1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2012 VMware, Inc. All rights reserved.
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/uio.h>
20 #include <linux/wait.h>
21 #include <linux/vmalloc.h>
22 #include <linux/skbuff.h>
24 #include "vmci_handle_array.h"
25 #include "vmci_queue_pair.h"
26 #include "vmci_datagram.h"
27 #include "vmci_resource.h"
28 #include "vmci_context.h"
29 #include "vmci_driver.h"
30 #include "vmci_event.h"
31 #include "vmci_route.h"
34 * In the following, we will distinguish between two kinds of VMX processes -
35 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
36 * VMCI page files in the VMX and supporting VM to VM communication and the
37 * newer ones that use the guest memory directly. We will in the following
38 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
41 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
42 * removed for readability) - see below for more details on the transtions:
44 * -------------- NEW -------------
47 * CREATED_NO_MEM <-----------------> CREATED_MEM
49 * | o-----------------------o |
52 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
54 * | o----------------------o |
57 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
60 * -------------> gone <-------------
62 * In more detail. When a VMCI queue pair is first created, it will be in the
63 * VMCIQPB_NEW state. It will then move into one of the following states:
65 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
67 * - the created was performed by a host endpoint, in which case there is
68 * no backing memory yet.
70 * - the create was initiated by an old-style VMX, that uses
71 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
72 * a later point in time. This state can be distinguished from the one
73 * above by the context ID of the creator. A host side is not allowed to
74 * attach until the page store has been set.
76 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
77 * is created by a VMX using the queue pair device backend that
78 * sets the UVAs of the queue pair immediately and stores the
79 * information for later attachers. At this point, it is ready for
80 * the host side to attach to it.
82 * Once the queue pair is in one of the created states (with the exception of
83 * the case mentioned for older VMX'en above), it is possible to attach to the
84 * queue pair. Again we have two new states possible:
86 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
89 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
90 * pair, and attaches to a queue pair previously created by the host side.
92 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
93 * already created by a guest.
95 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
96 * vmci_qp_broker_set_page_store (see below).
98 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
99 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
100 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
101 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
104 * From the attached queue pair, the queue pair can enter the shutdown states
105 * when either side of the queue pair detaches. If the guest side detaches
106 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
107 * the content of the queue pair will no longer be available. If the host
108 * side detaches first, the queue pair will either enter the
109 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
110 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
111 * (e.g., the host detaches while a guest is stunned).
113 * New-style VMX'en will also unmap guest memory, if the guest is
114 * quiesced, e.g., during a snapshot operation. In that case, the guest
115 * memory will no longer be available, and the queue pair will transition from
116 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
117 * in which case the queue pair will transition from the *_NO_MEM state at that
118 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
119 * since the peer may have either attached or detached in the meantime. The
120 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
121 * *_MEM state, and vice versa.
124 /* The Kernel specific component of the struct vmci_queue structure. */
125 struct vmci_queue_kern_if
{
126 struct mutex __mutex
; /* Protects the queue. */
127 struct mutex
*mutex
; /* Shared by producer and consumer queues. */
128 size_t num_pages
; /* Number of pages incl. header. */
129 bool host
; /* Host or guest? */
134 } g
; /* Used by the guest. */
137 struct page
**header_page
;
138 } h
; /* Used by the host. */
143 * This structure is opaque to the clients.
146 struct vmci_handle handle
;
147 struct vmci_queue
*produce_q
;
148 struct vmci_queue
*consume_q
;
155 unsigned int blocked
;
156 unsigned int generation
;
157 wait_queue_head_t event
;
160 enum qp_broker_state
{
162 VMCIQPB_CREATED_NO_MEM
,
164 VMCIQPB_ATTACHED_NO_MEM
,
165 VMCIQPB_ATTACHED_MEM
,
166 VMCIQPB_SHUTDOWN_NO_MEM
,
167 VMCIQPB_SHUTDOWN_MEM
,
171 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
172 _qpb->state == VMCIQPB_ATTACHED_MEM || \
173 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
176 * In the queue pair broker, we always use the guest point of view for
177 * the produce and consume queue values and references, e.g., the
178 * produce queue size stored is the guests produce queue size. The
179 * host endpoint will need to swap these around. The only exception is
180 * the local queue pairs on the host, in which case the host endpoint
181 * that creates the queue pair will have the right orientation, and
182 * the attaching host endpoint will need to swap.
185 struct list_head list_item
;
186 struct vmci_handle handle
;
194 struct qp_broker_entry
{
195 struct vmci_resource resource
;
199 enum qp_broker_state state
;
200 bool require_trusted_attach
;
201 bool created_by_trusted
;
202 bool vmci_page_files
; /* Created by VMX using VMCI page files */
203 struct vmci_queue
*produce_q
;
204 struct vmci_queue
*consume_q
;
205 struct vmci_queue_header saved_produce_q
;
206 struct vmci_queue_header saved_consume_q
;
207 vmci_event_release_cb wakeup_cb
;
209 void *local_mem
; /* Kernel memory for local queue pair */
212 struct qp_guest_endpoint
{
213 struct vmci_resource resource
;
218 struct ppn_set ppn_set
;
222 struct list_head head
;
223 struct mutex mutex
; /* Protect queue list. */
226 static struct qp_list qp_broker_list
= {
227 .head
= LIST_HEAD_INIT(qp_broker_list
.head
),
228 .mutex
= __MUTEX_INITIALIZER(qp_broker_list
.mutex
),
231 static struct qp_list qp_guest_endpoints
= {
232 .head
= LIST_HEAD_INIT(qp_guest_endpoints
.head
),
233 .mutex
= __MUTEX_INITIALIZER(qp_guest_endpoints
.mutex
),
236 #define INVALID_VMCI_GUEST_MEM_ID 0
237 #define QPE_NUM_PAGES(_QPE) ((u32) \
238 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
239 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
240 #define QP_SIZES_ARE_VALID(_prod_qsize, _cons_qsize) \
241 ((_prod_qsize) + (_cons_qsize) >= max(_prod_qsize, _cons_qsize) && \
242 (_prod_qsize) + (_cons_qsize) <= VMCI_MAX_GUEST_QP_MEMORY)
245 * Frees kernel VA space for a given queue and its queue header, and
246 * frees physical data pages.
248 static void qp_free_queue(void *q
, u64 size
)
250 struct vmci_queue
*queue
= q
;
255 /* Given size does not include header, so add in a page here. */
256 for (i
= 0; i
< DIV_ROUND_UP(size
, PAGE_SIZE
) + 1; i
++) {
257 dma_free_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
258 queue
->kernel_if
->u
.g
.vas
[i
],
259 queue
->kernel_if
->u
.g
.pas
[i
]);
267 * Allocates kernel queue pages of specified size with IOMMU mappings,
268 * plus space for the queue structure/kernel interface and the queue
271 static void *qp_alloc_queue(u64 size
, u32 flags
)
274 struct vmci_queue
*queue
;
277 size_t queue_size
= sizeof(*queue
) + sizeof(*queue
->kernel_if
);
280 if (size
> SIZE_MAX
- PAGE_SIZE
)
282 num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
284 (SIZE_MAX
- queue_size
) /
285 (sizeof(*queue
->kernel_if
->u
.g
.pas
) +
286 sizeof(*queue
->kernel_if
->u
.g
.vas
)))
289 pas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.pas
);
290 vas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.vas
);
291 queue_size
+= pas_size
+ vas_size
;
293 queue
= vmalloc(queue_size
);
297 queue
->q_header
= NULL
;
298 queue
->saved_header
= NULL
;
299 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
300 queue
->kernel_if
->mutex
= NULL
;
301 queue
->kernel_if
->num_pages
= num_pages
;
302 queue
->kernel_if
->u
.g
.pas
= (dma_addr_t
*)(queue
->kernel_if
+ 1);
303 queue
->kernel_if
->u
.g
.vas
=
304 (void **)((u8
*)queue
->kernel_if
->u
.g
.pas
+ pas_size
);
305 queue
->kernel_if
->host
= false;
307 for (i
= 0; i
< num_pages
; i
++) {
308 queue
->kernel_if
->u
.g
.vas
[i
] =
309 dma_alloc_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
310 &queue
->kernel_if
->u
.g
.pas
[i
],
312 if (!queue
->kernel_if
->u
.g
.vas
[i
]) {
313 /* Size excl. the header. */
314 qp_free_queue(queue
, i
* PAGE_SIZE
);
319 /* Queue header is the first page. */
320 queue
->q_header
= queue
->kernel_if
->u
.g
.vas
[0];
326 * Copies from a given buffer or iovector to a VMCI Queue. Uses
327 * kmap_local_page() to dynamically map required portions of the queue
328 * by traversing the offset -> page translation structure for the queue.
329 * Assumes that offset + size does not wrap around in the queue.
331 static int qp_memcpy_to_queue_iter(struct vmci_queue
*queue
,
333 struct iov_iter
*from
,
336 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
337 size_t bytes_copied
= 0;
339 while (bytes_copied
< size
) {
340 const u64 page_index
=
341 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
342 const size_t page_offset
=
343 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
348 va
= kmap_local_page(kernel_if
->u
.h
.page
[page_index
]);
350 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
353 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
354 /* Enough payload to fill up from this page. */
355 to_copy
= PAGE_SIZE
- page_offset
;
357 to_copy
= size
- bytes_copied
;
359 if (!copy_from_iter_full((u8
*)va
+ page_offset
, to_copy
,
363 return VMCI_ERROR_INVALID_ARGS
;
365 bytes_copied
+= to_copy
;
374 * Copies to a given buffer or iovector from a VMCI Queue. Uses
375 * kmap_local_page() to dynamically map required portions of the queue
376 * by traversing the offset -> page translation structure for the queue.
377 * Assumes that offset + size does not wrap around in the queue.
379 static int qp_memcpy_from_queue_iter(struct iov_iter
*to
,
380 const struct vmci_queue
*queue
,
381 u64 queue_offset
, size_t size
)
383 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
384 size_t bytes_copied
= 0;
386 while (bytes_copied
< size
) {
387 const u64 page_index
=
388 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
389 const size_t page_offset
=
390 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
396 va
= kmap_local_page(kernel_if
->u
.h
.page
[page_index
]);
398 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
401 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
402 /* Enough payload to fill up this page. */
403 to_copy
= PAGE_SIZE
- page_offset
;
405 to_copy
= size
- bytes_copied
;
407 err
= copy_to_iter((u8
*)va
+ page_offset
, to_copy
, to
);
408 if (err
!= to_copy
) {
411 return VMCI_ERROR_INVALID_ARGS
;
413 bytes_copied
+= to_copy
;
422 * Allocates two list of PPNs --- one for the pages in the produce queue,
423 * and the other for the pages in the consume queue. Intializes the list
424 * of PPNs with the page frame numbers of the KVA for the two queues (and
425 * the queue headers).
427 static int qp_alloc_ppn_set(void *prod_q
,
428 u64 num_produce_pages
,
430 u64 num_consume_pages
, struct ppn_set
*ppn_set
)
434 struct vmci_queue
*produce_q
= prod_q
;
435 struct vmci_queue
*consume_q
= cons_q
;
438 if (!produce_q
|| !num_produce_pages
|| !consume_q
||
439 !num_consume_pages
|| !ppn_set
)
440 return VMCI_ERROR_INVALID_ARGS
;
442 if (ppn_set
->initialized
)
443 return VMCI_ERROR_ALREADY_EXISTS
;
446 kmalloc_array(num_produce_pages
, sizeof(*produce_ppns
),
449 return VMCI_ERROR_NO_MEM
;
452 kmalloc_array(num_consume_pages
, sizeof(*consume_ppns
),
456 return VMCI_ERROR_NO_MEM
;
459 for (i
= 0; i
< num_produce_pages
; i
++)
461 produce_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
463 for (i
= 0; i
< num_consume_pages
; i
++)
465 consume_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
467 ppn_set
->num_produce_pages
= num_produce_pages
;
468 ppn_set
->num_consume_pages
= num_consume_pages
;
469 ppn_set
->produce_ppns
= produce_ppns
;
470 ppn_set
->consume_ppns
= consume_ppns
;
471 ppn_set
->initialized
= true;
476 * Frees the two list of PPNs for a queue pair.
