Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / media / i2c / cx25840 / cx25840-core.c
bloba90a9e5705a03088d844e1d1a9e894e73a5402d3
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* cx25840 - Conexant CX25840 audio/video decoder driver
4 * Copyright (C) 2004 Ulf Eklund
6 * Based on the saa7115 driver and on the first version of Chris Kennedy's
7 * cx25840 driver.
9 * Changes by Tyler Trafford <tatrafford@comcast.net>
10 * - cleanup/rewrite for V4L2 API (2005)
12 * VBI support by Hans Verkuil <hverkuil@xs4all.nl>.
14 * NTSC sliced VBI support by Christopher Neufeld <television@cneufeld.ca>
15 * with additional fixes by Hans Verkuil <hverkuil@xs4all.nl>.
17 * CX23885 support by Steven Toth <stoth@linuxtv.org>.
19 * CX2388[578] IRQ handling, IO Pin mux configuration and other small fixes are
20 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
22 * CX23888 DIF support for the HVR1850
23 * Copyright (C) 2011 Steven Toth <stoth@kernellabs.com>
25 * CX2584x pin to pad mapping and output format configuration support are
26 * Copyright (C) 2011 Maciej S. Szmigiero <mail@maciej.szmigiero.name>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/videodev2.h>
33 #include <linux/i2c.h>
34 #include <linux/delay.h>
35 #include <linux/math64.h>
36 #include <media/v4l2-common.h>
37 #include <media/drv-intf/cx25840.h>
39 #include "cx25840-core.h"
41 MODULE_DESCRIPTION("Conexant CX25840 audio/video decoder driver");
42 MODULE_AUTHOR("Ulf Eklund, Chris Kennedy, Hans Verkuil, Tyler Trafford");
43 MODULE_LICENSE("GPL");
45 #define CX25840_VID_INT_STAT_REG 0x410
46 #define CX25840_VID_INT_STAT_BITS 0x0000ffff
47 #define CX25840_VID_INT_MASK_BITS 0xffff0000
48 #define CX25840_VID_INT_MASK_SHFT 16
49 #define CX25840_VID_INT_MASK_REG 0x412
51 #define CX23885_AUD_MC_INT_MASK_REG 0x80c
52 #define CX23885_AUD_MC_INT_STAT_BITS 0xffff0000
53 #define CX23885_AUD_MC_INT_CTRL_BITS 0x0000ffff
54 #define CX23885_AUD_MC_INT_STAT_SHFT 16
56 #define CX25840_AUD_INT_CTRL_REG 0x812
57 #define CX25840_AUD_INT_STAT_REG 0x813
59 #define CX23885_PIN_CTRL_IRQ_REG 0x123
60 #define CX23885_PIN_CTRL_IRQ_IR_STAT 0x40
61 #define CX23885_PIN_CTRL_IRQ_AUD_STAT 0x20
62 #define CX23885_PIN_CTRL_IRQ_VID_STAT 0x10
64 #define CX25840_IR_STATS_REG 0x210
65 #define CX25840_IR_IRQEN_REG 0x214
67 static int cx25840_debug;
69 module_param_named(debug, cx25840_debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Debugging messages [0=Off (default) 1=On]");
73 /* ----------------------------------------------------------------------- */
74 static void cx23888_std_setup(struct i2c_client *client);
76 int cx25840_write(struct i2c_client *client, u16 addr, u8 value)
78 u8 buffer[3];
80 buffer[0] = addr >> 8;
81 buffer[1] = addr & 0xff;
82 buffer[2] = value;
83 return i2c_master_send(client, buffer, 3);
86 int cx25840_write4(struct i2c_client *client, u16 addr, u32 value)
88 u8 buffer[6];
90 buffer[0] = addr >> 8;
91 buffer[1] = addr & 0xff;
92 buffer[2] = value & 0xff;
93 buffer[3] = (value >> 8) & 0xff;
94 buffer[4] = (value >> 16) & 0xff;
95 buffer[5] = value >> 24;
96 return i2c_master_send(client, buffer, 6);
99 u8 cx25840_read(struct i2c_client *client, u16 addr)
101 struct i2c_msg msgs[2];
102 u8 tx_buf[2], rx_buf[1];
104 /* Write register address */
105 tx_buf[0] = addr >> 8;
106 tx_buf[1] = addr & 0xff;
107 msgs[0].addr = client->addr;
108 msgs[0].flags = 0;
109 msgs[0].len = 2;
110 msgs[0].buf = (char *)tx_buf;
112 /* Read data from register */
113 msgs[1].addr = client->addr;
114 msgs[1].flags = I2C_M_RD;
115 msgs[1].len = 1;
116 msgs[1].buf = (char *)rx_buf;
118 if (i2c_transfer(client->adapter, msgs, 2) < 2)
119 return 0;
121 return rx_buf[0];
124 u32 cx25840_read4(struct i2c_client *client, u16 addr)
126 struct i2c_msg msgs[2];
127 u8 tx_buf[2], rx_buf[4];
129 /* Write register address */
130 tx_buf[0] = addr >> 8;
131 tx_buf[1] = addr & 0xff;
132 msgs[0].addr = client->addr;
133 msgs[0].flags = 0;
134 msgs[0].len = 2;
135 msgs[0].buf = (char *)tx_buf;
137 /* Read data from registers */
138 msgs[1].addr = client->addr;
139 msgs[1].flags = I2C_M_RD;
140 msgs[1].len = 4;
141 msgs[1].buf = (char *)rx_buf;
143 if (i2c_transfer(client->adapter, msgs, 2) < 2)
144 return 0;
146 return (rx_buf[3] << 24) | (rx_buf[2] << 16) | (rx_buf[1] << 8) |
147 rx_buf[0];
150 int cx25840_and_or(struct i2c_client *client, u16 addr, unsigned int and_mask,
151 u8 or_value)
153 return cx25840_write(client, addr,
154 (cx25840_read(client, addr) & and_mask) |
155 or_value);
158 int cx25840_and_or4(struct i2c_client *client, u16 addr, u32 and_mask,
159 u32 or_value)
161 return cx25840_write4(client, addr,
162 (cx25840_read4(client, addr) & and_mask) |
163 or_value);
166 /* ----------------------------------------------------------------------- */
168 static int set_input(struct i2c_client *client,
169 enum cx25840_video_input vid_input,
170 enum cx25840_audio_input aud_input);
172 /* ----------------------------------------------------------------------- */
174 static int cx23885_s_io_pin_config(struct v4l2_subdev *sd, size_t n,
175 struct v4l2_subdev_io_pin_config *p)
177 struct i2c_client *client = v4l2_get_subdevdata(sd);
178 int i;
179 u32 pin_ctrl;
180 u8 gpio_oe, gpio_data, strength;
182 pin_ctrl = cx25840_read4(client, 0x120);
183 gpio_oe = cx25840_read(client, 0x160);
184 gpio_data = cx25840_read(client, 0x164);
186 for (i = 0; i < n; i++) {
187 strength = p[i].strength;
188 if (strength > CX25840_PIN_DRIVE_FAST)
189 strength = CX25840_PIN_DRIVE_FAST;
191 switch (p[i].pin) {
192 case CX23885_PIN_IRQ_N_GPIO16:
193 if (p[i].function != CX23885_PAD_IRQ_N) {
194 /* GPIO16 */
195 pin_ctrl &= ~(0x1 << 25);
196 } else {
197 /* IRQ_N */
198 if (p[i].flags &
199 (BIT(V4L2_SUBDEV_IO_PIN_DISABLE) |
200 BIT(V4L2_SUBDEV_IO_PIN_INPUT))) {
201 pin_ctrl &= ~(0x1 << 25);
202 } else {
203 pin_ctrl |= (0x1 << 25);
205 if (p[i].flags &
206 BIT(V4L2_SUBDEV_IO_PIN_ACTIVE_LOW)) {
207 pin_ctrl &= ~(0x1 << 24);
208 } else {
209 pin_ctrl |= (0x1 << 24);
212 break;
213 case CX23885_PIN_IR_RX_GPIO19:
214 if (p[i].function != CX23885_PAD_GPIO19) {
215 /* IR_RX */
216 gpio_oe |= (0x1 << 0);
217 pin_ctrl &= ~(0x3 << 18);
218 pin_ctrl |= (strength << 18);
219 } else {
220 /* GPIO19 */
221 gpio_oe &= ~(0x1 << 0);
222 if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) {
223 gpio_data &= ~(0x1 << 0);
224 gpio_data |= ((p[i].value & 0x1) << 0);
226 pin_ctrl &= ~(0x3 << 12);
227 pin_ctrl |= (strength << 12);
229 break;
230 case CX23885_PIN_IR_TX_GPIO20:
231 if (p[i].function != CX23885_PAD_GPIO20) {
232 /* IR_TX */
233 gpio_oe |= (0x1 << 1);
234 if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_DISABLE))
235 pin_ctrl &= ~(0x1 << 10);
236 else
237 pin_ctrl |= (0x1 << 10);
238 pin_ctrl &= ~(0x3 << 18);
239 pin_ctrl |= (strength << 18);
240 } else {
241 /* GPIO20 */
242 gpio_oe &= ~(0x1 << 1);
243 if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) {
244 gpio_data &= ~(0x1 << 1);
245 gpio_data |= ((p[i].value & 0x1) << 1);
247 pin_ctrl &= ~(0x3 << 12);
248 pin_ctrl |= (strength << 12);
250 break;
251 case CX23885_PIN_I2S_SDAT_GPIO21:
252 if (p[i].function != CX23885_PAD_GPIO21) {
253 /* I2S_SDAT */
254 /* TODO: Input or Output config */
255 gpio_oe |= (0x1 << 2);
256 pin_ctrl &= ~(0x3 << 22);
257 pin_ctrl |= (strength << 22);
258 } else {
259 /* GPIO21 */
260 gpio_oe &= ~(0x1 << 2);
261 if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) {
262 gpio_data &= ~(0x1 << 2);
263 gpio_data |= ((p[i].value & 0x1) << 2);
265 pin_ctrl &= ~(0x3 << 12);
266 pin_ctrl |= (strength << 12);
268 break;
269 case CX23885_PIN_I2S_WCLK_GPIO22:
270 if (p[i].function != CX23885_PAD_GPIO22) {
271 /* I2S_WCLK */
272 /* TODO: Input or Output config */
273 gpio_oe |= (0x1 << 3);
274 pin_ctrl &= ~(0x3 << 22);
275 pin_ctrl |= (strength << 22);
276 } else {
277 /* GPIO22 */
278 gpio_oe &= ~(0x1 << 3);
279 if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) {
280 gpio_data &= ~(0x1 << 3);
281 gpio_data |= ((p[i].value & 0x1) << 3);
283 pin_ctrl &= ~(0x3 << 12);
284 pin_ctrl |= (strength << 12);
286 break;
287 case CX23885_PIN_I2S_BCLK_GPIO23:
288 if (p[i].function != CX23885_PAD_GPIO23) {
289 /* I2S_BCLK */
290 /* TODO: Input or Output config */
291 gpio_oe |= (0x1 << 4);
292 pin_ctrl &= ~(0x3 << 22);
293 pin_ctrl |= (strength << 22);
294 } else {
295 /* GPIO23 */
296 gpio_oe &= ~(0x1 << 4);
297 if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) {
298 gpio_data &= ~(0x1 << 4);
299 gpio_data |= ((p[i].value & 0x1) << 4);
301 pin_ctrl &= ~(0x3 << 12);
302 pin_ctrl |= (strength << 12);
304 break;
308 cx25840_write(client, 0x164, gpio_data);
309 cx25840_write(client, 0x160, gpio_oe);
310 cx25840_write4(client, 0x120, pin_ctrl);
311 return 0;
314 static u8 cx25840_function_to_pad(struct i2c_client *client, u8 function)
316 if (function > CX25840_PAD_VRESET) {
317 v4l_err(client, "invalid function %u, assuming default\n",
318 (unsigned int)function);
319 return 0;
322 return function;
325 static void cx25840_set_invert(u8 *pinctrl3, u8 *voutctrl4, u8 function,
326 u8 pin, bool invert)
328 switch (function) {
329 case CX25840_PAD_IRQ_N:
330 if (invert)
331 *pinctrl3 &= ~2;
332 else
333 *pinctrl3 |= 2;
334 break;
336 case CX25840_PAD_ACTIVE:
337 if (invert)
338 *voutctrl4 |= BIT(2);
339 else
340 *voutctrl4 &= ~BIT(2);
341 break;
343 case CX25840_PAD_VACTIVE:
344 if (invert)
345 *voutctrl4 |= BIT(5);
346 else
347 *voutctrl4 &= ~BIT(5);
348 break;
350 case CX25840_PAD_CBFLAG:
351 if (invert)
352 *voutctrl4 |= BIT(4);
353 else
354 *voutctrl4 &= ~BIT(4);
355 break;
357 case CX25840_PAD_VRESET:
358 if (invert)
359 *voutctrl4 |= BIT(0);
360 else
361 *voutctrl4 &= ~BIT(0);
362 break;
365 if (function != CX25840_PAD_DEFAULT)
366 return;
368 switch (pin) {
369 case CX25840_PIN_DVALID_PRGM0:
370 if (invert)
371 *voutctrl4 |= BIT(6);
372 else
373 *voutctrl4 &= ~BIT(6);
374 break;
376 case CX25840_PIN_HRESET_PRGM2:
377 if (invert)
378 *voutctrl4 |= BIT(1);
379 else
380 *voutctrl4 &= ~BIT(1);
381 break;
385 static int cx25840_s_io_pin_config(struct v4l2_subdev *sd, size_t n,
386 struct v4l2_subdev_io_pin_config *p)
388 struct i2c_client *client = v4l2_get_subdevdata(sd);
389 unsigned int i;
390 u8 pinctrl[6], pinconf[10], voutctrl4;
392 for (i = 0; i < 6; i++)
393 pinctrl[i] = cx25840_read(client, 0x114 + i);
395 for (i = 0; i < 10; i++)
396 pinconf[i] = cx25840_read(client, 0x11c + i);
398 voutctrl4 = cx25840_read(client, 0x407);
400 for (i = 0; i < n; i++) {
401 u8 strength = p[i].strength;
403 if (strength != CX25840_PIN_DRIVE_SLOW &&
404 strength != CX25840_PIN_DRIVE_MEDIUM &&
405 strength != CX25840_PIN_DRIVE_FAST) {
406 v4l_err(client,
407 "invalid drive speed for pin %u (%u), assuming fast\n",
408 (unsigned int)p[i].pin,
409 (unsigned int)strength);
411 strength = CX25840_PIN_DRIVE_FAST;
414 switch (p[i].pin) {
415 case CX25840_PIN_DVALID_PRGM0:
416 if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_DISABLE))
417 pinctrl[0] &= ~BIT(6);
418 else
419 pinctrl[0] |= BIT(6);
421 pinconf[3] &= 0xf0;
422 pinconf[3] |= cx25840_function_to_pad(client,
423 p[i].function);
425 cx25840_set_invert(&pinctrl[3], &voutctrl4,
426 p[i].function,
427 CX25840_PIN_DVALID_PRGM0,
428 p[i].flags &
429 BIT(V4L2_SUBDEV_IO_PIN_ACTIVE_LOW));
431 pinctrl[4] &= ~(3 << 2); /* CX25840_PIN_DRIVE_MEDIUM */
432 switch (strength) {
433 case CX25840_PIN_DRIVE_SLOW:
434 pinctrl[4] |= 1 << 2;
435 break;
437 case CX25840_PIN_DRIVE_FAST:
438 pinctrl[4] |= 2 << 2;
439 break;
442 break;
444 case CX25840_PIN_HRESET_PRGM2:
445 if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_DISABLE))
446 pinctrl[1] &= ~BIT(0);
447 else
448 pinctrl[1] |= BIT(0);
450 pinconf[4] &= 0xf0;
451 pinconf[4] |= cx25840_function_to_pad(client,
452 p[i].function);
454 cx25840_set_invert(&pinctrl[3], &voutctrl4,
455 p[i].function,
456 CX25840_PIN_HRESET_PRGM2,
457 p[i].flags &
458 BIT(V4L2_SUBDEV_IO_PIN_ACTIVE_LOW));
460 pinctrl[4] &= ~(3 << 2); /* CX25840_PIN_DRIVE_MEDIUM */
461 switch (strength) {
462 case CX25840_PIN_DRIVE_SLOW:
463 pinctrl[4] |= 1 << 2;
464 break;
466 case CX25840_PIN_DRIVE_FAST:
467 pinctrl[4] |= 2 << 2;
468 break;
471 break;
473 case CX25840_PIN_PLL_CLK_PRGM7:
474 if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_DISABLE))
475 pinctrl[2] &= ~BIT(2);
476 else
477 pinctrl[2] |= BIT(2);
479 switch (p[i].function) {
480 case CX25840_PAD_XTI_X5_DLL:
481 pinconf[6] = 0;
482 break;
484 case CX25840_PAD_AUX_PLL:
485 pinconf[6] = 1;
486 break;
488 case CX25840_PAD_VID_PLL:
489 pinconf[6] = 5;
490 break;
492 case CX25840_PAD_XTI:
493 pinconf[6] = 2;
494 break;
496 default:
497 pinconf[6] = 3;
498 pinconf[6] |=
499 cx25840_function_to_pad(client,
500 p[i].function)
501 << 4;
504 break;
506 default:
507 v4l_err(client, "invalid or unsupported pin %u\n",
508 (unsigned int)p[i].pin);
509 break;
513 cx25840_write(client, 0x407, voutctrl4);
515 for (i = 0; i < 6; i++)
516 cx25840_write(client, 0x114 + i, pinctrl[i]);
518 for (i = 0; i < 10; i++)
519 cx25840_write(client, 0x11c + i, pinconf[i]);
521 return 0;
524 static int common_s_io_pin_config(struct v4l2_subdev *sd, size_t n,
525 struct v4l2_subdev_io_pin_config *pincfg)
527 struct cx25840_state *state = to_state(sd);
529 if (is_cx2388x(state))
530 return cx23885_s_io_pin_config(sd, n, pincfg);
531 else if (is_cx2584x(state))
532 return cx25840_s_io_pin_config(sd, n, pincfg);
533 return 0;
536 /* ----------------------------------------------------------------------- */
538 static void init_dll1(struct i2c_client *client)
541 * This is the Hauppauge sequence used to
542 * initialize the Delay Lock Loop 1 (ADC DLL).
544 cx25840_write(client, 0x159, 0x23);
545 cx25840_write(client, 0x15a, 0x87);
546 cx25840_write(client, 0x15b, 0x06);
547 udelay(10);
548 cx25840_write(client, 0x159, 0xe1);
549 udelay(10);
550 cx25840_write(client, 0x15a, 0x86);
551 cx25840_write(client, 0x159, 0xe0);
552 cx25840_write(client, 0x159, 0xe1);
553 cx25840_write(client, 0x15b, 0x10);
556 static void init_dll2(struct i2c_client *client)
559 * This is the Hauppauge sequence used to
560 * initialize the Delay Lock Loop 2 (ADC DLL).
562 cx25840_write(client, 0x15d, 0xe3);
563 cx25840_write(client, 0x15e, 0x86);
564 cx25840_write(client, 0x15f, 0x06);
565 udelay(10);
566 cx25840_write(client, 0x15d, 0xe1);
567 cx25840_write(client, 0x15d, 0xe0);
568 cx25840_write(client, 0x15d, 0xe1);
571 static void cx25836_initialize(struct i2c_client *client)
574 *reset configuration is described on page 3-77
575 * of the CX25836 datasheet
578 /* 2. */
579 cx25840_and_or(client, 0x000, ~0x01, 0x01);
580 cx25840_and_or(client, 0x000, ~0x01, 0x00);
581 /* 3a. */
582 cx25840_and_or(client, 0x15a, ~0x70, 0x00);
583 /* 3b. */
584 cx25840_and_or(client, 0x15b, ~0x1e, 0x06);
585 /* 3c. */
586 cx25840_and_or(client, 0x159, ~0x02, 0x02);
587 /* 3d. */
588 udelay(10);
589 /* 3e. */
590 cx25840_and_or(client, 0x159, ~0x02, 0x00);
591 /* 3f. */
592 cx25840_and_or(client, 0x159, ~0xc0, 0xc0);
593 /* 3g. */
594 cx25840_and_or(client, 0x159, ~0x01, 0x00);
595 cx25840_and_or(client, 0x159, ~0x01, 0x01);
596 /* 3h. */
597 cx25840_and_or(client, 0x15b, ~0x1e, 0x10);
600 static void cx25840_work_handler(struct work_struct *work)
602 struct cx25840_state *state = container_of(work, struct cx25840_state, fw_work);
604 cx25840_loadfw(state->c);
605 wake_up(&state->fw_wait);
608 #define CX25840_VCONFIG_SET_BIT(state, opt_msk, voc, idx, bit, oneval) \
609 do { \
610 if ((state)->vid_config & (opt_msk)) { \
611 if (((state)->vid_config & (opt_msk)) == \
612 (oneval)) \
613 (voc)[idx] |= BIT(bit); \
614 else \
615 (voc)[idx] &= ~BIT(bit); \
617 } while (0)
619 /* apply current vconfig to hardware regs */
620 static void cx25840_vconfig_apply(struct i2c_client *client)
622 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
623 u8 voutctrl[3];
624 unsigned int i;
626 for (i = 0; i < 3; i++)
627 voutctrl[i] = cx25840_read(client, 0x404 + i);
629 if (state->vid_config & CX25840_VCONFIG_FMT_MASK)
630 voutctrl[0] &= ~3;
631 switch (state->vid_config & CX25840_VCONFIG_FMT_MASK) {
632 case CX25840_VCONFIG_FMT_BT656:
633 voutctrl[0] |= 1;
634 break;
636 case CX25840_VCONFIG_FMT_VIP11:
637 voutctrl[0] |= 2;
638 break;
640 case CX25840_VCONFIG_FMT_VIP2:
641 voutctrl[0] |= 3;
642 break;
644 case CX25840_VCONFIG_FMT_BT601:
645 /* zero */
646 default:
647 break;
650 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_RES_MASK, voutctrl,
651 0, 2, CX25840_VCONFIG_RES_10BIT);
652 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_VBIRAW_MASK, voutctrl,
653 0, 3, CX25840_VCONFIG_VBIRAW_ENABLED);
654 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_ANCDATA_MASK, voutctrl,
655 0, 4, CX25840_VCONFIG_ANCDATA_ENABLED);
656 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_TASKBIT_MASK, voutctrl,
657 0, 5, CX25840_VCONFIG_TASKBIT_ONE);
658 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_ACTIVE_MASK, voutctrl,
659 1, 2, CX25840_VCONFIG_ACTIVE_HORIZONTAL);
660 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_VALID_MASK, voutctrl,
661 1, 3, CX25840_VCONFIG_VALID_ANDACTIVE);
662 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_HRESETW_MASK, voutctrl,
663 1, 4, CX25840_VCONFIG_HRESETW_PIXCLK);
665 if (state->vid_config & CX25840_VCONFIG_CLKGATE_MASK)
666 voutctrl[1] &= ~(3 << 6);
667 switch (state->vid_config & CX25840_VCONFIG_CLKGATE_MASK) {
668 case CX25840_VCONFIG_CLKGATE_VALID:
669 voutctrl[1] |= 2;
670 break;
672 case CX25840_VCONFIG_CLKGATE_VALIDACTIVE:
673 voutctrl[1] |= 3;
674 break;
676 case CX25840_VCONFIG_CLKGATE_NONE:
677 /* zero */
678 default:
679 break;
682 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_DCMODE_MASK, voutctrl,
683 2, 0, CX25840_VCONFIG_DCMODE_BYTES);
684 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_IDID0S_MASK, voutctrl,
685 2, 1, CX25840_VCONFIG_IDID0S_LINECNT);
686 CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_VIPCLAMP_MASK, voutctrl,
687 2, 4, CX25840_VCONFIG_VIPCLAMP_ENABLED);
689 for (i = 0; i < 3; i++)
690 cx25840_write(client, 0x404 + i, voutctrl[i]);
693 static void cx25840_initialize(struct i2c_client *client)
695 DEFINE_WAIT(wait);
696 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
697 struct workqueue_struct *q;
699 /* datasheet startup in numbered steps, refer to page 3-77 */
700 /* 2. */
701 cx25840_and_or(client, 0x803, ~0x10, 0x00);
703 * The default of this register should be 4, but I get 0 instead.
