1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * linux/drivers/mmc/core/mmc_ops.h
5 * Copyright 2006-2007 Pierre Ossman
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/types.h>
11 #include <linux/scatterlist.h>
13 #include <linux/mmc/host.h>
14 #include <linux/mmc/card.h>
15 #include <linux/mmc/mmc.h>
22 #define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23 #define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
24 #define MMC_OP_COND_PERIOD_US (4 * 1000) /* 4ms */
25 #define MMC_OP_COND_TIMEOUT_MS 1000 /* 1s */
27 static const u8 tuning_blk_pattern_4bit
[] = {
28 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
29 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
30 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
31 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
32 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
33 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
34 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
35 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
38 static const u8 tuning_blk_pattern_8bit
[] = {
39 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
40 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
41 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
42 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
43 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
44 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
45 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
46 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
47 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
48 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
49 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
50 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
51 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
52 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
53 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
54 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
57 struct mmc_busy_data
{
58 struct mmc_card
*card
;
60 enum mmc_busy_cmd busy_cmd
;
63 struct mmc_op_cond_busy_data
{
64 struct mmc_host
*host
;
66 struct mmc_command
*cmd
;
69 int __mmc_send_status(struct mmc_card
*card
, u32
*status
, unsigned int retries
)
72 struct mmc_command cmd
= {};
74 cmd
.opcode
= MMC_SEND_STATUS
;
75 if (!mmc_host_is_spi(card
->host
))
76 cmd
.arg
= card
->rca
<< 16;
77 cmd
.flags
= MMC_RSP_SPI_R2
| MMC_RSP_R1
| MMC_CMD_AC
;
79 err
= mmc_wait_for_cmd(card
->host
, &cmd
, retries
);
83 /* NOTE: callers are required to understand the difference
84 * between "native" and SPI format status words!
87 *status
= cmd
.resp
[0];
91 EXPORT_SYMBOL_GPL(__mmc_send_status
);
93 int mmc_send_status(struct mmc_card
*card
, u32
*status
)
95 return __mmc_send_status(card
, status
, MMC_CMD_RETRIES
);
97 EXPORT_SYMBOL_GPL(mmc_send_status
);
99 static int _mmc_select_card(struct mmc_host
*host
, struct mmc_card
*card
)
101 struct mmc_command cmd
= {};
103 cmd
.opcode
= MMC_SELECT_CARD
;
106 cmd
.arg
= card
->rca
<< 16;
107 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
110 cmd
.flags
= MMC_RSP_NONE
| MMC_CMD_AC
;
113 return mmc_wait_for_cmd(host
, &cmd
, MMC_CMD_RETRIES
);
116 int mmc_select_card(struct mmc_card
*card
)
119 return _mmc_select_card(card
->host
, card
);
122 int mmc_deselect_cards(struct mmc_host
*host
)
124 return _mmc_select_card(host
, NULL
);
128 * Write the value specified in the device tree or board code into the optional
129 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
130 * drive strength of the DAT and CMD outputs. The actual meaning of a given
131 * value is hardware dependant.
132 * The presence of the DSR register can be determined from the CSD register,
135 int mmc_set_dsr(struct mmc_host
*host
)
137 struct mmc_command cmd
= {};
139 cmd
.opcode
= MMC_SET_DSR
;
141 cmd
.arg
= (host
->dsr
<< 16) | 0xffff;
142 cmd
.flags
= MMC_RSP_NONE
| MMC_CMD_AC
;
144 return mmc_wait_for_cmd(host
, &cmd
, MMC_CMD_RETRIES
);
147 int __mmc_go_idle(struct mmc_host
*host
)
149 struct mmc_command cmd
= {};
152 cmd
.opcode
= MMC_GO_IDLE_STATE
;
154 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_NONE
| MMC_CMD_BC
;
156 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
162 int mmc_go_idle(struct mmc_host
*host
)
167 * Non-SPI hosts need to prevent chipselect going active during
168 * GO_IDLE; that would put chips into SPI mode. Remind them of
169 * that in case of hardware that won't pull up DAT3/nCS otherwise.
