1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/mmc/core/core.c
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS (250)
54 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it to be disabled.
62 module_param(use_spi_crc
, bool, 0);
64 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
73 return queue_delayed_work(system_freezable_wq
, work
, delay
);
76 #ifdef CONFIG_FAIL_MMC_REQUEST
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
82 static void mmc_should_fail_request(struct mmc_host
*host
,
83 struct mmc_request
*mrq
)
85 struct mmc_command
*cmd
= mrq
->cmd
;
86 struct mmc_data
*data
= mrq
->data
;
87 static const int data_errors
[] = {
96 if ((cmd
&& cmd
->error
) || data
->error
||
97 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
100 data
->error
= data_errors
[get_random_u32_below(ARRAY_SIZE(data_errors
))];
101 data
->bytes_xfered
= get_random_u32_below(data
->bytes_xfered
>> 9) << 9;
104 #else /* CONFIG_FAIL_MMC_REQUEST */
106 static inline void mmc_should_fail_request(struct mmc_host
*host
,
107 struct mmc_request
*mrq
)
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
113 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
115 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
116 complete_all(&mrq
->cmd_completion
);
119 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
121 if (!mrq
->cap_cmd_during_tfr
)
124 mmc_complete_cmd(mrq
);
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host
), mrq
->cmd
->opcode
);
129 EXPORT_SYMBOL(mmc_command_done
);
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
139 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
141 struct mmc_command
*cmd
= mrq
->cmd
;
142 int err
= cmd
->error
;
144 /* Flag re-tuning needed on CRC errors */
145 if (!mmc_op_tuning(cmd
->opcode
) &&
146 !host
->retune_crc_disable
&&
147 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
148 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
149 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
150 mmc_retune_needed(host
);
152 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
153 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
157 if (host
->ongoing_mrq
== mrq
)
158 host
->ongoing_mrq
= NULL
;
160 mmc_complete_cmd(mrq
);
162 trace_mmc_request_done(host
, mrq
);
165 * We list various conditions for the command to be considered
168 * - There was no error, OK fine then
169 * - We are not doing some kind of retry
170 * - The card was removed (...so just complete everything no matter
171 * if there are errors or retries)
173 if (!err
|| !cmd
->retries
|| mmc_card_removed(host
->card
)) {
174 mmc_should_fail_request(host
, mrq
);
176 if (!host
->ongoing_mrq
)
177 led_trigger_event(host
->led
, LED_OFF
);
180 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
181 mmc_hostname(host
), mrq
->sbc
->opcode
,
183 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
184 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
187 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
188 mmc_hostname(host
), cmd
->opcode
, err
,
189 cmd
->resp
[0], cmd
->resp
[1],
190 cmd
->resp
[2], cmd
->resp
[3]);
193 pr_debug("%s: %d bytes transferred: %d\n",
195 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
199 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
200 mmc_hostname(host
), mrq
->stop
->opcode
,
202 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
203 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
207 * Request starter must handle retries - see
208 * mmc_wait_for_req_done().
214 EXPORT_SYMBOL(mmc_request_done
);
216 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
220 /* Assumes host controller has been runtime resumed by mmc_claim_host */
221 err
= mmc_retune(host
);
223 mrq
->cmd
->error
= err
;
224 mmc_request_done(host
, mrq
);
229 * For sdio rw commands we must wait for card busy otherwise some
230 * sdio devices won't work properly.
231 * And bypass I/O abort, reset and bus suspend operations.
233 if (sdio_is_io_busy(mrq
->cmd
->opcode
, mrq
->cmd
->arg
) &&
234 host
->ops
->card_busy
) {
235 int tries
= 500; /* Wait aprox 500ms at maximum */
237 while (host
->ops
->card_busy(host
) && --tries
)
241 mrq
->cmd
->error
= -EBUSY
;
242 mmc_request_done(host
, mrq
);
247 if (mrq
->cap_cmd_during_tfr
) {
248 host
->ongoing_mrq
= mrq
;
250 * Retry path could come through here without having waiting on
251 * cmd_completion, so ensure it is reinitialised.
253 reinit_completion(&mrq
->cmd_completion
);
256 trace_mmc_request_start(host
, mrq
);
259 host
->cqe_ops
->cqe_off(host
);
261 host
->ops
->request(host
, mrq
);
264 static void mmc_mrq_pr_debug(struct mmc_host
*host
, struct mmc_request
*mrq
,
268 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
269 mmc_hostname(host
), mrq
->sbc
->opcode
,
270 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
274 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
275 mmc_hostname(host
), cqe
? "CQE direct " : "",
276 mrq
->cmd
->opcode
, mrq
->cmd
->arg
, mrq
->cmd
->flags
);
278 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
279 mmc_hostname(host
), mrq
->tag
, mrq
->data
->blk_addr
);
283 pr_debug("%s: blksz %d blocks %d flags %08x "
284 "tsac %d ms nsac %d\n",
285 mmc_hostname(host
), mrq
->data
->blksz
,
286 mrq
->data
->blocks
, mrq
->data
->flags
,
287 mrq
->data
->timeout_ns
/ 1000000,
288 mrq
->data
->timeout_clks
);
292 pr_debug("%s: CMD%u arg %08x flags %08x\n",
293 mmc_hostname(host
), mrq
->stop
->opcode
,
294 mrq
->stop
->arg
, mrq
->stop
->flags
);
298 static int mmc_mrq_prep(struct mmc_host
*host
, struct mmc_request
*mrq
)
300 unsigned int i
, sz
= 0;
301 struct scatterlist
*sg
;
306 mrq
->cmd
->data
= mrq
->data
;
313 if (mrq
->data
->blksz
> host
->max_blk_size
||
314 mrq
->data
->blocks
> host
->max_blk_count
||
315 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
318 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
320 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
323 mrq
->data
->error
= 0;
324 mrq
->data
->mrq
= mrq
;
326 mrq
->data
->stop
= mrq
->stop
;
327 mrq
->stop
->error
= 0;
328 mrq
->stop
->mrq
= mrq
;
335 int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
339 if (mrq
->cmd
&& mrq
->cmd
->has_ext_addr
)
340 mmc_send_ext_addr(host
, mrq
->cmd
->ext_addr
);
342 init_completion(&mrq
->cmd_completion
);
344 mmc_retune_hold(host
);
346 if (mmc_card_removed(host
->card
))
349 mmc_mrq_pr_debug(host
, mrq
, false);
351 WARN_ON(!host
->claimed
);
353 err
= mmc_mrq_prep(host
, mrq
);
357 if (host
->uhs2_sd_tran
)
358 mmc_uhs2_prepare_cmd(host
, mrq
);
360 led_trigger_event(host
->led
, LED_FULL
);
361 __mmc_start_request(host
, mrq
);
365 EXPORT_SYMBOL(mmc_start_request
);
367 static void mmc_wait_done(struct mmc_request
*mrq
)
369 complete(&mrq
->completion
);
372 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
374 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
377 * If there is an ongoing transfer, wait for the command line to become
380 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
381 wait_for_completion(&ongoing_mrq
->cmd_completion
);
384 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
388 mmc_wait_ongoing_tfr_cmd(host
);
390 init_completion(&mrq
->completion
);
391 mrq
->done
= mmc_wait_done
;
393 err
= mmc_start_request(host
, mrq
);
395 mrq
->cmd
->error
= err
;
396 mmc_complete_cmd(mrq
);
397 complete(&mrq
->completion
);
403 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
405 struct mmc_command
*cmd
;
408 wait_for_completion(&mrq
->completion
);
412 if (!cmd
->error
|| !cmd
->retries
||
413 mmc_card_removed(host
->card
))
416 mmc_retune_recheck(host
);
418 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
419 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
422 __mmc_start_request(host
, mrq
);
425 mmc_retune_release(host
);
427 EXPORT_SYMBOL(mmc_wait_for_req_done
);
430 * mmc_cqe_start_req - Start a CQE request.