704 * Set this register to 4 manually.
706 cx25840_write(client, 0x000, 0x04);
707 /* 3. */
708 init_dll1(client);
709 init_dll2(client);
710 cx25840_write(client, 0x136, 0x0a);
711 /* 4. */
712 cx25840_write(client, 0x13c, 0x01);
713 cx25840_write(client, 0x13c, 0x00);
714 /* 5. */
716 * Do the firmware load in a work handler to prevent.
717 * Otherwise the kernel is blocked waiting for the
718 * bit-banging i2c interface to finish uploading the
719 * firmware.
721 INIT_WORK(&state->fw_work, cx25840_work_handler);
722 init_waitqueue_head(&state->fw_wait);
723 q = create_singlethread_workqueue("cx25840_fw");
724 if (q) {
725 prepare_to_wait(&state->fw_wait, &wait, TASK_UNINTERRUPTIBLE);
726 queue_work(q, &state->fw_work);
727 schedule();
728 finish_wait(&state->fw_wait, &wait);
729 destroy_workqueue(q);
732 /* 6. */
733 cx25840_write(client, 0x115, 0x8c);
734 cx25840_write(client, 0x116, 0x07);
735 cx25840_write(client, 0x118, 0x02);
736 /* 7. */
737 cx25840_write(client, 0x4a5, 0x80);
738 cx25840_write(client, 0x4a5, 0x00);
739 cx25840_write(client, 0x402, 0x00);
740 /* 8. */
741 cx25840_and_or(client, 0x401, ~0x18, 0);
742 cx25840_and_or(client, 0x4a2, ~0x10, 0x10);
743 /* steps 8c and 8d are done in change_input() */
744 /* 10. */
745 cx25840_write(client, 0x8d3, 0x1f);
746 cx25840_write(client, 0x8e3, 0x03);
748 cx25840_std_setup(client);
750 /* trial and error says these are needed to get audio */
751 cx25840_write(client, 0x914, 0xa0);
752 cx25840_write(client, 0x918, 0xa0);
753 cx25840_write(client, 0x919, 0x01);
755 /* stereo preferred */
756 cx25840_write(client, 0x809, 0x04);
757 /* AC97 shift */
758 cx25840_write(client, 0x8cf, 0x0f);
760 /* (re)set input */
761 set_input(client, state->vid_input, state->aud_input);
763 if (state->generic_mode)
764 cx25840_vconfig_apply(client);
766 /* start microcontroller */
767 cx25840_and_or(client, 0x803, ~0x10, 0x10);
770 static void cx23885_initialize(struct i2c_client *client)
772 DEFINE_WAIT(wait);
773 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
774 u32 clk_freq = 0;
775 struct workqueue_struct *q;
777 /* cx23885 sets hostdata to clk_freq pointer */
778 if (v4l2_get_subdev_hostdata(&state->sd))
779 clk_freq = *((u32 *)v4l2_get_subdev_hostdata(&state->sd));
782 * Come out of digital power down
783 * The CX23888, at least, needs this, otherwise registers aside from
784 * 0x0-0x2 can't be read or written.
786 cx25840_write(client, 0x000, 0);
788 /* Internal Reset */
789 cx25840_and_or(client, 0x102, ~0x01, 0x01);
790 cx25840_and_or(client, 0x102, ~0x01, 0x00);
792 /* Stop microcontroller */
793 cx25840_and_or(client, 0x803, ~0x10, 0x00);
795 /* DIF in reset? */
796 cx25840_write(client, 0x398, 0);
799 * Trust the default xtal, no division
800 * '885: 28.636363... MHz
801 * '887: 25.000000 MHz
802 * '888: 50.000000 MHz
804 cx25840_write(client, 0x2, 0x76);
806 /* Power up all the PLL's and DLL */
807 cx25840_write(client, 0x1, 0x40);
809 /* Sys PLL */
810 switch (state->id) {
811 case CX23888_AV:
813 * 50.0 MHz * (0xb + 0xe8ba26/0x2000000)/4 = 5 * 28.636363 MHz
814 * 572.73 MHz before post divide
816 if (clk_freq == 25000000) {
817 /* 888/ImpactVCBe or 25Mhz xtal */
818 ; /* nothing to do */
819 } else {
820 /* HVR1850 or 50MHz xtal */
821 cx25840_write(client, 0x2, 0x71);
823 cx25840_write4(client, 0x11c, 0x01d1744c);
824 cx25840_write4(client, 0x118, 0x00000416);
825 cx25840_write4(client, 0x404, 0x0010253e);
826 cx25840_write4(client, 0x42c, 0x42600000);
827 cx25840_write4(client, 0x44c, 0x161f1000);
828 break;
829 case CX23887_AV:
831 * 25.0 MHz * (0x16 + 0x1d1744c/0x2000000)/4 = 5 * 28.636363 MHz
832 * 572.73 MHz before post divide
834 cx25840_write4(client, 0x11c, 0x01d1744c);
835 cx25840_write4(client, 0x118, 0x00000416);
836 break;
837 case CX23885_AV:
838 default:
840 * 28.636363 MHz * (0x14 + 0x0/0x2000000)/4 = 5 * 28.636363 MHz
841 * 572.73 MHz before post divide
843 cx25840_write4(client, 0x11c, 0x00000000);
844 cx25840_write4(client, 0x118, 0x00000414);
845 break;
848 /* Disable DIF bypass */
849 cx25840_write4(client, 0x33c, 0x00000001);
851 /* DIF Src phase inc */
852 cx25840_write4(client, 0x340, 0x0df7df83);
855 * Vid PLL
856 * Setup for a BT.656 pixel clock of 13.5 Mpixels/second
858 * 28.636363 MHz * (0xf + 0x02be2c9/0x2000000)/4 = 8 * 13.5 MHz
859 * 432.0 MHz before post divide
862 /* HVR1850 */
863 switch (state->id) {
864 case CX23888_AV:
865 if (clk_freq == 25000000) {
866 /* 888/ImpactVCBe or 25MHz xtal */
867 cx25840_write4(client, 0x10c, 0x01b6db7b);
868 cx25840_write4(client, 0x108, 0x00000512);
869 } else {
870 /* 888/HVR1250 or 50MHz xtal */
871 cx25840_write4(client, 0x10c, 0x13333333);
872 cx25840_write4(client, 0x108, 0x00000515);
874 break;
875 default:
876 cx25840_write4(client, 0x10c, 0x002be2c9);
877 cx25840_write4(client, 0x108, 0x0000040f);
880 /* Luma */
881 cx25840_write4(client, 0x414, 0x00107d12);
883 /* Chroma */
884 if (is_cx23888(state))
885 cx25840_write4(client, 0x418, 0x1d008282);
886 else
887 cx25840_write4(client, 0x420, 0x3d008282);
890 * Aux PLL
891 * Initial setup for audio sample clock:
892 * 48 ksps, 16 bits/sample, x160 multiplier = 122.88 MHz
893 * Initial I2S output/master clock(?):
894 * 48 ksps, 16 bits/sample, x16 multiplier = 12.288 MHz
896 switch (state->id) {
897 case CX23888_AV:
899 * 50.0 MHz * (0x7 + 0x0bedfa4/0x2000000)/3 = 122.88 MHz
900 * 368.64 MHz before post divide
901 * 122.88 MHz / 0xa = 12.288 MHz
903 /* HVR1850 or 50MHz xtal or 25MHz xtal */
904 cx25840_write4(client, 0x114, 0x017dbf48);
905 cx25840_write4(client, 0x110, 0x000a030e);
906 break;
907 case CX23887_AV:
909 * 25.0 MHz * (0xe + 0x17dbf48/0x2000000)/3 = 122.88 MHz
910 * 368.64 MHz before post divide
911 * 122.88 MHz / 0xa = 12.288 MHz
913 cx25840_write4(client, 0x114, 0x017dbf48);
914 cx25840_write4(client, 0x110, 0x000a030e);
915 break;
916 case CX23885_AV:
917 default:
919 * 28.636363 MHz * (0xc + 0x1bf0c9e/0x2000000)/3 = 122.88 MHz
920 * 368.64 MHz before post divide
921 * 122.88 MHz / 0xa = 12.288 MHz
923 cx25840_write4(client, 0x114, 0x01bf0c9e);
924 cx25840_write4(client, 0x110, 0x000a030c);
925 break;
928 /* ADC2 input select */
929 cx25840_write(client, 0x102, 0x10);
931 /* VIN1 & VIN5 */
932 cx25840_write(client, 0x103, 0x11);
934 /* Enable format auto detect */
935 cx25840_write(client, 0x400, 0);
936 /* Fast subchroma lock */
937 /* White crush, Chroma AGC & Chroma Killer enabled */
938 cx25840_write(client, 0x401, 0xe8);
940 /* Select AFE clock pad output source */
941 cx25840_write(client, 0x144, 0x05);
943 /* Drive GPIO2 direction and values for HVR1700
944 * where an onboard mux selects the output of demodulator
945 * vs the 417. Failure to set this results in no DTV.
946 * It's safe to set this across all Hauppauge boards
947 * currently, regardless of the board type.
949 cx25840_write(client, 0x160, 0x1d);
950 cx25840_write(client, 0x164, 0x00);
953 * Do the firmware load in a work handler to prevent.
954 * Otherwise the kernel is blocked waiting for the
955 * bit-banging i2c interface to finish uploading the
956 * firmware.
958 INIT_WORK(&state->fw_work, cx25840_work_handler);
959 init_waitqueue_head(&state->fw_wait);
960 q = create_singlethread_workqueue("cx25840_fw");
961 if (q) {
962 prepare_to_wait(&state->fw_wait, &wait, TASK_UNINTERRUPTIBLE);
963 queue_work(q, &state->fw_work);
964 schedule();
965 finish_wait(&state->fw_wait, &wait);
966 destroy_workqueue(q);
970 * Call the cx23888 specific std setup func, we no longer rely on
971 * the generic cx24840 func.
973 if (is_cx23888(state))
974 cx23888_std_setup(client);
975 else
976 cx25840_std_setup(client);
978 /* (re)set input */
979 set_input(client, state->vid_input, state->aud_input);
981 /* start microcontroller */
982 cx25840_and_or(client, 0x803, ~0x10, 0x10);
984 /* Disable and clear video interrupts - we don't use them */
985 cx25840_write4(client, CX25840_VID_INT_STAT_REG, 0xffffffff);
987 /* Disable and clear audio interrupts - we don't use them */
988 cx25840_write(client, CX25840_AUD_INT_CTRL_REG, 0xff);
989 cx25840_write(client, CX25840_AUD_INT_STAT_REG, 0xff);
991 /* CC raw enable */
994 * - VIP 1.1 control codes - 10bit, blue field enable.
995 * - enable raw data during vertical blanking.
996 * - enable ancillary Data insertion for 656 or VIP.
998 cx25840_write4(client, 0x404, 0x0010253e);
1000 /* CC on - VBI_LINE_CTRL3, FLD_VBI_MD_LINE12 */
1001 cx25840_write(client, state->vbi_regs_offset + 0x42f, 0x66);
1003 /* HVR-1250 / HVR1850 DIF related */
1004 /* Power everything up */
1005 cx25840_write4(client, 0x130, 0x0);
1007 /* SRC_COMB_CFG */
1008 if (is_cx23888(state))
1009 cx25840_write4(client, 0x454, 0x6628021F);
1010 else
1011 cx25840_write4(client, 0x478, 0x6628021F);
1013 /* AFE_CLK_OUT_CTRL - Select the clock output source as output */
1014 cx25840_write4(client, 0x144, 0x5);
1016 /* I2C_OUT_CTL - I2S output configuration as
1017 * Master, Sony, Left justified, left sample on WS=1
1019 cx25840_write4(client, 0x918, 0x1a0);
1021 /* AFE_DIAG_CTRL1 */
1022 cx25840_write4(client, 0x134, 0x000a1800);
1024 /* AFE_DIAG_CTRL3 - Inverted Polarity for Audio and Video */
1025 cx25840_write4(client, 0x13c, 0x00310000);
1028 /* ----------------------------------------------------------------------- */
1030 static void cx231xx_initialize(struct i2c_client *client)
1032 DEFINE_WAIT(wait);
1033 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
1034 struct workqueue_struct *q;
1036 /* Internal Reset */
1037 cx25840_and_or(client, 0x102, ~0x01, 0x01);
1038 cx25840_and_or(client, 0x102, ~0x01, 0x00);
1040 /* Stop microcontroller */
1041 cx25840_and_or(client, 0x803, ~0x10, 0x00);
1043 /* DIF in reset? */
1044 cx25840_write(client, 0x398, 0);
1046 /* Trust the default xtal, no division */
1047 /* This changes for the cx23888 products */
1048 cx25840_write(client, 0x2, 0x76);
1050 /* Bring down the regulator for AUX clk */
1051 cx25840_write(client, 0x1, 0x40);
1053 /* Disable DIF bypass */
1054 cx25840_write4(client, 0x33c, 0x00000001);
1056 /* DIF Src phase inc */
1057 cx25840_write4(client, 0x340, 0x0df7df83);
1059 /* Luma */
1060 cx25840_write4(client, 0x414, 0x00107d12);
1062 /* Chroma */
1063 cx25840_write4(client, 0x420, 0x3d008282);
1065 /* ADC2 input select */
1066 cx25840_write(client, 0x102, 0x10);
1068 /* VIN1 & VIN5 */
1069 cx25840_write(client, 0x103, 0x11);
1071 /* Enable format auto detect */
1072 cx25840_write(client, 0x400, 0);
1073 /* Fast subchroma lock */
1074 /* White crush, Chroma AGC & Chroma Killer enabled */
1075 cx25840_write(client, 0x401, 0xe8);
1078 * Do the firmware load in a work handler to prevent.
1079 * Otherwise the kernel is blocked waiting for the
1080 * bit-banging i2c interface to finish uploading the
1081 * firmware.
1083 INIT_WORK(&state->fw_work, cx25840_work_handler);
1084 init_waitqueue_head(&state->fw_wait);
1085 q = create_singlethread_workqueue("cx25840_fw");
1086 if (q) {
1087 prepare_to_wait(&state->fw_wait, &wait, TASK_UNINTERRUPTIBLE);
1088 queue_work(q, &state->fw_work);
1089 schedule();
1090 finish_wait(&state->fw_wait, &wait);
1091 destroy_workqueue(q);
1094 cx25840_std_setup(client);
1096 /* (re)set input */
1097 set_input(client, state->vid_input, state->aud_input);
1099 /* start microcontroller */
1100 cx25840_and_or(client, 0x803, ~0x10, 0x10);
1102 /* CC raw enable */
1103 cx25840_write(client, 0x404, 0x0b);
1105 /* CC on */
1106 cx25840_write(client, 0x42f, 0x66);
1107 cx25840_write4(client, 0x474, 0x1e1e601a);
1110 /* ----------------------------------------------------------------------- */
1112 void cx25840_std_setup(struct i2c_client *client)
1114 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
1115 v4l2_std_id std = state->std;
1116 int hblank, hactive, burst, vblank, vactive, sc;
1117 int vblank656, src_decimation;
1118 int luma_lpf, uv_lpf, comb;
1119 u32 pll_int, pll_frac, pll_post;
1121 /* datasheet startup, step 8d */
1122 if (std & ~V4L2_STD_NTSC)
1123 cx25840_write(client, 0x49f, 0x11);
1124 else
1125 cx25840_write(client, 0x49f, 0x14);
1127 /* generic mode uses the values that the chip autoconfig would set */
1128 if (std & V4L2_STD_625_50) {
1129 hblank = 132;
1130 hactive = 720;
1131 burst = 93;
1132 if (state->generic_mode) {
1133 vblank = 34;
1134 vactive = 576;
1135 vblank656 = 38;
1136 } else {
1137 vblank = 36;
1138 vactive = 580;
1139 vblank656 = 40;
1141 src_decimation = 0x21f;
1142 luma_lpf = 2;
1144 if (std & V4L2_STD_SECAM) {
1145 uv_lpf = 0;
1146 comb = 0;
1147 sc = 0x0a425f;
1148 } else if (std == V4L2_STD_PAL_Nc) {
1149 if (state->generic_mode) {
1150 burst = 95;
1151 luma_lpf = 1;
1153 uv_lpf = 1;
1154 comb = 0x20;
1155 sc = 556453;
1156 } else {
1157 uv_lpf = 1;
1158 comb = 0x20;
1159 sc = 688739;
1161 } else {
1162 hactive = 720;
1163 hblank = 122;
1164 vactive = 487;
1165 luma_lpf = 1;
1166 uv_lpf = 1;
1167 if (state->generic_mode) {
1168 vblank = 20;
1169 vblank656 = 24;
1172 src_decimation = 0x21f;
1173 if (std == V4L2_STD_PAL_60) {
1174 if (!state->generic_mode) {
1175 vblank = 26;
1176 vblank656 = 26;
1177 burst = 0x5b;
1178 } else {
1179 burst = 0x59;
1181 luma_lpf = 2;
1182 comb = 0x20;
1183 sc = 688739;
1184 } else if (std == V4L2_STD_PAL_M) {
1185 vblank = 20;
1186 vblank656 = 24;
1187 burst = 0x61;
1188 comb = 0x20;
1189 sc = 555452;
1190 } else {
1191 if (!state->generic_mode) {
1192 vblank = 26;
1193 vblank656 = 26;
1195 burst = 0x5b;
1196 comb = 0x66;
1197 sc = 556063;
1201 /* DEBUG: Displays configured PLL frequency */
1202 if (!is_cx231xx(state)) {
1203 pll_int = cx25840_read(client, 0x108);
1204 pll_frac = cx25840_read4(client, 0x10c) & 0x1ffffff;
1205 pll_post = cx25840_read(client, 0x109);
1206 v4l_dbg(1, cx25840_debug, client,
1207 "PLL regs = int: %u, frac: %u, post: %u\n",
1208 pll_int, pll_frac, pll_post);
1210 if (pll_post) {
1211 int fin, fsc;
1212 int pll = (28636363L * ((((u64)pll_int) << 25L) + pll_frac)) >> 25L;
1214 pll /= pll_post;
1215 v4l_dbg(1, cx25840_debug, client,
1216 "PLL = %d.%06d MHz\n",
1217 pll / 1000000, pll % 1000000);
1218 v4l_dbg(1, cx25840_debug, client,
1219 "PLL/8 = %d.%06d MHz\n",
1220 pll / 8000000, (pll / 8) % 1000000);
1222 fin = ((u64)src_decimation * pll) >> 12;
1223 v4l_dbg(1, cx25840_debug, client,
1224 "ADC Sampling freq = %d.%06d MHz\n",
1225 fin / 1000000, fin % 1000000);
1227 fsc = (((u64)sc) * pll) >> 24L;
1228 v4l_dbg(1, cx25840_debug, client,
1229 "Chroma sub-carrier freq = %d.%06d MHz\n",
1230 fsc / 1000000, fsc % 1000000);
1232 v4l_dbg(1, cx25840_debug, client,
1233 "hblank %i, hactive %i, vblank %i, vactive %i, vblank656 %i, src_dec %i, burst 0x%02x, luma_lpf %i, uv_lpf %i, comb 0x%02x, sc 0x%06x\n",
1234 hblank, hactive, vblank, vactive, vblank656,
1235 src_decimation, burst, luma_lpf, uv_lpf,
1236 comb, sc);
1240 /* Sets horizontal blanking delay and active lines */
1241 cx25840_write(client, 0x470, hblank);
1242 cx25840_write(client, 0x471,
1243 (((hblank >> 8) & 0x3) | (hactive << 4)) & 0xff);
1244 cx25840_write(client, 0x472, hactive >> 4);
1246 /* Sets burst gate delay */
1247 cx25840_write(client, 0x473, burst);
1249 /* Sets vertical blanking delay and active duration */
1250 cx25840_write(client, 0x474, vblank);
1251 cx25840_write(client, 0x475,
1252 (((vblank >> 8) & 0x3) | (vactive << 4)) & 0xff);
1253 cx25840_write(client, 0x476, vactive >> 4);
1254 cx25840_write(client, 0x477, vblank656);
1256 /* Sets src decimation rate */
1257 cx25840_write(client, 0x478, src_decimation & 0xff);
1258 cx25840_write(client, 0x479, (src_decimation >> 8) & 0xff);
1260 /* Sets Luma and UV Low pass filters */
1261 cx25840_write(client, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30));
1263 /* Enables comb filters */
1264 cx25840_write(client, 0x47b, comb);
1266 /* Sets SC Step*/
1267 cx25840_write(client, 0x47c, sc);
1268 cx25840_write(client, 0x47d, (sc >> 8) & 0xff);
1269 cx25840_write(client, 0x47e, (sc >> 16) & 0xff);
1271 /* Sets VBI parameters */
1272 if (std & V4L2_STD_625_50) {
1273 cx25840_write(client, 0x47f, 0x01);
1274 state->vbi_line_offset = 5;
1275 } else {
1276 cx25840_write(client, 0x47f, 0x00);
1277 state->vbi_line_offset = 8;
1281 /* ----------------------------------------------------------------------- */
1283 static void input_change(struct i2c_client *client)
1285 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
1286 v4l2_std_id std = state->std;
1288 /* Follow step 8c and 8d of section 3.16 in the cx25840 datasheet */
1289 if (std & V4L2_STD_SECAM) {
1290 cx25840_write(client, 0x402, 0);
1291 } else {
1292 cx25840_write(client, 0x402, 0x04);
1293 cx25840_write(client, 0x49f,
1294 (std & V4L2_STD_NTSC) ? 0x14 : 0x11);
1296 cx25840_and_or(client, 0x401, ~0x60, 0);
1297 cx25840_and_or(client, 0x401, ~0x60, 0x60);
1299 /* Don't write into audio registers on cx2583x chips */
1300 if (is_cx2583x(state))
1301 return;
1303 cx25840_and_or(client, 0x810, ~0x01, 1);
1305 if (state->radio) {
1306 cx25840_write(client, 0x808, 0xf9);
1307 cx25840_write(client, 0x80b, 0x00);
1308 } else if (std & V4L2_STD_525_60) {
1310 * Certain Hauppauge PVR150 models have a hardware bug
1311 * that causes audio to drop out. For these models the
1312 * audio standard must be set explicitly.
