858 if (bi
== &sh
->dev
[i
].rreq
) {
2859 rdev
= conf
->disks
[i
].replacement
;
2863 /* rdev was removed and 'replacement'
2864 * replaced it. rdev is not removed
2865 * until all requests are finished.
2867 rdev
= conf
->disks
[i
].rdev
;
2871 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2872 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2881 md_error(conf
->mddev
, rdev
);
2882 else if (rdev_has_badblock(rdev
, sh
->sector
,
2883 RAID5_STRIPE_SECTORS(conf
)))
2884 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2886 if (bi
->bi_status
) {
2887 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2888 set_bit(WriteErrorSeen
, &rdev
->flags
);
2889 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2890 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2891 set_bit(MD_RECOVERY_NEEDED
,
2892 &rdev
->mddev
->recovery
);
2893 } else if (rdev_has_badblock(rdev
, sh
->sector
,
2894 RAID5_STRIPE_SECTORS(conf
))) {
2895 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2896 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2897 /* That was a successful write so make
2898 * sure it looks like we already did
2901 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2904 rdev_dec_pending(rdev
, conf
->mddev
);
2906 if (sh
->batch_head
&& bi
->bi_status
&& !replacement
)
2907 set_bit(STRIPE_BATCH_ERR
, &sh
->batch_head
->state
);
2910 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2911 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2912 set_bit(STRIPE_HANDLE
, &sh
->state
);
2914 if (sh
->batch_head
&& sh
!= sh
->batch_head
)
2915 raid5_release_stripe(sh
->batch_head
);
2916 raid5_release_stripe(sh
);
2919 static void raid5_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2921 struct r5conf
*conf
= mddev
->private;
2922 unsigned long flags
;
2923 pr_debug("raid456: error called\n");
2925 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2926 mdname(mddev
), rdev
->bdev
);
2928 spin_lock_irqsave(&conf
->device_lock
, flags
);
2929 set_bit(Faulty
, &rdev
->flags
);
2930 clear_bit(In_sync
, &rdev
->flags
);
2931 mddev
->degraded
= raid5_calc_degraded(conf
);
2933 if (has_failed(conf
)) {
2934 set_bit(MD_BROKEN
, &conf
->mddev
->flags
);
2935 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2937 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2938 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
2940 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2941 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
2944 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2945 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2947 set_bit(Blocked
, &rdev
->flags
);
2948 set_mask_bits(&mddev
->sb_flags
, 0,
2949 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
2950 r5c_update_on_rdev_error(mddev
, rdev
);
2954 * Input: a 'big' sector number,
2955 * Output: index of the data and parity disk, and the sector # in them.
2957 sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2958 int previous
, int *dd_idx
,
2959 struct stripe_head
*sh
)
2961 sector_t stripe
, stripe2
;
2962 sector_t chunk_number
;
2963 unsigned int chunk_offset
;
2966 sector_t new_sector
;
2967 int algorithm
= previous
? conf
->prev_algo
2969 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2970 : conf
->chunk_sectors
;
2971 int raid_disks
= previous
? conf
->previous_raid_disks
2973 int data_disks
= raid_disks
- conf
->max_degraded
;
2975 /* First compute the information on this sector */
2978 * Compute the chunk number and the sector offset inside the chunk
2980 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2981 chunk_number
= r_sector
;
2984 * Compute the stripe number
2986 stripe
= chunk_number
;
2987 *dd_idx
= sector_div(stripe
, data_disks
);
2990 * Select the parity disk based on the user selected algorithm.
2992 pd_idx
= qd_idx
= -1;
2993 switch(conf
->level
) {
2995 pd_idx
= data_disks
;
2998 switch (algorithm
) {
2999 case ALGORITHM_LEFT_ASYMMETRIC
:
3000 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
3001 if (*dd_idx
>= pd_idx
)
3004 case ALGORITHM_RIGHT_ASYMMETRIC
:
3005 pd_idx
= sector_div(stripe2
, raid_disks
);
3006 if (*dd_idx
>= pd_idx
)
3009 case ALGORITHM_LEFT_SYMMETRIC
:
3010 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
3011 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
3013 case ALGORITHM_RIGHT_SYMMETRIC
:
3014 pd_idx
= sector_div(stripe2
, raid_disks
);
3015 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
3017 case ALGORITHM_PARITY_0
:
3021 case ALGORITHM_PARITY_N
:
3022 pd_idx
= data_disks
;
3030 switch (algorithm
) {
3031 case ALGORITHM_LEFT_ASYMMETRIC
:
3032 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
3033 qd_idx
= pd_idx
+ 1;
3034 if (pd_idx
== raid_disks
-1) {
3035 (*dd_idx
)++; /* Q D D D P */
3037 } else if (*dd_idx
>= pd_idx
)
3038 (*dd_idx
) += 2; /* D D P Q D */
3040 case ALGORITHM_RIGHT_ASYMMETRIC
:
3041 pd_idx
= sector_div(stripe2
, raid_disks
);
3042 qd_idx
= pd_idx
+ 1;
3043 if (pd_idx
== raid_disks
-1) {
3044 (*dd_idx
)++; /* Q D D D P */
3046 } else if (*dd_idx
>= pd_idx
)
3047 (*dd_idx
) += 2; /* D D P Q D */
3049 case ALGORITHM_LEFT_SYMMETRIC
:
3050 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
3051 qd_idx
= (pd_idx
+ 1) % raid_disks
;
3052 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
3054 case ALGORITHM_RIGHT_SYMMETRIC
:
3055 pd_idx
= sector_div(stripe2
, raid_disks
);
3056 qd_idx
= (pd_idx
+ 1) % raid_disks
;
3057 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
3060 case ALGORITHM_PARITY_0
:
3065 case ALGORITHM_PARITY_N
:
3066 pd_idx
= data_disks
;
3067 qd_idx
= data_disks
+ 1;
3070 case ALGORITHM_ROTATING_ZERO_RESTART
:
3071 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3072 * of blocks for computing Q is different.
3074 pd_idx
= sector_div(stripe2
, raid_disks
);
3075 qd_idx
= pd_idx
+ 1;
3076 if (pd_idx
== raid_disks
-1) {
3077 (*dd_idx
)++; /* Q D D D P */
3079 } else if (*dd_idx
>= pd_idx
)
3080 (*dd_idx
) += 2; /* D D P Q D */
3084 case ALGORITHM_ROTATING_N_RESTART
:
3085 /* Same a left_asymmetric, by first stripe is
3086 * D D D P Q rather than
3090 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
3091 qd_idx
= pd_idx
+ 1;
3092 if (pd_idx
== raid_disks
-1) {
3093 (*dd_idx
)++; /* Q D D D P */
3095 } else if (*dd_idx
>= pd_idx
)
3096 (*dd_idx
) += 2; /* D D P Q D */
3100 case ALGORITHM_ROTATING_N_CONTINUE
:
3101 /* Same as left_symmetric but Q is before P */
3102 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
3103 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
3104 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
3108 case ALGORITHM_LEFT_ASYMMETRIC_6
:
3109 /* RAID5 left_asymmetric, with Q on last device */
3110 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
3111 if (*dd_idx
>= pd_idx
)
3113 qd_idx
= raid_disks
- 1;
3116 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
3117 pd_idx
= sector_div(stripe2
, raid_disks
-1);
3118 if (*dd_idx
>= pd_idx
)
3120 qd_idx
= raid_disks
- 1;
3123 case ALGORITHM_LEFT_SYMMETRIC_6
:
3124 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
3125 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
3126 qd_idx
= raid_disks
- 1;
3129 case ALGORITHM_RIGHT_SYMMETRIC_6
:
3130 pd_idx
= sector_div(stripe2
, raid_disks
-1);
3131 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
3132 qd_idx
= raid_disks
- 1;
3135 case ALGORITHM_PARITY_0_6
:
3138 qd_idx
= raid_disks
- 1;
3148 sh
->pd_idx
= pd_idx
;
3149 sh
->qd_idx
= qd_idx
;
3150 sh
->ddf_layout
= ddf_layout
;
3153 * Finally, compute the new sector number
3155 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
3159 sector_t
raid5_compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
3161 struct r5conf
*conf
= sh
->raid_conf
;
3162 int raid_disks
= sh
->disks
;
3163 int data_disks
= raid_disks
- conf
->max_degraded
;
3164 sector_t new_sector
= sh
->sector
, check
;
3165 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
3166 : conf
->chunk_sectors
;
3167 int algorithm
= previous
? conf
->prev_algo
3171 sector_t chunk_number
;
3172 int dummy1
, dd_idx
= i
;
3174 struct stripe_head sh2
;
3176 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
3177 stripe
= new_sector
;
3179 if (i
== sh
->pd_idx
)
3181 switch(conf
->level
) {
3184 switch (algorithm
) {
3185 case ALGORITHM_LEFT_ASYMMETRIC
:
3186 case ALGORITHM_RIGHT_ASYMMETRIC
:
3190 case ALGORITHM_LEFT_SYMMETRIC
:
3191 case ALGORITHM_RIGHT_SYMMETRIC
:
3194 i
-= (sh
->pd_idx
+ 1);
3196 case ALGORITHM_PARITY_0
:
3199 case ALGORITHM_PARITY_N
:
3206 if (i
== sh
->qd_idx
)
3207 return 0; /* It is the Q disk */
3208 switch (algorithm
) {
3209 case ALGORITHM_LEFT_ASYMMETRIC
:
3210 case ALGORITHM_RIGHT_ASYMMETRIC
:
3211 case ALGORITHM_ROTATING_ZERO_RESTART
:
3212 case ALGORITHM_ROTATING_N_RESTART
:
3213 if (sh
->pd_idx
== raid_disks
-1)
3214 i
--; /* Q D D D P */
3215 else if (i
> sh
->pd_idx
)
3216 i
-= 2; /* D D P Q D */
3218 case ALGORITHM_LEFT_SYMMETRIC
:
3219 case ALGORITHM_RIGHT_SYMMETRIC
:
3220 if (sh
->pd_idx
== raid_disks
-1)
3221 i
--; /* Q D D D P */
3226 i
-= (sh
->pd_idx
+ 2);
3229 case ALGORITHM_PARITY_0
:
3232 case ALGORITHM_PARITY_N
:
3234 case ALGORITHM_ROTATING_N_CONTINUE
:
3235 /* Like left_symmetric, but P is before Q */
3236 if (sh
->pd_idx
== 0)
3237 i
--; /* P D D D Q */
3242 i
-= (sh
->pd_idx
+ 1);
3245 case ALGORITHM_LEFT_ASYMMETRIC_6
:
3246 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
3250 case ALGORITHM_LEFT_SYMMETRIC_6
:
3251 case ALGORITHM_RIGHT_SYMMETRIC_6
:
3253 i
+= data_disks
+ 1;
3254 i
-= (sh
->pd_idx
+ 1);
3256 case ALGORITHM_PARITY_0_6
:
3265 chunk_number
= stripe
* data_disks
+ i
;
3266 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
3268 check
= raid5_compute_sector(conf
, r_sector
,
3269 previous
, &dummy1
, &sh2
);
3270 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
3271 || sh2
.qd_idx
!= sh
->qd_idx
) {
3272 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3273 mdname(conf
->mddev
));
3280 * There are cases where we want handle_stripe_dirtying() and
3281 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3283 * This function checks whether we want to delay the towrite. Specifically,
3284 * we delay the towrite when:
3286 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3287 * stripe has data in journal (for other devices).
3289 * In this case, when reading data for the non-overwrite dev, it is
3290 * necessary to handle complex rmw of write back cache (prexor with
3291 * orig_page, and xor with page). To keep read path simple, we would
3292 * like to flush data in journal to RAID disks first, so complex rmw
3293 * is handled in the write patch (handle_stripe_dirtying).
3295 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3297 * It is important to be able to flush all stripes in raid5-cache.
3298 * Therefore, we need reserve some space on the journal device for
3299 * these flushes. If flush operation includes pending writes to the
3300 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3301 * for the flush out. If we exclude these pending writes from flush
3302 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3303 * Therefore, excluding pending writes in these cases enables more
3304 * efficient use of the journal device.
3306 * Note: To make sure the stripe makes progress, we only delay
3307 * towrite for stripes with data already in journal (injournal > 0).
3308 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3309 * no_space_stripes list.
3311 * 3. during journal failure
3312 * In journal failure, we try to flush all cached data to raid disks
3313 * based on data in stripe cache. The array is read-only to upper
3314 * layers, so we would skip all pending writes.
3317 static inline bool delay_towrite(struct r5conf
*conf
,
3319 struct stripe_head_state
*s
)
3322 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3323 !test_bit(R5_Insync
, &dev
->flags
) && s
->injournal
)
3326 if (test_bit(R5C_LOG_CRITICAL
, &conf
->cache_state
) &&
3330 if (s
->log_failed
&& s
->injournal
)
3336 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3337 int rcw
, int expand
)
3339 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
, disks
= sh
->disks
;
3340 struct r5conf
*conf
= sh
->raid_conf
;
3341 int level
= conf
->level
;
3345 * In some cases, handle_stripe_dirtying initially decided to
3346 * run rmw and allocates extra page for prexor. However, rcw is
3347 * cheaper later on. We need to free the extra page now,
3348 * because we won't be able to do that in ops_complete_prexor().
3350 r5c_release_extra_page(sh
);
3352 for (i
= disks
; i
--; ) {
3353 struct r5dev
*dev
= &sh
->dev
[i
];
3355 if (dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) {
3356 set_bit(R5_LOCKED
, &dev
->flags
);
3357 set_bit(R5_Wantdrain
, &dev
->flags
);
3359 clear_bit(R5_UPTODATE
, &dev
->flags
);
3361 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3362 set_bit(R5_LOCKED
, &dev
->flags
);
3366 /* if we are not expanding this is a proper write request, and
3367 * there will be bios with new data to be drained into the
3372 /* False alarm, nothing to do */
3374 sh
->reconstruct_state
= reconstruct_state_drain_run
;
3375 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3377 sh
->reconstruct_state
= reconstruct_state_run
;
3379 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3381 if (s
->locked
+ conf
->max_degraded
== disks
)
3382 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3383 atomic_inc(&conf
->pending_full_writes
);
3385 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
3386 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
3387 BUG_ON(level
== 6 &&
3388 (!(test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
) ||
3389 test_bit(R5_Wantcompute
, &sh
->dev
[qd_idx
].flags
))));
3391 for (i
= disks
; i
--; ) {
3392 struct r5dev
*dev
= &sh
->dev
[i
];
3393 if (i
== pd_idx
|| i
== qd_idx
)
3397 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
3398 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3399 set_bit(R5_Wantdrain
, &dev
->flags
);
3400 set_bit(R5_LOCKED
, &dev
->flags
);
3401 clear_bit(R5_UPTODATE
, &dev
->flags
);
3403 } else if (test_bit(R5_InJournal
, &dev
->flags
)) {
3404 set_bit(R5_LOCKED
, &dev
->flags
);
3409 /* False alarm - nothing to do */
3411 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
3412 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
3413 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
3414 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
3417 /* keep the parity disk(s) locked while asynchronous operations
3420 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
3421 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3425 int qd_idx
= sh
->qd_idx
;
3426 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
3428 set_bit(R5_LOCKED
, &dev
->flags
);
3429 clear_bit(R5_UPTODATE
, &dev
->flags
);
3433 if (raid5_has_ppl(sh
->raid_conf
) && sh
->ppl_page
&&
3434 test_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
) &&
3435 !test_bit(STRIPE_FULL_WRITE
, &sh
->state
) &&
3436 test_bit(R5_Insync
, &sh
->dev
[pd_idx
].flags
))
3437 set_bit(STRIPE_OP_PARTIAL_PARITY
, &s
->ops_request
);
3439 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3440 __func__
, (unsigned long long)sh
->sector
,
3441 s
->locked
, s
->ops_request
);
3444 static bool stripe_bio_overlaps(struct stripe_head
*sh
, struct bio
*bi
,
3445 int dd_idx
, int forwrite
)
3447 struct r5conf
*conf
= sh
->raid_conf
;
3450 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3451 bi
->bi_iter
.bi_sector
, sh
->sector
);
3453 /* Don't allow new IO added to stripes in batch list */
3458 bip
= &sh
->dev
[dd_idx
].towrite
;
3460 bip
= &sh
->dev
[dd_idx
].toread
;
3462 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
3463 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
3465 bip
= &(*bip
)->bi_next
;
3468 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
3471 if (forwrite
&& raid5_has_ppl(conf
)) {
3473 * With PPL only writes to consecutive data chunks within a
3474 * stripe are allowed because for a single stripe_head we can
3475 * only have one PPL entry at a time, which describes one data
3476 * range. Not really an overlap, but R5_Overlap can be
3477 * used to handle this.
3485 for (i
= 0; i
< sh
->disks
; i
++) {
3486 if (i
!= sh
->pd_idx
&&
3487 (i
== dd_idx
|| sh
->dev
[i
].towrite
)) {
3488 sector
= sh
->dev
[i
].sector
;
3489 if (count
== 0 || sector
< first
)
3497 if (first
+ conf
->chunk_sectors
* (count
- 1) != last
)
3504 static void __add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
,
3505 int dd_idx
, int forwrite
, int previous
)
3507 struct r5conf
*conf
= sh
->raid_conf
;
3512 bip
= &sh
->dev
[dd_idx
].towrite
;
3516 bip
= &sh
->dev
[dd_idx
].toread
;
3519 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
)
3520 bip
= &(*bip
)->bi_next
;
3522 if (!forwrite
|| previous
)
3523 clear_bit(STRIPE_BATCH_READY
, &sh
->state
);
3525 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
3529 bio_inc_remaining(bi
);
3530 md_write_inc(conf
->mddev
, bi
);
3533 /* check if page is covered */
3534 sector_t sector
= sh
->dev
[dd_idx
].sector
;
3535 for (bi
=sh
->dev
[dd_idx
].towrite
;
3536 sector
< sh
->dev
[dd_idx
].sector
+ RAID5_STRIPE_SECTORS(conf
) &&
3537 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
3538 bi
= r5_next_bio(conf
, bi
, sh
->dev
[dd_idx
].sector
)) {
3539 if (bio_end_sector(bi
) >= sector
)
3540 sector
= bio_end_sector(bi
);
3542 if (sector
>= sh
->dev
[dd_idx
].sector
+ RAID5_STRIPE_SECTORS(conf
))
3543 if (!test_and_set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
))
3544 sh
->overwrite_disks
++;
3547 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3548 (*bip
)->bi_iter
.bi_sector
, sh
->sector
, dd_idx
,
3549 sh
->dev
[dd_idx
].sector
);
3551 if (conf
->mddev
->bitmap
&& firstwrite
) {
3552 /* Cannot hold spinlock over bitmap_startwrite,
3553 * but must ensure this isn't added to a batch until
3554 * we have added to the bitmap and set bm_seq.
3555 * So set STRIPE_BITMAP_PENDING to prevent
3557 * If multiple __add_stripe_bio() calls race here they
3558 * much all set STRIPE_BITMAP_PENDING. So only the first one
3559 * to complete "bitmap_startwrite" gets to set
3560 * STRIPE_BIT_DELAY. This is important as once a stripe
3561 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3564 set_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3565 spin_unlock_irq(&sh
->stripe_lock
);
3566 conf
->mddev
->bitmap_ops
->startwrite(conf
->mddev
, sh
->sector
,
3567 RAID5_STRIPE_SECTORS(conf
), false);
3568 spin_lock_irq(&sh
->stripe_lock
);
3569 clear_bit(STRIPE_BITMAP_PENDING
, &sh
->state
);
3570 if (!sh
->batch_head
) {
3571 sh
->bm_seq
= conf
->seq_flush
+1;
3572 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
3578 * Each stripe/dev can have one or more bios attached.
3579 * toread/towrite point to the first in a chain.
3580 * The bi_next chain must be in order.
3582 static bool add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
,
3583 int dd_idx
, int forwrite
, int previous
)
3585 spin_lock_irq(&sh
->stripe_lock
);
3587 if (stripe_bio_overlaps(sh
, bi
, dd_idx
, forwrite
)) {
3588 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
3589 spin_unlock_irq(&sh
->stripe_lock
);
3593 __add_stripe_bio(sh
, bi
, dd_idx
, forwrite
, previous
);
3594 spin_unlock_irq(&sh
->stripe_lock
);
3598 static void end_reshape(struct r5conf
*conf
);
3600 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
3601 struct stripe_head
*sh
)
3603 int sectors_per_chunk
=
3604 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
3606 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
3607 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
3609 raid5_compute_sector(conf
,
3610 stripe
* (disks
- conf
->max_degraded
)
3611 *sectors_per_chunk
+ chunk_offset
,
3617 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
3618 struct stripe_head_state
*s
, int disks
)
3621 BUG_ON(sh
->batch_head
);
3622 for (i
= disks
; i
--; ) {
3626 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
3627 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
3629 if (rdev
&& test_bit(In_sync
, &rdev
->flags
) &&
3630 !test_bit(Faulty
, &rdev
->flags
))
3631 atomic_inc(&rdev
->nr_pending
);
3635 if (!rdev_set_badblocks(
3638 RAID5_STRIPE_SECTORS(conf
), 0))
3639 md_error(conf
->mddev
, rdev
);
3640 rdev_dec_pending(rdev
, conf
->mddev
);
3643 spin_lock_irq(&sh
->stripe_lock
);
3644 /* fail all writes first */
3645 bi
= sh
->dev
[i
].towrite
;
3646 sh
->dev
[i
].towrite
= NULL
;
3647 sh
->overwrite_disks
= 0;
3648 spin_unlock_irq(&sh
->stripe_lock
);
3652 log_stripe_write_finished(sh
);
3654 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3655 wake_up_bit(&sh
->dev
[i
].flags
, R5_Overlap
);
3657 while (bi
&& bi
->bi_iter
.bi_sector
<
3658 sh
->dev
[i
].sector
+ RAID5_STRIPE_SECTORS(conf
)) {
3659 struct bio
*nextbi
= r5_next_bio(conf
, bi
, sh
->dev
[i
].sector
);
3661 md_write_end(conf
->mddev
);
3666 conf
->mddev
->bitmap_ops
->endwrite(conf
->mddev
,
3667 sh
->sector
, RAID5_STRIPE_SECTORS(conf
),
3670 /* and fail all 'written' */
3671 bi
= sh
->dev
[i
].written
;
3672 sh
->dev
[i
].written
= NULL
;
3673 if (test_and_clear_bit(R5_SkipCopy
, &sh
->dev
[i
].flags
)) {
3674 WARN_ON(test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3675 sh
->dev
[i
].page
= sh
->dev
[i
].orig_page
;
3678 if (bi
) bitmap_end
= 1;
3679 while (bi
&& bi
->bi_iter
.bi_sector
<
3680 sh
->dev
[i
].sector
+ RAID5_STRIPE_SECTORS(conf
)) {
3681 struct bio
*bi2
= r5_next_bio(conf
, bi
, sh
->dev
[i
].sector
);
3683 md_write_end(conf
->mddev
);
3688 /* fail any reads if this device is non-operational and
3689 * the data has not reached the cache yet.