431 * @host: MMC host to start the request
432 * @mrq: request to start
434 * Start the request, re-tuning if needed and it is possible. Returns an error
435 * code if the request fails to start or -EBUSY if CQE is busy.
437 int mmc_cqe_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
442 * CQE cannot process re-tuning commands. Caller must hold retuning
443 * while CQE is in use. Re-tuning can happen here only when CQE has no
444 * active requests i.e. this is the first. Note, re-tuning will call
447 err
= mmc_retune(host
);
453 mmc_mrq_pr_debug(host
, mrq
, true);
455 err
= mmc_mrq_prep(host
, mrq
);
459 if (host
->uhs2_sd_tran
)
460 mmc_uhs2_prepare_cmd(host
, mrq
);
462 err
= host
->cqe_ops
->cqe_request(host
, mrq
);
466 trace_mmc_request_start(host
, mrq
);
472 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
473 mmc_hostname(host
), mrq
->cmd
->opcode
, err
);
475 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
476 mmc_hostname(host
), mrq
->tag
, err
);
480 EXPORT_SYMBOL(mmc_cqe_start_req
);
483 * mmc_cqe_request_done - CQE has finished processing an MMC request
484 * @host: MMC host which completed request
485 * @mrq: MMC request which completed
487 * CQE drivers should call this function when they have completed
488 * their processing of a request.
490 void mmc_cqe_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
492 mmc_should_fail_request(host
, mrq
);
494 /* Flag re-tuning needed on CRC errors */
495 if ((mrq
->cmd
&& mrq
->cmd
->error
== -EILSEQ
) ||
496 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
))
497 mmc_retune_needed(host
);
499 trace_mmc_request_done(host
, mrq
);
502 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
503 mmc_hostname(host
), mrq
->cmd
->opcode
, mrq
->cmd
->error
);
505 pr_debug("%s: CQE transfer done tag %d\n",
506 mmc_hostname(host
), mrq
->tag
);
510 pr_debug("%s: %d bytes transferred: %d\n",
512 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
517 EXPORT_SYMBOL(mmc_cqe_request_done
);
520 * mmc_cqe_post_req - CQE post process of a completed MMC request
522 * @mrq: MMC request to be processed
524 void mmc_cqe_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
526 if (host
->cqe_ops
->cqe_post_req
)
527 host
->cqe_ops
->cqe_post_req(host
, mrq
);
529 EXPORT_SYMBOL(mmc_cqe_post_req
);
531 /* Arbitrary 1 second timeout */
532 #define MMC_CQE_RECOVERY_TIMEOUT 1000
535 * mmc_cqe_recovery - Recover from CQE errors.
536 * @host: MMC host to recover
538 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue
539 * in eMMC, and discarding the queue in CQE. CQE must call
540 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
541 * fails to discard its queue.
543 int mmc_cqe_recovery(struct mmc_host
*host
)
545 struct mmc_command cmd
;
548 mmc_retune_hold_now(host
);
551 * Recovery is expected seldom, if at all, but it reduces performance,
552 * so make sure it is not completely silent.
554 pr_warn("%s: running CQE recovery\n", mmc_hostname(host
));
556 host
->cqe_ops
->cqe_recovery_start(host
);
558 memset(&cmd
, 0, sizeof(cmd
));
559 cmd
.opcode
= MMC_STOP_TRANSMISSION
;
560 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
561 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
562 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
;
563 mmc_wait_for_cmd(host
, &cmd
, MMC_CMD_RETRIES
);
565 mmc_poll_for_busy(host
->card
, MMC_CQE_RECOVERY_TIMEOUT
, true, MMC_BUSY_IO
);
567 memset(&cmd
, 0, sizeof(cmd
));
568 cmd
.opcode
= MMC_CMDQ_TASK_MGMT
;
569 cmd
.arg
= 1; /* Discard entire queue */
570 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
571 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
572 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
;
573 err
= mmc_wait_for_cmd(host
, &cmd
, MMC_CMD_RETRIES
);
575 host
->cqe_ops
->cqe_recovery_finish(host
);
578 err
= mmc_wait_for_cmd(host
, &cmd
, MMC_CMD_RETRIES
);
580 mmc_retune_release(host
);
584 EXPORT_SYMBOL(mmc_cqe_recovery
);
587 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
591 * mmc_is_req_done() is used with requests that have
592 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
593 * starting a request and before waiting for it to complete. That is,
594 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
595 * and before mmc_wait_for_req_done(). If it is called at other times the
596 * result is not meaningful.
598 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
600 return completion_done(&mrq
->completion
);
602 EXPORT_SYMBOL(mmc_is_req_done
);
605 * mmc_wait_for_req - start a request and wait for completion
606 * @host: MMC host to start command
607 * @mrq: MMC request to start
609 * Start a new MMC custom command request for a host, and wait
610 * for the command to complete. In the case of 'cap_cmd_during_tfr'
611 * requests, the transfer is ongoing and the caller can issue further
612 * commands that do not use the data lines, and then wait by calling
613 * mmc_wait_for_req_done().
614 * Does not attempt to parse the response.
616 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
618 __mmc_start_req(host
, mrq
);
620 if (!mrq
->cap_cmd_during_tfr
)
621 mmc_wait_for_req_done(host
, mrq
);
623 EXPORT_SYMBOL(mmc_wait_for_req
);
626 * mmc_wait_for_cmd - start a command and wait for completion
627 * @host: MMC host to start command
628 * @cmd: MMC command to start
629 * @retries: maximum number of retries
631 * Start a new MMC command for a host, and wait for the command
632 * to complete. Return any error that occurred while the command
633 * was executing. Do not attempt to parse the response.
635 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
637 struct mmc_request mrq
= {};
639 WARN_ON(!host
->claimed
);
641 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
642 cmd
->retries
= retries
;
647 mmc_wait_for_req(host
, &mrq
);
652 EXPORT_SYMBOL(mmc_wait_for_cmd
);
655 * mmc_set_data_timeout - set the timeout for a data command
656 * @data: data phase for command
657 * @card: the MMC card associated with the data transfer
659 * Computes the data timeout parameters according to the
660 * correct algorithm given the card type.