1313 * To be precise: it affects cards with tuner models
1314 * 85, 99 and 112 (model numbers from tveeprom).
1316 int hw_fix = state->pvr150_workaround;
1318 if (std == V4L2_STD_NTSC_M_JP) {
1319 /* Japan uses EIAJ audio standard */
1320 cx25840_write(client, 0x808, hw_fix ? 0x2f : 0xf7);
1321 } else if (std == V4L2_STD_NTSC_M_KR) {
1322 /* South Korea uses A2 audio standard */
1323 cx25840_write(client, 0x808, hw_fix ? 0x3f : 0xf8);
1324 } else {
1325 /* Others use the BTSC audio standard */
1326 cx25840_write(client, 0x808, hw_fix ? 0x1f : 0xf6);
1328 cx25840_write(client, 0x80b, 0x00);
1329 } else if (std & V4L2_STD_PAL) {
1330 /* Autodetect audio standard and audio system */
1331 cx25840_write(client, 0x808, 0xff);
1333 * Since system PAL-L is pretty much non-existent and
1334 * not used by any public broadcast network, force
1335 * 6.5 MHz carrier to be interpreted as System DK,
1336 * this avoids DK audio detection instability
1338 cx25840_write(client, 0x80b, 0x00);
1339 } else if (std & V4L2_STD_SECAM) {
1340 /* Autodetect audio standard and audio system */
1341 cx25840_write(client, 0x808, 0xff);
1343 * If only one of SECAM-DK / SECAM-L is required, then force
1344 * 6.5MHz carrier, else autodetect it
1346 if ((std & V4L2_STD_SECAM_DK) &&
1347 !(std & (V4L2_STD_SECAM_L | V4L2_STD_SECAM_LC))) {
1348 /* 6.5 MHz carrier to be interpreted as System DK */
1349 cx25840_write(client, 0x80b, 0x00);
1350 } else if (!(std & V4L2_STD_SECAM_DK) &&
1351 (std & (V4L2_STD_SECAM_L | V4L2_STD_SECAM_LC))) {
1352 /* 6.5 MHz carrier to be interpreted as System L */
1353 cx25840_write(client, 0x80b, 0x08);
1354 } else {
1355 /* 6.5 MHz carrier to be autodetected */
1356 cx25840_write(client, 0x80b, 0x10);
1360 cx25840_and_or(client, 0x810, ~0x01, 0);
1363 static int set_input(struct i2c_client *client,
1364 enum cx25840_video_input vid_input,
1365 enum cx25840_audio_input aud_input)
1367 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
1368 u8 is_composite = (vid_input >= CX25840_COMPOSITE1 &&
1369 vid_input <= CX25840_COMPOSITE8);
1370 u8 is_component = (vid_input & CX25840_COMPONENT_ON) ==
1371 CX25840_COMPONENT_ON;
1372 u8 is_dif = (vid_input & CX25840_DIF_ON) ==
1373 CX25840_DIF_ON;
1374 u8 is_svideo = (vid_input & CX25840_SVIDEO_ON) ==
1375 CX25840_SVIDEO_ON;
1376 int luma = vid_input & 0xf0;
1377 int chroma = vid_input & 0xf00;
1378 u8 reg;
1379 u32 val;
1381 v4l_dbg(1, cx25840_debug, client,
1382 "decoder set video input %d, audio input %d\n",
1383 vid_input, aud_input);
1385 if (vid_input >= CX25840_VIN1_CH1) {
1386 v4l_dbg(1, cx25840_debug, client, "vid_input 0x%x\n",
1387 vid_input);
1388 reg = vid_input & 0xff;
1389 is_composite = !is_component &&
1390 ((vid_input & CX25840_SVIDEO_ON) != CX25840_SVIDEO_ON);
1392 v4l_dbg(1, cx25840_debug, client, "mux cfg 0x%x comp=%d\n",
1393 reg, is_composite);
1394 } else if (is_composite) {
1395 reg = 0xf0 + (vid_input - CX25840_COMPOSITE1);
1396 } else {
1397 if ((vid_input & ~0xff0) ||
1398 luma < CX25840_SVIDEO_LUMA1 ||
1399 luma > CX25840_SVIDEO_LUMA8 ||
1400 chroma < CX25840_SVIDEO_CHROMA4 ||
1401 chroma > CX25840_SVIDEO_CHROMA8) {
1402 v4l_err(client, "0x%04x is not a valid video input!\n",
1403 vid_input);
1404 return -EINVAL;
1406 reg = 0xf0 + ((luma - CX25840_SVIDEO_LUMA1) >> 4);
1407 if (chroma >= CX25840_SVIDEO_CHROMA7) {
1408 reg &= 0x3f;
1409 reg |= (chroma - CX25840_SVIDEO_CHROMA7) >> 2;
1410 } else {
1411 reg &= 0xcf;
1412 reg |= (chroma - CX25840_SVIDEO_CHROMA4) >> 4;
1416 /* The caller has previously prepared the correct routing
1417 * configuration in reg (for the cx23885) so we have no
1418 * need to attempt to flip bits for earlier av decoders.
1420 if (!is_cx2388x(state) && !is_cx231xx(state)) {
1421 switch (aud_input) {
1422 case CX25840_AUDIO_SERIAL:
1423 /* do nothing, use serial audio input */
1424 break;
1425 case CX25840_AUDIO4:
1426 reg &= ~0x30;
1427 break;
1428 case CX25840_AUDIO5:
1429 reg &= ~0x30;
1430 reg |= 0x10;
1431 break;
1432 case CX25840_AUDIO6:
1433 reg &= ~0x30;
1434 reg |= 0x20;
1435 break;
1436 case CX25840_AUDIO7:
1437 reg &= ~0xc0;
1438 break;
1439 case CX25840_AUDIO8:
1440 reg &= ~0xc0;
1441 reg |= 0x40;
1442 break;
1443 default:
1444 v4l_err(client, "0x%04x is not a valid audio input!\n",
1445 aud_input);
1446 return -EINVAL;
1450 cx25840_write(client, 0x103, reg);
1452 /* Set INPUT_MODE to Composite, S-Video or Component */
1453 if (is_component)
1454 cx25840_and_or(client, 0x401, ~0x6, 0x6);
1455 else
1456 cx25840_and_or(client, 0x401, ~0x6, is_composite ? 0 : 0x02);
1458 if (is_cx2388x(state)) {
1459 /* Enable or disable the DIF for tuner use */
1460 if (is_dif) {
1461 cx25840_and_or(client, 0x102, ~0x80, 0x80);
1463 /* Set of defaults for NTSC and PAL */
1464 cx25840_write4(client, 0x31c, 0xc2262600);
1465 cx25840_write4(client, 0x320, 0xc2262600);
1467 /* 18271 IF - Nobody else yet uses a different
1468 * tuner with the DIF, so these are reasonable
1469 * assumptions (HVR1250 and HVR1850 specific).
1471 cx25840_write4(client, 0x318, 0xda262600);
1472 cx25840_write4(client, 0x33c, 0x2a24c800);
1473 cx25840_write4(client, 0x104, 0x0704dd00);
1474 } else {
1475 cx25840_write4(client, 0x300, 0x015c28f5);
1477 cx25840_and_or(client, 0x102, ~0x80, 0);
1478 cx25840_write4(client, 0x340, 0xdf7df83);
1479 cx25840_write4(client, 0x104, 0x0704dd80);
1480 cx25840_write4(client, 0x314, 0x22400600);
1481 cx25840_write4(client, 0x318, 0x40002600);
1482 cx25840_write4(client, 0x324, 0x40002600);
1483 cx25840_write4(client, 0x32c, 0x0250e620);
1484 cx25840_write4(client, 0x39c, 0x01FF0B00);
1486 cx25840_write4(client, 0x410, 0xffff0dbf);
1487 cx25840_write4(client, 0x414, 0x00137d03);
1489 if (is_cx23888(state)) {
1490 /* 888 MISC_TIM_CTRL */
1491 cx25840_write4(client, 0x42c, 0x42600000);
1492 /* 888 FIELD_COUNT */
1493 cx25840_write4(client, 0x430, 0x0000039b);
1494 /* 888 VSCALE_CTRL */
1495 cx25840_write4(client, 0x438, 0x00000000);
1496 /* 888 DFE_CTRL1 */
1497 cx25840_write4(client, 0x440, 0xF8E3E824);
1498 /* 888 DFE_CTRL2 */
1499 cx25840_write4(client, 0x444, 0x401040dc);
1500 /* 888 DFE_CTRL3 */
1501 cx25840_write4(client, 0x448, 0xcd3f02a0);
1502 /* 888 PLL_CTRL */
1503 cx25840_write4(client, 0x44c, 0x161f1000);
1504 /* 888 HTL_CTRL */
1505 cx25840_write4(client, 0x450, 0x00000802);
1507 cx25840_write4(client, 0x91c, 0x01000000);
1508 cx25840_write4(client, 0x8e0, 0x03063870);
1509 cx25840_write4(client, 0x8d4, 0x7FFF0024);
1510 cx25840_write4(client, 0x8d0, 0x00063073);
1512 cx25840_write4(client, 0x8c8, 0x00010000);
1513 cx25840_write4(client, 0x8cc, 0x00080023);
1515 /* DIF BYPASS */
1516 cx25840_write4(client, 0x33c, 0x2a04c800);
1519 /* Reset the DIF */
1520 cx25840_write4(client, 0x398, 0);
1523 if (!is_cx2388x(state) && !is_cx231xx(state)) {
1524 /* Set CH_SEL_ADC2 to 1 if input comes from CH3 */
1525 cx25840_and_or(client, 0x102, ~0x2, (reg & 0x80) == 0 ? 2 : 0);
1526 /* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2&CH3 */
1527 if ((reg & 0xc0) != 0xc0 && (reg & 0x30) != 0x30)
1528 cx25840_and_or(client, 0x102, ~0x4, 4);
1529 else
1530 cx25840_and_or(client, 0x102, ~0x4, 0);
1531 } else {
1532 /* Set DUAL_MODE_ADC2 to 1 if component*/
1533 cx25840_and_or(client, 0x102, ~0x4, is_component ? 0x4 : 0x0);
1534 if (is_composite) {
1535 /* ADC2 input select channel 2 */
1536 cx25840_and_or(client, 0x102, ~0x2, 0);
1537 } else if (!is_component) {
1538 /* S-Video */
1539 if (chroma >= CX25840_SVIDEO_CHROMA7) {
1540 /* ADC2 input select channel 3 */
1541 cx25840_and_or(client, 0x102, ~0x2, 2);
1542 } else {
1543 /* ADC2 input select channel 2 */
1544 cx25840_and_or(client, 0x102, ~0x2, 0);
1548 /* cx23885 / SVIDEO */
1549 if (is_cx2388x(state) && is_svideo) {
1550 #define AFE_CTRL (0x104)
1551 #define MODE_CTRL (0x400)
1552 cx25840_and_or(client, 0x102, ~0x2, 0x2);
1554 val = cx25840_read4(client, MODE_CTRL);
1555 val &= 0xFFFFF9FF;
1557 /* YC */
1558 val |= 0x00000200;
1559 val &= ~0x2000;
1560 cx25840_write4(client, MODE_CTRL, val);
1562 val = cx25840_read4(client, AFE_CTRL);
1564 /* Chroma in select */
1565 val |= 0x00001000;
1566 val &= 0xfffffe7f;
1567 /* Clear VGA_SEL_CH2 and VGA_SEL_CH3 (bits 7 and 8).
1568 * This sets them to use video rather than audio.
1569 * Only one of the two will be in use.
1571 cx25840_write4(client, AFE_CTRL, val);
1572 } else {
1573 cx25840_and_or(client, 0x102, ~0x2, 0);
1577 state->vid_input = vid_input;
1578 state->aud_input = aud_input;
1579 cx25840_audio_set_path(client);
1580 input_change(client);
1582 if (is_cx2388x(state)) {
1583 /* Audio channel 1 src : Parallel 1 */
1584 cx25840_write(client, 0x124, 0x03);
1586 /* Select AFE clock pad output source */
1587 cx25840_write(client, 0x144, 0x05);
1589 /* I2S_IN_CTL: I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 */
1590 cx25840_write(client, 0x914, 0xa0);
1592 /* I2S_OUT_CTL:
1593 * I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1
1594 * I2S_OUT_MASTER_MODE = Master
1596 cx25840_write(client, 0x918, 0xa0);
1597 cx25840_write(client, 0x919, 0x01);
1598 } else if (is_cx231xx(state)) {
1599 /* Audio channel 1 src : Parallel 1 */
1600 cx25840_write(client, 0x124, 0x03);
1602 /* I2S_IN_CTL: I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 */
1603 cx25840_write(client, 0x914, 0xa0);
1605 /* I2S_OUT_CTL:
1606 * I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1
1607 * I2S_OUT_MASTER_MODE = Master
1609 cx25840_write(client, 0x918, 0xa0);
1610 cx25840_write(client, 0x919, 0x01);
1613 if (is_cx2388x(state) &&
1614 ((aud_input == CX25840_AUDIO7) || (aud_input == CX25840_AUDIO6))) {
1615 /* Configure audio from LR1 or LR2 input */
1616 cx25840_write4(client, 0x910, 0);
1617 cx25840_write4(client, 0x8d0, 0x63073);
1618 } else if (is_cx2388x(state) && (aud_input == CX25840_AUDIO8)) {
1619 /* Configure audio from tuner/sif input */
1620 cx25840_write4(client, 0x910, 0x12b000c9);
1621 cx25840_write4(client, 0x8d0, 0x1f063870);
1624 if (is_cx23888(state)) {
1626 * HVR1850
1628 * AUD_IO_CTRL - I2S Input, Parallel1
1629 * - Channel 1 src - Parallel1 (Merlin out)
1630 * - Channel 2 src - Parallel2 (Merlin out)
1631 * - Channel 3 src - Parallel3 (Merlin AC97 out)
1632 * - I2S source and dir - Merlin, output
1634 cx25840_write4(client, 0x124, 0x100);
1636 if (!is_dif) {
1638 * Stop microcontroller if we don't need it
1639 * to avoid audio popping on svideo/composite use.
1641 cx25840_and_or(client, 0x803, ~0x10, 0x00);
1645 return 0;
1648 /* ----------------------------------------------------------------------- */
1650 static int set_v4lstd(struct i2c_client *client)
1652 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
1653 u8 fmt = 0; /* zero is autodetect */
1654 u8 pal_m = 0;
1656 /* First tests should be against specific std */
1657 if (state->std == V4L2_STD_NTSC_M_JP) {
1658 fmt = 0x2;
1659 } else if (state->std == V4L2_STD_NTSC_443) {
1660 fmt = 0x3;
1661 } else if (state->std == V4L2_STD_PAL_M) {
1662 pal_m = 1;
1663 fmt = 0x5;
1664 } else if (state->std == V4L2_STD_PAL_N) {
1665 fmt = 0x6;
1666 } else if (state->std == V4L2_STD_PAL_Nc) {
1667 fmt = 0x7;
1668 } else if (state->std == V4L2_STD_PAL_60) {
1669 fmt = 0x8;
1670 } else {
1671 /* Then, test against generic ones */
1672 if (state->std & V4L2_STD_NTSC)
1673 fmt = 0x1;
1674 else if (state->std & V4L2_STD_PAL)
1675 fmt = 0x4;
1676 else if (state->std & V4L2_STD_SECAM)
1677 fmt = 0xc;
1680 v4l_dbg(1, cx25840_debug, client,
1681 "changing video std to fmt %i\n", fmt);
1684 * Follow step 9 of section 3.16 in the cx25840 datasheet.
1685 * Without this PAL may display a vertical ghosting effect.
1686 * This happens for example with the Yuan MPC622.
1688 if (fmt >= 4 && fmt < 8) {
1689 /* Set format to NTSC-M */
1690 cx25840_and_or(client, 0x400, ~0xf, 1);
1691 /* Turn off LCOMB */
1692 cx25840_and_or(client, 0x47b, ~6, 0);
1694 cx25840_and_or(client, 0x400, ~0xf, fmt);
1695 cx25840_and_or(client, 0x403, ~0x3, pal_m);
1696 if (is_cx23888(state))
1697 cx23888_std_setup(client);
1698 else
1699 cx25840_std_setup(client);
1700 if (!is_cx2583x(state))
1701 input_change(client);
1702 return 0;
1705 /* ----------------------------------------------------------------------- */
1707 static int cx25840_s_ctrl(struct v4l2_ctrl *ctrl)
1709 struct v4l2_subdev *sd = to_sd(ctrl);
1710 struct cx25840_state *state = to_state(sd);
1711 struct i2c_client *client = v4l2_get_subdevdata(sd);
1713 switch (ctrl->id) {
1714 case V4L2_CID_BRIGHTNESS:
1715 cx25840_write(client, 0x414, ctrl->val - 128);
1716 break;
1718 case V4L2_CID_CONTRAST:
1719 cx25840_write(client, 0x415, ctrl->val << 1);
1720 break;
1722 case V4L2_CID_SATURATION:
1723 if (is_cx23888(state)) {
1724 cx25840_write(client, 0x418, ctrl->val << 1);
1725 cx25840_write(client, 0x419, ctrl->val << 1);
1726 } else {
1727 cx25840_write(client, 0x420, ctrl->val << 1);
1728 cx25840_write(client, 0x421, ctrl->val << 1);
1730 break;
1732 case V4L2_CID_HUE:
1733 if (is_cx23888(state))
1734 cx25840_write(client, 0x41a, ctrl->val);
1735 else
1736 cx25840_write(client, 0x422, ctrl->val);
1737 break;
1739 default:
1740 return -EINVAL;
1743 return 0;
1746 /* ----------------------------------------------------------------------- */
1748 static int cx25840_set_fmt(struct v4l2_subdev *sd,
1749 struct v4l2_subdev_state *sd_state,
1750 struct v4l2_subdev_format *format)
1752 struct v4l2_mbus_framefmt *fmt = &format->format;
1753 struct cx25840_state *state = to_state(sd);
1754 struct i2c_client *client = v4l2_get_subdevdata(sd);
1755 u32 hsc, vsc, v_src, h_src, v_add;
1756 int filter;
1757 int is_50hz = !(state->std & V4L2_STD_525_60);
1759 if (format->pad || fmt->code != MEDIA_BUS_FMT_FIXED)
1760 return -EINVAL;
1762 fmt->field = V4L2_FIELD_INTERLACED;
1763 fmt->colorspace = V4L2_COLORSPACE_SMPTE170M;
1765 if (is_cx23888(state)) {
1766 v_src = (cx25840_read(client, 0x42a) & 0x3f) << 4;
1767 v_src |= (cx25840_read(client, 0x429) & 0xf0) >> 4;
1768 } else {
1769 v_src = (cx25840_read(client, 0x476) & 0x3f) << 4;
1770 v_src |= (cx25840_read(client, 0x475) & 0xf0) >> 4;
1773 if (is_cx23888(state)) {
1774 h_src = (cx25840_read(client, 0x426) & 0x3f) << 4;
1775 h_src |= (cx25840_read(client, 0x425) & 0xf0) >> 4;
1776 } else {
1777 h_src = (cx25840_read(client, 0x472) & 0x3f) << 4;
1778 h_src |= (cx25840_read(client, 0x471) & 0xf0) >> 4;
1781 if (!state->generic_mode) {
1782 v_add = is_50hz ? 4 : 7;
1785 * cx23888 in 525-line mode is programmed for 486 active lines
1786 * while other chips use 487 active lines.
1788 * See reg 0x428 bits [21:12] in cx23888_std_setup() vs
1789 * vactive in cx25840_std_setup().
