1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
5 * Integrated Consumer Infrared Controller
7 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
10 #include <linux/slab.h>
11 #include <linux/kfifo.h>
12 #include <linux/module.h>
13 #include <media/drv-intf/cx25840.h>
14 #include <media/rc-core.h>
16 #include "cx25840-core.h"
18 static unsigned int ir_debug
;
19 module_param(ir_debug
, int, 0644);
20 MODULE_PARM_DESC(ir_debug
, "enable integrated IR debug messages");
22 #define CX25840_IR_REG_BASE 0x200
24 #define CX25840_IR_CNTRL_REG 0x200
25 #define CNTRL_WIN_3_3 0x00000000
26 #define CNTRL_WIN_4_3 0x00000001
27 #define CNTRL_WIN_3_4 0x00000002
28 #define CNTRL_WIN_4_4 0x00000003
29 #define CNTRL_WIN 0x00000003
30 #define CNTRL_EDG_NONE 0x00000000
31 #define CNTRL_EDG_FALL 0x00000004
32 #define CNTRL_EDG_RISE 0x00000008
33 #define CNTRL_EDG_BOTH 0x0000000C
34 #define CNTRL_EDG 0x0000000C
35 #define CNTRL_DMD 0x00000010
36 #define CNTRL_MOD 0x00000020
37 #define CNTRL_RFE 0x00000040
38 #define CNTRL_TFE 0x00000080
39 #define CNTRL_RXE 0x00000100
40 #define CNTRL_TXE 0x00000200
41 #define CNTRL_RIC 0x00000400
42 #define CNTRL_TIC 0x00000800
43 #define CNTRL_CPL 0x00001000
44 #define CNTRL_LBM 0x00002000
45 #define CNTRL_R 0x00004000
47 #define CX25840_IR_TXCLK_REG 0x204
48 #define TXCLK_TCD 0x0000FFFF
50 #define CX25840_IR_RXCLK_REG 0x208
51 #define RXCLK_RCD 0x0000FFFF
53 #define CX25840_IR_CDUTY_REG 0x20C
54 #define CDUTY_CDC 0x0000000F
56 #define CX25840_IR_STATS_REG 0x210
57 #define STATS_RTO 0x00000001
58 #define STATS_ROR 0x00000002
59 #define STATS_RBY 0x00000004
60 #define STATS_TBY 0x00000008
61 #define STATS_RSR 0x00000010
62 #define STATS_TSR 0x00000020
64 #define CX25840_IR_IRQEN_REG 0x214
65 #define IRQEN_RTE 0x00000001
66 #define IRQEN_ROE 0x00000002
67 #define IRQEN_RSE 0x00000010
68 #define IRQEN_TSE 0x00000020
69 #define IRQEN_MSK 0x00000033
71 #define CX25840_IR_FILTR_REG 0x218
72 #define FILTR_LPF 0x0000FFFF
74 #define CX25840_IR_FIFO_REG 0x23C
75 #define FIFO_RXTX 0x0000FFFF
76 #define FIFO_RXTX_LVL 0x00010000
77 #define FIFO_RXTX_RTO 0x0001FFFF
78 #define FIFO_RX_NDV 0x00020000
79 #define FIFO_RX_DEPTH 8
80 #define FIFO_TX_DEPTH 8
82 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
83 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
86 * We use this union internally for convenience, but callers to tx_write
87 * and rx_read will be expecting records of type struct ir_raw_event.
88 * Always ensure the size of this union is dictated by struct ir_raw_event.
90 union cx25840_ir_fifo_rec
{
92 struct ir_raw_event ir_core_data
;
95 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
96 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
98 struct cx25840_ir_state
{
101 struct v4l2_subdev_ir_parameters rx_params
;
102 struct mutex rx_params_lock
; /* protects Rx parameter settings cache */
103 atomic_t rxclk_divider
;
106 struct kfifo rx_kfifo
;
107 spinlock_t rx_kfifo_lock
; /* protect Rx data kfifo */
109 struct v4l2_subdev_ir_parameters tx_params
;
110 struct mutex tx_params_lock
; /* protects Tx parameter settings cache */
111 atomic_t txclk_divider
;
114 static inline struct cx25840_ir_state
*to_ir_state(struct v4l2_subdev
*sd
)
116 struct cx25840_state
*state
= to_state(sd
);
117 return state
? state
->ir_state
: NULL
;
122 * Rx and Tx Clock Divider register computations
124 * Note the largest clock divider value of 0xffff corresponds to:
125 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
126 * which fits in 21 bits, so we'll use unsigned int for time arguments.
128 static inline u16
count_to_clock_divider(unsigned int d
)
130 if (d
> RXCLK_RCD
+ 1)
139 static inline u16
carrier_freq_to_clock_divider(unsigned int freq
)
141 return count_to_clock_divider(
142 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
, freq
* 16));
145 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider
)
147 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
, (divider
+ 1) * 16);
150 static inline unsigned int clock_divider_to_freq(unsigned int divider
,
151 unsigned int rollovers
)
153 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
,
154 (divider
+ 1) * rollovers
);
158 * Low Pass Filter register calculations
160 * Note the largest count value of 0xffff corresponds to:
161 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
162 * which fits in 21 bits, so we'll use unsigned int for time arguments.