478 static void qp_free_ppn_set(struct ppn_set
*ppn_set
)
480 if (ppn_set
->initialized
) {
481 /* Do not call these functions on NULL inputs. */
482 kfree(ppn_set
->produce_ppns
);
483 kfree(ppn_set
->consume_ppns
);
485 memset(ppn_set
, 0, sizeof(*ppn_set
));
489 * Populates the list of PPNs in the hypercall structure with the PPNS
490 * of the produce queue and the consume queue.
492 static int qp_populate_ppn_set(u8
*call_buf
, const struct ppn_set
*ppn_set
)
494 if (vmci_use_ppn64()) {
495 memcpy(call_buf
, ppn_set
->produce_ppns
,
496 ppn_set
->num_produce_pages
*
497 sizeof(*ppn_set
->produce_ppns
));
499 ppn_set
->num_produce_pages
*
500 sizeof(*ppn_set
->produce_ppns
),
501 ppn_set
->consume_ppns
,
502 ppn_set
->num_consume_pages
*
503 sizeof(*ppn_set
->consume_ppns
));
506 u32
*ppns
= (u32
*) call_buf
;
508 for (i
= 0; i
< ppn_set
->num_produce_pages
; i
++)
509 ppns
[i
] = (u32
) ppn_set
->produce_ppns
[i
];
511 ppns
= &ppns
[ppn_set
->num_produce_pages
];
513 for (i
= 0; i
< ppn_set
->num_consume_pages
; i
++)
514 ppns
[i
] = (u32
) ppn_set
->consume_ppns
[i
];
521 * Allocates kernel VA space of specified size plus space for the queue
522 * and kernel interface. This is different from the guest queue allocator,
523 * because we do not allocate our own queue header/data pages here but
524 * share those of the guest.
526 static struct vmci_queue
*qp_host_alloc_queue(u64 size
)
528 struct vmci_queue
*queue
;
529 size_t queue_page_size
;
531 const size_t queue_size
= sizeof(*queue
) + sizeof(*(queue
->kernel_if
));
533 if (size
> min_t(size_t, VMCI_MAX_GUEST_QP_MEMORY
, SIZE_MAX
- PAGE_SIZE
))
535 num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
536 if (num_pages
> (SIZE_MAX
- queue_size
) /
537 sizeof(*queue
->kernel_if
->u
.h
.page
))
540 queue_page_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.h
.page
);
542 if (queue_size
+ queue_page_size
> KMALLOC_MAX_SIZE
)
545 queue
= kzalloc(queue_size
+ queue_page_size
, GFP_KERNEL
);
547 queue
->q_header
= NULL
;
548 queue
->saved_header
= NULL
;
549 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
550 queue
->kernel_if
->host
= true;
551 queue
->kernel_if
->mutex
= NULL
;
552 queue
->kernel_if
->num_pages
= num_pages
;
553 queue
->kernel_if
->u
.h
.header_page
=
554 (struct page
**)((u8
*)queue
+ queue_size
);
555 queue
->kernel_if
->u
.h
.page
=
556 &queue
->kernel_if
->u
.h
.header_page
[1];
563 * Frees kernel memory for a given queue (header plus translation
566 static void qp_host_free_queue(struct vmci_queue
*queue
, u64 queue_size
)
572 * Initialize the mutex for the pair of queues. This mutex is used to
573 * protect the q_header and the buffer from changing out from under any
574 * users of either queue. Of course, it's only any good if the mutexes
575 * are actually acquired. Queue structure must lie on non-paged memory
576 * or we cannot guarantee access to the mutex.
578 static void qp_init_queue_mutex(struct vmci_queue
*produce_q
,
579 struct vmci_queue
*consume_q
)
582 * Only the host queue has shared state - the guest queues do not
583 * need to synchronize access using a queue mutex.
586 if (produce_q
->kernel_if
->host
) {
587 produce_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
588 consume_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
589 mutex_init(produce_q
->kernel_if
->mutex
);
594 * Cleans up the mutex for the pair of queues.
596 static void qp_cleanup_queue_mutex(struct vmci_queue
*produce_q
,
597 struct vmci_queue
*consume_q
)
599 if (produce_q
->kernel_if
->host
) {
600 produce_q
->kernel_if
->mutex
= NULL
;
601 consume_q
->kernel_if
->mutex
= NULL
;
606 * Acquire the mutex for the queue. Note that the produce_q and
607 * the consume_q share a mutex. So, only one of the two need to
608 * be passed in to this routine. Either will work just fine.
610 static void qp_acquire_queue_mutex(struct vmci_queue
*queue
)
612 if (queue
->kernel_if
->host
)
613 mutex_lock(queue
->kernel_if
->mutex
);
617 * Release the mutex for the queue. Note that the produce_q and
618 * the consume_q share a mutex. So, only one of the two need to
619 * be passed in to this routine. Either will work just fine.
621 static void qp_release_queue_mutex(struct vmci_queue
*queue
)
623 if (queue
->kernel_if
->host
)
624 mutex_unlock(queue
->kernel_if
->mutex
);
628 * Helper function to release pages in the PageStoreAttachInfo
629 * previously obtained using get_user_pages.
631 static void qp_release_pages(struct page
**pages
,
632 u64 num_pages
, bool dirty
)
636 for (i
= 0; i
< num_pages
; i
++) {
638 set_page_dirty_lock(pages
[i
]);
646 * Lock the user pages referenced by the {produce,consume}Buffer
647 * struct into memory and populate the {produce,consume}Pages
648 * arrays in the attach structure with them.
650 static int qp_host_get_user_memory(u64 produce_uva
,
652 struct vmci_queue
*produce_q
,
653 struct vmci_queue
*consume_q
)
656 int err
= VMCI_SUCCESS
;
658 retval
= get_user_pages_fast((uintptr_t) produce_uva
,
659 produce_q
->kernel_if
->num_pages
,
661 produce_q
->kernel_if
->u
.h
.header_page
);
662 if (retval
< (int)produce_q
->kernel_if
->num_pages
) {
663 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
666 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
668 err
= VMCI_ERROR_NO_MEM
;
672 retval
= get_user_pages_fast((uintptr_t) consume_uva
,
673 consume_q
->kernel_if
->num_pages
,
675 consume_q
->kernel_if
->u
.h
.header_page
);
676 if (retval
< (int)consume_q
->kernel_if
->num_pages
) {
677 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
680 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
682 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
683 produce_q
->kernel_if
->num_pages
, false);
684 err
= VMCI_ERROR_NO_MEM
;
692 * Registers the specification of the user pages used for backing a queue
693 * pair. Enough information to map in pages is stored in the OS specific
694 * part of the struct vmci_queue structure.
696 static int qp_host_register_user_memory(struct vmci_qp_page_store
*page_store
,
697 struct vmci_queue
*produce_q
,
698 struct vmci_queue
*consume_q
)
704 * The new style and the old style mapping only differs in
705 * that we either get a single or two UVAs, so we split the
706 * single UVA range at the appropriate spot.
708 produce_uva
= page_store
->pages
;
709 consume_uva
= page_store
->pages
+
710 produce_q
->kernel_if
->num_pages
* PAGE_SIZE
;
711 return qp_host_get_user_memory(produce_uva
, consume_uva
, produce_q
,
716 * Releases and removes the references to user pages stored in the attach
717 * struct. Pages are released from the page cache and may become
720 static void qp_host_unregister_user_memory(struct vmci_queue
*produce_q
,
721 struct vmci_queue
*consume_q
)
723 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
724 produce_q
->kernel_if
->num_pages
, true);
725 memset(produce_q
->kernel_if
->u
.h
.header_page
, 0,
726 sizeof(*produce_q
->kernel_if
->u
.h
.header_page
) *
727 produce_q
->kernel_if
->num_pages
);
728 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
729 consume_q
->kernel_if
->num_pages
, true);
730 memset(consume_q
->kernel_if
->u
.h
.header_page
, 0,
731 sizeof(*consume_q
->kernel_if
->u
.h
.header_page
) *
732 consume_q
->kernel_if
->num_pages
);
736 * Once qp_host_register_user_memory has been performed on a
737 * queue, the queue pair headers can be mapped into the
738 * kernel. Once mapped, they must be unmapped with
739 * qp_host_unmap_queues prior to calling
740 * qp_host_unregister_user_memory.
743 static int qp_host_map_queues(struct vmci_queue
*produce_q
,
744 struct vmci_queue
*consume_q
)
748 if (!produce_q
->q_header
|| !consume_q
->q_header
) {
749 struct page
*headers
[2];
751 if (produce_q
->q_header
!= consume_q
->q_header
)
752 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
754 if (produce_q
->kernel_if
->u
.h
.header_page
== NULL
||
755 *produce_q
->kernel_if
->u
.h
.header_page
== NULL
)
756 return VMCI_ERROR_UNAVAILABLE
;
758 headers
[0] = *produce_q
->kernel_if
->u
.h
.header_page
;
759 headers
[1] = *consume_q
->kernel_if
->u
.h
.header_page
;
761 produce_q
->q_header
= vmap(headers
, 2, VM_MAP
, PAGE_KERNEL
);
762 if (produce_q
->q_header
!= NULL
) {
763 consume_q
->q_header
=
764 (struct vmci_queue_header
*)((u8
*)
765 produce_q
->q_header
+
767 result
= VMCI_SUCCESS
;
769 pr_warn("vmap failed\n");
770 result
= VMCI_ERROR_NO_MEM
;
773 result
= VMCI_SUCCESS
;
780 * Unmaps previously mapped queue pair headers from the kernel.
781 * Pages are unpinned.
783 static int qp_host_unmap_queues(u32 gid
,
784 struct vmci_queue
*produce_q
,
785 struct vmci_queue
*consume_q
)
787 if (produce_q
->q_header
) {
788 if (produce_q
->q_header
< consume_q
->q_header
)
789 vunmap(produce_q
->q_header
);
791 vunmap(consume_q
->q_header
);
793 produce_q
->q_header
= NULL
;
794 consume_q
->q_header
= NULL
;
801 * Finds the entry in the list corresponding to a given handle. Assumes
802 * that the list is locked.
804 static struct qp_entry
*qp_list_find(struct qp_list
*qp_list
,
805 struct vmci_handle handle
)
807 struct qp_entry
*entry
;
809 if (vmci_handle_is_invalid(handle
))
812 list_for_each_entry(entry
, &qp_list
->head
, list_item
) {
813 if (vmci_handle_is_equal(entry
->handle
, handle
))
821 * Finds the entry in the list corresponding to a given handle.
823 static struct qp_guest_endpoint
*
824 qp_guest_handle_to_entry(struct vmci_handle handle
)
826 struct qp_guest_endpoint
*entry
;
827 struct qp_entry
*qp
= qp_list_find(&qp_guest_endpoints
, handle
);
829 entry
= qp
? container_of(
830 qp
, struct qp_guest_endpoint
, qp
) : NULL
;
835 * Finds the entry in the list corresponding to a given handle.
837 static struct qp_broker_entry
*
838 qp_broker_handle_to_entry(struct vmci_handle handle
)
840 struct qp_broker_entry
*entry
;
841 struct qp_entry
*qp
= qp_list_find(&qp_broker_list
, handle
);
843 entry
= qp
? container_of(
844 qp
, struct qp_broker_entry
, qp
) : NULL
;
849 * Dispatches a queue pair event message directly into the local event
852 static int qp_notify_peer_local(bool attach
, struct vmci_handle handle
)
854 u32 context_id
= vmci_get_context_id();
855 struct vmci_event_qp ev
;
857 memset(&ev
, 0, sizeof(ev
));
858 ev
.msg
.hdr
.dst
= vmci_make_handle(context_id
, VMCI_EVENT_HANDLER
);
859 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
860 VMCI_CONTEXT_RESOURCE_ID
);
861 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
862 ev
.msg
.event_data
.event
=
863 attach
? VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
864 ev
.payload
.peer_id
= context_id
;
865 ev
.payload
.handle
= handle
;
867 return vmci_event_dispatch(&ev
.msg
.hdr
);
871 * Allocates and initializes a qp_guest_endpoint structure.
