1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright 2014 IBM Corp.
6 #include <linux/spinlock.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/slab.h>
10 #include <linux/mutex.h>
12 #include <linux/uaccess.h>
13 #include <linux/delay.h>
14 #include <linux/irqdomain.h>
15 #include <asm/synch.h>
16 #include <asm/switch_to.h>
17 #include <misc/cxl-base.h>
22 static int afu_control(struct cxl_afu
*afu
, u64 command
, u64 clear
,
23 u64 result
, u64 mask
, bool enabled
)
26 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
29 spin_lock(&afu
->afu_cntl_lock
);
30 pr_devel("AFU command starting: %llx\n", command
);
32 trace_cxl_afu_ctrl(afu
, command
);
34 AFU_Cntl
= cxl_p2n_read(afu
, CXL_AFU_Cntl_An
);
35 cxl_p2n_write(afu
, CXL_AFU_Cntl_An
, (AFU_Cntl
& ~clear
) | command
);
37 AFU_Cntl
= cxl_p2n_read(afu
, CXL_AFU_Cntl_An
);
38 while ((AFU_Cntl
& mask
) != result
) {
39 if (time_after_eq(jiffies
, timeout
)) {
40 dev_warn(&afu
->dev
, "WARNING: AFU control timed out!\n");
45 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
46 afu
->enabled
= enabled
;
51 pr_devel_ratelimited("AFU control... (0x%016llx)\n",
54 AFU_Cntl
= cxl_p2n_read(afu
, CXL_AFU_Cntl_An
);
57 if (AFU_Cntl
& CXL_AFU_Cntl_An_RA
) {
59 * Workaround for a bug in the XSL used in the Mellanox CX4
60 * that fails to clear the RA bit after an AFU reset,
61 * preventing subsequent AFU resets from working.
63 cxl_p2n_write(afu
, CXL_AFU_Cntl_An
, AFU_Cntl
& ~CXL_AFU_Cntl_An_RA
);
66 pr_devel("AFU command complete: %llx\n", command
);
67 afu
->enabled
= enabled
;
69 trace_cxl_afu_ctrl_done(afu
, command
, rc
);
70 spin_unlock(&afu
->afu_cntl_lock
);
75 static int afu_enable(struct cxl_afu
*afu
)
77 pr_devel("AFU enable request\n");
79 return afu_control(afu
, CXL_AFU_Cntl_An_E
, 0,
80 CXL_AFU_Cntl_An_ES_Enabled
,
81 CXL_AFU_Cntl_An_ES_MASK
, true);
84 int cxl_afu_disable(struct cxl_afu
*afu
)
86 pr_devel("AFU disable request\n");
88 return afu_control(afu
, 0, CXL_AFU_Cntl_An_E
,
89 CXL_AFU_Cntl_An_ES_Disabled
,
90 CXL_AFU_Cntl_An_ES_MASK
, false);
93 /* This will disable as well as reset */
94 static int native_afu_reset(struct cxl_afu
*afu
)
99 pr_devel("AFU reset request\n");
101 rc
= afu_control(afu
, CXL_AFU_Cntl_An_RA
, 0,
102 CXL_AFU_Cntl_An_RS_Complete
| CXL_AFU_Cntl_An_ES_Disabled
,
103 CXL_AFU_Cntl_An_RS_MASK
| CXL_AFU_Cntl_An_ES_MASK
,
107 * Re-enable any masked interrupts when the AFU is not
108 * activated to avoid side effects after attaching a process
111 if (afu
->current_mode
== 0) {
112 serr
= cxl_p1n_read(afu
, CXL_PSL_SERR_An
);
113 serr
&= ~CXL_PSL_SERR_An_IRQ_MASKS
;
114 cxl_p1n_write(afu
, CXL_PSL_SERR_An
, serr
);
120 static int native_afu_check_and_enable(struct cxl_afu
*afu
)
122 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
123 WARN(1, "Refusing to enable afu while link down!\n");
128 return afu_enable(afu
);
131 int cxl_psl_purge(struct cxl_afu
*afu
)
133 u64 PSL_CNTL
= cxl_p1n_read(afu
, CXL_PSL_SCNTL_An
);
134 u64 AFU_Cntl
= cxl_p2n_read(afu
, CXL_AFU_Cntl_An
);
137 u64 trans_fault
= 0x0ULL
;
138 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
141 trace_cxl_psl_ctrl(afu
, CXL_PSL_SCNTL_An_Pc
);
143 pr_devel("PSL purge request\n");
146 trans_fault
= CXL_PSL_DSISR_TRANS
;
148 trans_fault
= CXL_PSL9_DSISR_An_TF
;
150 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
151 dev_warn(&afu
->dev
, "PSL Purge called with link down, ignoring\n");
156 if ((AFU_Cntl
& CXL_AFU_Cntl_An_ES_MASK
) != CXL_AFU_Cntl_An_ES_Disabled
) {
157 WARN(1, "psl_purge request while AFU not disabled!\n");
158 cxl_afu_disable(afu
);
161 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
,
162 PSL_CNTL
| CXL_PSL_SCNTL_An_Pc
);
163 start
= local_clock();
164 PSL_CNTL
= cxl_p1n_read(afu
, CXL_PSL_SCNTL_An
);
165 while ((PSL_CNTL
& CXL_PSL_SCNTL_An_Ps_MASK
)
166 == CXL_PSL_SCNTL_An_Ps_Pending
) {
167 if (time_after_eq(jiffies
, timeout
)) {
168 dev_warn(&afu
->dev
, "WARNING: PSL Purge timed out!\n");
172 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
177 dsisr
= cxl_p2n_read(afu
, CXL_PSL_DSISR_An
);
178 pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%016llx PSL_DSISR: 0x%016llx\n",
181 if (dsisr
& trans_fault
) {
182 dar
= cxl_p2n_read(afu
, CXL_PSL_DAR_An
);
183 dev_notice(&afu
->dev
, "PSL purge terminating pending translation, DSISR: 0x%016llx, DAR: 0x%016llx\n",
185 cxl_p2n_write(afu
, CXL_PSL_TFC_An
, CXL_PSL_TFC_An_AE
);
187 dev_notice(&afu
->dev
, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%016llx\n",
189 cxl_p2n_write(afu
, CXL_PSL_TFC_An
, CXL_PSL_TFC_An_A
);
193 PSL_CNTL
= cxl_p1n_read(afu
, CXL_PSL_SCNTL_An
);
196 pr_devel("PSL purged in %lld ns\n", end
- start
);
198 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
,
199 PSL_CNTL
& ~CXL_PSL_SCNTL_An_Pc
);
201 trace_cxl_psl_ctrl_done(afu
, CXL_PSL_SCNTL_An_Pc
, rc
);
205 static int spa_max_procs(int spa_size
)
209 * end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255
210 * Most of that junk is really just an overly-complicated way of saying
211 * the last 256 bytes are __aligned(128), so it's really:
212 * end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255
214 * end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1
216 * sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256
217 * Ignore the alignment (which is safe in this case as long as we are
218 * careful with our rounding) and solve for n:
220 return ((spa_size
/ 8) - 96) / 17;
223 static int cxl_alloc_spa(struct cxl_afu
*afu
, int mode
)
227 /* Work out how many pages to allocate */
228 afu
->native
->spa_order
= -1;
230 afu
