1 // SPDX-License-Identifier: GPL-2.0-only
3 * adv7604 - Analog Devices ADV7604 video decoder driver
5 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
10 * References (c = chapter, p = page):
11 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12 * Revision 2.5, June 2010
13 * REF_02 - Analog devices, Register map documentation, Documentation of
14 * the register maps, Software manual, Rev. F, June 2010
15 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 #include <linux/interrupt.h>
32 #include <media/i2c/adv7604.h>
33 #include <media/cec.h>
34 #include <media/v4l2-ctrls.h>
35 #include <media/v4l2-device.h>
36 #include <media/v4l2-event.h>
37 #include <media/v4l2-dv-timings.h>
38 #include <media/v4l2-fwnode.h>
41 module_param(debug
, int, 0644);
42 MODULE_PARM_DESC(debug
, "debug level (0-2)");
44 MODULE_DESCRIPTION("Analog Devices ADV7604/10/11/12 video decoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hansverk@cisco.com>");
46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47 MODULE_LICENSE("GPL");
49 /* ADV7604 system clock frequency */
50 #define ADV76XX_FSC (28636360)
52 #define ADV76XX_RGB_OUT (1 << 1)
54 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
55 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
56 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
58 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
59 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
60 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
61 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
63 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
65 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
66 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
67 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
68 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
69 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
70 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
72 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
74 #define ADV76XX_MAX_ADDRS (3)
76 #define ADV76XX_MAX_EDID_BLOCKS 4
80 ADV7611
, // including ADV7610
84 struct adv76xx_reg_seq
{
89 struct adv76xx_format_info
{
97 struct adv76xx_cfg_read_infoframe
{
104 struct adv76xx_chip_info
{
105 enum adv76xx_type type
;
108 unsigned int max_port
;
109 unsigned int num_dv_ports
;
111 unsigned int edid_enable_reg
;
112 unsigned int edid_status_reg
;
113 unsigned int edid_segment_reg
;
114 unsigned int edid_segment_mask
;
115 unsigned int edid_spa_loc_reg
;
116 unsigned int edid_spa_loc_msb_mask
;
117 unsigned int edid_spa_port_b_reg
;
118 unsigned int lcf_reg
;
120 unsigned int cable_det_mask
;
121 unsigned int tdms_lock_mask
;
122 unsigned int fmt_change_digital_mask
;
125 unsigned int cec_irq_status
;
126 unsigned int cec_rx_enable
;
127 unsigned int cec_rx_enable_mask
;
130 const struct adv76xx_format_info
*formats
;
131 unsigned int nformats
;
133 void (*set_termination
)(struct v4l2_subdev
*sd
, bool enable
);
134 void (*setup_irqs
)(struct v4l2_subdev
*sd
);
135 unsigned int (*read_hdmi_pixelclock
)(struct v4l2_subdev
*sd
);
136 unsigned int (*read_cable_det
)(struct v4l2_subdev
*sd
);
138 /* 0 = AFE, 1 = HDMI */
139 const struct adv76xx_reg_seq
*recommended_settings
[2];
140 unsigned int num_recommended_settings
[2];
142 unsigned long page_mask
;
144 /* Masks for timings */
145 unsigned int linewidth_mask
;
146 unsigned int field0_height_mask
;
147 unsigned int field1_height_mask
;
148 unsigned int hfrontporch_mask
;
149 unsigned int hsync_mask
;
150 unsigned int hbackporch_mask
;
151 unsigned int field0_vfrontporch_mask
;
152 unsigned int field1_vfrontporch_mask
;
153 unsigned int field0_vsync_mask
;
154 unsigned int field1_vsync_mask
;
155 unsigned int field0_vbackporch_mask
;
156 unsigned int field1_vbackporch_mask
;
160 **********************************************************************
162 * Arrays with configuration parameters for the ADV7604
164 **********************************************************************
167 struct adv76xx_state
{
168 const struct adv76xx_chip_info
*info
;
169 struct adv76xx_platform_data pdata
;
171 struct gpio_desc
*hpd_gpio
[4];
172 struct gpio_desc
*reset_gpio
;
174 struct v4l2_subdev sd
;
175 struct media_pad pads
[ADV76XX_PAD_MAX
];
176 unsigned int source_pad
;
178 struct v4l2_ctrl_handler hdl
;
180 enum adv76xx_pad selected_input
;
182 struct v4l2_dv_timings timings
;
183 const struct adv76xx_format_info
*format
;
186 u8 edid
[ADV76XX_MAX_EDID_BLOCKS
* 128];
191 struct v4l2_fract aspect_ratio
;
192 u32 rgb_quantization_range
;
193 struct delayed_work delayed_work_enable_hotplug
;
194 bool restart_stdi_once
;
196 struct dentry
*debugfs_dir
;
197 struct v4l2_debugfs_if
*infoframes
;
200 struct cec_adapter
*cec_adap
;
201 u8 cec_addr
[ADV76XX_MAX_ADDRS
];
203 bool cec_enabled_adap
;
206 struct i2c_client
*i2c_clients
[ADV76XX_PAGE_MAX
];
209 struct regmap
*regmap
[ADV76XX_PAGE_MAX
];
212 struct v4l2_ctrl
*detect_tx_5v_ctrl
;
213 struct v4l2_ctrl
*analog_sampling_phase_ctrl
;
214 struct v4l2_ctrl
*free_run_color_manual_ctrl
;
215 struct v4l2_ctrl
*free_run_color_ctrl
;
216 struct v4l2_ctrl
*rgb_quantization_range_ctrl
;
219 static bool adv76xx_has_afe(struct adv76xx_state
*state
)
221 return state
->info
->has_afe
;
224 /* Unsupported timings. This device cannot support 720p30. */
225 static const struct v4l2_dv_timings adv76xx_timings_exceptions
[] = {
226 V4L2_DV_BT_CEA_1280X720P30
,
230 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings
*t
, void *hdl
)
234 for (i
= 0; adv76xx_timings_exceptions
[i
].bt
.width
; i
++)
235 if (v4l2_match_dv_timings(t
, adv76xx_timings_exceptions
+ i
, 0, false))
240 struct adv76xx_video_standards
{
241 struct v4l2_dv_timings timings
;
246 /* sorted by number of lines */
247 static const struct adv76xx_video_standards adv7604_prim_mode_comp
[] = {
248 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
249 { V4L2_DV_BT_CEA_720X576P50
, 0x0b, 0x00 },
250 { V4L2_DV_BT_CEA_1280X720P50
, 0x19, 0x01 },
251 { V4L2_DV_BT_CEA_1280X720P60
, 0x19, 0x00 },
252 { V4L2_DV_BT_CEA_1920X1080P24
, 0x1e, 0x04 },
253 { V4L2_DV_BT_CEA_1920X1080P25
, 0x1e, 0x03 },
254 { V4L2_DV_BT_CEA_1920X1080P30
, 0x1e, 0x02 },
255 { V4L2_DV_BT_CEA_1920X1080P50
, 0x1e, 0x01 },
256 { V4L2_DV_BT_CEA_1920X1080P60
, 0x1e, 0x00 },
257 /* TODO add 1920x1080P60_RB (CVT timing) */
261 /* sorted by number of lines */
262 static const struct adv76xx_video_standards adv7604_prim_mode_gr
[] = {
263 { V4L2_DV_BT_DMT_640X480P60
, 0x08, 0x00 },
264 { V4L2_DV_BT_DMT_640X480P72
, 0x09, 0x00 },
265 { V4L2_DV_BT_DMT_640X480P75
, 0x0a, 0x00 },
266 { V4L2_DV_BT_DMT_640X480P85
, 0x0b, 0x00 },
267 { V4L2_DV_BT_DMT_800X600P56
, 0x00, 0x00 },
268 { V4L2_DV_BT_DMT_800X600P60
, 0x01, 0x00 },
269 { V4L2_DV_BT_DMT_800X600P72
, 0x02, 0x00 },
270 { V4L2_DV_BT_DMT_800X600P75
, 0x03, 0x00 },
271 { V4L2_DV_BT_DMT_800X600P85
, 0x04, 0x00 },
272 { V4L2_DV_BT_DMT_1024X768P60
, 0x0c, 0x00 },
273 { V4L2_DV_BT_DMT_1024X768P70
, 0x0d, 0x00 },
274 { V4L2_DV_BT_DMT_1024X768P75
, 0x0e, 0x00 },
275 { V4L2_DV_BT_DMT_1024X768P85
, 0x0f, 0x00 },
276 { V4L2_DV_BT_DMT_1280X1024P60
, 0x05, 0x00 },
277 { V4L2_DV_BT_DMT_1280X1024P75
, 0x06, 0x00 },
278 { V4L2_DV_BT_DMT_1360X768P60
, 0x12, 0x00 },
279 { V4L2_DV_BT_DMT_1366X768P60
, 0x13, 0x00 },
280 { V4L2_DV_BT_DMT_1400X1050P60
, 0x14, 0x00 },
281 { V4L2_DV_BT_DMT_1400X1050P75
, 0x15, 0x00 },
282 { V4L2_DV_BT_DMT_1600X1200P60
, 0x16, 0x00 }, /* TODO not tested */
283 /* TODO add 1600X1200P60_RB (not a DMT timing) */
284 { V4L2_DV_BT_DMT_1680X1050P60
, 0x18, 0x00 },
285 { V4L2_DV_BT_DMT_1920X1200P60_RB
, 0x19, 0x00 }, /* TODO not tested */
289 /* sorted by number of lines */
290 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp
[] = {
291 { V4L2_DV_BT_CEA_720X480P59_94
, 0x0a, 0x00 },
292 { V4L2_DV_BT_CEA_720X576P50
, 0x0b, 0x00 },
293 { V4L2_DV_BT_CEA_1280X720P50
, 0x13, 0x01 },
294 { V4L2_DV_BT_CEA_1280X720P60
, 0x13, 0x00 },
295 { V4L2_DV_BT_CEA_1920X1080P24
, 0x1e, 0x04 },
296 { V4L2_DV_BT_CEA_1920X1080P25
, 0x1e, 0x03 },
297 { V4L2_DV_BT_CEA_1920X1080P30
, 0x1e, 0x02 },
298 { V4L2_DV_BT_CEA_1920X1080P50
, 0x1e, 0x01 },
299 { V4L2_DV_BT_CEA_1920X1080P60
, 0x1e, 0x00 },
303 /* sorted by number of lines */
304 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr
[] = {
305 { V4L2_DV_BT_DMT_640X480P60
, 0x08, 0x00 },
306 { V4L2_DV_BT_DMT_640X480P72
, 0x09, 0x00 },
307 { V4L2_DV_BT_DMT_640X480P75
, 0x0a, 0x00 },
308 { V4L2_DV_BT_DMT_640X480P85
, 0x0b, 0x00 },
309 { V4L2_DV_BT_DMT_800X600P56
, 0x00, 0x00 },
310 { V4L2_DV_BT_DMT_800X600P60
, 0x01, 0x00 },
311 { V4L2_DV_BT_DMT_800X600P72
, 0x02, 0x00 },
312 { V4L2_DV_BT_DMT_800X600P75
, 0x03, 0x00 },
313 { V4L2_DV_BT_DMT_800X600P85
, 0x04, 0x00 },
314 { V4L2_DV_BT_DMT_1024X768P60
, 0x0c, 0x00 },
315 { V4L2_DV_BT_DMT_1024X768P70
, 0x0d, 0x00 },
316 { V4L2_DV_BT_DMT_1024X768P75
, 0x0e, 0x00 },
317 { V4L2_DV_BT_DMT_1024X768P85
, 0x0f, 0x00 },
318 { V4L2_DV_BT_DMT_1280X1024P60
, 0x05, 0x00 },
319 { V4L2_DV_BT_DMT_1280X1024P75
, 0x06, 0x00 },
323 static const struct v4l2_event adv76xx_ev_fmt
= {
324 .type
= V4L2_EVENT_SOURCE_CHANGE
,
325 .u
.src_change
.changes
= V4L2_EVENT_SRC_CH_RESOLUTION
,
328 /* ----------------------------------------------------------------------- */
330 static inline struct adv76xx_state
*to_state(struct v4l2_subdev
*sd
)
332 return container_of(sd
, struct adv76xx_state
, sd
);
335 static inline unsigned htotal(const struct v4l2_bt_timings
*t
)
337 return V4L2_DV_BT_FRAME_WIDTH(t
);
340 static inline unsigned vtotal(const struct v4l2_bt_timings
*t
)
342 return V4L2_DV_BT_FRAME_HEIGHT(t
);
345 /* ----------------------------------------------------------------------- */
347 static int adv76xx_read_check(struct adv76xx_state
*state
,
348 int client_page
, u8 reg
)
350 struct i2c_client
*client
= state
->i2c_clients
[client_page
];
354 err
= regmap_read(state
->regmap
[client_page
], reg
, &val
);
357 v4l_err(client
, "error reading %02x, %02x\n",
364 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
365 * size to one or more registers.
367 * A value of zero will be returned on success, a negative errno will
368 * be returned in error cases.
370 static int adv76xx_write_block(struct adv76xx_state
*state
, int client_page
,
371 unsigned int init_reg
, const void *val
,
374 struct regmap
*regmap
= state
->regmap
[client_page
];
376 if (val_len
> I2C_SMBUS_BLOCK_MAX
)
377 val_len
= I2C_SMBUS_BLOCK_MAX
;
379 return regmap_raw_write(regmap
, init_reg
, val
, val_len
);
382 /* ----------------------------------------------------------------------- */
384 static inline int io_read(struct v4l2_subdev
*sd
, u8 reg
)
386 struct adv76xx_state
*state
= to_state(sd
);
388 return adv76xx_read_check(state
, ADV76XX_PAGE_IO
, reg
);
391 static inline int io_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
393 struct adv76xx_state
*state
= to_state(sd
);
395 return regmap_write(state
->regmap
[ADV76XX_PAGE_IO
], reg
, val
);
398 static inline int io_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
,
401 return io_write(sd
, reg
, (io_read(sd
, reg
) & ~mask
) | val
);
404 static inline int __always_unused
avlink_read(struct v4l2_subdev
*sd
, u8 reg
)
406 struct adv76xx_state
*state
= to_state(sd
);
408 return adv76xx_read_check(state
, ADV7604_PAGE_AVLINK
, reg
);
411 static inline int __always_unused
avlink_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
413 struct adv76xx_state
*state
= to_state(sd
);
415 return regmap_write(state
->regmap
[ADV7604_PAGE_AVLINK
], reg
, val
);
418 static inline int cec_read(struct v4l2_subdev
*sd
, u8 reg
)
420 struct adv76xx_state
*state
= to_state(sd
);
422 return adv76xx_read_check(state
, ADV76XX_PAGE_CEC
, reg
);
425 static inline int cec_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
427 struct adv76xx_state
*state
= to_state(sd
);
429 return regmap_write(state
->regmap
[ADV76XX_PAGE_CEC
], reg
, val
);
432 static inline int cec_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
,
435 return cec_write(sd
, reg
, (cec_read(sd
, reg
) & ~mask
) | val
);
438 static inline int infoframe_read(struct v4l2_subdev
*sd
, u8 reg
)
440 struct adv76xx_state
*state
= to_state(sd
);
442 return adv76xx_read_check(state
, ADV76XX_PAGE_INFOFRAME
, reg
);
445 static inline int __always_unused
infoframe_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
447 struct adv76xx_state
*state
= to_state(sd
);
449 return regmap_write(state
->regmap
[ADV76XX_PAGE_INFOFRAME
], reg
, val
);
452 static inline int __always_unused
afe_read(struct v4l2_subdev
*sd
, u8 reg
)
454 struct adv76xx_state
*state
= to_state(sd
);
456 return adv76xx_read_check(state
, ADV76XX_PAGE_AFE
, reg
);
459 static inline int afe_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
461 struct adv76xx_state
*state
= to_state(sd
);
463 return regmap_write(state
->regmap
[ADV76XX_PAGE_AFE
], reg
, val
);
466 static inline int rep_read(struct v4l2_subdev
*sd
, u8 reg
)
468 struct adv76xx_state
*state
= to_state(sd
);
470 return adv76xx_read_check(state
, ADV76XX_PAGE_REP
, reg
);
473 static inline int rep_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
475 struct adv76xx_state
*state
= to_state(sd
);
477 return regmap_write(state
->regmap
[ADV76XX_PAGE_REP
], reg
, val
);
480 static inline int rep_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
, u8 val
)
482 return rep_write(sd
, reg
, (rep_read(sd
, reg
) & ~mask
) | val
);
485 static inline int __always_unused
edid_read(struct v4l2_subdev
*sd
, u8 reg
)
487 struct adv76xx_state
*state
= to_state(sd
);
489 return adv76xx_read_check(state
, ADV76XX_PAGE_EDID
, reg
);
492 static inline int __always_unused
edid_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
494 struct adv76xx_state
*state
= to_state(sd
);
496 return regmap_write(state
->regmap
[ADV76XX_PAGE_EDID
], reg
, val
);
499 static inline int edid_write_block(struct v4l2_subdev
*sd
,
500 unsigned int total_len
, const u8
*val
)
502 struct adv76xx_state
*state
= to_state(sd
);
507 v4l2_dbg(2, debug
, sd
, "%s: write EDID block (%d byte)\n",
508 __func__
, total_len
);
510 while (!err
&& i
< total_len
) {
511 len
= (total_len
- i
) > I2C_SMBUS_BLOCK_MAX
?