872 * Allocates a queue_pair rid (and handle) iff the given entry has
873 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
874 * are reserved handles. Assumes that the QP list mutex is held
877 static struct qp_guest_endpoint
*
878 qp_guest_endpoint_create(struct vmci_handle handle
,
887 struct qp_guest_endpoint
*entry
;
888 /* One page each for the queue headers. */
889 const u64 num_ppns
= DIV_ROUND_UP(produce_size
, PAGE_SIZE
) +
890 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 2;
892 if (vmci_handle_is_invalid(handle
)) {
893 u32 context_id
= vmci_get_context_id();
895 handle
= vmci_make_handle(context_id
, VMCI_INVALID_ID
);
898 entry
= kzalloc(sizeof(*entry
), GFP_KERNEL
);
900 entry
->qp
.peer
= peer
;
901 entry
->qp
.flags
= flags
;
902 entry
->qp
.produce_size
= produce_size
;
903 entry
->qp
.consume_size
= consume_size
;
904 entry
->qp
.ref_count
= 0;
905 entry
->num_ppns
= num_ppns
;
906 entry
->produce_q
= produce_q
;
907 entry
->consume_q
= consume_q
;
908 INIT_LIST_HEAD(&entry
->qp
.list_item
);
910 /* Add resource obj */
911 result
= vmci_resource_add(&entry
->resource
,
912 VMCI_RESOURCE_TYPE_QPAIR_GUEST
,
914 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
915 if ((result
!= VMCI_SUCCESS
) ||
916 qp_list_find(&qp_guest_endpoints
, entry
->qp
.handle
)) {
917 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
918 handle
.context
, handle
.resource
, result
);
927 * Frees a qp_guest_endpoint structure.
929 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint
*entry
)
931 qp_free_ppn_set(&entry
->ppn_set
);
932 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
933 qp_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
934 qp_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
935 /* Unlink from resource hash table and free callback */
936 vmci_resource_remove(&entry
->resource
);
942 * Helper to make a queue_pairAlloc hypercall when the driver is
943 * supporting a guest device.
945 static int qp_alloc_hypercall(const struct qp_guest_endpoint
*entry
)
947 struct vmci_qp_alloc_msg
*alloc_msg
;
952 if (!entry
|| entry
->num_ppns
<= 2)
953 return VMCI_ERROR_INVALID_ARGS
;
955 ppn_size
= vmci_use_ppn64() ? sizeof(u64
) : sizeof(u32
);
956 msg_size
= sizeof(*alloc_msg
) +
957 (size_t) entry
->num_ppns
* ppn_size
;
958 alloc_msg
= kmalloc(msg_size
, GFP_KERNEL
);
960 return VMCI_ERROR_NO_MEM
;
962 alloc_msg
->hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
963 VMCI_QUEUEPAIR_ALLOC
);
964 alloc_msg
->hdr
.src
= VMCI_ANON_SRC_HANDLE
;
965 alloc_msg
->hdr
.payload_size
= msg_size
- VMCI_DG_HEADERSIZE
;
966 alloc_msg
->handle
= entry
->qp
.handle
;
967 alloc_msg
->peer
= entry
->qp
.peer
;
968 alloc_msg
->flags
= entry
->qp
.flags
;
969 alloc_msg
->produce_size
= entry
->qp
.produce_size
;
970 alloc_msg
->consume_size
= entry
->qp
.consume_size
;
971 alloc_msg
->num_ppns
= entry
->num_ppns
;
973 result
= qp_populate_ppn_set((u8
*)alloc_msg
+ sizeof(*alloc_msg
),
975 if (result
== VMCI_SUCCESS
)
976 result
= vmci_send_datagram(&alloc_msg
->hdr
);
984 * Helper to make a queue_pairDetach hypercall when the driver is
985 * supporting a guest device.
987 static int qp_detatch_hypercall(struct vmci_handle handle
)
989 struct vmci_qp_detach_msg detach_msg
;
991 detach_msg
.hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
992 VMCI_QUEUEPAIR_DETACH
);
993 detach_msg
.hdr
.src
= VMCI_ANON_SRC_HANDLE
;
994 detach_msg
.hdr
.payload_size
= sizeof(handle
);
995 detach_msg
.handle
= handle
;
997 return vmci_send_datagram(&detach_msg
.hdr
);
1001 * Adds the given entry to the list. Assumes that the list is locked.
1003 static void qp_list_add_entry(struct qp_list
*qp_list
, struct qp_entry
*entry
)
1006 list_add(&entry
->list_item
, &qp_list
->head
);
1010 * Removes the given entry from the list. Assumes that the list is locked.
1012 static void qp_list_remove_entry(struct qp_list
*qp_list
,
1013 struct qp_entry
*entry
)
1016 list_del(&entry
->list_item
);
1020 * Helper for VMCI queue_pair detach interface. Frees the physical
1021 * pages for the queue pair.
1023 static int qp_detatch_guest_work(struct vmci_handle handle
)
1026 struct qp_guest_endpoint
*entry
;
1027 u32 ref_count
= ~0; /* To avoid compiler warning below */
1029 mutex_lock(&qp_guest_endpoints
.mutex
);
1031 entry
= qp_guest_handle_to_entry(handle
);
1033 mutex_unlock(&qp_guest_endpoints
.mutex
);
1034 return VMCI_ERROR_NOT_FOUND
;
1037 if (entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1038 result
= VMCI_SUCCESS
;
1040 if (entry
->qp
.ref_count
> 1) {
1041 result
= qp_notify_peer_local(false, handle
);
1043 * We can fail to notify a local queuepair
1044 * because we can't allocate. We still want
1045 * to release the entry if that happens, so
1046 * don't bail out yet.
1050 result
= qp_detatch_hypercall(handle
);
1051 if (result
< VMCI_SUCCESS
) {
1053 * We failed to notify a non-local queuepair.
1054 * That other queuepair might still be
1055 * accessing the shared memory, so don't
1056 * release the entry yet. It will get cleaned
1057 * up by VMCIqueue_pair_Exit() if necessary
1058 * (assuming we are going away, otherwise why
1062 mutex_unlock(&qp_guest_endpoints
.mutex
);
1068 * If we get here then we either failed to notify a local queuepair, or
1069 * we succeeded in all cases. Release the entry if required.
1072 entry
->qp
.ref_count
--;
1073 if (entry
->qp
.ref_count
== 0)
1074 qp_list_remove_entry(&qp_guest_endpoints
, &entry
->qp
);
1076 /* If we didn't remove the entry, this could change once we unlock. */
1078 ref_count
= entry
->qp
.ref_count
;
1080 mutex_unlock(&qp_guest_endpoints
.mutex
);
1083 qp_guest_endpoint_destroy(entry
);
1089 * This functions handles the actual allocation of a VMCI queue
1090 * pair guest endpoint. Allocates physical pages for the queue
1091 * pair. It makes OS dependent calls through generic wrappers.
1093 static int qp_alloc_guest_work(struct vmci_handle
*handle
,
1094 struct vmci_queue
**produce_q
,
1096 struct vmci_queue
**consume_q
,
1102 const u64 num_produce_pages
=
1103 DIV_ROUND_UP(produce_size
, PAGE_SIZE
) + 1;
1104 const u64 num_consume_pages
=
1105 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 1;
1106 void *my_produce_q
= NULL
;
1107 void *my_consume_q
= NULL
;
1109 struct qp_guest_endpoint
*queue_pair_entry
= NULL
;
1111 if (priv_flags
!= VMCI_NO_PRIVILEGE_FLAGS
)
1112 return VMCI_ERROR_NO_ACCESS
;
1114 mutex_lock(&qp_guest_endpoints
.mutex
);
1116 queue_pair_entry
= qp_guest_handle_to_entry(*handle
);
1117 if (queue_pair_entry
) {
1118 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1119 /* Local attach case. */
1120 if (queue_pair_entry
->qp
.ref_count
> 1) {
1121 pr_devel("Error attempting to attach more than once\n");
1122 result
= VMCI_ERROR_UNAVAILABLE
;
1123 goto error_keep_entry
;
1126 if (queue_pair_entry
->qp
.produce_size
!= consume_size
||
1127 queue_pair_entry
->qp
.consume_size
!=
1129 queue_pair_entry
->qp
.flags
!=
1130 (flags
& ~VMCI_QPFLAG_ATTACH_ONLY
)) {
1131 pr_devel("Error mismatched queue pair in local attach\n");
1132 result
= VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1133 goto error_keep_entry
;
1137 * Do a local attach. We swap the consume and
1138 * produce queues for the attacher and deliver
1141 result
= qp_notify_peer_local(true, *handle
);
1142 if (result
< VMCI_SUCCESS
)
1143 goto error_keep_entry
;
1145 my_produce_q
= queue_pair_entry
->consume_q
;
1146 my_consume_q
= queue_pair_entry
->produce_q
;
1150 result
= VMCI_ERROR_ALREADY_EXISTS
;
1151 goto error_keep_entry
;
1154 my_produce_q
= qp_alloc_queue(produce_size
, flags
);
1155 if (!my_produce_q
) {
1156 pr_warn("Error allocating pages for produce queue\n");
1157 result
= VMCI_ERROR_NO_MEM
;
1161 my_consume_q
= qp_alloc_queue(consume_size
, flags
);
1162 if (!my_consume_q
) {
1163 pr_warn("Error allocating pages for consume queue\n");
1164 result
= VMCI_ERROR_NO_MEM
;
1168 queue_pair_entry
= qp_guest_endpoint_create(*handle
, peer
, flags
,
1169 produce_size
, consume_size
,
1170 my_produce_q
, my_consume_q
);
1171 if (!queue_pair_entry
) {
1172 pr_warn("Error allocating memory in %s\n", __func__
);
1173 result
= VMCI_ERROR_NO_MEM
;
1177 result
= qp_alloc_ppn_set(my_produce_q
, num_produce_pages
, my_consume_q
,
1179 &queue_pair_entry
->ppn_set
);
1180 if (result
< VMCI_SUCCESS
) {
1181 pr_warn("qp_alloc_ppn_set failed\n");
1186 * It's only necessary to notify the host if this queue pair will be
1187 * attached to from another context.
1189 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1190 /* Local create case. */
1191 u32 context_id
= vmci_get_context_id();
1194 * Enforce similar checks on local queue pairs as we
1195 * do for regular ones. The handle's context must
1196 * match the creator or attacher context id (here they
1197 * are both the current context id) and the
1198 * attach-only flag cannot exist during create. We
1199 * also ensure specified peer is this context or an
1202 if (queue_pair_entry
->qp
.handle
.context
!= context_id
||
1203 (queue_pair_entry
->qp
.peer
!= VMCI_INVALID_ID
&&
1204 queue_pair_entry
->qp
.peer
!= context_id
)) {
1205 result
= VMCI_ERROR_NO_ACCESS
;
1209 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_ATTACH_ONLY
) {
1210 result
= VMCI_ERROR_NOT_FOUND
;
1214 result
= qp_alloc_hypercall(queue_pair_entry
);
1215 if (result
< VMCI_SUCCESS
) {
1216 pr_devel("qp_alloc_hypercall result = %d\n", result
);
1221 qp_init_queue_mutex((struct vmci_queue
*)my_produce_q
,
1222 (struct vmci_queue
*)my_consume_q
);
1224 qp_list_add_entry(&qp_guest_endpoints
, &queue_pair_entry
->qp
);
1227 queue_pair_entry
->qp
.ref_count
++;
1228 *handle
= queue_pair_entry
->qp
.handle
;
1229 *produce_q
= (struct vmci_queue
*)my_produce_q
;
1230 *consume_q
= (struct vmci_queue
*)my_consume_q
;
1233 * We should initialize the queue pair header pages on a local
1234 * queue pair create. For non-local queue pairs, the
1235 * hypervisor initializes the header pages in the create step.