164 static inline u16
count_to_lpf_count(unsigned int d
)
173 static inline u16
ns_to_lpf_count(unsigned int ns
)
175 return count_to_lpf_count(
176 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
179 static inline unsigned int lpf_count_to_ns(unsigned int count
)
181 /* Duration of the Low Pass Filter rejection window in ns */
182 return DIV_ROUND_CLOSEST(count
* 1000,
183 CX25840_IR_REFCLK_FREQ
/ 1000000);
186 static inline unsigned int lpf_count_to_us(unsigned int count
)
188 /* Duration of the Low Pass Filter rejection window in us */
189 return DIV_ROUND_CLOSEST(count
, CX25840_IR_REFCLK_FREQ
/ 1000000);
193 * FIFO register pulse width count computations
195 static u32
clock_divider_to_resolution(u16 divider
)
198 * Resolution is the duration of 1 tick of the readable portion of
199 * the pulse width counter as read from the FIFO. The two lsb's are
200 * not readable, hence the << 2. This function returns ns.
202 return DIV_ROUND_CLOSEST((1 << 2) * ((u32
) divider
+ 1) * 1000,
203 CX25840_IR_REFCLK_FREQ
/ 1000000);
206 static u64
pulse_width_count_to_ns(u16 count
, u16 divider
)
212 * The 2 lsb's of the pulse width timer count are not readable, hence
213 * the (count << 2) | 0x3
215 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1) * 1000; /* millicycles */
216 rem
= do_div(n
, CX25840_IR_REFCLK_FREQ
/ 1000000); /* / MHz => ns */
217 if (rem
>= CX25840_IR_REFCLK_FREQ
/ 1000000 / 2)
223 /* Keep as we will need this for Transmit functionality */
224 static u16
ns_to_pulse_width_count(u32 ns
, u16 divider
)
231 * The 2 lsb's of the pulse width timer count are not accessible, hence
234 n
= ((u64
) ns
) * CX25840_IR_REFCLK_FREQ
/ 1000000; /* millicycles */
235 d
= (1 << 2) * ((u32
) divider
+ 1) * 1000; /* millicycles/count */
248 static unsigned int pulse_width_count_to_us(u16 count
, u16 divider
)
254 * The 2 lsb's of the pulse width timer count are not readable, hence
255 * the (count << 2) | 0x3
257 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1); /* cycles */
258 rem
= do_div(n
, CX25840_IR_REFCLK_FREQ
/ 1000000); /* / MHz => us */
259 if (rem
>= CX25840_IR_REFCLK_FREQ
/ 1000000 / 2)
261 return (unsigned int) n
;
265 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
267 * The total pulse clock count is an 18 bit pulse width timer count as the most
268 * significant part and (up to) 16 bit clock divider count as a modulus.
269 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
270 * width timer count's least significant bit.
272 static u64
ns_to_pulse_clocks(u32 ns
)
276 clocks
= CX25840_IR_REFCLK_FREQ
/ 1000000 * (u64
) ns
; /* millicycles */
277 rem
= do_div(clocks
, 1000); /* /1000 = cycles */
283 static u16
pulse_clocks_to_clock_divider(u64 count
)
285 do_div(count
, (FIFO_RXTX
<< 2) | 0x3);
287 /* net result needs to be rounded down and decremented by 1 */
288 if (count
> RXCLK_RCD
+ 1)
298 * IR Control Register helpers
300 enum tx_fifo_watermark
{
301 TX_FIFO_HALF_EMPTY
= 0,
302 TX_FIFO_EMPTY
= CNTRL_TIC
,
305 enum rx_fifo_watermark
{
306 RX_FIFO_HALF_FULL
= 0,
307 RX_FIFO_NOT_EMPTY
= CNTRL_RIC
,
310 static inline void control_tx_irq_watermark(struct i2c_client
*c
,
311 enum tx_fifo_watermark level
)
313 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_TIC
, level
);
316 static inline void control_rx_irq_watermark(struct i2c_client
*c
,
317 enum rx_fifo_watermark level
)
319 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_RIC
, level
);
322 static inline void control_tx_enable(struct i2c_client
*c
, bool enable
)
324 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~(CNTRL_TXE
| CNTRL_TFE
),
325 enable
? (CNTRL_TXE
| CNTRL_TFE
) : 0);
328 static inline void control_rx_enable(struct i2c_client
*c
, bool enable
)
330 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~(CNTRL_RXE
| CNTRL_RFE
),
331 enable
? (CNTRL_RXE
| CNTRL_RFE
) : 0);
334 static inline void control_tx_modulation_enable(struct i2c_client
*c
,
337 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_MOD
,
338 enable
? CNTRL_MOD
: 0);
341 static inline void control_rx_demodulation_enable(struct i2c_client
*c
,
344 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_DMD
,
345 enable
? CNTRL_DMD
: 0);
348 static inline void control_rx_s_edge_detection(struct i2c_client