512 I2C_SMBUS_BLOCK_MAX
:
515 err
= adv76xx_write_block(state
, ADV76XX_PAGE_EDID
,
523 static void adv76xx_set_hpd(struct adv76xx_state
*state
, unsigned int hpd
)
525 const struct adv76xx_chip_info
*info
= state
->info
;
528 if (info
->type
== ADV7604
) {
529 for (i
= 0; i
< state
->info
->num_dv_ports
; ++i
)
530 gpiod_set_value_cansleep(state
->hpd_gpio
[i
], hpd
& BIT(i
));
532 for (i
= 0; i
< state
->info
->num_dv_ports
; ++i
)
533 io_write_clr_set(&state
->sd
, 0x20, 0x80 >> i
,
534 (!!(hpd
& BIT(i
))) << (7 - i
));
537 v4l2_subdev_notify(&state
->sd
, ADV76XX_HOTPLUG
, &hpd
);
540 static void adv76xx_delayed_work_enable_hotplug(struct work_struct
*work
)
542 struct delayed_work
*dwork
= to_delayed_work(work
);
543 struct adv76xx_state
*state
= container_of(dwork
, struct adv76xx_state
,
544 delayed_work_enable_hotplug
);
545 struct v4l2_subdev
*sd
= &state
->sd
;
547 v4l2_dbg(2, debug
, sd
, "%s: enable hotplug\n", __func__
);
549 adv76xx_set_hpd(state
, state
->edid
.present
);
552 static inline int hdmi_read(struct v4l2_subdev
*sd
, u8 reg
)
554 struct adv76xx_state
*state
= to_state(sd
);
556 return adv76xx_read_check(state
, ADV76XX_PAGE_HDMI
, reg
);
559 static u16
hdmi_read16(struct v4l2_subdev
*sd
, u8 reg
, u16 mask
)
561 return ((hdmi_read(sd
, reg
) << 8) | hdmi_read(sd
, reg
+ 1)) & mask
;
564 static inline int hdmi_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
566 struct adv76xx_state
*state
= to_state(sd
);
568 return regmap_write(state
->regmap
[ADV76XX_PAGE_HDMI
], reg
, val
);
571 static inline int hdmi_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
, u8 val
)
573 return hdmi_write(sd
, reg
, (hdmi_read(sd
, reg
) & ~mask
) | val
);
576 static inline int __always_unused
test_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
578 struct adv76xx_state
*state
= to_state(sd
);
580 return regmap_write(state
->regmap
[ADV76XX_PAGE_TEST
], reg
, val
);
583 static inline int cp_read(struct v4l2_subdev
*sd
, u8 reg
)
585 struct adv76xx_state
*state
= to_state(sd
);
587 return adv76xx_read_check(state
, ADV76XX_PAGE_CP
, reg
);
590 static u16
cp_read16(struct v4l2_subdev
*sd
, u8 reg
, u16 mask
)
592 return ((cp_read(sd
, reg
) << 8) | cp_read(sd
, reg
+ 1)) & mask
;
595 static inline int cp_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
597 struct adv76xx_state
*state
= to_state(sd
);
599 return regmap_write(state
->regmap
[ADV76XX_PAGE_CP
], reg
, val
);
602 static inline int cp_write_clr_set(struct v4l2_subdev
*sd
, u8 reg
, u8 mask
, u8 val
)
604 return cp_write(sd
, reg
, (cp_read(sd
, reg
) & ~mask
) | val
);
607 static inline int __always_unused
vdp_read(struct v4l2_subdev
*sd
, u8 reg
)
609 struct adv76xx_state
*state
= to_state(sd
);
611 return adv76xx_read_check(state
, ADV7604_PAGE_VDP
, reg
);
614 static inline int __always_unused
vdp_write(struct v4l2_subdev
*sd
, u8 reg
, u8 val
)
616 struct adv76xx_state
*state
= to_state(sd
);
618 return regmap_write(state
->regmap
[ADV7604_PAGE_VDP
], reg
, val
);
621 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
622 #define ADV76XX_REG_SEQ_TERM 0xffff
624 #ifdef CONFIG_VIDEO_ADV_DEBUG
625 static int adv76xx_read_reg(struct v4l2_subdev
*sd
, unsigned int reg
)
627 struct adv76xx_state
*state
= to_state(sd
);
628 unsigned int page
= reg
>> 8;
632 if (page
>= ADV76XX_PAGE_MAX
|| !(BIT(page
) & state
->info
->page_mask
))
636 err
= regmap_read(state
->regmap
[page
], reg
, &val
);
638 return err
? err
: val
;
642 static int adv76xx_write_reg(struct v4l2_subdev
*sd
, unsigned int reg
, u8 val
)
644 struct adv76xx_state
*state
= to_state(sd
);
645 unsigned int page
= reg
>> 8;
647 if (page
>= ADV76XX_PAGE_MAX
|| !(BIT(page
) & state
->info
->page_mask
))
652 return regmap_write(state
->regmap
[page
], reg
, val
);
655 static void adv76xx_write_reg_seq(struct v4l2_subdev
*sd
,
656 const struct adv76xx_reg_seq
*reg_seq
)
660 for (i
= 0; reg_seq
[i
].reg
!= ADV76XX_REG_SEQ_TERM
; i
++)
661 adv76xx_write_reg(sd
, reg_seq
[i
].reg
, reg_seq
[i
].val
);
664 /* -----------------------------------------------------------------------------
668 static const struct adv76xx_format_info adv7604_formats
[] = {
669 { MEDIA_BUS_FMT_RGB888_1X24
, ADV76XX_OP_CH_SEL_RGB
, true, false,
670 ADV76XX_OP_MODE_SEL_SDR_444
| ADV76XX_OP_FORMAT_SEL_8BIT
},
671 { MEDIA_BUS_FMT_YUYV8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, false,
672 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
673 { MEDIA_BUS_FMT_YVYU8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, true,
674 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
675 { MEDIA_BUS_FMT_YUYV10_2X10
, ADV76XX_OP_CH_SEL_RGB
, false, false,
676 ADV76XX_OP_MODE_SEL_SDR_422
| ADV7604_OP_FORMAT_SEL_10BIT
},
677 { MEDIA_BUS_FMT_YVYU10_2X10
, ADV76XX_OP_CH_SEL_RGB
, false, true,
678 ADV76XX_OP_MODE_SEL_SDR_422
| ADV7604_OP_FORMAT_SEL_10BIT
},
679 { MEDIA_BUS_FMT_YUYV12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, false,
680 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
681 { MEDIA_BUS_FMT_YVYU12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, true,
682 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
683 { MEDIA_BUS_FMT_UYVY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, false,
684 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
685 { MEDIA_BUS_FMT_VYUY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, true,
686 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
687 { MEDIA_BUS_FMT_YUYV8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, false,
688 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
689 { MEDIA_BUS_FMT_YVYU8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, true,
690 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
691 { MEDIA_BUS_FMT_UYVY10_1X20
, ADV76XX_OP_CH_SEL_RBG
, false, false,
692 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
693 { MEDIA_BUS_FMT_VYUY10_1X20
, ADV76XX_OP_CH_SEL_RBG
, false, true,
694 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
695 { MEDIA_BUS_FMT_YUYV10_1X20
, ADV76XX_OP_CH_SEL_RGB
, false, false,
696 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
697 { MEDIA_BUS_FMT_YVYU10_1X20
, ADV76XX_OP_CH_SEL_RGB
, false, true,
698 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV7604_OP_FORMAT_SEL_10BIT
},
699 { MEDIA_BUS_FMT_UYVY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, false,
700 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
701 { MEDIA_BUS_FMT_VYUY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, true,
702 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
703 { MEDIA_BUS_FMT_YUYV12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, false,
704 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
705 { MEDIA_BUS_FMT_YVYU12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, true,
706 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
709 static const struct adv76xx_format_info adv7611_formats
[] = {
710 { MEDIA_BUS_FMT_RGB888_1X24
, ADV76XX_OP_CH_SEL_RGB
, true, false,
711 ADV76XX_OP_MODE_SEL_SDR_444
| ADV76XX_OP_FORMAT_SEL_8BIT
},
712 { MEDIA_BUS_FMT_YUYV8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, false,
713 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
714 { MEDIA_BUS_FMT_YVYU8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, true,
715 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
716 { MEDIA_BUS_FMT_YUYV12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, false,
717 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
718 { MEDIA_BUS_FMT_YVYU12_2X12
, ADV76XX_OP_CH_SEL_RGB
, false, true,
719 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_12BIT
},
720 { MEDIA_BUS_FMT_UYVY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, false,
721 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
722 { MEDIA_BUS_FMT_VYUY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, true,
723 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
724 { MEDIA_BUS_FMT_YUYV8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, false,
725 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
726 { MEDIA_BUS_FMT_YVYU8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, true,
727 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
728 { MEDIA_BUS_FMT_UYVY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, false,
729 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
730 { MEDIA_BUS_FMT_VYUY12_1X24
, ADV76XX_OP_CH_SEL_RBG
, false, true,
731 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
732 { MEDIA_BUS_FMT_YUYV12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, false,
733 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
734 { MEDIA_BUS_FMT_YVYU12_1X24
, ADV76XX_OP_CH_SEL_RGB
, false, true,
735 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_12BIT
},
738 static const struct adv76xx_format_info adv7612_formats
[] = {
739 { MEDIA_BUS_FMT_RGB888_1X24
, ADV76XX_OP_CH_SEL_RGB
, true, false,
740 ADV76XX_OP_MODE_SEL_SDR_444
| ADV76XX_OP_FORMAT_SEL_8BIT
},
741 { MEDIA_BUS_FMT_YUYV8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, false,
742 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
743 { MEDIA_BUS_FMT_YVYU8_2X8
, ADV76XX_OP_CH_SEL_RGB
, false, true,
744 ADV76XX_OP_MODE_SEL_SDR_422
| ADV76XX_OP_FORMAT_SEL_8BIT
},
745 { MEDIA_BUS_FMT_UYVY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, false,
746 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
747 { MEDIA_BUS_FMT_VYUY8_1X16
, ADV76XX_OP_CH_SEL_RBG
, false, true,
748 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
749 { MEDIA_BUS_FMT_YUYV8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, false,
750 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
751 { MEDIA_BUS_FMT_YVYU8_1X16
, ADV76XX_OP_CH_SEL_RGB
, false, true,
752 ADV76XX_OP_MODE_SEL_SDR_422_2X
| ADV76XX_OP_FORMAT_SEL_8BIT
},
755 static const struct adv76xx_format_info
*
756 adv76xx_format_info(struct adv76xx_state
*state
, u32 code
)
760 for (i
= 0; i
< state
->info
->nformats
; ++i
) {
761 if (state
->info
->formats
[i
].code
== code
)
762 return &state
->info
->formats
[i
];
768 /* ----------------------------------------------------------------------- */
770 static inline bool is_analog_input(struct v4l2_subdev
*sd
)
772 struct adv76xx_state
*state
= to_state(sd
);
774 return state
->selected_input
== ADV7604_PAD_VGA_RGB
||
775 state
->selected_input
== ADV7604_PAD_VGA_COMP
;
778 static inline bool is_digital_input(struct v4l2_subdev
*sd
)
780 struct adv76xx_state
*state
= to_state(sd
);
782 return state
->selected_input
== ADV76XX_PAD_HDMI_PORT_A
||
783 state
->selected_input
== ADV7604_PAD_HDMI_PORT_B
||
784 state
->selected_input
== ADV7604_PAD_HDMI_PORT_C
||
785 state
->selected_input
== ADV7604_PAD_HDMI_PORT_D
;
788 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog
= {
789 .type
= V4L2_DV_BT_656_1120
,
790 /* keep this initialization for compatibility with GCC < 4.4.6 */
792 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
793 V4L2_DV_BT_STD_CEA861
| V4L2_DV_BT_STD_DMT
|
794 V4L2_DV_BT_STD_GTF
| V4L2_DV_BT_STD_CVT
,
795 V4L2_DV_BT_CAP_PROGRESSIVE
| V4L2_DV_BT_CAP_REDUCED_BLANKING
|
796 V4L2_DV_BT_CAP_CUSTOM
)
799 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital
= {
800 .type
= V4L2_DV_BT_656_1120
,
801 /* keep this initialization for compatibility with GCC < 4.4.6 */
803 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
804 V4L2_DV_BT_STD_CEA861
| V4L2_DV_BT_STD_DMT
|
805 V4L2_DV_BT_STD_GTF
| V4L2_DV_BT_STD_CVT
,
806 V4L2_DV_BT_CAP_PROGRESSIVE
| V4L2_DV_BT_CAP_REDUCED_BLANKING
|
807 V4L2_DV_BT_CAP_CUSTOM
)
811 * Return the DV timings capabilities for the requested sink pad. As a special
812 * case, pad value -1 returns the capabilities for the currently selected input.
814 static const struct v4l2_dv_timings_cap
*
815 adv76xx_get_dv_timings_cap(struct v4l2_subdev
*sd
, int pad
)
818 struct adv76xx_state
*state
= to_state(sd
);
820 pad
= state
->selected_input
;
824 case ADV76XX_PAD_HDMI_PORT_A
:
825 case ADV7604_PAD_HDMI_PORT_B
:
826 case ADV7604_PAD_HDMI_PORT_C
:
827 case ADV7604_PAD_HDMI_PORT_D
:
828 return &adv76xx_timings_cap_digital
;
830 case ADV7604_PAD_VGA_RGB
:
831 case ADV7604_PAD_VGA_COMP
:
833 return &adv7604_timings_cap_analog
;
838 /* ----------------------------------------------------------------------- */
840 #ifdef CONFIG_VIDEO_ADV_DEBUG
841 static void adv76xx_inv_register(struct v4l2_subdev
*sd
)
843 v4l2_info(sd
, "0x000-0x0ff: IO Map\n");
844 v4l2_info(sd
, "0x100-0x1ff: AVLink Map\n");
845 v4l2_info(sd
, "0x200-0x2ff: CEC Map\n");
846 v4l2_info(sd
, "0x300-0x3ff: InfoFrame Map\n");
847 v4l2_info(sd
, "0x400-0x4ff: ESDP Map\n");
848 v4l2_info(sd
, "0x500-0x5ff: DPP Map\n");
849 v4l2_info(sd
, "0x600-0x6ff: AFE Map\n");
850 v4l2_info(sd
, "0x700-0x7ff: Repeater Map\n");
851 v4l2_info(sd
, "0x800-0x8ff: EDID Map\n");
852 v4l2_info(sd
, "0x900-0x9ff: HDMI Map\n");
853 v4l2_info(sd
, "0xa00-0xaff: Test Map\n");
854 v4l2_info(sd
, "0xb00-0xbff: CP Map\n");
855 v4l2_info(sd
, "0xc00-0xcff: VDP Map\n");
858 static int adv76xx_g_register(struct v4l2_subdev
*sd
,
859 struct v4l2_dbg_register
*reg
)
863 ret
= adv76xx_read_reg(sd
, reg
->reg
);
865 v4l2_info(sd
, "Register %03llx not supported\n", reg
->reg
);
866 adv76xx_inv_register(sd
);
876 static int adv76xx_s_register(struct v4l2_subdev
*sd
,
877 const struct v4l2_dbg_register
*reg
)
881 ret
= adv76xx_write_reg(sd
, reg
->reg
, reg
->val
);
883 v4l2_info(sd
, "Register %03llx not supported\n", reg
->reg
);
884 adv76xx_inv_register(sd
);
892 static unsigned int adv7604_read_cable_det(struct v4l2_subdev
*sd
)
894 u8 value
= io_read(sd
, 0x6f);
896 return ((value
& 0x10) >> 4)
897 | ((value
& 0x08) >> 2)
898 | ((value
& 0x04) << 0)
899 | ((value
& 0x02) << 2);
902 static unsigned int adv7611_read_cable_det(struct v4l2_subdev
*sd
)
904 u8 value
= io_read(sd
, 0x6f);
909 static unsigned int adv7612_read_cable_det(struct v4l2_subdev
*sd
)
911 /* Reads CABLE_DET_A_RAW. For input B support, need to
912 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
914 u8 value
= io_read(sd
, 0x6f);
919 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev
*sd
)
921 struct adv76xx_state
*state
= to_state(sd
);
922 const struct adv76xx_chip_info
*info
= state
->info
;
923 u16 cable_det
= info
->read_cable_det(sd
);
925 return v4l2_ctrl_s_ctrl(state
->detect_tx_5v_ctrl
, cable_det
);
928 static int find_and_set_predefined_video_timings(struct v4l2_subdev
*sd
,
930 const struct adv76xx_video_standards
*predef_vid_timings
,
931 const struct v4l2_dv_timings
*timings
)
935 for (i
= 0; predef_vid_timings
[i
].timings
.bt
.width
; i
++) {
936 if (!v4l2_match_dv_timings(timings
, &predef_vid_timings
[i
].timings
,
937 is_digital_input(sd
) ? 250000 : 1000000, false))
939 io_write(sd
, 0x00, predef_vid_timings
[i
].vid_std
); /* video std */
940 io_write(sd
, 0x01, (predef_vid_timings
[i
].v_freq
<< 4) +
941 prim_mode
); /* v_freq and prim mode */
948 static int configure_predefined_video_timings(struct v4l2_subdev
*sd
,
949 struct v4l2_dv_timings
*timings
)
951 struct adv76xx_state
*state
= to_state(sd
);
954 v4l2_dbg(1, debug
, sd
, "%s", __func__
);
956 if (adv76xx_has_afe(state
)) {
957 /* reset to default values */
958 io_write(sd
, 0x16, 0x43);
959 io_write(sd
, 0x17, 0x5a);
961 /* disable embedded syncs for auto graphics mode */
962 cp_write_clr_set(sd
, 0x81, 0x10, 0x00);
963 cp_write(sd
, 0x8f, 0x00);
964 cp_write(sd
, 0x90, 0x00);
965 cp_write(sd
, 0xa2, 0x00);
966 cp_write(sd
, 0xa3, 0x00);
967 cp_write(sd
, 0xa4, 0x00);
968 cp_write(sd
, 0xa5, 0x00);
969 cp_write(sd
, 0xa6, 0x00);
970 cp_write(sd
, 0xa7, 0x00);
971 cp_write(sd
, 0xab, 0x00);
972 cp_write(sd
, 0xac, 0x00);
974 if (is_analog_input(sd
)) {
975 err
= find_and_set_predefined_video_timings(sd
,
976 0x01, adv7604_prim_mode_comp
, timings
);
978 err
= find_and_set_predefined_video_timings(sd
,
979 0x02, adv7604_prim_mode_gr
, timings
);
980 } else if (is_digital_input(sd
)) {
981 err
= find_and_set_predefined_video_timings(sd
,
982 0x05, adv76xx_prim_mode_hdmi_comp
, timings
);
984 err
= find_and_set_predefined_video_timings(sd
,
985 0x06, adv76xx_prim_mode_hdmi_gr
, timings
);
987 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
988 __func__
, state
->selected_input
);
996 static void configure_custom_video_timings(struct v4l2_subdev
*sd
,
997 const struct v4l2_bt_timings
*bt
)
999 struct adv76xx_state
*state
= to_state(sd
);
1000 u32 width
= htotal(bt
);
1001 u32 height
= vtotal(bt
);
1002 u16 cp_start_sav
= bt
->hsync
+ bt
->hbackporch
- 4;
1003 u16 cp_start_eav
= width
- bt
->hfrontporch
;
1004 u16 cp_start_vbi
= height
- bt
->vfrontporch
;
1005 u16 cp_end_vbi
= bt
->vsync
+ bt
->vbackporch
;
1006 u16 ch1_fr_ll
= (((u32
)bt
->pixelclock
/ 100) > 0) ?