171 * SPI hosts ignore ios.chip_select; it's managed according to
172 * rules that must accommodate non-MMC slaves which this layer
173 * won't even know about.
175 if (!mmc_host_is_spi(host
)) {
176 mmc_set_chip_select(host
, MMC_CS_HIGH
);
180 err
= __mmc_go_idle(host
);
182 if (!mmc_host_is_spi(host
)) {
183 mmc_set_chip_select(host
, MMC_CS_DONTCARE
);
187 host
->use_spi_crc
= 0;
192 static int __mmc_send_op_cond_cb(void *cb_data
, bool *busy
)
194 struct mmc_op_cond_busy_data
*data
= cb_data
;
195 struct mmc_host
*host
= data
->host
;
196 struct mmc_command
*cmd
= data
->cmd
;
200 err
= mmc_wait_for_cmd(host
, cmd
, 0);
204 if (mmc_host_is_spi(host
)) {
205 if (!(cmd
->resp
[0] & R1_SPI_IDLE
)) {
210 if (cmd
->resp
[0] & MMC_CARD_BUSY
) {
219 * According to eMMC specification v5.1 section 6.4.3, we
220 * should issue CMD1 repeatedly in the idle state until
221 * the eMMC is ready. Otherwise some eMMC devices seem to enter
222 * the inactive mode after mmc_init_card() issued CMD0 when
223 * the eMMC device is busy.
225 if (!ocr
&& !mmc_host_is_spi(host
))
226 cmd
->arg
= cmd
->resp
[0] | BIT(30);
231 int mmc_send_op_cond(struct mmc_host
*host
, u32 ocr
, u32
*rocr
)
233 struct mmc_command cmd
= {};
235 struct mmc_op_cond_busy_data cb_data
= {
241 cmd
.opcode
= MMC_SEND_OP_COND
;
242 cmd
.arg
= mmc_host_is_spi(host
) ? 0 : ocr
;
243 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R3
| MMC_CMD_BCR
;
245 err
= __mmc_poll_for_busy(host
, MMC_OP_COND_PERIOD_US
,
246 MMC_OP_COND_TIMEOUT_MS
,
247 &__mmc_send_op_cond_cb
, &cb_data
);
251 if (rocr
&& !mmc_host_is_spi(host
))
257 int mmc_set_relative_addr(struct mmc_card
*card
)
259 struct mmc_command cmd
= {};
261 cmd
.opcode
= MMC_SET_RELATIVE_ADDR
;
262 cmd
.arg
= card
->rca
<< 16;
263 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
265 return mmc_wait_for_cmd(card
->host
, &cmd
, MMC_CMD_RETRIES
);
269 mmc_send_cxd_native(struct mmc_host
*host
, u32 arg
, u32
*cxd
, int opcode
)
272 struct mmc_command cmd
= {};
276 cmd
.flags
= MMC_RSP_R2
| MMC_CMD_AC
;
278 err
= mmc_wait_for_cmd(host
, &cmd
, MMC_CMD_RETRIES
);
282 memcpy(cxd
, cmd
.resp
, sizeof(u32
) * 4);
288 * NOTE: void *buf, caller for the buf is required to use DMA-capable
289 * buffer or on-stack buffer (with some overhead in callee).
291 int mmc_send_adtc_data(struct mmc_card
*card
, struct mmc_host
*host
, u32 opcode
,
292 u32 args
, void *buf
, unsigned len
)
294 struct mmc_request mrq
= {};
295 struct mmc_command cmd
= {};
296 struct mmc_data data
= {};
297 struct scatterlist sg
;
305 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
306 * rely on callers to never use this with "native" calls for reading
307 * CSD or CID. Native versions of those commands use the R2 type,
308 * not R1 plus a data block.
310 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_ADTC
;
314 data
.flags
= MMC_DATA_READ
;
318 sg_init_one(&sg
, buf
, len
);
320 if (opcode
== MMC_SEND_CSD
|| opcode
== MMC_SEND_CID
) {
322 * The spec states that CSR and CID accesses have a timeout
323 * of 64 clock cycles.