3691 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
3692 s
->failed
> conf
->max_degraded
&&
3693 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
3694 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
3695 spin_lock_irq(&sh
->stripe_lock
);
3696 bi
= sh
->dev
[i
].toread
;
3697 sh
->dev
[i
].toread
= NULL
;
3698 spin_unlock_irq(&sh
->stripe_lock
);
3699 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
3700 wake_up_bit(&sh
->dev
[i
].flags
, R5_Overlap
);
3703 while (bi
&& bi
->bi_iter
.bi_sector
<
3704 sh
->dev
[i
].sector
+ RAID5_STRIPE_SECTORS(conf
)) {
3705 struct bio
*nextbi
=
3706 r5_next_bio(conf
, bi
, sh
->dev
[i
].sector
);
3713 conf
->mddev
->bitmap_ops
->endwrite(conf
->mddev
,
3714 sh
->sector
, RAID5_STRIPE_SECTORS(conf
),
3716 /* If we were in the middle of a write the parity block might
3717 * still be locked - so just clear all R5_LOCKED flags
3719 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3724 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3725 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3726 md_wakeup_thread(conf
->mddev
->thread
);
3730 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
3731 struct stripe_head_state
*s
)
3736 BUG_ON(sh
->batch_head
);
3737 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3738 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3739 wake_up_bit(&sh
->dev
[sh
->pd_idx
].flags
, R5_Overlap
);
3742 /* There is nothing more to do for sync/check/repair.
3743 * Don't even need to abort as that is handled elsewhere
3744 * if needed, and not always wanted e.g. if there is a known
3746 * For recover/replace we need to record a bad block on all
3747 * non-sync devices, or abort the recovery
3749 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
3750 /* During recovery devices cannot be removed, so
3751 * locking and refcounting of rdevs is not needed
3753 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3754 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
3757 && !test_bit(Faulty
, &rdev
->flags
)
3758 && !test_bit(In_sync
, &rdev
->flags
)
3759 && !rdev_set_badblocks(rdev
, sh
->sector
,
3760 RAID5_STRIPE_SECTORS(conf
), 0))
3762 rdev
= conf
->disks
[i
].replacement
;
3765 && !test_bit(Faulty
, &rdev
->flags
)
3766 && !test_bit(In_sync
, &rdev
->flags
)
3767 && !rdev_set_badblocks(rdev
, sh
->sector
,
3768 RAID5_STRIPE_SECTORS(conf
), 0))
3772 conf
->recovery_disabled
=
3773 conf
->mddev
->recovery_disabled
;
3775 md_done_sync(conf
->mddev
, RAID5_STRIPE_SECTORS(conf
), !abort
);
3778 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
3780 struct md_rdev
*rdev
;
3783 rdev
= sh
->raid_conf
->disks
[disk_idx
].replacement
;
3785 && !test_bit(Faulty
, &rdev
->flags
)
3786 && !test_bit(In_sync
, &rdev
->flags
)
3787 && (rdev
->recovery_offset
<= sh
->sector
3788 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
3793 static int need_this_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3794 int disk_idx
, int disks
)
3796 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3797 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
3798 &sh
->dev
[s
->failed_num
[1]] };
3800 bool force_rcw
= (sh
->raid_conf
->rmw_level
== PARITY_DISABLE_RMW
);
3803 if (test_bit(R5_LOCKED
, &dev
->flags
) ||
3804 test_bit(R5_UPTODATE
, &dev
->flags
))
3805 /* No point reading this as we already have it or have
3806 * decided to get it.
3811 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)))
3812 /* We need this block to directly satisfy a request */
3815 if (s
->syncing
|| s
->expanding
||
3816 (s
->replacing
&& want_replace(sh
, disk_idx
)))
3817 /* When syncing, or expanding we read everything.
3818 * When replacing, we need the replaced block.
3822 if ((s
->failed
>= 1 && fdev
[0]->toread
) ||
3823 (s
->failed
>= 2 && fdev
[1]->toread
))
3824 /* If we want to read from a failed device, then
3825 * we need to actually read every other device.
3829 /* Sometimes neither read-modify-write nor reconstruct-write
3830 * cycles can work. In those cases we read every block we
3831 * can. Then the parity-update is certain to have enough to
3833 * This can only be a problem when we need to write something,
3834 * and some device has failed. If either of those tests
3835 * fail we need look no further.
3837 if (!s
->failed
|| !s
->to_write
)
3840 if (test_bit(R5_Insync
, &dev
->flags
) &&
3841 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3842 /* Pre-reads at not permitted until after short delay
3843 * to gather multiple requests. However if this
3844 * device is no Insync, the block could only be computed
3845 * and there is no need to delay that.
3849 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3850 if (fdev
[i
]->towrite
&&
3851 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3852 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3853 /* If we have a partial write to a failed
3854 * device, then we will need to reconstruct
3855 * the content of that device, so all other
3856 * devices must be read.
3860 if (s
->failed
>= 2 &&
3861 (fdev
[i
]->towrite
||
3862 s
->failed_num
[i
] == sh
->pd_idx
||
3863 s
->failed_num
[i
] == sh
->qd_idx
) &&
3864 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
))
3865 /* In max degraded raid6, If the failed disk is P, Q,
3866 * or we want to read the failed disk, we need to do
3867 * reconstruct-write.
3872 /* If we are forced to do a reconstruct-write, because parity
3873 * cannot be trusted and we are currently recovering it, there
3874 * is extra need to be careful.
3875 * If one of the devices that we would need to read, because
3876 * it is not being overwritten (and maybe not written at all)
3877 * is missing/faulty, then we need to read everything we can.
3880 sh
->sector
< sh
->raid_conf
->mddev
->recovery_cp
)
3881 /* reconstruct-write isn't being forced */
3883 for (i
= 0; i
< s
->failed
&& i
< 2; i
++) {
3884 if (s
->failed_num
[i
] != sh
->pd_idx
&&
3885 s
->failed_num
[i
] != sh
->qd_idx
&&
3886 !test_bit(R5_UPTODATE
, &fdev
[i
]->flags
) &&
3887 !test_bit(R5_OVERWRITE
, &fdev
[i
]->flags
))
3894 /* fetch_block - checks the given member device to see if its data needs
3895 * to be read or computed to satisfy a request.
3897 * Returns 1 when no more member devices need to be checked, otherwise returns
3898 * 0 to tell the loop in handle_stripe_fill to continue
3900 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
3901 int disk_idx
, int disks
)
3903 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
3905 /* is the data in this block needed, and can we get it? */
3906 if (need_this_block(sh
, s
, disk_idx
, disks
)) {
3907 /* we would like to get this block, possibly by computing it,
3908 * otherwise read it if the backing disk is insync
3910 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
3911 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
3912 BUG_ON(sh
->batch_head
);
3915 * In the raid6 case if the only non-uptodate disk is P
3916 * then we already trusted P to compute the other failed
3917 * drives. It is safe to compute rather than re-read P.
3918 * In other cases we only compute blocks from failed
3919 * devices, otherwise check/repair might fail to detect
3920 * a real inconsistency.
3923 if ((s
->uptodate
== disks
- 1) &&
3924 ((sh
->qd_idx
>= 0 && sh
->pd_idx
== disk_idx
) ||
3925 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
3926 disk_idx
== s
->failed_num
[1])))) {
3927 /* have disk failed, and we're requested to fetch it;
3930 pr_debug("Computing stripe %llu block %d\n",
3931 (unsigned long long)sh
->sector
, disk_idx
);
3932 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3933 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3934 set_bit(R5_Wantcompute
, &dev
->flags
);
3935 sh
->ops
.target
= disk_idx
;
3936 sh
->ops
.target2
= -1; /* no 2nd target */
3938 /* Careful: from this point on 'uptodate' is in the eye
3939 * of raid_run_ops which services 'compute' operations
3940 * before writes. R5_Wantcompute flags a block that will
3941 * be R5_UPTODATE by the time it is needed for a
3942 * subsequent operation.
3946 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
3947 /* Computing 2-failure is *very* expensive; only
3948 * do it if failed >= 2
3951 for (other
= disks
; other
--; ) {
3952 if (other
== disk_idx
)
3954 if (!test_bit(R5_UPTODATE
,
3955 &sh
->dev
[other
].flags
))
3959 pr_debug("Computing stripe %llu blocks %d,%d\n",
3960 (unsigned long long)sh
->sector
,
3962 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3963 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3964 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
3965 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
3966 sh
->ops
.target
= disk_idx
;
3967 sh
->ops
.target2
= other
;
3971 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
3972 set_bit(R5_LOCKED
, &dev
->flags
);
3973 set_bit(R5_Wantread
, &dev
->flags
);
3975 pr_debug("Reading block %d (sync=%d)\n",
3976 disk_idx
, s
->syncing
);
3984 * handle_stripe_fill - read or compute data to satisfy pending requests.
3986 static void handle_stripe_fill(struct stripe_head
*sh
,
3987 struct stripe_head_state
*s
,
3992 /* look for blocks to read/compute, skip this if a compute
3993 * is already in flight, or if the stripe contents are in the
3994 * midst of changing due to a write
3996 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
3997 !sh
->reconstruct_state
) {
4000 * For degraded stripe with data in journal, do not handle
4001 * read requests yet, instead, flush the stripe to raid
4002 * disks first, this avoids handling complex rmw of write
4003 * back cache (prexor with orig_page, and then xor with
4004 * page) in the read path
4006 if (s
->to_read
&& s
->injournal
&& s
->failed
) {
4007 if (test_bit(STRIPE_R5C_CACHING
, &sh
->state
))
4008 r5c_make_stripe_write_out(sh
);
4012 for (i
= disks
; i
--; )
4013 if (fetch_block(sh
, s
, i
, disks
))
4017 set_bit(STRIPE_HANDLE
, &sh
->state
);
4020 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4021 unsigned long handle_flags
);
4022 /* handle_stripe_clean_event
4023 * any written block on an uptodate or failed drive can be returned.
4024 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4025 * never LOCKED, so we don't need to test 'failed' directly.
4027 static void handle_stripe_clean_event(struct r5conf
*conf
,
4028 struct stripe_head
*sh
, int disks
)
4032 int discard_pending
= 0;
4033 struct stripe_head
*head_sh
= sh
;
4034 bool do_endio
= false;
4036 for (i
= disks
; i
--; )
4037 if (sh
->dev
[i
].written
) {
4039 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
4040 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
4041 test_bit(R5_Discard
, &dev
->flags
) ||
4042 test_bit(R5_SkipCopy
, &dev
->flags
))) {
4043 /* We can return any write requests */
4044 struct bio
*wbi
, *wbi2
;
4045 pr_debug("Return write for disc %d\n", i
);
4046 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
4047 clear_bit(R5_UPTODATE
, &dev
->flags
);
4048 if (test_and_clear_bit(R5_SkipCopy
, &dev
->flags
)) {
4049 WARN_ON(test_bit(R5_UPTODATE
, &dev
->flags
));
4054 dev
->page
= dev
->orig_page
;
4056 dev
->written
= NULL
;
4057 while (wbi
&& wbi
->bi_iter
.bi_sector
<
4058 dev
->sector
+ RAID5_STRIPE_SECTORS(conf
)) {
4059 wbi2
= r5_next_bio(conf
, wbi
, dev
->sector
);
4060 md_write_end(conf
->mddev
);
4064 conf
->mddev
->bitmap_ops
->endwrite(conf
->mddev
,
4065 sh
->sector
, RAID5_STRIPE_SECTORS(conf
),
4066 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
4068 if (head_sh
->batch_head
) {
4069 sh
= list_first_entry(&sh
->batch_list
,
4072 if (sh
!= head_sh
) {
4079 } else if (test_bit(R5_Discard
, &dev
->flags
))
4080 discard_pending
= 1;
4083 log_stripe_write_finished(sh
);
4085 if (!discard_pending
&&
4086 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
4088 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
4089 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
4090 if (sh
->qd_idx
>= 0) {
4091 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
4092 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
4094 /* now that discard is done we can proceed with any sync */
4095 clear_bit(STRIPE_DISCARD
, &sh
->state
);
4097 * SCSI discard will change some bio fields and the stripe has
4098 * no updated data, so remove it from hash list and the stripe
4099 * will be reinitialized
4102 hash
= sh
->hash_lock_index
;
4103 spin_lock_irq(conf
->hash_locks
+ hash
);
4105 spin_unlock_irq(conf
->hash_locks
+ hash
);
4106 if (head_sh
->batch_head
) {
4107 sh
= list_first_entry(&sh
->batch_list
,
4108 struct stripe_head
, batch_list
);
4114 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
4115 set_bit(STRIPE_HANDLE
, &sh
->state
);
4119 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
4120 if (atomic_dec_and_test(&conf
->pending_full_writes
))
4121 md_wakeup_thread(conf
->mddev
->thread
);
4123 if (head_sh
->batch_head
&& do_endio
)
4124 break_stripe_batch_list(head_sh
, STRIPE_EXPAND_SYNC_FLAGS
);
4128 * For RMW in write back cache, we need extra page in prexor to store the
4129 * old data. This page is stored in dev->orig_page.
4131 * This function checks whether we have data for prexor. The exact logic
4133 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4135 static inline bool uptodate_for_rmw(struct r5dev
*dev
)
4137 return (test_bit(R5_UPTODATE
, &dev
->flags
)) &&
4138 (!test_bit(R5_InJournal
, &dev
->flags
) ||
4139 test_bit(R5_OrigPageUPTDODATE
, &dev
->flags
));
4142 static int handle_stripe_dirtying(struct r5conf
*conf
,
4143 struct stripe_head
*sh
,
4144 struct stripe_head_state
*s
,
4147 int rmw
= 0, rcw
= 0, i
;
4148 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
4150 /* Check whether resync is now happening or should start.
4151 * If yes, then the array is dirty (after unclean shutdown or
4152 * initial creation), so parity in some stripes might be inconsistent.
4153 * In this case, we need to always do reconstruct-write, to ensure
4154 * that in case of drive failure or read-error correction, we
4155 * generate correct data from the parity.
4157 if (conf
->rmw_level
== PARITY_DISABLE_RMW
||
4158 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
&&
4160 /* Calculate the real rcw later - for now make it
4161 * look like rcw is cheaper
4164 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4165 conf
->rmw_level
, (unsigned long long)recovery_cp
,
4166 (unsigned long long)sh
->sector
);
4167 } else for (i
= disks
; i
--; ) {
4168 /* would I have to read this buffer for read_modify_write */
4169 struct r5dev
*dev
= &sh
->dev
[i
];
4170 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
4171 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4172 test_bit(R5_InJournal
, &dev
->flags
)) &&
4173 !test_bit(R5_LOCKED
, &dev
->flags
) &&
4174 !(uptodate_for_rmw(dev
) ||
4175 test_bit(R5_Wantcompute
, &dev
->flags
))) {
4176 if (test_bit(R5_Insync
, &dev
->flags
))
4179 rmw
+= 2*disks
; /* cannot read it */
4181 /* Would I have to read this buffer for reconstruct_write */
4182 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
4183 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
4184 !test_bit(R5_LOCKED
, &dev
->flags
) &&
4185 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
4186 test_bit(R5_Wantcompute
, &dev
->flags
))) {
4187 if (test_bit(R5_Insync
, &dev
->flags
))
4194 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4195 (unsigned long long)sh
->sector
, sh
->state
, rmw
, rcw
);
4196 set_bit(STRIPE_HANDLE
, &sh
->state
);
4197 if ((rmw
< rcw
|| (rmw
== rcw
&& conf
->rmw_level
== PARITY_PREFER_RMW
)) && rmw
> 0) {
4198 /* prefer read-modify-write, but need to get some data */
4199 mddev_add_trace_msg(conf
->mddev
, "raid5 rmw %llu %d",
4202 for (i
= disks
; i
--; ) {
4203 struct r5dev
*dev
= &sh
->dev
[i
];
4204 if (test_bit(R5_InJournal
, &dev
->flags
) &&
4205 dev
->page
== dev
->orig_page
&&
4206 !test_bit(R5_LOCKED
, &sh
->dev
[sh
->pd_idx
].flags
)) {
4207 /* alloc page for prexor */
4208 struct page
*p
= alloc_page(GFP_NOIO
);
4216 * alloc_page() failed, try use
4217 * disk_info->extra_page
4219 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE
,
4220 &conf
->cache_state
)) {
4221 r5c_use_extra_page(sh
);
4225 /* extra_page in use, add to delayed_list */
4226 set_bit(STRIPE_DELAYED
, &sh
->state
);
4227 s
->waiting_extra_page
= 1;
4232 for (i
= disks
; i
--; ) {
4233 struct r5dev
*dev
= &sh
->dev
[i
];
4234 if (((dev
->towrite
&& !delay_towrite(conf
, dev
, s
)) ||
4235 i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
4236 test_bit(R5_InJournal
, &dev
->flags
)) &&
4237 !test_bit(R5_LOCKED
, &dev
->flags
) &&
4238 !(uptodate_for_rmw(dev
) ||
4239 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
4240 test_bit(R5_Insync
, &dev
->flags
)) {
4241 if (test_bit(STRIPE_PREREAD_ACTIVE
,
4243 pr_debug("Read_old block %d for r-m-w\n",
4245 set_bit(R5_LOCKED
, &dev
->flags
);
4246 set_bit(R5_Wantread
, &dev
->flags
);
4249 set_bit(STRIPE_DELAYED
, &sh
->state
);
4253 if ((rcw
< rmw
|| (rcw
== rmw
&& conf
->rmw_level
!= PARITY_PREFER_RMW
)) && rcw
> 0) {
4254 /* want reconstruct write, but need to get some data */
4257 for (i
= disks
; i
--; ) {
4258 struct r5dev
*dev
= &sh
->dev
[i
];
4259 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
4260 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
4261 !test_bit(R5_LOCKED
, &dev
->flags
) &&
4262 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
4263 test_bit(R5_Wantcompute
, &dev
->flags
))) {
4265 if (test_bit(R5_Insync
, &dev
->flags
) &&
4266 test_bit(STRIPE_PREREAD_ACTIVE
,
4268 pr_debug("Read_old block "
4269 "%d for Reconstruct\n", i
);
4270 set_bit(R5_LOCKED
, &dev
->flags
);
4271 set_bit(R5_Wantread
, &dev
->flags
);
4275 set_bit(STRIPE_DELAYED
, &sh
->state
);
4278 if (rcw
&& !mddev_is_dm(conf
->mddev
))
4279 blk_add_trace_msg(conf
->mddev
->gendisk
->queue
,
4280 "raid5 rcw %llu %d %d %d",
4281 (unsigned long long)sh
->sector
, rcw
, qread
,
4282 test_bit(STRIPE_DELAYED
, &sh
->state
));
4285 if (rcw
> disks
&& rmw
> disks
&&
4286 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4287 set_bit(STRIPE_DELAYED
, &sh
->state
);
4289 /* now if nothing is locked, and if we have enough data,
4290 * we can start a write request
4292 /* since handle_stripe can be called at any time we need to handle the
4293 * case where a compute block operation has been submitted and then a
4294 * subsequent call wants to start a write request. raid_run_ops only
4295 * handles the case where compute block and reconstruct are requested
4296 * simultaneously. If this is not the case then new writes need to be
4297 * held off until the compute completes.
4299 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
4300 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
4301 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
4302 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
4306 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
4307 struct stripe_head_state
*s
, int disks
)
4309 struct r5dev
*dev
= NULL
;
4311 BUG_ON(sh
->batch_head
);
4312 set_bit(STRIPE_HANDLE
, &sh
->state
);
4314 switch (sh
->check_state
) {
4315 case check_state_idle
:
4316 /* start a new check operation if there are no failures */
4317 if (s
->failed
== 0) {
4318 BUG_ON(s
->uptodate
!= disks
);
4319 sh
->check_state
= check_state_run
;
4320 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4321 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
4325 dev
= &sh
->dev
[s
->failed_num
[0]];
4327 case check_state_compute_result
:
4328 sh
->check_state
= check_state_idle
;
4330 dev
= &sh
->dev
[sh
->pd_idx
];
4332 /* check that a write has not made the stripe insync */
4333 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4336 /* either failed parity check, or recovery is happening */
4337 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
4338 BUG_ON(s
->uptodate
!= disks
);
4340 set_bit(R5_LOCKED
, &dev
->flags
);
4342 set_bit(R5_Wantwrite
, &dev
->flags
);
4344 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4345 set_bit(STRIPE_INSYNC
, &sh
->state
);
4347 case check_state_run
:
4348 break; /* we will be called again upon completion */
4349 case check_state_check_result
:
4350 sh
->check_state
= check_state_idle
;
4352 /* if a failure occurred during the check operation, leave
4353 * STRIPE_INSYNC not set and let the stripe be handled again
4358 /* handle a successful check operation, if parity is correct
4359 * we are done. Otherwise update the mismatch count and repair
4360 * parity if !MD_RECOVERY_CHECK
4362 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
4363 /* parity is correct (on disc,
4364 * not in buffer any more)
4366 set_bit(STRIPE_INSYNC
, &sh
->state
);
4368 atomic64_add(RAID5_STRIPE_SECTORS(conf
), &conf
->mddev
->resync_mismatches
);
4369 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4370 /* don't try to repair!! */
4371 set_bit(STRIPE_INSYNC
, &sh
->state
);
4372 pr_warn_ratelimited("%s: mismatch sector in range "
4373 "%llu-%llu\n", mdname(conf
->mddev
),
4374 (unsigned long long) sh
->sector
,
4375 (unsigned long long) sh
->sector
+
4376 RAID5_STRIPE_SECTORS(conf
));
4378 sh
->check_state
= check_state_compute_run
;
4379 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4380 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4381 set_bit(R5_Wantcompute
,
4382 &sh
->dev
[sh
->pd_idx
].flags
);
4383 sh
->ops
.target
= sh
->pd_idx
;
4384 sh
->ops
.target2
= -1;
4389 case check_state_compute_run
:
4392 pr_err("%s: unknown check_state: %d sector: %llu\n",
4393 __func__
, sh
->check_state
,
4394 (unsigned long long) sh
->sector
);
4399 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
4400 struct stripe_head_state
*s
,
4403 int pd_idx
= sh
->pd_idx
;
4404 int qd_idx
= sh
->qd_idx
;
4407 BUG_ON(sh
->batch_head
);
4408 set_bit(STRIPE_HANDLE
, &sh
->state
);
4410 BUG_ON(s
->failed
> 2);
4412 /* Want to check and possibly repair P and Q.
4413 * However there could be one 'failed' device, in which
4414 * case we can only check one of them, possibly using the
4415 * other to generate missing data
4418 switch (sh
->check_state
) {
4419 case check_state_idle
:
4420 /* start a new check operation if there are < 2 failures */
4421 if (s
->failed
== s
->q_failed
) {
4422 /* The only possible failed device holds Q, so it
4423 * makes sense to check P (If anything else were failed,
4424 * we would have used P to recreate it).