->native
->spa_order
++;
231 spa_size
= (1 << afu
->native
->spa_order
) * PAGE_SIZE
;
233 if (spa_size
> 0x100000) {
234 dev_warn(&afu
->dev
, "num_of_processes too large for the SPA, limiting to %i (0x%x)\n",
235 afu
->native
->spa_max_procs
, afu
->native
->spa_size
);
236 if (mode
!= CXL_MODE_DEDICATED
)
237 afu
->num_procs
= afu
->native
->spa_max_procs
;
241 afu
->native
->spa_size
= spa_size
;
242 afu
->native
->spa_max_procs
= spa_max_procs(afu
->native
->spa_size
);
243 } while (afu
->native
->spa_max_procs
< afu
->num_procs
);
245 if (!(afu
->native
->spa
= (struct cxl_process_element
*)
246 __get_free_pages(GFP_KERNEL
| __GFP_ZERO
, afu
->native
->spa_order
))) {
247 pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n");
250 pr_devel("spa pages: %i afu->spa_max_procs: %i afu->num_procs: %i\n",
251 1<<afu
->native
->spa_order
, afu
->native
->spa_max_procs
, afu
->num_procs
);
256 static void attach_spa(struct cxl_afu
*afu
)
260 afu
->native
->sw_command_status
= (__be64
*)((char *)afu
->native
->spa
+
261 ((afu
->native
->spa_max_procs
+ 3) * 128));
263 spap
= virt_to_phys(afu
->native
->spa
) & CXL_PSL_SPAP_Addr
;
264 spap
|= ((afu
->native
->spa_size
>> (12 - CXL_PSL_SPAP_Size_Shift
)) - 1) & CXL_PSL_SPAP_Size
;
265 spap
|= CXL_PSL_SPAP_V
;
266 pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n",
267 afu
->native
->spa
, afu
->native
->spa_max_procs
,
268 afu
->native
->sw_command_status
, spap
);
269 cxl_p1n_write(afu
, CXL_PSL_SPAP_An
, spap
);
272 void cxl_release_spa(struct cxl_afu
*afu
)
274 if (afu
->native
->spa
) {
275 free_pages((unsigned long) afu
->native
->spa
,
276 afu
->native
->spa_order
);
277 afu
->native
->spa
= NULL
;
282 * Invalidation of all ERAT entries is no longer required by CAIA2. Use
285 int cxl_invalidate_all_psl9(struct cxl
*adapter
)
287 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
290 pr_devel("CXL adapter - invalidation of all ERAT entries\n");
292 /* Invalidates all ERAT entries for Radix or HPT */
293 ierat
= CXL_XSL9_IERAT_IALL
;
295 ierat
|= CXL_XSL9_IERAT_INVR
;
296 cxl_p1_write(adapter
, CXL_XSL9_IERAT
, ierat
);
298 while (cxl_p1_read(adapter
, CXL_XSL9_IERAT
) & CXL_XSL9_IERAT_IINPROG
) {
299 if (time_after_eq(jiffies
, timeout
)) {
300 dev_warn(&adapter
->dev
,
301 "WARNING: CXL adapter invalidation of all ERAT entries timed out!\n");
304 if (!cxl_ops
->link_ok(adapter
, NULL
))
311 int cxl_invalidate_all_psl8(struct cxl
*adapter
)
313 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
315 pr_devel("CXL adapter wide TLBIA & SLBIA\n");
317 cxl_p1_write(adapter
, CXL_PSL_AFUSEL
, CXL_PSL_AFUSEL_A
);
319 cxl_p1_write(adapter
, CXL_PSL_TLBIA
, CXL_TLB_SLB_IQ_ALL
);
320 while (cxl_p1_read(adapter
, CXL_PSL_TLBIA
) & CXL_TLB_SLB_P
) {
321 if (time_after_eq(jiffies
, timeout
)) {
322 dev_warn(&adapter
->dev
, "WARNING: CXL adapter wide TLBIA timed out!\n");
325 if (!cxl_ops
->link_ok(adapter
, NULL
))
330 cxl_p1_write(adapter
, CXL_PSL_SLBIA
, CXL_TLB_SLB_IQ_ALL
);
331 while (cxl_p1_read(adapter
, CXL_PSL_SLBIA
) & CXL_TLB_SLB_P
) {
332 if (time_after_eq(jiffies
, timeout
)) {
333 dev_warn(&adapter
->dev
, "WARNING: CXL adapter wide SLBIA timed out!\n");
336 if (!cxl_ops
->link_ok(adapter
, NULL
))
343 int cxl_data_cache_flush(struct cxl
*adapter
)
346 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
349 * Do a datacache flush only if datacache is available.
350 * In case of PSL9D datacache absent hence flush operation.
353 if (adapter
->native
->no_data_cache
) {
354 pr_devel("No PSL data cache. Ignoring cache flush req.\n");
358 pr_devel("Flushing data cache\n");
359 reg
= cxl_p1_read(adapter
, CXL_PSL_Control
);
360 reg
|= CXL_PSL_Control_Fr
;
361 cxl_p1_write(adapter
, CXL_PSL_Control
, reg
);
363 reg
= cxl_p1_read(adapter
, CXL_PSL_Control
);
364 while ((reg
& CXL_PSL_Control_Fs_MASK
) != CXL_PSL_Control_Fs_Complete
) {
365 if (time_after_eq(jiffies
, timeout
)) {
366 dev_warn(&adapter
->dev
, "WARNING: cache flush timed out!\n");
370 if (!cxl_ops
->link_ok(adapter
, NULL
)) {
371 dev_warn(&adapter
->dev
, "WARNING: link down when flushing cache\n");
375 reg
= cxl_p1_read(adapter
, CXL_PSL_Control
);
378 reg
&= ~CXL_PSL_Control_Fr
;
379 cxl_p1_write(adapter
, CXL_PSL_Control
, reg
);
383 static int cxl_write_sstp(struct cxl_afu
*afu
, u64 sstp0
, u64 sstp1
)
387 /* 1. Disable SSTP by writing 0 to SSTP1[V] */
388 cxl_p2n_write(afu
, CXL_SSTP1_An
, 0);
390 /* 2. Invalidate all SLB entries */
391 if ((rc
= cxl_afu_slbia(afu
)))
394 /* 3. Set SSTP0_An */
395 cxl_p2n_write(afu
, CXL_SSTP0_An
, sstp0
);
397 /* 4. Set SSTP1_An */
398 cxl_p2n_write(afu
, CXL_SSTP1_An
, sstp1
);
403 /* Using per slice version may improve performance here. (ie. SLBIA_An) */
404 static void slb_invalid(struct cxl_context
*ctx
)
406 struct cxl
*adapter
= ctx
->afu
->adapter
;
409 WARN_ON(!mutex_is_locked(&ctx
->afu
->native
->spa_mutex
));
411 cxl_p1_write(adapter
, CXL_PSL_LBISEL
,
412 ((u64
)be32_to_cpu(ctx
->elem
->common
.pid
) << 32) |
413 be32_to_cpu(ctx
->elem
->lpid
));
414 cxl_p1_write(adapter
, CXL_PSL_SLBIA
, CXL_TLB_SLB_IQ_LPIDPID
);
417 if (!cxl_ops
->link_ok(adapter
, NULL
))
419 slbia
= cxl_p1_read(adapter
, CXL_PSL_SLBIA
);
420 if (!(slbia
& CXL_TLB_SLB_P
))
426 static int do_process_element_cmd(struct cxl_context
*ctx
,
427 u64 cmd
, u64 pe_state
)
430 unsigned long timeout
= jiffies
+ (HZ
* CXL_TIMEOUT
);
433 trace_cxl_llcmd(ctx
, cmd
);
435 WARN_ON(!ctx
->afu
->enabled
);
437 ctx
->elem
->software_state
= cpu_to_be32(pe_state
);
439 *(ctx
->afu
->native
->sw_command_status
) = cpu_to_be64(cmd
| 0 | ctx
->pe
);