326 data
.timeout_clks
= 64;
328 mmc_set_data_timeout(&data
, card
);
330 mmc_wait_for_req(host
, &mrq
);
340 static int mmc_spi_send_cxd(struct mmc_host
*host
, u32
*cxd
, u32 opcode
)
345 cxd_tmp
= kzalloc(16, GFP_KERNEL
);
349 ret
= mmc_send_adtc_data(NULL
, host
, opcode
, 0, cxd_tmp
, 16);
353 for (i
= 0; i
< 4; i
++)
354 cxd
[i
] = be32_to_cpu(cxd_tmp
[i
]);
361 int mmc_send_csd(struct mmc_card
*card
, u32
*csd
)
363 if (mmc_host_is_spi(card
->host
))
364 return mmc_spi_send_cxd(card
->host
, csd
, MMC_SEND_CSD
);
366 return mmc_send_cxd_native(card
->host
, card
->rca
<< 16, csd
,
370 int mmc_send_cid(struct mmc_host
*host
, u32
*cid
)
372 if (mmc_host_is_spi(host
))
373 return mmc_spi_send_cxd(host
, cid
, MMC_SEND_CID
);
375 return mmc_send_cxd_native(host
, 0, cid
, MMC_ALL_SEND_CID
);
378 int mmc_get_ext_csd(struct mmc_card
*card
, u8
**new_ext_csd
)
383 if (!card
|| !new_ext_csd
)
386 if (!mmc_can_ext_csd(card
))
390 * As the ext_csd is so large and mostly unused, we don't store the
391 * raw block in mmc_card.
393 ext_csd
= kzalloc(512, GFP_KERNEL
);
397 err
= mmc_send_adtc_data(card
, card
->host
, MMC_SEND_EXT_CSD
, 0, ext_csd
,
402 *new_ext_csd
= ext_csd
;
406 EXPORT_SYMBOL_GPL(mmc_get_ext_csd
);
408 int mmc_spi_read_ocr(struct mmc_host
*host
, int highcap
, u32
*ocrp
)
410 struct mmc_command cmd
= {};
413 cmd
.opcode
= MMC_SPI_READ_OCR
;
414 cmd
.arg
= highcap
? (1 << 30) : 0;
415 cmd
.flags
= MMC_RSP_SPI_R3
;
417 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
423 int mmc_spi_set_crc(struct mmc_host
*host
, int use_crc
)
425 struct mmc_command cmd
= {};
428 cmd
.opcode
= MMC_SPI_CRC_ON_OFF
;
429 cmd
.flags
= MMC_RSP_SPI_R1
;
432 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
434 host
->use_spi_crc
= use_crc
;
438 static int mmc_switch_status_error(struct mmc_host
*host
, u32 status
)
440 if (mmc_host_is_spi(host
)) {
441 if (status
& R1_SPI_ILLEGAL_COMMAND
)
444 if (R1_STATUS(status
))
445 pr_warn("%s: unexpected status %#x after switch\n",
446 mmc_hostname(host
), status
);
447 if (status
& R1_SWITCH_ERROR
)
453 /* Caller must hold re-tuning */
454 int mmc_switch_status(struct mmc_card
*card
, bool crc_err_fatal
)
459 err
= mmc_send_status(card
, &status
);
460 if (!crc_err_fatal
&& err
== -EILSEQ
)
465 return mmc_switch_status_error(card
->host
, status
);
468 static int mmc_busy_cb(void *cb_data
, bool *busy
)
470 struct mmc_busy_data
*data
= cb_data
;
471 struct mmc_host
*host
= data
->card
->host
;
475 if (data
->busy_cmd
!= MMC_BUSY_IO
&& host
->ops
->card_busy
) {
476 *busy
= host
->ops
->card_busy(host
);
480 err
= mmc_send_status(data
->card
, &status
);
481 if (data
->retry_crc_err
&& err
== -EILSEQ
) {
488 switch (data
->busy_cmd
) {
490 err
= mmc_switch_status_error(host
, status
);
493 err
= R1_STATUS(status
) ? -EIO
: 0;
496 case MMC_BUSY_EXTR_SINGLE
:
506 *busy
= !mmc_ready_for_data(status
);
510 int __mmc_poll_for_busy(struct mmc_host
*host
, unsigned int period_us
,
511 unsigned int timeout_ms
,
512 int (*busy_cb
)(void *cb_data
, bool *busy
),
516 unsigned long timeout
;
517 unsigned int udelay
= period_us
? period_us
: 32, udelay_max
= 32768;
518 bool expired
= false;
521 timeout
= jiffies
+ msecs_to_jiffies(timeout_ms
) + 1;
524 * Due to the possibility of being preempted while polling,
525 * check the expiration time first.