662 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
667 * SDIO cards only define an upper 1 s limit on access.
669 if (mmc_card_sdio(card
)) {
670 data
->timeout_ns
= 1000000000;
671 data
->timeout_clks
= 0;
676 * SD cards use a 100 multiplier rather than 10
678 mult
= mmc_card_sd(card
) ? 100 : 10;
681 * Scale up the multiplier (and therefore the timeout) by
682 * the r2w factor for writes.
684 if (data
->flags
& MMC_DATA_WRITE
)
685 mult
<<= card
->csd
.r2w_factor
;
687 data
->timeout_ns
= card
->csd
.taac_ns
* mult
;
688 data
->timeout_clks
= card
->csd
.taac_clks
* mult
;
691 * SD cards also have an upper limit on the timeout.
693 if (mmc_card_sd(card
)) {
694 unsigned int timeout_us
, limit_us
;
696 timeout_us
= data
->timeout_ns
/ 1000;
697 if (card
->host
->ios
.clock
)
698 timeout_us
+= data
->timeout_clks
* 1000 /
699 (card
->host
->ios
.clock
/ 1000);
701 if (data
->flags
& MMC_DATA_WRITE
)
703 * The MMC spec "It is strongly recommended
704 * for hosts to implement more than 500ms
705 * timeout value even if the card indicates
706 * the 250ms maximum busy length." Even the
707 * previous value of 300ms is known to be
708 * insufficient for some cards.
715 * SDHC cards always use these fixed values.
717 if (timeout_us
> limit_us
) {
718 data
->timeout_ns
= limit_us
* 1000;
719 data
->timeout_clks
= 0;
722 /* assign limit value if invalid */
724 data
->timeout_ns
= limit_us
* 1000;
728 * Some cards require longer data read timeout than indicated in CSD.
729 * Address this by setting the read timeout to a "reasonably high"
730 * value. For the cards tested, 600ms has proven enough. If necessary,
731 * this value can be increased if other problematic cards require this.
733 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
734 data
->timeout_ns
= 600000000;
735 data
->timeout_clks
= 0;
739 * Some cards need very high timeouts if driven in SPI mode.
740 * The worst observed timeout was 900ms after writing a
741 * continuous stream of data until the internal logic
744 if (mmc_host_is_spi(card
->host
)) {
745 if (data
->flags
& MMC_DATA_WRITE
) {
746 if (data
->timeout_ns
< 1000000000)
747 data
->timeout_ns
= 1000000000; /* 1s */
749 if (data
->timeout_ns
< 100000000)
750 data
->timeout_ns
= 100000000; /* 100ms */
754 EXPORT_SYMBOL(mmc_set_data_timeout
);
757 * Allow claiming an already claimed host if the context is the same or there is
758 * no context but the task is the same.
760 static inline bool mmc_ctx_matches(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
761 struct task_struct
*task
)
763 return host
->claimer
== ctx
||
764 (!ctx
&& task
&& host
->claimer
->task
== task
);
767 static inline void mmc_ctx_set_claimer(struct mmc_host
*host
,
769 struct task_struct
*task
)
771 if (!host
->claimer
) {
775 host
->claimer
= &host
->default_ctx
;
778 host
->claimer
->task
= task
;
782 * __mmc_claim_host - exclusively claim a host
783 * @host: mmc host to claim
784 * @ctx: context that claims the host or NULL in which case the default
785 * context will be used
786 * @abort: whether or not the operation should be aborted
788 * Claim a host for a set of operations. If @abort is non null and
789 * dereference a non-zero value then this will return prematurely with
790 * that non-zero value without acquiring the lock. Returns zero
791 * with the lock held otherwise.
793 int __mmc_claim_host(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
796 struct task_struct
*task
= ctx
? NULL
: current
;
797 DECLARE_WAITQUEUE(wait
, current
);
804 add_wait_queue(&host
->wq
, &wait
);
805 spin_lock_irqsave(&host
->lock
, flags
);
807 set_current_state(TASK_UNINTERRUPTIBLE
);
808 stop
= abort
? atomic_read(abort
) : 0;
809 if (stop
|| !host
->claimed
|| mmc_ctx_matches(host
, ctx
, task
))
811 spin_unlock_irqrestore(&host
->lock
, flags
);
813 spin_lock_irqsave(&host
->lock
, flags
);
815 set_current_state(TASK_RUNNING
);
818 mmc_ctx_set_claimer(host
, ctx
, task
);
819 host
->claim_cnt
+= 1;
820 if (host
->claim_cnt
== 1)
824 spin_unlock_irqrestore(&host
->lock
, flags
);
825 remove_wait_queue(&host
->wq
, &wait
);
828 pm_runtime_get_sync(mmc_dev(host
));
832 EXPORT_SYMBOL(__mmc_claim_host
);
835 * mmc_release_host - release a host
836 * @host: mmc host to release
838 * Release a MMC host, allowing others to claim the host
839 * for their operations.
841 void mmc_release_host(struct mmc_host
*host
)
845 WARN_ON(!host
->claimed
);
847 spin_lock_irqsave(&host
->lock
, flags
);
848 if (--host
->claim_cnt
) {
849 /* Release for nested claim */
850 spin_unlock_irqrestore(&host
->lock
, flags
);
853 host
->claimer
->task
= NULL
;
854 host
->claimer
= NULL
;
855 spin_unlock_irqrestore(&host
->lock
, flags
);
857 pm_runtime_mark_last_busy(mmc_dev(host
));
858 if (host
->caps
& MMC_CAP_SYNC_RUNTIME_PM
)
859 pm_runtime_put_sync_suspend(mmc_dev(host
));
861 pm_runtime_put_autosuspend(mmc_dev(host
));
864 EXPORT_SYMBOL(mmc_release_host
);
867 * This is a helper function, which fetches a runtime pm reference for the
868 * card device and also claims the host.
870 void mmc_get_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
872 pm_runtime_get_sync(&card
->dev
);
873 __mmc_claim_host(card
->host
, ctx
, NULL
);
875 EXPORT_SYMBOL(mmc_get_card
);
878 * This is a helper function, which releases the host and drops the runtime
879 * pm reference for the card device.
881 void mmc_put_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
883 struct mmc_host
*host
= card
->host
;
885 WARN_ON(ctx
&& host
->claimer
!= ctx
);
887 mmc_release_host(host
);
888 pm_runtime_mark_last_busy(&card
->dev
);
889 pm_runtime_put_autosuspend(&card
->dev
);
891 EXPORT_SYMBOL(mmc_put_card
);
894 * Internal function that does the actual ios call to the host driver,
895 * optionally printing some debug output.
897 static inline void mmc_set_ios(struct mmc_host
*host
)
899 struct mmc_ios
*ios
= &host
->ios
;
901 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
902 "width %u timing %u\n",
903 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
904 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
905 1 << ios
->bus_width
, ios
->timing
);
907 host
->ops
->set_ios(host
, ios
);
911 * Control chip select pin on a host.
