1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Access SD/MMC cards through SPI master controllers
5 * (C) Copyright 2005, Intec Automation,
6 * Mike Lavender (mike@steroidmicros)
7 * (C) Copyright 2006-2007, David Brownell
8 * (C) Copyright 2007, Axis Communications,
9 * Hans-Peter Nilsson (hp@axis.com)
10 * (C) Copyright 2007, ATRON electronic GmbH,
11 * Jan Nikitenko <jan.nikitenko@gmail.com>
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/crc7.h>
19 #include <linux/crc-itu-t.h>
20 #include <linux/scatterlist.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */
24 #include <linux/mmc/slot-gpio.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spi/mmc_spi.h>
29 #include <linux/unaligned.h>
34 * - For now, we won't try to interoperate with a real mmc/sd/sdio
35 * controller, although some of them do have hardware support for
36 * SPI protocol. The main reason for such configs would be mmc-ish
37 * cards like DataFlash, which don't support that "native" protocol.
39 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
40 * switch between driver stacks, and in any case if "native" mode
41 * is available, it will be faster and hence preferable.
43 * - MMC depends on a different chipselect management policy than the
44 * SPI interface currently supports for shared bus segments: it needs
45 * to issue multiple spi_message requests with the chipselect active,
46 * using the results of one message to decide the next one to issue.
48 * Pending updates to the programming interface, this driver expects
49 * that it not share the bus with other drivers (precluding conflicts).
51 * - We tell the controller to keep the chipselect active from the
52 * beginning of an mmc_host_ops.request until the end. So beware
53 * of SPI controller drivers that mis-handle the cs_change flag!
55 * However, many cards seem OK with chipselect flapping up/down
56 * during that time ... at least on unshared bus segments.
61 * Local protocol constants, internal to data block protocols.
64 /* Response tokens used to ack each block written: */
65 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f)
66 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1)
67 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1)
68 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1)
70 /* Read and write blocks start with these tokens and end with crc;
71 * on error, read tokens act like a subset of R2_SPI_* values.
73 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */
74 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */
75 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */
77 #define MMC_SPI_BLOCKSIZE 512
79 #define MMC_SPI_R1B_TIMEOUT_MS 3000
80 #define MMC_SPI_INIT_TIMEOUT_MS 3000
82 /* One of the critical speed parameters is the amount of data which may
83 * be transferred in one command. If this value is too low, the SD card
84 * controller has to do multiple partial block writes (argggh!). With
85 * today (2008) SD cards there is little speed gain if we transfer more
86 * than 64 KBytes at a time. So use this value until there is any indication
87 * that we should do more here.
89 #define MMC_SPI_BLOCKSATONCE 128
91 /****************************************************************************/
94 * Local Data Structures
97 /* "scratch" is per-{command,block} data exchanged with the card */
104 struct mmc_spi_host
{
105 struct mmc_host
*mmc
;
106 struct spi_device
*spi
;
108 unsigned char power_mode
;
111 struct mmc_spi_platform_data
*pdata
;
113 /* for bulk data transfers */
114 struct spi_transfer token
, t
, crc
, early_status
;
115 struct spi_message m
;
117 /* for status readback */
118 struct spi_transfer status
;
119 struct spi_message readback
;
121 /* buffer used for commands and for message "overhead" */
122 struct scratch
*data
;
124 /* Specs say to write ones most of the time, even when the card
125 * has no need to read its input data; and many cards won't care.
126 * This is our source of those ones.
132 /****************************************************************************/
135 * MMC-over-SPI protocol glue, used by the MMC stack interface
138 static inline int mmc_cs_off(struct mmc_spi_host
*host
)
140 /* chipselect will always be inactive after setup() */
141 return spi_setup(host
->spi
);
144 static int mmc_spi_readbytes(struct mmc_spi_host
*host
, unsigned int len
)
146 if (len
> sizeof(*host
->data
)) {
151 host
->status
.len
= len
;
153 return spi_sync_locked(host
->spi
, &host
->readback
);
156 static int mmc_spi_skip(struct mmc_spi_host
*host
, unsigned long timeout
,
159 u8
*cp
= host
->data
->status
;
160 unsigned long start
= jiffies
;
166 status
= mmc_spi_readbytes(host
, n
);
170 for (i
= 0; i
< n
; i
++) {
175 /* If we need long timeouts, we may release the CPU */
177 } while (time_is_after_jiffies(start
+ timeout
));
182 mmc_spi_wait_unbusy(struct mmc_spi_host
*host
, unsigned long timeout
)
184 return mmc_spi_skip(host
, timeout
, sizeof(host
->data
->status
), 0);
187 static int mmc_spi_readtoken(struct mmc_spi_host
*host
, unsigned long timeout
)
189 return mmc_spi_skip(host
, timeout
, 1, 0xff);
194 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
195 * hosts return! The low byte holds R1_SPI bits. The next byte may hold
196 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
198 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
199 * newer cards R7 (IF_COND).