527 expired
= time_after(jiffies
, timeout
);
529 err
= (*busy_cb
)(cb_data
, &busy
);
533 /* Timeout if the device still remains busy. */
534 if (expired
&& busy
) {
535 pr_err("%s: Card stuck being busy! %s\n",
536 mmc_hostname(host
), __func__
);
540 /* Throttle the polling rate to avoid hogging the CPU. */
542 usleep_range(udelay
, udelay
* 2);
543 if (udelay
< udelay_max
)
550 EXPORT_SYMBOL_GPL(__mmc_poll_for_busy
);
552 int mmc_poll_for_busy(struct mmc_card
*card
, unsigned int timeout_ms
,
553 bool retry_crc_err
, enum mmc_busy_cmd busy_cmd
)
555 struct mmc_host
*host
= card
->host
;
556 struct mmc_busy_data cb_data
;
559 cb_data
.retry_crc_err
= retry_crc_err
;
560 cb_data
.busy_cmd
= busy_cmd
;
562 return __mmc_poll_for_busy(host
, 0, timeout_ms
, &mmc_busy_cb
, &cb_data
);
564 EXPORT_SYMBOL_GPL(mmc_poll_for_busy
);
566 bool mmc_prepare_busy_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
,
567 unsigned int timeout_ms
)
570 * If the max_busy_timeout of the host is specified, make sure it's
571 * enough to fit the used timeout_ms. In case it's not, let's instruct
572 * the host to avoid HW busy detection, by converting to a R1 response
573 * instead of a R1B. Note, some hosts requires R1B, which also means
574 * they are on their own when it comes to deal with the busy timeout.
576 if (!(host
->caps
& MMC_CAP_NEED_RSP_BUSY
) && host
->max_busy_timeout
&&
577 (timeout_ms
> host
->max_busy_timeout
)) {
578 cmd
->flags
= MMC_CMD_AC
| MMC_RSP_SPI_R1
| MMC_RSP_R1
;
582 cmd
->flags
= MMC_CMD_AC
| MMC_RSP_SPI_R1B
| MMC_RSP_R1B
;
583 cmd
->busy_timeout
= timeout_ms
;
586 EXPORT_SYMBOL_GPL(mmc_prepare_busy_cmd
);
589 * __mmc_switch - modify EXT_CSD register
590 * @card: the MMC card associated with the data transfer
591 * @set: cmd set values
592 * @index: EXT_CSD register index
593 * @value: value to program into EXT_CSD register
594 * @timeout_ms: timeout (ms) for operation performed by register write,
595 * timeout of zero implies maximum possible timeout
596 * @timing: new timing to change to
597 * @send_status: send status cmd to poll for busy
598 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
599 * @retries: number of retries
601 * Modifies the EXT_CSD register for selected card.