*c
,
351 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_EDG_BOTH
,
352 edge_types
& CNTRL_EDG_BOTH
);
355 static void control_rx_s_carrier_window(struct i2c_client
*c
,
356 unsigned int carrier
,
357 unsigned int *carrier_range_low
,
358 unsigned int *carrier_range_high
)
361 unsigned int c16
= carrier
* 16;
363 if (*carrier_range_low
< DIV_ROUND_CLOSEST(c16
, 16 + 3)) {
365 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 4);
368 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 3);
371 if (*carrier_range_high
> DIV_ROUND_CLOSEST(c16
, 16 - 3)) {
373 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 4);
376 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 3);
378 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_WIN
, v
);
381 static inline void control_tx_polarity_invert(struct i2c_client
*c
,
384 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_CPL
,
385 invert
? CNTRL_CPL
: 0);
389 * IR Rx & Tx Clock Register helpers
391 static unsigned int txclk_tx_s_carrier(struct i2c_client
*c
,
395 *divider
= carrier_freq_to_clock_divider(freq
);
396 cx25840_write4(c
, CX25840_IR_TXCLK_REG
, *divider
);
397 return clock_divider_to_carrier_freq(*divider
);
400 static unsigned int rxclk_rx_s_carrier(struct i2c_client
*c
,
404 *divider
= carrier_freq_to_clock_divider(freq
);
405 cx25840_write4(c
, CX25840_IR_RXCLK_REG
, *divider
);
406 return clock_divider_to_carrier_freq(*divider
);
409 static u32
txclk_tx_s_max_pulse_width(struct i2c_client
*c
, u32 ns
,
414 if (ns
> IR_MAX_DURATION
)
415 ns
= IR_MAX_DURATION
;
416 pulse_clocks
= ns_to_pulse_clocks(ns
);
417 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
418 cx25840_write4(c
, CX25840_IR_TXCLK_REG
, *divider
);
419 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
422 static u32
rxclk_rx_s_max_pulse_width(struct i2c_client
*c
, u32 ns
,
427 if (ns
> IR_MAX_DURATION
)
428 ns
= IR_MAX_DURATION
;
429 pulse_clocks
= ns_to_pulse_clocks(ns
);
430 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
431 cx25840_write4(c
, CX25840_IR_RXCLK_REG
, *divider
);
432 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
436 * IR Tx Carrier Duty Cycle register helpers
438 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client
*c
,
439 unsigned int duty_cycle
)
442 n
= DIV_ROUND_CLOSEST(duty_cycle
* 100, 625); /* 16ths of 100% */
447 cx25840_write4(c
, CX25840_IR_CDUTY_REG
, n
);
448 return DIV_ROUND_CLOSEST((n
+ 1) * 100, 16);
452 * IR Filter Register helpers
454 static u32
filter_rx_s_min_width(struct i2c_client
*c
, u32 min_width_ns
)
456 u32 count
= ns_to_lpf_count(min_width_ns
);
457 cx25840_write4(c
, CX25840_IR_FILTR_REG
, count
);
458 return lpf_count_to_ns(count
);
462 * IR IRQ Enable Register helpers
464 static inline void irqenable_rx(struct v4l2_subdev
*sd
, u32 mask
)
466 struct cx25840_state
*state
= to_state(sd
);
468 if (is_cx23885(state
) || is_cx23887(state
))
470 mask
&= (IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
);
471 cx25840_and_or4(state
->c
, CX25840_IR_IRQEN_REG
,
472 ~(IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
), mask
);
475 static inline void irqenable_tx(struct v4l2_subdev
*sd
, u32 mask
)
477 struct cx25840_state
*state
= to_state(sd
);
479 if (is_cx23885(state
) || is_cx23887(state
))
482 cx25840_and_or4(state
->c
, CX25840_IR_IRQEN_REG
, ~IRQEN_TSE
, mask
);
486 * V4L2 Subdevice IR Ops
488 int cx25840_ir_irq_handler(struct v4l2_subdev
*sd
, u32 status
, bool *handled
)
490 struct cx25840_state
*state
= to_state(sd
);
491 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
492 struct i2c_client
*c
= NULL
;
495 union cx25840_ir_fifo_rec rx_data
[FIFO_RX_DEPTH
];
496 unsigned int i
, j
, k
;
498 int tsr
, rsr
, rto
, ror
, tse
, rse
, rte
, roe
, kror
;
499 u32 cntrl
, irqen
, stats
;
502 if (ir_state
== NULL
)
507 /* Only support the IR controller for the CX2388[57] AV Core for now */
508 if (!(is_cx23885(state
) || is_cx23887(state
)))
511 cntrl
= cx25840_read4(c
, CX25840_IR_CNTRL_REG
);
512 irqen
= cx25840_read4(c
, CX25840_IR_IRQEN_REG
);
513 if (is_cx23885(state
) || is_cx23887(state
))
515 stats
= cx25840_read4(c
, CX25840_IR_STATS_REG
);
517 tsr
= stats
& STATS_TSR
; /* Tx FIFO Service Request */
518 rsr
= stats
& STATS_RSR
; /* Rx FIFO Service Request */