1007 ((width
* (ADV76XX_FSC
/ 100)) / ((u32
)bt
->pixelclock
/ 100)) : 0;
1009 0xc0 | ((width
>> 8) & 0x1f),
1013 v4l2_dbg(2, debug
, sd
, "%s\n", __func__
);
1015 if (is_analog_input(sd
)) {
1017 io_write(sd
, 0x00, 0x07); /* video std */
1018 io_write(sd
, 0x01, 0x02); /* prim mode */
1019 /* enable embedded syncs for auto graphics mode */
1020 cp_write_clr_set(sd
, 0x81, 0x10, 0x10);
1022 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1023 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1024 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1025 if (regmap_raw_write(state
->regmap
[ADV76XX_PAGE_IO
],
1027 v4l2_err(sd
, "writing to reg 0x16 and 0x17 failed\n");
1029 /* active video - horizontal timing */
1030 cp_write(sd
, 0xa2, (cp_start_sav
>> 4) & 0xff);
1031 cp_write(sd
, 0xa3, ((cp_start_sav
& 0x0f) << 4) |
1032 ((cp_start_eav
>> 8) & 0x0f));
1033 cp_write(sd
, 0xa4, cp_start_eav
& 0xff);
1035 /* active video - vertical timing */
1036 cp_write(sd
, 0xa5, (cp_start_vbi
>> 4) & 0xff);
1037 cp_write(sd
, 0xa6, ((cp_start_vbi
& 0xf) << 4) |
1038 ((cp_end_vbi
>> 8) & 0xf));
1039 cp_write(sd
, 0xa7, cp_end_vbi
& 0xff);
1040 } else if (is_digital_input(sd
)) {
1041 /* set default prim_mode/vid_std for HDMI
1042 according to [REF_03, c. 4.2] */
1043 io_write(sd
, 0x00, 0x02); /* video std */
1044 io_write(sd
, 0x01, 0x06); /* prim mode */
1046 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
1047 __func__
, state
->selected_input
);
1050 cp_write(sd
, 0x8f, (ch1_fr_ll
>> 8) & 0x7);
1051 cp_write(sd
, 0x90, ch1_fr_ll
& 0xff);
1052 cp_write(sd
, 0xab, (height
>> 4) & 0xff);
1053 cp_write(sd
, 0xac, (height
& 0x0f) << 4);
1056 static void adv76xx_set_offset(struct v4l2_subdev
*sd
, bool auto_offset
, u16 offset_a
, u16 offset_b
, u16 offset_c
)
1058 struct adv76xx_state
*state
= to_state(sd
);
1067 v4l2_dbg(2, debug
, sd
, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1068 __func__
, auto_offset
? "Auto" : "Manual",
1069 offset_a
, offset_b
, offset_c
);
1071 offset_buf
[0] = (cp_read(sd
, 0x77) & 0xc0) | ((offset_a
& 0x3f0) >> 4);
1072 offset_buf
[1] = ((offset_a
& 0x00f) << 4) | ((offset_b
& 0x3c0) >> 6);
1073 offset_buf
[2] = ((offset_b
& 0x03f) << 2) | ((offset_c
& 0x300) >> 8);
1074 offset_buf
[3] = offset_c
& 0x0ff;
1076 /* Registers must be written in this order with no i2c access in between */
1077 if (regmap_raw_write(state
->regmap
[ADV76XX_PAGE_CP
],
1078 0x77, offset_buf
, 4))
1079 v4l2_err(sd
, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__
);
1082 static void adv76xx_set_gain(struct v4l2_subdev
*sd
, bool auto_gain
, u16 gain_a
, u16 gain_b
, u16 gain_c
)
1084 struct adv76xx_state
*state
= to_state(sd
);
1087 u8 agc_mode_man
= 1;
1097 v4l2_dbg(2, debug
, sd
, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1098 __func__
, auto_gain
? "Auto" : "Manual",
1099 gain_a
, gain_b
, gain_c
);
1101 gain_buf
[0] = ((gain_man
<< 7) | (agc_mode_man
<< 6) | ((gain_a
& 0x3f0) >> 4));
1102 gain_buf
[1] = (((gain_a
& 0x00f) << 4) | ((gain_b
& 0x3c0) >> 6));
1103 gain_buf
[2] = (((gain_b
& 0x03f) << 2) | ((gain_c
& 0x300) >> 8));
1104 gain_buf
[3] = ((gain_c
& 0x0ff));
1106 /* Registers must be written in this order with no i2c access in between */
1107 if (regmap_raw_write(state
->regmap
[ADV76XX_PAGE_CP
],
1109 v4l2_err(sd
, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__
);
1112 static void set_rgb_quantization_range(struct v4l2_subdev
*sd
)
1114 struct adv76xx_state
*state
= to_state(sd
);
1115 bool rgb_output
= io_read(sd
, 0x02) & 0x02;
1116 bool hdmi_signal
= hdmi_read(sd
, 0x05) & 0x80;
1117 u8 y
= HDMI_COLORSPACE_RGB
;
1119 if (hdmi_signal
&& (io_read(sd
, 0x60) & 1))
1120 y
= infoframe_read(sd
, 0x01) >> 5;
1122 v4l2_dbg(2, debug
, sd
, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1123 __func__
, state
->rgb_quantization_range
,
1124 rgb_output
, hdmi_signal
);
1126 adv76xx_set_gain(sd
, true, 0x0, 0x0, 0x0);
1127 adv76xx_set_offset(sd
, true, 0x0, 0x0, 0x0);
1128 io_write_clr_set(sd
, 0x02, 0x04, rgb_output
? 0 : 4);
1130 switch (state
->rgb_quantization_range
) {
1131 case V4L2_DV_RGB_RANGE_AUTO
:
1132 if (state
->selected_input
== ADV7604_PAD_VGA_RGB
) {
1133 /* Receiving analog RGB signal
1134 * Set RGB full range (0-255) */
1135 io_write_clr_set(sd
, 0x02, 0xf0, 0x10);
1139 if (state
->selected_input
== ADV7604_PAD_VGA_COMP
) {
1140 /* Receiving analog YPbPr signal
1142 io_write_clr_set(sd
, 0x02, 0xf0, 0xf0);
1147 /* Receiving HDMI signal
1149 io_write_clr_set(sd
, 0x02, 0xf0, 0xf0);
1153 /* Receiving DVI-D signal
1154 * ADV7604 selects RGB limited range regardless of
1155 * input format (CE/IT) in automatic mode */
1156 if (state
->timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
) {
1157 /* RGB limited range (16-235) */
1158 io_write_clr_set(sd
, 0x02, 0xf0, 0x00);
1160 /* RGB full range (0-255) */
1161 io_write_clr_set(sd
, 0x02, 0xf0, 0x10);
1163 if (is_digital_input(sd
) && rgb_output
) {
1164 adv76xx_set_offset(sd
, false, 0x40, 0x40, 0x40);
1166 adv76xx_set_gain(sd
, false, 0xe0, 0xe0, 0xe0);
1167 adv76xx_set_offset(sd
, false, 0x70, 0x70, 0x70);
1171 case V4L2_DV_RGB_RANGE_LIMITED
:
1172 if (state
->selected_input
== ADV7604_PAD_VGA_COMP
) {
1173 /* YCrCb limited range (16-235) */
1174 io_write_clr_set(sd
, 0x02, 0xf0, 0x20);
1178 if (y
!= HDMI_COLORSPACE_RGB
)
1181 /* RGB limited range (16-235) */
1182 io_write_clr_set(sd
, 0x02, 0xf0, 0x00);
1185 case V4L2_DV_RGB_RANGE_FULL
:
1186 if (state
->selected_input
== ADV7604_PAD_VGA_COMP
) {
1187 /* YCrCb full range (0-255) */
1188 io_write_clr_set(sd
, 0x02, 0xf0, 0x60);
1192 if (y
!= HDMI_COLORSPACE_RGB
)
1195 /* RGB full range (0-255) */
1196 io_write_clr_set(sd
, 0x02, 0xf0, 0x10);
1198 if (is_analog_input(sd
) || hdmi_signal
)
1201 /* Adjust gain/offset for DVI-D signals only */
1203 adv76xx_set_offset(sd
, false, 0x40, 0x40, 0x40);
1205 adv76xx_set_gain(sd
, false, 0xe0, 0xe0, 0xe0);
1206 adv76xx_set_offset(sd
, false, 0x70, 0x70, 0x70);
1212 static int adv76xx_s_ctrl(struct v4l2_ctrl
*ctrl
)
1214 struct v4l2_subdev
*sd
=
1215 &container_of(ctrl
->handler
, struct adv76xx_state
, hdl
)->sd
;
1217 struct adv76xx_state
*state
= to_state(sd
);
1220 case V4L2_CID_BRIGHTNESS
:
1221 cp_write(sd
, 0x3c, ctrl
->val
);
1223 case V4L2_CID_CONTRAST
:
1224 cp_write(sd
, 0x3a, ctrl
->val
);
1226 case V4L2_CID_SATURATION
:
1227 cp_write(sd
, 0x3b, ctrl
->val
);
1230 cp_write(sd
, 0x3d, ctrl
->val
);
1232 case V4L2_CID_DV_RX_RGB_RANGE
:
1233 state
->rgb_quantization_range
= ctrl
->val
;
1234 set_rgb_quantization_range(sd
);
1236 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE
:
1237 if (!adv76xx_has_afe(state
))
1239 /* Set the analog sampling phase. This is needed to find the
1240 best sampling phase for analog video: an application or
1241 driver has to try a number of phases and analyze the picture
1242 quality before settling on the best performing phase. */
1243 afe_write(sd
, 0xc8, ctrl
->val
);
1245 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL
:
1246 /* Use the default blue color for free running mode,
1247 or supply your own. */
1248 cp_write_clr_set(sd
, 0xbf, 0x04, ctrl
->val
<< 2);
1250 case V4L2_CID_ADV_RX_FREE_RUN_COLOR
:
1251 cp_write(sd
, 0xc0, (ctrl
->val
& 0xff0000) >> 16);
1252 cp_write(sd
, 0xc1, (ctrl
->val
& 0x00ff00) >> 8);
1253 cp_write(sd
, 0xc2, (u8
)(ctrl
->val
& 0x0000ff));
1259 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl
*ctrl
)
1261 struct v4l2_subdev
*sd
=
1262 &container_of(ctrl
->handler
, struct adv76xx_state
, hdl
)->sd
;
1264 if (ctrl
->id
== V4L2_CID_DV_RX_IT_CONTENT_TYPE
) {
1265 ctrl
->val
= V4L2_DV_IT_CONTENT_TYPE_NO_ITC
;
1266 if ((io_read(sd
, 0x60) & 1) && (infoframe_read(sd
, 0x03) & 0x80))
1267 ctrl
->val
= (infoframe_read(sd
, 0x05) >> 4) & 3;
1273 /* ----------------------------------------------------------------------- */
1275 static inline bool no_power(struct v4l2_subdev
*sd
)
1277 /* Entire chip or CP powered off */
1278 return io_read(sd
, 0x0c) & 0x24;
1281 static inline bool no_signal_tmds(struct v4l2_subdev
*sd
)
1283 struct adv76xx_state
*state
= to_state(sd
);
1285 return !(io_read(sd
, 0x6a) & (0x10 >> state
->selected_input
));
1288 static inline bool no_lock_tmds(struct v4l2_subdev
*sd
)
1290 struct adv76xx_state
*state
= to_state(sd
);
1291 const struct adv76xx_chip_info
*info
= state
->info
;
1293 return (io_read(sd
, 0x6a) & info
->tdms_lock_mask
) != info
->tdms_lock_mask
;
1296 static inline bool is_hdmi(struct v4l2_subdev
*sd
)
1298 return hdmi_read(sd
, 0x05) & 0x80;
1301 static inline bool no_lock_sspd(struct v4l2_subdev
*sd
)
1303 struct adv76xx_state
*state
= to_state(sd
);
1306 * Chips without a AFE don't expose registers for the SSPD, so just assume
1307 * that we have a lock.
1309 if (adv76xx_has_afe(state
))
1312 /* TODO channel 2 */
1313 return ((cp_read(sd
, 0xb5) & 0xd0) != 0xd0);
1316 static inline bool no_lock_stdi(struct v4l2_subdev
*sd
)
1318 /* TODO channel 2 */
1319 return !(cp_read(sd
, 0xb1) & 0x80);
1322 static inline bool no_signal(struct v4l2_subdev
*sd
)
1328 ret
|= no_lock_stdi(sd
);
1329 ret
|= no_lock_sspd(sd
);
1331 if (is_digital_input(sd
)) {
1332 ret
|= no_lock_tmds(sd
);
1333 ret
|= no_signal_tmds(sd
);
1339 static inline bool no_lock_cp(struct v4l2_subdev
*sd
)
1341 struct adv76xx_state
*state
= to_state(sd
);
1343 if (!adv76xx_has_afe(state
))
1346 /* CP has detected a non standard number of lines on the incoming
1347 video compared to what it is configured to receive by s_dv_timings */
1348 return io_read(sd
, 0x12) & 0x01;
1351 static inline bool in_free_run(struct v4l2_subdev
*sd
)
1353 return cp_read(sd
, 0xff) & 0x10;
1356 static int adv76xx_g_input_status(struct v4l2_subdev
*sd
, u32
*status
)
1359 *status
|= no_power(sd
) ? V4L2_IN_ST_NO_POWER
: 0;
1360 *status
|= no_signal(sd
) ? V4L2_IN_ST_NO_SIGNAL
: 0;
1361 if (!in_free_run(sd
) && no_lock_cp(sd
))
1362 *status
|= is_digital_input(sd
) ?