1791 if (is_cx23888(state) && !is_50hz)
1792 v_add--;
1793 } else {
1794 v_add = 0;
1797 if (h_src == 0 ||
1798 v_src <= v_add) {
1799 v4l_err(client,
1800 "chip reported picture size (%u x %u) is far too small\n",
1801 (unsigned int)h_src, (unsigned int)v_src);
1803 * that's the best we can do since the output picture
1804 * size is completely unknown in this case
1806 return -EINVAL;
1809 fmt->width = clamp(fmt->width, (h_src + 15) / 16, h_src);
1811 if (v_add * 8 >= v_src)
1812 fmt->height = clamp(fmt->height, (u32)1, v_src - v_add);
1813 else
1814 fmt->height = clamp(fmt->height, (v_src - v_add * 8 + 7) / 8,
1815 v_src - v_add);
1817 if (format->which == V4L2_SUBDEV_FORMAT_TRY)
1818 return 0;
1820 hsc = (h_src * (1 << 20)) / fmt->width - (1 << 20);
1821 vsc = (1 << 16) - (v_src * (1 << 9) / (fmt->height + v_add) - (1 << 9));
1822 vsc &= 0x1fff;
1824 if (fmt->width >= 385)
1825 filter = 0;
1826 else if (fmt->width > 192)
1827 filter = 1;
1828 else if (fmt->width > 96)
1829 filter = 2;
1830 else
1831 filter = 3;
1833 v4l_dbg(1, cx25840_debug, client,
1834 "decoder set size %u x %u with scale %x x %x\n",
1835 (unsigned int)fmt->width, (unsigned int)fmt->height,
1836 (unsigned int)hsc, (unsigned int)vsc);
1838 /* HSCALE=hsc */
1839 if (is_cx23888(state)) {
1840 cx25840_write4(client, 0x434, hsc | (1 << 24));
1841 /* VSCALE=vsc VS_INTRLACE=1 VFILT=filter */
1842 cx25840_write4(client, 0x438, vsc | (1 << 19) | (filter << 16));
1843 } else {
1844 cx25840_write(client, 0x418, hsc & 0xff);
1845 cx25840_write(client, 0x419, (hsc >> 8) & 0xff);
1846 cx25840_write(client, 0x41a, hsc >> 16);
1847 /* VSCALE=vsc */
1848 cx25840_write(client, 0x41c, vsc & 0xff);
1849 cx25840_write(client, 0x41d, vsc >> 8);
1850 /* VS_INTRLACE=1 VFILT=filter */
1851 cx25840_write(client, 0x41e, 0x8 | filter);
1853 return 0;
1856 /* ----------------------------------------------------------------------- */
1858 static void log_video_status(struct i2c_client *client)
1860 static const char *const fmt_strs[] = {
1861 "0x0",
1862 "NTSC-M", "NTSC-J", "NTSC-4.43",
1863 "PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60",
1864 "0x9", "0xA", "0xB",
1865 "SECAM",
1866 "0xD", "0xE", "0xF"
1869 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
1870 u8 vidfmt_sel = cx25840_read(client, 0x400) & 0xf;
1871 u8 gen_stat1 = cx25840_read(client, 0x40d);
1872 u8 gen_stat2 = cx25840_read(client, 0x40e);
1873 int vid_input = state->vid_input;
1875 v4l_info(client, "Video signal: %spresent\n",
1876 (gen_stat2 & 0x20) ? "" : "not ");
1877 v4l_info(client, "Detected format: %s\n",
1878 fmt_strs[gen_stat1 & 0xf]);
1880 v4l_info(client, "Specified standard: %s\n",
1881 vidfmt_sel ? fmt_strs[vidfmt_sel] : "automatic detection");
1883 if (vid_input >= CX25840_COMPOSITE1 &&
1884 vid_input <= CX25840_COMPOSITE8) {
1885 v4l_info(client, "Specified video input: Composite %d\n",
1886 vid_input - CX25840_COMPOSITE1 + 1);
1887 } else {
1888 v4l_info(client,
1889 "Specified video input: S-Video (Luma In%d, Chroma In%d)\n",
1890 (vid_input & 0xf0) >> 4, (vid_input & 0xf00) >> 8);
1893 v4l_info(client, "Specified audioclock freq: %d Hz\n",
1894 state->audclk_freq);
1897 /* ----------------------------------------------------------------------- */
1899 static void log_audio_status(struct i2c_client *client)
1901 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
1902 u8 download_ctl = cx25840_read(client, 0x803);
1903 u8 mod_det_stat0 = cx25840_read(client, 0x804);
1904 u8 mod_det_stat1 = cx25840_read(client, 0x805);
1905 u8 audio_config = cx25840_read(client, 0x808);
1906 u8 pref_mode = cx25840_read(client, 0x809);
1907 u8 afc0 = cx25840_read(client, 0x80b);
1908 u8 mute_ctl = cx25840_read(client, 0x8d3);
1909 int aud_input = state->aud_input;
1910 char *p;
1912 switch (mod_det_stat0) {
1913 case 0x00:
1914 p = "mono";
1915 break;
1916 case 0x01:
1917 p = "stereo";
1918 break;
1919 case 0x02:
1920 p = "dual";
1921 break;
1922 case 0x04:
1923 p = "tri";
1924 break;
1925 case 0x10:
1926 p = "mono with SAP";
1927 break;
1928 case 0x11:
1929 p = "stereo with SAP";
1930 break;
1931 case 0x12:
1932 p = "dual with SAP";
1933 break;
1934 case 0x14:
1935 p = "tri with SAP";
1936 break;
1937 case 0xfe:
1938 p = "forced mode";
1939 break;
1940 default:
1941 p = "not defined";
1943 v4l_info(client, "Detected audio mode: %s\n", p);
1945 switch (mod_det_stat1) {
1946 case 0x00:
1947 p = "not defined";
1948 break;
1949 case 0x01:
1950 p = "EIAJ";
1951 break;
1952 case 0x02:
1953 p = "A2-M";
1954 break;
1955 case 0x03:
1956 p = "A2-BG";
1957 break;
1958 case 0x04:
1959 p = "A2-DK1";
1960 break;
1961 case 0x05:
1962 p = "A2-DK2";
1963 break;
1964 case 0x06:
1965 p = "A2-DK3";
1966 break;
1967 case 0x07:
1968 p = "A1 (6.0 MHz FM Mono)";
1969 break;
1970 case 0x08:
1971 p = "AM-L";
1972 break;
1973 case 0x09:
1974 p = "NICAM-BG";
1975 break;
1976 case 0x0a:
1977 p = "NICAM-DK";
1978 break;
1979 case 0x0b:
1980 p = "NICAM-I";
1981 break;
1982 case 0x0c:
1983 p = "NICAM-L";
1984 break;
1985 case 0x0d:
1986 p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)";
1987 break;
1988 case 0x0e:
1989 p = "IF FM Radio";
1990 break;
1991 case 0x0f:
1992 p = "BTSC";
1993 break;
1994 case 0x10:
1995 p = "high-deviation FM";
1996 break;
1997 case 0x11:
1998 p = "very high-deviation FM";
1999 break;
2000 case 0xfd:
2001 p = "unknown audio standard";
2002 break;
2003 case 0xfe:
2004 p = "forced audio standard";
2005 break;
2006 case 0xff:
2007 p = "no detected audio standard";
2008 break;
2009 default:
2010 p = "not defined";
2012 v4l_info(client, "Detected audio standard: %s\n", p);
2013 v4l_info(client, "Audio microcontroller: %s\n",
2014 (download_ctl & 0x10) ?
2015 ((mute_ctl & 0x2) ? "detecting" : "running") : "stopped");
2017 switch (audio_config >> 4) {
2018 case 0x00:
2019 p = "undefined";
2020 break;
2021 case 0x01:
2022 p = "BTSC";
2023 break;
2024 case 0x02:
2025 p = "EIAJ";
2026 break;
2027 case 0x03:
2028 p = "A2-M";
2029 break;
2030 case 0x04:
2031 p = "A2-BG";
2032 break;
2033 case 0x05:
2034 p = "A2-DK1";
2035 break;
2036 case 0x06:
2037 p = "A2-DK2";
2038 break;
2039 case 0x07:
2040 p = "A2-DK3";
2041 break;
2042 case 0x08:
2043 p = "A1 (6.0 MHz FM Mono)";
2044 break;
2045 case 0x09:
2046 p = "AM-L";
2047 break;
2048 case 0x0a:
2049 p = "NICAM-BG";
2050 break;
2051 case 0x0b:
2052 p = "NICAM-DK";
2053 break;
2054 case 0x0c:
2055 p = "NICAM-I";
2056 break;
2057 case 0x0d:
2058 p = "NICAM-L";
2059 break;
2060 case 0x0e:
2061 p = "FM radio";
2062 break;
2063 case 0x0f:
2064 p = "automatic detection";
2065 break;
2066 default:
2067 p = "undefined";
2069 v4l_info(client, "Configured audio standard: %s\n", p);
2071 if ((audio_config >> 4) < 0xF) {
2072 switch (audio_config & 0xF) {
2073 case 0x00:
2074 p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)";
2075 break;
2076 case 0x01:
2077 p = "MONO2 (LANGUAGE B)";
2078 break;
2079 case 0x02:
2080 p = "MONO3 (STEREO forced MONO)";
2081 break;
2082 case 0x03:
2083 p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)";
2084 break;
2085 case 0x04:
2086 p = "STEREO";
2087 break;
2088 case 0x05:
2089 p = "DUAL1 (AB)";
2090 break;
2091 case 0x06:
2092 p = "DUAL2 (AC) (FM)";
2093 break;
2094 case 0x07:
2095 p = "DUAL3 (BC) (FM)";
2096 break;
2097 case 0x08:
2098 p = "DUAL4 (AC) (AM)";
2099 break;
2100 case 0x09:
2101 p = "DUAL5 (BC) (AM)";
2102 break;
2103 case 0x0a:
2104 p = "SAP";
2105 break;
2106 default:
2107 p = "undefined";
2109 v4l_info(client, "Configured audio mode: %s\n", p);
2110 } else {
2111 switch (audio_config & 0xF) {
2112 case 0x00:
2113 p = "BG";
2114 break;
2115 case 0x01:
2116 p = "DK1";
2117 break;
2118 case 0x02:
2119 p = "DK2";
2120 break;
2121 case 0x03:
2122 p = "DK3";
2123 break;
2124 case 0x04:
2125 p = "I";
2126 break;
2127 case 0x05:
2128 p = "L";
2129 break;
2130 case 0x06:
2131 p = "BTSC";
2132 break;
2133 case 0x07:
2134 p = "EIAJ";
2135 break;
2136 case 0x08:
2137 p = "A2-M";
2138 break;
2139 case 0x09:
2140 p = "FM Radio";
2141 break;
2142 case 0x0f:
2143 p = "automatic standard and mode detection";
2144 break;
2145 default:
2146 p = "undefined";
2148 v4l_info(client, "Configured audio system: %s\n", p);
2151 if (aud_input) {
2152 v4l_info(client, "Specified audio input: Tuner (In%d)\n",
2153 aud_input);
2154 } else {
2155 v4l_info(client, "Specified audio input: External\n");
2158 switch (pref_mode & 0xf) {
2159 case 0:
2160 p = "mono/language A";
2161 break;
2162 case 1:
2163 p = "language B";
2164 break;
2165 case 2:
2166 p = "language C";
2167 break;
2168 case 3:
2169 p = "analog fallback";
2170 break;
2171 case 4:
2172 p = "stereo";
2173 break;
2174 case 5:
2175 p = "language AC";
2176 break;
2177 case 6:
2178 p = "language BC";
2179 break;
2180 case 7:
2181 p = "language AB";
2182 break;
2183 default:
2184 p = "undefined";
2186 v4l_info(client, "Preferred audio mode: %s\n", p);
2188 if ((audio_config & 0xf) == 0xf) {
2189 switch ((afc0 >> 3) & 0x3) {
2190 case 0:
2191 p = "system DK";
2192 break;
2193 case 1:
2194 p = "system L";
2195 break;
2196 case 2:
2197 p = "autodetect";
2198 break;
2199 default:
2200 p = "undefined";
2202 v4l_info(client, "Selected 65 MHz format: %s\n", p);
2204 switch (afc0 & 0x7) {
2205 case 0:
2206 p = "chroma";
2207 break;
2208 case 1:
2209 p = "BTSC";
2210 break;
2211 case 2:
2212 p = "EIAJ";
2213 break;
2214 case 3:
2215 p = "A2-M";
2216 break;
2217 case 4:
2218 p = "autodetect";
2219 break;
2220 default:
2221 p = "undefined";
2223 v4l_info(client, "Selected 45 MHz format: %s\n", p);
2227 #define CX25840_VCONFIG_OPTION(state, cfg_in, opt_msk) \
2228 do { \
2229 if ((cfg_in) & (opt_msk)) { \
2230 (state)->vid_config &= ~(opt_msk); \
2231 (state)->vid_config |= (cfg_in) & (opt_msk); \
2233 } while (0)
2235 /* apply incoming options to the current vconfig */
2236 static void cx25840_vconfig_add(struct cx25840_state *state, u32 cfg_in)
2238 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_FMT_MASK);
2239 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_RES_MASK);
2240 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_VBIRAW_MASK);
2241 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_ANCDATA_MASK);
2242 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_TASKBIT_MASK);
2243 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_ACTIVE_MASK);
2244 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_VALID_MASK);
2245 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_HRESETW_MASK);
2246 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_CLKGATE_MASK);
2247 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_DCMODE_MASK);
2248 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_IDID0S_MASK);
2249 CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_VIPCLAMP_MASK);
2252 /* ----------------------------------------------------------------------- */
2255 * Initializes the device in the generic mode.
2256 * For cx2584x chips also adds additional video output settings provided
2257 * in @val parameter (CX25840_VCONFIG_*).
2259 * The generic mode disables some of the ivtv-related hacks in this driver.
2260 * For cx2584x chips it also enables setting video output configuration while
2261 * setting it according to datasheet defaults by default.
2263 static int cx25840_init(struct v4l2_subdev *sd, u32 val)
2265 struct cx25840_state *state = to_state(sd);
2267 state->generic_mode = true;
2269 if (is_cx2584x(state)) {
2270 /* set datasheet video output defaults */
2271 state->vid_config = CX25840_VCONFIG_FMT_BT656 |
2272 CX25840_VCONFIG_RES_8BIT |
2273 CX25840_VCONFIG_VBIRAW_DISABLED |
2274 CX25840_VCONFIG_ANCDATA_ENABLED |
2275 CX25840_VCONFIG_TASKBIT_ONE |
2276 CX25840_VCONFIG_ACTIVE_HORIZONTAL |
2277 CX25840_VCONFIG_VALID_NORMAL |
2278 CX25840_VCONFIG_HRESETW_NORMAL |
2279 CX25840_VCONFIG_CLKGATE_NONE |
2280 CX25840_VCONFIG_DCMODE_DWORDS |
2281 CX25840_VCONFIG_IDID0S_NORMAL |
2282 CX25840_VCONFIG_VIPCLAMP_DISABLED;
2284 /* add additional settings */
2285 cx25840_vconfig_add(state, val);
2286 } else {
2287 /* TODO: generic mode needs to be developed for other chips */
2288 WARN_ON(1);
2291 return 0;
2294 static int cx25840_reset(struct v4l2_subdev *sd, u32 val)
2296 struct cx25840_state *state = to_state(sd);
2297 struct i2c_client *client = v4l2_get_subdevdata(sd);
2299 if (is_cx2583x(state))
2300 cx25836_initialize(client);
2301 else if (is_cx2388x(state))
2302 cx23885_initialize(client);
2303 else if (is_cx231xx(state))
2304 cx231xx_initialize(client);
2305 else
2306 cx25840_initialize(client);
2308 state->is_initialized = 1;
2310 return 0;
2314 * This load_fw operation must be called to load the driver's firmware.
2315 * This will load the firmware on the first invocation (further ones are NOP).
2316 * Without this the audio standard detection will fail and you will
2317 * only get mono.
2318 * Alternatively, you can call the reset operation instead of this one.
2320 * Since loading the firmware is often problematic when the driver is
2321 * compiled into the kernel I recommend postponing calling this function
2322 * until the first open of the video device. Another reason for
2323 * postponing it is that loading this firmware takes a long time (seconds)
2324 * due to the slow i2c bus speed. So it will speed up the boot process if
2325 * you can avoid loading the fw as long as the video device isn't used.
2327 static int cx25840_load_fw(struct v4l2_subdev *sd)
2329 struct cx25840_state *state = to_state(sd);
2331 if (!state->is_initialized) {
2332 /* initialize and load firmware */
2333 cx25840_reset(sd, 0);
2335 return 0;
2338 #ifdef CONFIG_VIDEO_ADV_DEBUG
2339 static int cx25840_g_register(struct v4l2_subdev *sd,
2340 struct v4l2_dbg_register *reg)
2342 struct i2c_client *client = v4l2_get_subdevdata(sd);
2344 reg->size = 1;
2345 reg->val = cx25840_read(client, reg->reg & 0x0fff);
2346 return 0;
2349 static int cx25840_s_register(struct v4l2_subdev *sd,
2350 const struct v4l2_dbg_register *reg)
2352 struct i2c_client *client = v4l2_get_subdevdata(sd);
2354 cx25840_write(client, reg->reg & 0x0fff, reg->val & 0xff);
2355 return 0;
2357 #endif
2359 static int cx25840_s_audio_stream(struct v4l2_subdev *sd, int enable)
2361 struct cx25840_state *state = to_state(sd);
2362 struct i2c_client *client = v4l2_get_subdevdata(sd);
2363 u8 v;
2365 if (is_cx2583x(state) || is_cx2388x(state) || is_cx231xx(state))
2366 return 0;
2368 v4l_dbg(1, cx25840_debug, client, "%s audio output\n",
2369 enable ? "enable" : "disable");
2371 if (enable) {
2372 v = cx25840_read(client, 0x115) | 0x80;
2373 cx25840_write(client, 0x115, v);
2374 v = cx25840_read(client, 0x116) | 0x03;
2375 cx25840_write(client, 0x116, v);
2376 } else {
2377 v = cx25840_read(client, 0x115) & ~(0x80);
2378 cx25840_write(client, 0x115, v);
2379 v = cx25840_read(client, 0x116) & ~(0x03);
2380 cx25840_write(client, 0x116, v);
2382 return 0;
2385 static int cx25840_s_stream(struct v4l2_subdev *sd, int enable)
2387 struct cx25840_state *state = to_state(sd);
2388 struct i2c_client *client = v4l2_get_subdevdata(sd);
2389 u8 v;
2391 v4l_dbg(1, cx25840_debug, client, "%s video output\n",
2392 enable ? "enable" : "disable");
2395 * It's not clear what should be done for these devices.
2396 * The original code used the same addresses as for the cx25840, but
2397 * those addresses do something else entirely on the cx2388x and
2398 * cx231xx. Since it never did anything in the first place, just do
2399 * nothing.
2401 if (is_cx2388x(state) || is_cx231xx(state))
2402 return 0;
2404 if (enable) {
2405 v = cx25840_read(client, 0x115) | 0x0c;
2406 cx25840_write(client, 0x115, v);
2407 v = cx25840_read(client, 0x116) | 0x04;
2408 cx25840_write(client, 0x116, v);
2409 } else {
2410 v = cx25840_read(client, 0x115) & ~(0x0c);
2411 cx25840_write(client, 0x115, v);
2412 v = cx25840_read(client, 0x116) & ~(0x04);
2413 cx25840_write(client, 0x116, v);
2415 return 0;
2418 /* Query the current detected video format */
2419 static int cx25840_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
2421 struct i2c_client *client = v4l2_get_subdevdata(sd);
2423 static const v4l2_std_id stds[] = {
2424 /* 0000 */ V4L2_STD_UNKNOWN,
2426 /* 0001 */ V4L2_STD_NTSC_M,
2427 /* 0010 */ V4L2_STD_NTSC_M_JP,
2428 /* 0011 */ V4L2_STD_NTSC_443,
2429 /* 0100 */ V4L2_STD_PAL,
2430 /* 0101 */ V4L2_STD_PAL_M,
2431 /* 0110 */ V4L2_STD_PAL_N,
2432 /* 0111 */ V4L2_STD_PAL_Nc,
2433 /* 1000 */ V4L2_STD_PAL_60,
2435 /* 1001 */ V4L2_STD_UNKNOWN,
2436 /* 1010 */ V4L2_STD_UNKNOWN,
2437 /* 1011 */ V4L2_STD_UNKNOWN,
2438 /* 1100 */ V4L2_STD_SECAM,
2439 /* 1101 */ V4L2_STD_UNKNOWN,
2440 /* 1110 */ V4L2_STD_UNKNOWN,
2441 /* 1111 */ V4L2_STD_UNKNOWN
2444 u32 fmt = (cx25840_read4(client, 0x40c) >> 8) & 0xf;
2445 *std = stds[fmt];
2447 v4l_dbg(1, cx25840_debug, client,
2448 "querystd fmt = %x, v4l2_std_id = 0x%x\n",
2449 fmt, (unsigned int)stds[fmt]);
2451 return 0;
2454 static int cx25840_g_input_status(struct v4l2_subdev *sd, u32 *status)
2456 struct i2c_client *client = v4l2_get_subdevdata(sd);
2459 * A limited function that checks for signal status and returns
2460 * the state.