4426 sh
->check_state
= check_state_run
;
4428 if (!s
->q_failed
&& s
->failed
< 2) {
4429 /* Q is not failed, and we didn't use it to generate
4430 * anything, so it makes sense to check it
4432 if (sh
->check_state
== check_state_run
)
4433 sh
->check_state
= check_state_run_pq
;
4435 sh
->check_state
= check_state_run_q
;
4438 /* discard potentially stale zero_sum_result */
4439 sh
->ops
.zero_sum_result
= 0;
4441 if (sh
->check_state
== check_state_run
) {
4442 /* async_xor_zero_sum destroys the contents of P */
4443 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
4446 if (sh
->check_state
>= check_state_run
&&
4447 sh
->check_state
<= check_state_run_pq
) {
4448 /* async_syndrome_zero_sum preserves P and Q, so
4449 * no need to mark them !uptodate here
4451 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
4455 /* we have 2-disk failure */
4456 BUG_ON(s
->failed
!= 2);
4458 case check_state_compute_result
:
4459 sh
->check_state
= check_state_idle
;
4461 /* check that a write has not made the stripe insync */
4462 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
4465 /* now write out any block on a failed drive,
4466 * or P or Q if they were recomputed
4469 if (s
->failed
== 2) {
4470 dev
= &sh
->dev
[s
->failed_num
[1]];
4472 set_bit(R5_LOCKED
, &dev
->flags
);
4473 set_bit(R5_Wantwrite
, &dev
->flags
);
4475 if (s
->failed
>= 1) {
4476 dev
= &sh
->dev
[s
->failed_num
[0]];
4478 set_bit(R5_LOCKED
, &dev
->flags
);
4479 set_bit(R5_Wantwrite
, &dev
->flags
);
4481 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4482 dev
= &sh
->dev
[pd_idx
];
4484 set_bit(R5_LOCKED
, &dev
->flags
);
4485 set_bit(R5_Wantwrite
, &dev
->flags
);
4487 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4488 dev
= &sh
->dev
[qd_idx
];
4490 set_bit(R5_LOCKED
, &dev
->flags
);
4491 set_bit(R5_Wantwrite
, &dev
->flags
);
4493 if (WARN_ONCE(dev
&& !test_bit(R5_UPTODATE
, &dev
->flags
),
4494 "%s: disk%td not up to date\n",
4495 mdname(conf
->mddev
),
4496 dev
- (struct r5dev
*) &sh
->dev
)) {
4497 clear_bit(R5_LOCKED
, &dev
->flags
);
4498 clear_bit(R5_Wantwrite
, &dev
->flags
);
4501 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
4503 set_bit(STRIPE_INSYNC
, &sh
->state
);
4505 case check_state_run
:
4506 case check_state_run_q
:
4507 case check_state_run_pq
:
4508 break; /* we will be called again upon completion */
4509 case check_state_check_result
:
4510 sh
->check_state
= check_state_idle
;
4512 /* handle a successful check operation, if parity is correct
4513 * we are done. Otherwise update the mismatch count and repair
4514 * parity if !MD_RECOVERY_CHECK
4516 if (sh
->ops
.zero_sum_result
== 0) {
4517 /* both parities are correct */
4519 set_bit(STRIPE_INSYNC
, &sh
->state
);
4521 /* in contrast to the raid5 case we can validate
4522 * parity, but still have a failure to write
4525 sh
->check_state
= check_state_compute_result
;
4526 /* Returning at this point means that we may go
4527 * off and bring p and/or q uptodate again so
4528 * we make sure to check zero_sum_result again
4529 * to verify if p or q need writeback
4533 atomic64_add(RAID5_STRIPE_SECTORS(conf
), &conf
->mddev
->resync_mismatches
);
4534 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
)) {
4535 /* don't try to repair!! */
4536 set_bit(STRIPE_INSYNC
, &sh
->state
);
4537 pr_warn_ratelimited("%s: mismatch sector in range "
4538 "%llu-%llu\n", mdname(conf
->mddev
),
4539 (unsigned long long) sh
->sector
,
4540 (unsigned long long) sh
->sector
+
4541 RAID5_STRIPE_SECTORS(conf
));
4543 int *target
= &sh
->ops
.target
;
4545 sh
->ops
.target
= -1;
4546 sh
->ops
.target2
= -1;
4547 sh
->check_state
= check_state_compute_run
;
4548 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
4549 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
4550 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
4551 set_bit(R5_Wantcompute
,
4552 &sh
->dev
[pd_idx
].flags
);
4554 target
= &sh
->ops
.target2
;
4557 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
4558 set_bit(R5_Wantcompute
,
4559 &sh
->dev
[qd_idx
].flags
);
4566 case check_state_compute_run
:
4569 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4570 __func__
, sh
->check_state
,
4571 (unsigned long long) sh
->sector
);
4576 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
4580 /* We have read all the blocks in this stripe and now we need to
4581 * copy some of them into a target stripe for expand.
4583 struct dma_async_tx_descriptor
*tx
= NULL
;
4584 BUG_ON(sh
->batch_head
);
4585 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4586 for (i
= 0; i
< sh
->disks
; i
++)
4587 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
4589 struct stripe_head
*sh2
;
4590 struct async_submit_ctl submit
;
4592 sector_t bn
= raid5_compute_blocknr(sh
, i
, 1);
4593 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
4595 sh2
= raid5_get_active_stripe(conf
, NULL
, s
,
4596 R5_GAS_NOBLOCK
| R5_GAS_NOQUIESCE
);
4598 /* so far only the early blocks of this stripe
4599 * have been requested. When later blocks
4600 * get requested, we will try again
4603 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
4604 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
4605 /* must have already done this block */
4606 raid5_release_stripe(sh2
);
4610 /* place all the copies on one channel */
4611 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
4612 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
4613 sh
->dev
[i
].page
, sh2
->dev
[dd_idx
].offset
,
4614 sh
->dev
[i
].offset
, RAID5_STRIPE_SIZE(conf
),
4617 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
4618 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
4619 for (j
= 0; j
< conf
->raid_disks
; j
++)
4620 if (j
!= sh2
->pd_idx
&&
4622 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
4624 if (j
== conf
->raid_disks
) {
4625 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
4626 set_bit(STRIPE_HANDLE
, &sh2
->state
);
4628 raid5_release_stripe(sh2
);
4631 /* done submitting copies, wait for them to complete */
4632 async_tx_quiesce(&tx
);
4636 * handle_stripe - do things to a stripe.
4638 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4639 * state of various bits to see what needs to be done.
4641 * return some read requests which now have data
4642 * return some write requests which are safely on storage
4643 * schedule a read on some buffers
4644 * schedule a write of some buffers
4645 * return confirmation of parity correctness
4649 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
4651 struct r5conf
*conf
= sh
->raid_conf
;
4652 int disks
= sh
->disks
;
4655 int do_recovery
= 0;
4657 memset(s
, 0, sizeof(*s
));
4659 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
) && !sh
->batch_head
;
4660 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
) && !sh
->batch_head
;
4661 s
->failed_num
[0] = -1;
4662 s
->failed_num
[1] = -1;
4663 s
->log_failed
= r5l_log_disk_error(conf
);
4665 /* Now to look around and see what can be done */
4666 for (i
=disks
; i
--; ) {
4667 struct md_rdev
*rdev
;
4672 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4674 dev
->toread
, dev
->towrite
, dev
->written
);
4675 /* maybe we can reply to a read
4677 * new wantfill requests are only permitted while
4678 * ops_complete_biofill is guaranteed to be inactive
4680 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
4681 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
4682 set_bit(R5_Wantfill
, &dev
->flags
);
4684 /* now count some things */
4685 if (test_bit(R5_LOCKED
, &dev
->flags
))
4687 if (test_bit(R5_UPTODATE
, &dev
->flags
))
4689 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
4691 BUG_ON(s
->compute
> 2);
4694 if (test_bit(R5_Wantfill
, &dev
->flags
))
4696 else if (dev
->toread
)
4700 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
4705 /* Prefer to use the replacement for reads, but only
4706 * if it is recovered enough and has no bad blocks.
4708 rdev
= conf
->disks
[i
].replacement
;
4709 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
4710 rdev
->recovery_offset
>= sh
->sector
+ RAID5_STRIPE_SECTORS(conf
) &&
4711 !rdev_has_badblock(rdev
, sh
->sector
,
4712 RAID5_STRIPE_SECTORS(conf
)))
4713 set_bit(R5_ReadRepl
, &dev
->flags
);
4715 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4716 set_bit(R5_NeedReplace
, &dev
->flags
);
4718 clear_bit(R5_NeedReplace
, &dev
->flags
);
4719 rdev
= conf
->disks
[i
].rdev
;
4720 clear_bit(R5_ReadRepl
, &dev
->flags
);
4722 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
4725 is_bad
= rdev_has_badblock(rdev
, sh
->sector
,
4726 RAID5_STRIPE_SECTORS(conf
));
4727 if (s
->blocked_rdev
== NULL
) {
4729 set_bit(BlockedBadBlocks
, &rdev
->flags
);
4730 if (rdev_blocked(rdev
)) {
4731 s
->blocked_rdev
= rdev
;
4732 atomic_inc(&rdev
->nr_pending
);
4736 clear_bit(R5_Insync
, &dev
->flags
);
4740 /* also not in-sync */
4741 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
4742 test_bit(R5_UPTODATE
, &dev
->flags
)) {
4743 /* treat as in-sync, but with a read error
4744 * which we can now try to correct
4746 set_bit(R5_Insync
, &dev
->flags
);
4747 set_bit(R5_ReadError
, &dev
->flags
);
4749 } else if (test_bit(In_sync
, &rdev
->flags
))
4750 set_bit(R5_Insync
, &dev
->flags
);
4751 else if (sh
->sector
+ RAID5_STRIPE_SECTORS(conf
) <= rdev
->recovery_offset
)
4752 /* in sync if before recovery_offset */
4753 set_bit(R5_Insync
, &dev
->flags
);
4754 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
4755 test_bit(R5_Expanded
, &dev
->flags
))
4756 /* If we've reshaped into here, we assume it is Insync.
4757 * We will shortly update recovery_offset to make
4760 set_bit(R5_Insync
, &dev
->flags
);
4762 if (test_bit(R5_WriteError
, &dev
->flags
)) {
4763 /* This flag does not apply to '.replacement'
4764 * only to .rdev, so make sure to check that*/
4765 struct md_rdev
*rdev2
= conf
->disks
[i
].rdev
;
4768 clear_bit(R5_Insync
, &dev
->flags
);
4769 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4770 s
->handle_bad_blocks
= 1;
4771 atomic_inc(&rdev2
->nr_pending
);
4773 clear_bit(R5_WriteError
, &dev
->flags
);
4775 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
4776 /* This flag does not apply to '.replacement'
4777 * only to .rdev, so make sure to check that*/
4778 struct md_rdev
*rdev2
= conf
->disks
[i
].rdev
;
4780 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4781 s
->handle_bad_blocks
= 1;
4782 atomic_inc(&rdev2
->nr_pending
);
4784 clear_bit(R5_MadeGood
, &dev
->flags
);
4786 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
4787 struct md_rdev
*rdev2
= conf
->disks
[i
].replacement
;
4789 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
4790 s
->handle_bad_blocks
= 1;
4791 atomic_inc(&rdev2
->nr_pending
);
4793 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
4795 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4796 /* The ReadError flag will just be confusing now */
4797 clear_bit(R5_ReadError
, &dev
->flags
);
4798 clear_bit(R5_ReWrite
, &dev
->flags
);
4800 if (test_bit(R5_ReadError
, &dev
->flags
))
4801 clear_bit(R5_Insync
, &dev
->flags
);
4802 if (!test_bit(R5_Insync
, &dev
->flags
)) {
4804 s
->failed_num
[s
->failed
] = i
;
4806 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4809 rdev
= conf
->disks
[i
].replacement
;
4810 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
4815 if (test_bit(R5_InJournal
, &dev
->flags
))
4817 if (test_bit(R5_InJournal
, &dev
->flags
) && dev
->written
)
4820 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4821 /* If there is a failed device being replaced,
4822 * we must be recovering.
4823 * else if we are after recovery_cp, we must be syncing
4824 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4825 * else we can only be replacing
4826 * sync and recovery both need to read all devices, and so
4827 * use the same flag.
4830 sh
->sector
>= conf
->mddev
->recovery_cp
||
4831 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
4839 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4840 * a head which can now be handled.
4842 static int clear_batch_ready(struct stripe_head
*sh
)
4844 struct stripe_head
*tmp
;
4845 if (!test_and_clear_bit(STRIPE_BATCH_READY
, &sh
->state
))
4846 return (sh
->batch_head
&& sh
->batch_head
!= sh
);
4847 spin_lock(&sh
->stripe_lock
);
4848 if (!sh
->batch_head
) {
4849 spin_unlock(&sh
->stripe_lock
);
4854 * this stripe could be added to a batch list before we check
4855 * BATCH_READY, skips it
4857 if (sh
->batch_head
!= sh
) {
4858 spin_unlock(&sh
->stripe_lock
);
4861 spin_lock(&sh
->batch_lock
);
4862 list_for_each_entry(tmp
, &sh
->batch_list
, batch_list
)
4863 clear_bit(STRIPE_BATCH_READY
, &tmp
->state
);
4864 spin_unlock(&sh
->batch_lock
);
4865 spin_unlock(&sh
->stripe_lock
);
4868 * BATCH_READY is cleared, no new stripes can be added.
4869 * batch_list can be accessed without lock
4874 static void break_stripe_batch_list(struct stripe_head
*head_sh
,
4875 unsigned long handle_flags
)
4877 struct stripe_head
*sh
, *next
;
4880 list_for_each_entry_safe(sh
, next
, &head_sh
->batch_list
, batch_list
) {
4882 list_del_init(&sh
->batch_list
);
4884 WARN_ONCE(sh
->state
& ((1 << STRIPE_ACTIVE
) |
4885 (1 << STRIPE_SYNCING
) |
4886 (1 << STRIPE_REPLACED
) |
4887 (1 << STRIPE_DELAYED
) |
4888 (1 << STRIPE_BIT_DELAY
) |
4889 (1 << STRIPE_FULL_WRITE
) |
4890 (1 << STRIPE_BIOFILL_RUN
) |
4891 (1 << STRIPE_COMPUTE_RUN
) |
4892 (1 << STRIPE_DISCARD
) |
4893 (1 << STRIPE_BATCH_READY
) |
4894 (1 << STRIPE_BATCH_ERR
) |
4895 (1 << STRIPE_BITMAP_PENDING
)),
4896 "stripe state: %lx\n", sh
->state
);
4897 WARN_ONCE(head_sh
->state
& ((1 << STRIPE_DISCARD
) |
4898 (1 << STRIPE_REPLACED
)),
4899 "head stripe state: %lx\n", head_sh
->state
);
4901 set_mask_bits(&sh
->state
, ~(STRIPE_EXPAND_SYNC_FLAGS
|
4902 (1 << STRIPE_PREREAD_ACTIVE
) |
4903 (1 << STRIPE_DEGRADED
) |
4904 (1 << STRIPE_ON_UNPLUG_LIST
)),
4905 head_sh
->state
& (1 << STRIPE_INSYNC
));
4907 sh
->check_state
= head_sh
->check_state
;
4908 sh
->reconstruct_state
= head_sh
->reconstruct_state
;
4909 spin_lock_irq(&sh
->stripe_lock
);
4910 sh
->batch_head
= NULL
;
4911 spin_unlock_irq(&sh
->stripe_lock
);
4912 for (i
= 0; i
< sh
->disks
; i
++) {
4913 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
4914 wake_up_bit(&sh
->dev
[i
].flags
, R5_Overlap
);
4915 sh
->dev
[i
].flags
= head_sh
->dev
[i
].flags
&
4916 (~((1 << R5_WriteError
) | (1 << R5_Overlap
)));
4918 if (handle_flags
== 0 ||
4919 sh
->state
& handle_flags
)
4920 set_bit(STRIPE_HANDLE
, &sh
->state
);
4921 raid5_release_stripe(sh
);
4923 spin_lock_irq(&head_sh
->stripe_lock
);
4924 head_sh
->batch_head
= NULL
;
4925 spin_unlock_irq(&head_sh
->stripe_lock
);
4926 for (i
= 0; i
< head_sh
->disks
; i
++)
4927 if (test_and_clear_bit(R5_Overlap
, &head_sh
->dev
[i
].flags
))
4928 wake_up_bit(&head_sh
->dev
[i
].flags
, R5_Overlap
);
4929 if (head_sh
->state
& handle_flags
)
4930 set_bit(STRIPE_HANDLE
, &head_sh
->state
);
4933 static void handle_stripe(struct stripe_head
*sh
)
4935 struct stripe_head_state s
;
4936 struct r5conf
*conf
= sh
->raid_conf
;
4939 int disks
= sh
->disks
;
4940 struct r5dev
*pdev
, *qdev
;
4942 clear_bit(STRIPE_HANDLE
, &sh
->state
);
4945 * handle_stripe should not continue handle the batched stripe, only
4946 * the head of batch list or lone stripe can continue. Otherwise we
4947 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4948 * is set for the batched stripe.
4950 if (clear_batch_ready(sh
))
4953 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
4954 /* already being handled, ensure it gets handled
4955 * again when current action finishes */
4956 set_bit(STRIPE_HANDLE
, &sh
->state
);
4960 if (test_and_clear_bit(STRIPE_BATCH_ERR
, &sh
->state
))
4961 break_stripe_batch_list(sh
, 0);
4963 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
) && !sh
->batch_head
) {
4964 spin_lock(&sh
->stripe_lock
);
4966 * Cannot process 'sync' concurrently with 'discard'.
4967 * Flush data in r5cache before 'sync'.
4969 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE
, &sh
->state
) &&
4970 !test_bit(STRIPE_R5C_FULL_STRIPE
, &sh
->state
) &&
4971 !test_bit(STRIPE_DISCARD
, &sh
->state
) &&
4972 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
4973 set_bit(STRIPE_SYNCING
, &sh
->state
);
4974 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4975 clear_bit(STRIPE_REPLACED
, &sh
->state
);
4977 spin_unlock(&sh
->stripe_lock
);
4979 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4981 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4982 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4983 (unsigned long long)sh
->sector
, sh
->state
,
4984 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
4985 sh
->check_state
, sh
->reconstruct_state
);
4987 analyse_stripe(sh
, &s
);
4989 if (test_bit(STRIPE_LOG_TRAPPED
, &sh
->state
))
4992 if (s
.handle_bad_blocks
||
4993 test_bit(MD_SB_CHANGE_PENDING
, &conf
->mddev
->sb_flags
)) {
4994 set_bit(STRIPE_HANDLE
, &sh
->state
);
4998 if (unlikely(s
.blocked_rdev
)) {
4999 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
5000 s
.replacing
|| s
.to_write
|| s
.written
) {
5001 set_bit(STRIPE_HANDLE
, &sh
->state
);
5004 /* There is nothing for the blocked_rdev to block */
5005 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
5006 s
.blocked_rdev
= NULL
;
5009 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
5010 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
5011 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
5014 pr_debug("locked=%d uptodate=%d to_read=%d"
5015 " to_write=%d failed=%d failed_num=%d,%d\n",
5016 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
5017 s
.failed_num
[0], s
.failed_num
[1]);
5019 * check if the array has lost more than max_degraded devices and,
5020 * if so, some requests might need to be failed.
5022 * When journal device failed (log_failed), we will only process
5023 * the stripe if there is data need write to raid disks
5025 if (s
.failed
> conf
->max_degraded
||
5026 (s
.log_failed
&& s
.injournal
== 0)) {
5027 sh
->check_state
= 0;
5028 sh
->reconstruct_state
= 0;
5029 break_stripe_batch_list(sh
, 0);
5030 if (s
.to_read
+s
.to_write
+s
.written
)
5031 handle_failed_stripe(conf
, sh
, &s
, disks
);
5032 if (s
.syncing
+ s
.replacing
)
5033 handle_failed_sync(conf
, sh
, &s
);
5036 /* Now we check to see if any write operations have recently
5040 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
5042 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
5043 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
5044 sh
->reconstruct_state
= reconstruct_state_idle
;
5046 /* All the 'written' buffers and the parity block are ready to
5047 * be written back to disk
5049 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
5050 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
5051 BUG_ON(sh
->qd_idx
>= 0 &&
5052 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
5053 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
5054 for (i
= disks
; i
--; ) {
5055 struct r5dev
*dev
= &sh
->dev
[i
];
5056 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
5057 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
5058 dev
->written
|| test_bit(R5_InJournal
,
5060 pr_debug("Writing block %d\n", i
);
5061 set_bit(R5_Wantwrite
, &dev
->flags
);
5066 if (!test_bit(R5_Insync
, &dev
->flags
) ||
5067 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
5069 set_bit(STRIPE_INSYNC
, &sh
->state
);
5072 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5073 s
.dec_preread_active
= 1;
5077 * might be able to return some write requests if the parity blocks
5078 * are safe, or on a failed drive
5080 pdev
= &sh
->dev
[sh
->pd_idx
];
5081 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
5082 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
5083 qdev
= &sh
->dev
[sh
->qd_idx
];
5084 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
5085 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
5089 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
5090 && !test_bit(R5_LOCKED
, &pdev
->flags
)
5091 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
5092 test_bit(R5_Discard
, &pdev
->flags
))))) &&
5093 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
5094 && !test_bit(R5_LOCKED
, &qdev
->flags
)
5095 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
5096 test_bit(R5_Discard
, &qdev
->flags
))))))
5097 handle_stripe_clean_event(conf
, sh
, disks
);
5100 r5c_handle_cached_data_endio(conf
, sh
, disks
);
5101 log_stripe_write_finished(sh
);
5103 /* Now we might consider reading some blocks, either to check/generate
5104 * parity, or to satisfy requests
5105 * or to load a block that is being partially written.
5107 if (s
.to_read
|| s
.non_overwrite
5108 || (s
.to_write
&& s
.failed
)
5109 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
5112 handle_stripe_fill(sh
, &s
, disks
);
5115 * When the stripe finishes full journal write cycle (write to journal
5116 * and raid disk), this is the clean up procedure so it is ready for
5119 r5c_finish_stripe_write_out(conf
, sh
, &s
);
5122 * Now to consider new write requests, cache write back and what else,
5123 * if anything should be read. We do not handle new writes when:
5124 * 1/ A 'write' operation (copy+xor) is already in flight.
5125 * 2/ A 'check' operation is in flight, as it may clobber the parity
5127 * 3/ A r5c cache log write is in flight.
5130 if (!sh
->reconstruct_state
&& !sh
->check_state
&& !sh
->log_io
) {
5131 if (!r5c_is_writeback(conf
->log
)) {
5133 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
5134 } else { /* write back cache */
5137 /* First, try handle writes in caching phase */
5139 ret
= r5c_try_caching_write(conf
, sh
, &s
,
5142 * If caching phase failed: ret == -EAGAIN
5144 * stripe under reclaim: !caching && injournal
5146 * fall back to handle_stripe_dirtying()
5148 if (ret
== -EAGAIN
||
5149 /* stripe under reclaim: !caching && injournal */
5150 (!test_bit(STRIPE_R5C_CACHING
, &sh
->state
) &&
5152 ret
= handle_stripe_dirtying(conf
, sh
, &s
,
5160 /* maybe we need to check and possibly fix the parity for this stripe
5161 * Any reads will already have been scheduled, so we just see if enough
5162 * data is available. The parity check is held off while parity
5163 * dependent operations are in flight.
5165 if (sh
->check_state
||
5166 (s
.syncing
&& s
.locked
== 0 &&
5167 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
5168 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
5169 if (conf
->level
== 6)
5170 handle_parity_checks6(conf
, sh
, &s
, disks
);
5172 handle_parity_checks5(conf
, sh
, &s
, disks
);
5175 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
5176 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
5177 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
5178 /* Write out to replacement devices where possible */
5179 for (i
= 0; i
< conf
->raid_disks
; i
++)
5180 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
5181 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
5182 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
5183 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
5187 set_bit(STRIPE_INSYNC
, &sh
->state
);
5188 set_bit(STRIPE_REPLACED
, &sh
->state
);
5190 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
5191 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
5192 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
5193 md_done_sync(conf
->mddev
, RAID5_STRIPE_SECTORS(conf
), 1);
5194 clear_bit(STRIPE_SYNCING
, &sh
->state
);
5195 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
5196 wake_up_bit(&sh
->dev
[sh
->pd_idx
].flags
, R5_Overlap
);
5199 /* If the failed drives are just a ReadError, then we might need
5200 * to progress the repair/check process
5202 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
5203 for (i
= 0; i
< s
.failed
; i
++) {
5204 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
5205 if (test_bit(R5_ReadError
, &dev
->flags
)
5206 && !test_bit(R5_LOCKED
, &dev
->flags
)
5207 && test_bit(R5_UPTODATE
, &dev
->flags
)
5209 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
5210 set_bit(R5_Wantwrite
, &dev
->flags
);
5211 set_bit(R5_ReWrite
, &dev
->flags
);
5213 /* let's read it back */
5214 set_bit(R5_Wantread
, &dev
->flags
);
5215 set_bit(R5_LOCKED
, &dev
->flags
);
5220 /* Finish reconstruct operations initiated by the expansion process */
5221 if (sh
->reconstruct_state
== reconstruct_state_result
) {
5222 struct stripe_head
*sh_src
5223 = raid5_get_active_stripe(conf
, NULL
, sh
->sector
,
5224 R5_GAS_PREVIOUS
| R5_GAS_NOBLOCK
|
5226 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
5227 /* sh cannot be written until sh_src has been read.