202 static char *maptype(struct mmc_command
*cmd
)
204 switch (mmc_spi_resp_type(cmd
)) {
205 case MMC_RSP_SPI_R1
: return "R1";
206 case MMC_RSP_SPI_R1B
: return "R1B";
207 case MMC_RSP_SPI_R2
: return "R2/R5";
208 case MMC_RSP_SPI_R3
: return "R3/R4/R7";
213 /* return zero, else negative errno after setting cmd->error */
214 static int mmc_spi_response_get(struct mmc_spi_host
*host
,
215 struct mmc_command
*cmd
, int cs_on
)
217 unsigned long timeout_ms
;
218 u8
*cp
= host
->data
->status
;
219 u8
*end
= cp
+ host
->t
.len
;
223 unsigned short rotator
;
226 /* Except for data block reads, the whole response will already
227 * be stored in the scratch buffer. It's somewhere after the
228 * command and the first byte we read after it. We ignore that
229 * first byte. After STOP_TRANSMISSION command it may include
230 * two data bits, but otherwise it's all ones.
233 while (cp
< end
&& *cp
== 0xff)
236 /* Data block reads (R1 response types) may need more data... */
238 cp
= host
->data
->status
;
241 /* Card sends N(CR) (== 1..8) bytes of all-ones then one
242 * status byte ... and we already scanned 2 bytes.
244 * REVISIT block read paths use nasty byte-at-a-time I/O
245 * so it can always DMA directly into the target buffer.
246 * It'd probably be better to memcpy() the first chunk and
247 * avoid extra i/o calls...
249 * Note we check for more than 8 bytes, because in practice,
250 * some SD cards are slow...
252 for (i
= 2; i
< 16; i
++) {
253 value
= mmc_spi_readbytes(host
, 1);
266 /* Houston, we have an ugly card with a bit-shifted response */
267 rotator
= *cp
++ << 8;
268 /* read the next byte */
270 value
= mmc_spi_readbytes(host
, 1);
273 cp
= host
->data
->status
;
277 while (rotator
& 0x8000) {
281 cmd
->resp
[0] = rotator
>> 8;
284 cmd
->resp
[0] = *cp
++;
288 /* Status byte: the entire seven-bit R1 response. */
289 if (cmd
->resp
[0] != 0) {
290 if ((R1_SPI_PARAMETER
| R1_SPI_ADDRESS
)
292 value
= -EFAULT
; /* Bad address */
293 else if (R1_SPI_ILLEGAL_COMMAND
& cmd
->resp
[0])
294 value
= -ENOSYS
; /* Function not implemented */
295 else if (R1_SPI_COM_CRC
& cmd
->resp
[0])
296 value
= -EILSEQ
; /* Illegal byte sequence */
297 else if ((R1_SPI_ERASE_SEQ
| R1_SPI_ERASE_RESET
)
299 value
= -EIO
; /* I/O error */
300 /* else R1_SPI_IDLE, "it's resetting" */
303 switch (mmc_spi_resp_type(cmd
)) {
305 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
306 * and less-common stuff like various erase operations.
308 case MMC_RSP_SPI_R1B
:
309 /* maybe we read all the busy tokens already */
310 while (cp
< end
&& *cp
== 0)
313 timeout_ms
= cmd
->busy_timeout
? cmd
->busy_timeout
:
314 MMC_SPI_R1B_TIMEOUT_MS
;
315 mmc_spi_wait_unbusy(host
, msecs_to_jiffies(timeout_ms
));
319 /* SPI R2 == R1 + second status byte; SEND_STATUS
320 * SPI R5 == R1 + data byte; IO_RW_DIRECT
323 /* read the next byte */
325 value
= mmc_spi_readbytes(host
, 1);
328 cp
= host
->data
->status
;
332 rotator
= leftover
<< 8;
333 rotator
|= *cp
<< bitshift
;
334 cmd
->resp
[0] |= (rotator
& 0xFF00);
336 cmd
->resp
[0] |= *cp
<< 8;
340 /* SPI R3, R4, or R7 == R1 + 4 bytes */
342 rotator
= leftover
<< 8;
344 for (i
= 0; i
< 4; i
++) {
346 /* read the next byte */
348 value
= mmc_spi_readbytes(host
, 1);
351 cp
= host
->data
->status
;
355 rotator
|= *cp
++ << bitshift
;
356 cmd
->resp
[1] |= (rotator
>> 8);
359 cmd
->resp
[1] |= *cp
++;
364 /* SPI R1 == just one status byte */
369 dev_dbg(&host
->spi
->dev
, "bad response type %04x\n",
370 mmc_spi_resp_type(cmd
));
377 dev_dbg(&host
->spi
->dev
,
378 " ... CMD%d response SPI_%s: resp %04x %08x\n",
379 cmd
->opcode
, maptype(cmd
), cmd
->resp
[0], cmd
->resp
[1]);
381 /* disable chipselect on errors and some success cases */
382 if (value
>= 0 && cs_on
)
391 /* Issue command and read its response.
392 * Returns zero on success, negative for error.