913 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
915 host
->ios
.chip_select
= mode
;
920 * Sets the host clock to the highest possible frequency that
923 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
925 WARN_ON(hz
&& hz
< host
->f_min
);
927 if (hz
> host
->f_max
)
930 host
->ios
.clock
= hz
;
934 int mmc_execute_tuning(struct mmc_card
*card
)
936 struct mmc_host
*host
= card
->host
;
940 if (!host
->ops
->execute_tuning
)
944 host
->cqe_ops
->cqe_off(host
);
946 if (mmc_card_mmc(card
))
947 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
949 opcode
= MMC_SEND_TUNING_BLOCK
;
951 err
= host
->ops
->execute_tuning(host
, opcode
);
953 mmc_retune_clear(host
);
954 mmc_retune_enable(host
);
958 /* Only print error when we don't check for card removal */
959 if (!host
->detect_change
) {
960 pr_err("%s: tuning execution failed: %d\n",
961 mmc_hostname(host
), err
);
962 mmc_debugfs_err_stats_inc(host
, MMC_ERR_TUNING
);
969 * Change the bus mode (open drain/push-pull) of a host.
971 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
973 host
->ios
.bus_mode
= mode
;
978 * Change data bus width of a host.
980 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
982 host
->ios
.bus_width
= width
;
987 * Set initial state after a power cycle or a hw_reset.
989 void mmc_set_initial_state(struct mmc_host
*host
)
992 host
->cqe_ops
->cqe_off(host
);
994 mmc_retune_disable(host
);
996 if (mmc_host_is_spi(host
))
997 host
->ios
.chip_select
= MMC_CS_HIGH
;
999 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1000 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1001 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1002 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1003 host
->ios
.drv_type
= 0;
1004 host
->ios
.enhanced_strobe
= false;
1007 * Make sure we are in non-enhanced strobe mode before we
1008 * actually enable it in ext_csd.
1010 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1011 host
->ops
->hs400_enhanced_strobe
)
1012 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1016 mmc_crypto_set_initial_state(host
);
1020 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1021 * @vdd: voltage (mV)
1022 * @low_bits: prefer low bits in boundary cases
1024 * This function returns the OCR bit number according to the provided @vdd
1025 * value. If conversion is not possible a negative errno value returned.
1027 * Depending on the @low_bits flag the function prefers low or high OCR bits
1028 * on boundary voltages. For example,
1029 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1030 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1032 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1034 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1036 const int max_bit
= ilog2(MMC_VDD_35_36
);
1039 if (vdd
< 1650 || vdd
> 3600)
1042 if (vdd
>= 1650 && vdd
<= 1950)
1043 return ilog2(MMC_VDD_165_195
);
1048 /* Base 2000 mV, step 100 mV, bit's base 8. */
1049 bit
= (vdd
- 2000) / 100 + 8;
1056 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1057 * @vdd_min: minimum voltage value (mV)
1058 * @vdd_max: maximum voltage value (mV)
1060 * This function returns the OCR mask bits according to the provided @vdd_min
1061 * and @vdd_max values. If conversion is not possible the function returns 0.
1063 * Notes wrt boundary cases:
1064 * This function sets the OCR bits for all boundary voltages, for example
1065 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1066 * MMC_VDD_34_35 mask.
1068 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1072 if (vdd_max
< vdd_min
)
1075 /* Prefer high bits for the boundary vdd_max values. */
1076 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1080 /* Prefer low bits for the boundary vdd_min values. */
1081 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1085 /* Fill the mask, from max bit to min bit. */
1086 while (vdd_max
>= vdd_min
)
1087 mask
|= 1 << vdd_max
--;
1092 static int mmc_of_get_func_num(struct device_node
*node
)
1097 ret
= of_property_read_u32(node
, "reg", ®
);
1104 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1107 struct device_node
*node
;
1109 if (!host
->parent
|| !host
->parent
->of_node
)
1112 for_each_child_of_node(host
->parent
->of_node
, node
) {
1113 if (mmc_of_get_func_num(node
) == func_num
)
1121 * Mask off any voltages we don't support and select
1122 * the lowest voltage
1124 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1129 * Sanity check the voltages that the card claims to
1133 dev_warn(mmc_dev(host
),
1134 "card claims to support voltages below defined range\n");
1138 ocr
&= host
->ocr_avail
;
1140 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1144 if (!mmc_card_uhs2(host
) && host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1147 mmc_power_cycle(host
, ocr
);
1151 * The bit variable represents the highest voltage bit set in
1153 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1154 * we must shift the mask '3' with (bit - 1).
1156 ocr
&= 3 << (bit
- 1);
1157 if (bit
!= host
->ios
.vdd
)
1158 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1164 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1167 int old_signal_voltage
= host
->ios
.signal_voltage
;
1169 host
->ios
.signal_voltage
= signal_voltage
;
1170 if (host
->ops
->start_signal_voltage_switch
)
1171 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1174 host
->ios
.signal_voltage
= old_signal_voltage
;
1180 void mmc_set_initial_signal_voltage(struct mmc_host
*host
)
1182 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1183 if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
))
1184 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1185 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1186 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1187 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
))
1188 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1191 int mmc_host_set_uhs_voltage(struct mmc_host
*host
)
1196 * During a signal voltage level switch, the clock must be gated
1197 * for 5 ms according to the SD spec
1199 clock
= host
->ios
.clock
;
1200 host
->ios
.clock
= 0;
1203 if (mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1206 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1208 host
->ios
.clock
= clock
;
1214 int mmc_set_uhs_voltage(struct mmc_host
*host
, u32 ocr
)
1216 struct mmc_command cmd
= {};
1220 * If we cannot switch voltages, return failure so the caller
1221 * can continue without UHS mode
1223 if (!host
->ops
->start_signal_voltage_switch
)
1225 if (!host
->ops
->card_busy
)
1226 pr_warn("%s: cannot verify signal voltage switch\n",
1227 mmc_hostname(host
));
1229 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1231 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1233 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1237 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1241 * The card should drive cmd and dat[0:3] low immediately
1242 * after the response of cmd11, but wait 1 ms to be sure
1245 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1250 if (mmc_host_set_uhs_voltage(host
)) {
1252 * Voltages may not have been switched, but we've already
1253 * sent CMD11, so a power cycle is required anyway
1259 /* Wait for at least 1 ms according to spec */
1263 * Failure to switch is indicated by the card holding
1266 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1271 pr_debug("%s: Signal voltage switch failed, "
1272 "power cycling card\n", mmc_hostname(host
));
1273 mmc_power_cycle(host
, ocr
);
1280 * Select timing parameters for host.
1282 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1284 host
->ios
.timing
= timing
;
1289 * Select appropriate driver type for host.