519 rto
= stats
& STATS_RTO
; /* Rx Pulse Width Timer Time Out */
520 ror
= stats
& STATS_ROR
; /* Rx FIFO Over Run */
522 tse
= irqen
& IRQEN_TSE
; /* Tx FIFO Service Request IRQ Enable */
523 rse
= irqen
& IRQEN_RSE
; /* Rx FIFO Service Request IRQ Enable */
524 rte
= irqen
& IRQEN_RTE
; /* Rx Pulse Width Timer Time Out IRQ Enable */
525 roe
= irqen
& IRQEN_ROE
; /* Rx FIFO Over Run IRQ Enable */
527 v4l2_dbg(2, ir_debug
, sd
, "IR IRQ Status: %s %s %s %s %s %s\n",
528 tsr
? "tsr" : " ", rsr
? "rsr" : " ",
529 rto
? "rto" : " ", ror
? "ror" : " ",
530 stats
& STATS_TBY
? "tby" : " ",
531 stats
& STATS_RBY
? "rby" : " ");
533 v4l2_dbg(2, ir_debug
, sd
, "IR IRQ Enables: %s %s %s %s\n",
534 tse
? "tse" : " ", rse
? "rse" : " ",
535 rte
? "rte" : " ", roe
? "roe" : " ");
538 * Transmitter interrupt service
543 * Check the watermark threshold setting
544 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
545 * Push the data to the hardware FIFO.
546 * If there was nothing more to send in the tx_kfifo, disable
547 * the TSR IRQ and notify the v4l2_device.
548 * If there was something in the tx_kfifo, check the tx_kfifo
549 * level and notify the v4l2_device, if it is low.
551 /* For now, inhibit TSR interrupt until Tx is implemented */
553 events
= V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ
;
554 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_TX_NOTIFY
, &events
);
559 * Receiver interrupt service
562 if ((rse
&& rsr
) || (rte
&& rto
)) {
564 * Receive data on RSR to clear the STATS_RSR.
565 * Receive data on RTO, since we may not have yet hit the RSR
566 * watermark when we receive the RTO.
568 for (i
= 0, v
= FIFO_RX_NDV
;
569 (v
& FIFO_RX_NDV
) && !kror
; i
= 0) {
571 (v
& FIFO_RX_NDV
) && j
< FIFO_RX_DEPTH
; j
++) {
572 v
= cx25840_read4(c
, CX25840_IR_FIFO_REG
);
573 rx_data
[i
].hw_fifo_data
= v
& ~FIFO_RX_NDV
;
578 j
= i
* sizeof(union cx25840_ir_fifo_rec
);
579 k
= kfifo_in_locked(&ir_state
->rx_kfifo
,
580 (unsigned char *) rx_data
, j
,
581 &ir_state
->rx_kfifo_lock
);
583 kror
++; /* rx_kfifo over run */
591 events
|= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN
;
592 v4l2_err(sd
, "IR receiver software FIFO overrun\n");
596 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
597 * the Rx FIFO Over Run status (STATS_ROR)
600 events
|= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN
;
601 v4l2_err(sd
, "IR receiver hardware FIFO overrun\n");
605 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
606 * the Rx Pulse Width Timer Time Out (STATS_RTO)
609 events
|= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED
;
612 /* Clear STATS_ROR & STATS_RTO as needed by resetting hardware */
613 cx25840_write4(c
, CX25840_IR_CNTRL_REG
, cntrl
& ~v
);
614 cx25840_write4(c
, CX25840_IR_CNTRL_REG
, cntrl
);
617 spin_lock_irqsave(&ir_state
->rx_kfifo_lock
, flags
);
618 if (kfifo_len(&ir_state
->rx_kfifo
) >= CX25840_IR_RX_KFIFO_SIZE
/ 2)
619 events
|= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ
;
620 spin_unlock_irqrestore(&ir_state
->rx_kfifo_lock
, flags
);
623 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_RX_NOTIFY
, &events
);
628 static int cx25840_ir_rx_read(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
631 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
635 union cx25840_ir_fifo_rec
*p
;
638 if (ir_state
== NULL
)
641 invert
= (bool) atomic_read(&ir_state
->rx_invert
);
642 divider
= (u16
) atomic_read(&ir_state
->rxclk_divider
);
644 n
= count
/ sizeof(union cx25840_ir_fifo_rec
)
645 * sizeof(union cx25840_ir_fifo_rec
);
651 n
= kfifo_out_locked(&ir_state
->rx_kfifo
, buf
, n
,
652 &ir_state
->rx_kfifo_lock
);
654 n
/= sizeof(union cx25840_ir_fifo_rec
);
655 *num
= n
* sizeof(union cx25840_ir_fifo_rec
);
657 for (p
= (union cx25840_ir_fifo_rec
*) buf
, i
= 0; i
< n
; p
++, i
++) {
659 if ((p
->hw_fifo_data
& FIFO_RXTX_RTO
) == FIFO_RXTX_RTO
) {
660 /* Assume RTO was because of no IR light input */
664 u
= (p
->hw_fifo_data
& FIFO_RXTX_LVL
) ? 1 : 0;
670 v
= (unsigned) pulse_width_count_to_ns(
671 (u16
)(p
->hw_fifo_data
& FIFO_RXTX
), divider
) / 1000;
672 if (v
> IR_MAX_DURATION
)
675 p
->ir_core_data
= (struct ir_raw_event
)
676 { .pulse
= u
, .duration
= v
, .timeout
= w
};
678 v4l2_dbg(2, ir_debug