1363 V4L2_IN_ST_NO_SYNC
: V4L2_IN_ST_NO_H_LOCK
;
1365 v4l2_dbg(1, debug
, sd
, "%s: status = 0x%x\n", __func__
, *status
);
1370 /* ----------------------------------------------------------------------- */
1372 struct stdi_readback
{
1378 static int stdi2dv_timings(struct v4l2_subdev
*sd
,
1379 struct stdi_readback
*stdi
,
1380 struct v4l2_dv_timings
*timings
)
1382 struct adv76xx_state
*state
= to_state(sd
);
1383 u32 hfreq
= (ADV76XX_FSC
* 8) / stdi
->bl
;
1387 for (i
= 0; v4l2_dv_timings_presets
[i
].bt
.width
; i
++) {
1388 const struct v4l2_bt_timings
*bt
= &v4l2_dv_timings_presets
[i
].bt
;
1390 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets
[i
],
1391 adv76xx_get_dv_timings_cap(sd
, -1),
1392 adv76xx_check_dv_timings
, NULL
))
1394 if (vtotal(bt
) != stdi
->lcf
+ 1)
1396 if (bt
->vsync
!= stdi
->lcvs
)
1399 pix_clk
= hfreq
* htotal(bt
);
1401 if ((pix_clk
< bt
->pixelclock
+ 1000000) &&
1402 (pix_clk
> bt
->pixelclock
- 1000000)) {
1403 *timings
= v4l2_dv_timings_presets
[i
];
1408 if (v4l2_detect_cvt(stdi
->lcf
+ 1, hfreq
, stdi
->lcvs
, 0,
1409 (stdi
->hs_pol
== '+' ? V4L2_DV_HSYNC_POS_POL
: 0) |
1410 (stdi
->vs_pol
== '+' ? V4L2_DV_VSYNC_POS_POL
: 0),
1411 false, adv76xx_get_dv_timings_cap(sd
, -1), timings
))
1413 if (v4l2_detect_gtf(stdi
->lcf
+ 1, hfreq
, stdi
->lcvs
,
1414 (stdi
->hs_pol
== '+' ? V4L2_DV_HSYNC_POS_POL
: 0) |
1415 (stdi
->vs_pol
== '+' ? V4L2_DV_VSYNC_POS_POL
: 0),
1416 false, state
->aspect_ratio
,
1417 adv76xx_get_dv_timings_cap(sd
, -1), timings
))
1420 v4l2_dbg(2, debug
, sd
,
1421 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1422 __func__
, stdi
->lcvs
, stdi
->lcf
, stdi
->bl
,
1423 stdi
->hs_pol
, stdi
->vs_pol
);
1428 static int read_stdi(struct v4l2_subdev
*sd
, struct stdi_readback
*stdi
)
1430 struct adv76xx_state
*state
= to_state(sd
);
1431 const struct adv76xx_chip_info
*info
= state
->info
;
1434 if (no_lock_stdi(sd
) || no_lock_sspd(sd
)) {
1435 v4l2_dbg(2, debug
, sd
, "%s: STDI and/or SSPD not locked\n", __func__
);
1440 stdi
->bl
= cp_read16(sd
, 0xb1, 0x3fff);
1441 stdi
->lcf
= cp_read16(sd
, info
->lcf_reg
, 0x7ff);
1442 stdi
->lcvs
= cp_read(sd
, 0xb3) >> 3;
1443 stdi
->interlaced
= io_read(sd
, 0x12) & 0x10;
1445 if (adv76xx_has_afe(state
)) {
1447 polarity
= cp_read(sd
, 0xb5);
1448 if ((polarity
& 0x03) == 0x01) {
1449 stdi
->hs_pol
= polarity
& 0x10
1450 ? (polarity
& 0x08 ? '+' : '-') : 'x';
1451 stdi
->vs_pol
= polarity
& 0x40
1452 ? (polarity
& 0x20 ? '+' : '-') : 'x';
1458 polarity
= hdmi_read(sd
, 0x05);
1459 stdi
->hs_pol
= polarity
& 0x20 ? '+' : '-';
1460 stdi
->vs_pol
= polarity
& 0x10 ? '+' : '-';
1463 if (no_lock_stdi(sd
) || no_lock_sspd(sd
)) {
1464 v4l2_dbg(2, debug
, sd
,
1465 "%s: signal lost during readout of STDI/SSPD\n", __func__
);
1469 if (stdi
->lcf
< 239 || stdi
->bl
< 8 || stdi
->bl
== 0x3fff) {
1470 v4l2_dbg(2, debug
, sd
, "%s: invalid signal\n", __func__
);
1471 memset(stdi
, 0, sizeof(struct stdi_readback
));
1475 v4l2_dbg(2, debug
, sd
,
1476 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1477 __func__
, stdi
->lcf
, stdi
->bl
, stdi
->lcvs
,
1478 stdi
->hs_pol
, stdi
->vs_pol
,
1479 stdi
->interlaced
? "interlaced" : "progressive");
1484 static int adv76xx_enum_dv_timings(struct v4l2_subdev
*sd
,
1485 struct v4l2_enum_dv_timings
*timings
)
1487 struct adv76xx_state
*state
= to_state(sd
);
1489 if (timings
->pad
>= state
->source_pad
)
1492 return v4l2_enum_dv_timings_cap(timings
,
1493 adv76xx_get_dv_timings_cap(sd
, timings
->pad
),
1494 adv76xx_check_dv_timings
, NULL
);
1497 static int adv76xx_dv_timings_cap(struct v4l2_subdev
*sd
,
1498 struct v4l2_dv_timings_cap
*cap
)
1500 struct adv76xx_state
*state
= to_state(sd
);
1501 unsigned int pad
= cap
->pad
;
1503 if (cap
->pad
>= state
->source_pad
)
1506 *cap
= *adv76xx_get_dv_timings_cap(sd
, pad
);
1512 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1513 if the format is listed in adv76xx_timings[] */
1514 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev
*sd
,
1515 struct v4l2_dv_timings
*timings
)
1517 v4l2_find_dv_timings_cap(timings
, adv76xx_get_dv_timings_cap(sd
, -1),
1518 is_digital_input(sd
) ? 250000 : 1000000,
1519 adv76xx_check_dv_timings
, NULL
);
1522 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev
*sd
)
1526 a
= hdmi_read(sd
, 0x06);
1527 b
= hdmi_read(sd
, 0x3b);
1531 return a
* 1000000 + ((b
& 0x30) >> 4) * 250000;
1534 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev
*sd
)
1538 a
= hdmi_read(sd
, 0x51);
1539 b
= hdmi_read(sd
, 0x52);
1543 return ((a
<< 1) | (b
>> 7)) * 1000000 + (b
& 0x7f) * 1000000 / 128;
1546 static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev
*sd
)
1548 struct adv76xx_state
*state
= to_state(sd
);
1549 const struct adv76xx_chip_info
*info
= state
->info
;
1550 unsigned int freq
, bits_per_channel
, pixelrepetition
;
1552 freq
= info
->read_hdmi_pixelclock(sd
);
1554 /* adjust for deep color mode and pixel repetition */
1555 bits_per_channel
= ((hdmi_read(sd
, 0x0b) & 0x60) >> 4) + 8;
1556 pixelrepetition
= (hdmi_read(sd
, 0x05) & 0x0f) + 1;
1558 freq
= freq
* 8 / bits_per_channel
/ pixelrepetition
;
1564 static int adv76xx_query_dv_timings(struct v4l2_subdev
*sd
, unsigned int pad
,
1565 struct v4l2_dv_timings
*timings
)
1567 struct adv76xx_state
*state
= to_state(sd
);
1568 const struct adv76xx_chip_info
*info
= state
->info
;
1569 struct v4l2_bt_timings
*bt
= &timings
->bt
;
1570 struct stdi_readback stdi
;
1575 memset(timings
, 0, sizeof(struct v4l2_dv_timings
));
1577 if (no_signal(sd
)) {
1578 state
->restart_stdi_once
= true;
1579 v4l2_dbg(1, debug
, sd
, "%s: no valid signal\n", __func__
);
1584 if (read_stdi(sd
, &stdi
)) {
1585 v4l2_dbg(1, debug
, sd
, "%s: STDI/SSPD not locked\n", __func__
);
1588 bt
->interlaced
= stdi
.interlaced
?
1589 V4L2_DV_INTERLACED
: V4L2_DV_PROGRESSIVE
;
1591 if (is_digital_input(sd
)) {
1592 bool hdmi_signal
= hdmi_read(sd
, 0x05) & 0x80;
1596 w
= hdmi_read16(sd
, 0x07, info
->linewidth_mask
);
1597 h
= hdmi_read16(sd
, 0x09, info
->field0_height_mask
);
1599 if (hdmi_signal
&& (io_read(sd
, 0x60) & 1))
1600 vic
= infoframe_read(sd
, 0x04);
1602 if (vic
&& v4l2_find_dv_timings_cea861_vic(timings
, vic
) &&
1603 bt
->width
== w
&& bt
->height
== h
)
1606 timings
->type
= V4L2_DV_BT_656_1120
;
1610 bt
->pixelclock
= adv76xx_read_hdmi_pixelclock(sd
);
1611 bt
->hfrontporch
= hdmi_read16(sd
, 0x20, info
->hfrontporch_mask
);
1612 bt
->hsync
= hdmi_read16(sd
, 0x22, info
->hsync_mask
);
1613 bt
->hbackporch
= hdmi_read16(sd
, 0x24, info
->hbackporch_mask
);
1614 bt
->vfrontporch
= hdmi_read16(sd
, 0x2a,
1615 info
->field0_vfrontporch_mask
) / 2;
1616 bt
->vsync
= hdmi_read16(sd
, 0x2e, info
->field0_vsync_mask
) / 2;
1617 bt
->vbackporch
= hdmi_read16(sd
, 0x32,
1618 info
->field0_vbackporch_mask
) / 2;
1619 bt
->polarities
= ((hdmi_read(sd
, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL
: 0) |
1620 ((hdmi_read(sd
, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL
: 0);
1621 if (bt
->interlaced
== V4L2_DV_INTERLACED
) {
1622 bt
->height
+= hdmi_read16(sd
, 0x0b,
1623 info
->field1_height_mask
);
1624 bt
->il_vfrontporch
= hdmi_read16(sd
, 0x2c,
1625 info
->field1_vfrontporch_mask
) / 2;
1626 bt
->il_vsync
= hdmi_read16(sd
, 0x30,
1627 info
->field1_vsync_mask
) / 2;
1628 bt
->il_vbackporch
= hdmi_read16(sd
, 0x34,
1629 info
->field1_vbackporch_mask
) / 2;
1631 adv76xx_fill_optional_dv_timings_fields(sd
, timings
);
1634 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1635 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1637 if (!stdi2dv_timings(sd
, &stdi
, timings
))
1640 v4l2_dbg(1, debug
, sd
, "%s: lcvs + 1 = %d\n", __func__
, stdi
.lcvs
);
1641 if (!stdi2dv_timings(sd
, &stdi
, timings
))
1644 v4l2_dbg(1, debug
, sd
, "%s: lcvs - 1 = %d\n", __func__
, stdi
.lcvs
);
1645 if (stdi2dv_timings(sd
, &stdi
, timings
)) {
1647 * The STDI block may measure wrong values, especially
1648 * for lcvs and lcf. If the driver can not find any
1649 * valid timing, the STDI block is restarted to measure
1650 * the video timings again. The function will return an
1651 * error, but the restart of STDI will generate a new
1652 * STDI interrupt and the format detection process will
1655 if (state
->restart_stdi_once
) {
1656 v4l2_dbg(1, debug
, sd
, "%s: restart STDI\n", __func__
);
1657 /* TODO restart STDI for Sync Channel 2 */
1658 /* enter one-shot mode */
1659 cp_write_clr_set(sd
, 0x86, 0x06, 0x00);
1660 /* trigger STDI restart */
1661 cp_write_clr_set(sd
, 0x86, 0x06, 0x04);
1662 /* reset to continuous mode */
1663 cp_write_clr_set(sd
, 0x86, 0x06, 0x02);
1664 state
->restart_stdi_once
= false;
1667 v4l2_dbg(1, debug
, sd
, "%s: format not supported\n", __func__
);
1670 state
->restart_stdi_once
= true;
1674 if (no_signal(sd
)) {
1675 v4l2_dbg(1, debug
, sd
, "%s: signal lost during readout\n", __func__
);
1676 memset(timings
, 0, sizeof(struct v4l2_dv_timings
));
1680 if ((is_analog_input(sd
) && bt
->pixelclock
> 170000000) ||
1681 (is_digital_input(sd
) && bt
->pixelclock
> 225000000)) {
1682 v4l2_dbg(1, debug
, sd
, "%s: pixelclock out of range %d\n",
1683 __func__
, (u32
)bt
->pixelclock
);
1688 v4l2_print_dv_timings(sd
->name
, "adv76xx_query_dv_timings: ",
1694 static int adv76xx_s_dv_timings(struct v4l2_subdev
*sd
, unsigned int pad
,
1695 struct v4l2_dv_timings
*timings
)
1697 struct adv76xx_state
*state
= to_state(sd
);
1698 struct v4l2_bt_timings
*bt
;
1704 if (v4l2_match_dv_timings(&state
->timings
, timings
, 0, false)) {
1705 v4l2_dbg(1, debug
, sd
, "%s: no change\n", __func__
);
1711 if (!v4l2_valid_dv_timings(timings
, adv76xx_get_dv_timings_cap(sd
, -1),
1712 adv76xx_check_dv_timings
, NULL
))
1715 adv76xx_fill_optional_dv_timings_fields(sd
, timings
);
1717 state
->timings
= *timings
;
1719 cp_write_clr_set(sd
, 0x91, 0x40, bt
->interlaced
? 0x40 : 0x00);
1721 /* Use prim_mode and vid_std when available */
1722 err
= configure_predefined_video_timings(sd
, timings
);
1724 /* custom settings when the video format
1725 does not have prim_mode/vid_std */
1726 configure_custom_video_timings(sd
, bt
);
1729 set_rgb_quantization_range(sd
);
1732 v4l2_print_dv_timings(sd
->name
, "adv76xx_s_dv_timings: ",
1737 static int adv76xx_g_dv_timings(struct v4l2_subdev
*sd
, unsigned int pad
,
1738 struct v4l2_dv_timings
*timings
)
1740 struct adv76xx_state
*state
= to_state(sd
);
1742 *timings
= state
->timings
;
1746 static void adv7604_set_termination(struct v4l2_subdev
*sd
, bool enable
)
1748 hdmi_write(sd
, 0x01, enable
? 0x00 : 0x78);
1751 static void adv7611_set_termination(struct v4l2_subdev
*sd
, bool enable
)
1753 hdmi_write(sd
, 0x83, enable
? 0xfe : 0xff);
1756 static void enable_input(struct v4l2_subdev
*sd
)
1758 struct adv76xx_state
*state
= to_state(sd
);
1760 if (is_analog_input(sd
)) {
1761 io_write(sd
, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1762 } else if (is_digital_input(sd
)) {
1763 hdmi_write_clr_set(sd
, 0x00, 0x03, state
->selected_input
);
1764 state
->info
->set_termination(sd
, true);
1765 io_write(sd
, 0x15, 0xa0); /* Disable Tristate of Pins */
1766 hdmi_write_clr_set(sd
, 0x1a, 0x10, 0x00); /* Unmute audio */
1768 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
1769 __func__
, state
->selected_input
);
1773 static void disable_input(struct v4l2_subdev
*sd
)
1775 struct adv76xx_state
*state
= to_state(sd
);
1777 hdmi_write_clr_set(sd
, 0x1a, 0x10, 0x10); /* Mute audio */
1778 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1779 io_write(sd
, 0x15, 0xbe); /* Tristate all outputs from video core */
1780 state
->info
->set_termination(sd
, false);
1783 static void select_input(struct v4l2_subdev
*sd
)
1785 struct adv76xx_state
*state
= to_state(sd
);
1786 const struct adv76xx_chip_info
*info
= state
->info
;
1788 if (is_analog_input(sd
)) {
1789 adv76xx_write_reg_seq(sd
, info
->recommended_settings
[0]);
1791 afe_write(sd
, 0x00, 0x08); /* power up ADC */
1792 afe_write(sd
, 0x01, 0x06); /* power up Analog Front End */
1793 afe_write(sd
, 0xc8, 0x00); /* phase control */
1794 } else if (is_digital_input(sd
)) {
1795 hdmi_write(sd
, 0x00, state
->selected_input
& 0x03);
1797 adv76xx_write_reg_seq(sd
, info
->recommended_settings
[1]);
1799 if (adv76xx_has_afe(state
)) {
1800 afe_write(sd
, 0x00, 0xff); /* power down ADC */
1801 afe_write(sd
, 0x01, 0xfe); /* power down Analog Front End */
1802 afe_write(sd
, 0xc8, 0x40); /* phase control */
1805 cp_write(sd
, 0x3e, 0x00); /* CP core pre-gain control */
1806 cp_write(sd
, 0xc3, 0x39); /* CP coast control. Graphics mode */
1807 cp_write(sd
, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1809 v4l2_dbg(2, debug
, sd
, "%s: Unknown port %d selected\n",
1810 __func__
, state
->selected_input
);
1813 /* Enable video adjustment (contrast, saturation, brightness and hue) */
1814 cp_write_clr_set(sd
, 0x3e, 0x80, 0x80);
1817 static int adv76xx_s_routing(struct v4l2_subdev
*sd
,
1818 u32 input
, u32 output
, u32 config
)
1820 struct adv76xx_state
*state
= to_state(sd
);
1822 v4l2_dbg(2, debug
, sd
, "%s: input %d, selected input %d",
1823 __func__
, input
, state
->selected_input
);
1825 if (input
== state
->selected_input
)
1828 if (input
> state
->info
->max_port
)
1831 state
->selected_input
= input
;
1837 v4l2_subdev_notify_event(sd
, &adv76xx_ev_fmt
);
1842 static int adv76xx_enum_mbus_code(struct v4l2_subdev
*sd
,
1843 struct v4l2_subdev_state
*sd_state
,
1844 struct v4l2_subdev_mbus_code_enum
*code
)
1846 struct adv76xx_state
*state
= to_state(sd
);
1848 if (code
->index
>= state
->info
->nformats
)
1851 code
->code
= state
->info
->formats
[code
->index
].code
;
1856 static void adv76xx_fill_format(struct adv76xx_state
*state
,
1857 struct v4l2_mbus_framefmt
*format
)
1859 memset(format
, 0, sizeof(*format
));
1861 format
->width
= state
->timings
.bt
.width
;
1862 format
->height
= state
->timings
.bt
.height
;
1863 format
->field
= V4L2_FIELD_NONE
;
1864 format
->colorspace
= V4L2_COLORSPACE_SRGB
;
1866 if (state
->timings
.bt
.flags
& V4L2_DV_FL_IS_CE_VIDEO
)
1867 format
->colorspace
= (state
->timings
.bt
.height
<= 576) ?
1868 V4L2_COLORSPACE_SMPTE170M
: V4L2_COLORSPACE_REC709
;
1872 * Compute the op_ch_sel value required to obtain on the bus the component order
1873 * corresponding to the selected format taking into account bus reordering
1874 * applied by the board at the output of the device.
1876 * The following table gives the op_ch_value from the format component order
1877 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1878 * adv76xx_bus_order value in row).