2463 /* Check for status of Horizontal lock (SRC lock isn't reliable) */
2464 if ((cx25840_read4(client, 0x40c) & 0x00010000) == 0)
2465 *status |= V4L2_IN_ST_NO_SIGNAL;
2467 return 0;
2470 static int cx25840_g_std(struct v4l2_subdev *sd, v4l2_std_id *std)
2472 struct cx25840_state *state = to_state(sd);
2474 *std = state->std;
2476 return 0;
2479 static int cx25840_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
2481 struct cx25840_state *state = to_state(sd);
2482 struct i2c_client *client = v4l2_get_subdevdata(sd);
2484 if (state->radio == 0 && state->std == std)
2485 return 0;
2486 state->radio = 0;
2487 state->std = std;
2488 return set_v4lstd(client);
2491 static int cx25840_s_radio(struct v4l2_subdev *sd)
2493 struct cx25840_state *state = to_state(sd);
2495 state->radio = 1;
2496 return 0;
2499 static int cx25840_s_video_routing(struct v4l2_subdev *sd,
2500 u32 input, u32 output, u32 config)
2502 struct cx25840_state *state = to_state(sd);
2503 struct i2c_client *client = v4l2_get_subdevdata(sd);
2505 if (is_cx23888(state))
2506 cx23888_std_setup(client);
2508 if (is_cx2584x(state) && state->generic_mode && config) {
2509 cx25840_vconfig_add(state, config);
2510 cx25840_vconfig_apply(client);
2513 return set_input(client, input, state->aud_input);
2516 static int cx25840_s_audio_routing(struct v4l2_subdev *sd,
2517 u32 input, u32 output, u32 config)
2519 struct cx25840_state *state = to_state(sd);
2520 struct i2c_client *client = v4l2_get_subdevdata(sd);
2522 if (is_cx23888(state))
2523 cx23888_std_setup(client);
2524 return set_input(client, state->vid_input, input);
2527 static int cx25840_s_frequency(struct v4l2_subdev *sd,
2528 const struct v4l2_frequency *freq)
2530 struct i2c_client *client = v4l2_get_subdevdata(sd);
2532 input_change(client);
2533 return 0;
2536 static int cx25840_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt)
2538 struct cx25840_state *state = to_state(sd);
2539 struct i2c_client *client = v4l2_get_subdevdata(sd);
2540 u8 vpres = cx25840_read(client, 0x40e) & 0x20;
2541 u8 mode;
2542 int val = 0;
2544 if (state->radio)
2545 return 0;
2547 vt->signal = vpres ? 0xffff : 0x0;
2548 if (is_cx2583x(state))
2549 return 0;
2551 vt->capability |= V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 |
2552 V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP;
2554 mode = cx25840_read(client, 0x804);
2556 /* get rxsubchans and audmode */
2557 if ((mode & 0xf) == 1)
2558 val |= V4L2_TUNER_SUB_STEREO;
2559 else
2560 val |= V4L2_TUNER_SUB_MONO;
2562 if (mode == 2 || mode == 4)
2563 val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
2565 if (mode & 0x10)
2566 val |= V4L2_TUNER_SUB_SAP;
2568 vt->rxsubchans = val;
2569 vt->audmode = state->audmode;
2570 return 0;
2573 static int cx25840_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *vt)
2575 struct cx25840_state *state = to_state(sd);
2576 struct i2c_client *client = v4l2_get_subdevdata(sd);
2578 if (state->radio || is_cx2583x(state))
2579 return 0;
2581 switch (vt->audmode) {
2582 case V4L2_TUNER_MODE_MONO:
2584 * mono -> mono
2585 * stereo -> mono
2586 * bilingual -> lang1
2588 cx25840_and_or(client, 0x809, ~0xf, 0x00);
2589 break;
2590 case V4L2_TUNER_MODE_STEREO:
2591 case V4L2_TUNER_MODE_LANG1:
2593 * mono -> mono
2594 * stereo -> stereo
2595 * bilingual -> lang1
2597 cx25840_and_or(client, 0x809, ~0xf, 0x04);
2598 break;
2599 case V4L2_TUNER_MODE_LANG1_LANG2:
2601 * mono -> mono
2602 * stereo -> stereo
2603 * bilingual -> lang1/lang2
2605 cx25840_and_or(client, 0x809, ~0xf, 0x07);
2606 break;
2607 case V4L2_TUNER_MODE_LANG2:
2609 * mono -> mono
2610 * stereo -> stereo
2611 * bilingual -> lang2
2613 cx25840_and_or(client, 0x809, ~0xf, 0x01);
2614 break;
2615 default:
2616 return -EINVAL;
2618 state->audmode = vt->audmode;
2619 return 0;
2622 static int cx25840_log_status(struct v4l2_subdev *sd)
2624 struct cx25840_state *state = to_state(sd);
2625 struct i2c_client *client = v4l2_get_subdevdata(sd);
2627 log_video_status(client);
2628 if (!is_cx2583x(state))
2629 log_audio_status(client);
2630 cx25840_ir_log_status(sd);
2631 v4l2_ctrl_handler_log_status(&state->hdl, sd->name);
2632 return 0;
2635 static int cx23885_irq_handler(struct v4l2_subdev *sd, u32 status,
2636 bool *handled)
2638 struct cx25840_state *state = to_state(sd);
2639 struct i2c_client *c = v4l2_get_subdevdata(sd);
2640 u8 irq_stat, aud_stat, aud_en, ir_stat, ir_en;
2641 u32 vid_stat, aud_mc_stat;
2642 bool block_handled;
2643 int ret = 0;
2645 irq_stat = cx25840_read(c, CX23885_PIN_CTRL_IRQ_REG);
2646 v4l_dbg(2, cx25840_debug, c, "AV Core IRQ status (entry): %s %s %s\n",
2647 irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT ? "ir" : " ",
2648 irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT ? "aud" : " ",
2649 irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT ? "vid" : " ");
2651 if ((is_cx23885(state) || is_cx23887(state))) {
2652 ir_stat = cx25840_read(c, CX25840_IR_STATS_REG);
2653 ir_en = cx25840_read(c, CX25840_IR_IRQEN_REG);
2654 v4l_dbg(2, cx25840_debug, c,
2655 "AV Core ir IRQ status: %#04x disables: %#04x\n",
2656 ir_stat, ir_en);
2657 if (irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT) {
2658 block_handled = false;
2659 ret = cx25840_ir_irq_handler(sd,
2660 status, &block_handled);
2661 if (block_handled)
2662 *handled = true;
2666 aud_stat = cx25840_read(c, CX25840_AUD_INT_STAT_REG);
2667 aud_en = cx25840_read(c, CX25840_AUD_INT_CTRL_REG);
2668 v4l_dbg(2, cx25840_debug, c,
2669 "AV Core audio IRQ status: %#04x disables: %#04x\n",
2670 aud_stat, aud_en);
2671 aud_mc_stat = cx25840_read4(c, CX23885_AUD_MC_INT_MASK_REG);
2672 v4l_dbg(2, cx25840_debug, c,
2673 "AV Core audio MC IRQ status: %#06x enables: %#06x\n",
2674 aud_mc_stat >> CX23885_AUD_MC_INT_STAT_SHFT,
2675 aud_mc_stat & CX23885_AUD_MC_INT_CTRL_BITS);
2676 if (irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT) {
2677 if (aud_stat) {
2678 cx25840_write(c, CX25840_AUD_INT_STAT_REG, aud_stat);
2679 *handled = true;
2683 vid_stat = cx25840_read4(c, CX25840_VID_INT_STAT_REG);
2684 v4l_dbg(2, cx25840_debug, c,
2685 "AV Core video IRQ status: %#06x disables: %#06x\n",
2686 vid_stat & CX25840_VID_INT_STAT_BITS,
2687 vid_stat >> CX25840_VID_INT_MASK_SHFT);
2688 if (irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT) {
2689 if (vid_stat & CX25840_VID_INT_STAT_BITS) {
2690 cx25840_write4(c, CX25840_VID_INT_STAT_REG, vid_stat);
2691 *handled = true;
2695 irq_stat = cx25840_read(c, CX23885_PIN_CTRL_IRQ_REG);
2696 v4l_dbg(2, cx25840_debug, c, "AV Core IRQ status (exit): %s %s %s\n",
2697 irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT ? "ir" : " ",
2698 irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT ? "aud" : " ",
2699 irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT ? "vid" : " ");
2701 return ret;
2704 static int cx25840_irq_handler(struct v4l2_subdev *sd, u32 status,
2705 bool *handled)
2707 struct cx25840_state *state = to_state(sd);
2709 *handled = false;
2711 /* Only support the CX2388[578] AV Core for now */
2712 if (is_cx2388x(state))
2713 return cx23885_irq_handler(sd, status, handled);
2715 return -ENODEV;
2718 /* ----------------------------------------------------------------------- */
2720 #define DIF_PLL_FREQ_WORD (0x300)
2721 #define DIF_BPF_COEFF01 (0x348)
2722 #define DIF_BPF_COEFF23 (0x34c)
2723 #define DIF_BPF_COEFF45 (0x350)
2724 #define DIF_BPF_COEFF67 (0x354)
2725 #define DIF_BPF_COEFF89 (0x358)
2726 #define DIF_BPF_COEFF1011 (0x35c)
2727 #define DIF_BPF_COEFF1213 (0x360)
2728 #define DIF_BPF_COEFF1415 (0x364)
2729 #define DIF_BPF_COEFF1617 (0x368)
2730 #define DIF_BPF_COEFF1819 (0x36c)
2731 #define DIF_BPF_COEFF2021 (0x370)
2732 #define DIF_BPF_COEFF2223 (0x374)
2733 #define DIF_BPF_COEFF2425 (0x378)
2734 #define DIF_BPF_COEFF2627 (0x37c)
2735 #define DIF_BPF_COEFF2829 (0x380)
2736 #define DIF_BPF_COEFF3031 (0x384)
2737 #define DIF_BPF_COEFF3233 (0x388)
2738 #define DIF_BPF_COEFF3435 (0x38c)
2739 #define DIF_BPF_COEFF36 (0x390)
2741 static const u32 ifhz_coeffs[][19] = {
2742 { // 3.0 MHz
2743 0x00000002, 0x00080012, 0x001e0024, 0x001bfff8,
2744 0xffb4ff50, 0xfed8fe68, 0xfe24fe34, 0xfebaffc7,
2745 0x014d031f, 0x04f0065d, 0x07010688, 0x04c901d6,
2746 0xfe00f9d3, 0xf600f342, 0xf235f337, 0xf64efb22,
2747 0x0105070f, 0x0c460fce, 0x110d0000,
2748 }, { // 3.1 MHz
2749 0x00000001, 0x00070012, 0x00220032, 0x00370026,
2750 0xfff0ff91, 0xff0efe7c, 0xfe01fdcc, 0xfe0afedb,
2751 0x00440224, 0x0434060c, 0x0738074e, 0x06090361,
2752 0xff99fb39, 0xf6fef3b6, 0xf21af2a5, 0xf573fa33,
2753 0x0034067d, 0x0bfb0fb9, 0x110d0000,
2754 }, { // 3.2 MHz
2755 0x00000000, 0x0004000e, 0x00200038, 0x004c004f,
2756 0x002fffdf, 0xff5cfeb6, 0xfe0dfd92, 0xfd7ffe03,
2757 0xff36010a, 0x03410575, 0x072607d2, 0x071804d5,
2758 0x0134fcb7, 0xf81ff451, 0xf223f22e, 0xf4a7f94b,
2759 0xff6405e8, 0x0bae0fa4, 0x110d0000,
2760 }, { // 3.3 MHz
2761 0x0000ffff, 0x00000008, 0x001a0036, 0x0056006d,
2762 0x00670030, 0xffbdff10, 0xfe46fd8d, 0xfd25fd4f,
2763 0xfe35ffe0, 0x0224049f, 0x06c9080e, 0x07ef0627,
2764 0x02c9fe45, 0xf961f513, 0xf250f1d2, 0xf3ecf869,
2765 0xfe930552, 0x0b5f0f8f, 0x110d0000,
2766 }, { // 3.4 MHz
2767 0xfffffffe, 0xfffd0001, 0x000f002c, 0x0054007d,
2768 0x0093007c, 0x0024ff82, 0xfea6fdbb, 0xfd03fcca,
2769 0xfd51feb9, 0x00eb0392, 0x06270802, 0x08880750,
2770 0x044dffdb, 0xfabdf5f8, 0xf2a0f193, 0xf342f78f,
2771 0xfdc404b9, 0x0b0e0f78, 0x110d0000,
2772 }, { // 3.5 MHz
2773 0xfffffffd, 0xfffafff9, 0x0002001b, 0x0046007d,
2774 0x00ad00ba, 0x00870000, 0xff26fe1a, 0xfd1bfc7e,
2775 0xfc99fda4, 0xffa5025c, 0x054507ad, 0x08dd0847,
2776 0x05b80172, 0xfc2ef6ff, 0xf313f170, 0xf2abf6bd,
2777 0xfcf6041f, 0x0abc0f61, 0x110d0000,
2778 }, { // 3.6 MHz
2779 0xfffffffd, 0xfff8fff3, 0xfff50006, 0x002f006c,
2780 0x00b200e3, 0x00dc007e, 0xffb9fea0, 0xfd6bfc71,
2781 0xfc17fcb1, 0xfe65010b, 0x042d0713, 0x08ec0906,
2782 0x07020302, 0xfdaff823, 0xf3a7f16a, 0xf228f5f5,
2783 0xfc2a0384, 0x0a670f4a, 0x110d0000,
2784 }, { // 3.7 MHz
2785 0x0000fffd, 0xfff7ffef, 0xffe9fff1, 0x0010004d,
2786 0x00a100f2, 0x011a00f0, 0x0053ff44, 0xfdedfca2,
2787 0xfbd3fbef, 0xfd39ffae, 0x02ea0638, 0x08b50987,
2788 0x08230483, 0xff39f960, 0xf45bf180, 0xf1b8f537,
2789 0xfb6102e7, 0x0a110f32, 0x110d0000,
2790 }, { // 3.8 MHz
2791 0x0000fffe, 0xfff9ffee, 0xffe1ffdd, 0xfff00024,
2792 0x007c00e5, 0x013a014a, 0x00e6fff8, 0xfe98fd0f,
2793 0xfbd3fb67, 0xfc32fe54, 0x01880525, 0x083909c7,
2794 0x091505ee, 0x00c7fab3, 0xf52df1b4, 0xf15df484,
2795 0xfa9b0249, 0x09ba0f19, 0x110d0000,
2796 }, { // 3.9 MHz
2797 0x00000000, 0xfffbfff0, 0xffdeffcf, 0xffd1fff6,
2798 0x004800be, 0x01390184, 0x016300ac, 0xff5efdb1,
2799 0xfc17fb23, 0xfb5cfd0d, 0x001703e4, 0x077b09c4,
2800 0x09d2073c, 0x0251fc18, 0xf61cf203, 0xf118f3dc,
2801 0xf9d801aa, 0x09600eff, 0x110d0000,
2802 }, { // 4.0 MHz
2803 0x00000001, 0xfffefff4, 0xffe1ffc8, 0xffbaffca,
2804 0x000b0082, 0x01170198, 0x01c10152, 0x0030fe7b,
2805 0xfc99fb24, 0xfac3fbe9, 0xfea5027f, 0x0683097f,
2806 0x0a560867, 0x03d2fd89, 0xf723f26f, 0xf0e8f341,
2807 0xf919010a, 0x09060ee5, 0x110d0000,
2808 }, { // 4.1 MHz
2809 0x00010002, 0x0002fffb, 0xffe8ffca, 0xffacffa4,
2810 0xffcd0036, 0x00d70184, 0x01f601dc, 0x00ffff60,
2811 0xfd51fb6d, 0xfa6efaf5, 0xfd410103, 0x055708f9,
2812 0x0a9e0969, 0x0543ff02, 0xf842f2f5, 0xf0cef2b2,
2813 0xf85e006b, 0x08aa0ecb, 0x110d0000,
2814 }, { // 4.2 MHz
2815 0x00010003, 0x00050003, 0xfff3ffd3, 0xffaaff8b,
2816 0xff95ffe5, 0x0080014a, 0x01fe023f, 0x01ba0050,
2817 0xfe35fbf8, 0xfa62fa3b, 0xfbf9ff7e, 0x04010836,
2818 0x0aa90a3d, 0x069f007f, 0xf975f395, 0xf0cbf231,
2819 0xf7a9ffcb, 0x084c0eaf, 0x110d0000,
2820 }, { // 4.3 MHz
2821 0x00010003, 0x0008000a, 0x0000ffe4, 0xffb4ff81,
2822 0xff6aff96, 0x001c00f0, 0x01d70271, 0x0254013b,
2823 0xff36fcbd, 0xfa9ff9c5, 0xfadbfdfe, 0x028c073b,
2824 0x0a750adf, 0x07e101fa, 0xfab8f44e, 0xf0ddf1be,
2825 0xf6f9ff2b, 0x07ed0e94, 0x110d0000,
2826 }, { // 4.4 MHz
2827 0x00000003, 0x0009000f, 0x000efff8, 0xffc9ff87,
2828 0xff52ff54, 0xffb5007e, 0x01860270, 0x02c00210,
2829 0x0044fdb2, 0xfb22f997, 0xf9f2fc90, 0x0102060f,
2830 0x0a050b4c, 0x0902036e, 0xfc0af51e, 0xf106f15a,
2831 0xf64efe8b, 0x078d0e77, 0x110d0000,
2832 }, { // 4.5 MHz
2833 0x00000002, 0x00080012, 0x0019000e, 0xffe5ff9e,
2834 0xff4fff25, 0xff560000, 0x0112023b, 0x02f702c0,
2835 0x014dfec8, 0xfbe5f9b3, 0xf947fb41, 0xff7004b9,
2836 0x095a0b81, 0x0a0004d8, 0xfd65f603, 0xf144f104,
2837 0xf5aafdec, 0x072b0e5a, 0x110d0000,
2838 }, { // 4.6 MHz
2839 0x00000001, 0x00060012, 0x00200022, 0x0005ffc1,
2840 0xff61ff10, 0xff09ff82, 0x008601d7, 0x02f50340,
2841 0x0241fff0, 0xfcddfa19, 0xf8e2fa1e, 0xfde30343,
2842 0x08790b7f, 0x0ad50631, 0xfec7f6fc, 0xf198f0bd,
2843 0xf50dfd4e, 0x06c90e3d, 0x110d0000,
2844 }, { // 4.7 MHz
2845 0x0000ffff, 0x0003000f, 0x00220030, 0x0025ffed,
2846 0xff87ff15, 0xfed6ff10, 0xffed014c, 0x02b90386,
2847 0x03110119, 0xfdfefac4, 0xf8c6f92f, 0xfc6701b7,
2848 0x07670b44, 0x0b7e0776, 0x002df807, 0xf200f086,
2849 0xf477fcb1, 0x06650e1e, 0x110d0000,
2850 }, { // 4.8 MHz
2851 0xfffffffe, 0xffff0009, 0x001e0038, 0x003f001b,
2852 0xffbcff36, 0xfec2feb6, 0xff5600a5, 0x0248038d,
2853 0x03b00232, 0xff39fbab, 0xf8f4f87f, 0xfb060020,
2854 0x062a0ad2, 0x0bf908a3, 0x0192f922, 0xf27df05e,
2855 0xf3e8fc14, 0x06000e00, 0x110d0000,
2856 }, { // 4.9 MHz
2857 0xfffffffd, 0xfffc0002, 0x00160037, 0x00510046,
2858 0xfff9ff6d, 0xfed0fe7c, 0xfecefff0, 0x01aa0356,
2859 0x0413032b, 0x007ffcc5, 0xf96cf812, 0xf9cefe87,
2860 0x04c90a2c, 0x0c4309b4, 0x02f3fa4a, 0xf30ef046,
2861 0xf361fb7a, 0x059b0de0, 0x110d0000,
2862 }, { // 5.0 MHz
2863 0xfffffffd, 0xfff9fffa, 0x000a002d, 0x00570067,
2864 0x0037ffb5, 0xfefffe68, 0xfe62ff3d, 0x00ec02e3,
2865 0x043503f6, 0x01befe05, 0xfa27f7ee, 0xf8c6fcf8,
2866 0x034c0954, 0x0c5c0aa4, 0x044cfb7e, 0xf3b1f03f,
2867 0xf2e2fae1, 0x05340dc0, 0x110d0000,
2868 }, { // 5.1 MHz
2869 0x0000fffd, 0xfff8fff4, 0xfffd001e, 0x0051007b,
2870 0x006e0006, 0xff48fe7c, 0xfe1bfe9a, 0x001d023e,
2871 0x04130488, 0x02e6ff5b, 0xfb1ef812, 0xf7f7fb7f,
2872 0x01bc084e, 0x0c430b72, 0x059afcba, 0xf467f046,
2873 0xf26cfa4a, 0x04cd0da0, 0x110d0000,
2874 }, { // 5.2 MHz
2875 0x0000fffe, 0xfff8ffef, 0xfff00009, 0x003f007f,
2876 0x00980056, 0xffa5feb6, 0xfe00fe15, 0xff4b0170,
2877 0x03b004d7, 0x03e800b9, 0xfc48f87f, 0xf768fa23,
2878 0x0022071f, 0x0bf90c1b, 0x06dafdfd, 0xf52df05e,
2879 0xf1fef9b5, 0x04640d7f, 0x110d0000,
2880 }, { // 5.3 MHz
2881 0x0000ffff, 0xfff9ffee, 0xffe6fff3, 0x00250072,
2882 0x00af009c, 0x000cff10, 0xfe13fdb8, 0xfe870089,
2883 0x031104e1, 0x04b8020f, 0xfd98f92f, 0xf71df8f0,
2884 0xfe8805ce, 0x0b7e0c9c, 0x0808ff44, 0xf603f086,
2885 0xf19af922, 0x03fb0d5e, 0x110d0000,
2886 }, { // 5.4 MHz
2887 0x00000001, 0xfffcffef, 0xffe0ffe0, 0x00050056,