441 cxl_p1n_write(ctx
->afu
, CXL_PSL_LLCMD_An
, cmd
| ctx
->pe
);
443 if (time_after_eq(jiffies
, timeout
)) {
444 dev_warn(&ctx
->afu
->dev
, "WARNING: Process Element Command timed out!\n");
448 if (!cxl_ops
->link_ok(ctx
->afu
->adapter
, ctx
->afu
)) {
449 dev_warn(&ctx
->afu
->dev
, "WARNING: Device link down, aborting Process Element Command!\n");
453 state
= be64_to_cpup(ctx
->afu
->native
->sw_command_status
);
454 if (state
== ~0ULL) {
455 pr_err("cxl: Error adding process element to AFU\n");
459 if ((state
& (CXL_SPA_SW_CMD_MASK
| CXL_SPA_SW_STATE_MASK
| CXL_SPA_SW_LINK_MASK
)) ==
460 (cmd
| (cmd
>> 16) | ctx
->pe
))
463 * The command won't finish in the PSL if there are
464 * outstanding DSIs. Hence we need to yield here in
465 * case there are outstanding DSIs that we need to
466 * service. Tuning possiblity: we could wait for a
473 trace_cxl_llcmd_done(ctx
, cmd
, rc
);
477 static int add_process_element(struct cxl_context
*ctx
)
481 mutex_lock(&ctx
->afu
->native
->spa_mutex
);
482 pr_devel("%s Adding pe: %i started\n", __func__
, ctx
->pe
);
483 if (!(rc
= do_process_element_cmd(ctx
, CXL_SPA_SW_CMD_ADD
, CXL_PE_SOFTWARE_STATE_V
)))
484 ctx
->pe_inserted
= true;
485 pr_devel("%s Adding pe: %i finished\n", __func__
, ctx
->pe
);
486 mutex_unlock(&ctx
->afu
->native
->spa_mutex
);
490 static int terminate_process_element(struct cxl_context
*ctx
)
494 /* fast path terminate if it's already invalid */
495 if (!(ctx
->elem
->software_state
& cpu_to_be32(CXL_PE_SOFTWARE_STATE_V
)))
498 mutex_lock(&ctx
->afu
->native
->spa_mutex
);
499 pr_devel("%s Terminate pe: %i started\n", __func__
, ctx
->pe
);
500 /* We could be asked to terminate when the hw is down. That
501 * should always succeed: it's not running if the hw has gone
502 * away and is being reset.
504 if (cxl_ops
->link_ok(ctx
->afu
->adapter
, ctx
->afu
))
505 rc
= do_process_element_cmd(ctx
, CXL_SPA_SW_CMD_TERMINATE
,
506 CXL_PE_SOFTWARE_STATE_V
| CXL_PE_SOFTWARE_STATE_T
);
507 ctx
->elem
->software_state
= 0; /* Remove Valid bit */
508 pr_devel("%s Terminate pe: %i finished\n", __func__
, ctx
->pe
);
509 mutex_unlock(&ctx
->afu
->native
->spa_mutex
);
513 static int remove_process_element(struct cxl_context
*ctx
)
517 mutex_lock(&ctx
->afu
->native
->spa_mutex
);
518 pr_devel("%s Remove pe: %i started\n", __func__
, ctx
->pe
);
520 /* We could be asked to remove when the hw is down. Again, if
521 * the hw is down, the PE is gone, so we succeed.
523 if (cxl_ops
->link_ok(ctx
->afu
->adapter
, ctx
->afu
))
524 rc
= do_process_element_cmd(ctx
, CXL_SPA_SW_CMD_REMOVE
, 0);
527 ctx
->pe_inserted
= false;
530 pr_devel("%s Remove pe: %i finished\n", __func__
, ctx
->pe
);
531 mutex_unlock(&ctx
->afu
->native
->spa_mutex
);
536 void cxl_assign_psn_space(struct cxl_context
*ctx
)
538 if (!ctx
->afu
->pp_size
|| ctx
->master
) {
539 ctx
->psn_phys
= ctx
->afu
->psn_phys
;
540 ctx
->psn_size
= ctx
->afu
->adapter
->ps_size
;
542 ctx
->psn_phys
= ctx
->afu
->psn_phys
+
543 (ctx
->afu
->native
->pp_offset
+ ctx
->afu
->pp_size
* ctx
->pe
);
544 ctx
->psn_size
= ctx
->afu
->pp_size
;
548 static int activate_afu_directed(struct cxl_afu
*afu
)
552 dev_info(&afu
->dev
, "Activating AFU directed mode\n");
554 afu
->num_procs
= afu
->max_procs_virtualised
;
555 if (afu
->native
->spa
== NULL
) {
556 if (cxl_alloc_spa(afu
, CXL_MODE_DIRECTED
))
561 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
, CXL_PSL_SCNTL_An_PM_AFU
);
563 cxl_p1n_write(afu
, CXL_PSL_AMOR_An
, 0xFFFFFFFFFFFFFFFFULL
);
564 cxl_p1n_write(afu
, CXL_PSL_ID_An
, CXL_PSL_ID_An_F
| CXL_PSL_ID_An_L
);
566 afu
->current_mode
= CXL_MODE_DIRECTED
;
568 if ((rc
= cxl_chardev_m_afu_add(afu
)))
571 if ((rc
= cxl_sysfs_afu_m_add(afu
)))
574 if ((rc
= cxl_chardev_s_afu_add(afu
)))
579 cxl_sysfs_afu_m_remove(afu
);
581 cxl_chardev_afu_remove(afu
);
585 #ifdef CONFIG_CPU_LITTLE_ENDIAN
586 #define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE)
588 #define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE))
591 u64
cxl_calculate_sr(bool master
, bool kernel
, bool real_mode
, bool p9
)
597 sr
|= CXL_PSL_SR_An_MP
;
598 if (mfspr(SPRN_LPCR
) & LPCR_TC
)
599 sr
|= CXL_PSL_SR_An_TC
;
603 sr
|= CXL_PSL_SR_An_R
;
604 sr
|= (mfmsr() & MSR_SF
) | CXL_PSL_SR_An_HV
;
606 sr
|= CXL_PSL_SR_An_PR
| CXL_PSL_SR_An_R
;
608 sr
|= CXL_PSL_SR_An_HV
;
610 sr
&= ~(CXL_PSL_SR_An_HV
);
611 if (!test_tsk_thread_flag(current
, TIF_32BIT
))
612 sr
|= CXL_PSL_SR_An_SF
;
616 sr
|= CXL_PSL_SR_An_XLAT_ror
;
618 sr
|= CXL_PSL_SR_An_XLAT_hpt
;
623 static u64
calculate_sr(struct cxl_context
*ctx
)
625 return cxl_calculate_sr(ctx
->master
, ctx
->kernel
, false,
629 static void update_ivtes_directed(struct cxl_context
*ctx
)
631 bool need_update
= (ctx
->status
== STARTED
);
635 WARN_ON(terminate_process_element(ctx
));
636 WARN_ON(remove_process_element(ctx
));
639 for (r
= 0; r
< CXL_IRQ_RANGES
; r
++) {
640 ctx
->elem
->ivte_offsets
[r
] = cpu_to_be16(ctx
->irqs
.offset
[r
]);
641 ctx
->elem
->ivte_ranges
[r
] = cpu_to_be16(ctx
->irqs
.range
[r
]);
645 * Theoretically we could use the update llcmd, instead of a
646 * terminate/remove/add (or if an atomic update was required we could
647 * do a suspend/update/resume), however it seems there might be issues
648 * with the update llcmd on some cards (including those using an XSL on
649 * an ASIC) so for now it's safest to go with the commands that are
650 * known to work. In the future if we come across a situation where the
651 * card may be performing transactions using the same PE while we are
652 * doing this update we might need to revisit this.