1880 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1881 * ----------+-------------------------------------------------
1882 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1883 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1884 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1885 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1886 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1887 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1889 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state
*state
)
1891 #define _SEL(a,b,c,d,e,f) { \
1892 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1893 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1894 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1896 static const unsigned int op_ch_sel
[6][6] = {
1897 _BUS(RGB
) /* NOP */ = _SEL(GBR
, GRB
, BGR
, RGB
, BRG
, RBG
),
1898 _BUS(GRB
) /* 1-2 */ = _SEL(BGR
, RGB
, GBR
, GRB
, RBG
, BRG
),
1899 _BUS(RBG
) /* 2-3 */ = _SEL(GRB
, GBR
, BRG
, RBG
, BGR
, RGB
),
1900 _BUS(BGR
) /* 1-3 */ = _SEL(RBG
, BRG
, RGB
, BGR
, GRB
, GBR
),
1901 _BUS(BRG
) /* ROR */ = _SEL(BRG
, RBG
, GRB
, GBR
, RGB
, BGR
),
1902 _BUS(GBR
) /* ROL */ = _SEL(RGB
, BGR
, RBG
, BRG
, GBR
, GRB
),
1905 return op_ch_sel
[state
->pdata
.bus_order
][state
->format
->op_ch_sel
>> 5];
1908 static void adv76xx_setup_format(struct adv76xx_state
*state
)
1910 struct v4l2_subdev
*sd
= &state
->sd
;
1912 io_write_clr_set(sd
, 0x02, 0x02,
1913 state
->format
->rgb_out
? ADV76XX_RGB_OUT
: 0);
1914 io_write(sd
, 0x03, state
->format
->op_format_sel
|
1915 state
->pdata
.op_format_mode_sel
);
1916 io_write_clr_set(sd
, 0x04, 0xe0, adv76xx_op_ch_sel(state
));
1917 io_write_clr_set(sd
, 0x05, 0x01,
1918 state
->format
->swap_cb_cr
? ADV76XX_OP_SWAP_CB_CR
: 0);
1919 set_rgb_quantization_range(sd
);
1922 static int adv76xx_get_format(struct v4l2_subdev
*sd
,
1923 struct v4l2_subdev_state
*sd_state
,
1924 struct v4l2_subdev_format
*format
)
1926 struct adv76xx_state
*state
= to_state(sd
);
1928 if (format
->pad
!= state
->source_pad
)
1931 adv76xx_fill_format(state
, &format
->format
);
1933 if (format
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1934 struct v4l2_mbus_framefmt
*fmt
;
1936 fmt
= v4l2_subdev_state_get_format(sd_state
, format
->pad
);
1937 format
->format
.code
= fmt
->code
;
1939 format
->format
.code
= state
->format
->code
;
1945 static int adv76xx_get_selection(struct v4l2_subdev
*sd
,
1946 struct v4l2_subdev_state
*sd_state
,
1947 struct v4l2_subdev_selection
*sel
)
1949 struct adv76xx_state
*state
= to_state(sd
);
1951 if (sel
->which
!= V4L2_SUBDEV_FORMAT_ACTIVE
)
1953 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1954 if (sel
->target
> V4L2_SEL_TGT_CROP_BOUNDS
)
1959 sel
->r
.width
= state
->timings
.bt
.width
;
1960 sel
->r
.height
= state
->timings
.bt
.height
;
1965 static int adv76xx_set_format(struct v4l2_subdev
*sd
,
1966 struct v4l2_subdev_state
*sd_state
,
1967 struct v4l2_subdev_format
*format
)
1969 struct adv76xx_state
*state
= to_state(sd
);
1970 const struct adv76xx_format_info
*info
;
1972 if (format
->pad
!= state
->source_pad
)
1975 info
= adv76xx_format_info(state
, format
->format
.code
);
1977 info
= adv76xx_format_info(state
, MEDIA_BUS_FMT_YUYV8_2X8
);
1979 adv76xx_fill_format(state
, &format
->format
);
1980 format
->format
.code
= info
->code
;
1982 if (format
->which
== V4L2_SUBDEV_FORMAT_TRY
) {
1983 struct v4l2_mbus_framefmt
*fmt
;
1985 fmt
= v4l2_subdev_state_get_format(sd_state
, format
->pad
);
1986 fmt
->code
= format
->format
.code
;
1988 state
->format
= info
;
1989 adv76xx_setup_format(state
);
1995 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1996 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev
*sd
, u8 tx_raw_status
)
1998 struct adv76xx_state
*state
= to_state(sd
);
2000 if ((cec_read(sd
, 0x11) & 0x01) == 0) {
2001 v4l2_dbg(1, debug
, sd
, "%s: tx raw: tx disabled\n", __func__
);
2005 if (tx_raw_status
& 0x02) {
2006 v4l2_dbg(1, debug
, sd
, "%s: tx raw: arbitration lost\n",
2008 cec_transmit_done(state
->cec_adap
, CEC_TX_STATUS_ARB_LOST
,
2012 if (tx_raw_status
& 0x04) {
2017 v4l2_dbg(1, debug
, sd
, "%s: tx raw: retry failed\n", __func__
);
2019 * We set this status bit since this hardware performs
2022 status
= CEC_TX_STATUS_MAX_RETRIES
;
2023 nack_cnt
= cec_read(sd
, 0x14) & 0xf;
2025 status
|= CEC_TX_STATUS_NACK
;
2026 low_drive_cnt
= cec_read(sd
, 0x14) >> 4;
2028 status
|= CEC_TX_STATUS_LOW_DRIVE
;
2029 cec_transmit_done(state
->cec_adap
, status
,
2030 0, nack_cnt
, low_drive_cnt
, 0);
2033 if (tx_raw_status
& 0x01) {
2034 v4l2_dbg(1, debug
, sd
, "%s: tx raw: ready ok\n", __func__
);
2035 cec_transmit_done(state
->cec_adap
, CEC_TX_STATUS_OK
, 0, 0, 0, 0);
2040 static void adv76xx_cec_isr(struct v4l2_subdev
*sd
, bool *handled
)
2042 struct adv76xx_state
*state
= to_state(sd
);
2043 const struct adv76xx_chip_info
*info
= state
->info
;
2046 /* cec controller */
2047 cec_irq
= io_read(sd
, info
->cec_irq_status
) & 0x0f;
2051 v4l2_dbg(1, debug
, sd
, "%s: cec: irq 0x%x\n", __func__
, cec_irq
);
2052 adv76xx_cec_tx_raw_status(sd
, cec_irq
);
2053 if (cec_irq
& 0x08) {
2056 msg
.len
= cec_read(sd
, 0x25) & 0x1f;
2057 if (msg
.len
> CEC_MAX_MSG_SIZE
)
2058 msg
.len
= CEC_MAX_MSG_SIZE
;
2063 for (i
= 0; i
< msg
.len
; i
++)
2064 msg
.msg
[i
] = cec_read(sd
, i
+ 0x15);
2065 cec_write(sd
, info
->cec_rx_enable
,
2066 info
->cec_rx_enable_mask
); /* re-enable rx */
2067 cec_received_msg(state
->cec_adap
, &msg
);
2071 if (info
->cec_irq_swap
) {
2073 * Note: the bit order is swapped between 0x4d and 0x4e
2076 cec_irq
= ((cec_irq
& 0x08) >> 3) | ((cec_irq
& 0x04) >> 1) |
2077 ((cec_irq
& 0x02) << 1) | ((cec_irq
& 0x01) << 3);
2079 io_write(sd
, info
->cec_irq_status
+ 1, cec_irq
);
2085 static int adv76xx_cec_adap_enable(struct cec_adapter
*adap
, bool enable
)
2087 struct adv76xx_state
*state
= cec_get_drvdata(adap
);
2088 const struct adv76xx_chip_info
*info
= state
->info
;
2089 struct v4l2_subdev
*sd
= &state
->sd
;
2091 if (!state
->cec_enabled_adap
&& enable
) {
2092 cec_write_clr_set(sd
, 0x2a, 0x01, 0x01); /* power up cec */
2093 cec_write(sd
, 0x2c, 0x01); /* cec soft reset */
2094 cec_write_clr_set(sd
, 0x11, 0x01, 0); /* initially disable tx */
2097 /* tx: arbitration lost */
2098 /* tx: retry timeout */
2100 io_write_clr_set(sd
, info
->cec_irq_status
+ 3, 0x0f, 0x0f);
2101 cec_write(sd
, info
->cec_rx_enable
, info
->cec_rx_enable_mask
);
2102 } else if (state
->cec_enabled_adap
&& !enable
) {
2103 /* disable cec interrupts */
2104 io_write_clr_set(sd
, info
->cec_irq_status
+ 3, 0x0f, 0x00);
2105 /* disable address mask 1-3 */
2106 cec_write_clr_set(sd
, 0x27, 0x70, 0x00);
2107 /* power down cec section */
2108 cec_write_clr_set(sd
, 0x2a, 0x01, 0x00);
2109 state
->cec_valid_addrs
= 0;
2111 state
->cec_enabled_adap
= enable
;
2112 adv76xx_s_detect_tx_5v_ctrl(sd
);
2116 static int adv76xx_cec_adap_log_addr(struct cec_adapter
*adap
, u8 addr
)
2118 struct adv76xx_state
*state
= cec_get_drvdata(adap
);
2119 struct v4l2_subdev
*sd
= &state
->sd
;
2120 unsigned int i
, free_idx
= ADV76XX_MAX_ADDRS
;
2122 if (!state
->cec_enabled_adap
)
2123 return addr
== CEC_LOG_ADDR_INVALID
? 0 : -EIO
;
2125 if (addr
== CEC_LOG_ADDR_INVALID
) {
2126 cec_write_clr_set(sd
, 0x27, 0x70, 0);
2127 state
->cec_valid_addrs
= 0;
2131 for (i
= 0; i
< ADV76XX_MAX_ADDRS
; i
++) {
2132 bool is_valid
= state
->cec_valid_addrs
& (1 << i
);
2134 if (free_idx
== ADV76XX_MAX_ADDRS
&& !is_valid
)
2136 if (is_valid
&& state
->cec_addr
[i
] == addr
)
2139 if (i
== ADV76XX_MAX_ADDRS
) {
2141 if (i
== ADV76XX_MAX_ADDRS
)
2144 state
->cec_addr
[i
] = addr
;
2145 state
->cec_valid_addrs
|= 1 << i
;
2149 /* enable address mask 0 */
2150 cec_write_clr_set(sd
, 0x27, 0x10, 0x10);
2151 /* set address for mask 0 */
2152 cec_write_clr_set(sd
, 0x28, 0x0f, addr
);
2155 /* enable address mask 1 */
2156 cec_write_clr_set(sd
, 0x27, 0x20, 0x20);
2157 /* set address for mask 1 */
2158 cec_write_clr_set(sd
, 0x28, 0xf0, addr
<< 4);
2161 /* enable address mask 2 */
2162 cec_write_clr_set(sd
, 0x27, 0x40, 0x40);
2163 /* set address for mask 1 */
2164 cec_write_clr_set(sd
, 0x29, 0x0f, addr
);
2170 static int adv76xx_cec_adap_transmit(struct cec_adapter
*adap
, u8 attempts
,
2171 u32 signal_free_time
, struct cec_msg
*msg
)
2173 struct adv76xx_state
*state
= cec_get_drvdata(adap
);
2174 struct v4l2_subdev
*sd
= &state
->sd
;
2179 * The number of retries is the number of attempts - 1, but retry
2180 * at least once. It's not clear if a value of 0 is allowed, so
2181 * let's do at least one retry.
2183 cec_write_clr_set(sd
, 0x12, 0x70, max(1, attempts
- 1) << 4);
2186 v4l2_err(sd
, "%s: len exceeded 16 (%d)\n", __func__
, len
);
2191 for (i
= 0; i
< len
; i
++)
2192 cec_write(sd
, i
, msg
->msg
[i
]);
2194 /* set length (data + header) */
2195 cec_write(sd
, 0x10, len
);
2196 /* start transmit, enable tx */
2197 cec_write(sd
, 0x11, 0x01);
2201 static const struct cec_adap_ops adv76xx_cec_adap_ops
= {
2202 .adap_enable
= adv76xx_cec_adap_enable
,
2203 .adap_log_addr
= adv76xx_cec_adap_log_addr
,
2204 .adap_transmit
= adv76xx_cec_adap_transmit
,
2208 static int adv76xx_isr(struct v4l2_subdev
*sd
, u32 status
, bool *handled
)
2210 struct adv76xx_state
*state
= to_state(sd
);
2211 const struct adv76xx_chip_info
*info
= state
->info
;
2212 const u8 irq_reg_0x43
= io_read(sd
, 0x43);
2213 const u8 irq_reg_0x6b
= io_read(sd
, 0x6b);
2214 const u8 irq_reg_0x70
= io_read(sd
, 0x70);
2215 u8 fmt_change_digital
;
2220 io_write(sd
, 0x44, irq_reg_0x43
);
2222 io_write(sd
, 0x71, irq_reg_0x70
);
2224 io_write(sd
, 0x6c, irq_reg_0x6b
);
2226 v4l2_dbg(2, debug
, sd
, "%s: ", __func__
);
2229 fmt_change
= irq_reg_0x43
& 0x98;
2230 fmt_change_digital
= is_digital_input(sd
)
2231 ? irq_reg_0x6b
& info
->fmt_change_digital_mask
2234 if (fmt_change
|| fmt_change_digital
) {
2235 v4l2_dbg(1, debug
, sd
,
2236 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2237 __func__
, fmt_change
, fmt_change_digital
);
2239 v4l2_subdev_notify_event(sd
, &adv76xx_ev_fmt
);
2245 if (irq_reg_0x6b
& 0x01) {
2246 v4l2_dbg(1, debug
, sd
, "%s: irq %s mode\n", __func__
,
2247 (io_read(sd
, 0x6a) & 0x01) ? "HDMI" : "DVI");
2248 set_rgb_quantization_range(sd
);
2253 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2255 adv76xx_cec_isr(sd
, handled
);
2259 tx_5v
= irq_reg_0x70
& info
->cable_det_mask
;
2261 v4l2_dbg(1, debug
, sd
, "%s: tx_5v: 0x%x\n", __func__
, tx_5v
);
2262 adv76xx_s_detect_tx_5v_ctrl(sd
);
2269 static irqreturn_t
adv76xx_irq_handler(int irq
, void *dev_id
)
2271 struct adv76xx_state
*state
= dev_id
;
2272 bool handled
= false;
2274 adv76xx_isr(&state
->sd
, 0, &handled
);
2276 return handled
? IRQ_HANDLED
: IRQ_NONE
;
2279 static int adv76xx_get_edid(struct v4l2_subdev
*sd
, struct v4l2_edid
*edid
)
2281 struct adv76xx_state
*state
= to_state(sd
);
2284 memset(edid
->reserved
, 0, sizeof(edid
->reserved
));
2286 switch (edid
->pad
) {
2287 case ADV76XX_PAD_HDMI_PORT_A
:
2288 case ADV7604_PAD_HDMI_PORT_B
:
2289 case ADV7604_PAD_HDMI_PORT_C
:
2290 case ADV7604_PAD_HDMI_PORT_D
:
2291 if (state
->edid
.present
& (1 << edid
->pad
))
2292 data
= state
->edid
.edid
;
2298 if (edid
->start_block
== 0 && edid
->blocks
== 0) {
2299 edid
->blocks
= data
? state
->edid
.blocks
: 0;
2306 if (edid
->start_block
>= state
->edid
.blocks
)
2309 if (edid
->start_block
+ edid
->blocks
> state
->edid
.blocks
)
2310 edid
->blocks
= state
->edid
.blocks
- edid
->start_block
;
2312 memcpy(edid
->edid
, data
+ edid
->start_block
* 128, edid
->blocks
* 128);
2317 static int adv76xx_set_edid(struct v4l2_subdev
*sd
, struct v4l2_edid
*edid
)
2319 struct adv76xx_state
*state
= to_state(sd
);
2320 const struct adv76xx_chip_info
*info
= state
->info
;
2321 unsigned int spa_loc
;
2326 memset(edid
->reserved
, 0, sizeof(edid
->reserved
));
2328 if (edid
->pad
> ADV7604_PAD_HDMI_PORT_D
)
2330 if (edid
->start_block
!= 0)
2332 if (edid
->blocks
== 0) {
2333 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2334 state
->edid
.present
&= ~(1 << edid
->pad
);
2335 adv76xx_set_hpd(state
, state
->edid
.present
);
2336 rep_write_clr_set(sd
, info
->edid_enable_reg
, 0x0f, state
->edid
.present
);
2338 /* Fall back to a 16:9 aspect ratio */
2339 state
->aspect_ratio
.numerator
= 16;
2340 state
->aspect_ratio
.denominator
= 9;
2342 if (!state
->edid
.present
) {
2343 state
->edid
.blocks
= 0;
2344 cec_phys_addr_invalidate(state
->cec_adap
);
2347 v4l2_dbg(2, debug
, sd
, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2348 __func__
, edid
->pad
, state
->edid
.present
);
2351 if (edid
->blocks
> ADV76XX_MAX_EDID_BLOCKS
) {
2352 edid
->blocks
= ADV76XX_MAX_EDID_BLOCKS
;
2356 pa
= v4l2_get_edid_phys_addr(edid
->edid
, edid
->blocks
* 128, &spa_loc
);
2357 err
= v4l2_phys_addr_validate(pa
, &parent_pa
, NULL
);
2363 * There is no SPA, so just set spa_loc to 128 and pa to whatever
2367 pa
= (edid
->edid
[spa_loc
] << 8) | edid
->edid
[spa_loc
+ 1];
2370 v4l2_dbg(2, debug
, sd
, "%s: write EDID pad %d, edid.present = 0x%x\n",
2371 __func__
, edid
->pad
, state
->edid
.present
);
2373 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2374 cancel_delayed_work_sync(&state
->delayed_work_enable_hotplug
);
2375 adv76xx_set_hpd(state
, 0);
2376 rep_write_clr_set(sd
, info
->edid_enable_reg
, 0x0f, 0x00);
2378 switch (edid
->pad
) {
2379 case ADV76XX_PAD_HDMI_PORT_A
:
2380 state
->spa_port_a
[0] = pa
>> 8;
2381 state
->spa_port_a
[1] = pa
& 0xff;
2383 case ADV7604_PAD_HDMI_PORT_B
:
2384 rep_write(sd
, info
->edid_spa_port_b_reg
, pa
>> 8);
2385 rep_write(sd
, info
->edid_spa_port_b_reg
+ 1, pa
& 0xff);
2387 case ADV7604_PAD_HDMI_PORT_C
:
2388 rep_write(sd
, info
->edid_spa_port_b_reg
+ 2, pa
>> 8);
2389 rep_write(sd
, info
->edid_spa_port_b_reg
+ 3, pa
& 0xff);
2391 case ADV7604_PAD_HDMI_PORT_D
:
2392 rep_write(sd
, info
->edid_spa_port_b_reg
+ 4, pa
>> 8);
2393 rep_write(sd
, info
->edid_spa_port_b_reg
+ 5, pa
& 0xff);
2399 if (info
->edid_spa_loc_reg
) {
2400 u8 mask
= info
->edid_spa_loc_msb_mask
;
2402 rep_write(sd
, info
->edid_spa_loc_reg
, spa_loc
& 0xff);
2403 rep_write_clr_set(sd
, info
->edid_spa_loc_reg
+ 1,
2404 mask
, (spa_loc
& 0x100) ? mask
: 0);
2407 edid
->edid
[spa_loc
] = state
->spa_port_a
[0];
2408 edid
->edid
[spa_loc
+ 1] = state
->spa_port_a
[1];
2410 memcpy(state
->edid
.edid
, edid
->edid
, 128 * edid
->blocks
);
2411 state
->edid
.blocks
= edid
->blocks
;
2412 state
->aspect_ratio
= v4l2_calc_aspect_ratio(edid
->edid
[0x15],
2414 state
->edid
.present
|= 1 << edid
->pad
;
2416 rep_write_clr_set(sd
, info
->edid_segment_reg
,
2417 info
->edid_segment_mask
, 0);
2418 err
= edid_write_block(sd