603 int __mmc_switch(struct mmc_card
*card
, u8 set
, u8 index
, u8 value
,
604 unsigned int timeout_ms
, unsigned char timing
,
605 bool send_status
, bool retry_crc_err
, unsigned int retries
)
607 struct mmc_host
*host
= card
->host
;
609 struct mmc_command cmd
= {};
611 unsigned char old_timing
= host
->ios
.timing
;
613 mmc_retune_hold(host
);
616 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
618 timeout_ms
= card
->ext_csd
.generic_cmd6_time
;
621 cmd
.opcode
= MMC_SWITCH
;
622 cmd
.arg
= (MMC_SWITCH_MODE_WRITE_BYTE
<< 24) |
626 use_r1b_resp
= mmc_prepare_busy_cmd(host
, &cmd
, timeout_ms
);
628 err
= mmc_wait_for_cmd(host
, &cmd
, retries
);
632 /*If SPI or used HW busy detection above, then we don't need to poll. */
633 if (((host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
) ||
634 mmc_host_is_spi(host
))
638 * If the host doesn't support HW polling via the ->card_busy() ops and
639 * when it's not allowed to poll by using CMD13, then we need to rely on
640 * waiting the stated timeout to be sufficient.
642 if (!send_status
&& !host
->ops
->card_busy
) {
643 mmc_delay(timeout_ms
);
647 /* Let's try to poll to find out when the command is completed. */
648 err
= mmc_poll_for_busy(card
, timeout_ms
, retry_crc_err
, MMC_BUSY_CMD6
);
653 /* Switch to new timing before check switch status. */
655 mmc_set_timing(host
, timing
);
658 err
= mmc_switch_status(card
, true);
660 mmc_set_timing(host
, old_timing
);
663 mmc_retune_release(host
);
668 int mmc_switch(struct mmc_card
*card
, u8 set
, u8 index
, u8 value
,
669 unsigned int timeout_ms
)
671 return __mmc_switch(card
, set
, index
, value
, timeout_ms
, 0,
672 true, false, MMC_CMD_RETRIES
);
674 EXPORT_SYMBOL_GPL(mmc_switch
);
676 int mmc_send_tuning(struct mmc_host
*host
, u32 opcode
, int *cmd_error
)
678 struct mmc_request mrq
= {};
679 struct mmc_command cmd
= {};
680 struct mmc_data data
= {};
681 struct scatterlist sg
;
682 struct mmc_ios
*ios
= &host
->ios
;
683 const u8
*tuning_block_pattern
;
687 if (ios
->bus_width
== MMC_BUS_WIDTH_8
) {
688 tuning_block_pattern
= tuning_blk_pattern_8bit
;
689 size
= sizeof(tuning_blk_pattern_8bit
);
690 } else if (ios
->bus_width
== MMC_BUS_WIDTH_4
) {
691 tuning_block_pattern
= tuning_blk_pattern_4bit
;
692 size
= sizeof(tuning_blk_pattern_4bit
);
696 data_buf
= kzalloc(size
, GFP_KERNEL
);
704 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_ADTC
;
708 data
.flags
= MMC_DATA_READ
;
711 * According to the tuning specs, Tuning process
712 * is normally shorter 40 executions of CMD19,
713 * and timeout value should be shorter than 150 ms
715 data
.timeout_ns
= 150 * NSEC_PER_MSEC
;
719 sg_init_one(&sg
, data_buf
, size
);
721 mmc_wait_for_req(host
, &mrq
);
724 *cmd_error
= cmd
.error
;
736 if (memcmp(data_buf
, tuning_block_pattern
, size
))
743 EXPORT_SYMBOL_GPL(mmc_send_tuning
);
745 int mmc_send_abort_tuning(struct mmc_host
*host
, u32 opcode
)
747 struct mmc_command cmd
= {};
750 * eMMC specification specifies that CMD12 can be used to stop a tuning
751 * command, but SD specification does not, so do nothing unless it is
754 if (opcode
!= MMC_SEND_TUNING_BLOCK_HS200
)
757 cmd
.opcode
= MMC_STOP_TRANSMISSION
;
758 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
761 * For drivers that override R1 to R1b, set an arbitrary timeout based
762 * on the tuning timeout i.e. 150ms.
764 cmd
.busy_timeout
= 150;
766 return mmc_wait_for_cmd(host
, &cmd
, 0);
768 EXPORT_SYMBOL_GPL(mmc_send_abort_tuning
);
771 mmc_send_bus_test(struct mmc_card
*card
, struct mmc_host
*host
, u8 opcode
,
774 struct mmc_request mrq
= {};
775 struct mmc_command cmd
= {};
776 struct mmc_data data
= {};
777 struct scatterlist sg
;
781 static u8 testdata_8bit
[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
782 static u8 testdata_4bit
[4] = { 0x5a, 0, 0, 0 };
784 /* dma onto stack is unsafe/nonportable, but callers to this
785 * routine normally provide temporary on-stack buffers ...