5228 * so arrange for sh to be delayed a little
5230 set_bit(STRIPE_DELAYED
, &sh
->state
);
5231 set_bit(STRIPE_HANDLE
, &sh
->state
);
5232 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
5234 atomic_inc(&conf
->preread_active_stripes
);
5235 raid5_release_stripe(sh_src
);
5239 raid5_release_stripe(sh_src
);
5241 sh
->reconstruct_state
= reconstruct_state_idle
;
5242 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
5243 for (i
= conf
->raid_disks
; i
--; ) {
5244 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
5245 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
5250 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
5251 !sh
->reconstruct_state
) {
5252 /* Need to write out all blocks after computing parity */
5253 sh
->disks
= conf
->raid_disks
;
5254 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
5255 schedule_reconstruction(sh
, &s
, 1, 1);
5256 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
5257 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
5258 atomic_dec(&conf
->reshape_stripes
);
5259 wake_up(&conf
->wait_for_reshape
);
5260 md_done_sync(conf
->mddev
, RAID5_STRIPE_SECTORS(conf
), 1);
5263 if (s
.expanding
&& s
.locked
== 0 &&
5264 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
5265 handle_stripe_expansion(conf
, sh
);
5268 /* wait for this device to become unblocked */
5269 if (unlikely(s
.blocked_rdev
)) {
5270 if (conf
->mddev
->external
)
5271 md_wait_for_blocked_rdev(s
.blocked_rdev
,
5274 /* Internal metadata will immediately
5275 * be written by raid5d, so we don't
5276 * need to wait here.
5278 rdev_dec_pending(s
.blocked_rdev
,
5282 if (s
.handle_bad_blocks
)
5283 for (i
= disks
; i
--; ) {
5284 struct md_rdev
*rdev
;
5285 struct r5dev
*dev
= &sh
->dev
[i
];
5286 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
5287 /* We own a safe reference to the rdev */
5288 rdev
= conf
->disks
[i
].rdev
;
5289 if (!rdev_set_badblocks(rdev
, sh
->sector
,
5290 RAID5_STRIPE_SECTORS(conf
), 0))
5291 md_error(conf
->mddev
, rdev
);
5292 rdev_dec_pending(rdev
, conf
->mddev
);
5294 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
5295 rdev
= conf
->disks
[i
].rdev
;
5296 rdev_clear_badblocks(rdev
, sh
->sector
,
5297 RAID5_STRIPE_SECTORS(conf
), 0);
5298 rdev_dec_pending(rdev
, conf
->mddev
);
5300 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
5301 rdev
= conf
->disks
[i
].replacement
;
5303 /* rdev have been moved down */
5304 rdev
= conf
->disks
[i
].rdev
;
5305 rdev_clear_badblocks(rdev
, sh
->sector
,
5306 RAID5_STRIPE_SECTORS(conf
), 0);
5307 rdev_dec_pending(rdev
, conf
->mddev
);
5312 raid_run_ops(sh
, s
.ops_request
);
5316 if (s
.dec_preread_active
) {
5317 /* We delay this until after ops_run_io so that if make_request
5318 * is waiting on a flush, it won't continue until the writes
5319 * have actually been submitted.
5321 atomic_dec(&conf
->preread_active_stripes
);
5322 if (atomic_read(&conf
->preread_active_stripes
) <
5324 md_wakeup_thread(conf
->mddev
->thread
);
5327 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
5330 static void raid5_activate_delayed(struct r5conf
*conf
)
5331 __must_hold(&conf
->device_lock
)
5333 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
5334 while (!list_empty(&conf
->delayed_list
)) {
5335 struct list_head
*l
= conf
->delayed_list
.next
;
5336 struct stripe_head
*sh
;
5337 sh
= list_entry(l
, struct stripe_head
, lru
);
5339 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5340 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5341 atomic_inc(&conf
->preread_active_stripes
);
5342 list_add_tail(&sh
->lru
, &conf
->hold_list
);
5343 raid5_wakeup_stripe_thread(sh
);
5348 static void activate_bit_delay(struct r5conf
*conf
,
5349 struct list_head
*temp_inactive_list
)
5350 __must_hold(&conf
->device_lock
)
5352 struct list_head head
;
5353 list_add(&head
, &conf
->bitmap_list
);
5354 list_del_init(&conf
->bitmap_list
);
5355 while (!list_empty(&head
)) {
5356 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
5358 list_del_init(&sh
->lru
);
5359 atomic_inc(&sh
->count
);
5360 hash
= sh
->hash_lock_index
;
5361 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
5365 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
5367 struct r5conf
*conf
= mddev
->private;
5368 sector_t sector
= bio
->bi_iter
.bi_sector
;
5369 unsigned int chunk_sectors
;
5370 unsigned int bio_sectors
= bio_sectors(bio
);
5372 chunk_sectors
= min(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
5373 return chunk_sectors
>=
5374 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
5378 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5379 * later sampled by raid5d.
5381 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
5383 unsigned long flags
;
5385 spin_lock_irqsave(&conf
->device_lock
, flags
);
5387 bi
->bi_next
= conf
->retry_read_aligned_list
;
5388 conf
->retry_read_aligned_list
= bi
;
5390 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5391 md_wakeup_thread(conf
->mddev
->thread
);
5394 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
,
5395 unsigned int *offset
)
5399 bi
= conf
->retry_read_aligned
;
5401 *offset
= conf
->retry_read_offset
;
5402 conf
->retry_read_aligned
= NULL
;
5405 bi
= conf
->retry_read_aligned_list
;
5407 conf
->retry_read_aligned_list
= bi
->bi_next
;
5416 * The "raid5_align_endio" should check if the read succeeded and if it
5417 * did, call bio_endio on the original bio (having bio_put the new bio
5419 * If the read failed..
5421 static void raid5_align_endio(struct bio
*bi
)
5423 struct bio
*raid_bi
= bi
->bi_private
;
5424 struct md_rdev
*rdev
= (void *)raid_bi
->bi_next
;
5425 struct mddev
*mddev
= rdev
->mddev
;
5426 struct r5conf
*conf
= mddev
->private;
5427 blk_status_t error
= bi
->bi_status
;
5430 raid_bi
->bi_next
= NULL
;
5431 rdev_dec_pending(rdev
, conf
->mddev
);
5435 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5436 wake_up(&conf
->wait_for_quiescent
);
5440 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5442 add_bio_to_retry(raid_bi
, conf
);
5445 static int raid5_read_one_chunk(struct mddev
*mddev
, struct bio
*raid_bio
)
5447 struct r5conf
*conf
= mddev
->private;
5448 struct bio
*align_bio
;
5449 struct md_rdev
*rdev
;
5450 sector_t sector
, end_sector
;
5454 if (!in_chunk_boundary(mddev
, raid_bio
)) {
5455 pr_debug("%s: non aligned\n", __func__
);
5459 sector
= raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
, 0,
5461 end_sector
= sector
+ bio_sectors(raid_bio
);
5463 if (r5c_big_stripe_cached(conf
, sector
))
5466 rdev
= conf
->disks
[dd_idx
].replacement
;
5467 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
5468 rdev
->recovery_offset
< end_sector
) {
5469 rdev
= conf
->disks
[dd_idx
].rdev
;
5472 if (test_bit(Faulty
, &rdev
->flags
) ||
5473 !(test_bit(In_sync
, &rdev
->flags
) ||
5474 rdev
->recovery_offset
>= end_sector
))
5478 atomic_inc(&rdev
->nr_pending
);
5480 if (rdev_has_badblock(rdev
, sector
, bio_sectors(raid_bio
))) {
5481 rdev_dec_pending(rdev
, mddev
);
5485 md_account_bio(mddev
, &raid_bio
);
5486 raid_bio
->bi_next
= (void *)rdev
;
5488 align_bio
= bio_alloc_clone(rdev
->bdev
, raid_bio
, GFP_NOIO
,
5490 align_bio
->bi_end_io
= raid5_align_endio
;
5491 align_bio
->bi_private
= raid_bio
;
5492 align_bio
->bi_iter
.bi_sector
= sector
;
5494 /* No reshape active, so we can trust rdev->data_offset */
5495 align_bio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
5498 if (conf
->quiesce
== 0) {
5499 atomic_inc(&conf
->active_aligned_reads
);
5502 /* need a memory barrier to detect the race with raid5_quiesce() */
5503 if (!did_inc
|| smp_load_acquire(&conf
->quiesce
) != 0) {
5504 /* quiesce is in progress, so we need to undo io activation and wait
5507 if (did_inc
&& atomic_dec_and_test(&conf
->active_aligned_reads
))
5508 wake_up(&conf
->wait_for_quiescent
);
5509 spin_lock_irq(&conf
->device_lock
);
5510 wait_event_lock_irq(conf
->wait_for_quiescent
, conf
->quiesce
== 0,
5512 atomic_inc(&conf
->active_aligned_reads
);
5513 spin_unlock_irq(&conf
->device_lock
);
5516 mddev_trace_remap(mddev
, align_bio
, raid_bio
->bi_iter
.bi_sector
);
5517 submit_bio_noacct(align_bio
);
5521 static struct bio
*chunk_aligned_read(struct mddev
*mddev
, struct bio
*raid_bio
)
5524 sector_t sector
= raid_bio
->bi_iter
.bi_sector
;
5525 unsigned chunk_sects
= mddev
->chunk_sectors
;
5526 unsigned sectors
= chunk_sects
- (sector
& (chunk_sects
-1));
5528 if (sectors
< bio_sectors(raid_bio
)) {
5529 struct r5conf
*conf
= mddev
->private;
5530 split
= bio_split(raid_bio
, sectors
, GFP_NOIO
, &conf
->bio_split
);
5531 bio_chain(split
, raid_bio
);
5532 submit_bio_noacct(raid_bio
);
5536 if (!raid5_read_one_chunk(mddev
, raid_bio
))
5542 /* __get_priority_stripe - get the next stripe to process
5544 * Full stripe writes are allowed to pass preread active stripes up until
5545 * the bypass_threshold is exceeded. In general the bypass_count
5546 * increments when the handle_list is handled before the hold_list; however, it
5547 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5548 * stripe with in flight i/o. The bypass_count will be reset when the
5549 * head of the hold_list has changed, i.e. the head was promoted to the
5552 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
5553 __must_hold(&conf
->device_lock
)
5555 struct stripe_head
*sh
, *tmp
;
5556 struct list_head
*handle_list
= NULL
;
5557 struct r5worker_group
*wg
;
5558 bool second_try
= !r5c_is_writeback(conf
->log
) &&
5559 !r5l_log_disk_error(conf
);
5560 bool try_loprio
= test_bit(R5C_LOG_TIGHT
, &conf
->cache_state
) ||
5561 r5l_log_disk_error(conf
);
5566 if (conf
->worker_cnt_per_group
== 0) {
5567 handle_list
= try_loprio
? &conf
->loprio_list
:
5569 } else if (group
!= ANY_GROUP
) {
5570 handle_list
= try_loprio
? &conf
->worker_groups
[group
].loprio_list
:
5571 &conf
->worker_groups
[group
].handle_list
;
5572 wg
= &conf
->worker_groups
[group
];
5575 for (i
= 0; i
< conf
->group_cnt
; i
++) {
5576 handle_list
= try_loprio
? &conf
->worker_groups
[i
].loprio_list
:
5577 &conf
->worker_groups
[i
].handle_list
;
5578 wg
= &conf
->worker_groups
[i
];
5579 if (!list_empty(handle_list
))
5584 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5586 list_empty(handle_list
) ? "empty" : "busy",
5587 list_empty(&conf
->hold_list
) ? "empty" : "busy",
5588 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
5590 if (!list_empty(handle_list
)) {
5591 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
5593 if (list_empty(&conf
->hold_list
))
5594 conf
->bypass_count
= 0;
5595 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
5596 if (conf
->hold_list
.next
== conf
->last_hold
)
5597 conf
->bypass_count
++;
5599 conf
->last_hold
= conf
->hold_list
.next
;
5600 conf
->bypass_count
-= conf
->bypass_threshold
;
5601 if (conf
->bypass_count
< 0)
5602 conf
->bypass_count
= 0;
5605 } else if (!list_empty(&conf
->hold_list
) &&
5606 ((conf
->bypass_threshold
&&
5607 conf
->bypass_count
> conf
->bypass_threshold
) ||
5608 atomic_read(&conf
->pending_full_writes
) == 0)) {
5610 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
5611 if (conf
->worker_cnt_per_group
== 0 ||
5612 group
== ANY_GROUP
||
5613 !cpu_online(tmp
->cpu
) ||
5614 cpu_to_group(tmp
->cpu
) == group
) {
5621 conf
->bypass_count
-= conf
->bypass_threshold
;
5622 if (conf
->bypass_count
< 0)
5623 conf
->bypass_count
= 0;
5632 try_loprio
= !try_loprio
;
5640 list_del_init(&sh
->lru
);
5641 BUG_ON(atomic_inc_return(&sh
->count
) != 1);
5645 struct raid5_plug_cb
{
5646 struct blk_plug_cb cb
;
5647 struct list_head list
;
5648 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
5651 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
5653 struct raid5_plug_cb
*cb
= container_of(
5654 blk_cb
, struct raid5_plug_cb
, cb
);
5655 struct stripe_head
*sh
;
5656 struct mddev
*mddev
= cb
->cb
.data
;
5657 struct r5conf
*conf
= mddev
->private;
5661 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
5662 spin_lock_irq(&conf
->device_lock
);
5663 while (!list_empty(&cb
->list
)) {
5664 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
5665 list_del_init(&sh
->lru
);
5667 * avoid race release_stripe_plug() sees
5668 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5669 * is still in our list
5671 smp_mb__before_atomic();
5672 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
5674 * STRIPE_ON_RELEASE_LIST could be set here. In that
5675 * case, the count is always > 1 here
5677 hash
= sh
->hash_lock_index
;
5678 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
5681 spin_unlock_irq(&conf
->device_lock
);
5683 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
5684 NR_STRIPE_HASH_LOCKS
);
5685 if (!mddev_is_dm(mddev
))
5686 trace_block_unplug(mddev
->gendisk
->queue
, cnt
, !from_schedule
);
5690 static void release_stripe_plug(struct mddev
*mddev
,
5691 struct stripe_head
*sh
)
5693 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
5694 raid5_unplug
, mddev
,
5695 sizeof(struct raid5_plug_cb
));
5696 struct raid5_plug_cb
*cb
;
5699 raid5_release_stripe(sh
);
5703 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
5705 if (cb
->list
.next
== NULL
) {
5707 INIT_LIST_HEAD(&cb
->list
);
5708 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5709 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
5712 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
5713 list_add_tail(&sh
->lru
, &cb
->list
);
5715 raid5_release_stripe(sh
);
5718 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
5720 struct r5conf
*conf
= mddev
->private;
5721 sector_t logical_sector
, last_sector
;
5722 struct stripe_head
*sh
;
5725 /* We need to handle this when io_uring supports discard/trim */
5726 if (WARN_ON_ONCE(bi
->bi_opf
& REQ_NOWAIT
))
5729 if (mddev
->reshape_position
!= MaxSector
)
5730 /* Skip discard while reshape is happening */
5733 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)RAID5_STRIPE_SECTORS(conf
)-1);
5734 last_sector
= bio_end_sector(bi
);
5738 stripe_sectors
= conf
->chunk_sectors
*
5739 (conf
->raid_disks
- conf
->max_degraded
);
5740 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
5742 sector_div(last_sector
, stripe_sectors
);
5744 logical_sector
*= conf
->chunk_sectors
;
5745 last_sector
*= conf
->chunk_sectors
;
5747 for (; logical_sector
< last_sector
;
5748 logical_sector
+= RAID5_STRIPE_SECTORS(conf
)) {
5752 sh
= raid5_get_active_stripe(conf
, NULL
, logical_sector
, 0);
5753 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5754 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
5755 raid5_release_stripe(sh
);
5756 wait_on_bit(&sh
->dev
[sh
->pd_idx
].flags
, R5_Overlap
,
5757 TASK_UNINTERRUPTIBLE
);
5760 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
5761 spin_lock_irq(&sh
->stripe_lock
);
5762 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5763 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5765 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
5766 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
5767 spin_unlock_irq(&sh
->stripe_lock
);
5768 raid5_release_stripe(sh
);
5769 wait_on_bit(&sh
->dev
[d
].flags
, R5_Overlap
,
5770 TASK_UNINTERRUPTIBLE
);
5774 set_bit(STRIPE_DISCARD
, &sh
->state
);
5775 sh
->overwrite_disks
= 0;
5776 for (d
= 0; d
< conf
->raid_disks
; d
++) {
5777 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
5779 sh
->dev
[d
].towrite
= bi
;
5780 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
5781 bio_inc_remaining(bi
);
5782 md_write_inc(mddev
, bi
);
5783 sh
->overwrite_disks
++;
5785 spin_unlock_irq(&sh
->stripe_lock
);
5786 if (conf
->mddev
->bitmap
) {
5787 for (d
= 0; d
< conf
->raid_disks
- conf
->max_degraded
;
5789 mddev
->bitmap_ops
->startwrite(mddev
, sh
->sector
,
5790 RAID5_STRIPE_SECTORS(conf
), false);
5791 sh
->bm_seq
= conf
->seq_flush
+ 1;
5792 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
5795 set_bit(STRIPE_HANDLE
, &sh
->state
);
5796 clear_bit(STRIPE_DELAYED
, &sh
->state
);
5797 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
5798 atomic_inc(&conf
->preread_active_stripes
);
5799 release_stripe_plug(mddev
, sh
);
5805 static bool ahead_of_reshape(struct mddev
*mddev
, sector_t sector
,
5806 sector_t reshape_sector
)
5808 return mddev
->reshape_backwards
? sector
< reshape_sector
:
5809 sector
>= reshape_sector
;
5812 static bool range_ahead_of_reshape(struct mddev
*mddev
, sector_t min
,
5813 sector_t max
, sector_t reshape_sector
)
5815 return mddev
->reshape_backwards
? max
< reshape_sector
:
5816 min
>= reshape_sector
;
5819 static bool stripe_ahead_of_reshape(struct mddev
*mddev
, struct r5conf
*conf
,
5820 struct stripe_head
*sh
)
5822 sector_t max_sector
= 0, min_sector
= MaxSector
;
5826 for (dd_idx
= 0; dd_idx
< sh
->disks
; dd_idx
++) {
5827 if (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
5830 min_sector
= min(min_sector
, sh
->dev
[dd_idx
].sector
);
5831 max_sector
= max(max_sector
, sh
->dev
[dd_idx
].sector
);
5834 spin_lock_irq(&conf
->device_lock
);
5836 if (!range_ahead_of_reshape(mddev
, min_sector
, max_sector
,
5837 conf
->reshape_progress
))
5838 /* mismatch, need to try again */
5841 spin_unlock_irq(&conf
->device_lock
);
5846 static int add_all_stripe_bios(struct r5conf
*conf
,
5847 struct stripe_request_ctx
*ctx
, struct stripe_head
*sh
,
5848 struct bio
*bi
, int forwrite
, int previous
)
5852 spin_lock_irq(&sh
->stripe_lock
);
5854 for (dd_idx
= 0; dd_idx
< sh
->disks
; dd_idx
++) {
5855 struct r5dev
*dev
= &sh
->dev
[dd_idx
];
5857 if (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
5860 if (dev
->sector
< ctx
->first_sector
||
5861 dev
->sector
>= ctx
->last_sector
)
5864 if (stripe_bio_overlaps(sh
, bi
, dd_idx
, forwrite
)) {
5865 set_bit(R5_Overlap
, &dev
->flags
);
5866 spin_unlock_irq(&sh
->stripe_lock
);
5867 raid5_release_stripe(sh
);
5868 /* release batch_last before wait to avoid risk of deadlock */
5869 if (ctx
->batch_last
) {
5870 raid5_release_stripe(ctx
->batch_last
);
5871 ctx
->batch_last
= NULL
;
5873 md_wakeup_thread(conf
->mddev
->thread
);
5874 wait_on_bit(&dev
->flags
, R5_Overlap
, TASK_UNINTERRUPTIBLE
);
5879 for (dd_idx
= 0; dd_idx
< sh
->disks
; dd_idx
++) {
5880 struct r5dev
*dev
= &sh
->dev
[dd_idx
];
5882 if (dd_idx
== sh
->pd_idx
|| dd_idx
== sh
->qd_idx
)
5885 if (dev
->sector
< ctx
->first_sector
||
5886 dev
->sector
>= ctx
->last_sector
)
5889 __add_stripe_bio(sh
, bi
, dd_idx
, forwrite
, previous
);
5890 clear_bit((dev
->sector
- ctx
->first_sector
) >>
5891 RAID5_STRIPE_SHIFT(conf
), ctx
->sectors_to_do
);
5894 spin_unlock_irq(&sh
->stripe_lock
);
5900 LOC_AHEAD_OF_RESHAPE
,
5905 static enum reshape_loc
get_reshape_loc(struct mddev
*mddev
,
5906 struct r5conf
*conf
, sector_t logical_sector
)
5908 sector_t reshape_progress
, reshape_safe
;
5910 * Spinlock is needed as reshape_progress may be
5911 * 64bit on a 32bit platform, and so it might be
5912 * possible to see a half-updated value
5913 * Of course reshape_progress could change after
5914 * the lock is dropped, so once we get a reference
5915 * to the stripe that we think it is, we will have
5918 spin_lock_irq(&conf
->device_lock
);
5919 reshape_progress
= conf
->reshape_progress
;
5920 reshape_safe
= conf
->reshape_safe
;
5921 spin_unlock_irq(&conf
->device_lock
);
5922 if (reshape_progress
== MaxSector
)
5923 return LOC_NO_RESHAPE
;
5924 if (ahead_of_reshape(mddev
, logical_sector
, reshape_progress
))
5925 return LOC_AHEAD_OF_RESHAPE
;
5926 if (ahead_of_reshape(mddev
, logical_sector
, reshape_safe
))
5927 return LOC_INSIDE_RESHAPE
;
5928 return LOC_BEHIND_RESHAPE
;
5931 static enum stripe_result
make_stripe_request(struct mddev
*mddev
,
5932 struct r5conf
*conf
, struct stripe_request_ctx
*ctx
,
5933 sector_t logical_sector
, struct bio
*bi
)
5935 const int rw
= bio_data_dir(bi
);
5936 enum stripe_result ret
;
5937 struct stripe_head
*sh
;
5938 sector_t new_sector
;
5939 int previous
= 0, flags
= 0;
5942 seq
= read_seqcount_begin(&conf
->gen_lock
);
5944 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
5945 enum reshape_loc loc
= get_reshape_loc(mddev
, conf
,
5947 if (loc
== LOC_INSIDE_RESHAPE
) {
5948 ret
= STRIPE_SCHEDULE_AND_RETRY
;
5951 if (loc
== LOC_AHEAD_OF_RESHAPE
)
5955 new_sector
= raid5_compute_sector(conf
, logical_sector
, previous
,
5957 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__
,
5958 new_sector
, logical_sector
);
5961 flags
|= R5_GAS_PREVIOUS
;
5962 if (bi
->bi_opf
& REQ_RAHEAD
)
5963 flags
|= R5_GAS_NOBLOCK
;
5964 sh
= raid5_get_active_stripe(conf
, ctx
, new_sector
, flags
);
5965 if (unlikely(!sh
)) {
5966 /* cannot get stripe, just give-up */
5967 bi
->bi_status
= BLK_STS_IOERR
;
5971 if (unlikely(previous
) &&
5972 stripe_ahead_of_reshape(mddev
, conf
, sh
)) {
5974 * Expansion moved on while waiting for a stripe.