655 WARN_ON(add_process_element(ctx
));
658 static int process_element_entry_psl9(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
663 cxl_assign_psn_space(ctx
);
665 ctx
->elem
->ctxtime
= 0; /* disable */
666 ctx
->elem
->lpid
= cpu_to_be32(mfspr(SPRN_LPID
));
667 ctx
->elem
->haurp
= 0; /* disable */
672 if (ctx
->mm
== NULL
) {
673 pr_devel("%s: unable to get mm for pe=%d pid=%i\n",
674 __func__
, ctx
->pe
, pid_nr(ctx
->pid
));
677 pid
= ctx
->mm
->context
.id
;
680 /* Assign a unique TIDR (thread id) for the current thread */
681 if (!(ctx
->tidr
) && (ctx
->assign_tidr
)) {
682 rc
= set_thread_tidr(current
);
685 ctx
->tidr
= current
->thread
.tidr
;
686 pr_devel("%s: current tidr: %d\n", __func__
, ctx
->tidr
);
689 ctx
->elem
->common
.tid
= cpu_to_be32(ctx
->tidr
);
690 ctx
->elem
->common
.pid
= cpu_to_be32(pid
);
692 ctx
->elem
->sr
= cpu_to_be64(calculate_sr(ctx
));
694 ctx
->elem
->common
.csrp
= 0; /* disable */
696 cxl_prefault(ctx
, wed
);
699 * Ensure we have the multiplexed PSL interrupt set up to take faults
700 * for kernel contexts that may not have allocated any AFU IRQs at all:
702 if (ctx
->irqs
.range
[0] == 0) {
703 ctx
->irqs
.offset
[0] = ctx
->afu
->native
->psl_hwirq
;
704 ctx
->irqs
.range
[0] = 1;
707 ctx
->elem
->common
.amr
= cpu_to_be64(amr
);
708 ctx
->elem
->common
.wed
= cpu_to_be64(wed
);
713 int cxl_attach_afu_directed_psl9(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
717 /* fill the process element entry */
718 result
= process_element_entry_psl9(ctx
, wed
, amr
);
722 update_ivtes_directed(ctx
);
724 /* first guy needs to enable */
725 result
= cxl_ops
->afu_check_and_enable(ctx
->afu
);
729 return add_process_element(ctx
);
732 int cxl_attach_afu_directed_psl8(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
737 cxl_assign_psn_space(ctx
);
739 ctx
->elem
->ctxtime
= 0; /* disable */
740 ctx
->elem
->lpid
= cpu_to_be32(mfspr(SPRN_LPID
));
741 ctx
->elem
->haurp
= 0; /* disable */
742 ctx
->elem
->u
.sdr
= cpu_to_be64(mfspr(SPRN_SDR1
));
747 ctx
->elem
->common
.tid
= 0;
748 ctx
->elem
->common
.pid
= cpu_to_be32(pid
);
750 ctx
->elem
->sr
= cpu_to_be64(calculate_sr(ctx
));
752 ctx
->elem
->common
.csrp
= 0; /* disable */
753 ctx
->elem
->common
.u
.psl8
.aurp0
= 0; /* disable */
754 ctx
->elem
->common
.u
.psl8
.aurp1
= 0; /* disable */
756 cxl_prefault(ctx
, wed
);
758 ctx
->elem
->common
.u
.psl8
.sstp0
= cpu_to_be64(ctx
->sstp0
);
759 ctx
->elem
->common
.u
.psl8
.sstp1
= cpu_to_be64(ctx
->sstp1
);
762 * Ensure we have the multiplexed PSL interrupt set up to take faults
763 * for kernel contexts that may not have allocated any AFU IRQs at all:
765 if (ctx
->irqs
.range
[0] == 0) {
766 ctx
->irqs
.offset
[0] = ctx
->afu
->native
->psl_hwirq
;
767 ctx
->irqs
.range
[0] = 1;
770 update_ivtes_directed(ctx
);
772 ctx
->elem
->common
.amr
= cpu_to_be64(amr
);
773 ctx
->elem
->common
.wed
= cpu_to_be64(wed
);
775 /* first guy needs to enable */
776 if ((result
= cxl_ops
->afu_check_and_enable(ctx
->afu
)))
779 return add_process_element(ctx
);
782 static int deactivate_afu_directed(struct cxl_afu
*afu
)
784 dev_info(&afu
->dev
, "Deactivating AFU directed mode\n");
786 afu
->current_mode
= 0;
789 cxl_sysfs_afu_m_remove(afu
);
790 cxl_chardev_afu_remove(afu
);
793 * The CAIA section 2.2.1 indicates that the procedure for starting and
794 * stopping an AFU in AFU directed mode is AFU specific, which is not
795 * ideal since this code is generic and with one exception has no
796 * knowledge of the AFU. This is in contrast to the procedure for
797 * disabling a dedicated process AFU, which is documented to just
798 * require a reset. The architecture does indicate that both an AFU
799 * reset and an AFU disable should result in the AFU being disabled and
800 * we do both followed by a PSL purge for safety.
802 * Notably we used to have some issues with the disable sequence on PSL
803 * cards, which is why we ended up using this heavy weight procedure in
804 * the first place, however a bug was discovered that had rendered the
805 * disable operation ineffective, so it is conceivable that was the
806 * sole explanation for those difficulties. Careful regression testing
807 * is recommended if anyone attempts to remove or reorder these
810 * The XSL on the Mellanox CX4 behaves a little differently from the
811 * PSL based cards and will time out an AFU reset if the AFU is still
812 * enabled. That card is special in that we do have a means to identify
813 * it from this code, so in that case we skip the reset and just use a
814 * disable/purge to avoid the timeout and corresponding noise in the
817 if (afu
->adapter
->native
->sl_ops
->needs_reset_before_disable
)
818 cxl_ops
->afu_reset(afu
);
819 cxl_afu_disable(afu
);
825 int cxl_activate_dedicated_process_psl9(struct cxl_afu
*afu
)
827 dev_info(&afu
->dev
, "Activating dedicated process mode\n");
830 * If XSL is set to dedicated mode (Set in PSL_SCNTL reg), the
831 * XSL and AFU are programmed to work with a single context.