, 128 * min(edid
->blocks
, 2U), state
->edid
.edid
);
2420 v4l2_err(sd
, "error %d writing edid pad %d\n", err
, edid
->pad
);
2423 if (edid
->blocks
> 2) {
2424 rep_write_clr_set(sd
, info
->edid_segment_reg
,
2425 info
->edid_segment_mask
,
2426 info
->edid_segment_mask
);
2427 err
= edid_write_block(sd
, 128 * (edid
->blocks
- 2),
2428 state
->edid
.edid
+ 256);
2430 v4l2_err(sd
, "error %d writing edid pad %d\n",
2436 /* adv76xx calculates the checksums and enables I2C access to internal
2437 EDID RAM from DDC port. */
2438 rep_write_clr_set(sd
, info
->edid_enable_reg
, 0x0f, state
->edid
.present
);
2440 for (i
= 0; i
< 1000; i
++) {
2441 if (rep_read(sd
, info
->edid_status_reg
) & state
->edid
.present
)
2446 v4l2_err(sd
, "error enabling edid (0x%x)\n", state
->edid
.present
);
2449 cec_s_phys_addr(state
->cec_adap
, parent_pa
, false);
2451 /* enable hotplug after 100 ms */
2452 schedule_delayed_work(&state
->delayed_work_enable_hotplug
, HZ
/ 10);
2456 /*********** avi info frame CEA-861-E **************/
2458 static const struct adv76xx_cfg_read_infoframe adv76xx_cri
[] = {
2459 { "AVI", 0x01, 0xe0, 0x00 },
2460 { "Audio", 0x02, 0xe3, 0x1c },
2461 { "SDP", 0x04, 0xe6, 0x2a },
2462 { "Vendor", 0x10, 0xec, 0x54 }
2465 static int adv76xx_read_infoframe_buf(struct v4l2_subdev
*sd
, int index
,
2466 u8 buf
[V4L2_DEBUGFS_IF_MAX_LEN
])
2471 if (!(io_read(sd
, 0x60) & adv76xx_cri
[index
].present_mask
)) {
2472 v4l2_info(sd
, "%s infoframe not received\n",
2473 adv76xx_cri
[index
].desc
);
2477 for (i
= 0; i
< 3; i
++)
2478 buf
[i
] = infoframe_read(sd
, adv76xx_cri
[index
].head_addr
+ i
);
2482 if (len
+ 3 > V4L2_DEBUGFS_IF_MAX_LEN
) {
2483 v4l2_err(sd
, "%s: invalid %s infoframe length %d\n", __func__
,
2484 adv76xx_cri
[index
].desc
, len
);
2488 for (i
= 0; i
< len
; i
++)
2489 buf
[i
+ 3] = infoframe_read(sd
,
2490 adv76xx_cri
[index
].payload_addr
+ i
);
2494 static void adv76xx_log_infoframes(struct v4l2_subdev
*sd
)
2499 v4l2_info(sd
, "receive DVI-D signal, no infoframes\n");
2503 for (i
= 0; i
< ARRAY_SIZE(adv76xx_cri
); i
++) {
2504 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
2505 u8 buffer
[V4L2_DEBUGFS_IF_MAX_LEN
] = {};
2506 union hdmi_infoframe frame
;
2509 len
= adv76xx_read_infoframe_buf(sd
, i
, buffer
);
2513 if (hdmi_infoframe_unpack(&frame
, buffer
, len
) < 0)
2514 v4l2_err(sd
, "%s: unpack of %s infoframe failed\n",
2515 __func__
, adv76xx_cri
[i
].desc
);
2517 hdmi_infoframe_log(KERN_INFO
, &client
->dev
, &frame
);
2521 static int adv76xx_log_status(struct v4l2_subdev
*sd
)
2523 struct adv76xx_state
*state
= to_state(sd
);
2524 const struct adv76xx_chip_info
*info
= state
->info
;
2525 struct v4l2_dv_timings timings
;
2526 struct stdi_readback stdi
;
2531 static const char * const csc_coeff_sel_rb
[16] = {
2532 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2533 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2534 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2535 "reserved", "reserved", "reserved", "reserved", "manual"
2537 static const char * const input_color_space_txt
[16] = {
2538 "RGB limited range (16-235)", "RGB full range (0-255)",
2539 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2540 "xvYCC Bt.601", "xvYCC Bt.709",
2541 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2542 "invalid", "invalid", "invalid", "invalid", "invalid",
2543 "invalid", "invalid", "automatic"
2545 static const char * const hdmi_color_space_txt
[16] = {
2546 "RGB limited range (16-235)", "RGB full range (0-255)",
2547 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2548 "xvYCC Bt.601", "xvYCC Bt.709",
2549 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2550 "sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2551 "invalid", "invalid", "invalid"
2553 static const char * const rgb_quantization_range_txt
[] = {
2555 "RGB limited range (16-235)",
2556 "RGB full range (0-255)",
2558 static const char * const deep_color_mode_txt
[4] = {
2559 "8-bits per channel",
2560 "10-bits per channel",
2561 "12-bits per channel",
2562 "16-bits per channel (not supported)"
2565 v4l2_info(sd
, "-----Chip status-----\n");
2566 v4l2_info(sd
, "Chip power: %s\n", no_power(sd
) ? "off" : "on");
2567 edid_enabled
= rep_read(sd
, info
->edid_status_reg
);
2568 v4l2_info(sd
, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2569 ((edid_enabled
& 0x01) ? "Yes" : "No"),
2570 ((edid_enabled
& 0x02) ? "Yes" : "No"),
2571 ((edid_enabled
& 0x04) ? "Yes" : "No"),
2572 ((edid_enabled
& 0x08) ? "Yes" : "No"));
2573 v4l2_info(sd
, "CEC: %s\n", state
->cec_enabled_adap
?
2574 "enabled" : "disabled");
2575 if (state
->cec_enabled_adap
) {
2578 for (i
= 0; i
< ADV76XX_MAX_ADDRS
; i
++) {
2579 bool is_valid
= state
->cec_valid_addrs
& (1 << i
);
2582 v4l2_info(sd
, "CEC Logical Address: 0x%x\n",
2583 state
->cec_addr
[i
]);
2587 v4l2_info(sd
, "-----Signal status-----\n");
2588 cable_det
= info
->read_cable_det(sd
);
2589 v4l2_info(sd
, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2590 ((cable_det
& 0x01) ? "Yes" : "No"),
2591 ((cable_det
& 0x02) ? "Yes" : "No"),
2592 ((cable_det
& 0x04) ? "Yes" : "No"),
2593 ((cable_det
& 0x08) ? "Yes" : "No"));
2594 v4l2_info(sd
, "TMDS signal detected: %s\n",
2595 no_signal_tmds(sd
) ? "false" : "true");
2596 v4l2_info(sd
, "TMDS signal locked: %s\n",
2597 no_lock_tmds(sd
) ? "false" : "true");
2598 v4l2_info(sd
, "SSPD locked: %s\n", no_lock_sspd(sd
) ? "false" : "true");
2599 v4l2_info(sd
, "STDI locked: %s\n", no_lock_stdi(sd
) ? "false" : "true");
2600 v4l2_info(sd
, "CP locked: %s\n", no_lock_cp(sd
) ? "false" : "true");
2601 v4l2_info(sd
, "CP free run: %s\n",
2602 (in_free_run(sd
)) ? "on" : "off");
2603 v4l2_info(sd
, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2604 io_read(sd
, 0x01) & 0x0f, io_read(sd
, 0x00) & 0x3f,
2605 (io_read(sd
, 0x01) & 0x70) >> 4);
2607 v4l2_info(sd
, "-----Video Timings-----\n");
2608 if (read_stdi(sd
, &stdi
))
2609 v4l2_info(sd
, "STDI: not locked\n");
2611 v4l2_info(sd
, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2612 stdi
.lcf
, stdi
.bl
, stdi
.lcvs
,
2613 stdi
.interlaced
? "interlaced" : "progressive",
2614 stdi
.hs_pol
, stdi
.vs_pol
);
2615 if (adv76xx_query_dv_timings(sd
, 0, &timings
))
2616 v4l2_info(sd
, "No video detected\n");
2618 v4l2_print_dv_timings(sd
->name
, "Detected format: ",
2620 v4l2_print_dv_timings(sd
->name
, "Configured format: ",
2621 &state
->timings
, true);
2626 v4l2_info(sd
, "-----Color space-----\n");
2627 v4l2_info(sd
, "RGB quantization range ctrl: %s\n",
2628 rgb_quantization_range_txt
[state
->rgb_quantization_range
]);
2630 ret
= io_read(sd
, 0x02);
2632 v4l2_info(sd
, "Can't read Input/Output color space\n");
2636 v4l2_info(sd
, "Input color space: %s\n",
2637 input_color_space_txt
[reg_io_0x02
>> 4]);
2638 v4l2_info(sd
, "Output color space: %s %s, alt-gamma %s\n",
2639 (reg_io_0x02
& 0x02) ? "RGB" : "YCbCr",
2640 (((reg_io_0x02
>> 2) & 0x01) ^ (reg_io_0x02
& 0x01)) ?
2641 "(16-235)" : "(0-255)",
2642 (reg_io_0x02
& 0x08) ? "enabled" : "disabled");
2644 v4l2_info(sd
, "Color space conversion: %s\n",
2645 csc_coeff_sel_rb
[cp_read(sd
, info
->cp_csc
) >> 4]);
2647 if (!is_digital_input(sd
))
2650 v4l2_info(sd
, "-----%s status-----\n", is_hdmi(sd
) ? "HDMI" : "DVI-D");
2651 v4l2_info(sd
, "Digital video port selected: %c\n",
2652 (hdmi_read(sd
, 0x00) & 0x03) + 'A');
2653 v4l2_info(sd
, "HDCP encrypted content: %s\n",
2654 (hdmi_read(sd
, 0x05) & 0x40) ? "true" : "false");
2655 v4l2_info(sd
, "HDCP keys read: %s%s\n",
2656 (hdmi_read(sd
, 0x04) & 0x20) ? "yes" : "no",
2657 (hdmi_read(sd
, 0x04) & 0x10) ? "ERROR" : "");
2659 bool audio_pll_locked
= hdmi_read(sd
, 0x04) & 0x01;
2660 bool audio_sample_packet_detect
= hdmi_read(sd
, 0x18) & 0x01;
2661 bool audio_mute
= io_read(sd
, 0x65) & 0x40;
2663 v4l2_info(sd
, "Audio: pll %s, samples %s, %s\n",
2664 audio_pll_locked
? "locked" : "not locked",
2665 audio_sample_packet_detect
? "detected" : "not detected",
2666 audio_mute
? "muted" : "enabled");
2667 if (audio_pll_locked
&& audio_sample_packet_detect
) {
2668 v4l2_info(sd
, "Audio format: %s\n",
2669 (hdmi_read(sd
, 0x07) & 0x20) ? "multi-channel" : "stereo");
2671 v4l2_info(sd
, "Audio CTS: %u\n", (hdmi_read(sd
, 0x5b) << 12) +
2672 (hdmi_read(sd
, 0x5c) << 8) +
2673 (hdmi_read(sd
, 0x5d) & 0xf0));
2674 v4l2_info(sd
, "Audio N: %u\n", ((hdmi_read(sd
, 0x5d) & 0x0f) << 16) +
2675 (hdmi_read(sd
, 0x5e) << 8) +
2676 hdmi_read(sd
, 0x5f));
2677 v4l2_info(sd
, "AV Mute: %s\n", (hdmi_read(sd
, 0x04) & 0x40) ? "on" : "off");
2679 v4l2_info(sd
, "Deep color mode: %s\n", deep_color_mode_txt
[(hdmi_read(sd
, 0x0b) & 0x60) >> 5]);
2680 v4l2_info(sd
, "HDMI colorspace: %s\n", hdmi_color_space_txt
[hdmi_read(sd
, 0x53) & 0xf]);
2682 adv76xx_log_infoframes(sd
);
2688 static int adv76xx_subscribe_event(struct v4l2_subdev
*sd
,
2690 struct v4l2_event_subscription
*sub
)
2692 switch (sub
->type
) {
2693 case V4L2_EVENT_SOURCE_CHANGE
:
2694 return v4l2_src_change_event_subdev_subscribe(sd
, fh
, sub
);
2695 case V4L2_EVENT_CTRL
:
2696 return v4l2_ctrl_subdev_subscribe_event(sd
, fh
, sub
);
2703 adv76xx_debugfs_if_read(u32 type
, void *priv
, struct file
*filp
,
2704 char __user
*ubuf
, size_t count
, loff_t
*ppos
)
2706 u8 buf
[V4L2_DEBUGFS_IF_MAX_LEN
] = {};
2707 struct v4l2_subdev
*sd
= priv
;
2715 case V4L2_DEBUGFS_IF_AVI
:
2718 case V4L2_DEBUGFS_IF_AUDIO
:
2721 case V4L2_DEBUGFS_IF_SPD
:
2724 case V4L2_DEBUGFS_IF_HDMI
:
2731 len
= adv76xx_read_infoframe_buf(sd
, index
, buf
);
2733 len
= simple_read_from_buffer(ubuf
, count
, ppos
, buf
, len
);
2734 return len
< 0 ? 0 : len
;
2737 static int adv76xx_registered(struct v4l2_subdev
*sd
)
2739 struct adv76xx_state
*state
= to_state(sd
);
2740 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
2743 err
= cec_register_adapter(state
->cec_adap
, &client
->dev
);
2745 cec_delete_adapter(state
->cec_adap
);
2748 state
->debugfs_dir
= debugfs_create_dir(sd
->name
, v4l2_debugfs_root());
2749 state
->infoframes
= v4l2_debugfs_if_alloc(state
->debugfs_dir
,
2750 V4L2_DEBUGFS_IF_AVI
| V4L2_DEBUGFS_IF_AUDIO
|
2751 V4L2_DEBUGFS_IF_SPD
| V4L2_DEBUGFS_IF_HDMI
, sd
,
2752 adv76xx_debugfs_if_read
);
2756 static void adv76xx_unregistered(struct v4l2_subdev
*sd
)
2758 struct adv76xx_state
*state
= to_state(sd
);
2760 cec_unregister_adapter(state
->cec_adap
);
2761 v4l2_debugfs_if_free(state
->infoframes
);
2762 state
->infoframes
= NULL
;
2763 debugfs_remove_recursive(state
->debugfs_dir
);
2764 state
->debugfs_dir
= NULL
;
2767 /* ----------------------------------------------------------------------- */
2769 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops
= {
2770 .s_ctrl
= adv76xx_s_ctrl
,
2771 .g_volatile_ctrl
= adv76xx_g_volatile_ctrl
,
2774 static const struct v4l2_subdev_core_ops adv76xx_core_ops
= {
2775 .log_status
= adv76xx_log_status
,
2776 .interrupt_service_routine
= adv76xx_isr
,
2777 .subscribe_event
= adv76xx_subscribe_event
,
2778 .unsubscribe_event
= v4l2_event_subdev_unsubscribe
,
2779 #ifdef CONFIG_VIDEO_ADV_DEBUG
2780 .g_register
= adv76xx_g_register
,
2781 .s_register
= adv76xx_s_register
,
2785 static const struct v4l2_subdev_video_ops adv76xx_video_ops
= {
2786 .s_routing
= adv76xx_s_routing
,
2787 .g_input_status
= adv76xx_g_input_status
,
2790 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops
= {
2791 .enum_mbus_code
= adv76xx_enum_mbus_code
,
2792 .get_selection
= adv76xx_get_selection
,
2793 .get_fmt
= adv76xx_get_format
,
2794 .set_fmt
= adv76xx_set_format
,
2795 .get_edid
= adv76xx_get_edid
,
2796 .set_edid
= adv76xx_set_edid
,
2797 .s_dv_timings
= adv76xx_s_dv_timings
,
2798 .g_dv_timings
= adv76xx_g_dv_timings
,
2799 .query_dv_timings
= adv76xx_query_dv_timings
,
2800 .dv_timings_cap
= adv76xx_dv_timings_cap
,
2801 .enum_dv_timings
= adv76xx_enum_dv_timings
,
2804 static const struct v4l2_subdev_ops adv76xx_ops
= {
2805 .core
= &adv76xx_core_ops
,
2806 .video
= &adv76xx_video_ops
,
2807 .pad
= &adv76xx_pad_ops
,
2810 static const struct v4l2_subdev_internal_ops adv76xx_int_ops
= {
2811 .registered
= adv76xx_registered
,
2812 .unregistered
= adv76xx_unregistered
,
2815 /* -------------------------- custom ctrls ---------------------------------- */
2817 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase
= {
2818 .ops
= &adv76xx_ctrl_ops
,
2819 .id
= V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE
,
2820 .name
= "Analog Sampling Phase",
2821 .type
= V4L2_CTRL_TYPE_INTEGER
,
2828 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual
= {
2829 .ops
= &adv76xx_ctrl_ops
,
2830 .id
= V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL
,
2831 .name
= "Free Running Color, Manual",
2832 .type
= V4L2_CTRL_TYPE_BOOLEAN
,
2839 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color
= {
2840 .ops
= &adv76xx_ctrl_ops
,
2841 .id
= V4L2_CID_ADV_RX_FREE_RUN_COLOR
,
2842 .name
= "Free Running Color",
2843 .type
= V4L2_CTRL_TYPE_INTEGER
,
2850 /* ----------------------------------------------------------------------- */
2852 struct adv76xx_register_map
{
2857 static const struct adv76xx_register_map adv76xx_default_addresses
[] = {
2858 [ADV76XX_PAGE_IO
] = { "main", 0x4c },
2859 [ADV7604_PAGE_AVLINK
] = { "avlink", 0x42 },
2860 [ADV76XX_PAGE_CEC
] = { "cec", 0x40 },
2861 [ADV76XX_PAGE_INFOFRAME
] = { "infoframe", 0x3e },
2862 [ADV7604_PAGE_ESDP
] = { "esdp", 0x38 },
2863 [ADV7604_PAGE_DPP
] = { "dpp", 0x3c },
2864 [ADV76XX_PAGE_AFE
] = { "afe", 0x26 },
2865 [ADV76XX_PAGE_REP
] = { "rep", 0x32 },
2866 [ADV76XX_PAGE_EDID
] = { "edid", 0x36 },
2867 [ADV76XX_PAGE_HDMI
] = { "hdmi", 0x34 },
2868 [ADV76XX_PAGE_TEST
] = { "test", 0x30 },
2869 [ADV76XX_PAGE_CP
] = { "cp", 0x22 },
2870 [ADV7604_PAGE_VDP
] = { "vdp", 0x24 },
2873 static int adv76xx_core_init(struct v4l2_subdev
*sd
)
2875 struct adv76xx_state
*state
= to_state(sd
);
2876 const struct adv76xx_chip_info
*info
= state
->info
;
2877 struct adv76xx_platform_data
*pdata
= &state
->pdata
;
2879 hdmi_write(sd
, 0x48,
2880 (pdata
->disable_pwrdnb
? 0x80 : 0) |
2881 (pdata
->disable_cable_det_rst
? 0x40 : 0));
2885 if (pdata
->default_input
>= 0 &&
2886 pdata
->default_input
< state
->source_pad
) {
2887 state
->selected_input
= pdata
->default_input
;
2893 io_write(sd
, 0x0c, 0x42); /* Power up part and power down VDP */
2894 io_write(sd
, 0x0b, 0x44); /* Power down ESDP block */
2895 cp_write(sd
, 0xcf, 0x01); /* Power down macrovision */
2898 if (info
->type
!= ADV7604
) {
2899 /* Set manual HPD values to 0 */
2900 io_write_clr_set(sd
, 0x20, 0xc0, 0);
2902 * Set HPA_DELAY to 200 ms and set automatic HPD control
2903 * to: internal EDID is active AND a cable is detected
2904 * AND the manual HPD control is set to 1.