, sd
, "rx read: %10u ns %s %s\n",
679 v
, u
? "mark" : "space", w
? "(timed out)" : "");
681 v4l2_dbg(2, ir_debug
, sd
, "rx read: end of rx\n");
686 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev
*sd
,
687 struct v4l2_subdev_ir_parameters
*p
)
689 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
691 if (ir_state
== NULL
)
694 mutex_lock(&ir_state
->rx_params_lock
);
695 memcpy(p
, &ir_state
->rx_params
,
696 sizeof(struct v4l2_subdev_ir_parameters
));
697 mutex_unlock(&ir_state
->rx_params_lock
);
701 static int cx25840_ir_rx_shutdown(struct v4l2_subdev
*sd
)
703 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
704 struct i2c_client
*c
;
706 if (ir_state
== NULL
)
710 mutex_lock(&ir_state
->rx_params_lock
);
712 /* Disable or slow down all IR Rx circuits and counters */
714 control_rx_enable(c
, false);
715 control_rx_demodulation_enable(c
, false);
716 control_rx_s_edge_detection(c
, CNTRL_EDG_NONE
);
717 filter_rx_s_min_width(c
, 0);
718 cx25840_write4(c
, CX25840_IR_RXCLK_REG
, RXCLK_RCD
);
720 ir_state
->rx_params
.shutdown
= true;
722 mutex_unlock(&ir_state
->rx_params_lock
);
726 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev
*sd
,
727 struct v4l2_subdev_ir_parameters
*p
)
729 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
730 struct i2c_client
*c
;
731 struct v4l2_subdev_ir_parameters
*o
;
734 if (ir_state
== NULL
)
738 return cx25840_ir_rx_shutdown(sd
);
740 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
744 o
= &ir_state
->rx_params
;
746 mutex_lock(&ir_state
->rx_params_lock
);
748 o
->shutdown
= p
->shutdown
;
750 p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
753 p
->bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
);
754 o
->bytes_per_data_element
= p
->bytes_per_data_element
;
756 /* Before we tweak the hardware, we have to disable the receiver */
758 control_rx_enable(c
, false);
760 control_rx_demodulation_enable(c
, p
->modulation
);
761 o
->modulation
= p
->modulation
;
764 p
->carrier_freq
= rxclk_rx_s_carrier(c
, p
->carrier_freq
,
767 o
->carrier_freq
= p
->carrier_freq
;
770 o
->duty_cycle
= p
->duty_cycle
;
772 control_rx_s_carrier_window(c
, p
->carrier_freq
,
773 &p
->carrier_range_lower
,
774 &p
->carrier_range_upper
);
775 o
->carrier_range_lower
= p
->carrier_range_lower
;
776 o
->carrier_range_upper
= p
->carrier_range_upper
;
779 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, rxclk_divider
);
782 rxclk_rx_s_max_pulse_width(c
, p
->max_pulse_width
,
785 o
->max_pulse_width
= p
->max_pulse_width
;
786 atomic_set(&ir_state
->rxclk_divider
, rxclk_divider
);
788 p
->noise_filter_min_width
=
789 filter_rx_s_min_width(c
, p
->noise_filter_min_width
);
790 o
->noise_filter_min_width
= p
->noise_filter_min_width
;
792 p
->resolution
= clock_divider_to_resolution(rxclk_divider
);
793 o
->resolution
= p
->resolution
;
795 /* FIXME - make this dependent on resolution for better performance */
796 control_rx_irq_watermark(c
, RX_FIFO_HALF_FULL
);
798 control_rx_s_edge_detection(c
, CNTRL_EDG_BOTH
);
800 o
->invert_level
= p
->invert_level
;
801 atomic_set(&ir_state
->rx_invert
, p
->invert_level
);
803 o
->interrupt_enable
= p
->interrupt_enable
;
804 o
->enable
= p
->enable
;
808 spin_lock_irqsave(&ir_state
->rx_kfifo_lock
, flags
);
809 kfifo_reset(&ir_state
->rx_kfifo
);
810 spin_unlock_irqrestore(&ir_state
->rx_kfifo_lock
, flags
);
811 if (p
->interrupt_enable
)
812 irqenable_rx(sd
, IRQEN_RSE
| IRQEN_RTE
| IRQEN_ROE
);
813 control_rx_enable(c
, p
->enable
);
816 mutex_unlock(&ir_state
->rx_params_lock
);
821 static int cx25840_ir_tx_write(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
824 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
826 if (ir_state
== NULL
)
831 * FIXME - the code below is an incomplete and untested sketch of what
832 * may need to be done. The critical part is to get 4 (or 8) pulses
833 * from the tx_kfifo, or converted from ns to the proper units from the
834 * input, and push them off to the hardware Tx FIFO right away, if the
835 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
836 * a less critical timeframe. Also watch out for overruning the
837 * tx_kfifo - don't let it happen and let the caller know not all his
838 * pulses were written.