5975 * Expansion could still move past after this
5976 * test, but as we are holding a reference to
5977 * 'sh', we know that if that happens,
5978 * STRIPE_EXPANDING will get set and the expansion
5979 * won't proceed until we finish with the stripe.
5981 ret
= STRIPE_SCHEDULE_AND_RETRY
;
5985 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
5986 /* Might have got the wrong stripe_head by accident */
5991 if (test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
5992 md_wakeup_thread(mddev
->thread
);
5993 ret
= STRIPE_SCHEDULE_AND_RETRY
;
5997 if (!add_all_stripe_bios(conf
, ctx
, sh
, bi
, rw
, previous
)) {
6002 if (stripe_can_batch(sh
)) {
6003 stripe_add_to_batch_list(conf
, sh
, ctx
->batch_last
);
6004 if (ctx
->batch_last
)
6005 raid5_release_stripe(ctx
->batch_last
);
6006 atomic_inc(&sh
->count
);
6007 ctx
->batch_last
= sh
;
6010 if (ctx
->do_flush
) {
6011 set_bit(STRIPE_R5C_PREFLUSH
, &sh
->state
);
6012 /* we only need flush for one stripe */
6013 ctx
->do_flush
= false;
6016 set_bit(STRIPE_HANDLE
, &sh
->state
);
6017 clear_bit(STRIPE_DELAYED
, &sh
->state
);
6018 if ((!sh
->batch_head
|| sh
== sh
->batch_head
) &&
6019 (bi
->bi_opf
& REQ_SYNC
) &&
6020 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
6021 atomic_inc(&conf
->preread_active_stripes
);
6023 release_stripe_plug(mddev
, sh
);
6024 return STRIPE_SUCCESS
;
6027 raid5_release_stripe(sh
);
6029 if (ret
== STRIPE_SCHEDULE_AND_RETRY
&& reshape_interrupted(mddev
)) {
6030 bi
->bi_status
= BLK_STS_RESOURCE
;
6031 ret
= STRIPE_WAIT_RESHAPE
;
6032 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6038 * If the bio covers multiple data disks, find sector within the bio that has
6039 * the lowest chunk offset in the first chunk.
6041 static sector_t
raid5_bio_lowest_chunk_sector(struct r5conf
*conf
,
6044 int sectors_per_chunk
= conf
->chunk_sectors
;
6045 int raid_disks
= conf
->raid_disks
;
6047 struct stripe_head sh
;
6048 unsigned int chunk_offset
;
6049 sector_t r_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)RAID5_STRIPE_SECTORS(conf
)-1);
6052 /* We pass in fake stripe_head to get back parity disk numbers */
6053 sector
= raid5_compute_sector(conf
, r_sector
, 0, &dd_idx
, &sh
);
6054 chunk_offset
= sector_div(sector
, sectors_per_chunk
);
6055 if (sectors_per_chunk
- chunk_offset
>= bio_sectors(bi
))
6058 * Bio crosses to the next data disk. Check whether it's in the same
6062 while (dd_idx
== sh
.pd_idx
|| dd_idx
== sh
.qd_idx
)
6064 if (dd_idx
>= raid_disks
)
6066 return r_sector
+ sectors_per_chunk
- chunk_offset
;
6069 static bool raid5_make_request(struct mddev
*mddev
, struct bio
* bi
)
6071 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
6073 struct r5conf
*conf
= mddev
->private;
6074 sector_t logical_sector
;
6075 struct stripe_request_ctx ctx
= {};
6076 const int rw
= bio_data_dir(bi
);
6077 enum stripe_result res
;
6080 if (unlikely(bi
->bi_opf
& REQ_PREFLUSH
)) {
6081 int ret
= log_handle_flush_request(conf
, bi
);
6085 if (ret
== -ENODEV
) {
6086 if (md_flush_request(mddev
, bi
))
6089 /* ret == -EAGAIN, fallback */
6091 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6092 * we need to flush journal device
6094 ctx
.do_flush
= bi
->bi_opf
& REQ_PREFLUSH
;
6097 md_write_start(mddev
, bi
);
6099 * If array is degraded, better not do chunk aligned read because
6100 * later we might have to read it again in order to reconstruct
6101 * data on failed drives.
6103 if (rw
== READ
&& mddev
->degraded
== 0 &&
6104 mddev
->reshape_position
== MaxSector
) {
6105 bi
= chunk_aligned_read(mddev
, bi
);
6110 if (unlikely(bio_op(bi
) == REQ_OP_DISCARD
)) {
6111 make_discard_request(mddev
, bi
);
6112 md_write_end(mddev
);
6116 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)RAID5_STRIPE_SECTORS(conf
)-1);
6117 ctx
.first_sector
= logical_sector
;
6118 ctx
.last_sector
= bio_end_sector(bi
);
6121 stripe_cnt
= DIV_ROUND_UP_SECTOR_T(ctx
.last_sector
- logical_sector
,
6122 RAID5_STRIPE_SECTORS(conf
));
6123 bitmap_set(ctx
.sectors_to_do
, 0, stripe_cnt
);
6125 pr_debug("raid456: %s, logical %llu to %llu\n", __func__
,
6126 bi
->bi_iter
.bi_sector
, ctx
.last_sector
);
6128 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6129 if ((bi
->bi_opf
& REQ_NOWAIT
) &&
6130 (conf
->reshape_progress
!= MaxSector
) &&
6131 get_reshape_loc(mddev
, conf
, logical_sector
) == LOC_INSIDE_RESHAPE
) {
6132 bio_wouldblock_error(bi
);
6134 md_write_end(mddev
);
6137 md_account_bio(mddev
, &bi
);
6140 * Lets start with the stripe with the lowest chunk offset in the first
6141 * chunk. That has the best chances of creating IOs adjacent to
6142 * previous IOs in case of sequential IO and thus creates the most
6143 * sequential IO pattern. We don't bother with the optimization when
6144 * reshaping as the performance benefit is not worth the complexity.
6146 if (likely(conf
->reshape_progress
== MaxSector
)) {
6147 logical_sector
= raid5_bio_lowest_chunk_sector(conf
, bi
);
6150 add_wait_queue(&conf
->wait_for_reshape
, &wait
);
6153 s
= (logical_sector
- ctx
.first_sector
) >> RAID5_STRIPE_SHIFT(conf
);
6156 res
= make_stripe_request(mddev
, conf
, &ctx
, logical_sector
,
6158 if (res
== STRIPE_FAIL
|| res
== STRIPE_WAIT_RESHAPE
)
6161 if (res
== STRIPE_RETRY
)
6164 if (res
== STRIPE_SCHEDULE_AND_RETRY
) {
6165 WARN_ON_ONCE(!on_wq
);
6167 * Must release the reference to batch_last before
6168 * scheduling and waiting for work to be done,
6169 * otherwise the batch_last stripe head could prevent
6170 * raid5_activate_delayed() from making progress
6171 * and thus deadlocking.
6173 if (ctx
.batch_last
) {
6174 raid5_release_stripe(ctx
.batch_last
);
6175 ctx
.batch_last
= NULL
;
6178 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
,
6179 MAX_SCHEDULE_TIMEOUT
);
6183 s
= find_next_bit_wrap(ctx
.sectors_to_do
, stripe_cnt
, s
);
6184 if (s
== stripe_cnt
)
6187 logical_sector
= ctx
.first_sector
+
6188 (s
<< RAID5_STRIPE_SHIFT(conf
));
6190 if (unlikely(on_wq
))
6191 remove_wait_queue(&conf
->wait_for_reshape
, &wait
);
6194 raid5_release_stripe(ctx
.batch_last
);
6197 md_write_end(mddev
);
6198 if (res
== STRIPE_WAIT_RESHAPE
) {
6199 md_free_cloned_bio(bi
);
6207 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
6209 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
6211 /* reshaping is quite different to recovery/resync so it is
6212 * handled quite separately ... here.
6214 * On each call to sync_request, we gather one chunk worth of
6215 * destination stripes and flag them as expanding.
6216 * Then we find all the source stripes and request reads.
6217 * As the reads complete, handle_stripe will copy the data
6218 * into the destination stripe and release that stripe.
6220 struct r5conf
*conf
= mddev
->private;
6221 struct stripe_head
*sh
;
6222 struct md_rdev
*rdev
;
6223 sector_t first_sector
, last_sector
;
6224 int raid_disks
= conf
->previous_raid_disks
;
6225 int data_disks
= raid_disks
- conf
->max_degraded
;
6226 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
6229 sector_t writepos
, readpos
, safepos
;
6230 sector_t stripe_addr
;
6231 int reshape_sectors
;
6232 struct list_head stripes
;
6235 if (sector_nr
== 0) {
6236 /* If restarting in the middle, skip the initial sectors */
6237 if (mddev
->reshape_backwards
&&
6238 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
6239 sector_nr
= raid5_size(mddev
, 0, 0)
6240 - conf
->reshape_progress
;
6241 } else if (mddev
->reshape_backwards
&&
6242 conf
->reshape_progress
== MaxSector
) {
6243 /* shouldn't happen, but just in case, finish up.*/
6244 sector_nr
= MaxSector
;
6245 } else if (!mddev
->reshape_backwards
&&
6246 conf
->reshape_progress
> 0)
6247 sector_nr
= conf
->reshape_progress
;
6248 sector_div(sector_nr
, new_data_disks
);
6250 mddev
->curr_resync_completed
= sector_nr
;
6251 sysfs_notify_dirent_safe(mddev
->sysfs_completed
);
6258 /* We need to process a full chunk at a time.
6259 * If old and new chunk sizes differ, we need to process the
6263 reshape_sectors
= max(conf
->chunk_sectors
, conf
->prev_chunk_sectors
);
6265 /* We update the metadata at least every 10 seconds, or when
6266 * the data about to be copied would over-write the source of
6267 * the data at the front of the range. i.e. one new_stripe
6268 * along from reshape_progress new_maps to after where
6269 * reshape_safe old_maps to
6271 writepos
= conf
->reshape_progress
;
6272 sector_div(writepos
, new_data_disks
);
6273 readpos
= conf
->reshape_progress
;
6274 sector_div(readpos
, data_disks
);
6275 safepos
= conf
->reshape_safe
;
6276 sector_div(safepos
, data_disks
);
6277 if (mddev
->reshape_backwards
) {
6278 if (WARN_ON(writepos
< reshape_sectors
))
6281 writepos
-= reshape_sectors
;
6282 readpos
+= reshape_sectors
;
6283 safepos
+= reshape_sectors
;
6285 writepos
+= reshape_sectors
;
6286 /* readpos and safepos are worst-case calculations.
6287 * A negative number is overly pessimistic, and causes
6288 * obvious problems for unsigned storage. So clip to 0.
6290 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
6291 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
6294 /* Having calculated the 'writepos' possibly use it
6295 * to set 'stripe_addr' which is where we will write to.
6297 if (mddev
->reshape_backwards
) {
6298 if (WARN_ON(conf
->reshape_progress
== 0))
6301 stripe_addr
= writepos
;
6302 if (WARN_ON((mddev
->dev_sectors
&
6303 ~((sector_t
)reshape_sectors
- 1)) -
6304 reshape_sectors
- stripe_addr
!= sector_nr
))
6307 if (WARN_ON(writepos
!= sector_nr
+ reshape_sectors
))
6310 stripe_addr
= sector_nr
;
6313 /* 'writepos' is the most advanced device address we might write.
6314 * 'readpos' is the least advanced device address we might read.
6315 * 'safepos' is the least address recorded in the metadata as having
6317 * If there is a min_offset_diff, these are adjusted either by
6318 * increasing the safepos/readpos if diff is negative, or
6319 * increasing writepos if diff is positive.
6320 * If 'readpos' is then behind 'writepos', there is no way that we can
6321 * ensure safety in the face of a crash - that must be done by userspace
6322 * making a backup of the data. So in that case there is no particular
6323 * rush to update metadata.
6324 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6325 * update the metadata to advance 'safepos' to match 'readpos' so that
6326 * we can be safe in the event of a crash.
6327 * So we insist on updating metadata if safepos is behind writepos and
6328 * readpos is beyond writepos.
6329 * In any case, update the metadata every 10 seconds.
6330 * Maybe that number should be configurable, but I'm not sure it is
6331 * worth it.... maybe it could be a multiple of safemode_delay???
6333 if (conf
->min_offset_diff
< 0) {
6334 safepos
+= -conf
->min_offset_diff
;
6335 readpos
+= -conf
->min_offset_diff
;
6337 writepos
+= conf
->min_offset_diff
;
6339 if ((mddev
->reshape_backwards
6340 ? (safepos
> writepos
&& readpos
< writepos
)
6341 : (safepos
< writepos
&& readpos
> writepos
)) ||
6342 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
6343 /* Cannot proceed until we've updated the superblock... */
6344 wait_event(conf
->wait_for_reshape
,
6345 atomic_read(&conf
->reshape_stripes
)==0
6346 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
6347 if (atomic_read(&conf
->reshape_stripes
) != 0)
6349 mddev
->reshape_position
= conf
->reshape_progress
;
6350 mddev
->curr_resync_completed
= sector_nr
;
6351 if (!mddev
->reshape_backwards
)
6352 /* Can update recovery_offset */
6353 rdev_for_each(rdev
, mddev
)
6354 if (rdev
->raid_disk
>= 0 &&
6355 !test_bit(Journal
, &rdev
->flags
) &&
6356 !test_bit(In_sync
, &rdev
->flags
) &&
6357 rdev
->recovery_offset
< sector_nr
)
6358 rdev
->recovery_offset
= sector_nr
;
6360 conf
->reshape_checkpoint
= jiffies
;
6361 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
6362 md_wakeup_thread(mddev
->thread
);
6363 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
6364 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
6365 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
6367 spin_lock_irq(&conf
->device_lock
);
6368 conf
->reshape_safe
= mddev
->reshape_position
;
6369 spin_unlock_irq(&conf
->device_lock
);
6370 wake_up(&conf
->wait_for_reshape
);
6371 sysfs_notify_dirent_safe(mddev
->sysfs_completed
);
6374 INIT_LIST_HEAD(&stripes
);
6375 for (i
= 0; i
< reshape_sectors
; i
+= RAID5_STRIPE_SECTORS(conf
)) {
6377 int skipped_disk
= 0;
6378 sh
= raid5_get_active_stripe(conf
, NULL
, stripe_addr
+i
,
6380 set_bit(STRIPE_EXPANDING
, &sh
->state
);
6381 atomic_inc(&conf
->reshape_stripes
);
6382 /* If any of this stripe is beyond the end of the old
6383 * array, then we need to zero those blocks
6385 for (j
=sh
->disks
; j
--;) {
6387 if (j
== sh
->pd_idx
)
6389 if (conf
->level
== 6 &&
6392 s
= raid5_compute_blocknr(sh
, j
, 0);
6393 if (s
< raid5_size(mddev
, 0, 0)) {
6397 memset(page_address(sh
->dev
[j
].page
), 0, RAID5_STRIPE_SIZE(conf
));
6398 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
6399 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
6401 if (!skipped_disk
) {
6402 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
6403 set_bit(STRIPE_HANDLE
, &sh
->state
);
6405 list_add(&sh
->lru
, &stripes
);
6407 spin_lock_irq(&conf
->device_lock
);
6408 if (mddev
->reshape_backwards
)
6409 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
6411 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
6412 spin_unlock_irq(&conf
->device_lock
);
6413 /* Ok, those stripe are ready. We can start scheduling
6414 * reads on the source stripes.
6415 * The source stripes are determined by mapping the first and last
6416 * block on the destination stripes.
6419 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
6422 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
6423 * new_data_disks
- 1),
6425 if (last_sector
>= mddev
->dev_sectors
)
6426 last_sector
= mddev
->dev_sectors
- 1;
6427 while (first_sector
<= last_sector
) {
6428 sh
= raid5_get_active_stripe(conf
, NULL
, first_sector
,
6429 R5_GAS_PREVIOUS
| R5_GAS_NOQUIESCE
);
6430 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
6431 set_bit(STRIPE_HANDLE
, &sh
->state
);
6432 raid5_release_stripe(sh
);
6433 first_sector
+= RAID5_STRIPE_SECTORS(conf
);
6435 /* Now that the sources are clearly marked, we can release
6436 * the destination stripes
6438 while (!list_empty(&stripes
)) {
6439 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
6440 list_del_init(&sh
->lru
);
6441 raid5_release_stripe(sh
);
6443 /* If this takes us to the resync_max point where we have to pause,
6444 * then we need to write out the superblock.
6446 sector_nr
+= reshape_sectors
;
6447 retn
= reshape_sectors
;
6449 if (mddev
->curr_resync_completed
> mddev
->resync_max
||
6450 (sector_nr
- mddev
->curr_resync_completed
) * 2
6451 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
6452 /* Cannot proceed until we've updated the superblock... */
6453 wait_event(conf
->wait_for_reshape
,
6454 atomic_read(&conf
->reshape_stripes
) == 0
6455 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
6456 if (atomic_read(&conf
->reshape_stripes
) != 0)
6458 mddev
->reshape_position
= conf
->reshape_progress
;
6459 mddev
->curr_resync_completed
= sector_nr
;
6460 if (!mddev
->reshape_backwards
)
6461 /* Can update recovery_offset */
6462 rdev_for_each(rdev
, mddev
)
6463 if (rdev
->raid_disk
>= 0 &&
6464 !test_bit(Journal
, &rdev
->flags
) &&
6465 !test_bit(In_sync
, &rdev
->flags
) &&
6466 rdev
->recovery_offset
< sector_nr
)
6467 rdev
->recovery_offset
= sector_nr
;
6468 conf
->reshape_checkpoint
= jiffies
;
6469 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
6470 md_wakeup_thread(mddev
->thread
);
6471 wait_event(mddev
->sb_wait
,
6472 !test_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
)
6473 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
6474 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
6476 spin_lock_irq(&conf
->device_lock
);
6477 conf
->reshape_safe
= mddev
->reshape_position
;
6478 spin_unlock_irq(&conf
->device_lock
);
6479 wake_up(&conf
->wait_for_reshape
);
6480 sysfs_notify_dirent_safe(mddev
->sysfs_completed
);
6486 static inline sector_t
raid5_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
6487 sector_t max_sector
, int *skipped
)
6489 struct r5conf
*conf
= mddev
->private;
6490 struct stripe_head
*sh
;
6491 sector_t sync_blocks
;
6492 bool still_degraded
= false;
6495 if (sector_nr
>= max_sector
) {
6496 /* just being told to finish up .. nothing much to do */
6498 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
6503 if (mddev
->curr_resync
< max_sector
) /* aborted */
6504 mddev
->bitmap_ops
->end_sync(mddev
, mddev
->curr_resync
,
6506 else /* completed sync */
6508 mddev
->bitmap_ops
->close_sync(mddev
);
6513 /* Allow raid5_quiesce to complete */
6514 wait_event(conf
->wait_for_reshape
, conf
->quiesce
!= 2);
6516 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
6517 return reshape_request(mddev
, sector_nr
, skipped
);
6519 /* No need to check resync_max as we never do more than one
6520 * stripe, and as resync_max will always be on a chunk boundary,
6521 * if the check in md_do_sync didn't fire, there is no chance
6522 * of overstepping resync_max here
6525 /* if there is too many failed drives and we are trying
6526 * to resync, then assert that we are finished, because there is
6527 * nothing we can do.
6529 if (mddev
->degraded
>= conf
->max_degraded
&&
6530 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
6531 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
6535 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
6537 !mddev
->bitmap_ops
->start_sync(mddev
, sector_nr
, &sync_blocks
,
6539 sync_blocks
>= RAID5_STRIPE_SECTORS(conf
)) {
6540 /* we can skip this block, and probably more */
6541 do_div(sync_blocks
, RAID5_STRIPE_SECTORS(conf
));
6543 /* keep things rounded to whole stripes */
6544 return sync_blocks
* RAID5_STRIPE_SECTORS(conf
);
6547 mddev
->bitmap_ops
->cond_end_sync(mddev
, sector_nr
, false);
6549 sh
= raid5_get_active_stripe(conf
, NULL
, sector_nr
,
6552 sh
= raid5_get_active_stripe(conf
, NULL
, sector_nr
, 0);
6553 /* make sure we don't swamp the stripe cache if someone else
6554 * is trying to get access
6556 schedule_timeout_uninterruptible(1);
6558 /* Need to check if array will still be degraded after recovery/resync
6559 * Note in case of > 1 drive failures it's possible we're rebuilding
6560 * one drive while leaving another faulty drive in array.
6562 for (i
= 0; i
< conf
->raid_disks
; i
++) {
6563 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
6565 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
))
6566 still_degraded
= true;
6569 mddev
->bitmap_ops
->start_sync(mddev
, sector_nr
, &sync_blocks
,
6572 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
6573 set_bit(STRIPE_HANDLE
, &sh
->state
);
6575 raid5_release_stripe(sh
);
6577 return RAID5_STRIPE_SECTORS(conf
);
6580 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
,
6581 unsigned int offset
)
6583 /* We may not be able to submit a whole bio at once as there
6584 * may not be enough stripe_heads available.
6585 * We cannot pre-allocate enough stripe_heads as we may need
6586 * more than exist in the cache (if we allow ever large chunks).
6587 * So we do one stripe head at a time and record in
6588 * ->bi_hw_segments how many have been done.