2888 0x00b000d1, 0x0071ff82, 0xfe53fd8c, 0xfddfff99,
2889 0x024104a3, 0x054a034d, 0xff01fa1e, 0xf717f7ed,
2890 0xfcf50461, 0x0ad50cf4, 0x0921008d, 0xf6e7f0bd,
2891 0xf13ff891, 0x03920d3b, 0x110d0000,
2892 }, { // 5.5 MHz
2893 0x00010002, 0xfffffff3, 0xffdeffd1, 0xffe5002f,
2894 0x009c00ed, 0x00cb0000, 0xfebafd94, 0xfd61feb0,
2895 0x014d0422, 0x05970464, 0x0074fb41, 0xf759f721,
2896 0xfb7502de, 0x0a000d21, 0x0a2201d4, 0xf7d9f104,
2897 0xf0edf804, 0x03280d19, 0x110d0000,
2898 }, { // 5.6 MHz
2899 0x00010003, 0x0003fffa, 0xffe3ffc9, 0xffc90002,
2900 0x007500ef, 0x010e007e, 0xff3dfdcf, 0xfd16fddd,
2901 0x00440365, 0x059b0548, 0x01e3fc90, 0xf7dff691,
2902 0xfa0f014d, 0x09020d23, 0x0b0a0318, 0xf8d7f15a,
2903 0xf0a5f779, 0x02bd0cf6, 0x110d0000,
2904 }, { // 5.7 MHz
2905 0x00010003, 0x00060001, 0xffecffc9, 0xffb4ffd4,
2906 0x004000d5, 0x013600f0, 0xffd3fe39, 0xfd04fd31,
2907 0xff360277, 0x055605ef, 0x033efdfe, 0xf8a5f642,
2908 0xf8cbffb6, 0x07e10cfb, 0x0bd50456, 0xf9dff1be,
2909 0xf067f6f2, 0x02520cd2, 0x110d0000,
2910 }, { // 5.8 MHz
2911 0x00000003, 0x00080009, 0xfff8ffd2, 0xffaaffac,
2912 0x000200a3, 0x013c014a, 0x006dfec9, 0xfd2bfcb7,
2913 0xfe350165, 0x04cb0651, 0x0477ff7e, 0xf9a5f635,
2914 0xf7b1fe20, 0x069f0ca8, 0x0c81058b, 0xfaf0f231,
2915 0xf033f66d, 0x01e60cae, 0x110d0000,
2916 }, { // 5.9 MHz
2917 0x00000002, 0x0009000e, 0x0005ffe1, 0xffacff90,
2918 0xffc5005f, 0x01210184, 0x00fcff72, 0xfd8afc77,
2919 0xfd51003f, 0x04020669, 0x05830103, 0xfad7f66b,
2920 0xf6c8fc93, 0x05430c2b, 0x0d0d06b5, 0xfc08f2b2,
2921 0xf00af5ec, 0x017b0c89, 0x110d0000,
2922 }, { // 6.0 MHz
2923 0x00000001, 0x00070012, 0x0012fff5, 0xffbaff82,
2924 0xff8e000f, 0x00e80198, 0x01750028, 0xfe18fc75,
2925 0xfc99ff15, 0x03050636, 0x0656027f, 0xfc32f6e2,
2926 0xf614fb17, 0x03d20b87, 0x0d7707d2, 0xfd26f341,
2927 0xefeaf56f, 0x010f0c64, 0x110d0000,
2928 }, { // 6.1 MHz
2929 0xffff0000, 0x00050012, 0x001c000b, 0xffd1ff84,
2930 0xff66ffbe, 0x00960184, 0x01cd00da, 0xfeccfcb2,
2931 0xfc17fdf9, 0x01e005bc, 0x06e703e4, 0xfdabf798,
2932 0xf599f9b3, 0x02510abd, 0x0dbf08df, 0xfe48f3dc,
2933 0xefd5f4f6, 0x00a20c3e, 0x110d0000,
2934 }, { // 6.2 MHz
2935 0xfffffffe, 0x0002000f, 0x0021001f, 0xfff0ff97,
2936 0xff50ff74, 0x0034014a, 0x01fa0179, 0xff97fd2a,
2937 0xfbd3fcfa, 0x00a304fe, 0x07310525, 0xff37f886,
2938 0xf55cf86e, 0x00c709d0, 0x0de209db, 0xff6df484,
2939 0xefcbf481, 0x00360c18, 0x110d0000,
2940 }, { // 6.3 MHz
2941 0xfffffffd, 0xfffe000a, 0x0021002f, 0x0010ffb8,
2942 0xff50ff3b, 0xffcc00f0, 0x01fa01fa, 0x0069fdd4,
2943 0xfbd3fc26, 0xff5d0407, 0x07310638, 0x00c9f9a8,
2944 0xf55cf74e, 0xff3908c3, 0x0de20ac3, 0x0093f537,
2945 0xefcbf410, 0xffca0bf2, 0x110d0000,
2946 }, { // 6.4 MHz
2947 0xfffffffd, 0xfffb0003, 0x001c0037, 0x002fffe2,
2948 0xff66ff17, 0xff6a007e, 0x01cd0251, 0x0134fea5,
2949 0xfc17fb8b, 0xfe2002e0, 0x06e70713, 0x0255faf5,
2950 0xf599f658, 0xfdaf0799, 0x0dbf0b96, 0x01b8f5f5,
2951 0xefd5f3a3, 0xff5e0bca, 0x110d0000,
2952 }, { // 6.5 MHz
2953 0x0000fffd, 0xfff9fffb, 0x00120037, 0x00460010,
2954 0xff8eff0f, 0xff180000, 0x01750276, 0x01e8ff8d,
2955 0xfc99fb31, 0xfcfb0198, 0x065607ad, 0x03cefc64,
2956 0xf614f592, 0xfc2e0656, 0x0d770c52, 0x02daf6bd,
2957 0xefeaf33b, 0xfef10ba3, 0x110d0000,
2958 }, { // 6.6 MHz
2959 0x0000fffe, 0xfff7fff5, 0x0005002f, 0x0054003c,
2960 0xffc5ff22, 0xfedfff82, 0x00fc0267, 0x0276007e,
2961 0xfd51fb1c, 0xfbfe003e, 0x05830802, 0x0529fdec,
2962 0xf6c8f4fe, 0xfabd04ff, 0x0d0d0cf6, 0x03f8f78f,
2963 0xf00af2d7, 0xfe850b7b, 0x110d0000,
2964 }, { // 6.7 MHz
2965 0x0000ffff, 0xfff8fff0, 0xfff80020, 0x00560060,
2966 0x0002ff4e, 0xfec4ff10, 0x006d0225, 0x02d50166,
2967 0xfe35fb4e, 0xfb35fee1, 0x0477080e, 0x065bff82,
2968 0xf7b1f4a0, 0xf9610397, 0x0c810d80, 0x0510f869,
2969 0xf033f278, 0xfe1a0b52, 0x110d0000,
2970 }, { // 6.8 MHz
2971 0x00010000, 0xfffaffee, 0xffec000c, 0x004c0078,
2972 0x0040ff8e, 0xfecafeb6, 0xffd301b6, 0x02fc0235,
2973 0xff36fbc5, 0xfaaafd90, 0x033e07d2, 0x075b011b,
2974 0xf8cbf47a, 0xf81f0224, 0x0bd50def, 0x0621f94b,
2975 0xf067f21e, 0xfdae0b29, 0x110d0000,
2976 }, { // 6.9 MHz
2977 0x00010001, 0xfffdffef, 0xffe3fff6, 0x0037007f,
2978 0x0075ffdc, 0xfef2fe7c, 0xff3d0122, 0x02ea02dd,
2979 0x0044fc79, 0xfa65fc5d, 0x01e3074e, 0x082102ad,
2980 0xfa0ff48c, 0xf6fe00a9, 0x0b0a0e43, 0x0729fa33,
2981 0xf0a5f1c9, 0xfd430b00, 0x110d0000,
2982 }, { // 7.0 MHz
2983 0x00010002, 0x0001fff3, 0xffdeffe2, 0x001b0076,
2984 0x009c002d, 0xff35fe68, 0xfeba0076, 0x029f0352,
2985 0x014dfd60, 0xfa69fb53, 0x00740688, 0x08a7042d,
2986 0xfb75f4d6, 0xf600ff2d, 0x0a220e7a, 0x0827fb22,
2987 0xf0edf17a, 0xfcd80ad6, 0x110d0000,
2988 }, { // 7.1 MHz
2989 0x00000003, 0x0004fff9, 0xffe0ffd2, 0xfffb005e,
2990 0x00b0007a, 0xff8ffe7c, 0xfe53ffc1, 0x0221038c,
2991 0x0241fe6e, 0xfab6fa80, 0xff010587, 0x08e90590,
2992 0xfcf5f556, 0xf52bfdb3, 0x09210e95, 0x0919fc15,
2993 0xf13ff12f, 0xfc6e0aab, 0x110d0000,
2994 }, { // 7.2 MHz
2995 0x00000003, 0x00070000, 0xffe6ffc9, 0xffdb0039,
2996 0x00af00b8, 0xfff4feb6, 0xfe13ff10, 0x01790388,
2997 0x0311ff92, 0xfb48f9ed, 0xfd980453, 0x08e306cd,
2998 0xfe88f60a, 0xf482fc40, 0x08080e93, 0x09fdfd0c,
2999 0xf19af0ea, 0xfc050a81, 0x110d0000,
3000 }, { // 7.3 MHz
3001 0x00000002, 0x00080008, 0xfff0ffc9, 0xffc1000d,
3002 0x009800e2, 0x005bff10, 0xfe00fe74, 0x00b50345,
3003 0x03b000bc, 0xfc18f9a1, 0xfc4802f9, 0x089807dc,
3004 0x0022f6f0, 0xf407fada, 0x06da0e74, 0x0ad3fe06,
3005 0xf1fef0ab, 0xfb9c0a55, 0x110d0000,
3006 }, { // 7.4 MHz
3007 0x00000001, 0x0008000e, 0xfffdffd0, 0xffafffdf,
3008 0x006e00f2, 0x00b8ff82, 0xfe1bfdf8, 0xffe302c8,
3009 0x041301dc, 0xfd1af99e, 0xfb1e0183, 0x080908b5,
3010 0x01bcf801, 0xf3bdf985, 0x059a0e38, 0x0b99ff03,
3011 0xf26cf071, 0xfb330a2a, 0x110d0000,
3012 }, { // 7.5 MHz
3013 0xffff0000, 0x00070011, 0x000affdf, 0xffa9ffb5,
3014 0x003700e6, 0x01010000, 0xfe62fda8, 0xff140219,
3015 0x043502e1, 0xfe42f9e6, 0xfa270000, 0x073a0953,
3016 0x034cf939, 0xf3a4f845, 0x044c0de1, 0x0c4f0000,
3017 0xf2e2f03c, 0xfacc09fe, 0x110d0000,
3018 }, { // 7.6 MHz
3019 0xffffffff, 0x00040012, 0x0016fff3, 0xffafff95,
3020 0xfff900c0, 0x0130007e, 0xfecefd89, 0xfe560146,
3021 0x041303bc, 0xff81fa76, 0xf96cfe7d, 0x063209b1,
3022 0x04c9fa93, 0xf3bdf71e, 0x02f30d6e, 0x0cf200fd,
3023 0xf361f00e, 0xfa6509d1, 0x110d0000,
3024 }, { // 7.7 MHz
3025 0xfffffffe, 0x00010010, 0x001e0008, 0xffc1ff84,
3026 0xffbc0084, 0x013e00f0, 0xff56fd9f, 0xfdb8005c,
3027 0x03b00460, 0x00c7fb45, 0xf8f4fd07, 0x04fa09ce,
3028 0x062afc07, 0xf407f614, 0x01920ce0, 0x0d8301fa,
3029 0xf3e8efe5, 0xfa0009a4, 0x110d0000,
3030 }, { // 7.8 MHz
3031 0x0000fffd, 0xfffd000b, 0x0022001d, 0xffdbff82,
3032 0xff870039, 0x012a014a, 0xffedfde7, 0xfd47ff6b,
3033 0x031104c6, 0x0202fc4c, 0xf8c6fbad, 0x039909a7,
3034 0x0767fd8e, 0xf482f52b, 0x002d0c39, 0x0e0002f4,
3035 0xf477efc2, 0xf99b0977, 0x110d0000,
3036 }, { // 7.9 MHz
3037 0x0000fffd, 0xfffa0004, 0x0020002d, 0xfffbff91,
3038 0xff61ffe8, 0x00f70184, 0x0086fe5c, 0xfd0bfe85,
3039 0x024104e5, 0x0323fd7d, 0xf8e2fa79, 0x021d093f,
3040 0x0879ff22, 0xf52bf465, 0xfec70b79, 0x0e6803eb,
3041 0xf50defa5, 0xf937094a, 0x110d0000,
3042 }, { // 8.0 MHz
3043 0x0000fffe, 0xfff8fffd, 0x00190036, 0x001bffaf,
3044 0xff4fff99, 0x00aa0198, 0x0112fef3, 0xfd09fdb9,
3045 0x014d04be, 0x041bfecc, 0xf947f978, 0x00900897,
3046 0x095a00b9, 0xf600f3c5, 0xfd650aa3, 0x0ebc04de,
3047 0xf5aaef8e, 0xf8d5091c, 0x110d0000,
3048 }, { // 8.1 MHz
3049 0x0000ffff, 0xfff7fff6, 0x000e0038, 0x0037ffd7,
3050 0xff52ff56, 0x004b0184, 0x0186ffa1, 0xfd40fd16,
3051 0x00440452, 0x04de0029, 0xf9f2f8b2, 0xfefe07b5,
3052 0x0a05024d, 0xf6fef34d, 0xfc0a09b8, 0x0efa05cd,
3053 0xf64eef7d, 0xf87308ed, 0x110d0000,
3054 }, { // 8.2 MHz
3055 0x00010000, 0xfff8fff0, 0x00000031, 0x004c0005,
3056 0xff6aff27, 0xffe4014a, 0x01d70057, 0xfdacfca6,
3057 0xff3603a7, 0x05610184, 0xfadbf82e, 0xfd74069f,
3058 0x0a7503d6, 0xf81ff2ff, 0xfab808b9, 0x0f2306b5,
3059 0xf6f9ef72, 0xf81308bf, 0x110d0000,
3060 }, { // 8.3 MHz
3061 0x00010001, 0xfffbffee, 0xfff30022, 0x00560032,
3062 0xff95ff10, 0xff8000f0, 0x01fe0106, 0xfe46fc71,
3063 0xfe3502c7, 0x059e02ce, 0xfbf9f7f2, 0xfbff055b,
3064 0x0aa9054c, 0xf961f2db, 0xf97507aa, 0x0f350797,
3065 0xf7a9ef6d, 0xf7b40890, 0x110d0000,
3066 }, { // 8.4 MHz
3067 0x00010002, 0xfffeffee, 0xffe8000f, 0x00540058,
3068 0xffcdff14, 0xff29007e, 0x01f6019e, 0xff01fc7c,
3069 0xfd5101bf, 0x059203f6, 0xfd41f7fe, 0xfaa903f3,
3070 0x0a9e06a9, 0xfabdf2e2, 0xf842068b, 0x0f320871,
3071 0xf85eef6e, 0xf7560860, 0x110d0000,
3072 }, { // 8.5 MHz
3073 0x00000003, 0x0002fff2, 0xffe1fff9, 0x00460073,
3074 0x000bff34, 0xfee90000, 0x01c10215, 0xffd0fcc5,
3075 0xfc99009d, 0x053d04f1, 0xfea5f853, 0xf97d0270,
3076 0x0a5607e4, 0xfc2ef314, 0xf723055f, 0x0f180943,
3077 0xf919ef75, 0xf6fa0830, 0x110d0000,
3078 }, { // 8.6 MHz
3079 0x00000003, 0x0005fff8, 0xffdeffe4, 0x002f007f,
3080 0x0048ff6b, 0xfec7ff82, 0x0163025f, 0x00a2fd47,
3081 0xfc17ff73, 0x04a405b2, 0x0017f8ed, 0xf88500dc,
3082 0x09d208f9, 0xfdaff370, 0xf61c0429, 0x0ee80a0b,
3083 0xf9d8ef82, 0xf6a00800, 0x110d0000,
3084 }, { // 8.7 MHz
3085 0x00000003, 0x0007ffff, 0xffe1ffd4, 0x0010007a,
3086 0x007cffb2, 0xfec6ff10, 0x00e60277, 0x0168fdf9,
3087 0xfbd3fe50, 0x03ce0631, 0x0188f9c8, 0xf7c7ff43,
3088 0x091509e3, 0xff39f3f6, 0xf52d02ea, 0x0ea30ac9,
3089 0xfa9bef95, 0xf64607d0, 0x110d0000,
3090 }, { // 8.8 MHz
3091 0x00000002, 0x00090007, 0xffe9ffca, 0xfff00065,
3092 0x00a10003, 0xfee6feb6, 0x0053025b, 0x0213fed0,
3093 0xfbd3fd46, 0x02c70668, 0x02eafadb, 0xf74bfdae,
3094 0x08230a9c, 0x00c7f4a3, 0xf45b01a6, 0x0e480b7c,
3095 0xfb61efae, 0xf5ef079f, 0x110d0000,
3096 }, { // 8.9 MHz
3097 0xffff0000, 0x0008000d, 0xfff5ffc8, 0xffd10043,
3098 0x00b20053, 0xff24fe7c, 0xffb9020c, 0x0295ffbb,
3099 0xfc17fc64, 0x019b0654, 0x042dfc1c, 0xf714fc2a,
3100 0x07020b21, 0x0251f575, 0xf3a7005e, 0x0dd80c24,
3101 0xfc2aefcd, 0xf599076e, 0x110d0000,
3102 }, { // 9.0 MHz
3103 0xffffffff, 0x00060011, 0x0002ffcf, 0xffba0018,
3104 0x00ad009a, 0xff79fe68, 0xff260192, 0x02e500ab,
3105 0xfc99fbb6, 0x005b05f7, 0x0545fd81, 0xf723fabf,
3106 0x05b80b70, 0x03d2f669, 0xf313ff15, 0x0d550cbf,
3107 0xfcf6eff2, 0xf544073d, 0x110d0000,
3108 }, { // 9.1 MHz
3109 0xfffffffe, 0x00030012, 0x000fffdd, 0xffacffea,
3110 0x009300cf, 0xffdcfe7c, 0xfea600f7, 0x02fd0190,
3111 0xfd51fb46, 0xff150554, 0x0627fefd, 0xf778f978,
3112 0x044d0b87, 0x0543f77d, 0xf2a0fdcf, 0x0cbe0d4e,
3113 0xfdc4f01d, 0xf4f2070b, 0x110d0000,
3114 }, { // 9.2 MHz
3115 0x0000fffd, 0x00000010, 0x001afff0, 0xffaaffbf,
3116 0x006700ed, 0x0043feb6, 0xfe460047, 0x02db0258,
3117 0xfe35fb1b, 0xfddc0473, 0x06c90082, 0xf811f85e,
3118 0x02c90b66, 0x069ff8ad, 0xf250fc8d, 0x0c140dcf,
3119 0xfe93f04d, 0xf4a106d9, 0x110d0000,
3120 }, { // 9.3 MHz
3121 0x0000fffd, 0xfffc000c, 0x00200006, 0xffb4ff9c,
3122 0x002f00ef, 0x00a4ff10, 0xfe0dff92, 0x028102f7,
3123 0xff36fb37, 0xfcbf035e, 0x07260202, 0xf8e8f778,
3124 0x01340b0d, 0x07e1f9f4, 0xf223fb51, 0x0b590e42,
3125 0xff64f083, 0xf45206a7, 0x110d0000,
3126 }, { // 9.4 MHz
3127 0x0000fffd, 0xfff90005, 0x0022001a, 0xffc9ff86,
3128 0xfff000d7, 0x00f2ff82, 0xfe01fee5, 0x01f60362,
3129 0x0044fb99, 0xfbcc0222, 0x07380370, 0xf9f7f6cc,
3130 0xff990a7e, 0x0902fb50, 0xf21afa1f, 0x0a8d0ea6,
3131 0x0034f0bf, 0xf4050675, 0x110d0000,
3132 }, { // 9.5 MHz
3133 0x0000fffe, 0xfff8fffe, 0x001e002b, 0xffe5ff81,
3134 0xffb400a5, 0x01280000, 0xfe24fe50, 0x01460390,
3135 0x014dfc3a, 0xfb1000ce, 0x070104bf, 0xfb37f65f,
3136 0xfe0009bc, 0x0a00fcbb, 0xf235f8f8, 0x09b20efc,
3137 0x0105f101, 0xf3ba0642, 0x110d0000,
3138 }, { // 9.6 MHz
3139 0x0001ffff, 0xfff8fff7, 0x00150036, 0x0005ff8c,
3140 0xff810061, 0x013d007e, 0xfe71fddf, 0x007c0380,
3141 0x0241fd13, 0xfa94ff70, 0x068005e2, 0xfc9bf633,
3142 0xfc7308ca, 0x0ad5fe30, 0xf274f7e0, 0x08c90f43,
3143 0x01d4f147, 0xf371060f, 0x110d0000,
3144 }, { // 9.7 MHz
3145 0x00010001, 0xfff9fff1, 0x00090038, 0x0025ffa7,
3146 0xff5e0012, 0x013200f0, 0xfee3fd9b, 0xffaa0331,
3147 0x0311fe15, 0xfa60fe18, 0x05bd06d1, 0xfe1bf64a,
3148 0xfafa07ae, 0x0b7effab, 0xf2d5f6d7, 0x07d30f7a,
3149 0x02a3f194, 0xf32905dc, 0x110d0000,
3150 }, { // 9.8 MHz
3151 0x00010002, 0xfffcffee, 0xfffb0032, 0x003fffcd,
3152 0xff4effc1, 0x0106014a, 0xff6efd8a, 0xfedd02aa,
3153 0x03b0ff34, 0xfa74fcd7, 0x04bf0781, 0xffaaf6a3,
3154 0xf99e066b, 0x0bf90128, 0xf359f5e1, 0x06d20fa2,
3155 0x0370f1e5, 0xf2e405a8, 0x110d0000,
3156 }, { // 9.9 MHz
3157 0x00000003, 0xffffffee, 0xffef0024, 0x0051fffa,
3158 0xff54ff77, 0x00be0184, 0x0006fdad, 0xfe2701f3,
3159 0x0413005e, 0xfad1fbba, 0x039007ee, 0x013bf73d,
3160 0xf868050a, 0x0c4302a1, 0xf3fdf4fe, 0x05c70fba,
3161 0x043bf23c, 0xf2a10575, 0x110d0000,
3162 }, { // 10.0 MHz
3163 0x00000003, 0x0003fff1, 0xffe50011, 0x00570027,
3164 0xff70ff3c, 0x00620198, 0x009efe01, 0xfd95011a,
3165 0x04350183, 0xfb71fad0, 0x023c0812, 0x02c3f811,
3166 0xf75e0390, 0x0c5c0411, 0xf4c1f432, 0x04b30fc1,
3167 0x0503f297, 0xf2610541, 0x110d0000,
3168 }, { // 10.1 MHz
3169 0x00000003, 0x0006fff7, 0xffdffffc, 0x00510050,
3170 0xff9dff18, 0xfffc0184, 0x0128fe80, 0xfd32002e,
3171 0x04130292, 0xfc4dfa21, 0x00d107ee, 0x0435f91c,
3172 0xf6850205, 0x0c430573, 0xf5a1f37d, 0x03990fba,
3173 0x05c7f2f8, 0xf222050d, 0x110d0000,
3174 }, { // 10.2 MHz
3175 0x00000002, 0x0008fffe, 0xffdfffe7, 0x003f006e,
3176 0xffd6ff0f, 0xff96014a, 0x0197ff1f, 0xfd05ff3e,
3177 0x03b0037c, 0xfd59f9b7, 0xff5d0781, 0x0585fa56,
3178 0xf5e4006f, 0x0bf906c4, 0xf69df2e0, 0x02790fa2,
3179 0x0688f35d, 0xf1e604d8, 0x110d0000,
3180 }, { // 10.3 MHz
3181 0xffff0001, 0x00090005, 0xffe4ffd6, 0x0025007e,
3182 0x0014ff20, 0xff3c00f0, 0x01e1ffd0, 0xfd12fe5c,
3183 0x03110433, 0xfe88f996, 0xfdf106d1, 0x06aafbb7,
3184 0xf57efed8, 0x0b7e07ff, 0xf7b0f25e, 0x01560f7a,
3185 0x0745f3c7, 0xf1ac04a4, 0x110d0000,
3186 }, { // 10.4 MHz
3187 0xffffffff, 0x0008000c, 0xffedffcb, 0x0005007d,
3188 0x0050ff4c, 0xfef6007e, 0x01ff0086, 0xfd58fd97,
3189 0x024104ad, 0xffcaf9c0, 0xfc9905e2, 0x079afd35,
3190 0xf555fd46, 0x0ad50920, 0xf8d9f1f6, 0x00310f43,
3191 0x07fdf435, 0xf174046f, 0x110d0000,
3192 }, { // 10.5 MHz
3193 0xfffffffe, 0x00050011, 0xfffaffc8, 0xffe5006b,
3194 0x0082ff8c, 0xfecc0000, 0x01f00130, 0xfdd2fcfc,
3195 0x014d04e3, 0x010efa32, 0xfb6404bf, 0x084efec5,
3196 0xf569fbc2, 0x0a000a23, 0xfa15f1ab, 0xff0b0efc,
3197 0x08b0f4a7, 0xf13f043a, 0x110d0000,
3198 }, { // 10.6 MHz
3199 0x0000fffd, 0x00020012, 0x0007ffcd, 0xffc9004c,
3200 0x00a4ffd9, 0xfec3ff82, 0x01b401c1, 0xfe76fc97,
3201 0x004404d2, 0x0245fae8, 0xfa5f0370, 0x08c1005f,
3202 0xf5bcfa52, 0x09020b04, 0xfb60f17b, 0xfde70ea6,
3203 0x095df51e, 0xf10c0405, 0x110d0000,
3204 }, { // 10.7 MHz
3205 0x0000fffd, 0xffff0011, 0x0014ffdb, 0xffb40023,
3206 0x00b2002a, 0xfedbff10, 0x0150022d, 0xff38fc6f,
3207 0xff36047b, 0x035efbda, 0xf9940202, 0x08ee01f5,