840 u32
*ns_pulse
= (u32
*) buf
;
842 u32 fifo_pulse
[FIFO_TX_DEPTH
];
845 /* Compute how much we can fit in the tx kfifo */
846 n
= CX25840_IR_TX_KFIFO_SIZE
- kfifo_len(ir_state
->tx_kfifo
);
847 n
= min(n
, (unsigned int) count
);
850 /* FIXME - turn on Tx Fifo service interrupt
851 * check hardware fifo level, and other stuff
853 for (i
= 0; i
< n
; ) {
854 for (j
= 0; j
< FIFO_TX_DEPTH
/ 2 && i
< n
; j
++) {
855 mark
= ns_pulse
[i
] & LEVEL_MASK
;
856 fifo_pulse
[j
] = ns_to_pulse_width_count(
859 ir_state
->txclk_divider
);
861 fifo_pulse
[j
] &= FIFO_RXTX_LVL
;
864 kfifo_put(ir_state
->tx_kfifo
, (u8
*) fifo_pulse
,
867 *num
= n
* sizeof(u32
);
869 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
870 irqenable_tx(sd
, IRQEN_TSE
);
876 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev
*sd
,
877 struct v4l2_subdev_ir_parameters
*p
)
879 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
881 if (ir_state
== NULL
)
884 mutex_lock(&ir_state
->tx_params_lock
);
885 memcpy(p
, &ir_state
->tx_params
,
886 sizeof(struct v4l2_subdev_ir_parameters
));
887 mutex_unlock(&ir_state
->tx_params_lock
);
891 static int cx25840_ir_tx_shutdown(struct v4l2_subdev
*sd
)
893 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
894 struct i2c_client
*c
;
896 if (ir_state
== NULL
)
900 mutex_lock(&ir_state
->tx_params_lock
);
902 /* Disable or slow down all IR Tx circuits and counters */
904 control_tx_enable(c
, false);
905 control_tx_modulation_enable(c
, false);
906 cx25840_write4(c
, CX25840_IR_TXCLK_REG
, TXCLK_TCD
);
908 ir_state
->tx_params
.shutdown
= true;
910 mutex_unlock(&ir_state
->tx_params_lock
);
914 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev
*sd
,
915 struct v4l2_subdev_ir_parameters
*p
)
917 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
918 struct i2c_client
*c
;
919 struct v4l2_subdev_ir_parameters
*o
;
922 if (ir_state
== NULL
)
926 return cx25840_ir_tx_shutdown(sd
);
928 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
932 o
= &ir_state
->tx_params
;
933 mutex_lock(&ir_state
->tx_params_lock
);
935 o
->shutdown
= p
->shutdown
;
937 p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
940 p
->bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
);
941 o
->bytes_per_data_element
= p
->bytes_per_data_element
;
943 /* Before we tweak the hardware, we have to disable the transmitter */
945 control_tx_enable(c
, false);
947 control_tx_modulation_enable(c
, p
->modulation
);
948 o
->modulation
= p
->modulation
;
951 p
->carrier_freq
= txclk_tx_s_carrier(c
, p
->carrier_freq
,
953 o
->carrier_freq
= p
->carrier_freq
;
955 p
->duty_cycle
= cduty_tx_s_duty_cycle(c
, p
->duty_cycle
);
956 o
->duty_cycle
= p
->duty_cycle
;
959 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, txclk_divider
);
962 txclk_tx_s_max_pulse_width(c
, p
->max_pulse_width
,
965 o
->max_pulse_width
= p
->max_pulse_width
;
966 atomic_set(&ir_state
->txclk_divider
, txclk_divider
);
968 p
->resolution
= clock_divider_to_resolution(txclk_divider
);
969 o
->resolution
= p
->resolution
;
971 /* FIXME - make this dependent on resolution for better performance */
972 control_tx_irq_watermark(c
, TX_FIFO_HALF_EMPTY
);
974 control_tx_polarity_invert(c
, p
->invert_carrier_sense
);
975 o
->invert_carrier_sense
= p
->invert_carrier_sense
;
978 * FIXME: we don't have hardware help for IO pin level inversion
979 * here like we have on the CX23888.
980 * Act on this with some mix of logical inversion of data levels,
981 * carrier polarity, and carrier duty cycle.