787 data_buf
= kmalloc(len
, GFP_KERNEL
);
792 test_buf
= testdata_8bit
;
794 test_buf
= testdata_4bit
;
796 pr_err("%s: Invalid bus_width %d\n",
797 mmc_hostname(host
), len
);
802 if (opcode
== MMC_BUS_TEST_W
)
803 memcpy(data_buf
, test_buf
, len
);
810 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
811 * rely on callers to never use this with "native" calls for reading
812 * CSD or CID. Native versions of those commands use the R2 type,
813 * not R1 plus a data block.
815 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_ADTC
;
819 if (opcode
== MMC_BUS_TEST_R
)
820 data
.flags
= MMC_DATA_READ
;
822 data
.flags
= MMC_DATA_WRITE
;
826 mmc_set_data_timeout(&data
, card
);
827 sg_init_one(&sg
, data_buf
, len
);
828 mmc_wait_for_req(host
, &mrq
);
830 if (opcode
== MMC_BUS_TEST_R
) {
831 for (i
= 0; i
< len
/ 4; i
++)
832 if ((test_buf
[i
] ^ data_buf
[i
]) != 0xff) {
847 int mmc_bus_test(struct mmc_card
*card
, u8 bus_width
)
851 if (bus_width
== MMC_BUS_WIDTH_8
)
853 else if (bus_width
== MMC_BUS_WIDTH_4
)
855 else if (bus_width
== MMC_BUS_WIDTH_1
)
856 return 0; /* no need for test */
861 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
862 * is a problem. This improves chances that the test will work.
864 mmc_send_bus_test(card
, card
->host
, MMC_BUS_TEST_W
, width
);
865 return mmc_send_bus_test(card
, card
->host
, MMC_BUS_TEST_R
, width
);
868 static int mmc_send_hpi_cmd(struct mmc_card
*card
)
870 unsigned int busy_timeout_ms
= card
->ext_csd
.out_of_int_time
;
871 struct mmc_host
*host
= card
->host
;
872 bool use_r1b_resp
= false;
873 struct mmc_command cmd
= {};
876 cmd
.opcode
= card
->ext_csd
.hpi_cmd
;
877 cmd
.arg
= card
->rca
<< 16 | 1;
878 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
880 if (cmd
.opcode
== MMC_STOP_TRANSMISSION
)
881 use_r1b_resp
= mmc_prepare_busy_cmd(host
, &cmd
,
884 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
886 pr_warn("%s: HPI error %d. Command response %#x\n",
887 mmc_hostname(host
), err
, cmd
.resp
[0]);
891 /* No need to poll when using HW busy detection. */
892 if (host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
&& use_r1b_resp
)
895 /* Let's poll to find out when the HPI request completes. */
896 return mmc_poll_for_busy(card
, busy_timeout_ms
, false, MMC_BUSY_HPI
);
900 * mmc_interrupt_hpi - Issue for High priority Interrupt
901 * @card: the MMC card associated with the HPI transfer
903 * Issued High Priority Interrupt, and check for card status
904 * until out-of prg-state.