3208 0xf649f8fe, 0x07e10bc2, 0xfcb6f169, 0xfcc60e42,
3209 0x0a04f599, 0xf0db03d0, 0x110d0000,
3210 }, { // 10.8 MHz
3211 0x0000fffd, 0xfffb000d, 0x001dffed, 0xffaafff5,
3212 0x00aa0077, 0xff13feb6, 0x00ce026b, 0x000afc85,
3213 0xfe3503e3, 0x044cfcfb, 0xf90c0082, 0x08d5037f,
3214 0xf710f7cc, 0x069f0c59, 0xfe16f173, 0xfbaa0dcf,
3215 0x0aa5f617, 0xf0ad039b, 0x110d0000,
3216 }, { // 10.9 MHz
3217 0x0000fffe, 0xfff90006, 0x00210003, 0xffacffc8,
3218 0x008e00b6, 0xff63fe7c, 0x003a0275, 0x00dafcda,
3219 0xfd510313, 0x0501fe40, 0xf8cbfefd, 0x087604f0,
3220 0xf80af6c2, 0x05430cc8, 0xff7af19a, 0xfa940d4e,
3221 0x0b3ff699, 0xf0810365, 0x110d0000,
3222 }, { // 11.0 MHz
3223 0x0001ffff, 0xfff8ffff, 0x00210018, 0xffbaffa3,
3224 0x006000e1, 0xffc4fe68, 0xffa0024b, 0x019afd66,
3225 0xfc990216, 0x0575ff99, 0xf8d4fd81, 0x07d40640,
3226 0xf932f5e6, 0x03d20d0d, 0x00dff1de, 0xf9860cbf,
3227 0x0bd1f71e, 0xf058032f, 0x110d0000,
3228 }, { // 11.1 MHz
3229 0x00010000, 0xfff8fff8, 0x001b0029, 0xffd1ff8a,
3230 0x002600f2, 0x002cfe7c, 0xff0f01f0, 0x023bfe20,
3231 0xfc1700fa, 0x05a200f7, 0xf927fc1c, 0x06f40765,
3232 0xfa82f53b, 0x02510d27, 0x0243f23d, 0xf8810c24,
3233 0x0c5cf7a7, 0xf03102fa, 0x110d0000,
3234 }, { // 11.2 MHz
3235 0x00010002, 0xfffafff2, 0x00110035, 0xfff0ff81,
3236 0xffe700e7, 0x008ffeb6, 0xfe94016d, 0x02b0fefb,
3237 0xfbd3ffd1, 0x05850249, 0xf9c1fadb, 0x05de0858,
3238 0xfbf2f4c4, 0x00c70d17, 0x03a0f2b8, 0xf7870b7c,
3239 0x0cdff833, 0xf00d02c4, 0x110d0000,
3240 }, { // 11.3 MHz
3241 0x00000003, 0xfffdffee, 0x00040038, 0x0010ff88,
3242 0xffac00c2, 0x00e2ff10, 0xfe3900cb, 0x02f1ffe9,
3243 0xfbd3feaa, 0x05210381, 0xfa9cf9c8, 0x04990912,
3244 0xfd7af484, 0xff390cdb, 0x04f4f34d, 0xf69a0ac9,
3245 0x0d5af8c1, 0xefec028e, 0x110d0000,
3246 }, { // 11.4 MHz
3247 0x00000003, 0x0000ffee, 0xfff60033, 0x002fff9f,
3248 0xff7b0087, 0x011eff82, 0xfe080018, 0x02f900d8,
3249 0xfc17fd96, 0x04790490, 0xfbadf8ed, 0x032f098e,
3250 0xff10f47d, 0xfdaf0c75, 0x063cf3fc, 0xf5ba0a0b,
3251 0x0dccf952, 0xefcd0258, 0x110d0000,
3252 }, { // 11.5 MHz
3253 0x00000003, 0x0004fff1, 0xffea0026, 0x0046ffc3,
3254 0xff5a003c, 0x013b0000, 0xfe04ff63, 0x02c801b8,
3255 0xfc99fca6, 0x0397056a, 0xfcecf853, 0x01ad09c9,
3256 0x00acf4ad, 0xfc2e0be7, 0x0773f4c2, 0xf4e90943,
3257 0x0e35f9e6, 0xefb10221, 0x110d0000,
3258 }, { // 11.6 MHz
3259 0x00000002, 0x0007fff6, 0xffe20014, 0x0054ffee,
3260 0xff4effeb, 0x0137007e, 0xfe2efebb, 0x0260027a,
3261 0xfd51fbe6, 0x02870605, 0xfe4af7fe, 0x001d09c1,
3262 0x0243f515, 0xfabd0b32, 0x0897f59e, 0xf4280871,
3263 0x0e95fa7c, 0xef9701eb, 0x110d0000,
3264 }, { // 11.7 MHz
3265 0xffff0001, 0x0008fffd, 0xffdeffff, 0x0056001d,
3266 0xff57ff9c, 0x011300f0, 0xfe82fe2e, 0x01ca0310,
3267 0xfe35fb62, 0x0155065a, 0xffbaf7f2, 0xfe8c0977,
3268 0x03cef5b2, 0xf9610a58, 0x09a5f68f, 0xf3790797,
3269 0x0eebfb14, 0xef8001b5, 0x110d0000,
3270 }, { // 11.8 MHz
3271 0xffff0000, 0x00080004, 0xffe0ffe9, 0x004c0047,
3272 0xff75ff58, 0x00d1014a, 0xfef9fdc8, 0x0111036f,
3273 0xff36fb21, 0x00120665, 0x012df82e, 0xfd0708ec,
3274 0x0542f682, 0xf81f095c, 0x0a9af792, 0xf2db06b5,
3275 0x0f38fbad, 0xef6c017e, 0x110d0000,
3276 }, { // 11.9 MHz
3277 0xffffffff, 0x0007000b, 0xffe7ffd8, 0x00370068,
3278 0xffa4ff28, 0x00790184, 0xff87fd91, 0x00430392,
3279 0x0044fb26, 0xfece0626, 0x0294f8b2, 0xfb990825,
3280 0x0698f77f, 0xf6fe0842, 0x0b73f8a7, 0xf25105cd,
3281 0x0f7bfc48, 0xef5a0148, 0x110d0000,
3282 }, { // 12.0 MHz
3283 0x0000fffe, 0x00050010, 0xfff2ffcc, 0x001b007b,
3284 0xffdfff10, 0x00140198, 0x0020fd8e, 0xff710375,
3285 0x014dfb73, 0xfd9a059f, 0x03e0f978, 0xfa4e0726,
3286 0x07c8f8a7, 0xf600070c, 0x0c2ff9c9, 0xf1db04de,
3287 0x0fb4fce5, 0xef4b0111, 0x110d0000,
3288 }, { // 12.1 MHz
3289 0x0000fffd, 0x00010012, 0xffffffc8, 0xfffb007e,
3290 0x001dff14, 0xffad0184, 0x00b7fdbe, 0xfea9031b,
3291 0x0241fc01, 0xfc8504d6, 0x0504fa79, 0xf93005f6,
3292 0x08caf9f2, 0xf52b05c0, 0x0ccbfaf9, 0xf17903eb,
3293 0x0fe3fd83, 0xef3f00db, 0x110d0000,
3294 }, { // 12.2 MHz
3295 0x0000fffd, 0xfffe0011, 0x000cffcc, 0xffdb0071,
3296 0x0058ff32, 0xff4f014a, 0x013cfe1f, 0xfdfb028a,
3297 0x0311fcc9, 0xfb9d03d6, 0x05f4fbad, 0xf848049d,
3298 0x0999fb5b, 0xf4820461, 0x0d46fc32, 0xf12d02f4,
3299 0x1007fe21, 0xef3600a4, 0x110d0000,
3300 }, { // 12.3 MHz
3301 0x0000fffe, 0xfffa000e, 0x0017ffd9, 0xffc10055,
3302 0x0088ff68, 0xff0400f0, 0x01a6fea7, 0xfd7501cc,
3303 0x03b0fdc0, 0xfaef02a8, 0x06a7fd07, 0xf79d0326,
3304 0x0a31fcda, 0xf40702f3, 0x0d9ffd72, 0xf0f601fa,
3305 0x1021fec0, 0xef2f006d, 0x110d0000,
3306 }, { // 12.4 MHz
3307 0x0001ffff, 0xfff80007, 0x001fffeb, 0xffaf002d,
3308 0x00a8ffb0, 0xfed3007e, 0x01e9ff4c, 0xfd2000ee,
3309 0x0413fed8, 0xfa82015c, 0x0715fe7d, 0xf7340198,
3310 0x0a8dfe69, 0xf3bd017c, 0x0dd5feb8, 0xf0d500fd,
3311 0x1031ff60, 0xef2b0037, 0x110d0000,
3312 }, { // 12.5 MHz
3313 0x00010000, 0xfff70000, 0x00220000, 0xffa90000,
3314 0x00b30000, 0xfec20000, 0x02000000, 0xfd030000,
3315 0x04350000, 0xfa5e0000, 0x073b0000, 0xf7110000,
3316 0x0aac0000, 0xf3a40000, 0x0de70000, 0xf0c90000,
3317 0x10360000, 0xef290000, 0x110d0000,
3318 }, { // 12.6 MHz
3319 0x00010001, 0xfff8fff9, 0x001f0015, 0xffafffd3,
3320 0x00a80050, 0xfed3ff82, 0x01e900b4, 0xfd20ff12,
3321 0x04130128, 0xfa82fea4, 0x07150183, 0xf734fe68,
3322 0x0a8d0197, 0xf3bdfe84, 0x0dd50148, 0xf0d5ff03,
3323 0x103100a0, 0xef2bffc9, 0x110d0000,
3324 }, { // 12.7 MHz
3325 0x00000002, 0xfffafff2, 0x00170027, 0xffc1ffab,
3326 0x00880098, 0xff04ff10, 0x01a60159, 0xfd75fe34,
3327 0x03b00240, 0xfaeffd58, 0x06a702f9, 0xf79dfcda,
3328 0x0a310326, 0xf407fd0d, 0x0d9f028e, 0xf0f6fe06,
3329 0x10210140, 0xef2fff93, 0x110d0000,
3330 }, { // 12.8 MHz
3331 0x00000003, 0xfffeffef, 0x000c0034, 0xffdbff8f,
3332 0x005800ce, 0xff4ffeb6, 0x013c01e1, 0xfdfbfd76,
3333 0x03110337, 0xfb9dfc2a, 0x05f40453, 0xf848fb63,
3334 0x099904a5, 0xf482fb9f, 0x0d4603ce, 0xf12dfd0c,
3335 0x100701df, 0xef36ff5c, 0x110d0000,
3336 }, { // 12.9 MHz
3337 0x00000003, 0x0001ffee, 0xffff0038, 0xfffbff82,
3338 0x001d00ec, 0xffadfe7c, 0x00b70242, 0xfea9fce5,
3339 0x024103ff, 0xfc85fb2a, 0x05040587, 0xf930fa0a,
3340 0x08ca060e, 0xf52bfa40, 0x0ccb0507, 0xf179fc15,
3341 0x0fe3027d, 0xef3fff25, 0x110d0000,
3342 }, { // 13.0 MHz
3343 0x00000002, 0x0005fff0, 0xfff20034, 0x001bff85,
3344 0xffdf00f0, 0x0014fe68, 0x00200272, 0xff71fc8b,
3345 0x014d048d, 0xfd9afa61, 0x03e00688, 0xfa4ef8da,
3346 0x07c80759, 0xf600f8f4, 0x0c2f0637, 0xf1dbfb22,
3347 0x0fb4031b, 0xef4bfeef, 0x110d0000,
3348 }, { // 13.1 MHz
3349 0xffff0001, 0x0007fff5, 0xffe70028, 0x0037ff98,
3350 0xffa400d8, 0x0079fe7c, 0xff87026f, 0x0043fc6e,
3351 0x004404da, 0xfecef9da, 0x0294074e, 0xfb99f7db,
3352 0x06980881, 0xf6fef7be, 0x0b730759, 0xf251fa33,
3353 0x0f7b03b8, 0xef5afeb8, 0x110d0000,
3354 }, { // 13.2 MHz
3355 0xffff0000, 0x0008fffc, 0xffe00017, 0x004cffb9,
3356 0xff7500a8, 0x00d1feb6, 0xfef90238, 0x0111fc91,
3357 0xff3604df, 0x0012f99b, 0x012d07d2, 0xfd07f714,
3358 0x0542097e, 0xf81ff6a4, 0x0a9a086e, 0xf2dbf94b,
3359 0x0f380453, 0xef6cfe82, 0x110d0000,
3360 }, { // 13.3 MHz
3361 0xffffffff, 0x00080003, 0xffde0001, 0x0056ffe3,
3362 0xff570064, 0x0113ff10, 0xfe8201d2, 0x01cafcf0,
3363 0xfe35049e, 0x0155f9a6, 0xffba080e, 0xfe8cf689,
3364 0x03ce0a4e, 0xf961f5a8, 0x09a50971, 0xf379f869,
3365 0x0eeb04ec, 0xef80fe4b, 0x110d0000,
3366 }, { // 13.4 MHz
3367 0x0000fffe, 0x0007000a, 0xffe2ffec, 0x00540012,
3368 0xff4e0015, 0x0137ff82, 0xfe2e0145, 0x0260fd86,
3369 0xfd51041a, 0x0287f9fb, 0xfe4a0802, 0x001df63f,
3370 0x02430aeb, 0xfabdf4ce, 0x08970a62, 0xf428f78f,
3371 0x0e950584, 0xef97fe15, 0x110d0000,
3372 }, { // 13.5 MHz
3373 0x0000fffd, 0x0004000f, 0xffeaffda, 0x0046003d,
3374 0xff5affc4, 0x013b0000, 0xfe04009d, 0x02c8fe48,
3375 0xfc99035a, 0x0397fa96, 0xfcec07ad, 0x01adf637,
3376 0x00ac0b53, 0xfc2ef419, 0x07730b3e, 0xf4e9f6bd,
3377 0x0e35061a, 0xefb1fddf, 0x110d0000,
3378 }, { // 13.6 MHz
3379 0x0000fffd, 0x00000012, 0xfff6ffcd, 0x002f0061,
3380 0xff7bff79, 0x011e007e, 0xfe08ffe8, 0x02f9ff28,
3381 0xfc17026a, 0x0479fb70, 0xfbad0713, 0x032ff672,
3382 0xff100b83, 0xfdaff38b, 0x063c0c04, 0xf5baf5f5,
3383 0x0dcc06ae, 0xefcdfda8, 0x110d0000,
3384 }, { // 13.7 MHz
3385 0x0000fffd, 0xfffd0012, 0x0004ffc8, 0x00100078,
3386 0xffacff3e, 0x00e200f0, 0xfe39ff35, 0x02f10017,
3387 0xfbd30156, 0x0521fc7f, 0xfa9c0638, 0x0499f6ee,
3388 0xfd7a0b7c, 0xff39f325, 0x04f40cb3, 0xf69af537,
3389 0x0d5a073f, 0xefecfd72, 0x110d0000,
3390 }, { // 13.8 MHz
3391 0x0001fffe, 0xfffa000e, 0x0011ffcb, 0xfff0007f,
3392 0xffe7ff19, 0x008f014a, 0xfe94fe93, 0x02b00105,
3393 0xfbd3002f, 0x0585fdb7, 0xf9c10525, 0x05def7a8,
3394 0xfbf20b3c, 0x00c7f2e9, 0x03a00d48, 0xf787f484,
3395 0x0cdf07cd, 0xf00dfd3c, 0x110d0000,
3396 }, { // 13.9 MHz
3397 0x00010000, 0xfff80008, 0x001bffd7, 0xffd10076,
3398 0x0026ff0e, 0x002c0184, 0xff0ffe10, 0x023b01e0,
3399 0xfc17ff06, 0x05a2ff09, 0xf92703e4, 0x06f4f89b,
3400 0xfa820ac5, 0x0251f2d9, 0x02430dc3, 0xf881f3dc,
3401 0x0c5c0859, 0xf031fd06, 0x110d0000,
3402 }, { // 14.0 MHz
3403 0x00010001, 0xfff80001, 0x0021ffe8, 0xffba005d,
3404 0x0060ff1f, 0xffc40198, 0xffa0fdb5, 0x019a029a,
3405 0xfc99fdea, 0x05750067, 0xf8d4027f, 0x07d4f9c0,
3406 0xf9320a1a, 0x03d2f2f3, 0x00df0e22, 0xf986f341,
3407 0x0bd108e2, 0xf058fcd1, 0x110d0000,
3408 }, { // 14.1 MHz
3409 0x00000002, 0xfff9fffa, 0x0021fffd, 0xffac0038,
3410 0x008eff4a, 0xff630184, 0x003afd8b, 0x00da0326,
3411 0xfd51fced, 0x050101c0, 0xf8cb0103, 0x0876fb10,
3412 0xf80a093e, 0x0543f338, 0xff7a0e66, 0xfa94f2b2,
3413 0x0b3f0967, 0xf081fc9b, 0x110d0000,
3414 }, { // 14.2 MHz
3415 0x00000003, 0xfffbfff3, 0x001d0013, 0xffaa000b,
3416 0x00aaff89, 0xff13014a, 0x00cefd95, 0x000a037b,
3417 0xfe35fc1d, 0x044c0305, 0xf90cff7e, 0x08d5fc81,
3418 0xf7100834, 0x069ff3a7, 0xfe160e8d, 0xfbaaf231,
3419 0x0aa509e9, 0xf0adfc65, 0x110d0000,
3420 }, { // 14.3 MHz
3421 0x00000003, 0xffffffef, 0x00140025, 0xffb4ffdd,
3422 0x00b2ffd6, 0xfedb00f0, 0x0150fdd3, 0xff380391,
3423 0xff36fb85, 0x035e0426, 0xf994fdfe, 0x08eefe0b,
3424 0xf6490702, 0x07e1f43e, 0xfcb60e97, 0xfcc6f1be,
3425 0x0a040a67, 0xf0dbfc30, 0x110d0000,
3426 }, { // 14.4 MHz
3427 0x00000003, 0x0002ffee, 0x00070033, 0xffc9ffb4,
3428 0x00a40027, 0xfec3007e, 0x01b4fe3f, 0xfe760369,
3429 0x0044fb2e, 0x02450518, 0xfa5ffc90, 0x08c1ffa1,
3430 0xf5bc05ae, 0x0902f4fc, 0xfb600e85, 0xfde7f15a,
3431 0x095d0ae2, 0xf10cfbfb, 0x110d0000,
3432 }, { // 14.5 MHz
3433 0xffff0002, 0x0005ffef, 0xfffa0038, 0xffe5ff95,
3434 0x00820074, 0xfecc0000, 0x01f0fed0, 0xfdd20304,
3435 0x014dfb1d, 0x010e05ce, 0xfb64fb41, 0x084e013b,
3436 0xf569043e, 0x0a00f5dd, 0xfa150e55, 0xff0bf104,
3437 0x08b00b59, 0xf13ffbc6, 0x110d0000,
3438 }, { // 14.6 MHz
3439 0xffff0001, 0x0008fff4, 0xffed0035, 0x0005ff83,
3440 0x005000b4, 0xfef6ff82, 0x01ffff7a, 0xfd580269,
3441 0x0241fb53, 0xffca0640, 0xfc99fa1e, 0x079a02cb,
3442 0xf55502ba, 0x0ad5f6e0, 0xf8d90e0a, 0x0031f0bd,
3443 0x07fd0bcb, 0xf174fb91, 0x110d0000,
3444 }, { // 14.7 MHz
3445 0xffffffff, 0x0009fffb, 0xffe4002a, 0x0025ff82,
3446 0x001400e0, 0xff3cff10, 0x01e10030, 0xfd1201a4,
3447 0x0311fbcd, 0xfe88066a, 0xfdf1f92f, 0x06aa0449,
3448 0xf57e0128, 0x0b7ef801, 0xf7b00da2, 0x0156f086,
3449 0x07450c39, 0xf1acfb5c, 0x110d0000,
3450 }, { // 14.8 MHz
3451 0x0000fffe, 0x00080002, 0xffdf0019, 0x003fff92,
3452 0xffd600f1, 0xff96feb6, 0x019700e1, 0xfd0500c2,
3453 0x03b0fc84, 0xfd590649, 0xff5df87f, 0x058505aa,
3454 0xf5e4ff91, 0x0bf9f93c, 0xf69d0d20, 0x0279f05e,
3455 0x06880ca3, 0xf1e6fb28, 0x110d0000,
3456 }, { // 14.9 MHz
3457 0x0000fffd, 0x00060009, 0xffdf0004, 0x0051ffb0,
3458 0xff9d00e8, 0xfffcfe7c, 0x01280180, 0xfd32ffd2,
3459 0x0413fd6e, 0xfc4d05df, 0x00d1f812, 0x043506e4,
3460 0xf685fdfb, 0x0c43fa8d, 0xf5a10c83, 0x0399f046,
3461 0x05c70d08, 0xf222faf3, 0x110d0000,
3462 }, { // 15.0 MHz
3463 0x0000fffd, 0x0003000f, 0xffe5ffef, 0x0057ffd9,
3464 0xff7000c4, 0x0062fe68, 0x009e01ff, 0xfd95fee6,
3465 0x0435fe7d, 0xfb710530, 0x023cf7ee, 0x02c307ef,
3466 0xf75efc70, 0x0c5cfbef, 0xf4c10bce, 0x04b3f03f,
3467 0x05030d69, 0xf261fabf, 0x110d0000,
3468 }, { // 15.1 MHz
3469 0x0000fffd, 0xffff0012, 0xffefffdc, 0x00510006,
3470 0xff540089, 0x00befe7c, 0x00060253, 0xfe27fe0d,
3471 0x0413ffa2, 0xfad10446, 0x0390f812, 0x013b08c3,
3472 0xf868faf6, 0x0c43fd5f, 0xf3fd0b02, 0x05c7f046,
3473 0x043b0dc4, 0xf2a1fa8b, 0x110d0000,
3474 }, { // 15.2 MHz
3475 0x0001fffe, 0xfffc0012, 0xfffbffce, 0x003f0033,
3476 0xff4e003f, 0x0106feb6, 0xff6e0276, 0xfeddfd56,
3477 0x03b000cc, 0xfa740329, 0x04bff87f, 0xffaa095d,
3478 0xf99ef995, 0x0bf9fed8, 0xf3590a1f, 0x06d2f05e,
3479 0x03700e1b, 0xf2e4fa58, 0x110d0000,
3480 }, { // 15.3 MHz
3481 0x0001ffff, 0xfff9000f, 0x0009ffc8, 0x00250059,
3482 0xff5effee, 0x0132ff10, 0xfee30265, 0xffaafccf,
3483 0x031101eb, 0xfa6001e8, 0x05bdf92f, 0xfe1b09b6,
3484 0xfafaf852, 0x0b7e0055, 0xf2d50929, 0x07d3f086,
3485 0x02a30e6c, 0xf329fa24, 0x110d0000,
3486 }, { // 15.4 MHz
3487 0x00010001, 0xfff80009, 0x0015ffca, 0x00050074,
3488 0xff81ff9f, 0x013dff82, 0xfe710221, 0x007cfc80,
3489 0x024102ed, 0xfa940090, 0x0680fa1e, 0xfc9b09cd,
3490 0xfc73f736, 0x0ad501d0, 0xf2740820, 0x08c9f0bd,
3491 0x01d40eb9, 0xf371f9f1, 0x110d0000,
3492 }, { // 15.5 MHz
3493 0x00000002, 0xfff80002, 0x001effd5, 0xffe5007f,
3494 0xffb4ff5b, 0x01280000, 0xfe2401b0, 0x0146fc70,
3495 0x014d03c6, 0xfb10ff32, 0x0701fb41, 0xfb3709a1,
3496 0xfe00f644, 0x0a000345, 0xf2350708, 0x09b2f104,
3497 0x01050eff, 0xf3baf9be, 0x110d0000,
3498 }, { // 15.6 MHz
3499 0x00000003, 0xfff9fffb, 0x0022ffe6, 0xffc9007a,
3500 0xfff0ff29, 0x00f2007e, 0xfe01011b, 0x01f6fc9e,
3501 0x00440467, 0xfbccfdde, 0x0738fc90, 0xf9f70934,
3502 0xff99f582, 0x090204b0, 0xf21a05e1, 0x0a8df15a,
3503 0x00340f41, 0xf405f98b, 0x110d0000,
3504 }, { // 15.7 MHz
3505 0x00000003, 0xfffcfff4, 0x0020fffa, 0xffb40064,
3506 0x002fff11, 0x00a400f0, 0xfe0d006e, 0x0281fd09,
3507 0xff3604c9, 0xfcbffca2, 0x0726fdfe, 0xf8e80888,
3508 0x0134f4f3, 0x07e1060c, 0xf22304af, 0x0b59f1be,
3509 0xff640f7d, 0xf452f959, 0x110d0000,
3510 }, { // 15.8 MHz
3511 0x00000003, 0x0000fff0, 0x001a0010, 0xffaa0041,
3512 0x0067ff13, 0x0043014a, 0xfe46ffb9, 0x02dbfda8,
3513 0xfe3504e5, 0xfddcfb8d, 0x06c9ff7e, 0xf81107a2,
3514 0x02c9f49a, 0x069f0753, 0xf2500373, 0x0c14f231,
3515 0xfe930fb3, 0xf4a1f927, 0x110d0000,
3516 }, { // 15.9 MHz
3517 0xffff0002, 0x0003ffee, 0x000f0023, 0xffac0016,
3518 0x0093ff31, 0xffdc0184, 0xfea6ff09, 0x02fdfe70,
3519 0xfd5104ba, 0xff15faac, 0x06270103, 0xf7780688,
3520 0x044df479, 0x05430883, 0xf2a00231, 0x0cbef2b2,
3521 0xfdc40fe3, 0xf4f2f8f5, 0x110d0000,
3522 }, { // 16.0 MHz
3523 0xffff0001, 0x0006ffef, 0x00020031, 0xffbaffe8,
3524 0x00adff66, 0xff790198, 0xff26fe6e, 0x02e5ff55,
3525 0xfc99044a, 0x005bfa09, 0x0545027f, 0xf7230541,
3526 0x05b8f490, 0x03d20997, 0xf31300eb, 0x0d55f341,
3527 0xfcf6100e, 0xf544f8c3, 0x110d0000,