2906 hdmi_write_clr_set(sd
, 0x6c, 0xf6, 0x26);
2910 io_write_clr_set(sd
, 0x02, 0x0f, pdata
->alt_gamma
<< 3);
2911 io_write_clr_set(sd
, 0x05, 0x0e, pdata
->blank_data
<< 3 |
2912 pdata
->insert_av_codes
<< 2 |
2913 pdata
->replicate_av_codes
<< 1);
2914 adv76xx_setup_format(state
);
2916 cp_write(sd
, 0x69, 0x30); /* Enable CP CSC */
2918 /* VS, HS polarities */
2919 io_write(sd
, 0x06, 0xa0 | pdata
->inv_vs_pol
<< 2 |
2920 pdata
->inv_hs_pol
<< 1 | pdata
->inv_llc_pol
);
2922 /* Adjust drive strength */
2923 io_write(sd
, 0x14, 0x40 | pdata
->dr_str_data
<< 4 |
2924 pdata
->dr_str_clk
<< 2 |
2925 pdata
->dr_str_sync
);
2927 cp_write(sd
, 0xba, (pdata
->hdmi_free_run_mode
<< 1) | 0x01); /* HDMI free run */
2928 cp_write(sd
, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2929 cp_write(sd
, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2930 ADI recommended setting [REF_01, c. 2.3.3] */
2931 cp_write(sd
, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2932 ADI recommended setting [REF_01, c. 2.3.3] */
2933 cp_write(sd
, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2934 for digital formats */
2937 hdmi_write_clr_set(sd
, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2938 hdmi_write_clr_set(sd
, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2939 hdmi_write_clr_set(sd
, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2941 /* TODO from platform data */
2942 afe_write(sd
, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2944 if (adv76xx_has_afe(state
)) {
2945 afe_write(sd
, 0x02, pdata
->ain_sel
); /* Select analog input muxing mode */
2946 io_write_clr_set(sd
, 0x30, 1 << 4, pdata
->output_bus_lsb_to_msb
<< 4);
2950 io_write(sd
, 0x40, 0xc0 | pdata
->int1_config
); /* Configure INT1 */
2951 io_write(sd
, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2952 io_write(sd
, 0x6e, info
->fmt_change_digital_mask
); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2953 io_write(sd
, 0x73, info
->cable_det_mask
); /* Enable cable detection (+5v) interrupts */
2954 info
->setup_irqs(sd
);
2956 return v4l2_ctrl_handler_setup(sd
->ctrl_handler
);
2959 static void adv7604_setup_irqs(struct v4l2_subdev
*sd
)
2961 io_write(sd
, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2964 static void adv7611_setup_irqs(struct v4l2_subdev
*sd
)
2966 io_write(sd
, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2969 static void adv7612_setup_irqs(struct v4l2_subdev
*sd
)
2971 io_write(sd
, 0x41, 0xd0); /* disable INT2 */
2974 static void adv76xx_unregister_clients(struct adv76xx_state
*state
)
2978 for (i
= 1; i
< ARRAY_SIZE(state
->i2c_clients
); ++i
)
2979 i2c_unregister_device(state
->i2c_clients
[i
]);
2982 static struct i2c_client
*adv76xx_dummy_client(struct v4l2_subdev
*sd
,
2985 struct i2c_client
*client
= v4l2_get_subdevdata(sd
);
2986 struct adv76xx_state
*state
= to_state(sd
);
2987 struct adv76xx_platform_data
*pdata
= &state
->pdata
;
2988 unsigned int io_reg
= 0xf2 + page
;
2989 struct i2c_client
*new_client
;
2991 if (pdata
&& pdata
->i2c_addresses
[page
])
2992 new_client
= i2c_new_dummy_device(client
->adapter
,
2993 pdata
->i2c_addresses
[page
]);
2995 new_client
= i2c_new_ancillary_device(client
,
2996 adv76xx_default_addresses
[page
].name
,
2997 adv76xx_default_addresses
[page
].default_addr
);
2999 if (!IS_ERR(new_client
))
3000 io_write(sd
, io_reg
, new_client
->addr
<< 1);
3005 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe
[] = {
3006 /* reset ADI recommended settings for HDMI: */
3007 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
3008 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x0d), 0x04 }, /* HDMI filter optimization */
3009 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x0d), 0x04 }, /* HDMI filter optimization */
3010 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3d), 0x00 }, /* DDC bus active pull-up control */
3011 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3e), 0x74 }, /* TMDS PLL optimization */
3012 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4e), 0x3b }, /* TMDS PLL optimization */
3013 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0x74 }, /* TMDS PLL optimization */
3014 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x63 }, /* TMDS PLL optimization */
3015 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8d), 0x18 }, /* equaliser */
3016 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8e), 0x34 }, /* equaliser */
3017 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x93), 0x88 }, /* equaliser */
3018 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x94), 0x2e }, /* equaliser */
3019 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x96), 0x00 }, /* enable automatic EQ changing */
3021 /* set ADI recommended settings for digitizer */
3022 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
3023 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x12), 0x7b }, /* ADC noise shaping filter controls */
3024 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x0c), 0x1f }, /* CP core gain controls */
3025 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x3e), 0x04 }, /* CP core pre-gain control */
3026 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
3027 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
3029 { ADV76XX_REG_SEQ_TERM
, 0 },
3032 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi
[] = {
3033 /* set ADI recommended settings for HDMI: */
3034 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
3035 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x0d), 0x84 }, /* HDMI filter optimization */
3036 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3d), 0x10 }, /* DDC bus active pull-up control */
3037 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x3e), 0x39 }, /* TMDS PLL optimization */
3038 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4e), 0x3b }, /* TMDS PLL optimization */
3039 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0xb6 }, /* TMDS PLL optimization */
3040 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x03 }, /* TMDS PLL optimization */
3041 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8d), 0x18 }, /* equaliser */
3042 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8e), 0x34 }, /* equaliser */
3043 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x93), 0x8b }, /* equaliser */
3044 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x94), 0x2d }, /* equaliser */
3045 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x96), 0x01 }, /* enable automatic EQ changing */
3047 /* reset ADI recommended settings for digitizer */
3048 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
3049 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x12), 0xfb }, /* ADC noise shaping filter controls */
3050 { ADV76XX_REG(ADV76XX_PAGE_AFE
, 0x0c), 0x0d }, /* CP core gain controls */
3052 { ADV76XX_REG_SEQ_TERM
, 0 },
3055 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi
[] = {
3056 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
3057 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x6c), 0x00 },
3058 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x9b), 0x03 },
3059 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x6f), 0x08 },
3060 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x85), 0x1f },
3061 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x87), 0x70 },
3062 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0xda },
3063 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x01 },
3064 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x03), 0x98 },
3065 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4c), 0x44 },
3066 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8d), 0x04 },
3067 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x8e), 0x1e },
3069 { ADV76XX_REG_SEQ_TERM
, 0 },
3072 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi
[] = {
3073 { ADV76XX_REG(ADV76XX_PAGE_CP
, 0x6c), 0x00 },
3074 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x9b), 0x03 },
3075 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x6f), 0x08 },
3076 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x85), 0x1f },
3077 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x87), 0x70 },
3078 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x57), 0xda },
3079 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x58), 0x01 },
3080 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x03), 0x98 },
3081 { ADV76XX_REG(ADV76XX_PAGE_HDMI
, 0x4c), 0x44 },
3082 { ADV76XX_REG_SEQ_TERM
, 0 },
3085 static const struct adv76xx_chip_info adv76xx_chip_info
[] = {
3089 .max_port
= ADV7604_PAD_VGA_COMP
,
3091 .edid_enable_reg
= 0x77,
3092 .edid_status_reg
= 0x7d,
3093 .edid_segment_reg
= 0x77,
3094 .edid_segment_mask
= 0x10,
3095 .edid_spa_loc_reg
= 0x76,
3096 .edid_spa_loc_msb_mask
= 0x40,
3097 .edid_spa_port_b_reg
= 0x70,
3099 .tdms_lock_mask
= 0xe0,
3100 .cable_det_mask
= 0x1e,
3101 .fmt_change_digital_mask
= 0xc1,
3103 .cec_irq_status
= 0x4d,
3104 .cec_rx_enable
= 0x26,
3105 .cec_rx_enable_mask
= 0x01,
3106 .cec_irq_swap
= true,
3107 .formats
= adv7604_formats
,
3108 .nformats
= ARRAY_SIZE(adv7604_formats
),
3109 .set_termination
= adv7604_set_termination
,
3110 .setup_irqs
= adv7604_setup_irqs
,
3111 .read_hdmi_pixelclock
= adv7604_read_hdmi_pixelclock
,
3112 .read_cable_det
= adv7604_read_cable_det
,
3113 .recommended_settings
= {
3114 [0] = adv7604_recommended_settings_afe
,
3115 [1] = adv7604_recommended_settings_hdmi
,
3117 .num_recommended_settings
= {
3118 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe
),
3119 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi
),
3121 .page_mask
= BIT(ADV76XX_PAGE_IO
) | BIT(ADV7604_PAGE_AVLINK
) |
3122 BIT(ADV76XX_PAGE_CEC
) | BIT(ADV76XX_PAGE_INFOFRAME
) |
3123 BIT(ADV7604_PAGE_ESDP
) | BIT(ADV7604_PAGE_DPP
) |
3124 BIT(ADV76XX_PAGE_AFE
) | BIT(ADV76XX_PAGE_REP
) |
3125 BIT(ADV76XX_PAGE_EDID
) | BIT(ADV76XX_PAGE_HDMI
) |
3126 BIT(ADV76XX_PAGE_TEST
) | BIT(ADV76XX_PAGE_CP
) |
3127 BIT(ADV7604_PAGE_VDP
),
3128 .linewidth_mask
= 0xfff,
3129 .field0_height_mask
= 0xfff,
3130 .field1_height_mask
= 0xfff,
3131 .hfrontporch_mask
= 0x3ff,
3132 .hsync_mask
= 0x3ff,
3133 .hbackporch_mask
= 0x3ff,
3134 .field0_vfrontporch_mask
= 0x1fff,
3135 .field0_vsync_mask
= 0x1fff,
3136 .field0_vbackporch_mask
= 0x1fff,
3137 .field1_vfrontporch_mask
= 0x1fff,
3138 .field1_vsync_mask
= 0x1fff,
3139 .field1_vbackporch_mask
= 0x1fff,
3144 .max_port
= ADV76XX_PAD_HDMI_PORT_A
,
3146 .edid_enable_reg
= 0x74,
3147 .edid_status_reg
= 0x76,
3148 .edid_segment_reg
= 0x7a,
3149 .edid_segment_mask
= 0x01,
3151 .tdms_lock_mask
= 0x43,
3152 .cable_det_mask
= 0x01,
3153 .fmt_change_digital_mask
= 0x03,
3155 .cec_irq_status
= 0x93,
3156 .cec_rx_enable
= 0x2c,
3157 .cec_rx_enable_mask
= 0x02,
3158 .formats
= adv7611_formats
,
3159 .nformats
= ARRAY_SIZE(adv7611_formats
),
3160 .set_termination
= adv7611_set_termination
,
3161 .setup_irqs
= adv7611_setup_irqs
,
3162 .read_hdmi_pixelclock
= adv7611_read_hdmi_pixelclock
,
3163 .read_cable_det
= adv7611_read_cable_det
,
3164 .recommended_settings
= {
3165 [1] = adv7611_recommended_settings_hdmi
,
3167 .num_recommended_settings
= {
3168 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi
),
3170 .page_mask
= BIT(ADV76XX_PAGE_IO
) | BIT(ADV76XX_PAGE_CEC
) |
3171 BIT(ADV76XX_PAGE_INFOFRAME
) | BIT(ADV76XX_PAGE_AFE
) |
3172 BIT(ADV76XX_PAGE_REP
) | BIT(ADV76XX_PAGE_EDID
) |
3173 BIT(ADV76XX_PAGE_HDMI
) | BIT(ADV76XX_PAGE_CP
),
3174 .linewidth_mask
= 0x1fff,
3175 .field0_height_mask
= 0x1fff,
3176 .field1_height_mask
= 0x1fff,
3177 .hfrontporch_mask
= 0x1fff,
3178 .hsync_mask
= 0x1fff,
3179 .hbackporch_mask
= 0x1fff,
3180 .field0_vfrontporch_mask
= 0x3fff,
3181 .field0_vsync_mask
= 0x3fff,
3182 .field0_vbackporch_mask
= 0x3fff,
3183 .field1_vfrontporch_mask
= 0x3fff,
3184 .field1_vsync_mask
= 0x3fff,
3185 .field1_vbackporch_mask
= 0x3fff,
3190 .max_port
= ADV76XX_PAD_HDMI_PORT_A
, /* B not supported */
3191 .num_dv_ports
= 1, /* normally 2 */
3192 .edid_enable_reg
= 0x74,
3193 .edid_status_reg
= 0x76,
3194 .edid_segment_reg
= 0x7a,
3195 .edid_segment_mask
= 0x01,
3196 .edid_spa_loc_reg
= 0x70,
3197 .edid_spa_loc_msb_mask
= 0x01,
3198 .edid_spa_port_b_reg
= 0x52,
3200 .tdms_lock_mask
= 0x43,
3201 .cable_det_mask
= 0x01,
3202 .fmt_change_digital_mask
= 0x03,
3204 .cec_irq_status
= 0x93,
3205 .cec_rx_enable
= 0x2c,
3206 .cec_rx_enable_mask
= 0x02,
3207 .formats
= adv7612_formats
,
3208 .nformats
= ARRAY_SIZE(adv7612_formats
),
3209 .set_termination
= adv7611_set_termination
,
3210 .setup_irqs
= adv7612_setup_irqs
,
3211 .read_hdmi_pixelclock
= adv7611_read_hdmi_pixelclock
,
3212 .read_cable_det
= adv7612_read_cable_det
,
3213 .recommended_settings
= {
3214 [1] = adv7612_recommended_settings_hdmi
,