1291 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1293 host
->ios
.drv_type
= drv_type
;
1297 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1298 int card_drv_type
, int *drv_type
)
1300 struct mmc_host
*host
= card
->host
;
1301 int host_drv_type
= SD_DRIVER_TYPE_B
;
1305 if (!host
->ops
->select_drive_strength
)
1308 /* Use SD definition of driver strength for hosts */
1309 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1310 host_drv_type
|= SD_DRIVER_TYPE_A
;
1312 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1313 host_drv_type
|= SD_DRIVER_TYPE_C
;
1315 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1316 host_drv_type
|= SD_DRIVER_TYPE_D
;
1319 * The drive strength that the hardware can support
1320 * depends on the board design. Pass the appropriate
1321 * information and let the hardware specific code
1322 * return what is possible given the options
1324 return host
->ops
->select_drive_strength(card
, max_dtr
,
1331 * Apply power to the MMC stack. This is a two-stage process.
1332 * First, we enable power to the card without the clock running.
1333 * We then wait a bit for the power to stabilise. Finally,
1334 * enable the bus drivers and clock to the card.
1336 * We must _NOT_ enable the clock prior to power stablising.
1338 * If a host does all the power sequencing itself, ignore the
1339 * initial MMC_POWER_UP stage.
1341 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1343 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1346 mmc_pwrseq_pre_power_on(host
);
1348 host
->ios
.vdd
= fls(ocr
) - 1;
1349 host
->ios
.power_mode
= MMC_POWER_UP
;
1350 /* Set initial state and call mmc_set_ios */
1351 mmc_set_initial_state(host
);
1353 mmc_set_initial_signal_voltage(host
);
1356 * This delay should be sufficient to allow the power supply
1357 * to reach the minimum voltage.
1359 mmc_delay(host
->ios
.power_delay_ms
);
1361 mmc_pwrseq_post_power_on(host
);
1363 host
->ios
.clock
= host
->f_init
;
1365 host
->ios
.power_mode
= MMC_POWER_ON
;
1369 * This delay must be at least 74 clock sizes, or 1 ms, or the
1370 * time required to reach a stable voltage.
1372 mmc_delay(host
->ios
.power_delay_ms
);
1375 void mmc_power_off(struct mmc_host
*host
)
1377 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1380 mmc_pwrseq_power_off(host
);
1382 host
->ios
.clock
= 0;
1385 host
->ios
.power_mode
= MMC_POWER_OFF
;
1386 /* Set initial state and call mmc_set_ios */
1387 mmc_set_initial_state(host
);
1390 * Some configurations, such as the 802.11 SDIO card in the OLPC
1391 * XO-1.5, require a short delay after poweroff before the card
1392 * can be successfully turned on again.
1397 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1399 mmc_power_off(host
);
1400 /* Wait at least 1 ms according to SD spec */
1402 mmc_power_up(host
, ocr
);
1406 * Assign a mmc bus handler to a host. Only one bus handler may control a
1407 * host at any given time.
1409 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1411 host
->bus_ops
= ops
;
1415 * Remove the current bus handler from a host.
1417 void mmc_detach_bus(struct mmc_host
*host
)
1419 host
->bus_ops
= NULL
;
1422 void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
, bool cd_irq
)
1425 * Prevent system sleep for 5s to allow user space to consume the
1426 * corresponding uevent. This is especially useful, when CD irq is used
1427 * as a system wakeup, but doesn't hurt in other cases.
1429 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
1430 __pm_wakeup_event(host
->ws
, 5000);
1432 host
->detect_change
= 1;
1433 mmc_schedule_delayed_work(&host
->detect
, delay
);
1437 * mmc_detect_change - process change of state on a MMC socket
1438 * @host: host which changed state.
1439 * @delay: optional delay to wait before detection (jiffies)
1441 * MMC drivers should call this when they detect a card has been
1442 * inserted or removed. The MMC layer will confirm that any
1443 * present card is still functional, and initialize any newly
1446 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1448 _mmc_detect_change(host
, delay
, true);
1450 EXPORT_SYMBOL(mmc_detect_change
);
1452 void mmc_init_erase(struct mmc_card
*card
)
1456 if (is_power_of_2(card
->erase_size
))
1457 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1459 card
->erase_shift
= 0;
1462 * It is possible to erase an arbitrarily large area of an SD or MMC
1463 * card. That is not desirable because it can take a long time
1464 * (minutes) potentially delaying more important I/O, and also the
1465 * timeout calculations become increasingly hugely over-estimated.
1466 * Consequently, 'pref_erase' is defined as a guide to limit erases
1467 * to that size and alignment.
1469 * For SD cards that define Allocation Unit size, limit erases to one
1470 * Allocation Unit at a time.
1471 * For MMC, have a stab at ai good value and for modern cards it will
1472 * end up being 4MiB. Note that if the value is too small, it can end
1473 * up taking longer to erase. Also note, erase_size is already set to
1474 * High Capacity Erase Size if available when this function is called.
1476 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1477 card
->pref_erase
= card
->ssr
.au
;
1478 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1479 } else if (card
->erase_size
) {
1480 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1482 card
->pref_erase
= 512 * 1024 / 512;
1484 card
->pref_erase
= 1024 * 1024 / 512;
1486 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1488 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1489 if (card
->pref_erase
< card
->erase_size
)
1490 card
->pref_erase
= card
->erase_size
;
1492 sz
= card
->pref_erase
% card
->erase_size
;
1494 card
->pref_erase
+= card
->erase_size
- sz
;
1497 card
->pref_erase
= 0;
1500 static bool is_trim_arg(unsigned int arg
)
1502 return (arg
& MMC_TRIM_OR_DISCARD_ARGS
) && arg
!= MMC_DISCARD_ARG
;
1505 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1506 unsigned int arg
, unsigned int qty
)
1508 unsigned int erase_timeout
;
1510 if (arg
== MMC_DISCARD_ARG
||
1511 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1512 erase_timeout
= card
->ext_csd
.trim_timeout
;
1513 } else if (card
->ext_csd
.erase_group_def
& 1) {
1514 /* High Capacity Erase Group Size uses HC timeouts */
1515 if (arg
== MMC_TRIM_ARG
)
1516 erase_timeout
= card
->ext_csd
.trim_timeout
;
1518 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1520 /* CSD Erase Group Size uses write timeout */
1521 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1522 unsigned int timeout_clks
= card
->csd
.taac_clks
* mult
;
1523 unsigned int timeout_us
;
1525 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1526 if (card
->csd
.taac_ns
< 1000000)
1527 timeout_us
= (card
->csd
.taac_ns
* mult
) / 1000;
1529 timeout_us
= (card
->csd
.taac_ns
/ 1000) * mult
;
1532 * ios.clock is only a target. The real clock rate might be
1533 * less but not that much less, so fudge it by multiplying by 2.
1536 timeout_us
+= (timeout_clks
* 1000) /
1537 (card
->host
->ios
.clock
/ 1000);
1539 erase_timeout
= timeout_us
/ 1000;
1542 * Theoretically, the calculation could underflow so round up
1543 * to 1ms in that case.