3531 static void cx23885_dif_setup(struct i2c_client *client, u32 ifHz)
3533 u64 pll_freq;
3534 u32 pll_freq_word;
3535 const u32 *coeffs;
3537 v4l_dbg(1, cx25840_debug, client, "%s(%d)\n", __func__, ifHz);
3539 /* Assuming TV */
3540 /* Calculate the PLL frequency word based on the adjusted ifHz */
3541 pll_freq = div_u64((u64)ifHz * 268435456, 50000000);
3542 pll_freq_word = (u32)pll_freq;
3544 cx25840_write4(client, DIF_PLL_FREQ_WORD, pll_freq_word);
3546 /* Round down to the nearest 100KHz */
3547 ifHz = (ifHz / 100000) * 100000;
3549 if (ifHz < 3000000)
3550 ifHz = 3000000;
3552 if (ifHz > 16000000)
3553 ifHz = 16000000;
3555 v4l_dbg(1, cx25840_debug, client, "%s(%d) again\n", __func__, ifHz);
3557 coeffs = ifhz_coeffs[(ifHz - 3000000) / 100000];
3558 cx25840_write4(client, DIF_BPF_COEFF01, coeffs[0]);
3559 cx25840_write4(client, DIF_BPF_COEFF23, coeffs[1]);
3560 cx25840_write4(client, DIF_BPF_COEFF45, coeffs[2]);
3561 cx25840_write4(client, DIF_BPF_COEFF67, coeffs[3]);
3562 cx25840_write4(client, DIF_BPF_COEFF89, coeffs[4]);
3563 cx25840_write4(client, DIF_BPF_COEFF1011, coeffs[5]);
3564 cx25840_write4(client, DIF_BPF_COEFF1213, coeffs[6]);
3565 cx25840_write4(client, DIF_BPF_COEFF1415, coeffs[7]);
3566 cx25840_write4(client, DIF_BPF_COEFF1617, coeffs[8]);
3567 cx25840_write4(client, DIF_BPF_COEFF1819, coeffs[9]);
3568 cx25840_write4(client, DIF_BPF_COEFF2021, coeffs[10]);
3569 cx25840_write4(client, DIF_BPF_COEFF2223, coeffs[11]);
3570 cx25840_write4(client, DIF_BPF_COEFF2425, coeffs[12]);
3571 cx25840_write4(client, DIF_BPF_COEFF2627, coeffs[13]);
3572 cx25840_write4(client, DIF_BPF_COEFF2829, coeffs[14]);
3573 cx25840_write4(client, DIF_BPF_COEFF3031, coeffs[15]);
3574 cx25840_write4(client, DIF_BPF_COEFF3233, coeffs[16]);
3575 cx25840_write4(client, DIF_BPF_COEFF3435, coeffs[17]);
3576 cx25840_write4(client, DIF_BPF_COEFF36, coeffs[18]);
3579 static void cx23888_std_setup(struct i2c_client *client)
3581 struct cx25840_state *state = to_state(i2c_get_clientdata(client));
3582 v4l2_std_id std = state->std;
3583 u32 ifHz;
3585 cx25840_write4(client, 0x478, 0x6628021F);
3586 cx25840_write4(client, 0x400, 0x0);
3587 cx25840_write4(client, 0x4b4, 0x20524030);
3588 cx25840_write4(client, 0x47c, 0x010a8263);
3590 if (std & V4L2_STD_525_60) {
3591 v4l_dbg(1, cx25840_debug, client, "%s() Selecting NTSC",
3592 __func__);
3594 /* Horiz / vert timing */
3595 cx25840_write4(client, 0x428, 0x1e1e601a);
3596 cx25840_write4(client, 0x424, 0x5b2d007a);
3598 /* DIF NTSC */
3599 cx25840_write4(client, 0x304, 0x6503bc0c);
3600 cx25840_write4(client, 0x308, 0xbd038c85);
3601 cx25840_write4(client, 0x30c, 0x1db4640a);
3602 cx25840_write4(client, 0x310, 0x00008800);
3603 cx25840_write4(client, 0x314, 0x44400400);
3604 cx25840_write4(client, 0x32c, 0x0c800800);
3605 cx25840_write4(client, 0x330, 0x27000100);
3606 cx25840_write4(client, 0x334, 0x1f296e1f);
3607 cx25840_write4(client, 0x338, 0x009f50c1);
3608 cx25840_write4(client, 0x340, 0x1befbf06);
3609 cx25840_write4(client, 0x344, 0x000035e8);
3611 /* DIF I/F */
3612 ifHz = 5400000;
3614 } else {
3615 v4l_dbg(1, cx25840_debug, client, "%s() Selecting PAL-BG",
3616 __func__);
3618 /* Horiz / vert timing */
3619 cx25840_write4(client, 0x428, 0x28244024);
3620 cx25840_write4(client, 0x424, 0x5d2d0084);
3622 /* DIF */
3623 cx25840_write4(client, 0x304, 0x6503bc0c);
3624 cx25840_write4(client, 0x308, 0xbd038c85);
3625 cx25840_write4(client, 0x30c, 0x1db4640a);
3626 cx25840_write4(client, 0x310, 0x00008800);
3627 cx25840_write4(client, 0x314, 0x44400600);
3628 cx25840_write4(client, 0x32c, 0x0c800800);
3629 cx25840_write4(client, 0x330, 0x27000100);
3630 cx25840_write4(client, 0x334, 0x213530ec);
3631 cx25840_write4(client, 0x338, 0x00a65ba8);
3632 cx25840_write4(client, 0x340, 0x1befbf06);
3633 cx25840_write4(client, 0x344, 0x000035e8);
3635 /* DIF I/F */
3636 ifHz = 6000000;
3639 cx23885_dif_setup(client, ifHz);
3641 /* Explicitly ensure the inputs are reconfigured after
3642 * a standard change.
3644 set_input(client, state->vid_input, state->aud_input);
3647 /* ----------------------------------------------------------------------- */
3649 static const struct v4l2_ctrl_ops cx25840_ctrl_ops = {
3650 .s_ctrl = cx25840_s_ctrl,
3653 static const struct v4l2_subdev_core_ops cx25840_core_ops = {
3654 .log_status = cx25840_log_status,
3655 .reset = cx25840_reset,
3656 /* calling the (optional) init op will turn on the generic mode */
3657 .init = cx25840_init,
3658 .load_fw = cx25840_load_fw,
3659 .s_io_pin_config = common_s_io_pin_config,
3660 #ifdef CONFIG_VIDEO_ADV_DEBUG
3661 .g_register = cx25840_g_register,
3662 .s_register = cx25840_s_register,
3663 #endif
3664 .interrupt_service_routine = cx25840_irq_handler,
3667 static const struct v4l2_subdev_tuner_ops cx25840_tuner_ops = {
3668 .s_frequency = cx25840_s_frequency,
3669 .s_radio = cx25840_s_radio,
3670 .g_tuner = cx25840_g_tuner,
3671 .s_tuner = cx25840_s_tuner,
3674 static const struct v4l2_subdev_audio_ops cx25840_audio_ops = {
3675 .s_clock_freq = cx25840_s_clock_freq,
3676 .s_routing = cx25840_s_audio_routing,
3677 .s_stream = cx25840_s_audio_stream,
3680 static const struct v4l2_subdev_video_ops cx25840_video_ops = {
3681 .g_std = cx25840_g_std,
3682 .s_std = cx25840_s_std,
3683 .querystd = cx25840_querystd,
3684 .s_routing = cx25840_s_video_routing,
3685 .s_stream = cx25840_s_stream,
3686 .g_input_status = cx25840_g_input_status,
3689 static const struct v4l2_subdev_vbi_ops cx25840_vbi_ops = {
3690 .decode_vbi_line = cx25840_decode_vbi_line,
3691 .s_raw_fmt = cx25840_s_raw_fmt,
3692 .s_sliced_fmt = cx25840_s_sliced_fmt,
3693 .g_sliced_fmt = cx25840_g_sliced_fmt,
3696 static const struct v4l2_subdev_pad_ops cx25840_pad_ops = {
3697 .set_fmt = cx25840_set_fmt,
3700 static const struct v4l2_subdev_ops cx25840_ops = {
3701 .core = &cx25840_core_ops,
3702 .tuner = &cx25840_tuner_ops,
3703 .audio = &cx25840_audio_ops,
3704 .video = &cx25840_video_ops,
3705 .vbi = &cx25840_vbi_ops,
3706 .pad = &cx25840_pad_ops,
3707 .ir = &cx25840_ir_ops,
3710 /* ----------------------------------------------------------------------- */
3712 static u32 get_cx2388x_ident(struct i2c_client *client)
3714 u32 ret;
3716 /* Come out of digital power down */
3717 cx25840_write(client, 0x000, 0);
3720 * Detecting whether the part is cx23885/7/8 is more
3721 * difficult than it needs to be. No ID register. Instead we
3722 * probe certain registers indicated in the datasheets to look
3723 * for specific defaults that differ between the silicon designs.
3726 /* It's either 885/7 if the IR Tx Clk Divider register exists */
3727 if (cx25840_read4(client, 0x204) & 0xffff) {
3729 * CX23885 returns bogus repetitive byte values for the DIF,
3730 * which doesn't exist for it. (Ex. 8a8a8a8a or 31313131)
3732 ret = cx25840_read4(client, 0x300);
3733 if (((ret & 0xffff0000) >> 16) == (ret & 0xffff)) {
3734 /* No DIF */
3735 ret = CX23885_AV;
3736 } else {
3738 * CX23887 has a broken DIF, but the registers
3739 * appear valid (but unused), good enough to detect.
3741 ret = CX23887_AV;
3743 } else if (cx25840_read4(client, 0x300) & 0x0fffffff) {
3744 /* DIF PLL Freq Word reg exists; chip must be a CX23888 */
3745 ret = CX23888_AV;
3746 } else {
3747 v4l_err(client, "Unable to detect h/w, assuming cx23887\n");
3748 ret = CX23887_AV;
3751 /* Back into digital power down */
3752 cx25840_write(client, 0x000, 2);
3753 return ret;
3756 static int cx25840_probe(struct i2c_client *client)
3758 struct cx25840_state *state;
3759 struct v4l2_subdev *sd;
3760 int default_volume;
3761 u32 id;
3762 u16 device_id;
3763 #if defined(CONFIG_MEDIA_CONTROLLER)
3764 int ret;
3765 #endif
3767 /* Check if the adapter supports the needed features */
3768 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3769 return -EIO;
3771 v4l_dbg(1, cx25840_debug, client,
3772 "detecting cx25840 client on address 0x%x\n",
3773 client->addr << 1);
3775 device_id = cx25840_read(client, 0x101) << 8;
3776 device_id |= cx25840_read(client, 0x100);
3777 v4l_dbg(1, cx25840_debug, client, "device_id = 0x%04x\n", device_id);
3780 * The high byte of the device ID should be
3781 * 0x83 for the cx2583x and 0x84 for the cx2584x
3783 if ((device_id & 0xff00) == 0x8300) {
3784 id = CX25836 + ((device_id >> 4) & 0xf) - 6;
3785 } else if ((device_id & 0xff00) == 0x8400) {
3786 id = CX25840 + ((device_id >> 4) & 0xf);
3787 } else if (device_id == 0x0000) {
3788 id = get_cx2388x_ident(client);
3789 } else if ((device_id & 0xfff0) == 0x5A30) {
3790 /* The CX23100 (0x5A3C = 23100) doesn't have an A/V decoder */
3791 id = CX2310X_AV;
3792 } else if ((device_id & 0xff) == (device_id >> 8)) {
3793 v4l_err(client,
3794 "likely a confused/unresponsive cx2388[578] A/V decoder found @ 0x%x (%s)\n",
3795 client->addr << 1, client->adapter->name);
3796 v4l_err(client,
3797 "A method to reset it from the cx25840 driver software is not known at this time\n");
3798 return -ENODEV;
3799 } else {
3800 v4l_dbg(1, cx25840_debug, client, "cx25840 not found\n");
3801 return -ENODEV;
3804 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3805 if (!state)
3806 return -ENOMEM;
3808 sd = &state->sd;
3809 v4l2_i2c_subdev_init(sd, client, &cx25840_ops);
3810 #if defined(CONFIG_MEDIA_CONTROLLER)
3812 * TODO: add media controller support for analog video inputs like
3813 * composite, svideo, etc.
3814 * A real input pad for this analog demod would be like:
3815 * ___________
3816 * TUNER --------> | |
3817 * | |
3818 * SVIDEO .......> | cx25840 |
3819 * | |
3820 * COMPOSITE1 ...> |_________|
3822 * However, at least for now, there's no much gain on modelling
3823 * those extra inputs. So, let's add it only when needed.
3825 state->pads[CX25840_PAD_INPUT].flags = MEDIA_PAD_FL_SINK;
3826 state->pads[CX25840_PAD_INPUT].sig_type = PAD_SIGNAL_ANALOG;
3827 state->pads[CX25840_PAD_VID_OUT].flags = MEDIA_PAD_FL_SOURCE;
3828 state->pads[CX25840_PAD_VID_OUT].sig_type = PAD_SIGNAL_DV;
3829 sd->entity.function = MEDIA_ENT_F_ATV_DECODER;
3831 ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(state->pads),
3832 state->pads);
3833 if (ret < 0) {
3834 v4l_info(client, "failed to initialize media entity!\n");
3835 return ret;
3837 #endif
3839 switch (id) {
3840 case CX23885_AV:
3841 v4l_info(client, "cx23885 A/V decoder found @ 0x%x (%s)\n",
3842 client->addr << 1, client->adapter->name);
3843 break;
3844 case CX23887_AV:
3845 v4l_info(client, "cx23887 A/V decoder found @ 0x%x (%s)\n",
3846 client->addr << 1, client->adapter->name);
3847 break;
3848 case CX23888_AV:
3849 v4l_info(client, "cx23888 A/V decoder found @ 0x%x (%s)\n",
3850 client->addr << 1, client->adapter->name);
3851 break;
3852 case CX2310X_AV:
3853 v4l_info(client, "cx%d A/V decoder found @ 0x%x (%s)\n",
3854 device_id, client->addr << 1, client->adapter->name);
3855 break;
3856 case CX25840:
3857 case CX25841:
3858 case CX25842:
3859 case CX25843:
3861 * Note: revision '(device_id & 0x0f) == 2' was never built.
3862 * The marking skips from 0x1 == 22 to 0x3 == 23.
3864 v4l_info(client, "cx25%3x-2%x found @ 0x%x (%s)\n",
3865 (device_id & 0xfff0) >> 4,
3866 (device_id & 0x0f) < 3 ? (device_id & 0x0f) + 1
3867 : (device_id & 0x0f),
3868 client->addr << 1, client->adapter->name);
3869 break;
3870 case CX25836:
3871 case CX25837:
3872 default:
3873 v4l_info(client, "cx25%3x-%x found @ 0x%x (%s)\n",
3874 (device_id & 0xfff0) >> 4, device_id & 0x0f,
3875 client->addr << 1, client->adapter->name);
3876 break;
3879 state->c = client;
3880 state->vid_input = CX25840_COMPOSITE7;
3881 state->aud_input = CX25840_AUDIO8;
3882 state->audclk_freq = 48000;
3883 state->audmode = V4L2_TUNER_MODE_LANG1;
3884 state->vbi_line_offset = 8;
3885 state->id = id;
3886 state->rev = device_id;
3887 state->vbi_regs_offset = id == CX23888_AV ? 0x500 - 0x424 : 0;
3888 state->std = V4L2_STD_NTSC_M;
3889 v4l2_ctrl_handler_init(&state->hdl, 9);
3890 v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops,
3891 V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
3892 v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops,
3893 V4L2_CID_CONTRAST, 0, 127, 1, 64);
3894 v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops,
3895 V4L2_CID_SATURATION, 0, 127, 1, 64);
3896 v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops,
3897 V4L2_CID_HUE, -128, 127, 1, 0);
3898 if (!is_cx2583x(state)) {
3899 default_volume = cx25840_read(client, 0x8d4);
3901 * Enforce the legacy PVR-350/MSP3400 to PVR-150/CX25843 volume
3902 * scale mapping limits to avoid -ERANGE errors when
3903 * initializing the volume control
3905 if (default_volume > 228) {
3906 /* Bottom out at -96 dB, v4l2 vol range 0x2e00-0x2fff */
3907 default_volume = 228;
3908 cx25840_write(client, 0x8d4, 228);
3909 } else if (default_volume < 20) {
3910 /* Top out at + 8 dB, v4l2 vol range 0xfe00-0xffff */
3911 default_volume = 20;
3912 cx25840_write(client, 0x8d4, 20);
3914 default_volume = (((228 - default_volume) >> 1) + 23) << 9;
3916 state->volume = v4l2_ctrl_new_std(&state->hdl,
3917 &cx25840_audio_ctrl_ops,
3918 V4L2_CID_AUDIO_VOLUME,
3919 0, 65535, 65535 / 100,
3920 default_volume);
3921 state->mute = v4l2_ctrl_new_std(&state->hdl,
3922 &cx25840_audio_ctrl_ops,
3923 V4L2_CID_AUDIO_MUTE,
3924 0, 1, 1, 0);
3925 v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops,
3926 V4L2_CID_AUDIO_BALANCE,
3927 0, 65535, 65535 / 100, 32768);
3928 v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops,
3929 V4L2_CID_AUDIO_BASS,
3930 0, 65535, 65535 / 100, 32768);
3931 v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops,
3932 V4L2_CID_AUDIO_TREBLE,
3933 0, 65535, 65535 / 100, 32768);
3935 sd->ctrl_handler = &state->hdl;
3936 if (state->hdl.error) {
3937 int err = state->hdl.error;
3939 v4l2_ctrl_handler_free(&state->hdl);
3940 return err;
3942 if (!is_cx2583x(state))
3943 v4l2_ctrl_cluster(2, &state->volume);
3944 v4l2_ctrl_handler_setup(&state->hdl);
3946 if (client->dev.platform_data) {
3947 struct cx25840_platform_data *pdata = client->dev.platform_data;
3949 state->pvr150_workaround = pdata->pvr150_workaround;
3952 cx25840_ir_probe(sd);
3953 return 0;
3956 static void cx25840_remove(struct i2c_client *client)
3958 struct v4l2_subdev *sd = i2c_get_clientdata(client);
3959 struct cx25840_state *state = to_state(sd);
3961 cx25840_ir_remove(sd);
3962 v4l2_device_unregister_subdev(sd);
3963 v4l2_ctrl_handler_free(&state->hdl);
3966 static const struct i2c_device_id cx25840_id[] = {
3967 { "cx25840" },
3970 MODULE_DEVICE_TABLE(i2c, cx25840_id);
3972 static struct i2c_driver cx25840_driver = {
3973 .driver = {
3974 .name = "cx25840",
3976 .probe = cx25840_probe,
3977 .remove = cx25840_remove,
3978 .id_table = cx25840_id,
3981 module_i2c_driver(cx25840_driver);