1237 if ((queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) &&
1238 queue_pair_entry
->qp
.ref_count
== 1) {
1239 vmci_q_header_init((*produce_q
)->q_header
, *handle
);
1240 vmci_q_header_init((*consume_q
)->q_header
, *handle
);
1243 mutex_unlock(&qp_guest_endpoints
.mutex
);
1245 return VMCI_SUCCESS
;
1248 mutex_unlock(&qp_guest_endpoints
.mutex
);
1249 if (queue_pair_entry
) {
1250 /* The queues will be freed inside the destroy routine. */
1251 qp_guest_endpoint_destroy(queue_pair_entry
);
1253 qp_free_queue(my_produce_q
, produce_size
);
1254 qp_free_queue(my_consume_q
, consume_size
);
1259 /* This path should only be used when an existing entry was found. */
1260 mutex_unlock(&qp_guest_endpoints
.mutex
);
1265 * The first endpoint issuing a queue pair allocation will create the state
1266 * of the queue pair in the queue pair broker.
1268 * If the creator is a guest, it will associate a VMX virtual address range
1269 * with the queue pair as specified by the page_store. For compatibility with
1270 * older VMX'en, that would use a separate step to set the VMX virtual
1271 * address range, the virtual address range can be registered later using
1272 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1275 * If the creator is the host, a page_store of NULL should be used as well,
1276 * since the host is not able to supply a page store for the queue pair.
1278 * For older VMX and host callers, the queue pair will be created in the
1279 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1280 * created in VMCOQPB_CREATED_MEM state.
1282 static int qp_broker_create(struct vmci_handle handle
,
1288 struct vmci_qp_page_store
*page_store
,
1289 struct vmci_ctx
*context
,
1290 vmci_event_release_cb wakeup_cb
,
1291 void *client_data
, struct qp_broker_entry
**ent
)
1293 struct qp_broker_entry
*entry
= NULL
;
1294 const u32 context_id
= vmci_ctx_get_id(context
);
1295 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1297 u64 guest_produce_size
;
1298 u64 guest_consume_size
;
1300 /* Do not create if the caller asked not to. */
1301 if (flags
& VMCI_QPFLAG_ATTACH_ONLY
)
1302 return VMCI_ERROR_NOT_FOUND
;
1305 * Creator's context ID should match handle's context ID or the creator
1306 * must allow the context in handle's context ID as the "peer".
1308 if (handle
.context
!= context_id
&& handle
.context
!= peer
)
1309 return VMCI_ERROR_NO_ACCESS
;
1311 if (VMCI_CONTEXT_IS_VM(context_id
) && VMCI_CONTEXT_IS_VM(peer
))
1312 return VMCI_ERROR_DST_UNREACHABLE
;
1315 * Creator's context ID for local queue pairs should match the
1316 * peer, if a peer is specified.
1318 if (is_local
&& peer
!= VMCI_INVALID_ID
&& context_id
!= peer
)
1319 return VMCI_ERROR_NO_ACCESS
;
1321 entry
= kzalloc(sizeof(*entry
), GFP_ATOMIC
);
1323 return VMCI_ERROR_NO_MEM
;
1325 if (vmci_ctx_get_id(context
) == VMCI_HOST_CONTEXT_ID
&& !is_local
) {
1327 * The queue pair broker entry stores values from the guest
1328 * point of view, so a creating host side endpoint should swap
1329 * produce and consume values -- unless it is a local queue
1330 * pair, in which case no swapping is necessary, since the local
1331 * attacher will swap queues.
1334 guest_produce_size
= consume_size
;
1335 guest_consume_size
= produce_size
;
1337 guest_produce_size
= produce_size
;
1338 guest_consume_size
= consume_size
;
1341 entry
->qp
.handle
= handle
;
1342 entry
->qp
.peer
= peer
;
1343 entry
->qp
.flags
= flags
;
1344 entry
->qp
.produce_size
= guest_produce_size
;
1345 entry
->qp
.consume_size
= guest_consume_size
;
1346 entry
->qp
.ref_count
= 1;
1347 entry
->create_id
= context_id
;
1348 entry
->attach_id
= VMCI_INVALID_ID
;
1349 entry
->state
= VMCIQPB_NEW
;
1350 entry
->require_trusted_attach
=
1351 !!(context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
);
1352 entry
->created_by_trusted
=
1353 !!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
);
1354 entry
->vmci_page_files
= false;
1355 entry
->wakeup_cb
= wakeup_cb
;
1356 entry
->client_data
= client_data
;
1357 entry
->produce_q
= qp_host_alloc_queue(guest_produce_size
);
1358 if (entry
->produce_q
== NULL
) {
1359 result
= VMCI_ERROR_NO_MEM
;
1362 entry
->consume_q
= qp_host_alloc_queue(guest_consume_size
);
1363 if (entry
->consume_q
== NULL
) {
1364 result
= VMCI_ERROR_NO_MEM
;
1368 qp_init_queue_mutex(entry
->produce_q
, entry
->consume_q
);
1370 INIT_LIST_HEAD(&entry
->qp
.list_item
);
1375 entry
->local_mem
= kcalloc(QPE_NUM_PAGES(entry
->qp
),
1376 PAGE_SIZE
, GFP_KERNEL
);
1377 if (entry
->local_mem
== NULL
) {
1378 result
= VMCI_ERROR_NO_MEM
;
1381 entry
->state
= VMCIQPB_CREATED_MEM
;
1382 entry
->produce_q
->q_header
= entry
->local_mem
;
1383 tmp
= (u8
*)entry
->local_mem
+ PAGE_SIZE
*
1384 (DIV_ROUND_UP(entry
->qp
.produce_size
, PAGE_SIZE
) + 1);
1385 entry
->consume_q
->q_header
= (struct vmci_queue_header
*)tmp
;
1386 } else if (page_store
) {
1388 * The VMX already initialized the queue pair headers, so no
1389 * need for the kernel side to do that.
1391 result
= qp_host_register_user_memory(page_store
,
1394 if (result
< VMCI_SUCCESS
)
1397 entry
->state
= VMCIQPB_CREATED_MEM
;
1400 * A create without a page_store may be either a host
1401 * side create (in which case we are waiting for the
1402 * guest side to supply the memory) or an old style
1403 * queue pair create (in which case we will expect a
1404 * set page store call as the next step).
1406 entry
->state
= VMCIQPB_CREATED_NO_MEM
;
1409 qp_list_add_entry(&qp_broker_list
, &entry
->qp
);
1413 /* Add to resource obj */
1414 result
= vmci_resource_add(&entry
->resource
,
1415 VMCI_RESOURCE_TYPE_QPAIR_HOST
,
1417 if (result
!= VMCI_SUCCESS
) {
1418 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1419 handle
.context
, handle
.resource
, result
);
1423 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
1425 vmci_q_header_init(entry
->produce_q
->q_header
,
1427 vmci_q_header_init(entry
->consume_q
->q_header
,
1431 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1433 return VMCI_SUCCESS
;
1436 if (entry
!= NULL
) {
1437 qp_host_free_queue(entry
->produce_q
, guest_produce_size
);
1438 qp_host_free_queue(entry
->consume_q
, guest_consume_size
);
1446 * Enqueues an event datagram to notify the peer VM attached to
1447 * the given queue pair handle about attach/detach event by the
1448 * given VM. Returns Payload size of datagram enqueued on
1449 * success, error code otherwise.
1451 static int qp_notify_peer(bool attach
,
1452 struct vmci_handle handle
,
1457 struct vmci_event_qp ev
;
1459 if (vmci_handle_is_invalid(handle
) || my_id
== VMCI_INVALID_ID
||
1460 peer_id
== VMCI_INVALID_ID
)
1461 return VMCI_ERROR_INVALID_ARGS
;
1464 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1465 * number of pending events from the hypervisor to a given VM
1466 * otherwise a rogue VM could do an arbitrary number of attach
1467 * and detach operations causing memory pressure in the host
1471 memset(&ev
, 0, sizeof(ev
));
1472 ev
.msg
.hdr
.dst
= vmci_make_handle(peer_id
, VMCI_EVENT_HANDLER
);
1473 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
1474 VMCI_CONTEXT_RESOURCE_ID
);
1475 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
1476 ev
.msg
.event_data
.event
= attach
?
1477 VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
1478 ev
.payload
.handle
= handle
;
1479 ev
.payload
.peer_id
= my_id
;
1481 rv
= vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID
,
1482 &ev
.msg
.hdr
, false);
1483 if (rv
< VMCI_SUCCESS
)
1484 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1485 attach
? "ATTACH" : "DETACH", peer_id
);
1491 * The second endpoint issuing a queue pair allocation will attach to
1492 * the queue pair registered with the queue pair broker.
1494 * If the attacher is a guest, it will associate a VMX virtual address
1495 * range with the queue pair as specified by the page_store. At this
1496 * point, the already attach host endpoint may start using the queue
1497 * pair, and an attach event is sent to it. For compatibility with
1498 * older VMX'en, that used a separate step to set the VMX virtual
1499 * address range, the virtual address range can be registered later
1500 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1501 * NULL should be used, and the attach event will be generated once
1502 * the actual page store has been set.
1504 * If the attacher is the host, a page_store of NULL should be used as
1505 * well, since the page store information is already set by the guest.
1507 * For new VMX and host callers, the queue pair will be moved to the
1508 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1509 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1511 static int qp_broker_attach(struct qp_broker_entry
*entry
,
1517 struct vmci_qp_page_store
*page_store
,
1518 struct vmci_ctx
*context
,
1519 vmci_event_release_cb wakeup_cb
,
1521 struct qp_broker_entry
**ent
)
1523 const u32 context_id
= vmci_ctx_get_id(context
);
1524 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1527 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
1528 entry
->state
!= VMCIQPB_CREATED_MEM
)
1529 return VMCI_ERROR_UNAVAILABLE
;
1532 if (!(entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) ||
1533 context_id
!= entry
->create_id
) {
1534 return VMCI_ERROR_INVALID_ARGS
;
1536 } else if (context_id
== entry
->create_id
||
1537 context_id
== entry
->attach_id
) {
1538 return VMCI_ERROR_ALREADY_EXISTS
;
1541 if (VMCI_CONTEXT_IS_VM(context_id
) &&
1542 VMCI_CONTEXT_IS_VM(entry
->create_id
))
1543 return VMCI_ERROR_DST_UNREACHABLE
;
1546 * If we are attaching from a restricted context then the queuepair
1547 * must have been created by a trusted endpoint.
1549 if ((context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
) &&
1550 !entry
->created_by_trusted
)
1551 return VMCI_ERROR_NO_ACCESS
;
1554 * If we are attaching to a queuepair that was created by a restricted
1555 * context then we must be trusted.
1557 if (entry
->require_trusted_attach
&&
1558 (!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
)))
1559 return VMCI_ERROR_NO_ACCESS
;
1562 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1563 * control check is not performed.
1565 if (entry
->qp
.peer
!= VMCI_INVALID_ID
&& entry
->qp
.peer
!= context_id
)
1566 return VMCI_ERROR_NO_ACCESS
;
1568 if (entry
->create_id
== VMCI_HOST_CONTEXT_ID
) {
1570 * Do not attach if the caller doesn't support Host Queue Pairs
1571 * and a host created this queue pair.
1574 if (!vmci_ctx_supports_host_qp(context
))
1575 return VMCI_ERROR_INVALID_RESOURCE
;
1577 } else if (context_id
== VMCI_HOST_CONTEXT_ID
) {
1578 struct vmci_ctx
*create_context
;
1579 bool supports_host_qp
;
1582 * Do not attach a host to a user created queue pair if that
1583 * user doesn't support host queue pair end points.