1549 /* Multiplier for secure operations */
1550 if (arg
& MMC_SECURE_ARGS
) {
1551 if (arg
== MMC_SECURE_ERASE_ARG
)
1552 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1554 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1557 erase_timeout
*= qty
;
1560 * Ensure at least a 1 second timeout for SPI as per
1561 * 'mmc_set_data_timeout()'
1563 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1564 erase_timeout
= 1000;
1566 return erase_timeout
;
1569 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1573 unsigned int erase_timeout
;
1575 /* for DISCARD none of the below calculation applies.
1576 * the busy timeout is 250msec per discard command.
1578 if (arg
== SD_DISCARD_ARG
)
1579 return SD_DISCARD_TIMEOUT_MS
;
1581 if (card
->ssr
.erase_timeout
) {
1582 /* Erase timeout specified in SD Status Register (SSR) */
1583 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1584 card
->ssr
.erase_offset
;
1587 * Erase timeout not specified in SD Status Register (SSR) so
1588 * use 250ms per write block.
1590 erase_timeout
= 250 * qty
;
1593 /* Must not be less than 1 second */
1594 if (erase_timeout
< 1000)
1595 erase_timeout
= 1000;
1597 return erase_timeout
;
1600 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1604 if (mmc_card_sd(card
))
1605 return mmc_sd_erase_timeout(card
, arg
, qty
);
1607 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1610 static int mmc_do_erase(struct mmc_card
*card
, sector_t from
,
1611 sector_t to
, unsigned int arg
)
1613 struct mmc_command cmd
= {};
1614 unsigned int qty
= 0, busy_timeout
= 0;
1618 mmc_retune_hold(card
->host
);
1621 * qty is used to calculate the erase timeout which depends on how many
1622 * erase groups (or allocation units in SD terminology) are affected.
1623 * We count erasing part of an erase group as one erase group.
1624 * For SD, the allocation units are always a power of 2. For MMC, the
1625 * erase group size is almost certainly also power of 2, but it does not
1626 * seem to insist on that in the JEDEC standard, so we fall back to
1627 * division in that case. SD may not specify an allocation unit size,
1628 * in which case the timeout is based on the number of write blocks.
1630 * Note that the timeout for secure trim 2 will only be correct if the
1631 * number of erase groups specified is the same as the total of all
1632 * preceding secure trim 1 commands. Since the power may have been
1633 * lost since the secure trim 1 commands occurred, it is generally
1634 * impossible to calculate the secure trim 2 timeout correctly.
1636 if (card
->erase_shift
)
1637 qty
+= ((to
>> card
->erase_shift
) -
1638 (from
>> card
->erase_shift
)) + 1;
1639 else if (mmc_card_sd(card
))
1640 qty
+= to
- from
+ 1;
1642 qty
+= (mmc_sector_div(to
, card
->erase_size
) -
1643 mmc_sector_div(from
, card
->erase_size
)) + 1;
1645 if (!mmc_card_blockaddr(card
)) {
1650 if (mmc_card_sd(card
))
1651 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
1653 cmd
.opcode
= MMC_ERASE_GROUP_START
;
1655 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1657 if (mmc_card_ult_capacity(card
)) {
1658 cmd
.ext_addr
= from
>> 32;
1659 cmd
.has_ext_addr
= true;
1662 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1664 pr_err("mmc_erase: group start error %d, "
1665 "status %#x\n", err
, cmd
.resp
[0]);
1670 memset(&cmd
, 0, sizeof(struct mmc_command
));
1671 if (mmc_card_sd(card
))
1672 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
1674 cmd
.opcode
= MMC_ERASE_GROUP_END
;
1676 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
1678 if (mmc_card_ult_capacity(card
)) {
1679 cmd
.ext_addr
= to
>> 32;
1680 cmd
.has_ext_addr
= true;
1683 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1685 pr_err("mmc_erase: group end error %d, status %#x\n",
1691 memset(&cmd
, 0, sizeof(struct mmc_command
));
1692 cmd
.opcode
= MMC_ERASE
;
1694 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
1695 use_r1b_resp
= mmc_prepare_busy_cmd(card
->host
, &cmd
, busy_timeout
);
1697 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
1699 pr_err("mmc_erase: erase error %d, status %#x\n",
1705 if (mmc_host_is_spi(card
->host
))
1709 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1712 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
1715 /* Let's poll to find out when the erase operation completes. */
1716 err
= mmc_poll_for_busy(card
, busy_timeout
, false, MMC_BUSY_ERASE
);
1719 mmc_retune_release(card
->host
);
1723 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
1728 sector_t from_new
= *from
;
1729 unsigned int nr_new
= nr
, rem
;
1732 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1733 * to align the erase size efficiently.
1735 if (is_power_of_2(card
->erase_size
)) {
1736 sector_t temp
= from_new
;
1738 from_new
= round_up(temp
, card
->erase_size
);
1739 rem
= from_new
- temp
;
1746 nr_new
= round_down(nr_new
, card
->erase_size
);
1748 rem
= mmc_sector_mod(from_new
, card
->erase_size
);
1750 rem
= card
->erase_size
- rem
;
1758 rem
= nr_new
% card
->erase_size
;
1766 *to
= from_new
+ nr_new
;
1773 * mmc_erase - erase sectors.
1774 * @card: card to erase
1775 * @from: first sector to erase
1776 * @nr: number of sectors to erase
1777 * @arg: erase command argument
1779 * Caller must claim host before calling this function.
1781 int mmc_erase(struct mmc_card
*card
, sector_t from
, unsigned int nr
,
1785 sector_t to
= from
+ nr
;
1789 if (!(card
->csd
.cmdclass
& CCC_ERASE
))
1792 if (!card
->erase_size
)
1795 if (mmc_card_sd(card
) && arg
!= SD_ERASE_ARG
&& arg
!= SD_DISCARD_ARG
)
1798 if (mmc_card_mmc(card
) && (arg
& MMC_SECURE_ARGS
) &&
1799 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
1802 if (mmc_card_mmc(card
) && is_trim_arg(arg
) &&
1803 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
1806 if (arg
== MMC_SECURE_ERASE_ARG
) {
1807 if (mmc_sector_mod(from
, card
->erase_size
) || nr
% card
->erase_size
)
1811 if (arg
== MMC_ERASE_ARG
)
1812 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
1820 /* 'from' and 'to' are inclusive */
1824 * Special case where only one erase-group fits in the timeout budget:
1825 * If the region crosses an erase-group boundary on this particular
1826 * case, we will be trimming more than one erase-group which, does not
1827 * fit in the timeout budget of the controller, so we need to split it
1828 * and call mmc_do_erase() twice if necessary. This special case is
1829 * identified by the card->eg_boundary flag.