832 * The context information should be configured in the SPA area
833 * index 0 (so PSL_SPAP must be configured before enabling the
837 if (afu
->native
->spa
== NULL
) {
838 if (cxl_alloc_spa(afu
, CXL_MODE_DEDICATED
))
843 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
, CXL_PSL_SCNTL_An_PM_Process
);
844 cxl_p1n_write(afu
, CXL_PSL_ID_An
, CXL_PSL_ID_An_F
| CXL_PSL_ID_An_L
);
846 afu
->current_mode
= CXL_MODE_DEDICATED
;
848 return cxl_chardev_d_afu_add(afu
);
851 int cxl_activate_dedicated_process_psl8(struct cxl_afu
*afu
)
853 dev_info(&afu
->dev
, "Activating dedicated process mode\n");
855 cxl_p1n_write(afu
, CXL_PSL_SCNTL_An
, CXL_PSL_SCNTL_An_PM_Process
);
857 cxl_p1n_write(afu
, CXL_PSL_CtxTime_An
, 0); /* disable */
858 cxl_p1n_write(afu
, CXL_PSL_SPAP_An
, 0); /* disable */
859 cxl_p1n_write(afu
, CXL_PSL_AMOR_An
, 0xFFFFFFFFFFFFFFFFULL
);
860 cxl_p1n_write(afu
, CXL_PSL_LPID_An
, mfspr(SPRN_LPID
));
861 cxl_p1n_write(afu
, CXL_HAURP_An
, 0); /* disable */
862 cxl_p1n_write(afu
, CXL_PSL_SDR_An
, mfspr(SPRN_SDR1
));
864 cxl_p2n_write(afu
, CXL_CSRP_An
, 0); /* disable */
865 cxl_p2n_write(afu
, CXL_AURP0_An
, 0); /* disable */
866 cxl_p2n_write(afu
, CXL_AURP1_An
, 0); /* disable */
868 afu
->current_mode
= CXL_MODE_DEDICATED
;
871 return cxl_chardev_d_afu_add(afu
);
874 void cxl_update_dedicated_ivtes_psl9(struct cxl_context
*ctx
)
878 for (r
= 0; r
< CXL_IRQ_RANGES
; r
++) {
879 ctx
->elem
->ivte_offsets
[r
] = cpu_to_be16(ctx
->irqs
.offset
[r
]);
880 ctx
->elem
->ivte_ranges
[r
] = cpu_to_be16(ctx
->irqs
.range
[r
]);
884 void cxl_update_dedicated_ivtes_psl8(struct cxl_context
*ctx
)
886 struct cxl_afu
*afu
= ctx
->afu
;
888 cxl_p1n_write(afu
, CXL_PSL_IVTE_Offset_An
,
889 (((u64
)ctx
->irqs
.offset
[0] & 0xffff) << 48) |
890 (((u64
)ctx
->irqs
.offset
[1] & 0xffff) << 32) |
891 (((u64
)ctx
->irqs
.offset
[2] & 0xffff) << 16) |
892 ((u64
)ctx
->irqs
.offset
[3] & 0xffff));
893 cxl_p1n_write(afu
, CXL_PSL_IVTE_Limit_An
, (u64
)
894 (((u64
)ctx
->irqs
.range
[0] & 0xffff) << 48) |
895 (((u64
)ctx
->irqs
.range
[1] & 0xffff) << 32) |
896 (((u64
)ctx
->irqs
.range
[2] & 0xffff) << 16) |
897 ((u64
)ctx
->irqs
.range
[3] & 0xffff));
900 int cxl_attach_dedicated_process_psl9(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
902 struct cxl_afu
*afu
= ctx
->afu
;
905 /* fill the process element entry */
906 result
= process_element_entry_psl9(ctx
, wed
, amr
);
910 if (ctx
->afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes
)
911 afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes(ctx
);
913 ctx
->elem
->software_state
= cpu_to_be32(CXL_PE_SOFTWARE_STATE_V
);
915 * Ideally we should do a wmb() here to make sure the changes to the
916 * PE are visible to the card before we call afu_enable.
917 * On ppc64 though all mmios are preceded by a 'sync' instruction hence
918 * we dont dont need one here.
921 result
= cxl_ops
->afu_reset(afu
);
925 return afu_enable(afu
);
928 int cxl_attach_dedicated_process_psl8(struct cxl_context
*ctx
, u64 wed
, u64 amr
)
930 struct cxl_afu
*afu
= ctx
->afu
;
934 pid
= (u64
)current
->pid
<< 32;
937 cxl_p2n_write(afu
, CXL_PSL_PID_TID_An
, pid
);
939 cxl_p1n_write(afu
, CXL_PSL_SR_An
, calculate_sr(ctx
));
941 if ((rc
= cxl_write_sstp(afu
, ctx
->sstp0
, ctx
->sstp1
)))
944 cxl_prefault(ctx
, wed
);
946 if (ctx
->afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes
)
947 afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes(ctx
);
949 cxl_p2n_write(afu
, CXL_PSL_AMR_An
, amr
);
951 /* master only context for dedicated */
952 cxl_assign_psn_space(ctx
);
954 if ((rc
= cxl_ops
->afu_reset(afu
)))
957 cxl_p2n_write(afu
, CXL_PSL_WED_An
, wed
);
959 return afu_enable(afu
);
962 static int deactivate_dedicated_process(struct cxl_afu
*afu
)
964 dev_info(&afu
->dev
, "Deactivating dedicated process mode\n");
966 afu
->current_mode
= 0;
969 cxl_chardev_afu_remove(afu
);
974 static int native_afu_deactivate_mode(struct cxl_afu
*afu
, int mode
)
976 if (mode
== CXL_MODE_DIRECTED
)
977 return deactivate_afu_directed(afu
);
978 if (mode
== CXL_MODE_DEDICATED
)
979 return deactivate_dedicated_process(afu
);
983 static int native_afu_activate_mode(struct cxl_afu
*afu
, int mode
)
987 if (!(mode
& afu
->modes_supported
))
990 if (!cxl_ops
->link_ok(afu
->adapter
, afu
)) {
991 WARN(1, "Device link is down, refusing to activate!\n");
995 if (mode
== CXL_MODE_DIRECTED
)
996 return activate_afu_directed(afu
);
997 if ((mode
== CXL_MODE_DEDICATED
) &&
998 (afu
->adapter
->native
->sl_ops
->activate_dedicated_process
))
999 return afu
->adapter
->native
->sl_ops
->activate_dedicated_process(afu
);
1004 static int native_attach_process(struct cxl_context
*ctx
, bool kernel
,
1007 if (!cxl_ops
->link_ok(ctx
->afu
->adapter
, ctx
->afu
)) {
1008 WARN(1, "Device link is down, refusing to attach process!\n");
1012 ctx
->kernel
= kernel
;
1013 if ((ctx
->afu
->current_mode
== CXL_MODE_DIRECTED
) &&
1014 (ctx
->afu
->adapter
->native
->sl_ops
->attach_afu_directed
))
1015 return ctx
->afu
->adapter
->native
->sl_ops
->attach_afu_directed(ctx
, wed
, amr
);
1017 if ((ctx
->afu
->current_mode
== CXL_MODE_DEDICATED
) &&
1018 (ctx
->afu
->adapter
->native
->sl_ops
->attach_dedicated_process
))
1019 return ctx
->afu
->adapter
->native
->sl_ops
->attach_dedicated_process(ctx
, wed
, amr
);
1024 static inline int detach_process_native_dedicated(struct cxl_context
*ctx
)
1027 * The CAIA section 2.1.1 indicates that we need to do an AFU reset to
1028 * stop the AFU in dedicated mode (we therefore do not make that
1029 * optional like we do in the afu directed path). It does not indicate
1030 * that we need to do an explicit disable (which should occur
1031 * implicitly as part of the reset) or purge, but we do these as well
1032 * to be on the safe side.
1034 * Notably we used to have some issues with the disable sequence
1035 * (before the sequence was spelled out in the architecture) which is
1036 * why we were so heavy weight in the first place, however a bug was
1037 * discovered that had rendered the disable operation ineffective, so
1038 * it is conceivable that was the sole explanation for those
1039 * difficulties. Point is, we should be careful and do some regression
1040 * testing if we ever attempt to remove any part of this procedure.