983 o
->invert_level
= p
->invert_level
;
985 o
->interrupt_enable
= p
->interrupt_enable
;
986 o
->enable
= p
->enable
;
988 /* reset tx_fifo here */
989 if (p
->interrupt_enable
)
990 irqenable_tx(sd
, IRQEN_TSE
);
991 control_tx_enable(c
, p
->enable
);
994 mutex_unlock(&ir_state
->tx_params_lock
);
1000 * V4L2 Subdevice Core Ops support
1002 int cx25840_ir_log_status(struct v4l2_subdev
*sd
)
1004 struct cx25840_state
*state
= to_state(sd
);
1005 struct i2c_client
*c
= state
->c
;
1008 u32 cntrl
, txclk
, rxclk
, cduty
, stats
, irqen
, filtr
;
1010 /* The CX23888 chip doesn't have an IR controller on the A/V core */
1011 if (is_cx23888(state
))
1014 cntrl
= cx25840_read4(c
, CX25840_IR_CNTRL_REG
);
1015 txclk
= cx25840_read4(c
, CX25840_IR_TXCLK_REG
) & TXCLK_TCD
;
1016 rxclk
= cx25840_read4(c
, CX25840_IR_RXCLK_REG
) & RXCLK_RCD
;
1017 cduty
= cx25840_read4(c
, CX25840_IR_CDUTY_REG
) & CDUTY_CDC
;
1018 stats
= cx25840_read4(c
, CX25840_IR_STATS_REG
);
1019 irqen
= cx25840_read4(c
, CX25840_IR_IRQEN_REG
);
1020 if (is_cx23885(state
) || is_cx23887(state
))
1022 filtr
= cx25840_read4(c
, CX25840_IR_FILTR_REG
) & FILTR_LPF
;
1024 v4l2_info(sd
, "IR Receiver:\n");
1025 v4l2_info(sd
, "\tEnabled: %s\n",
1026 cntrl
& CNTRL_RXE
? "yes" : "no");
1027 v4l2_info(sd
, "\tDemodulation from a carrier: %s\n",
1028 cntrl
& CNTRL_DMD
? "enabled" : "disabled");
1029 v4l2_info(sd
, "\tFIFO: %s\n",
1030 cntrl
& CNTRL_RFE
? "enabled" : "disabled");
1031 switch (cntrl
& CNTRL_EDG
) {
1032 case CNTRL_EDG_NONE
:
1035 case CNTRL_EDG_FALL
:
1038 case CNTRL_EDG_RISE
:
1041 case CNTRL_EDG_BOTH
:
1042 s
= "rising & falling edges";
1048 v4l2_info(sd
, "\tPulse timers' start/stop trigger: %s\n", s
);
1049 v4l2_info(sd
, "\tFIFO data on pulse timer overflow: %s\n",
1050 cntrl
& CNTRL_R
? "not loaded" : "overflow marker");
1051 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1052 cntrl
& CNTRL_RIC
? "not empty" : "half full or greater");
1053 v4l2_info(sd
, "\tLoopback mode: %s\n",
1054 cntrl
& CNTRL_LBM
? "loopback active" : "normal receive");
1055 if (cntrl
& CNTRL_DMD
) {
1056 v4l2_info(sd
, "\tExpected carrier (16 clocks): %u Hz\n",
1057 clock_divider_to_carrier_freq(rxclk
));
1058 switch (cntrl
& CNTRL_WIN
) {
1080 v4l2_info(sd
, "\tNext carrier edge window: 16 clocks -%1d/+%1d, %u to %u Hz\n",
1082 clock_divider_to_freq(rxclk
, 16 + j
),
1083 clock_divider_to_freq(rxclk
, 16 - i
));
1085 v4l2_info(sd
, "\tMax measurable pulse width: %u us, %llu ns\n",
1086 pulse_width_count_to_us(FIFO_RXTX
, rxclk
),
1087 pulse_width_count_to_ns(FIFO_RXTX
, rxclk
));
1088 v4l2_info(sd
, "\tLow pass filter: %s\n",
1089 filtr
? "enabled" : "disabled");
1091 v4l2_info(sd
, "\tMin acceptable pulse width (LPF): %u us, %u ns\n",
1092 lpf_count_to_us(filtr
),
1093 lpf_count_to_ns(filtr
));
1094 v4l2_info(sd
, "\tPulse width timer timed-out: %s\n",
1095 stats
& STATS_RTO
? "yes" : "no");
1096 v4l2_info(sd
, "\tPulse width timer time-out intr: %s\n",
1097 irqen
& IRQEN_RTE
? "enabled" : "disabled");
1098 v4l2_info(sd
, "\tFIFO overrun: %s\n",
1099 stats
& STATS_ROR
? "yes" : "no");
1100 v4l2_info(sd
, "\tFIFO overrun interrupt: %s\n",
1101 irqen
& IRQEN_ROE
? "enabled" : "disabled");
1102 v4l2_info(sd
, "\tBusy: %s\n",
1103 stats
& STATS_RBY
? "yes" : "no");
1104 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1105 stats
& STATS_RSR
? "yes" : "no");
1106 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1107 irqen
& IRQEN_RSE
? "enabled" : "disabled");
1109 v4l2_info(sd
, "IR Transmitter:\n");
1110 v4l2_info(sd
, "\tEnabled: %s\n",
1111 cntrl
& CNTRL_TXE
? "yes" : "no");
1112 v4l2_info(sd
, "\tModulation onto a carrier: %s\n",
1113 cntrl
& CNTRL_MOD
? "enabled" : "disabled");
1114 v4l2_info(sd
, "\tFIFO: %s\n",