906 static int mmc_interrupt_hpi(struct mmc_card
*card
)
911 if (!card
->ext_csd
.hpi_en
) {
912 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card
->host
));
916 err
= mmc_send_status(card
, &status
);
918 pr_err("%s: Get card status fail\n", mmc_hostname(card
->host
));
922 switch (R1_CURRENT_STATE(status
)) {
928 * In idle and transfer states, HPI is not needed and the caller
929 * can issue the next intended command immediately
935 /* In all other states, it's illegal to issue HPI */
936 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
937 mmc_hostname(card
->host
), R1_CURRENT_STATE(status
));
942 err
= mmc_send_hpi_cmd(card
);
947 int mmc_can_ext_csd(struct mmc_card
*card
)
949 return (card
&& card
->csd
.mmca_vsn
> CSD_SPEC_VER_3
);
952 static int mmc_read_bkops_status(struct mmc_card
*card
)
957 err
= mmc_get_ext_csd(card
, &ext_csd
);
961 card
->ext_csd
.raw_bkops_status
= ext_csd
[EXT_CSD_BKOPS_STATUS
];
962 card
->ext_csd
.raw_exception_status
= ext_csd
[EXT_CSD_EXP_EVENTS_STATUS
];
968 * mmc_run_bkops - Run BKOPS for supported cards
969 * @card: MMC card to run BKOPS for
971 * Run background operations synchronously for cards having manual BKOPS
972 * enabled and in case it reports urgent BKOPS level.
974 void mmc_run_bkops(struct mmc_card
*card
)
978 if (!card
->ext_csd
.man_bkops_en
)
981 err
= mmc_read_bkops_status(card
);
983 pr_err("%s: Failed to read bkops status: %d\n",
984 mmc_hostname(card
->host
), err
);
988 if (!card
->ext_csd
.raw_bkops_status
||
989 card
->ext_csd
.raw_bkops_status
< EXT_CSD_BKOPS_LEVEL_2
)
992 mmc_retune_hold(card
->host
);
995 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
996 * synchronously. Future wise, we may consider to start BKOPS, for less
997 * urgent levels by using an asynchronous background task, when idle.
999 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1000 EXT_CSD_BKOPS_START
, 1, MMC_BKOPS_TIMEOUT_MS
);
1002 * If the BKOPS timed out, the card is probably still busy in the
1003 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
1004 * it with a HPI command to get back into R1_STATE_TRAN.
1006 if (err
== -ETIMEDOUT
&& !mmc_interrupt_hpi(card
))
1007 pr_warn("%s: BKOPS aborted\n", mmc_hostname(card
->host
));
1009 pr_warn("%s: Error %d running bkops\n",
1010 mmc_hostname(card
->host
), err
);
1012 mmc_retune_release(card
->host
);
1014 EXPORT_SYMBOL(mmc_run_bkops
);
1016 static int mmc_cmdq_switch(struct mmc_card
*card
, bool enable
)
1018 u8 val
= enable
? EXT_CSD_CMDQ_MODE_ENABLED
: 0;
1021 if (!card
->ext_csd
.cmdq_support
)
1024 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_CMDQ_MODE_EN
,
1025 val
, card
->ext_csd
.generic_cmd6_time
);
1027 card
->ext_csd
.cmdq_en
= enable
;
1032 int mmc_cmdq_enable(struct mmc_card
*card
)
1034 return mmc_cmdq_switch(card
, true);
1036 EXPORT_SYMBOL_GPL(mmc_cmdq_enable
);
1038 int mmc_cmdq_disable(struct mmc_card
*card
)
1040 return mmc_cmdq_switch(card
, false);
1042 EXPORT_SYMBOL_GPL(mmc_cmdq_disable
);
1044 int mmc_sanitize(struct mmc_card
*card
, unsigned int timeout_ms
)
1046 struct mmc_host
*host
= card
->host
;
1049 if (!mmc_can_sanitize(card
)) {
1050 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host
));
1055 timeout_ms
= MMC_SANITIZE_TIMEOUT_MS
;
1057 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host
));
1059 mmc_retune_hold(host
);
1061 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_SANITIZE_START
,
1062 1, timeout_ms
, 0, true, false, 0);
1064 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host
), err
);
1067 * If the sanitize operation timed out, the card is probably still busy
1068 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1069 * it with a HPI command to get back into R1_STATE_TRAN.
1071 if (err
== -ETIMEDOUT
&& !mmc_interrupt_hpi(card
))
1072 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host
));
1074 mmc_retune_release(host
);
1076 pr_debug("%s: Sanitize completed\n", mmc_hostname(host
));
1079 EXPORT_SYMBOL_GPL(mmc_sanitize
);