1042 cxl_ops
->afu_reset(ctx
->afu
);
1043 cxl_afu_disable(ctx
->afu
);
1044 cxl_psl_purge(ctx
->afu
);
1048 static void native_update_ivtes(struct cxl_context
*ctx
)
1050 if (ctx
->afu
->current_mode
== CXL_MODE_DIRECTED
)
1051 return update_ivtes_directed(ctx
);
1052 if ((ctx
->afu
->current_mode
== CXL_MODE_DEDICATED
) &&
1053 (ctx
->afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes
))
1054 return ctx
->afu
->adapter
->native
->sl_ops
->update_dedicated_ivtes(ctx
);
1055 WARN(1, "native_update_ivtes: Bad mode\n");
1058 static inline int detach_process_native_afu_directed(struct cxl_context
*ctx
)
1060 if (!ctx
->pe_inserted
)
1062 if (terminate_process_element(ctx
))
1064 if (remove_process_element(ctx
))
1070 static int native_detach_process(struct cxl_context
*ctx
)
1072 trace_cxl_detach(ctx
);
1074 if (ctx
->afu
->current_mode
== CXL_MODE_DEDICATED
)
1075 return detach_process_native_dedicated(ctx
);
1077 return detach_process_native_afu_directed(ctx
);
1080 static int native_get_irq_info(struct cxl_afu
*afu
, struct cxl_irq_info
*info
)
1082 /* If the adapter has gone away, we can't get any meaningful
1085 if (!cxl_ops
->link_ok(afu
->adapter
, afu
))
1088 info
->dsisr
= cxl_p2n_read(afu
, CXL_PSL_DSISR_An
);
1089 info
->dar
= cxl_p2n_read(afu
, CXL_PSL_DAR_An
);
1090 if (cxl_is_power8())
1091 info
->dsr
= cxl_p2n_read(afu
, CXL_PSL_DSR_An
);
1092 info
->afu_err
= cxl_p2n_read(afu
, CXL_AFU_ERR_An
);
1093 info
->errstat
= cxl_p2n_read(afu
, CXL_PSL_ErrStat_An
);
1094 info
->proc_handle
= 0;
1099 void cxl_native_irq_dump_regs_psl9(struct cxl_context
*ctx
)
1103 fir1
= cxl_p1_read(ctx
->afu
->adapter
, CXL_PSL9_FIR1
);
1105 dev_crit(&ctx
->afu
->dev
, "PSL_FIR1: 0x%016llx\n", fir1
);
1106 if (ctx
->afu
->adapter
->native
->sl_ops
->register_serr_irq
) {
1107 serr
= cxl_p1n_read(ctx
->afu
, CXL_PSL_SERR_An
);
1108 cxl_afu_decode_psl_serr(ctx
->afu
, serr
);
1112 void cxl_native_irq_dump_regs_psl8(struct cxl_context
*ctx
)
1114 u64 fir1
, fir2
, fir_slice
, serr
, afu_debug
;
1116 fir1
= cxl_p1_read(ctx
->afu
->adapter
, CXL_PSL_FIR1
);
1117 fir2
= cxl_p1_read(ctx
->afu
->adapter
, CXL_PSL_FIR2
);
1118 fir_slice
= cxl_p1n_read(ctx
->afu
, CXL_PSL_FIR_SLICE_An
);
1119 afu_debug
= cxl_p1n_read(ctx
->afu
, CXL_AFU_DEBUG_An
);
1121 dev_crit(&ctx
->afu
->dev
, "PSL_FIR1: 0x%016llx\n", fir1
);
1122 dev_crit(&ctx
->afu
->dev
, "PSL_FIR2: 0x%016llx\n", fir2
);
1123 if (ctx
->afu
->adapter
->native
->sl_ops
->register_serr_irq
) {
1124 serr
= cxl_p1n_read(ctx
->afu
, CXL_PSL_SERR_An
);
1125 cxl_afu_decode_psl_serr(ctx
->afu
, serr
);
1127 dev_crit(&ctx
->afu
->dev
, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice
);
1128 dev_crit(&ctx
->afu
->dev
, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug
);
1131 static irqreturn_t
native_handle_psl_slice_error(struct cxl_context
*ctx
,
1132 u64 dsisr
, u64 errstat
)
1135 dev_crit(&ctx
->afu
->dev
, "PSL ERROR STATUS: 0x%016llx\n", errstat
);
1137 if (ctx
->afu
->adapter
->native
->sl_ops
->psl_irq_dump_registers
)
1138 ctx
->afu
->adapter
->native
->sl_ops
->psl_irq_dump_registers(ctx
);
1140 if (ctx
->afu
->adapter
->native
->sl_ops
->debugfs_stop_trace
) {
1141 dev_crit(&ctx
->afu
->dev
, "STOPPING CXL TRACE\n");
1142 ctx
->afu
->adapter
->native
->sl_ops
->debugfs_stop_trace(ctx
->afu
->adapter
);
1145 return cxl_ops
->ack_irq(ctx
, 0, errstat
);
1148 static bool cxl_is_translation_fault(struct cxl_afu
*afu
, u64 dsisr
)
1150 if ((cxl_is_power8()) && (dsisr
& CXL_PSL_DSISR_TRANS
))
1153 if ((cxl_is_power9()) && (dsisr
& CXL_PSL9_DSISR_An_TF
))
1159 irqreturn_t
cxl_fail_irq_psl(struct cxl_afu
*afu
, struct cxl_irq_info
*irq_info
)
1161 if (cxl_is_translation_fault(afu
, irq_info
->dsisr
))
1162 cxl_p2n_write(afu
, CXL_PSL_TFC_An
, CXL_PSL_TFC_An_AE
);
1164 cxl_p2n_write(afu
, CXL_PSL_TFC_An
, CXL_PSL_TFC_An_A
);
1169 static irqreturn_t
native_irq_multiplexed(int irq
, void *data
)
1171 struct cxl_afu
*afu
= data
;
1172 struct cxl_context
*ctx
;
1173 struct cxl_irq_info irq_info
;
1174 u64 phreg
= cxl_p2n_read(afu
, CXL_PSL_PEHandle_An
);
1175 int ph
, ret
= IRQ_HANDLED
, res
;
1177 /* check if eeh kicked in while the interrupt was in flight */
1178 if (unlikely(phreg
== ~0ULL)) {
1180 "Ignoring slice interrupt(%d) due to fenced card",
1184 /* Mask the pe-handle from register value */
1185 ph
= phreg
& 0xffff;
1186 if ((res
= native_get_irq_info(afu
, &irq_info
))) {
1187 WARN(1, "Unable to get CXL IRQ Info: %i\n", res
);
1188 if (afu
->adapter
->native
->sl_ops
->fail_irq
)
1189 return afu
->adapter
->native
->sl_ops
->fail_irq(afu
, &irq_info
);
1194 ctx
= idr_find(&afu
->contexts_idr
, ph
);
1196 if (afu
->adapter
->native
->sl_ops
->handle_interrupt
)
1197 ret
= afu
->adapter
->native
->sl_ops
->handle_interrupt(irq
, ctx
, &irq_info
);
1203 WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %016llx DAR"
1204 " %016llx\n(Possible AFU HW issue - was a term/remove acked"
1205 " with outstanding transactions?)\n", ph
, irq_info
.dsisr
,
1207 if (afu
->adapter
->native
->sl_ops
->fail_irq
)
1208 ret
= afu
->adapter
->native
->sl_ops
->fail_irq(afu
, &irq_info
);
1212 static void native_irq_wait(struct cxl_context
*ctx
)
1219 * Wait until no further interrupts are presented by the PSL
1223 ph
= cxl_p2n_read(ctx
->afu
, CXL_PSL_PEHandle_An
) & 0xffff;
1226 dsisr
= cxl_p2n_read(ctx
->afu
, CXL_PSL_DSISR_An
);
1227 if (cxl_is_power8() &&
1228 ((dsisr
& CXL_PSL_DSISR_PENDING
) == 0))
1230 if (cxl_is_power9() &&
1231 ((dsisr
& CXL_PSL9_DSISR_PENDING
) == 0))
1234 * We are waiting for the workqueue to process our
1235 * irq, so need to let that run here.