3216 .num_recommended_settings
= {
3217 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi
),
3219 .page_mask
= BIT(ADV76XX_PAGE_IO
) | BIT(ADV76XX_PAGE_CEC
) |
3220 BIT(ADV76XX_PAGE_INFOFRAME
) | BIT(ADV76XX_PAGE_AFE
) |
3221 BIT(ADV76XX_PAGE_REP
) | BIT(ADV76XX_PAGE_EDID
) |
3222 BIT(ADV76XX_PAGE_HDMI
) | BIT(ADV76XX_PAGE_CP
),
3223 .linewidth_mask
= 0x1fff,
3224 .field0_height_mask
= 0x1fff,
3225 .field1_height_mask
= 0x1fff,
3226 .hfrontporch_mask
= 0x1fff,
3227 .hsync_mask
= 0x1fff,
3228 .hbackporch_mask
= 0x1fff,
3229 .field0_vfrontporch_mask
= 0x3fff,
3230 .field0_vsync_mask
= 0x3fff,
3231 .field0_vbackporch_mask
= 0x3fff,
3232 .field1_vfrontporch_mask
= 0x3fff,
3233 .field1_vsync_mask
= 0x3fff,
3234 .field1_vbackporch_mask
= 0x3fff,
3238 static const struct i2c_device_id adv76xx_i2c_id
[] = {
3239 { "adv7604", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7604
] },
3240 { "adv7610", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7611
] },
3241 { "adv7611", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7611
] },
3242 { "adv7612", (kernel_ulong_t
)&adv76xx_chip_info
[ADV7612
] },
3245 MODULE_DEVICE_TABLE(i2c
, adv76xx_i2c_id
);
3247 static const struct of_device_id adv76xx_of_id
[] __maybe_unused
= {
3248 { .compatible
= "adi,adv7610", .data
= &adv76xx_chip_info
[ADV7611
] },
3249 { .compatible
= "adi,adv7611", .data
= &adv76xx_chip_info
[ADV7611
] },
3250 { .compatible
= "adi,adv7612", .data
= &adv76xx_chip_info
[ADV7612
] },
3253 MODULE_DEVICE_TABLE(of
, adv76xx_of_id
);
3255 static int adv76xx_parse_dt(struct adv76xx_state
*state
)
3257 struct v4l2_fwnode_endpoint bus_cfg
= { .bus_type
= 0 };
3258 struct device_node
*endpoint
;
3259 struct device_node
*np
;
3264 np
= state
->i2c_clients
[ADV76XX_PAGE_IO
]->dev
.of_node
;
3266 /* FIXME: Parse the endpoint. */
3267 endpoint
= of_graph_get_endpoint_by_regs(np
, -1, -1);
3271 ret
= v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint
), &bus_cfg
);
3272 of_node_put(endpoint
);
3276 if (!of_property_read_u32(np
, "default-input", &v
))
3277 state
->pdata
.default_input
= v
;
3279 state
->pdata
.default_input
= -1;
3281 flags
= bus_cfg
.bus
.parallel
.flags
;
3283 if (flags
& V4L2_MBUS_HSYNC_ACTIVE_HIGH
)
3284 state
->pdata
.inv_hs_pol
= 1;
3286 if (flags
& V4L2_MBUS_VSYNC_ACTIVE_HIGH
)
3287 state
->pdata
.inv_vs_pol
= 1;
3289 if (flags
& V4L2_MBUS_PCLK_SAMPLE_RISING
)
3290 state
->pdata
.inv_llc_pol
= 1;
3292 if (bus_cfg
.bus_type
== V4L2_MBUS_BT656
)
3293 state
->pdata
.insert_av_codes
= 1;
3295 /* Disable the interrupt for now as no DT-based board uses it. */
3296 state
->pdata
.int1_config
= ADV76XX_INT1_CONFIG_ACTIVE_HIGH
;
3298 /* Hardcode the remaining platform data fields. */
3299 state
->pdata
.disable_pwrdnb
= 0;
3300 state
->pdata
.disable_cable_det_rst
= 0;
3301 state
->pdata
.blank_data
= 1;
3302 state
->pdata
.op_format_mode_sel
= ADV7604_OP_FORMAT_MODE0
;
3303 state
->pdata
.bus_order
= ADV7604_BUS_ORDER_RGB
;
3304 state
->pdata
.dr_str_data
= ADV76XX_DR_STR_MEDIUM_HIGH
;
3305 state
->pdata
.dr_str_clk
= ADV76XX_DR_STR_MEDIUM_HIGH
;
3306 state
->pdata
.dr_str_sync
= ADV76XX_DR_STR_MEDIUM_HIGH
;
3311 static const struct regmap_config adv76xx_regmap_cnf
[] = {
3317 .max_register
= 0xff,
3318 .cache_type
= REGCACHE_NONE
,
3325 .max_register
= 0xff,
3326 .cache_type
= REGCACHE_NONE
,
3333 .max_register
= 0xff,
3334 .cache_type
= REGCACHE_NONE
,
3337 .name
= "infoframe",
3341 .max_register
= 0xff,
3342 .cache_type
= REGCACHE_NONE
,
3349 .max_register
= 0xff,
3350 .cache_type
= REGCACHE_NONE
,
3357 .max_register
= 0xff,
3358 .cache_type
= REGCACHE_NONE
,
3365 .max_register
= 0xff,
3366 .cache_type
= REGCACHE_NONE
,
3373 .max_register
= 0xff,
3374 .cache_type
= REGCACHE_NONE
,
3381 .max_register
= 0xff,
3382 .cache_type
= REGCACHE_NONE
,
3390 .max_register
= 0xff,
3391 .cache_type
= REGCACHE_NONE
,
3398 .max_register
= 0xff,
3399 .cache_type
= REGCACHE_NONE
,
3406 .max_register
= 0xff,
3407 .cache_type
= REGCACHE_NONE
,
3414 .max_register
= 0xff,
3415 .cache_type
= REGCACHE_NONE
,
3419 static int configure_regmap(struct adv76xx_state
*state
, int region
)
3423 if (!state
->i2c_clients
[region
])
3426 state
->regmap
[region
] =
3427 devm_regmap_init_i2c(state
->i2c_clients
[region
],
3428 &adv76xx_regmap_cnf
[region
]);
3430 if (IS_ERR(state
->regmap
[region
])) {
3431 err
= PTR_ERR(state
->regmap
[region
]);
3432 v4l_err(state
->i2c_clients
[region
],
3433 "Error initializing regmap %d with error %d\n",
3441 static int configure_regmaps(struct adv76xx_state
*state
)
3445 for (i
= ADV7604_PAGE_AVLINK
; i
< ADV76XX_PAGE_MAX
; i
++) {
3446 err
= configure_regmap(state
, i
);
3447 if (err
&& (err
!= -ENODEV
))
3453 static void adv76xx_reset(struct adv76xx_state
*state
)
3455 if (state
->reset_gpio
) {
3456 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3457 gpiod_set_value_cansleep(state
->reset_gpio
, 0);
3458 usleep_range(5000, 10000);
3459 gpiod_set_value_cansleep(state
->reset_gpio
, 1);
3460 /* It is recommended to wait 5 ms after the low pulse before */
3461 /* an I2C write is performed to the ADV76XX. */
3462 usleep_range(5000, 10000);
3466 static int adv76xx_probe(struct i2c_client
*client
)
3468 const struct i2c_device_id
*id
= i2c_client_get_device_id(client
);
3469 static const struct v4l2_dv_timings cea640x480
=
3470 V4L2_DV_BT_CEA_640X480P59_94
;
3471 struct adv76xx_state
*state
;
3472 struct v4l2_ctrl_handler
*hdl
;
3473 struct v4l2_ctrl
*ctrl
;
3474 struct v4l2_subdev
*sd
;
3476 unsigned int val
, val2
;
3479 /* Check if the adapter supports the needed features */
3480 if (!i2c_check_functionality(client
->adapter
, I2C_FUNC_SMBUS_BYTE_DATA
))
3482 v4l_dbg(1, debug
, client
, "detecting adv76xx client on address 0x%x\n",
3485 state
= devm_kzalloc(&client
->dev
, sizeof(*state
), GFP_KERNEL
);
3489 state
->i2c_clients
[ADV76XX_PAGE_IO
] = client
;
3491 /* initialize variables */
3492 state
->restart_stdi_once
= true;
3493 state
->selected_input
= ~0;
3495 if (IS_ENABLED(CONFIG_OF
) && client
->dev
.of_node
) {
3496 const struct of_device_id
*oid
;
3498 oid
= of_match_node(adv76xx_of_id
, client
->dev
.of_node
);
3499 state
->info
= oid
->data
;
3501 err
= adv76xx_parse_dt(state
);
3503 v4l_err(client
, "DT parsing error\n");
3506 } else if (client
->dev
.platform_data
) {
3507 struct adv76xx_platform_data
*pdata
= client
->dev
.platform_data
;
3509 state
->info
= (const struct adv76xx_chip_info
*)id
->driver_data
;
3510 state
->pdata
= *pdata
;
3512 v4l_err(client
, "No platform data!\n");
3516 /* Request GPIOs. */
3517 for (i
= 0; i
< state
->info
->num_dv_ports
; ++i
) {
3518 state
->hpd_gpio
[i
] =
3519 devm_gpiod_get_index_optional(&client
->dev
, "hpd", i
,
3521 if (IS_ERR(state
->hpd_gpio
[i
]))
3522 return PTR_ERR(state
->hpd_gpio
[i
]);
3524 if (state
->hpd_gpio
[i
])
3525 v4l_info(client
, "Handling HPD %u GPIO\n", i
);
3527 state
->reset_gpio
= devm_gpiod_get_optional(&client
->dev
, "reset",
3529 if (IS_ERR(state
->reset_gpio
))
3530 return PTR_ERR(state
->reset_gpio
);
3532 adv76xx_reset(state
);
3534 state
->timings
= cea640x480
;
3535 state
->format
= adv76xx_format_info(state
, MEDIA_BUS_FMT_YUYV8_2X8
);
3538 v4l2_i2c_subdev_init(sd
, client
, &adv76xx_ops
);
3539 snprintf(sd
->name
, sizeof(sd
->name
), "%s %d-%04x",
3540 id
->name
, i2c_adapter_id(client
->adapter
),
3542 sd
->flags
|= V4L2_SUBDEV_FL_HAS_DEVNODE
| V4L2_SUBDEV_FL_HAS_EVENTS
;
3543 sd
->internal_ops
= &adv76xx_int_ops
;
3545 /* Configure IO Regmap region */
3546 err
= configure_regmap(state
, ADV76XX_PAGE_IO
);
3549 v4l2_err(sd
, "Error configuring IO regmap region\n");
3554 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3555 * identifies the revision, while on ADV7611 it identifies the model as
3556 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3558 switch (state
->info
->type
) {
3560 err
= regmap_read(state
->regmap
[ADV76XX_PAGE_IO
], 0xfb, &val
);
3562 v4l2_err(sd
, "Error %d reading IO Regmap\n", err
);
3566 v4l2_err(sd
, "not an ADV7604 on address 0x%x\n",
3573 err
= regmap_read(state
->regmap
[ADV76XX_PAGE_IO
],
3577 v4l2_err(sd
, "Error %d reading IO Regmap\n", err
);
3581 err
= regmap_read(state
->regmap
[ADV76XX_PAGE_IO
],
3585 v4l2_err(sd
, "Error %d reading IO Regmap\n", err
);
3589 if ((state
->info
->type
== ADV7611
&& val
!= 0x2051) ||
3590 (state
->info
->type
== ADV7612
&& val
!= 0x2041)) {
3591 v4l2_err(sd
, "not an %s on address 0x%x\n",
3592 state
->info
->type
== ADV7611
? "ADV7610/11" : "ADV7612",
3599 /* control handlers */
3601 v4l2_ctrl_handler_init(hdl
, adv76xx_has_afe(state
) ? 9 : 8);
3603 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3604 V4L2_CID_BRIGHTNESS
, -128, 127, 1, 0);
3605 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3606 V4L2_CID_CONTRAST
, 0, 255, 1, 128);
3607 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3608 V4L2_CID_SATURATION
, 0, 255, 1, 128);
3609 v4l2_ctrl_new_std(hdl
, &adv76xx_ctrl_ops
,
3610 V4L2_CID_HUE
, 0, 255, 1, 0);
3611 ctrl
= v4l2_ctrl_new_std_menu(hdl
, &adv76xx_ctrl_ops
,
3612 V4L2_CID_DV_RX_IT_CONTENT_TYPE
, V4L2_DV_IT_CONTENT_TYPE_NO_ITC
,
3613 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC
);
3615 ctrl
->flags
|= V4L2_CTRL_FLAG_VOLATILE
;
3617 state
->detect_tx_5v_ctrl
= v4l2_ctrl_new_std(hdl
, NULL
,
3618 V4L2_CID_DV_RX_POWER_PRESENT
, 0,
3619 (1 << state
->info
->num_dv_ports
) - 1, 0, 0);
3620 state
->rgb_quantization_range_ctrl
=
3621 v4l2_ctrl_new_std_menu(hdl
, &adv76xx_ctrl_ops
,
3622 V4L2_CID_DV_RX_RGB_RANGE
, V4L2_DV_RGB_RANGE_FULL
,
3623 0, V4L2_DV_RGB_RANGE_AUTO
);
3625 /* custom controls */
3626 if (adv76xx_has_afe(state
))
3627 state
->analog_sampling_phase_ctrl
=
3628 v4l2_ctrl_new_custom(hdl
, &adv7604_ctrl_analog_sampling_phase
, NULL
);
3629 state
->free_run_color_manual_ctrl
=
3630 v4l2_ctrl_new_custom(hdl
, &adv76xx_ctrl_free_run_color_manual
, NULL
);
3631 state
->free_run_color_ctrl
=
3632 v4l2_ctrl_new_custom(hdl
, &adv76xx_ctrl_free_run_color
, NULL
);
3634 sd
->ctrl_handler
= hdl
;
3639 if (adv76xx_s_detect_tx_5v_ctrl(sd
)) {
3644 for (i
= 1; i
< ADV76XX_PAGE_MAX
; ++i
) {
3645 struct i2c_client
*dummy_client
;
3647 if (!(BIT(i
) & state
->info
->page_mask
))
3650 dummy_client
= adv76xx_dummy_client(sd
, i
);
3651 if (IS_ERR(dummy_client
)) {
3652 err
= PTR_ERR(dummy_client
);
3653 v4l2_err(sd
, "failed to create i2c client %u\n", i
);
3657 state
->i2c_clients
[i
] = dummy_client
;
3660 INIT_DELAYED_WORK(&state
->delayed_work_enable_hotplug
,
3661 adv76xx_delayed_work_enable_hotplug
);
3663 state
->source_pad
= state
->info
->num_dv_ports
3664 + (state
->info
->has_afe
? 2 : 0);
3665 for (i
= 0; i
< state
->source_pad
; ++i
)
3666 state
->pads
[i
].flags
= MEDIA_PAD_FL_SINK
;
3667 state
->pads
[state
->source_pad
].flags
= MEDIA_PAD_FL_SOURCE
;
3668 sd
->entity
.function
= MEDIA_ENT_F_DV_DECODER
;
3670 err
= media_entity_pads_init(&sd
->entity
, state
->source_pad
+ 1,
3673 goto err_work_queues
;
3675 /* Configure regmaps */
3676 err
= configure_regmaps(state
);
3680 err
= adv76xx_core_init(sd
);
3685 err
= devm_request_threaded_irq(&client
->dev
,
3687 NULL
, adv76xx_irq_handler
,
3688 IRQF_TRIGGER_HIGH
| IRQF_ONESHOT
,
3689 client
->name
, state
);
3694 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3695 state
->cec_adap
= cec_allocate_adapter(&adv76xx_cec_adap_ops
,
3696 state
, dev_name(&client
->dev
),
3697 CEC_CAP_DEFAULTS
, ADV76XX_MAX_ADDRS
);
3698 err
= PTR_ERR_OR_ZERO(state
->cec_adap
);
3703 v4l2_info(sd
, "%s found @ 0x%x (%s)\n", client
->name
,
3704 client
->addr
<< 1, client
->adapter
->name
);
3706 err
= v4l2_async_register_subdev(sd
);
3713 media_entity_cleanup(&sd
->entity
);
3715 cancel_delayed_work(&state
->delayed_work_enable_hotplug
);
3717 adv76xx_unregister_clients(state
);
3719 v4l2_ctrl_handler_free(hdl
);
3723 /* ----------------------------------------------------------------------- */
3725 static void adv76xx_remove(struct i2c_client
*client
)
3727 struct v4l2_subdev
*sd
= i2c_get_clientdata(client
);
3728 struct adv76xx_state
*state
= to_state(sd
);
3730 /* disable interrupts */
3731 io_write(sd
, 0x40, 0);
3732 io_write(sd
, 0x41, 0);
3733 io_write(sd
, 0x46, 0);
3734 io_write(sd
, 0x6e, 0);
3735 io_write(sd
, 0x73, 0);
3737 cancel_delayed_work_sync(&state
->delayed_work_enable_hotplug
);
3738 v4l2_async_unregister_subdev(sd
);
3739 media_entity_cleanup(&sd
->entity
);
3740 adv76xx_unregister_clients(to_state(sd
));
3741 v4l2_ctrl_handler_free(sd
->ctrl_handler
);
3744 /* ----------------------------------------------------------------------- */
3746 static struct i2c_driver adv76xx_driver
= {
3749 .of_match_table
= of_match_ptr(adv76xx_of_id
),
3751 .probe
= adv76xx_probe
,
3752 .remove
= adv76xx_remove
,
3753 .id_table
= adv76xx_i2c_id
,
3756 module_i2c_driver(adv76xx_driver
);