1115 cntrl
& CNTRL_TFE
? "enabled" : "disabled");
1116 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1117 cntrl
& CNTRL_TIC
? "not empty" : "half full or less");
1118 v4l2_info(sd
, "\tCarrier polarity: %s\n",
1119 cntrl
& CNTRL_CPL
? "space:burst mark:noburst"
1120 : "space:noburst mark:burst");
1121 if (cntrl
& CNTRL_MOD
) {
1122 v4l2_info(sd
, "\tCarrier (16 clocks): %u Hz\n",
1123 clock_divider_to_carrier_freq(txclk
));
1124 v4l2_info(sd
, "\tCarrier duty cycle: %2u/16\n",
1127 v4l2_info(sd
, "\tMax pulse width: %u us, %llu ns\n",
1128 pulse_width_count_to_us(FIFO_RXTX
, txclk
),
1129 pulse_width_count_to_ns(FIFO_RXTX
, txclk
));
1130 v4l2_info(sd
, "\tBusy: %s\n",
1131 stats
& STATS_TBY
? "yes" : "no");
1132 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1133 stats
& STATS_TSR
? "yes" : "no");
1134 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1135 irqen
& IRQEN_TSE
? "enabled" : "disabled");
1141 const struct v4l2_subdev_ir_ops cx25840_ir_ops
= {
1142 .rx_read
= cx25840_ir_rx_read
,
1143 .rx_g_parameters
= cx25840_ir_rx_g_parameters
,
1144 .rx_s_parameters
= cx25840_ir_rx_s_parameters
,
1146 .tx_write
= cx25840_ir_tx_write
,
1147 .tx_g_parameters
= cx25840_ir_tx_g_parameters
,
1148 .tx_s_parameters
= cx25840_ir_tx_s_parameters
,
1152 static const struct v4l2_subdev_ir_parameters default_rx_params
= {
1153 .bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
),
1154 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1157 .interrupt_enable
= false,
1161 .carrier_freq
= 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1163 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1164 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1165 .noise_filter_min_width
= 333333, /* ns */
1166 .carrier_range_lower
= 35000,
1167 .carrier_range_upper
= 37000,
1168 .invert_level
= false,
1171 static const struct v4l2_subdev_ir_parameters default_tx_params
= {
1172 .bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
),
1173 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1176 .interrupt_enable
= false,
1180 .carrier_freq
= 36000, /* 36 kHz - RC-5 carrier */
1181 .duty_cycle
= 25, /* 25 % - RC-5 carrier */
1182 .invert_level
= false,
1183 .invert_carrier_sense
= false,
1186 int cx25840_ir_probe(struct v4l2_subdev
*sd
)
1188 struct cx25840_state
*state
= to_state(sd
);
1189 struct cx25840_ir_state
*ir_state
;
1190 struct v4l2_subdev_ir_parameters default_params
;
1192 /* Only init the IR controller for the CX2388[57] AV Core for now */
1193 if (!(is_cx23885(state
) || is_cx23887(state
)))
1196 ir_state
= devm_kzalloc(&state
->c
->dev
, sizeof(*ir_state
), GFP_KERNEL
);
1197 if (ir_state
== NULL
)
1200 spin_lock_init(&ir_state
->rx_kfifo_lock
);
1201 if (kfifo_alloc(&ir_state
->rx_kfifo
,
1202 CX25840_IR_RX_KFIFO_SIZE
, GFP_KERNEL
))
1205 ir_state
->c
= state
->c
;
1206 state
->ir_state
= ir_state
;
1208 /* Ensure no interrupts arrive yet */
1209 if (is_cx23885(state
) || is_cx23887(state
))
1210 cx25840_write4(ir_state
->c
, CX25840_IR_IRQEN_REG
, IRQEN_MSK
);
1212 cx25840_write4(ir_state
->c
, CX25840_IR_IRQEN_REG
, 0);
1214 mutex_init(&ir_state
->rx_params_lock
);
1215 default_params
= default_rx_params
;
1216 v4l2_subdev_call(sd
, ir
, rx_s_parameters
, &default_params
);
1218 mutex_init(&ir_state
->tx_params_lock
);
1219 default_params
= default_tx_params
;
1220 v4l2_subdev_call(sd
, ir
, tx_s_parameters
, &default_params
);
1225 int cx25840_ir_remove(struct v4l2_subdev
*sd
)
1227 struct cx25840_state
*state
= to_state(sd
);
1228 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
1230 if (ir_state
== NULL
)
1233 cx25840_ir_rx_shutdown(sd
);
1234 cx25840_ir_tx_shutdown(sd
);
1236 kfifo_free(&ir_state
->rx_kfifo
);
1237 state
->ir_state
= NULL
;