1831 rem
= card
->erase_size
- mmc_sector_mod(from
, card
->erase_size
);
1832 if ((arg
& MMC_TRIM_OR_DISCARD_ARGS
) && card
->eg_boundary
&& nr
> rem
) {
1833 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
1835 if ((err
) || (to
<= from
))
1839 return mmc_do_erase(card
, from
, to
, arg
);
1841 EXPORT_SYMBOL(mmc_erase
);
1843 int mmc_can_erase(struct mmc_card
*card
)
1845 if (card
->csd
.cmdclass
& CCC_ERASE
&& card
->erase_size
)
1849 EXPORT_SYMBOL(mmc_can_erase
);
1851 int mmc_can_trim(struct mmc_card
*card
)
1853 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
1854 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
1858 EXPORT_SYMBOL(mmc_can_trim
);
1860 int mmc_can_discard(struct mmc_card
*card
)
1863 * As there's no way to detect the discard support bit at v4.5
1864 * use the s/w feature support filed.
1866 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
1870 EXPORT_SYMBOL(mmc_can_discard
);
1872 int mmc_can_sanitize(struct mmc_card
*card
)
1874 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
1876 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
1881 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
1883 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
1884 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
1888 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
1890 int mmc_erase_group_aligned(struct mmc_card
*card
, sector_t from
,
1893 if (!card
->erase_size
)
1895 if (mmc_sector_mod(from
, card
->erase_size
) || nr
% card
->erase_size
)
1899 EXPORT_SYMBOL(mmc_erase_group_aligned
);
1901 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
1904 struct mmc_host
*host
= card
->host
;
1905 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
1906 unsigned int last_timeout
= 0;
1907 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
1908 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
1910 if (card
->erase_shift
) {
1911 max_qty
= UINT_MAX
>> card
->erase_shift
;
1912 min_qty
= card
->pref_erase
>> card
->erase_shift
;
1913 } else if (mmc_card_sd(card
)) {
1915 min_qty
= card
->pref_erase
;
1917 max_qty
= UINT_MAX
/ card
->erase_size
;
1918 min_qty
= card
->pref_erase
/ card
->erase_size
;
1922 * We should not only use 'host->max_busy_timeout' as the limitation
1923 * when deciding the max discard sectors. We should set a balance value
1924 * to improve the erase speed, and it can not get too long timeout at
1927 * Here we set 'card->pref_erase' as the minimal discard sectors no
1928 * matter what size of 'host->max_busy_timeout', but if the
1929 * 'host->max_busy_timeout' is large enough for more discard sectors,
1930 * then we can continue to increase the max discard sectors until we
1931 * get a balance value. In cases when the 'host->max_busy_timeout'
1932 * isn't specified, use the default max erase timeout.
1936 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
1937 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
1939 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
1942 if (timeout
< last_timeout
)
1944 last_timeout
= timeout
;
1954 * When specifying a sector range to trim, chances are we might cross
1955 * an erase-group boundary even if the amount of sectors is less than
1957 * If we can only fit one erase-group in the controller timeout budget,
1958 * we have to care that erase-group boundaries are not crossed by a
1959 * single trim operation. We flag that special case with "eg_boundary".
1960 * In all other cases we can just decrement qty and pretend that we
1961 * always touch (qty + 1) erase-groups as a simple optimization.
1964 card
->eg_boundary
= 1;
1968 /* Convert qty to sectors */
1969 if (card
->erase_shift
)
1970 max_discard
= qty
<< card
->erase_shift
;
1971 else if (mmc_card_sd(card
))
1972 max_discard
= qty
+ 1;
1974 max_discard
= qty
* card
->erase_size
;
1979 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
1981 struct mmc_host
*host
= card
->host
;
1982 unsigned int max_discard
, max_trim
;
1985 * Without erase_group_def set, MMC erase timeout depends on clock
1986 * frequence which can change. In that case, the best choice is
1987 * just the preferred erase size.
1989 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
1990 return card
->pref_erase
;
1992 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
1993 if (mmc_can_trim(card
)) {
1994 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
1995 if (max_trim
< max_discard
|| max_discard
== 0)
1996 max_discard
= max_trim
;
1997 } else if (max_discard
< card
->erase_size
) {
2000 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2001 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2002 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2005 EXPORT_SYMBOL(mmc_calc_max_discard
);
2007 bool mmc_card_is_blockaddr(struct mmc_card
*card
)
2009 return card
? mmc_card_blockaddr(card
) : false;
2011 EXPORT_SYMBOL(mmc_card_is_blockaddr
);
2013 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2015 struct mmc_command cmd
= {};
2017 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2018 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2021 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2023 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2024 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2026 EXPORT_SYMBOL(mmc_set_blocklen
);
2028 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2030 mmc_pwrseq_reset(host
);
2032 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->card_hw_reset
)
2034 host
->ops
->card_hw_reset(host
);
2038 * mmc_hw_reset - reset the card in hardware
2039 * @card: card to be reset
2041 * Hard reset the card. This function is only for upper layers, like the
2042 * block layer or card drivers. You cannot use it in host drivers (struct
2043 * mmc_card might be gone then).
2045 * Return: 0 on success, -errno on failure
2047 int mmc_hw_reset(struct mmc_card
*card
)
2049 struct mmc_host
*host
= card
->host
;
2052 ret
= host
->bus_ops
->hw_reset(host
);
2054 pr_warn("%s: tried to HW reset card, got error %d\n",
2055 mmc_hostname(host
), ret
);
2059 EXPORT_SYMBOL(mmc_hw_reset
);
2061 int mmc_sw_reset(struct mmc_card
*card
)
2063 struct mmc_host
*host
= card
->host
;
2066 if (!host
->bus_ops
->sw_reset
)
2069 ret
= host
->bus_ops
->sw_reset(host
);
2071 pr_warn("%s: tried to SW reset card, got error %d\n",
2072 mmc_hostname(host
), ret
);
2076 EXPORT_SYMBOL(mmc_sw_reset
);
2078 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2080 host
->f_init
= freq
;
2082 pr_debug("%s: %s: trying to init card at %u Hz\n",
2083 mmc_hostname(host
), __func__
, host
->f_init
);
2085 mmc_power_up(host
, host
->ocr_avail
);
2088 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2089 * do a hardware reset if possible.
2091 mmc_hw_reset_for_init(host
);
2094 * sdio_reset sends CMD52 to reset card. Since we do not know
2095 * if the card is being re-initialized, just send it. CMD52
2096 * should be ignored by SD/eMMC cards.
2097 * Skip it if we already know that we do not support SDIO commands
2099 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2104 if (!(host
->caps2
& MMC_CAP2_NO_SD
)) {
2105 if (mmc_send_if_cond_pcie(host
, host
->ocr_avail
))
2107 if (mmc_card_sd_express(host
))
2111 /* Order's important: probe SDIO, then SD, then MMC */
2112 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2113 if (!mmc_attach_sdio(host
))
2116 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2117 if (!mmc_attach_sd(host
))
2120 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2121 if (!mmc_attach_mmc(host
))
2125 mmc_power_off(host
);
2129 int _mmc_detect_card_removed(struct mmc_host
*host
)
2133 if (!host
->card
|| mmc_card_removed(host
->card
))
2136 ret
= host
->bus_ops
->alive(host
);
2139 * Card detect status and alive check may be out of sync if card is
2140 * removed slowly, when card detect switch changes while card/slot
2141 * pads are still contacted in hardware (refer to "SD Card Mechanical
2142 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2143 * detect work 200ms later for this case.