6590 * We *know* that this entire raid_bio is in one chunk, so
6591 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6593 struct stripe_head
*sh
;
6595 sector_t sector
, logical_sector
, last_sector
;
6599 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
6600 ~((sector_t
)RAID5_STRIPE_SECTORS(conf
)-1);
6601 sector
= raid5_compute_sector(conf
, logical_sector
,
6603 last_sector
= bio_end_sector(raid_bio
);
6605 for (; logical_sector
< last_sector
;
6606 logical_sector
+= RAID5_STRIPE_SECTORS(conf
),
6607 sector
+= RAID5_STRIPE_SECTORS(conf
),
6611 /* already done this stripe */
6614 sh
= raid5_get_active_stripe(conf
, NULL
, sector
,
6615 R5_GAS_NOBLOCK
| R5_GAS_NOQUIESCE
);
6617 /* failed to get a stripe - must wait */
6618 conf
->retry_read_aligned
= raid_bio
;
6619 conf
->retry_read_offset
= scnt
;
6623 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0, 0)) {
6624 raid5_release_stripe(sh
);
6625 conf
->retry_read_aligned
= raid_bio
;
6626 conf
->retry_read_offset
= scnt
;
6630 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
6632 raid5_release_stripe(sh
);
6636 bio_endio(raid_bio
);
6638 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
6639 wake_up(&conf
->wait_for_quiescent
);
6643 static int handle_active_stripes(struct r5conf
*conf
, int group
,
6644 struct r5worker
*worker
,
6645 struct list_head
*temp_inactive_list
)
6646 __must_hold(&conf
->device_lock
)
6648 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
6649 int i
, batch_size
= 0, hash
;
6650 bool release_inactive
= false;
6652 while (batch_size
< MAX_STRIPE_BATCH
&&
6653 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
6654 batch
[batch_size
++] = sh
;
6656 if (batch_size
== 0) {
6657 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
6658 if (!list_empty(temp_inactive_list
+ i
))
6660 if (i
== NR_STRIPE_HASH_LOCKS
) {
6661 spin_unlock_irq(&conf
->device_lock
);
6662 log_flush_stripe_to_raid(conf
);
6663 spin_lock_irq(&conf
->device_lock
);
6666 release_inactive
= true;
6668 spin_unlock_irq(&conf
->device_lock
);
6670 release_inactive_stripe_list(conf
, temp_inactive_list
,
6671 NR_STRIPE_HASH_LOCKS
);
6673 r5l_flush_stripe_to_raid(conf
->log
);
6674 if (release_inactive
) {
6675 spin_lock_irq(&conf
->device_lock
);
6679 for (i
= 0; i
< batch_size
; i
++)
6680 handle_stripe(batch
[i
]);
6681 log_write_stripe_run(conf
);
6685 spin_lock_irq(&conf
->device_lock
);
6686 for (i
= 0; i
< batch_size
; i
++) {
6687 hash
= batch
[i
]->hash_lock_index
;
6688 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
6693 static void raid5_do_work(struct work_struct
*work
)
6695 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
6696 struct r5worker_group
*group
= worker
->group
;
6697 struct r5conf
*conf
= group
->conf
;
6698 struct mddev
*mddev
= conf
->mddev
;
6699 int group_id
= group
- conf
->worker_groups
;
6701 struct blk_plug plug
;
6703 pr_debug("+++ raid5worker active\n");
6705 blk_start_plug(&plug
);
6707 spin_lock_irq(&conf
->device_lock
);
6709 int batch_size
, released
;
6711 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
6713 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
6714 worker
->temp_inactive_list
);
6715 worker
->working
= false;
6716 if (!batch_size
&& !released
)
6718 handled
+= batch_size
;
6719 wait_event_lock_irq(mddev
->sb_wait
,
6720 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
),
6723 pr_debug("%d stripes handled\n", handled
);
6725 spin_unlock_irq(&conf
->device_lock
);
6727 flush_deferred_bios(conf
);
6729 r5l_flush_stripe_to_raid(conf
->log
);
6731 async_tx_issue_pending_all();
6732 blk_finish_plug(&plug
);
6734 pr_debug("--- raid5worker inactive\n");
6738 * This is our raid5 kernel thread.
6740 * We scan the hash table for stripes which can be handled now.
6741 * During the scan, completed stripes are saved for us by the interrupt
6742 * handler, so that they will not have to wait for our next wakeup.
6744 static void raid5d(struct md_thread
*thread
)
6746 struct mddev
*mddev
= thread
->mddev
;
6747 struct r5conf
*conf
= mddev
->private;
6749 struct blk_plug plug
;
6751 pr_debug("+++ raid5d active\n");
6753 md_check_recovery(mddev
);
6755 blk_start_plug(&plug
);
6757 spin_lock_irq(&conf
->device_lock
);
6760 int batch_size
, released
;
6761 unsigned int offset
;
6763 if (test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
))
6766 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
6768 clear_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6771 !list_empty(&conf
->bitmap_list
)) {
6772 /* Now is a good time to flush some bitmap updates */
6774 spin_unlock_irq(&conf
->device_lock
);
6775 mddev
->bitmap_ops
->unplug(mddev
, true);
6776 spin_lock_irq(&conf
->device_lock
);
6777 conf
->seq_write
= conf
->seq_flush
;
6778 activate_bit_delay(conf
, conf
->temp_inactive_list
);
6780 raid5_activate_delayed(conf
);
6782 while ((bio
= remove_bio_from_retry(conf
, &offset
))) {
6784 spin_unlock_irq(&conf
->device_lock
);
6785 ok
= retry_aligned_read(conf
, bio
, offset
);
6786 spin_lock_irq(&conf
->device_lock
);
6792 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
6793 conf
->temp_inactive_list
);
6794 if (!batch_size
&& !released
)
6796 handled
+= batch_size
;
6798 if (mddev
->sb_flags
& ~(1 << MD_SB_CHANGE_PENDING
)) {
6799 spin_unlock_irq(&conf
->device_lock
);
6800 md_check_recovery(mddev
);
6801 spin_lock_irq(&conf
->device_lock
);
6804 pr_debug("%d stripes handled\n", handled
);
6806 spin_unlock_irq(&conf
->device_lock
);
6807 if (test_and_clear_bit(R5_ALLOC_MORE
, &conf
->cache_state
) &&
6808 mutex_trylock(&conf
->cache_size_mutex
)) {
6809 grow_one_stripe(conf
, __GFP_NOWARN
);
6810 /* Set flag even if allocation failed. This helps
6811 * slow down allocation requests when mem is short
6813 set_bit(R5_DID_ALLOC
, &conf
->cache_state
);
6814 mutex_unlock(&conf
->cache_size_mutex
);
6817 flush_deferred_bios(conf
);
6819 r5l_flush_stripe_to_raid(conf
->log
);
6821 async_tx_issue_pending_all();
6822 blk_finish_plug(&plug
);
6824 pr_debug("--- raid5d inactive\n");
6828 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
6830 struct r5conf
*conf
;
6832 spin_lock(&mddev
->lock
);
6833 conf
= mddev
->private;
6835 ret
= sprintf(page
, "%d\n", conf
->min_nr_stripes
);
6836 spin_unlock(&mddev
->lock
);
6841 raid5_set_cache_size(struct mddev
*mddev
, int size
)
6844 struct r5conf
*conf
= mddev
->private;
6846 if (size
<= 16 || size
> 32768)
6849 WRITE_ONCE(conf
->min_nr_stripes
, size
);
6850 mutex_lock(&conf
->cache_size_mutex
);
6851 while (size
< conf
->max_nr_stripes
&&
6852 drop_one_stripe(conf
))
6854 mutex_unlock(&conf
->cache_size_mutex
);
6856 md_allow_write(mddev
);
6858 mutex_lock(&conf
->cache_size_mutex
);
6859 while (size
> conf
->max_nr_stripes
)
6860 if (!grow_one_stripe(conf
, GFP_KERNEL
)) {
6861 WRITE_ONCE(conf
->min_nr_stripes
, conf
->max_nr_stripes
);
6865 mutex_unlock(&conf
->cache_size_mutex
);
6869 EXPORT_SYMBOL(raid5_set_cache_size
);
6872 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
6874 struct r5conf
*conf
;
6878 if (len
>= PAGE_SIZE
)
6880 if (kstrtoul(page
, 10, &new))
6882 err
= mddev_lock(mddev
);
6885 conf
= mddev
->private;
6889 err
= raid5_set_cache_size(mddev
, new);
6890 mddev_unlock(mddev
);
6895 static struct md_sysfs_entry
6896 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
6897 raid5_show_stripe_cache_size
,
6898 raid5_store_stripe_cache_size
);
6901 raid5_show_rmw_level(struct mddev
*mddev
, char *page
)
6903 struct r5conf
*conf
= mddev
->private;
6905 return sprintf(page
, "%d\n", conf
->rmw_level
);
6911 raid5_store_rmw_level(struct mddev
*mddev
, const char *page
, size_t len
)
6913 struct r5conf
*conf
= mddev
->private;
6919 if (len
>= PAGE_SIZE
)
6922 if (kstrtoul(page
, 10, &new))
6925 if (new != PARITY_DISABLE_RMW
&& !raid6_call
.xor_syndrome
)
6928 if (new != PARITY_DISABLE_RMW
&&
6929 new != PARITY_ENABLE_RMW
&&
6930 new != PARITY_PREFER_RMW
)
6933 conf
->rmw_level
= new;
6937 static struct md_sysfs_entry
6938 raid5_rmw_level
= __ATTR(rmw_level
, S_IRUGO
| S_IWUSR
,
6939 raid5_show_rmw_level
,
6940 raid5_store_rmw_level
);
6943 raid5_show_stripe_size(struct mddev
*mddev
, char *page
)
6945 struct r5conf
*conf
;
6948 spin_lock(&mddev
->lock
);
6949 conf
= mddev
->private;
6951 ret
= sprintf(page
, "%lu\n", RAID5_STRIPE_SIZE(conf
));
6952 spin_unlock(&mddev
->lock
);
6956 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6958 raid5_store_stripe_size(struct mddev
*mddev
, const char *page
, size_t len
)
6960 struct r5conf
*conf
;
6965 if (len
>= PAGE_SIZE
)
6967 if (kstrtoul(page
, 10, &new))
6971 * The value should not be bigger than PAGE_SIZE. It requires to
6972 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6975 if (new % DEFAULT_STRIPE_SIZE
!= 0 ||
6976 new > PAGE_SIZE
|| new == 0 ||
6977 new != roundup_pow_of_two(new))
6980 err
= mddev_suspend_and_lock(mddev
);
6984 conf
= mddev
->private;
6990 if (new == conf
->stripe_size
)
6993 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6994 conf
->stripe_size
, new);
6996 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
) ||
6997 mddev
->reshape_position
!= MaxSector
|| mddev
->sysfs_active
) {
7002 mutex_lock(&conf
->cache_size_mutex
);
7003 size
= conf
->max_nr_stripes
;
7005 shrink_stripes(conf
);
7007 conf
->stripe_size
= new;
7008 conf
->stripe_shift
= ilog2(new) - 9;
7009 conf
->stripe_sectors
= new >> 9;
7010 if (grow_stripes(conf
, size
)) {
7011 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7015 mutex_unlock(&conf
->cache_size_mutex
);
7018 mddev_unlock_and_resume(mddev
);
7022 static struct md_sysfs_entry
7023 raid5_stripe_size
= __ATTR(stripe_size
, 0644,
7024 raid5_show_stripe_size
,
7025 raid5_store_stripe_size
);
7027 static struct md_sysfs_entry
7028 raid5_stripe_size
= __ATTR(stripe_size
, 0444,
7029 raid5_show_stripe_size
,
7034 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
7036 struct r5conf
*conf
;
7038 spin_lock(&mddev
->lock
);
7039 conf
= mddev
->private;
7041 ret
= sprintf(page
, "%d\n", conf
->bypass_threshold
);
7042 spin_unlock(&mddev
->lock
);
7047 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
7049 struct r5conf
*conf
;
7053 if (len
>= PAGE_SIZE
)
7055 if (kstrtoul(page
, 10, &new))
7058 err
= mddev_lock(mddev
);
7061 conf
= mddev
->private;
7064 else if (new > conf
->min_nr_stripes
)
7067 conf
->bypass_threshold
= new;
7068 mddev_unlock(mddev
);
7072 static struct md_sysfs_entry
7073 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
7075 raid5_show_preread_threshold
,
7076 raid5_store_preread_threshold
);
7079 raid5_show_skip_copy(struct mddev
*mddev
, char *page
)
7081 struct r5conf
*conf
;
7083 spin_lock(&mddev
->lock
);
7084 conf
= mddev
->private;
7086 ret
= sprintf(page
, "%d\n", conf
->skip_copy
);
7087 spin_unlock(&mddev
->lock
);
7092 raid5_store_skip_copy(struct mddev
*mddev
, const char *page
, size_t len
)
7094 struct r5conf
*conf
;
7098 if (len
>= PAGE_SIZE
)
7100 if (kstrtoul(page
, 10, &new))
7104 err
= mddev_suspend_and_lock(mddev
);
7107 conf
= mddev
->private;
7110 else if (new != conf
->skip_copy
) {
7111 struct request_queue
*q
= mddev
->gendisk
->queue
;
7112 struct queue_limits lim
= queue_limits_start_update(q
);
7114 conf
->skip_copy
= new;
7116 lim
.features
|= BLK_FEAT_STABLE_WRITES
;
7118 lim
.features
&= ~BLK_FEAT_STABLE_WRITES
;
7119 err
= queue_limits_commit_update(q
, &lim
);
7121 mddev_unlock_and_resume(mddev
);
7125 static struct md_sysfs_entry
7126 raid5_skip_copy
= __ATTR(skip_copy
, S_IRUGO
| S_IWUSR
,
7127 raid5_show_skip_copy
,
7128 raid5_store_skip_copy
);
7131 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
7133 struct r5conf
*conf
= mddev
->private;
7135 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
7140 static struct md_sysfs_entry
7141 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
7144 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
7146 struct r5conf
*conf
;
7148 spin_lock(&mddev
->lock
);
7149 conf
= mddev
->private;
7151 ret
= sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
7152 spin_unlock(&mddev
->lock
);
7156 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
7158 struct r5worker_group
**worker_groups
);
7160 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
7162 struct r5conf
*conf
;
7165 struct r5worker_group
*new_groups
, *old_groups
;
7168 if (len
>= PAGE_SIZE
)
7170 if (kstrtouint(page
, 10, &new))
7172 /* 8192 should be big enough */
7176 err
= mddev_suspend_and_lock(mddev
);
7179 raid5_quiesce(mddev
, true);
7181 conf
= mddev
->private;
7184 else if (new != conf
->worker_cnt_per_group
) {
7185 old_groups
= conf
->worker_groups
;
7187 flush_workqueue(raid5_wq
);
7189 err
= alloc_thread_groups(conf
, new, &group_cnt
, &new_groups
);
7191 spin_lock_irq(&conf
->device_lock
);
7192 conf
->group_cnt
= group_cnt
;
7193 conf
->worker_cnt_per_group
= new;
7194 conf
->worker_groups
= new_groups
;
7195 spin_unlock_irq(&conf
->device_lock
);
7198 kfree(old_groups
[0].workers
);
7203 raid5_quiesce(mddev
, false);
7204 mddev_unlock_and_resume(mddev
);
7209 static struct md_sysfs_entry
7210 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
7211 raid5_show_group_thread_cnt
,
7212 raid5_store_group_thread_cnt
);
7214 static struct attribute
*raid5_attrs
[] = {
7215 &raid5_stripecache_size
.attr
,
7216 &raid5_stripecache_active
.attr
,
7217 &raid5_preread_bypass_threshold
.attr
,
7218 &raid5_group_thread_cnt
.attr
,
7219 &raid5_skip_copy
.attr
,
7220 &raid5_rmw_level
.attr
,
7221 &raid5_stripe_size
.attr
,
7222 &r5c_journal_mode
.attr
,
7223 &ppl_write_hint
.attr
,
7226 static const struct attribute_group raid5_attrs_group
= {
7228 .attrs
= raid5_attrs
,
7231 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
, int *group_cnt
,
7232 struct r5worker_group
**worker_groups
)
7236 struct r5worker
*workers
;
7240 *worker_groups
= NULL
;
7243 *group_cnt
= num_possible_nodes();
7244 size
= sizeof(struct r5worker
) * cnt
;
7245 workers
= kcalloc(size
, *group_cnt
, GFP_NOIO
);
7246 *worker_groups
= kcalloc(*group_cnt
, sizeof(struct r5worker_group
),
7248 if (!*worker_groups
|| !workers
) {
7250 kfree(*worker_groups
);
7254 for (i
= 0; i
< *group_cnt
; i
++) {
7255 struct r5worker_group
*group
;
7257 group
= &(*worker_groups
)[i
];
7258 INIT_LIST_HEAD(&group
->handle_list
);
7259 INIT_LIST_HEAD(&group
->loprio_list
);
7261 group
->workers
= workers
+ i
* cnt
;
7263 for (j
= 0; j
< cnt
; j
++) {
7264 struct r5worker
*worker
= group
->workers
+ j
;
7265 worker
->group
= group
;
7266 INIT_WORK(&worker
->work
, raid5_do_work
);
7268 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
7269 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
7276 static void free_thread_groups(struct r5conf
*conf
)
7278 if (conf
->worker_groups
)
7279 kfree(conf
->worker_groups
[0].workers
);
7280 kfree(conf
->worker_groups
);
7281 conf
->worker_groups
= NULL
;
7285 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
7287 struct r5conf
*conf
= mddev
->private;
7290 sectors
= mddev
->dev_sectors
;
7292 /* size is defined by the smallest of previous and new size */
7293 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
7295 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
7296 sectors
&= ~((sector_t
)conf
->prev_chunk_sectors
- 1);
7297 return sectors
* (raid_disks
- conf
->max_degraded
);
7300 static void free_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
7302 safe_put_page(percpu
->spare_page
);
7303 percpu
->spare_page
= NULL
;
7304 kvfree(percpu
->scribble
);
7305 percpu
->scribble
= NULL
;
7308 static int alloc_scratch_buffer(struct r5conf
*conf
, struct raid5_percpu
*percpu
)
7310 if (conf
->level
== 6 && !percpu
->spare_page
) {
7311 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
7312 if (!percpu
->spare_page
)
7316 if (scribble_alloc(percpu
,
7317 max(conf
->raid_disks
,
7318 conf
->previous_raid_disks
),
7319 max(conf
->chunk_sectors
,
7320 conf
->prev_chunk_sectors
)
7321 / RAID5_STRIPE_SECTORS(conf
))) {
7322 free_scratch_buffer(conf
, percpu
);
7326 local_lock_init(&percpu
->lock
);
7330 static int raid456_cpu_dead(unsigned int cpu
, struct hlist_node
*node
)
7332 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
7334 free_scratch_buffer(conf
, per_cpu_ptr(conf
->percpu
, cpu
));
7338 static void raid5_free_percpu(struct r5conf
*conf
)
7343 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
7344 free_percpu(conf
->percpu
);
7347 static void free_conf(struct r5conf
*conf
)
7353 shrinker_free(conf
->shrinker
);
7354 free_thread_groups(conf
);
7355 shrink_stripes(conf
);
7356 raid5_free_percpu(conf
);
7357 for (i
= 0; i
< conf
->pool_size
; i
++)
7358 if (conf
->disks
[i
].extra_page
)
7359 put_page(conf
->disks
[i
].extra_page
);
7361 bioset_exit(&conf
->bio_split
);
7362 kfree(conf
->stripe_hashtbl
);
7363 kfree(conf
->pending_data
);
7367 static int raid456_cpu_up_prepare(unsigned int cpu
, struct hlist_node
*node
)
7369 struct r5conf
*conf
= hlist_entry_safe(node
, struct r5conf
, node
);
7370 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
7372 if (alloc_scratch_buffer(conf
, percpu
)) {
7373 pr_warn("%s: failed memory allocation for cpu%u\n",
7380 static int raid5_alloc_percpu(struct r5conf
*conf
)
7384 conf
->percpu
= alloc_percpu(struct raid5_percpu
);
7388 err
= cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE
, &conf
->node
);
7390 conf
->scribble_disks
= max(conf
->raid_disks
,
7391 conf
->previous_raid_disks
);
7392 conf
->scribble_sectors
= max(conf
->chunk_sectors
,
7393 conf
->prev_chunk_sectors
);
7398 static unsigned long raid5_cache_scan(struct shrinker
*shrink
,
7399 struct shrink_control
*sc
)
7401 struct r5conf
*conf
= shrink
->private_data
;
7402 unsigned long ret
= SHRINK_STOP
;
7404 if (mutex_trylock(&conf
->cache_size_mutex
)) {
7406 while (ret
< sc
->nr_to_scan
&&
7407 conf
->max_nr_stripes
> conf
->min_nr_stripes
) {
7408 if (drop_one_stripe(conf
) == 0) {
7414 mutex_unlock(&conf
->cache_size_mutex
);
7419 static unsigned long raid5_cache_count(struct shrinker
*shrink
,
7420 struct shrink_control
*sc
)
7422 struct r5conf
*conf
= shrink
->private_data
;
7423 int max_stripes
= READ_ONCE(conf
->max_nr_stripes
);
7424 int min_stripes
= READ_ONCE(conf
->min_nr_stripes
);
7426 if (max_stripes
< min_stripes
)
7427 /* unlikely, but not impossible */
7429 return max_stripes
- min_stripes
;
7432 static struct r5conf
*setup_conf(struct mddev
*mddev
)
7434 struct r5conf
*conf
;
7435 int raid_disk
, memory
, max_disks
;
7436 struct md_rdev
*rdev
;
7437 struct disk_info
*disk
;
7441 struct r5worker_group
*new_group
;
7444 if (mddev
->new_level
!= 5
7445 && mddev
->new_level
!= 4
7446 && mddev
->new_level
!= 6) {
7447 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7448 mdname(mddev
), mddev
->new_level
);
7449 return ERR_PTR(-EIO
);
7451 if ((mddev
->new_level
== 5
7452 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
7453 (mddev
->new_level
== 6
7454 && !algorithm_valid_raid6(mddev
->new_layout
))) {
7455 pr_warn("md/raid:%s: layout %d not supported\n",
7456 mdname(mddev
), mddev
->new_layout
);
7457 return ERR_PTR(-EIO
);
7459 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
7460 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7461 mdname(mddev
), mddev
->raid_disks
);
7462 return ERR_PTR(-EINVAL
);
7465 if (!mddev
->new_chunk_sectors
||
7466 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
7467 !is_power_of_2(mddev
->new_chunk_sectors
)) {
7468 pr_warn("md/raid:%s: invalid chunk size %d\n",
7469 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
7470 return ERR_PTR(-EINVAL
);
7473 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
7477 #if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7478 conf
->stripe_size
= DEFAULT_STRIPE_SIZE
;
7479 conf
->stripe_shift
= ilog2(DEFAULT_STRIPE_SIZE
) - 9;
7480 conf
->stripe_sectors
= DEFAULT_STRIPE_SIZE
>> 9;
7482 INIT_LIST_HEAD(&conf
->free_list
);
7483 INIT_LIST_HEAD(&conf
->pending_list
);
7484 conf
->pending_data
= kcalloc(PENDING_IO_MAX
,
7485 sizeof(struct r5pending_data
),
7487 if (!conf
->pending_data
)
7489 for (i
= 0; i
< PENDING_IO_MAX
; i
++)
7490 list_add(&conf
->pending_data
[i
].sibling
, &conf
->free_list
);
7491 /* Don't enable multi-threading by default*/
7492 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &new_group
)) {
7493 conf
->group_cnt
= group_cnt
;
7494 conf
->worker_cnt_per_group
= 0;
7495 conf
->worker_groups
= new_group
;
7498 spin_lock_init(&conf
->device_lock
);
7499 seqcount_spinlock_init(&conf
->gen_lock
, &conf
->device_lock
);
7500 mutex_init(&conf
->cache_size_mutex
);
7502 init_waitqueue_head(&conf
->wait_for_quiescent
);
7503 init_waitqueue_head(&conf
->wait_for_stripe
);
7504 init_waitqueue_head(&conf
->wait_for_reshape
);
7505 INIT_LIST_HEAD(&conf
->handle_list
);
7506 INIT_LIST_HEAD(&conf
->loprio_list
);
7507 INIT_LIST_HEAD(&conf
->hold_list
);
7508 INIT_LIST_HEAD(&conf
->delayed_list
);
7509 INIT_LIST_HEAD(&conf
->bitmap_list
);
7510 init_llist_head(&conf
->released_stripes
);
7511 atomic_set(&conf
->active_stripes
, 0);
7512 atomic_set(&conf
->preread_active_stripes
, 0);
7513 atomic_set(&conf
->active_aligned_reads
, 0);
7514 spin_lock_init(&conf
->pending_bios_lock
);
7515 conf
->batch_bio_dispatch
= true;
7516 rdev_for_each(rdev
, mddev
) {
7517 if (test_bit(Journal
, &rdev
->flags
))
7519 if (bdev_nonrot(rdev
->bdev
)) {
7520 conf
->batch_bio_dispatch
= false;
7525 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
7526 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
7528 conf
->raid_disks
= mddev
->raid_disks
;
7529 if (mddev
->reshape_position
== MaxSector
)
7530 conf
->previous_raid_disks
= mddev
->raid_disks
;
7532 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
7533 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
7535 conf
->disks
= kcalloc(max_disks
, sizeof(struct disk_info
),
7541 for (i
= 0; i
< max_disks
; i
++) {
7542 conf
->disks
[i
].extra_page
= alloc_page(GFP_KERNEL
);
7543 if (!conf
->disks
[i
].extra_page
)
7547 ret
= bioset_init(&conf
->bio_split
, BIO_POOL_SIZE
, 0, 0);
7550 conf
->mddev
= mddev
;
7553 conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
7554 if (!conf
->stripe_hashtbl
)
7557 /* We init hash_locks[0] separately to that it can be used
7558 * as the reference lock in the spin_lock_nest_lock() call
7559 * in lock_all_device_hash_locks_irq in order to convince
7560 * lockdep that we know what we are doing.