1586 create_context
= vmci_ctx_get(entry
->create_id
);
1587 supports_host_qp
= vmci_ctx_supports_host_qp(create_context
);
1588 vmci_ctx_put(create_context
);
1590 if (!supports_host_qp
)
1591 return VMCI_ERROR_INVALID_RESOURCE
;
1594 if ((entry
->qp
.flags
& ~VMCI_QP_ASYMM
) != (flags
& ~VMCI_QP_ASYMM_PEER
))
1595 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1597 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1599 * The queue pair broker entry stores values from the guest
1600 * point of view, so an attaching guest should match the values
1601 * stored in the entry.
1604 if (entry
->qp
.produce_size
!= produce_size
||
1605 entry
->qp
.consume_size
!= consume_size
) {
1606 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1608 } else if (entry
->qp
.produce_size
!= consume_size
||
1609 entry
->qp
.consume_size
!= produce_size
) {
1610 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1613 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1615 * If a guest attached to a queue pair, it will supply
1616 * the backing memory. If this is a pre NOVMVM vmx,
1617 * the backing memory will be supplied by calling
1618 * vmci_qp_broker_set_page_store() following the
1619 * return of the vmci_qp_broker_alloc() call. If it is
1620 * a vmx of version NOVMVM or later, the page store
1621 * must be supplied as part of the
1622 * vmci_qp_broker_alloc call. Under all circumstances
1623 * must the initially created queue pair not have any
1624 * memory associated with it already.
1627 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
)
1628 return VMCI_ERROR_INVALID_ARGS
;
1630 if (page_store
!= NULL
) {
1632 * Patch up host state to point to guest
1633 * supplied memory. The VMX already
1634 * initialized the queue pair headers, so no
1635 * need for the kernel side to do that.
1638 result
= qp_host_register_user_memory(page_store
,
1641 if (result
< VMCI_SUCCESS
)
1644 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1646 entry
->state
= VMCIQPB_ATTACHED_NO_MEM
;
1648 } else if (entry
->state
== VMCIQPB_CREATED_NO_MEM
) {
1650 * The host side is attempting to attach to a queue
1651 * pair that doesn't have any memory associated with
1652 * it. This must be a pre NOVMVM vmx that hasn't set
1653 * the page store information yet, or a quiesced VM.
1656 return VMCI_ERROR_UNAVAILABLE
;
1658 /* The host side has successfully attached to a queue pair. */
1659 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1662 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
1664 qp_notify_peer(true, entry
->qp
.handle
, context_id
,
1666 if (result
< VMCI_SUCCESS
)
1667 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1668 entry
->create_id
, entry
->qp
.handle
.context
,
1669 entry
->qp
.handle
.resource
);
1672 entry
->attach_id
= context_id
;
1673 entry
->qp
.ref_count
++;
1675 entry
->wakeup_cb
= wakeup_cb
;
1676 entry
->client_data
= client_data
;
1680 * When attaching to local queue pairs, the context already has
1681 * an entry tracking the queue pair, so don't add another one.
1684 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1689 return VMCI_SUCCESS
;
1693 * queue_pair_Alloc for use when setting up queue pair endpoints
1696 static int qp_broker_alloc(struct vmci_handle handle
,
1702 struct vmci_qp_page_store
*page_store
,
1703 struct vmci_ctx
*context
,
1704 vmci_event_release_cb wakeup_cb
,
1706 struct qp_broker_entry
**ent
,
1709 const u32 context_id
= vmci_ctx_get_id(context
);
1711 struct qp_broker_entry
*entry
= NULL
;
1712 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1715 if (vmci_handle_is_invalid(handle
) ||
1716 (flags
& ~VMCI_QP_ALL_FLAGS
) || is_local
||
1717 !(produce_size
|| consume_size
) ||
1718 !context
|| context_id
== VMCI_INVALID_ID
||
1719 handle
.context
== VMCI_INVALID_ID
) {
1720 return VMCI_ERROR_INVALID_ARGS
;
1723 if (page_store
&& !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store
))
1724 return VMCI_ERROR_INVALID_ARGS
;
1727 * In the initial argument check, we ensure that non-vmkernel hosts
1728 * are not allowed to create local queue pairs.
1731 mutex_lock(&qp_broker_list
.mutex
);
1733 if (!is_local
&& vmci_ctx_qp_exists(context
, handle
)) {
1734 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1735 context_id
, handle
.context
, handle
.resource
);
1736 mutex_unlock(&qp_broker_list
.mutex
);
1737 return VMCI_ERROR_ALREADY_EXISTS
;
1740 if (handle
.resource
!= VMCI_INVALID_ID
)
1741 entry
= qp_broker_handle_to_entry(handle
);
1746 qp_broker_create(handle
, peer
, flags
, priv_flags
,
1747 produce_size
, consume_size
, page_store
,
1748 context
, wakeup_cb
, client_data
, ent
);
1752 qp_broker_attach(entry
, peer
, flags
, priv_flags
,
1753 produce_size
, consume_size
, page_store
,
1754 context
, wakeup_cb
, client_data
, ent
);
1757 mutex_unlock(&qp_broker_list
.mutex
);
1760 *swap
= (context_id
== VMCI_HOST_CONTEXT_ID
) &&
1761 !(create
&& is_local
);
1767 * This function implements the kernel API for allocating a queue
1770 static int qp_alloc_host_work(struct vmci_handle
*handle
,
1771 struct vmci_queue
**produce_q
,
1773 struct vmci_queue
**consume_q
,
1778 vmci_event_release_cb wakeup_cb
,
1781 struct vmci_handle new_handle
;
1782 struct vmci_ctx
*context
;
1783 struct qp_broker_entry
*entry
;
1787 if (vmci_handle_is_invalid(*handle
)) {
1788 new_handle
= vmci_make_handle(
1789 VMCI_HOST_CONTEXT_ID
, VMCI_INVALID_ID
);
1791 new_handle
= *handle
;
1793 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1796 qp_broker_alloc(new_handle
, peer
, flags
, priv_flags
,
1797 produce_size
, consume_size
, NULL
, context
,
1798 wakeup_cb
, client_data
, &entry
, &swap
);
1799 if (result
== VMCI_SUCCESS
) {
1802 * If this is a local queue pair, the attacher
1803 * will swap around produce and consume
1807 *produce_q
= entry
->consume_q
;
1808 *consume_q
= entry
->produce_q
;
1810 *produce_q
= entry
->produce_q
;
1811 *consume_q
= entry
->consume_q
;
1814 *handle
= vmci_resource_handle(&entry
->resource
);
1816 *handle
= VMCI_INVALID_HANDLE
;
1817 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1820 vmci_ctx_put(context
);
1825 * Allocates a VMCI queue_pair. Only checks validity of input
1826 * arguments. The real work is done in the host or guest
1827 * specific function.
1829 int vmci_qp_alloc(struct vmci_handle
*handle
,
1830 struct vmci_queue
**produce_q
,
1832 struct vmci_queue
**consume_q
,
1837 bool guest_endpoint
,
1838 vmci_event_release_cb wakeup_cb
,
1841 if (!handle
|| !produce_q
|| !consume_q
||
1842 (!produce_size
&& !consume_size
) || (flags
& ~VMCI_QP_ALL_FLAGS
))
1843 return VMCI_ERROR_INVALID_ARGS
;
1845 if (guest_endpoint
) {
1846 return qp_alloc_guest_work(handle
, produce_q
,
1847 produce_size
, consume_q
,
1851 return qp_alloc_host_work(handle
, produce_q
,
1852 produce_size
, consume_q
,
1853 consume_size
, peer
, flags
,
1854 priv_flags
, wakeup_cb
, client_data
);
1859 * This function implements the host kernel API for detaching from
1862 static int qp_detatch_host_work(struct vmci_handle handle
)
1865 struct vmci_ctx
*context
;
1867 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1869 result
= vmci_qp_broker_detach(handle
, context
);
1871 vmci_ctx_put(context
);
1876 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1877 * Real work is done in the host or guest specific function.
1879 static int qp_detatch(struct vmci_handle handle
, bool guest_endpoint
)
1881 if (vmci_handle_is_invalid(handle
))
1882 return VMCI_ERROR_INVALID_ARGS
;
1885 return qp_detatch_guest_work(handle
);
1887 return qp_detatch_host_work(handle
);
1891 * Returns the entry from the head of the list. Assumes that the list is
1894 static struct qp_entry
*qp_list_get_head(struct qp_list
*qp_list
)
1896 if (!list_empty(&qp_list
->head
)) {
1897 struct qp_entry
*entry
=
1898 list_first_entry(&qp_list
->head
, struct qp_entry
,
1906 void vmci_qp_broker_exit(void)
1908 struct qp_entry
*entry
;
1909 struct qp_broker_entry
*be
;
1911 mutex_lock(&qp_broker_list
.mutex
);
1913 while ((entry
= qp_list_get_head(&qp_broker_list
))) {
1914 be
= (struct qp_broker_entry
*)entry
;
1916 qp_list_remove_entry(&qp_broker_list
, entry
);
1920 mutex_unlock(&qp_broker_list
.mutex
);
1924 * Requests that a queue pair be allocated with the VMCI queue
1925 * pair broker. Allocates a queue pair entry if one does not
1926 * exist. Attaches to one if it exists, and retrieves the page
1927 * files backing that queue_pair. Assumes that the queue pair
1928 * broker lock is held.
1930 int vmci_qp_broker_alloc(struct vmci_handle handle
,
1936 struct vmci_qp_page_store
*page_store
,
1937 struct vmci_ctx
*context
)
1939 if (!QP_SIZES_ARE_VALID(produce_size
, consume_size
))
1940 return VMCI_ERROR_NO_RESOURCES
;
1942 return qp_broker_alloc(handle
, peer
, flags
, priv_flags
,
1943 produce_size
, consume_size
,
1944 page_store
, context
, NULL
, NULL
, NULL
, NULL
);
1948 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1949 * step to add the UVAs of the VMX mapping of the queue pair. This function
1950 * provides backwards compatibility with such VMX'en, and takes care of
1951 * registering the page store for a queue pair previously allocated by the
1952 * VMX during create or attach. This function will move the queue pair state
1953 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1954 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1955 * attached state with memory, the queue pair is ready to be used by the
1956 * host peer, and an attached event will be generated.
1958 * Assumes that the queue pair broker lock is held.
1960 * This function is only used by the hosted platform, since there is no
1961 * issue with backwards compatibility for vmkernel.
1963 int vmci_qp_broker_set_page_store(struct vmci_handle handle
,
1966 struct vmci_ctx
*context
)
1968 struct qp_broker_entry
*entry
;
1970 const u32 context_id
= vmci_ctx_get_id(context
);
1972 if (vmci_handle_is_invalid(handle
) || !context
||
1973 context_id
== VMCI_INVALID_ID
)
1974 return VMCI_ERROR_INVALID_ARGS
;
1977 * We only support guest to host queue pairs, so the VMX must
1978 * supply UVAs for the mapped page files.
1981 if (produce_uva
== 0 || consume_uva
== 0)
1982 return VMCI_ERROR_INVALID_ARGS
;
1984 mutex_lock(&qp_broker_list
.mutex
);
1986 if (!vmci_ctx_qp_exists(context
, handle
)) {
1987 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1988 context_id
, handle
.context
, handle
.resource
);
1989 result
= VMCI_ERROR_NOT_FOUND
;
1993 entry
= qp_broker_handle_to_entry(handle
);
1995 result
= VMCI_ERROR_NOT_FOUND
;
2000 * If I'm the owner then I can set the page store.
2002 * Or, if a host created the queue_pair and I'm the attached peer
2003 * then I can set the page store.