1240 dev_warn(&ctx
->afu
->dev
, "WARNING: waiting on DSI for PE %i"
1241 " DSISR %016llx!\n", ph
, dsisr
);
1245 static irqreturn_t
native_slice_irq_err(int irq
, void *data
)
1247 struct cxl_afu
*afu
= data
;
1248 u64 errstat
, serr
, afu_error
, dsisr
;
1249 u64 fir_slice
, afu_debug
, irq_mask
;
1252 * slice err interrupt is only used with full PSL (no XSL)
1254 serr
= cxl_p1n_read(afu
, CXL_PSL_SERR_An
);
1255 errstat
= cxl_p2n_read(afu
, CXL_PSL_ErrStat_An
);
1256 afu_error
= cxl_p2n_read(afu
, CXL_AFU_ERR_An
);
1257 dsisr
= cxl_p2n_read(afu
, CXL_PSL_DSISR_An
);
1258 cxl_afu_decode_psl_serr(afu
, serr
);
1260 if (cxl_is_power8()) {
1261 fir_slice
= cxl_p1n_read(afu
, CXL_PSL_FIR_SLICE_An
);
1262 afu_debug
= cxl_p1n_read(afu
, CXL_AFU_DEBUG_An
);
1263 dev_crit(&afu
->dev
, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice
);
1264 dev_crit(&afu
->dev
, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug
);
1266 dev_crit(&afu
->dev
, "CXL_PSL_ErrStat_An: 0x%016llx\n", errstat
);
1267 dev_crit(&afu
->dev
, "AFU_ERR_An: 0x%.16llx\n", afu_error
);
1268 dev_crit(&afu
->dev
, "PSL_DSISR_An: 0x%.16llx\n", dsisr
);
1270 /* mask off the IRQ so it won't retrigger until the AFU is reset */
1271 irq_mask
= (serr
& CXL_PSL_SERR_An_IRQS
) >> 32;
1273 cxl_p1n_write(afu
, CXL_PSL_SERR_An
, serr
);
1274 dev_info(&afu
->dev
, "Further such interrupts will be masked until the AFU is reset\n");
1279 void cxl_native_err_irq_dump_regs_psl9(struct cxl
*adapter
)
1283 fir1
= cxl_p1_read(adapter
, CXL_PSL9_FIR1
);
1284 dev_crit(&adapter
->dev
, "PSL_FIR: 0x%016llx\n", fir1
);
1287 void cxl_native_err_irq_dump_regs_psl8(struct cxl
*adapter
)
1291 fir1
= cxl_p1_read(adapter
, CXL_PSL_FIR1
);
1292 fir2
= cxl_p1_read(adapter
, CXL_PSL_FIR2
);
1293 dev_crit(&adapter
->dev
,
1294 "PSL_FIR1: 0x%016llx\nPSL_FIR2: 0x%016llx\n",
1298 static irqreturn_t
native_irq_err(int irq
, void *data
)
1300 struct cxl
*adapter
= data
;
1303 WARN(1, "CXL ERROR interrupt %i\n", irq
);
1305 err_ivte
= cxl_p1_read(adapter
, CXL_PSL_ErrIVTE
);
1306 dev_crit(&adapter
->dev
, "PSL_ErrIVTE: 0x%016llx\n", err_ivte
);
1308 if (adapter
->native
->sl_ops
->debugfs_stop_trace
) {
1309 dev_crit(&adapter
->dev
, "STOPPING CXL TRACE\n");
1310 adapter
->native
->sl_ops
->debugfs_stop_trace(adapter
);
1313 if (adapter
->native
->sl_ops
->err_irq_dump_registers
)
1314 adapter
->native
->sl_ops
->err_irq_dump_registers(adapter
);
1319 int cxl_native_register_psl_err_irq(struct cxl
*adapter
)
1323 adapter
->irq_name
= kasprintf(GFP_KERNEL
, "cxl-%s-err",
1324 dev_name(&adapter
->dev
));
1325 if (!adapter
->irq_name
)
1328 if ((rc
= cxl_register_one_irq(adapter
, native_irq_err
, adapter
,
1329 &adapter
->native
->err_hwirq
,
1330 &adapter
->native
->err_virq
,
1331 adapter
->irq_name
))) {
1332 kfree(adapter
->irq_name
);
1333 adapter
->irq_name
= NULL
;
1337 cxl_p1_write(adapter
, CXL_PSL_ErrIVTE
, adapter
->native
->err_hwirq
& 0xffff);
1342 void cxl_native_release_psl_err_irq(struct cxl
*adapter
)
1344 if (adapter
->native
->err_virq
== 0 ||
1345 adapter
->native
->err_virq
!=
1346 irq_find_mapping(NULL
, adapter
->native
->err_hwirq
))
1349 cxl_p1_write(adapter
, CXL_PSL_ErrIVTE
, 0x0000000000000000);
1350 cxl_unmap_irq(adapter
->native
->err_virq
, adapter
);
1351 cxl_ops
->release_one_irq(adapter
, adapter
->native
->err_hwirq
);
1352 kfree(adapter
->irq_name
);
1353 adapter
->native
->err_virq
= 0;
1356 int cxl_native_register_serr_irq(struct cxl_afu
*afu
)
1361 afu
->err_irq_name
= kasprintf(GFP_KERNEL
, "cxl-%s-err",
1362 dev_name(&afu
->dev
));
1363 if (!afu
->err_irq_name
)
1366 if ((rc
= cxl_register_one_irq(afu
->adapter
, native_slice_irq_err
, afu
,
1368 &afu
->serr_virq
, afu
->err_irq_name
))) {
1369 kfree(afu
->err_irq_name
);
1370 afu
->err_irq_name
= NULL
;
1374 serr
= cxl_p1n_read(afu
, CXL_PSL_SERR_An
);
1375 if (cxl_is_power8())
1376 serr
= (serr
& 0x00ffffffffff0000ULL
) | (afu
->serr_hwirq
& 0xffff);
1377 if (cxl_is_power9()) {
1379 * By default, all errors are masked. So don't set all masks.
1380 * Slice errors will be transfered.