7562 spin_lock_init(conf
->hash_locks
);
7563 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
7564 spin_lock_init(conf
->hash_locks
+ i
);
7566 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
7567 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
7569 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
7570 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
7572 atomic_set(&conf
->r5c_cached_full_stripes
, 0);
7573 INIT_LIST_HEAD(&conf
->r5c_full_stripe_list
);
7574 atomic_set(&conf
->r5c_cached_partial_stripes
, 0);
7575 INIT_LIST_HEAD(&conf
->r5c_partial_stripe_list
);
7576 atomic_set(&conf
->r5c_flushing_full_stripes
, 0);
7577 atomic_set(&conf
->r5c_flushing_partial_stripes
, 0);
7579 conf
->level
= mddev
->new_level
;
7580 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
7581 ret
= raid5_alloc_percpu(conf
);
7585 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
7588 rdev_for_each(rdev
, mddev
) {
7589 raid_disk
= rdev
->raid_disk
;
7590 if (raid_disk
>= max_disks
7591 || raid_disk
< 0 || test_bit(Journal
, &rdev
->flags
))
7593 disk
= conf
->disks
+ raid_disk
;
7595 if (test_bit(Replacement
, &rdev
->flags
)) {
7596 if (disk
->replacement
)
7598 disk
->replacement
= rdev
;
7605 if (test_bit(In_sync
, &rdev
->flags
)) {
7606 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7607 mdname(mddev
), rdev
->bdev
, raid_disk
);
7608 } else if (rdev
->saved_raid_disk
!= raid_disk
)
7609 /* Cannot rely on bitmap to complete recovery */
7613 conf
->level
= mddev
->new_level
;
7614 if (conf
->level
== 6) {
7615 conf
->max_degraded
= 2;
7616 if (raid6_call
.xor_syndrome
)
7617 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7619 conf
->rmw_level
= PARITY_DISABLE_RMW
;
7621 conf
->max_degraded
= 1;
7622 conf
->rmw_level
= PARITY_ENABLE_RMW
;
7624 conf
->algorithm
= mddev
->new_layout
;
7625 conf
->reshape_progress
= mddev
->reshape_position
;
7626 if (conf
->reshape_progress
!= MaxSector
) {
7627 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
7628 conf
->prev_algo
= mddev
->layout
;
7630 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
7631 conf
->prev_algo
= conf
->algorithm
;
7634 conf
->min_nr_stripes
= NR_STRIPES
;
7635 if (mddev
->reshape_position
!= MaxSector
) {
7636 int stripes
= max_t(int,
7637 ((mddev
->chunk_sectors
<< 9) / RAID5_STRIPE_SIZE(conf
)) * 4,
7638 ((mddev
->new_chunk_sectors
<< 9) / RAID5_STRIPE_SIZE(conf
)) * 4);
7639 conf
->min_nr_stripes
= max(NR_STRIPES
, stripes
);
7640 if (conf
->min_nr_stripes
!= NR_STRIPES
)
7641 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7642 mdname(mddev
), conf
->min_nr_stripes
);
7644 memory
= conf
->min_nr_stripes
* (sizeof(struct stripe_head
) +
7645 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
7646 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
7647 if (grow_stripes(conf
, conf
->min_nr_stripes
)) {
7648 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7649 mdname(mddev
), memory
);
7653 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev
), memory
);
7655 * Losing a stripe head costs more than the time to refill it,
7656 * it reduces the queue depth and so can hurt throughput.
7657 * So set it rather large, scaled by number of devices.
7659 conf
->shrinker
= shrinker_alloc(0, "md-raid5:%s", mdname(mddev
));
7660 if (!conf
->shrinker
) {
7662 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7667 conf
->shrinker
->seeks
= DEFAULT_SEEKS
* conf
->raid_disks
* 4;
7668 conf
->shrinker
->scan_objects
= raid5_cache_scan
;
7669 conf
->shrinker
->count_objects
= raid5_cache_count
;
7670 conf
->shrinker
->batch
= 128;
7671 conf
->shrinker
->private_data
= conf
;
7673 shrinker_register(conf
->shrinker
);
7675 sprintf(pers_name
, "raid%d", mddev
->new_level
);
7676 rcu_assign_pointer(conf
->thread
,
7677 md_register_thread(raid5d
, mddev
, pers_name
));
7678 if (!conf
->thread
) {
7679 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7690 return ERR_PTR(ret
);
7693 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
7696 case ALGORITHM_PARITY_0
:
7697 if (raid_disk
< max_degraded
)
7700 case ALGORITHM_PARITY_N
:
7701 if (raid_disk
>= raid_disks
- max_degraded
)
7704 case ALGORITHM_PARITY_0_6
:
7705 if (raid_disk
== 0 ||
7706 raid_disk
== raid_disks
- 1)
7709 case ALGORITHM_LEFT_ASYMMETRIC_6
:
7710 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
7711 case ALGORITHM_LEFT_SYMMETRIC_6
:
7712 case ALGORITHM_RIGHT_SYMMETRIC_6
:
7713 if (raid_disk
== raid_disks
- 1)
7719 static int raid5_set_limits(struct mddev
*mddev
)
7721 struct r5conf
*conf
= mddev
->private;
7722 struct queue_limits lim
;
7723 int data_disks
, stripe
;
7724 struct md_rdev
*rdev
;
7727 * The read-ahead size must cover two whole stripes, which is
7728 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7730 data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
7733 * We can only discard a whole stripe. It doesn't make sense to
7734 * discard data disk but write parity disk
7736 stripe
= roundup_pow_of_two(data_disks
* (mddev
->chunk_sectors
<< 9));
7738 md_init_stacking_limits(&lim
);
7739 lim
.io_min
= mddev
->chunk_sectors
<< 9;
7740 lim
.io_opt
= lim
.io_min
* (conf
->raid_disks
- conf
->max_degraded
);
7741 lim
.features
|= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE
;
7742 lim
.discard_granularity
= stripe
;
7743 lim
.max_write_zeroes_sectors
= 0;
7744 mddev_stack_rdev_limits(mddev
, &lim
, 0);
7745 rdev_for_each(rdev
, mddev
)
7746 queue_limits_stack_bdev(&lim
, rdev
->bdev
, rdev
->new_data_offset
,
7747 mddev
->gendisk
->disk_name
);
7750 * Zeroing is required for discard, otherwise data could be lost.
7752 * Consider a scenario: discard a stripe (the stripe could be
7753 * inconsistent if discard_zeroes_data is 0); write one disk of the
7754 * stripe (the stripe could be inconsistent again depending on which
7755 * disks are used to calculate parity); the disk is broken; The stripe
7756 * data of this disk is lost.
7758 * We only allow DISCARD if the sysadmin has confirmed that only safe
7759 * devices are in use by setting a module parameter. A better idea
7760 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7761 * required to be safe.
7763 if (!devices_handle_discard_safely
||
7764 lim
.max_discard_sectors
< (stripe
>> 9) ||
7765 lim
.discard_granularity
< stripe
)
7766 lim
.max_hw_discard_sectors
= 0;
7769 * Requests require having a bitmap for each stripe.
7770 * Limit the max sectors based on this.
7772 lim
.max_hw_sectors
= RAID5_MAX_REQ_STRIPES
<< RAID5_STRIPE_SHIFT(conf
);
7774 /* No restrictions on the number of segments in the request */
7775 lim
.max_segments
= USHRT_MAX
;
7777 return queue_limits_set(mddev
->gendisk
->queue
, &lim
);
7780 static int raid5_run(struct mddev
*mddev
)
7782 struct r5conf
*conf
;
7783 int dirty_parity_disks
= 0;
7784 struct md_rdev
*rdev
;
7785 struct md_rdev
*journal_dev
= NULL
;
7786 sector_t reshape_offset
= 0;
7788 long long min_offset_diff
= 0;
7792 if (mddev
->recovery_cp
!= MaxSector
)
7793 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7796 rdev_for_each(rdev
, mddev
) {
7799 if (test_bit(Journal
, &rdev
->flags
)) {
7803 if (rdev
->raid_disk
< 0)
7805 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
7807 min_offset_diff
= diff
;
7809 } else if (mddev
->reshape_backwards
&&
7810 diff
< min_offset_diff
)
7811 min_offset_diff
= diff
;
7812 else if (!mddev
->reshape_backwards
&&
7813 diff
> min_offset_diff
)
7814 min_offset_diff
= diff
;
7817 if ((test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) || journal_dev
) &&
7818 (mddev
->bitmap_info
.offset
|| mddev
->bitmap_info
.file
)) {
7819 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7824 if (mddev
->reshape_position
!= MaxSector
) {
7825 /* Check that we can continue the reshape.
7826 * Difficulties arise if the stripe we would write to
7827 * next is at or after the stripe we would read from next.
7828 * For a reshape that changes the number of devices, this
7829 * is only possible for a very short time, and mdadm makes
7830 * sure that time appears to have past before assembling
7831 * the array. So we fail if that time hasn't passed.
7832 * For a reshape that keeps the number of devices the same
7833 * mdadm must be monitoring the reshape can keeping the
7834 * critical areas read-only and backed up. It will start
7835 * the array in read-only mode, so we check for that.
7837 sector_t here_new
, here_old
;
7839 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
7844 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7849 if (mddev
->new_level
!= mddev
->level
) {
7850 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7854 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
7855 /* reshape_position must be on a new-stripe boundary, and one
7856 * further up in new geometry must map after here in old
7858 * If the chunk sizes are different, then as we perform reshape
7859 * in units of the largest of the two, reshape_position needs
7860 * be a multiple of the largest chunk size times new data disks.
7862 here_new
= mddev
->reshape_position
;
7863 chunk_sectors
= max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
);
7864 new_data_disks
= mddev
->raid_disks
- max_degraded
;
7865 if (sector_div(here_new
, chunk_sectors
* new_data_disks
)) {
7866 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7870 reshape_offset
= here_new
* chunk_sectors
;
7871 /* here_new is the stripe we will write to */
7872 here_old
= mddev
->reshape_position
;
7873 sector_div(here_old
, chunk_sectors
* (old_disks
-max_degraded
));
7874 /* here_old is the first stripe that we might need to read
7876 if (mddev
->delta_disks
== 0) {
7877 /* We cannot be sure it is safe to start an in-place
7878 * reshape. It is only safe if user-space is monitoring
7879 * and taking constant backups.
7880 * mdadm always starts a situation like this in
7881 * readonly mode so it can take control before
7882 * allowing any writes. So just check for that.
7884 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
7885 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
7886 /* not really in-place - so OK */;
7887 else if (mddev
->ro
== 0) {
7888 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7892 } else if (mddev
->reshape_backwards
7893 ? (here_new
* chunk_sectors
+ min_offset_diff
<=
7894 here_old
* chunk_sectors
)
7895 : (here_new
* chunk_sectors
>=
7896 here_old
* chunk_sectors
+ (-min_offset_diff
))) {
7897 /* Reading from the same stripe as writing to - bad */
7898 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7902 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev
));
7903 /* OK, we should be able to continue; */
7905 BUG_ON(mddev
->level
!= mddev
->new_level
);
7906 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
7907 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
7908 BUG_ON(mddev
->delta_disks
!= 0);
7911 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
) &&
7912 test_bit(MD_HAS_PPL
, &mddev
->flags
)) {
7913 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7915 clear_bit(MD_HAS_PPL
, &mddev
->flags
);
7916 clear_bit(MD_HAS_MULTIPLE_PPLS
, &mddev
->flags
);
7919 if (mddev
->private == NULL
)
7920 conf
= setup_conf(mddev
);
7922 conf
= mddev
->private;
7925 return PTR_ERR(conf
);
7927 if (test_bit(MD_HAS_JOURNAL
, &mddev
->flags
)) {
7929 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7932 set_disk_ro(mddev
->gendisk
, 1);
7933 } else if (mddev
->recovery_cp
== MaxSector
)
7934 set_bit(MD_JOURNAL_CLEAN
, &mddev
->flags
);
7937 conf
->min_offset_diff
= min_offset_diff
;
7938 rcu_assign_pointer(mddev
->thread
, conf
->thread
);
7939 rcu_assign_pointer(conf
->thread
, NULL
);
7940 mddev
->private = conf
;
7942 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
7944 rdev
= conf
->disks
[i
].rdev
;
7947 if (conf
->disks
[i
].replacement
&&
7948 conf
->reshape_progress
!= MaxSector
) {
7949 /* replacements and reshape simply do not mix. */
7950 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7953 if (test_bit(In_sync
, &rdev
->flags
))
7955 /* This disc is not fully in-sync. However if it
7956 * just stored parity (beyond the recovery_offset),
7957 * when we don't need to be concerned about the
7958 * array being dirty.
7959 * When reshape goes 'backwards', we never have
7960 * partially completed devices, so we only need
7961 * to worry about reshape going forwards.
7963 /* Hack because v0.91 doesn't store recovery_offset properly. */
7964 if (mddev
->major_version
== 0 &&
7965 mddev
->minor_version
> 90)
7966 rdev
->recovery_offset
= reshape_offset
;
7968 if (rdev
->recovery_offset
< reshape_offset
) {
7969 /* We need to check old and new layout */
7970 if (!only_parity(rdev
->raid_disk
,
7973 conf
->max_degraded
))
7976 if (!only_parity(rdev
->raid_disk
,
7978 conf
->previous_raid_disks
,
7979 conf
->max_degraded
))
7981 dirty_parity_disks
++;
7985 * 0 for a fully functional array, 1 or 2 for a degraded array.
7987 mddev
->degraded
= raid5_calc_degraded(conf
);
7989 if (has_failed(conf
)) {
7990 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7991 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
7995 /* device size must be a multiple of chunk size */
7996 mddev
->dev_sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
7997 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
7999 if (mddev
->degraded
> dirty_parity_disks
&&
8000 mddev
->recovery_cp
!= MaxSector
) {
8001 if (test_bit(MD_HAS_PPL
, &mddev
->flags
))
8002 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8004 else if (mddev
->ok_start_degraded
)
8005 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8008 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8014 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8015 mdname(mddev
), conf
->level
,
8016 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
8019 print_raid5_conf(conf
);
8021 if (conf
->reshape_progress
!= MaxSector
) {
8022 conf
->reshape_safe
= conf
->reshape_progress
;
8023 atomic_set(&conf
->reshape_stripes
, 0);
8024 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
8025 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
8026 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
8027 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
8030 /* Ok, everything is just fine now */
8031 if (mddev
->to_remove
== &raid5_attrs_group
)
8032 mddev
->to_remove
= NULL
;
8033 else if (mddev
->kobj
.sd
&&
8034 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
8035 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8037 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
8039 if (!mddev_is_dm(mddev
)) {
8040 ret
= raid5_set_limits(mddev
);
8045 if (log_init(conf
, journal_dev
, raid5_has_ppl(conf
)))
8050 md_unregister_thread(mddev
, &mddev
->thread
);
8051 print_raid5_conf(conf
);
8053 mddev
->private = NULL
;
8054 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev
));
8058 static void raid5_free(struct mddev
*mddev
, void *priv
)
8060 struct r5conf
*conf
= priv
;
8063 mddev
->to_remove
= &raid5_attrs_group
;
8066 static void raid5_status(struct seq_file
*seq
, struct mddev
*mddev
)
8068 struct r5conf
*conf
= mddev
->private;
8071 lockdep_assert_held(&mddev
->lock
);
8073 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
8074 conf
->chunk_sectors
/ 2, mddev
->layout
);
8075 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
8076 for (i
= 0; i
< conf
->raid_disks
; i
++) {
8077 struct md_rdev
*rdev
= READ_ONCE(conf
->disks
[i
].rdev
);
8079 seq_printf (seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
8081 seq_printf (seq
, "]");
8084 static void print_raid5_conf(struct r5conf
*conf
)
8086 struct md_rdev
*rdev
;
8089 pr_debug("RAID conf printout:\n");
8091 pr_debug("(conf==NULL)\n");
8094 pr_debug(" --- level:%d rd:%d wd:%d\n", conf
->level
,
8096 conf
->raid_disks
- conf
->mddev
->degraded
);
8098 for (i
= 0; i
< conf
->raid_disks
; i
++) {
8099 rdev
= conf
->disks
[i
].rdev
;
8101 pr_debug(" disk %d, o:%d, dev:%pg\n",
8102 i
, !test_bit(Faulty
, &rdev
->flags
),
8107 static int raid5_spare_active(struct mddev
*mddev
)
8110 struct r5conf
*conf
= mddev
->private;
8111 struct md_rdev
*rdev
, *replacement
;
8113 unsigned long flags
;
8115 for (i
= 0; i
< conf
->raid_disks
; i
++) {
8116 rdev
= conf
->disks
[i
].rdev
;
8117 replacement
= conf
->disks
[i
].replacement
;
8119 && replacement
->recovery_offset
== MaxSector
8120 && !test_bit(Faulty
, &replacement
->flags
)
8121 && !test_and_set_bit(In_sync
, &replacement
->flags
)) {
8122 /* Replacement has just become active. */
8124 || !test_and_clear_bit(In_sync
, &rdev
->flags
))
8127 /* Replaced device not technically faulty,
8128 * but we need to be sure it gets removed
8129 * and never re-added.
8131 set_bit(Faulty
, &rdev
->flags
);
8132 sysfs_notify_dirent_safe(
8135 sysfs_notify_dirent_safe(replacement
->sysfs_state
);
8137 && rdev
->recovery_offset
== MaxSector
8138 && !test_bit(Faulty
, &rdev
->flags
)
8139 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
8141 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
8144 spin_lock_irqsave(&conf
->device_lock
, flags
);
8145 mddev
->degraded
= raid5_calc_degraded(conf
);
8146 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
8147 print_raid5_conf(conf
);
8151 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
8153 struct r5conf
*conf
= mddev
->private;
8155 int number
= rdev
->raid_disk
;
8156 struct md_rdev
**rdevp
;
8157 struct disk_info
*p
;
8158 struct md_rdev
*tmp
;
8160 print_raid5_conf(conf
);
8161 if (test_bit(Journal
, &rdev
->flags
) && conf
->log
) {
8163 * we can't wait pending write here, as this is called in
8164 * raid5d, wait will deadlock.
8165 * neilb: there is no locking about new writes here,
8166 * so this cannot be safe.
8168 if (atomic_read(&conf
->active_stripes
) ||
8169 atomic_read(&conf
->r5c_cached_full_stripes
) ||
8170 atomic_read(&conf
->r5c_cached_partial_stripes
)) {
8176 if (unlikely(number
>= conf
->pool_size
))
8178 p
= conf
->disks
+ number
;
8179 if (rdev
== p
->rdev
)
8181 else if (rdev
== p
->replacement
)
8182 rdevp
= &p
->replacement
;
8186 if (number
>= conf
->raid_disks
&&
8187 conf
->reshape_progress
== MaxSector
)
8188 clear_bit(In_sync
, &rdev
->flags
);
8190 if (test_bit(In_sync
, &rdev
->flags
) ||
8191 atomic_read(&rdev
->nr_pending
)) {
8195 /* Only remove non-faulty devices if recovery
8198 if (!test_bit(Faulty
, &rdev
->flags
) &&
8199 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
8200 !has_failed(conf
) &&
8201 (!p
->replacement
|| p
->replacement
== rdev
) &&
8202 number
< conf
->raid_disks
) {
8206 WRITE_ONCE(*rdevp
, NULL
);
8208 err
= log_modify(conf
, rdev
, false);
8213 tmp
= p
->replacement
;
8215 /* We must have just cleared 'rdev' */
8216 WRITE_ONCE(p
->rdev
, tmp
);
8217 clear_bit(Replacement
, &tmp
->flags
);
8218 WRITE_ONCE(p
->replacement
, NULL
);
8221 err
= log_modify(conf
, tmp
, true);
8224 clear_bit(WantReplacement
, &rdev
->flags
);
8227 print_raid5_conf(conf
);
8231 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
8233 struct r5conf
*conf
= mddev
->private;
8234 int ret
, err
= -EEXIST
;
8236 struct disk_info
*p
;
8237 struct md_rdev
*tmp
;
8239 int last
= conf
->raid_disks
- 1;
8241 if (test_bit(Journal
, &rdev
->flags
)) {
8245 rdev
->raid_disk
= 0;
8247 * The array is in readonly mode if journal is missing, so no
8248 * write requests running. We should be safe
8250 ret
= log_init(conf
, rdev
, false);
8254 ret
= r5l_start(conf
->log
);
8260 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
8263 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
8264 /* no point adding a device */
8267 if (rdev
->raid_disk
>= 0)
8268 first
= last
= rdev
->raid_disk
;
8271 * find the disk ... but prefer rdev->saved_raid_disk
8274 if (rdev
->saved_raid_disk
>= first
&&
8275 rdev
->saved_raid_disk
<= last
&&
8276 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
8277 first
= rdev
->saved_raid_disk
;
8279 for (disk
= first
; disk
<= last
; disk
++) {
8280 p
= conf
->disks
+ disk
;
8281 if (p
->rdev
== NULL
) {
8282 clear_bit(In_sync
, &rdev
->flags
);
8283 rdev
->raid_disk
= disk
;
8284 if (rdev
->saved_raid_disk
!= disk
)
8286 WRITE_ONCE(p
->rdev
, rdev
);
8288 err
= log_modify(conf
, rdev
, true);
8293 for (disk
= first
; disk
<= last
; disk
++) {
8294 p
= conf
->disks
+ disk
;
8296 if (test_bit(WantReplacement
, &tmp
->flags
) &&
8297 mddev
->reshape_position
== MaxSector
&&
8298 p
->replacement
== NULL
) {
8299 clear_bit(In_sync
, &rdev
->flags
);
8300 set_bit(Replacement
, &rdev
->flags
);
8301 rdev
->raid_disk
= disk
;
8304 WRITE_ONCE(p
->replacement
, rdev
);
8309 print_raid5_conf(conf
);
8313 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
8315 /* no resync is happening, and there is enough space
8316 * on all devices, so we can resize.
8317 * We need to make sure resync covers any new space.