2005 if (entry
->create_id
!= context_id
&&
2006 (entry
->create_id
!= VMCI_HOST_CONTEXT_ID
||
2007 entry
->attach_id
!= context_id
)) {
2008 result
= VMCI_ERROR_QUEUEPAIR_NOTOWNER
;
2012 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
2013 entry
->state
!= VMCIQPB_ATTACHED_NO_MEM
) {
2014 result
= VMCI_ERROR_UNAVAILABLE
;
2018 result
= qp_host_get_user_memory(produce_uva
, consume_uva
,
2019 entry
->produce_q
, entry
->consume_q
);
2020 if (result
< VMCI_SUCCESS
)
2023 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2024 if (result
< VMCI_SUCCESS
) {
2025 qp_host_unregister_user_memory(entry
->produce_q
,
2030 if (entry
->state
== VMCIQPB_CREATED_NO_MEM
)
2031 entry
->state
= VMCIQPB_CREATED_MEM
;
2033 entry
->state
= VMCIQPB_ATTACHED_MEM
;
2035 entry
->vmci_page_files
= true;
2037 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
2039 qp_notify_peer(true, handle
, context_id
, entry
->create_id
);
2040 if (result
< VMCI_SUCCESS
) {
2041 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2042 entry
->create_id
, entry
->qp
.handle
.context
,
2043 entry
->qp
.handle
.resource
);
2047 result
= VMCI_SUCCESS
;
2049 mutex_unlock(&qp_broker_list
.mutex
);
2054 * Resets saved queue headers for the given QP broker
2055 * entry. Should be used when guest memory becomes available
2056 * again, or the guest detaches.
2058 static void qp_reset_saved_headers(struct qp_broker_entry
*entry
)
2060 entry
->produce_q
->saved_header
= NULL
;
2061 entry
->consume_q
->saved_header
= NULL
;
2065 * The main entry point for detaching from a queue pair registered with the
2066 * queue pair broker. If more than one endpoint is attached to the queue
2067 * pair, the first endpoint will mainly decrement a reference count and
2068 * generate a notification to its peer. The last endpoint will clean up
2069 * the queue pair state registered with the broker.
2071 * When a guest endpoint detaches, it will unmap and unregister the guest
2072 * memory backing the queue pair. If the host is still attached, it will
2073 * no longer be able to access the queue pair content.
2075 * If the queue pair is already in a state where there is no memory
2076 * registered for the queue pair (any *_NO_MEM state), it will transition to
2077 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2078 * endpoint is the first of two endpoints to detach. If the host endpoint is
2079 * the first out of two to detach, the queue pair will move to the
2080 * VMCIQPB_SHUTDOWN_MEM state.
2082 int vmci_qp_broker_detach(struct vmci_handle handle
, struct vmci_ctx
*context
)
2084 struct qp_broker_entry
*entry
;
2085 const u32 context_id
= vmci_ctx_get_id(context
);
2087 bool is_local
= false;
2090 if (vmci_handle_is_invalid(handle
) || !context
||
2091 context_id
== VMCI_INVALID_ID
) {
2092 return VMCI_ERROR_INVALID_ARGS
;
2095 mutex_lock(&qp_broker_list
.mutex
);
2097 if (!vmci_ctx_qp_exists(context
, handle
)) {
2098 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2099 context_id
, handle
.context
, handle
.resource
);
2100 result
= VMCI_ERROR_NOT_FOUND
;
2104 entry
= qp_broker_handle_to_entry(handle
);
2106 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2107 context_id
, handle
.context
, handle
.resource
);
2108 result
= VMCI_ERROR_NOT_FOUND
;
2112 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2113 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2117 if (context_id
== entry
->create_id
) {
2118 peer_id
= entry
->attach_id
;
2119 entry
->create_id
= VMCI_INVALID_ID
;
2121 peer_id
= entry
->create_id
;
2122 entry
->attach_id
= VMCI_INVALID_ID
;
2124 entry
->qp
.ref_count
--;
2126 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2128 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2129 bool headers_mapped
;
2132 * Pre NOVMVM vmx'en may detach from a queue pair
2133 * before setting the page store, and in that case
2134 * there is no user memory to detach from. Also, more
2135 * recent VMX'en may detach from a queue pair in the
2139 qp_acquire_queue_mutex(entry
->produce_q
);
2140 headers_mapped
= entry
->produce_q
->q_header
||
2141 entry
->consume_q
->q_header
;
2142 if (QPBROKERSTATE_HAS_MEM(entry
)) {
2144 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID
,
2147 if (result
< VMCI_SUCCESS
)
2148 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2149 handle
.context
, handle
.resource
,
2152 qp_host_unregister_user_memory(entry
->produce_q
,
2157 if (!headers_mapped
)
2158 qp_reset_saved_headers(entry
);
2160 qp_release_queue_mutex(entry
->produce_q
);
2162 if (!headers_mapped
&& entry
->wakeup_cb
)
2163 entry
->wakeup_cb(entry
->client_data
);
2166 if (entry
->wakeup_cb
) {
2167 entry
->wakeup_cb
= NULL
;
2168 entry
->client_data
= NULL
;
2172 if (entry
->qp
.ref_count
== 0) {
2173 qp_list_remove_entry(&qp_broker_list
, &entry
->qp
);
2176 kfree(entry
->local_mem
);
2178 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
2179 qp_host_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
2180 qp_host_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
2181 /* Unlink from resource hash table and free callback */
2182 vmci_resource_remove(&entry
->resource
);
2186 vmci_ctx_qp_destroy(context
, handle
);
2188 qp_notify_peer(false, handle
, context_id
, peer_id
);
2189 if (context_id
== VMCI_HOST_CONTEXT_ID
&&
2190 QPBROKERSTATE_HAS_MEM(entry
)) {
2191 entry
->state
= VMCIQPB_SHUTDOWN_MEM
;
2193 entry
->state
= VMCIQPB_SHUTDOWN_NO_MEM
;
2197 vmci_ctx_qp_destroy(context
, handle
);
2200 result
= VMCI_SUCCESS
;
2202 mutex_unlock(&qp_broker_list
.mutex
);
2207 * Establishes the necessary mappings for a queue pair given a
2208 * reference to the queue pair guest memory. This is usually
2209 * called when a guest is unquiesced and the VMX is allowed to
2210 * map guest memory once again.
2212 int vmci_qp_broker_map(struct vmci_handle handle
,
2213 struct vmci_ctx
*context
,
2216 struct qp_broker_entry
*entry
;
2217 const u32 context_id
= vmci_ctx_get_id(context
);
2220 if (vmci_handle_is_invalid(handle
) || !context
||
2221 context_id
== VMCI_INVALID_ID
)
2222 return VMCI_ERROR_INVALID_ARGS
;
2224 mutex_lock(&qp_broker_list
.mutex
);
2226 if (!vmci_ctx_qp_exists(context
, handle
)) {
2227 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2228 context_id
, handle
.context
, handle
.resource
);
2229 result
= VMCI_ERROR_NOT_FOUND
;
2233 entry
= qp_broker_handle_to_entry(handle
);
2235 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2236 context_id
, handle
.context
, handle
.resource
);
2237 result
= VMCI_ERROR_NOT_FOUND
;
2241 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2242 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2246 result
= VMCI_SUCCESS
;
2248 if (context_id
!= VMCI_HOST_CONTEXT_ID
&&
2249 !QPBROKERSTATE_HAS_MEM(entry
)) {
2250 struct vmci_qp_page_store page_store
;
2252 page_store
.pages
= guest_mem
;
2253 page_store
.len
= QPE_NUM_PAGES(entry
->qp
);
2255 qp_acquire_queue_mutex(entry
->produce_q
);
2256 qp_reset_saved_headers(entry
);
2258 qp_host_register_user_memory(&page_store
,
2261 qp_release_queue_mutex(entry
->produce_q
);
2262 if (result
== VMCI_SUCCESS
) {
2263 /* Move state from *_NO_MEM to *_MEM */
2267 if (entry
->wakeup_cb
)
2268 entry
->wakeup_cb(entry
->client_data
);
2273 mutex_unlock(&qp_broker_list
.mutex
);
2278 * Saves a snapshot of the queue headers for the given QP broker
2279 * entry. Should be used when guest memory is unmapped.
2281 * VMCI_SUCCESS on success, appropriate error code if guest memory
2282 * can't be accessed..
2284 static int qp_save_headers(struct qp_broker_entry
*entry
)
2288 if (entry
->produce_q
->saved_header
!= NULL
&&
2289 entry
->consume_q
->saved_header
!= NULL
) {
2291 * If the headers have already been saved, we don't need to do
2292 * it again, and we don't want to map in the headers
2296 return VMCI_SUCCESS
;
2299 if (NULL
== entry
->produce_q
->q_header
||
2300 NULL
== entry
->consume_q
->q_header
) {
2301 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2302 if (result
< VMCI_SUCCESS
)
2306 memcpy(&entry
->saved_produce_q
, entry
->produce_q
->q_header
,
2307 sizeof(entry
->saved_produce_q
));
2308 entry
->produce_q
->saved_header
= &entry
->saved_produce_q
;
2309 memcpy(&entry
->saved_consume_q
, entry
->consume_q
->q_header
,
2310 sizeof(entry
->saved_consume_q
));
2311 entry
->consume_q
->saved_header
= &entry
->saved_consume_q
;
2313 return VMCI_SUCCESS
;
2317 * Removes all references to the guest memory of a given queue pair, and
2318 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2319 * called when a VM is being quiesced where access to guest memory should
2322 int vmci_qp_broker_unmap(struct vmci_handle handle
,
2323 struct vmci_ctx
*context
,
2326 struct qp_broker_entry
*entry
;
2327 const u32 context_id
= vmci_ctx_get_id(context
);
2330 if (vmci_handle_is_invalid(handle
) || !context
||
2331 context_id
== VMCI_INVALID_ID
)
2332 return VMCI_ERROR_INVALID_ARGS
;
2334 mutex_lock(&qp_broker_list
.mutex
);
2336 if (!vmci_ctx_qp_exists(context
, handle
)) {
2337 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2338 context_id
, handle
.context
, handle
.resource
);
2339 result
= VMCI_ERROR_NOT_FOUND
;
2343 entry
= qp_broker_handle_to_entry(handle
);
2345 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2346 context_id
, handle
.context
, handle
.resource
);
2347 result
= VMCI_ERROR_NOT_FOUND
;
2351 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2352 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2356 if (context_id
!= VMCI_HOST_CONTEXT_ID
&&
2357 QPBROKERSTATE_HAS_MEM(entry
)) {
2358 qp_acquire_queue_mutex(entry
->produce_q
);
2359 result
= qp_save_headers(entry
);
2360 if (result
< VMCI_SUCCESS
)
2361 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2362 handle
.context
, handle
.resource
, result
);
2364 qp_host_unmap_queues(gid
, entry
->produce_q
, entry
->consume_q
);
2367 * On hosted, when we unmap queue pairs, the VMX will also
2368 * unmap the guest memory, so we invalidate the previously
2369 * registered memory. If the queue pair is mapped again at a
2370 * later point in time, we will need to reregister the user
2371 * memory with a possibly new user VA.
2373 qp_host_unregister_user_memory(entry
->produce_q
,
2377 * Move state from *_MEM to *_NO_MEM.
2381 qp_release_queue_mutex(entry
->produce_q
);
2384 result
= VMCI_SUCCESS
;
2387 mutex_unlock(&qp_broker_list
.mutex
);
2392 * Destroys all guest queue pair endpoints. If active guest queue
2393 * pairs still exist, hypercalls to attempt detach from these
2394 * queue pairs will be made. Any failure to detach is silently
2397 void vmci_qp_guest_endpoints_exit(void)
2399 struct qp_entry
*entry
;
2400 struct qp_guest_endpoint
*ep
;
2402 mutex_lock(&qp_guest_endpoints
.mutex
);
2404 while ((entry
= qp_list_get_head(&qp_guest_endpoints
))) {
2405 ep
= (struct qp_guest_endpoint
*)entry
;
2407 /* Don't make a hypercall for local queue_pairs. */
2408 if (!(entry
->flags
& VMCI_QPFLAG_LOCAL
))
2409 qp_detatch_hypercall(entry
->handle
);
2411 /* We cannot fail the exit, so let's reset ref_count. */
2412 entry
->ref_count
= 0;
2413 qp_list_remove_entry(&qp_guest_endpoints
, entry
);
2415 qp_guest_endpoint_destroy(ep
);
2418 mutex_unlock(&qp_guest_endpoints
.mutex
);
2422 * Helper routine that will lock the queue pair before subsequent
2424 * Note: Non-blocking on the host side is currently only implemented in ESX.