1382 serr
= (serr
& ~0xff0000007fffffffULL
) | (afu
->serr_hwirq
& 0xffff);
1384 cxl_p1n_write(afu
, CXL_PSL_SERR_An
, serr
);
1389 void cxl_native_release_serr_irq(struct cxl_afu
*afu
)
1391 if (afu
->serr_virq
== 0 ||
1392 afu
->serr_virq
!= irq_find_mapping(NULL
, afu
->serr_hwirq
))
1395 cxl_p1n_write(afu
, CXL_PSL_SERR_An
, 0x0000000000000000);
1396 cxl_unmap_irq(afu
->serr_virq
, afu
);
1397 cxl_ops
->release_one_irq(afu
->adapter
, afu
->serr_hwirq
);
1398 kfree(afu
->err_irq_name
);
1402 int cxl_native_register_psl_irq(struct cxl_afu
*afu
)
1406 afu
->psl_irq_name
= kasprintf(GFP_KERNEL
, "cxl-%s",
1407 dev_name(&afu
->dev
));
1408 if (!afu
->psl_irq_name
)
1411 if ((rc
= cxl_register_one_irq(afu
->adapter
, native_irq_multiplexed
,
1412 afu
, &afu
->native
->psl_hwirq
, &afu
->native
->psl_virq
,
1413 afu
->psl_irq_name
))) {
1414 kfree(afu
->psl_irq_name
);
1415 afu
->psl_irq_name
= NULL
;
1420 void cxl_native_release_psl_irq(struct cxl_afu
*afu
)
1422 if (afu
->native
->psl_virq
== 0 ||
1423 afu
->native
->psl_virq
!=
1424 irq_find_mapping(NULL
, afu
->native
->psl_hwirq
))
1427 cxl_unmap_irq(afu
->native
->psl_virq
, afu
);
1428 cxl_ops
->release_one_irq(afu
->adapter
, afu
->native
->psl_hwirq
);
1429 kfree(afu
->psl_irq_name
);
1430 afu
->native
->psl_virq
= 0;
1433 static void recover_psl_err(struct cxl_afu
*afu
, u64 errstat
)
1437 pr_devel("RECOVERING FROM PSL ERROR... (0x%016llx)\n", errstat
);
1439 /* Clear PSL_DSISR[PE] */
1440 dsisr
= cxl_p2n_read(afu
, CXL_PSL_DSISR_An
);
1441 cxl_p2n_write(afu
, CXL_PSL_DSISR_An
, dsisr
& ~CXL_PSL_DSISR_An_PE
);
1443 /* Write 1s to clear error status bits */
1444 cxl_p2n_write(afu
, CXL_PSL_ErrStat_An
, errstat
);
1447 static int native_ack_irq(struct cxl_context
*ctx
, u64 tfc
, u64 psl_reset_mask
)
1449 trace_cxl_psl_irq_ack(ctx
, tfc
);
1451 cxl_p2n_write(ctx
->afu
, CXL_PSL_TFC_An
, tfc
);
1453 recover_psl_err(ctx
->afu
, psl_reset_mask
);
1458 int cxl_check_error(struct cxl_afu
*afu
)
1460 return (cxl_p1n_read(afu
, CXL_PSL_SCNTL_An
) == ~0ULL);
1463 static bool native_support_attributes(const char *attr_name
,
1464 enum cxl_attrs type
)
1469 static int native_afu_cr_read64(struct cxl_afu
*afu
, int cr
, u64 off
, u64
*out
)
1471 if (unlikely(!cxl_ops
->link_ok(afu
->adapter
, afu
)))
1473 if (unlikely(off
>= afu
->crs_len
))
1475 *out
= in_le64(afu
->native
->afu_desc_mmio
+ afu
->crs_offset
+
1476 (cr
* afu
->crs_len
) + off
);
1480 static int native_afu_cr_read32(struct cxl_afu
*afu
, int cr
, u64 off
, u32
*out
)
1482 if (unlikely(!cxl_ops
->link_ok(afu
->adapter
, afu
)))
1484 if (unlikely(off
>= afu
->crs_len
))
1486 *out
= in_le32(afu
->native
->afu_desc_mmio
+ afu
->crs_offset
+
1487 (cr
* afu
->crs_len
) + off
);
1491 static int native_afu_cr_read16(struct cxl_afu
*afu
, int cr
, u64 off
, u16
*out
)
1493 u64 aligned_off
= off
& ~0x3L
;
1497 rc
= native_afu_cr_read32(afu
, cr
, aligned_off
, &val
);
1499 *out
= (val
>> ((off
& 0x3) * 8)) & 0xffff;
1503 static int native_afu_cr_read8(struct cxl_afu
*afu
, int cr
, u64 off
, u8
*out
)
1505 u64 aligned_off
= off
& ~0x3L
;
1509 rc
= native_afu_cr_read32(afu
, cr
, aligned_off
, &val
);
1511 *out
= (val
>> ((off
& 0x3) * 8)) & 0xff;
1515 static int native_afu_cr_write32(struct cxl_afu
*afu
, int cr
, u64 off
, u32 in
)
1517 if (unlikely(!cxl_ops
->link_ok(afu
->adapter
, afu
)))
1519 if (unlikely(off
>= afu
->crs_len
))
1521 out_le32(afu
->native
->afu_desc_mmio
+ afu
->crs_offset
+
1522 (cr
* afu
->crs_len
) + off
, in
);
1526 static int native_afu_cr_write16(struct cxl_afu
*afu
, int cr
, u64 off
, u16 in
)
1528 u64 aligned_off
= off
& ~0x3L
;
1529 u32 val32
, mask
, shift
;
1532 rc
= native_afu_cr_read32(afu
, cr
, aligned_off
, &val32
);
1535 shift
= (off
& 0x3) * 8;
1536 WARN_ON(shift
== 24);
1537 mask
= 0xffff << shift
;
1538 val32
= (val32
& ~mask
) | (in
<< shift
);
1540 rc
= native_afu_cr_write32(afu
, cr
, aligned_off
, val32
);
1544 static int native_afu_cr_write8(struct cxl_afu
*afu
, int cr
, u64 off
, u8 in
)
1546 u64 aligned_off
= off
& ~0x3L
;
1547 u32 val32
, mask
, shift
;
1550 rc
= native_afu_cr_read32(afu
, cr
, aligned_off
, &val32
);
1553 shift
= (off
& 0x3) * 8;
1554 mask
= 0xff << shift
;
1555 val32
= (val32
& ~mask
) | (in
<< shift
);
1557 rc
= native_afu_cr_write32(afu
, cr
, aligned_off
, val32
);
1561 const struct cxl_backend_ops cxl_native_ops
= {
1562 .module
= THIS_MODULE
,
1563 .adapter_reset
= cxl_pci_reset
,
1564 .alloc_one_irq
= cxl_pci_alloc_one_irq
,
1565 .release_one_irq
= cxl_pci_release_one_irq
,
1566 .alloc_irq_ranges
= cxl_pci_alloc_irq_ranges
,
1567 .release_irq_ranges
= cxl_pci_release_irq_ranges
,
1568 .setup_irq
= cxl_pci_setup_irq
,
1569 .handle_psl_slice_error
= native_handle_psl_slice_error
,
1570 .psl_interrupt
= NULL
,
1571 .ack_irq
= native_ack_irq
,
1572 .irq_wait
= native_irq_wait
,
1573 .attach_process
= native_attach_process
,
1574 .detach_process
= native_detach_process
,
1575 .update_ivtes
= native_update_ivtes
,
1576 .support_attributes
= native_support_attributes
,
1577 .link_ok
= cxl_adapter_link_ok
,
1578 .release_afu
= cxl_pci_release_afu
,
1579 .afu_read_err_buffer
= cxl_pci_afu_read_err_buffer
,
1580 .afu_check_and_enable
= native_afu_check_and_enable
,
1581 .afu_activate_mode
= native_afu_activate_mode
,
1582 .afu_deactivate_mode
= native_afu_deactivate_mode
,
1583 .afu_reset
= native_afu_reset
,
1584 .afu_cr_read8
= native_afu_cr_read8
,
1585 .afu_cr_read16
= native_afu_cr_read16
,
1586 .afu_cr_read32
= native_afu_cr_read32
,
1587 .afu_cr_read64
= native_afu_cr_read64
,
1588 .afu_cr_write8
= native_afu_cr_write8
,
1589 .afu_cr_write16
= native_afu_cr_write16
,
1590 .afu_cr_write32
= native_afu_cr_write32
,
1591 .read_adapter_vpd
= cxl_pci_read_adapter_vpd
,