8318 * If the array is shrinking we should possibly wait until
8319 * any io in the removed space completes, but it hardly seems
8323 struct r5conf
*conf
= mddev
->private;
8326 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
8328 sectors
&= ~((sector_t
)conf
->chunk_sectors
- 1);
8329 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
8330 if (mddev
->external_size
&&
8331 mddev
->array_sectors
> newsize
)
8334 ret
= mddev
->bitmap_ops
->resize(mddev
, sectors
, 0, false);
8338 md_set_array_sectors(mddev
, newsize
);
8339 if (sectors
> mddev
->dev_sectors
&&
8340 mddev
->recovery_cp
> mddev
->dev_sectors
) {
8341 mddev
->recovery_cp
= mddev
->dev_sectors
;
8342 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
8344 mddev
->dev_sectors
= sectors
;
8345 mddev
->resync_max_sectors
= sectors
;
8349 static int check_stripe_cache(struct mddev
*mddev
)
8351 /* Can only proceed if there are plenty of stripe_heads.
8352 * We need a minimum of one full stripe,, and for sensible progress
8353 * it is best to have about 4 times that.
8354 * If we require 4 times, then the default 256 4K stripe_heads will
8355 * allow for chunk sizes up to 256K, which is probably OK.
8356 * If the chunk size is greater, user-space should request more
8357 * stripe_heads first.
8359 struct r5conf
*conf
= mddev
->private;
8360 if (((mddev
->chunk_sectors
<< 9) / RAID5_STRIPE_SIZE(conf
)) * 4
8361 > conf
->min_nr_stripes
||
8362 ((mddev
->new_chunk_sectors
<< 9) / RAID5_STRIPE_SIZE(conf
)) * 4
8363 > conf
->min_nr_stripes
) {
8364 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8366 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
8367 / RAID5_STRIPE_SIZE(conf
))*4);
8373 static int check_reshape(struct mddev
*mddev
)
8375 struct r5conf
*conf
= mddev
->private;
8377 if (raid5_has_log(conf
) || raid5_has_ppl(conf
))
8379 if (mddev
->delta_disks
== 0 &&
8380 mddev
->new_layout
== mddev
->layout
&&
8381 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
8382 return 0; /* nothing to do */
8383 if (has_failed(conf
))
8385 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
8386 /* We might be able to shrink, but the devices must
8387 * be made bigger first.
8388 * For raid6, 4 is the minimum size.
8389 * Otherwise 2 is the minimum
8392 if (mddev
->level
== 6)
8394 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
8398 if (!check_stripe_cache(mddev
))
8401 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
||
8402 mddev
->delta_disks
> 0)
8403 if (resize_chunks(conf
,
8404 conf
->previous_raid_disks
8405 + max(0, mddev
->delta_disks
),
8406 max(mddev
->new_chunk_sectors
,
8407 mddev
->chunk_sectors
)
8411 if (conf
->previous_raid_disks
+ mddev
->delta_disks
<= conf
->pool_size
)
8412 return 0; /* never bother to shrink */
8413 return resize_stripes(conf
, (conf
->previous_raid_disks
8414 + mddev
->delta_disks
));
8417 static int raid5_start_reshape(struct mddev
*mddev
)
8419 struct r5conf
*conf
= mddev
->private;
8420 struct md_rdev
*rdev
;
8423 unsigned long flags
;
8425 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
8428 if (!check_stripe_cache(mddev
))
8431 if (has_failed(conf
))
8434 /* raid5 can't handle concurrent reshape and recovery */
8435 if (mddev
->recovery_cp
< MaxSector
)
8437 for (i
= 0; i
< conf
->raid_disks
; i
++)
8438 if (conf
->disks
[i
].replacement
)
8441 rdev_for_each(rdev
, mddev
) {
8442 if (!test_bit(In_sync
, &rdev
->flags
)
8443 && !test_bit(Faulty
, &rdev
->flags
))
8447 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
8448 /* Not enough devices even to make a degraded array
8453 /* Refuse to reduce size of the array. Any reductions in
8454 * array size must be through explicit setting of array_size
8457 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
8458 < mddev
->array_sectors
) {
8459 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8464 atomic_set(&conf
->reshape_stripes
, 0);
8465 spin_lock_irq(&conf
->device_lock
);
8466 write_seqcount_begin(&conf
->gen_lock
);
8467 conf
->previous_raid_disks
= conf
->raid_disks
;
8468 conf
->raid_disks
+= mddev
->delta_disks
;
8469 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
8470 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
8471 conf
->prev_algo
= conf
->algorithm
;
8472 conf
->algorithm
= mddev
->new_layout
;
8474 /* Code that selects data_offset needs to see the generation update
8475 * if reshape_progress has been set - so a memory barrier needed.
8478 if (mddev
->reshape_backwards
)
8479 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
8481 conf
->reshape_progress
= 0;
8482 conf
->reshape_safe
= conf
->reshape_progress
;
8483 write_seqcount_end(&conf
->gen_lock
);
8484 spin_unlock_irq(&conf
->device_lock
);
8486 /* Now make sure any requests that proceeded on the assumption
8487 * the reshape wasn't running - like Discard or Read - have
8490 raid5_quiesce(mddev
, true);
8491 raid5_quiesce(mddev
, false);
8493 /* Add some new drives, as many as will fit.
8494 * We know there are enough to make the newly sized array work.
8495 * Don't add devices if we are reducing the number of
8496 * devices in the array. This is because it is not possible
8497 * to correctly record the "partially reconstructed" state of
8498 * such devices during the reshape and confusion could result.
8500 if (mddev
->delta_disks
>= 0) {
8501 rdev_for_each(rdev
, mddev
)
8502 if (rdev
->raid_disk
< 0 &&
8503 !test_bit(Faulty
, &rdev
->flags
)) {
8504 if (raid5_add_disk(mddev
, rdev
) == 0) {
8506 >= conf
->previous_raid_disks
)
8507 set_bit(In_sync
, &rdev
->flags
);
8509 rdev
->recovery_offset
= 0;
8511 /* Failure here is OK */
8512 sysfs_link_rdev(mddev
, rdev
);
8514 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
8515 && !test_bit(Faulty
, &rdev
->flags
)) {
8516 /* This is a spare that was manually added */
8517 set_bit(In_sync
, &rdev
->flags
);
8520 /* When a reshape changes the number of devices,
8521 * ->degraded is measured against the larger of the
8522 * pre and post number of devices.
8524 spin_lock_irqsave(&conf
->device_lock
, flags
);
8525 mddev
->degraded
= raid5_calc_degraded(conf
);
8526 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
8528 mddev
->raid_disks
= conf
->raid_disks
;
8529 mddev
->reshape_position
= conf
->reshape_progress
;
8530 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
8532 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
8533 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
8534 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
8535 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
8536 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
8537 conf
->reshape_checkpoint
= jiffies
;
8542 /* This is called from the reshape thread and should make any
8543 * changes needed in 'conf'
8545 static void end_reshape(struct r5conf
*conf
)
8548 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
8549 struct md_rdev
*rdev
;
8551 spin_lock_irq(&conf
->device_lock
);
8552 conf
->previous_raid_disks
= conf
->raid_disks
;
8553 md_finish_reshape(conf
->mddev
);
8555 conf
->reshape_progress
= MaxSector
;
8556 conf
->mddev
->reshape_position
= MaxSector
;
8557 rdev_for_each(rdev
, conf
->mddev
)
8558 if (rdev
->raid_disk
>= 0 &&
8559 !test_bit(Journal
, &rdev
->flags
) &&
8560 !test_bit(In_sync
, &rdev
->flags
))
8561 rdev
->recovery_offset
= MaxSector
;
8562 spin_unlock_irq(&conf
->device_lock
);
8563 wake_up(&conf
->wait_for_reshape
);
8565 mddev_update_io_opt(conf
->mddev
,
8566 conf
->raid_disks
- conf
->max_degraded
);
8570 /* This is called from the raid5d thread with mddev_lock held.
8571 * It makes config changes to the device.
8573 static void raid5_finish_reshape(struct mddev
*mddev
)
8575 struct r5conf
*conf
= mddev
->private;
8576 struct md_rdev
*rdev
;
8578 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
8580 if (mddev
->delta_disks
<= 0) {
8582 spin_lock_irq(&conf
->device_lock
);
8583 mddev
->degraded
= raid5_calc_degraded(conf
);
8584 spin_unlock_irq(&conf
->device_lock
);
8585 for (d
= conf
->raid_disks
;
8586 d
< conf
->raid_disks
- mddev
->delta_disks
;
8588 rdev
= conf
->disks
[d
].rdev
;
8590 clear_bit(In_sync
, &rdev
->flags
);
8591 rdev
= conf
->disks
[d
].replacement
;
8593 clear_bit(In_sync
, &rdev
->flags
);
8596 mddev
->layout
= conf
->algorithm
;
8597 mddev
->chunk_sectors
= conf
->chunk_sectors
;
8598 mddev
->reshape_position
= MaxSector
;
8599 mddev
->delta_disks
= 0;
8600 mddev
->reshape_backwards
= 0;
8604 static void raid5_quiesce(struct mddev
*mddev
, int quiesce
)
8606 struct r5conf
*conf
= mddev
->private;
8609 /* stop all writes */
8610 lock_all_device_hash_locks_irq(conf
);
8611 /* '2' tells resync/reshape to pause so that all
8612 * active stripes can drain
8614 r5c_flush_cache(conf
, INT_MAX
);
8615 /* need a memory barrier to make sure read_one_chunk() sees
8616 * quiesce started and reverts to slow (locked) path.
8618 smp_store_release(&conf
->quiesce
, 2);
8619 wait_event_cmd(conf
->wait_for_quiescent
,
8620 atomic_read(&conf
->active_stripes
) == 0 &&
8621 atomic_read(&conf
->active_aligned_reads
) == 0,
8622 unlock_all_device_hash_locks_irq(conf
),
8623 lock_all_device_hash_locks_irq(conf
));
8625 unlock_all_device_hash_locks_irq(conf
);
8626 /* allow reshape to continue */
8627 wake_up(&conf
->wait_for_reshape
);
8629 /* re-enable writes */
8630 lock_all_device_hash_locks_irq(conf
);
8632 wake_up(&conf
->wait_for_quiescent
);
8633 wake_up(&conf
->wait_for_reshape
);
8634 unlock_all_device_hash_locks_irq(conf
);
8636 log_quiesce(conf
, quiesce
);
8639 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
8641 struct r0conf
*raid0_conf
= mddev
->private;
8644 /* for raid0 takeover only one zone is supported */
8645 if (raid0_conf
->nr_strip_zones
> 1) {
8646 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8648 return ERR_PTR(-EINVAL
);
8651 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
8652 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
8653 mddev
->dev_sectors
= sectors
;
8654 mddev
->new_level
= level
;
8655 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8656 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
8657 mddev
->raid_disks
+= 1;
8658 mddev
->delta_disks
= 1;
8659 /* make sure it will be not marked as dirty */
8660 mddev
->recovery_cp
= MaxSector
;
8662 return setup_conf(mddev
);
8665 static void *raid5_takeover_raid1(struct mddev
*mddev
)
8670 if (mddev
->raid_disks
!= 2 ||
8671 mddev
->degraded
> 1)
8672 return ERR_PTR(-EINVAL
);
8674 /* Should check if there are write-behind devices? */
8676 chunksect
= 64*2; /* 64K by default */
8678 /* The array must be an exact multiple of chunksize */
8679 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
8682 if ((chunksect
<<9) < RAID5_STRIPE_SIZE((struct r5conf
*)mddev
->private))
8683 /* array size does not allow a suitable chunk size */
8684 return ERR_PTR(-EINVAL
);
8686 mddev
->new_level
= 5;
8687 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8688 mddev
->new_chunk_sectors
= chunksect
;
8690 ret
= setup_conf(mddev
);
8692 mddev_clear_unsupported_flags(mddev
,
8693 UNSUPPORTED_MDDEV_FLAGS
);
8697 static void *raid5_takeover_raid6(struct mddev
*mddev
)
8701 switch (mddev
->layout
) {
8702 case ALGORITHM_LEFT_ASYMMETRIC_6
:
8703 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
8705 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
8706 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
8708 case ALGORITHM_LEFT_SYMMETRIC_6
:
8709 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
8711 case ALGORITHM_RIGHT_SYMMETRIC_6
:
8712 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
8714 case ALGORITHM_PARITY_0_6
:
8715 new_layout
= ALGORITHM_PARITY_0
;
8717 case ALGORITHM_PARITY_N
:
8718 new_layout
= ALGORITHM_PARITY_N
;
8721 return ERR_PTR(-EINVAL
);
8723 mddev
->new_level
= 5;
8724 mddev
->new_layout
= new_layout
;
8725 mddev
->delta_disks
= -1;
8726 mddev
->raid_disks
-= 1;
8727 return setup_conf(mddev
);
8730 static int raid5_check_reshape(struct mddev
*mddev
)
8732 /* For a 2-drive array, the layout and chunk size can be changed
8733 * immediately as not restriping is needed.
8734 * For larger arrays we record the new value - after validation
8735 * to be used by a reshape pass.
8737 struct r5conf
*conf
= mddev
->private;
8738 int new_chunk
= mddev
->new_chunk_sectors
;
8740 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
8742 if (new_chunk
> 0) {
8743 if (!is_power_of_2(new_chunk
))
8745 if (new_chunk
< (PAGE_SIZE
>>9))
8747 if (mddev
->array_sectors
& (new_chunk
-1))
8748 /* not factor of array size */
8752 /* They look valid */
8754 if (mddev
->raid_disks
== 2) {
8755 /* can make the change immediately */
8756 if (mddev
->new_layout
>= 0) {
8757 conf
->algorithm
= mddev
->new_layout
;
8758 mddev
->layout
= mddev
->new_layout
;
8760 if (new_chunk
> 0) {
8761 conf
->chunk_sectors
= new_chunk
;
8762 mddev
->chunk_sectors
= new_chunk
;
8764 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
8765 md_wakeup_thread(mddev
->thread
);
8767 return check_reshape(mddev
);
8770 static int raid6_check_reshape(struct mddev
*mddev
)
8772 int new_chunk
= mddev
->new_chunk_sectors
;
8774 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
8776 if (new_chunk
> 0) {
8777 if (!is_power_of_2(new_chunk
))
8779 if (new_chunk
< (PAGE_SIZE
>> 9))
8781 if (mddev
->array_sectors
& (new_chunk
-1))
8782 /* not factor of array size */
8786 /* They look valid */
8787 return check_reshape(mddev
);
8790 static void *raid5_takeover(struct mddev
*mddev
)
8792 /* raid5 can take over:
8793 * raid0 - if there is only one strip zone - make it a raid4 layout
8794 * raid1 - if there are two drives. We need to know the chunk size
8795 * raid4 - trivial - just use a raid4 layout.
8796 * raid6 - Providing it is a *_6 layout
8798 if (mddev
->level
== 0)
8799 return raid45_takeover_raid0(mddev
, 5);
8800 if (mddev
->level
== 1)
8801 return raid5_takeover_raid1(mddev
);
8802 if (mddev
->level
== 4) {
8803 mddev
->new_layout
= ALGORITHM_PARITY_N
;
8804 mddev
->new_level
= 5;
8805 return setup_conf(mddev
);
8807 if (mddev
->level
== 6)
8808 return raid5_takeover_raid6(mddev
);
8810 return ERR_PTR(-EINVAL
);
8813 static void *raid4_takeover(struct mddev
*mddev
)
8815 /* raid4 can take over:
8816 * raid0 - if there is only one strip zone
8817 * raid5 - if layout is right
8819 if (mddev
->level
== 0)
8820 return raid45_takeover_raid0(mddev
, 4);
8821 if (mddev
->level
== 5 &&
8822 mddev
->layout
== ALGORITHM_PARITY_N
) {
8823 mddev
->new_layout
= 0;
8824 mddev
->new_level
= 4;
8825 return setup_conf(mddev
);
8827 return ERR_PTR(-EINVAL
);
8830 static struct md_personality raid5_personality
;
8832 static void *raid6_takeover(struct mddev
*mddev
)
8834 /* Currently can only take over a raid5. We map the
8835 * personality to an equivalent raid6 personality
8836 * with the Q block at the end.
8840 if (mddev
->pers
!= &raid5_personality
)
8841 return ERR_PTR(-EINVAL
);
8842 if (mddev
->degraded
> 1)
8843 return ERR_PTR(-EINVAL
);
8844 if (mddev
->raid_disks
> 253)
8845 return ERR_PTR(-EINVAL
);
8846 if (mddev
->raid_disks
< 3)
8847 return ERR_PTR(-EINVAL
);
8849 switch (mddev
->layout
) {
8850 case ALGORITHM_LEFT_ASYMMETRIC
:
8851 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
8853 case ALGORITHM_RIGHT_ASYMMETRIC
:
8854 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
8856 case ALGORITHM_LEFT_SYMMETRIC
:
8857 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
8859 case ALGORITHM_RIGHT_SYMMETRIC
:
8860 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
8862 case ALGORITHM_PARITY_0
:
8863 new_layout
= ALGORITHM_PARITY_0_6
;
8865 case ALGORITHM_PARITY_N
:
8866 new_layout
= ALGORITHM_PARITY_N
;
8869 return ERR_PTR(-EINVAL
);
8871 mddev
->new_level
= 6;
8872 mddev
->new_layout
= new_layout
;
8873 mddev
->delta_disks
= 1;
8874 mddev
->raid_disks
+= 1;
8875 return setup_conf(mddev
);
8878 static int raid5_change_consistency_policy(struct mddev
*mddev
, const char *buf
)
8880 struct r5conf
*conf
;
8883 err
= mddev_suspend_and_lock(mddev
);
8886 conf
= mddev
->private;
8888 mddev_unlock_and_resume(mddev
);
8892 if (strncmp(buf
, "ppl", 3) == 0) {
8893 /* ppl only works with RAID 5 */
8894 if (!raid5_has_ppl(conf
) && conf
->level
== 5) {
8895 err
= log_init(conf
, NULL
, true);
8897 err
= resize_stripes(conf
, conf
->pool_size
);
8903 } else if (strncmp(buf
, "resync", 6) == 0) {
8904 if (raid5_has_ppl(conf
)) {
8906 err
= resize_stripes(conf
, conf
->pool_size
);
8907 } else if (test_bit(MD_HAS_JOURNAL
, &conf
->mddev
->flags
) &&
8908 r5l_log_disk_error(conf
)) {
8909 bool journal_dev_exists
= false;
8910 struct md_rdev
*rdev
;
8912 rdev_for_each(rdev
, mddev
)
8913 if (test_bit(Journal
, &rdev
->flags
)) {
8914 journal_dev_exists
= true;
8918 if (!journal_dev_exists
)
8919 clear_bit(MD_HAS_JOURNAL
, &mddev
->flags
);
8920 else /* need remove journal device first */
8929 md_update_sb(mddev
, 1);
8931 mddev_unlock_and_resume(mddev
);
8936 static int raid5_start(struct mddev
*mddev
)
8938 struct r5conf
*conf
= mddev
->private;
8940 return r5l_start(conf
->log
);
8944 * This is only used for dm-raid456, caller already frozen sync_thread, hence
8945 * if rehsape is still in progress, io that is waiting for reshape can never be
8946 * done now, hence wake up and handle those IO.
8948 static void raid5_prepare_suspend(struct mddev
*mddev
)
8950 struct r5conf
*conf
= mddev
->private;
8952 wake_up(&conf
->wait_for_reshape
);
8955 static struct md_personality raid6_personality
=
8959 .owner
= THIS_MODULE
,
8960 .make_request
= raid5_make_request
,
8962 .start
= raid5_start
,
8964 .status
= raid5_status
,
8965 .error_handler
= raid5_error
,
8966 .hot_add_disk
= raid5_add_disk
,
8967 .hot_remove_disk
= raid5_remove_disk
,
8968 .spare_active
= raid5_spare_active
,
8969 .sync_request
= raid5_sync_request
,
8970 .resize
= raid5_resize
,
8972 .check_reshape
= raid6_check_reshape
,
8973 .start_reshape
= raid5_start_reshape
,
8974 .finish_reshape
= raid5_finish_reshape
,
8975 .quiesce
= raid5_quiesce
,
8976 .takeover
= raid6_takeover
,
8977 .change_consistency_policy
= raid5_change_consistency_policy
,
8978 .prepare_suspend
= raid5_prepare_suspend
,
8980 static struct md_personality raid5_personality
=
8984 .owner
= THIS_MODULE
,
8985 .make_request
= raid5_make_request
,
8987 .start
= raid5_start
,
8989 .status
= raid5_status
,
8990 .error_handler
= raid5_error
,
8991 .hot_add_disk
= raid5_add_disk
,
8992 .hot_remove_disk
= raid5_remove_disk
,
8993 .spare_active
= raid5_spare_active
,
8994 .sync_request
= raid5_sync_request
,
8995 .resize
= raid5_resize
,
8997 .check_reshape
= raid5_check_reshape
,
8998 .start_reshape
= raid5_start_reshape
,
8999 .finish_reshape
= raid5_finish_reshape
,
9000 .quiesce
= raid5_quiesce
,
9001 .takeover
= raid5_takeover
,
9002 .change_consistency_policy
= raid5_change_consistency_policy
,
9003 .prepare_suspend
= raid5_prepare_suspend
,
9006 static struct md_personality raid4_personality
=
9010 .owner
= THIS_MODULE
,
9011 .make_request
= raid5_make_request
,
9013 .start
= raid5_start
,
9015 .status
= raid5_status
,
9016 .error_handler
= raid5_error
,
9017 .hot_add_disk
= raid5_add_disk
,
9018 .hot_remove_disk
= raid5_remove_disk
,
9019 .spare_active
= raid5_spare_active
,
9020 .sync_request
= raid5_sync_request
,
9021 .resize
= raid5_resize
,
9023 .check_reshape
= raid5_check_reshape
,
9024 .start_reshape
= raid5_start_reshape
,
9025 .finish_reshape
= raid5_finish_reshape
,
9026 .quiesce
= raid5_quiesce
,
9027 .takeover
= raid4_takeover
,
9028 .change_consistency_policy
= raid5_change_consistency_policy
,
9029 .prepare_suspend
= raid5_prepare_suspend
,
9032 static int __init
raid5_init(void)
9036 raid5_wq
= alloc_workqueue("raid5wq",
9037 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
9041 ret
= cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE
,
9043 raid456_cpu_up_prepare
,
9046 destroy_workqueue(raid5_wq
);
9049 register_md_personality(&raid6_personality
);
9050 register_md_personality(&raid5_personality
);
9051 register_md_personality(&raid4_personality
);
9055 static void raid5_exit(void)
9057 unregister_md_personality(&raid6_personality
);
9058 unregister_md_personality(&raid5_personality
);
9059 unregister_md_personality(&raid4_personality
);
9060 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE
);
9061 destroy_workqueue(raid5_wq
);
9064 module_init(raid5_init
);
9065 module_exit(raid5_exit
);
9066 MODULE_LICENSE("GPL");
9067 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9068 MODULE_ALIAS("md-personality-4"); /* RAID5 */
9069 MODULE_ALIAS("md-raid5");
9070 MODULE_ALIAS("md-raid4");
9071 MODULE_ALIAS("md-level-5");
9072 MODULE_ALIAS("md-level-4");
9073 MODULE_ALIAS("md-personality-8"); /* RAID6 */
9074 MODULE_ALIAS("md-raid6");
9075 MODULE_ALIAS("md-level-6");
9077 /* This used to be two separate modules, they were: */
9078 MODULE_ALIAS("raid5");
9079 MODULE_ALIAS("raid6");