2425 * Since non-blocking isn't yet implemented on the host personality we
2426 * have no reason to acquire a spin lock. So to avoid the use of an
2427 * unnecessary lock only acquire the mutex if we can block.
2429 static void qp_lock(const struct vmci_qp
*qpair
)
2431 qp_acquire_queue_mutex(qpair
->produce_q
);
2435 * Helper routine that unlocks the queue pair after calling
2438 static void qp_unlock(const struct vmci_qp
*qpair
)
2440 qp_release_queue_mutex(qpair
->produce_q
);
2444 * The queue headers may not be mapped at all times. If a queue is
2445 * currently not mapped, it will be attempted to do so.
2447 static int qp_map_queue_headers(struct vmci_queue
*produce_q
,
2448 struct vmci_queue
*consume_q
)
2452 if (NULL
== produce_q
->q_header
|| NULL
== consume_q
->q_header
) {
2453 result
= qp_host_map_queues(produce_q
, consume_q
);
2454 if (result
< VMCI_SUCCESS
)
2455 return (produce_q
->saved_header
&&
2456 consume_q
->saved_header
) ?
2457 VMCI_ERROR_QUEUEPAIR_NOT_READY
:
2458 VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2461 return VMCI_SUCCESS
;
2465 * Helper routine that will retrieve the produce and consume
2466 * headers of a given queue pair. If the guest memory of the
2467 * queue pair is currently not available, the saved queue headers
2468 * will be returned, if these are available.
2470 static int qp_get_queue_headers(const struct vmci_qp
*qpair
,
2471 struct vmci_queue_header
**produce_q_header
,
2472 struct vmci_queue_header
**consume_q_header
)
2476 result
= qp_map_queue_headers(qpair
->produce_q
, qpair
->consume_q
);
2477 if (result
== VMCI_SUCCESS
) {
2478 *produce_q_header
= qpair
->produce_q
->q_header
;
2479 *consume_q_header
= qpair
->consume_q
->q_header
;
2480 } else if (qpair
->produce_q
->saved_header
&&
2481 qpair
->consume_q
->saved_header
) {
2482 *produce_q_header
= qpair
->produce_q
->saved_header
;
2483 *consume_q_header
= qpair
->consume_q
->saved_header
;
2484 result
= VMCI_SUCCESS
;
2491 * Callback from VMCI queue pair broker indicating that a queue
2492 * pair that was previously not ready, now either is ready or
2495 static int qp_wakeup_cb(void *client_data
)
2497 struct vmci_qp
*qpair
= (struct vmci_qp
*)client_data
;
2500 while (qpair
->blocked
> 0) {
2502 qpair
->generation
++;
2503 wake_up(&qpair
->event
);
2507 return VMCI_SUCCESS
;
2511 * Makes the calling thread wait for the queue pair to become
2512 * ready for host side access. Returns true when thread is
2513 * woken up after queue pair state change, false otherwise.
2515 static bool qp_wait_for_ready_queue(struct vmci_qp
*qpair
)
2517 unsigned int generation
;
2520 generation
= qpair
->generation
;
2522 wait_event(qpair
->event
, generation
!= qpair
->generation
);
2529 * Enqueues a given buffer to the produce queue using the provided
2530 * function. As many bytes as possible (space available in the queue)
2531 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2532 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2533 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2534 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2535 * an error occured when accessing the buffer,
2536 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2537 * available. Otherwise, the number of bytes written to the queue is
2538 * returned. Updates the tail pointer of the produce queue.
2540 static ssize_t
qp_enqueue_locked(struct vmci_queue
*produce_q
,
2541 struct vmci_queue
*consume_q
,
2542 const u64 produce_q_size
,
2543 struct iov_iter
*from
)
2547 size_t buf_size
= iov_iter_count(from
);
2551 result
= qp_map_queue_headers(produce_q
, consume_q
);
2552 if (unlikely(result
!= VMCI_SUCCESS
))
2555 free_space
= vmci_q_header_free_space(produce_q
->q_header
,
2556 consume_q
->q_header
,
2558 if (free_space
== 0)
2559 return VMCI_ERROR_QUEUEPAIR_NOSPACE
;
2561 if (free_space
< VMCI_SUCCESS
)
2562 return (ssize_t
) free_space
;
2564 written
= (size_t) (free_space
> buf_size
? buf_size
: free_space
);
2565 tail
= vmci_q_header_producer_tail(produce_q
->q_header
);
2566 if (likely(tail
+ written
< produce_q_size
)) {
2567 result
= qp_memcpy_to_queue_iter(produce_q
, tail
, from
, written
);
2569 /* Tail pointer wraps around. */
2571 const size_t tmp
= (size_t) (produce_q_size
- tail
);
2573 result
= qp_memcpy_to_queue_iter(produce_q
, tail
, from
, tmp
);
2574 if (result
>= VMCI_SUCCESS
)
2575 result
= qp_memcpy_to_queue_iter(produce_q
, 0, from
,
2579 if (result
< VMCI_SUCCESS
)
2583 * This virt_wmb() ensures that data written to the queue
2584 * is observable before the new producer_tail is.
2588 vmci_q_header_add_producer_tail(produce_q
->q_header
, written
,
2594 * Dequeues data (if available) from the given consume queue. Writes data
2595 * to the user provided buffer using the provided function.
2596 * Assumes the queue->mutex has been acquired.
2598 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2599 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2600 * (as defined by the queue size).
2601 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2602 * Otherwise the number of bytes dequeued is returned.
2604 * Updates the head pointer of the consume queue.
2606 static ssize_t
qp_dequeue_locked(struct vmci_queue
*produce_q
,
2607 struct vmci_queue
*consume_q
,
2608 const u64 consume_q_size
,
2609 struct iov_iter
*to
,
2610 bool update_consumer
)
2612 size_t buf_size
= iov_iter_count(to
);
2618 result
= qp_map_queue_headers(produce_q
, consume_q
);
2619 if (unlikely(result
!= VMCI_SUCCESS
))
2622 buf_ready
= vmci_q_header_buf_ready(consume_q
->q_header
,
2623 produce_q
->q_header
,
2626 return VMCI_ERROR_QUEUEPAIR_NODATA
;
2628 if (buf_ready
< VMCI_SUCCESS
)
2629 return (ssize_t
) buf_ready
;
2632 * This virt_rmb() ensures that data from the queue will be read
2633 * after we have determined how much is ready to be consumed.
2637 read
= (size_t) (buf_ready
> buf_size
? buf_size
: buf_ready
);
2638 head
= vmci_q_header_consumer_head(produce_q
->q_header
);
2639 if (likely(head
+ read
< consume_q_size
)) {
2640 result
= qp_memcpy_from_queue_iter(to
, consume_q
, head
, read
);
2642 /* Head pointer wraps around. */
2644 const size_t tmp
= (size_t) (consume_q_size
- head
);
2646 result
= qp_memcpy_from_queue_iter(to
, consume_q
, head
, tmp
);
2647 if (result
>= VMCI_SUCCESS
)
2648 result
= qp_memcpy_from_queue_iter(to
, consume_q
, 0,
2653 if (result
< VMCI_SUCCESS
)
2656 if (update_consumer
)
2657 vmci_q_header_add_consumer_head(produce_q
->q_header
,
2658 read
, consume_q_size
);
2664 * vmci_qpair_alloc() - Allocates a queue pair.
2665 * @qpair: Pointer for the new vmci_qp struct.
2666 * @handle: Handle to track the resource.
2667 * @produce_qsize: Desired size of the producer queue.
2668 * @consume_qsize: Desired size of the consumer queue.
2669 * @peer: ContextID of the peer.
2670 * @flags: VMCI flags.
2671 * @priv_flags: VMCI priviledge flags.
2673 * This is the client interface for allocating the memory for a
2674 * vmci_qp structure and then attaching to the underlying
2675 * queue. If an error occurs allocating the memory for the
2676 * vmci_qp structure no attempt is made to attach. If an
2677 * error occurs attaching, then the structure is freed.
2679 int vmci_qpair_alloc(struct vmci_qp
**qpair
,
2680 struct vmci_handle
*handle
,
2687 struct vmci_qp
*my_qpair
;
2689 struct vmci_handle src
= VMCI_INVALID_HANDLE
;
2690 struct vmci_handle dst
= vmci_make_handle(peer
, VMCI_INVALID_ID
);
2691 enum vmci_route route
;
2692 vmci_event_release_cb wakeup_cb
;
2696 * Restrict the size of a queuepair. The device already
2697 * enforces a limit on the total amount of memory that can be
2698 * allocated to queuepairs for a guest. However, we try to
2699 * allocate this memory before we make the queuepair
2700 * allocation hypercall. On Linux, we allocate each page
2701 * separately, which means rather than fail, the guest will
2702 * thrash while it tries to allocate, and will become
2703 * increasingly unresponsive to the point where it appears to
2704 * be hung. So we place a limit on the size of an individual
2705 * queuepair here, and leave the device to enforce the
2706 * restriction on total queuepair memory. (Note that this
2707 * doesn't prevent all cases; a user with only this much
2708 * physical memory could still get into trouble.) The error
2709 * used by the device is NO_RESOURCES, so use that here too.
2712 if (!QP_SIZES_ARE_VALID(produce_qsize
, consume_qsize
))
2713 return VMCI_ERROR_NO_RESOURCES
;
2715 retval
= vmci_route(&src
, &dst
, false, &route
);
2716 if (retval
< VMCI_SUCCESS
)
2717 route
= vmci_guest_code_active() ?
2718 VMCI_ROUTE_AS_GUEST
: VMCI_ROUTE_AS_HOST
;
2720 if (flags
& (VMCI_QPFLAG_NONBLOCK
| VMCI_QPFLAG_PINNED
)) {
2721 pr_devel("NONBLOCK OR PINNED set");
2722 return VMCI_ERROR_INVALID_ARGS
;
2725 my_qpair
= kzalloc(sizeof(*my_qpair
), GFP_KERNEL
);
2727 return VMCI_ERROR_NO_MEM
;
2729 my_qpair
->produce_q_size
= produce_qsize
;
2730 my_qpair
->consume_q_size
= consume_qsize
;
2731 my_qpair
->peer
= peer
;
2732 my_qpair
->flags
= flags
;
2733 my_qpair
->priv_flags
= priv_flags
;
2738 if (VMCI_ROUTE_AS_HOST
== route
) {
2739 my_qpair
->guest_endpoint
= false;
2740 if (!(flags
& VMCI_QPFLAG_LOCAL
)) {
2741 my_qpair
->blocked
= 0;
2742 my_qpair
->generation
= 0;
2743 init_waitqueue_head(&my_qpair
->event
);
2744 wakeup_cb
= qp_wakeup_cb
;
2745 client_data
= (void *)my_qpair
;
2748 my_qpair
->guest_endpoint
= true;
2751 retval
= vmci_qp_alloc(handle
,
2752 &my_qpair
->produce_q
,
2753 my_qpair
->produce_q_size
,
2754 &my_qpair
->consume_q
,
2755 my_qpair
->consume_q_size
,
2758 my_qpair
->priv_flags
,
2759 my_qpair
->guest_endpoint
,
2760 wakeup_cb
, client_data
);
2762 if (retval
< VMCI_SUCCESS
) {
2768 my_qpair
->handle
= *handle
;
2772 EXPORT_SYMBOL_GPL(vmci_qpair_alloc
);
2775 * vmci_qpair_detach() - Detatches the client from a queue pair.
2776 * @qpair: Reference of a pointer to the qpair struct.
2778 * This is the client interface for detaching from a VMCIQPair.
2779 * Note that this routine will free the memory allocated for the
2780 * vmci_qp structure too.
2782 int vmci_qpair_detach(struct vmci_qp
**qpair
)
2785 struct vmci_qp
*old_qpair
;
2787 if (!qpair
|| !(*qpair
))
2788 return VMCI_ERROR_INVALID_ARGS
;
2791 result
= qp_detatch(old_qpair
->handle
, old_qpair
->guest_endpoint
);
2794 * The guest can fail to detach for a number of reasons, and
2795 * if it does so, it will cleanup the entry (if there is one).