2145 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2146 mmc_detect_change(host
, msecs_to_jiffies(200));
2147 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2151 mmc_card_set_removed(host
->card
);
2152 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2158 int mmc_detect_card_removed(struct mmc_host
*host
)
2160 struct mmc_card
*card
= host
->card
;
2163 WARN_ON(!host
->claimed
);
2168 if (!mmc_card_is_removable(host
))
2171 ret
= mmc_card_removed(card
);
2173 * The card will be considered unchanged unless we have been asked to
2174 * detect a change or host requires polling to provide card detection.
2176 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2179 host
->detect_change
= 0;
2181 ret
= _mmc_detect_card_removed(host
);
2182 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2184 * Schedule a detect work as soon as possible to let a
2185 * rescan handle the card removal.
2187 cancel_delayed_work(&host
->detect
);
2188 _mmc_detect_change(host
, 0, false);
2194 EXPORT_SYMBOL(mmc_detect_card_removed
);
2196 int mmc_card_alternative_gpt_sector(struct mmc_card
*card
, sector_t
*gpt_sector
)
2198 unsigned int boot_sectors_num
;
2200 if ((!(card
->host
->caps2
& MMC_CAP2_ALT_GPT_TEGRA
)))
2203 /* filter out unrelated cards */
2204 if (card
->ext_csd
.rev
< 3 ||
2205 !mmc_card_mmc(card
) ||
2206 !mmc_card_is_blockaddr(card
) ||
2207 mmc_card_is_removable(card
->host
))
2211 * eMMC storage has two special boot partitions in addition to the
2212 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2213 * accesses, this means that the partition table addresses are shifted
2214 * by the size of boot partitions. In accordance with the eMMC
2215 * specification, the boot partition size is calculated as follows:
2217 * boot partition size = 128K byte x BOOT_SIZE_MULT
2219 * Calculate number of sectors occupied by the both boot partitions.
2221 boot_sectors_num
= card
->ext_csd
.raw_boot_mult
* SZ_128K
/
2222 SZ_512
* MMC_NUM_BOOT_PARTITION
;
2224 /* Defined by NVIDIA and used by Android devices. */
2225 *gpt_sector
= card
->ext_csd
.sectors
- boot_sectors_num
- 1;
2229 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector
);
2231 void mmc_rescan(struct work_struct
*work
)
2233 struct mmc_host
*host
=
2234 container_of(work
, struct mmc_host
, detect
.work
);
2237 if (host
->rescan_disable
)
2240 /* If there is a non-removable card registered, only scan once */
2241 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2243 host
->rescan_entered
= 1;
2245 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2246 mmc_claim_host(host
);
2247 host
->ops
->card_event(host
);
2248 mmc_release_host(host
);
2249 host
->trigger_card_event
= false;
2252 /* Verify a registered card to be functional, else remove it. */
2254 host
->bus_ops
->detect(host
);
2256 host
->detect_change
= 0;
2258 /* if there still is a card present, stop here */
2259 if (host
->bus_ops
!= NULL
)
2262 mmc_claim_host(host
);
2263 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2264 host
->ops
->get_cd(host
) == 0) {
2265 mmc_power_off(host
);
2266 mmc_release_host(host
);
2270 /* If an SD express card is present, then leave it as is. */
2271 if (mmc_card_sd_express(host
)) {
2272 mmc_release_host(host
);
2277 * Ideally we should favor initialization of legacy SD cards and defer
2278 * UHS-II enumeration. However, it seems like cards doesn't reliably
2279 * announce their support for UHS-II in the response to the ACMD41,
2280 * while initializing the legacy SD interface. Therefore, let's start
2281 * with UHS-II for now.
2283 if (!mmc_attach_sd_uhs2(host
)) {
2284 mmc_release_host(host
);
2288 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2289 unsigned int freq
= freqs
[i
];
2290 if (freq
> host
->f_max
) {
2291 if (i
+ 1 < ARRAY_SIZE(freqs
))
2295 if (!mmc_rescan_try_freq(host
, max(freq
, host
->f_min
)))
2297 if (freqs
[i
] <= host
->f_min
)
2301 /* A non-removable card should have been detected by now. */
2302 if (!mmc_card_is_removable(host
) && !host
->bus_ops
)
2303 pr_info("%s: Failed to initialize a non-removable card",
2304 mmc_hostname(host
));
2307 * Ignore the command timeout errors observed during
2308 * the card init as those are excepted.
2310 host
->err_stats
[MMC_ERR_CMD_TIMEOUT
] = 0;
2311 mmc_release_host(host
);
2314 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2315 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2318 void mmc_start_host(struct mmc_host
*host
)
2320 bool power_up
= !(host
->caps2
&
2321 (MMC_CAP2_NO_PRESCAN_POWERUP
| MMC_CAP2_SD_UHS2
));
2323 host
->f_init
= max(min(freqs
[0], host
->f_max
), host
->f_min
);
2324 host
->rescan_disable
= 0;
2327 mmc_claim_host(host
);
2328 mmc_power_up(host
, host
->ocr_avail
);
2329 mmc_release_host(host
);
2332 mmc_gpiod_request_cd_irq(host
);
2333 _mmc_detect_change(host
, 0, false);
2336 void __mmc_stop_host(struct mmc_host
*host
)
2338 if (host
->slot
.cd_irq
>= 0) {
2339 mmc_gpio_set_cd_wake(host
, false);
2340 disable_irq(host
->slot
.cd_irq
);
2343 host
->rescan_disable
= 1;
2344 cancel_delayed_work_sync(&host
->detect
);
2347 void mmc_stop_host(struct mmc_host
*host
)
2349 __mmc_stop_host(host
);
2351 /* clear pm flags now and let card drivers set them as needed */
2354 if (host
->bus_ops
) {
2355 /* Calling bus_ops->remove() with a claimed host can deadlock */
2356 host
->bus_ops
->remove(host
);
2357 mmc_claim_host(host
);
2358 mmc_detach_bus(host
);
2359 mmc_power_off(host
);
2360 mmc_release_host(host
);
2364 mmc_claim_host(host
);
2365 mmc_power_off(host
);
2366 mmc_release_host(host
);
2369 static int __init
mmc_init(void)
2373 ret
= mmc_register_bus();
2377 ret
= mmc_register_host_class();
2379 goto unregister_bus
;
2381 ret
= sdio_register_bus();
2383 goto unregister_host_class
;
2387 unregister_host_class
:
2388 mmc_unregister_host_class();
2390 mmc_unregister_bus();
2394 static void __exit
mmc_exit(void)
2396 sdio_unregister_bus();
2397 mmc_unregister_host_class();
2398 mmc_unregister_bus();
2401 subsys_initcall(mmc_init
);
2402 module_exit(mmc_exit
);
2404 MODULE_DESCRIPTION("MMC core driver");
2405 MODULE_LICENSE("GPL");