2796 * The host can fail too, but it won't cleanup the entry
2797 * immediately, it will do that later when the context is
2798 * freed. Either way, we need to release the qpair struct
2799 * here; there isn't much the caller can do, and we don't want
2803 memset(old_qpair
, 0, sizeof(*old_qpair
));
2804 old_qpair
->handle
= VMCI_INVALID_HANDLE
;
2805 old_qpair
->peer
= VMCI_INVALID_ID
;
2811 EXPORT_SYMBOL_GPL(vmci_qpair_detach
);
2814 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2815 * @qpair: Pointer to the queue pair struct.
2816 * @producer_tail: Reference used for storing producer tail index.
2817 * @consumer_head: Reference used for storing the consumer head index.
2819 * This is the client interface for getting the current indexes of the
2820 * QPair from the point of the view of the caller as the producer.
2822 int vmci_qpair_get_produce_indexes(const struct vmci_qp
*qpair
,
2826 struct vmci_queue_header
*produce_q_header
;
2827 struct vmci_queue_header
*consume_q_header
;
2831 return VMCI_ERROR_INVALID_ARGS
;
2835 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2836 if (result
== VMCI_SUCCESS
)
2837 vmci_q_header_get_pointers(produce_q_header
, consume_q_header
,
2838 producer_tail
, consumer_head
);
2841 if (result
== VMCI_SUCCESS
&&
2842 ((producer_tail
&& *producer_tail
>= qpair
->produce_q_size
) ||
2843 (consumer_head
&& *consumer_head
>= qpair
->produce_q_size
)))
2844 return VMCI_ERROR_INVALID_SIZE
;
2848 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes
);
2851 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2852 * @qpair: Pointer to the queue pair struct.
2853 * @consumer_tail: Reference used for storing consumer tail index.
2854 * @producer_head: Reference used for storing the producer head index.
2856 * This is the client interface for getting the current indexes of the
2857 * QPair from the point of the view of the caller as the consumer.
2859 int vmci_qpair_get_consume_indexes(const struct vmci_qp
*qpair
,
2863 struct vmci_queue_header
*produce_q_header
;
2864 struct vmci_queue_header
*consume_q_header
;
2868 return VMCI_ERROR_INVALID_ARGS
;
2872 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2873 if (result
== VMCI_SUCCESS
)
2874 vmci_q_header_get_pointers(consume_q_header
, produce_q_header
,
2875 consumer_tail
, producer_head
);
2878 if (result
== VMCI_SUCCESS
&&
2879 ((consumer_tail
&& *consumer_tail
>= qpair
->consume_q_size
) ||
2880 (producer_head
&& *producer_head
>= qpair
->consume_q_size
)))
2881 return VMCI_ERROR_INVALID_SIZE
;
2885 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes
);
2888 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2889 * @qpair: Pointer to the queue pair struct.
2891 * This is the client interface for getting the amount of free
2892 * space in the QPair from the point of the view of the caller as
2893 * the producer which is the common case. Returns < 0 if err, else
2894 * available bytes into which data can be enqueued if > 0.
2896 s64
vmci_qpair_produce_free_space(const struct vmci_qp
*qpair
)
2898 struct vmci_queue_header
*produce_q_header
;
2899 struct vmci_queue_header
*consume_q_header
;
2903 return VMCI_ERROR_INVALID_ARGS
;
2907 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2908 if (result
== VMCI_SUCCESS
)
2909 result
= vmci_q_header_free_space(produce_q_header
,
2911 qpair
->produce_q_size
);
2919 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space
);
2922 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2923 * @qpair: Pointer to the queue pair struct.
2925 * This is the client interface for getting the amount of free
2926 * space in the QPair from the point of the view of the caller as
2927 * the consumer which is not the common case. Returns < 0 if err, else
2928 * available bytes into which data can be enqueued if > 0.
2930 s64
vmci_qpair_consume_free_space(const struct vmci_qp
*qpair
)
2932 struct vmci_queue_header
*produce_q_header
;
2933 struct vmci_queue_header
*consume_q_header
;
2937 return VMCI_ERROR_INVALID_ARGS
;
2941 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2942 if (result
== VMCI_SUCCESS
)
2943 result
= vmci_q_header_free_space(consume_q_header
,
2945 qpair
->consume_q_size
);
2953 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space
);
2956 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2958 * @qpair: Pointer to the queue pair struct.
2960 * This is the client interface for getting the amount of
2961 * enqueued data in the QPair from the point of the view of the
2962 * caller as the producer which is not the common case. Returns < 0 if err,
2963 * else available bytes that may be read.
2965 s64
vmci_qpair_produce_buf_ready(const struct vmci_qp
*qpair
)
2967 struct vmci_queue_header
*produce_q_header
;
2968 struct vmci_queue_header
*consume_q_header
;
2972 return VMCI_ERROR_INVALID_ARGS
;
2976 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2977 if (result
== VMCI_SUCCESS
)
2978 result
= vmci_q_header_buf_ready(produce_q_header
,
2980 qpair
->produce_q_size
);
2988 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready
);
2991 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2993 * @qpair: Pointer to the queue pair struct.
2995 * This is the client interface for getting the amount of
2996 * enqueued data in the QPair from the point of the view of the
2997 * caller as the consumer which is the normal case. Returns < 0 if err,
2998 * else available bytes that may be read.
3000 s64
vmci_qpair_consume_buf_ready(const struct vmci_qp
*qpair
)
3002 struct vmci_queue_header
*produce_q_header
;
3003 struct vmci_queue_header
*consume_q_header
;
3007 return VMCI_ERROR_INVALID_ARGS
;
3011 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
3012 if (result
== VMCI_SUCCESS
)
3013 result
= vmci_q_header_buf_ready(consume_q_header
,
3015 qpair
->consume_q_size
);
3023 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready
);
3026 * vmci_qpair_enqueue() - Throw data on the queue.
3027 * @qpair: Pointer to the queue pair struct.
3028 * @buf: Pointer to buffer containing data
3029 * @buf_size: Length of buffer.
3030 * @buf_type: Buffer type (Unused).
3032 * This is the client interface for enqueueing data into the queue.
3033 * Returns number of bytes enqueued or < 0 on error.
3035 ssize_t
vmci_qpair_enqueue(struct vmci_qp
*qpair
,
3041 struct iov_iter from
;
3042 struct kvec v
= {.iov_base
= (void *)buf
, .iov_len
= buf_size
};
3045 return VMCI_ERROR_INVALID_ARGS
;
3047 iov_iter_kvec(&from
, ITER_SOURCE
, &v
, 1, buf_size
);
3052 result
= qp_enqueue_locked(qpair
->produce_q
,
3054 qpair
->produce_q_size
,
3057 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3058 !qp_wait_for_ready_queue(qpair
))
3059 result
= VMCI_ERROR_WOULD_BLOCK
;
3061 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3067 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue
);
3070 * vmci_qpair_dequeue() - Get data from the queue.
3071 * @qpair: Pointer to the queue pair struct.
3072 * @buf: Pointer to buffer for the data
3073 * @buf_size: Length of buffer.
3074 * @buf_type: Buffer type (Unused).
3076 * This is the client interface for dequeueing data from the queue.
3077 * Returns number of bytes dequeued or < 0 on error.
3079 ssize_t
vmci_qpair_dequeue(struct vmci_qp
*qpair
,
3086 struct kvec v
= {.iov_base
= buf
, .iov_len
= buf_size
};
3089 return VMCI_ERROR_INVALID_ARGS
;
3091 iov_iter_kvec(&to
, ITER_DEST
, &v
, 1, buf_size
);
3096 result
= qp_dequeue_locked(qpair
->produce_q
,
3098 qpair
->consume_q_size
,
3101 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3102 !qp_wait_for_ready_queue(qpair
))
3103 result
= VMCI_ERROR_WOULD_BLOCK
;
3105 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3111 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue
);
3114 * vmci_qpair_peek() - Peek at the data in the queue.
3115 * @qpair: Pointer to the queue pair struct.
3116 * @buf: Pointer to buffer for the data
3117 * @buf_size: Length of buffer.
3118 * @buf_type: Buffer type (Unused on Linux).
3120 * This is the client interface for peeking into a queue. (I.e.,
3121 * copy data from the queue without updating the head pointer.)
3122 * Returns number of bytes dequeued or < 0 on error.
3124 ssize_t
vmci_qpair_peek(struct vmci_qp
*qpair
,
3130 struct kvec v
= {.iov_base
= buf
, .iov_len
= buf_size
};
3134 return VMCI_ERROR_INVALID_ARGS
;
3136 iov_iter_kvec(&to
, ITER_DEST
, &v
, 1, buf_size
);
3141 result
= qp_dequeue_locked(qpair
->produce_q
,
3143 qpair
->consume_q_size
,
3146 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3147 !qp_wait_for_ready_queue(qpair
))
3148 result
= VMCI_ERROR_WOULD_BLOCK
;
3150 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3156 EXPORT_SYMBOL_GPL(vmci_qpair_peek
);
3159 * vmci_qpair_enquev() - Throw data on the queue using iov.
3160 * @qpair: Pointer to the queue pair struct.
3161 * @iov: Pointer to buffer containing data
3162 * @iov_size: Length of buffer.
3163 * @buf_type: Buffer type (Unused).
3165 * This is the client interface for enqueueing data into the queue.
3166 * This function uses IO vectors to handle the work. Returns number
3167 * of bytes enqueued or < 0 on error.
3169 ssize_t
vmci_qpair_enquev(struct vmci_qp
*qpair
,
3177 return VMCI_ERROR_INVALID_ARGS
;
3182 result
= qp_enqueue_locked(qpair
->produce_q
,
3184 qpair
->produce_q_size
,
3187 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3188 !qp_wait_for_ready_queue(qpair
))
3189 result
= VMCI_ERROR_WOULD_BLOCK
;
3191 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3197 EXPORT_SYMBOL_GPL(vmci_qpair_enquev
);
3200 * vmci_qpair_dequev() - Get data from the queue using iov.
3201 * @qpair: Pointer to the queue pair struct.
3202 * @iov: Pointer to buffer for the data
3203 * @iov_size: Length of buffer.
3204 * @buf_type: Buffer type (Unused).
3206 * This is the client interface for dequeueing data from the queue.
3207 * This function uses IO vectors to handle the work. Returns number
3208 * of bytes dequeued or < 0 on error.
3210 ssize_t
vmci_qpair_dequev(struct vmci_qp
*qpair
,
3218 return VMCI_ERROR_INVALID_ARGS
;
3223 result
= qp_dequeue_locked(qpair
->produce_q
,
3225 qpair
->consume_q_size
,
3226 &msg
->msg_iter
, true);
3228 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3229 !qp_wait_for_ready_queue(qpair
))
3230 result
= VMCI_ERROR_WOULD_BLOCK
;
3232 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3238 EXPORT_SYMBOL_GPL(vmci_qpair_dequev
);
3241 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3242 * @qpair: Pointer to the queue pair struct.
3243 * @iov: Pointer to buffer for the data
3244 * @iov_size: Length of buffer.
3245 * @buf_type: Buffer type (Unused on Linux).
3247 * This is the client interface for peeking into a queue. (I.e.,
3248 * copy data from the queue without updating the head pointer.)
3249 * This function uses IO vectors to handle the work. Returns number
3250 * of bytes peeked or < 0 on error.
3252 ssize_t
vmci_qpair_peekv(struct vmci_qp
*qpair
,
3260 return VMCI_ERROR_INVALID_ARGS
;
3265 result
= qp_dequeue_locked(qpair
->produce_q
,
3267 qpair
->consume_q_size
,
3268 &msg
->msg_iter
, false);
3270 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3271 !qp_wait_for_ready_queue(qpair
))
3272 result
= VMCI_ERROR_WOULD_BLOCK
;
3274 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3279 EXPORT_SYMBOL_GPL(vmci_qpair_peekv
);