394 * On error, caller must cope with mmc core retry mechanism. That
395 * means immediate low-level resubmit, which affects the bus lock...
398 mmc_spi_command_send(struct mmc_spi_host
*host
,
399 struct mmc_request
*mrq
,
400 struct mmc_command
*cmd
, int cs_on
)
402 struct scratch
*data
= host
->data
;
403 u8
*cp
= data
->status
;
405 struct spi_transfer
*t
;
407 /* We can handle most commands (except block reads) in one full
408 * duplex I/O operation before either starting the next transfer
409 * (data block or command) or else deselecting the card.
411 * First, write 7 bytes:
412 * - an all-ones byte to ensure the card is ready
413 * - opcode byte (plus start and transmission bits)
414 * - four bytes of big-endian argument
415 * - crc7 (plus end bit) ... always computed, it's cheap
417 * We init the whole buffer to all-ones, which is what we need
418 * to write while we're reading (later) response data.
420 memset(cp
, 0xff, sizeof(data
->status
));
422 cp
[1] = 0x40 | cmd
->opcode
;
423 put_unaligned_be32(cmd
->arg
, cp
+ 2);
424 cp
[6] = crc7_be(0, cp
+ 1, 5) | 0x01;
427 /* Then, read up to 13 bytes (while writing all-ones):
428 * - N(CR) (== 1..8) bytes of all-ones
429 * - status byte (for all response types)
430 * - the rest of the response, either:
431 * + nothing, for R1 or R1B responses
432 * + second status byte, for R2 responses
433 * + four data bytes, for R3 and R7 responses
435 * Finally, read some more bytes ... in the nice cases we know in
436 * advance how many, and reading 1 more is always OK:
437 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
438 * - N(RC) (== 1..N) bytes of all-ones, before next command
439 * - N(WR) (== 1..N) bytes of all-ones, before data write
441 * So in those cases one full duplex I/O of at most 21 bytes will
442 * handle the whole command, leaving the card ready to receive a
443 * data block or new command. We do that whenever we can, shaving
444 * CPU and IRQ costs (especially when using DMA or FIFOs).
446 * There are two other cases, where it's not generally practical
447 * to rely on a single I/O:
449 * - R1B responses need at least N(EC) bytes of all-zeroes.
451 * In this case we can *try* to fit it into one I/O, then
452 * maybe read more data later.
454 * - Data block reads are more troublesome, since a variable
455 * number of padding bytes precede the token and data.
456 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
457 * + N(AC) (== 1..many) bytes of all-ones
459 * In this case we currently only have minimal speedups here:
460 * when N(CR) == 1 we can avoid I/O in response_get().
462 if (cs_on
&& (mrq
->data
->flags
& MMC_DATA_READ
)) {
463 cp
+= 2; /* min(N(CR)) + status */
466 cp
+= 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */
467 if (cmd
->flags
& MMC_RSP_SPI_S2
) /* R2/R5 */
469 else if (cmd
->flags
& MMC_RSP_SPI_B4
) /* R3/R4/R7 */
471 else if (cmd
->flags
& MMC_RSP_BUSY
) /* R1B */
472 cp
= data
->status
+ sizeof(data
->status
);
473 /* else: R1 (most commands) */
476 dev_dbg(&host
->spi
->dev
, " CMD%d, resp %s\n",
477 cmd
->opcode
, maptype(cmd
));
479 /* send command, leaving chipselect active */
480 spi_message_init(&host
->m
);
483 memset(t
, 0, sizeof(*t
));
484 t
->tx_buf
= t
->rx_buf
= data
->status
;
485 t
->len
= cp
- data
->status
;
487 spi_message_add_tail(t
, &host
->m
);
489 status
= spi_sync_locked(host
->spi
, &host
->m
);
491 dev_dbg(&host
->spi
->dev
, " ... write returned %d\n", status
);
496 /* after no-data commands and STOP_TRANSMISSION, chipselect off */
497 return mmc_spi_response_get(host
, cmd
, cs_on
);
500 /* Build data message with up to four separate transfers. For TX, we
501 * start by writing the data token. And in most cases, we finish with
504 * We always provide TX data for data and CRC. The MMC/SD protocol
505 * requires us to write ones; but Linux defaults to writing zeroes;
506 * so we explicitly initialize it to all ones on RX paths.
509 mmc_spi_setup_data_message(struct mmc_spi_host
*host
, bool multiple
, bool write
)
511 struct spi_transfer
*t
;
512 struct scratch
*scratch
= host
->data
;
514 spi_message_init(&host
->m
);
516 /* for reads, readblock() skips 0xff bytes before finding
517 * the token; for writes, this transfer issues that token.
521 memset(t
, 0, sizeof(*t
));
524 scratch
->data_token
= SPI_TOKEN_MULTI_WRITE
;
526 scratch
->data_token
= SPI_TOKEN_SINGLE
;
527 t
->tx_buf
= &scratch
->data_token
;
528 spi_message_add_tail(t
, &host
->m
);
531 /* Body of transfer is buffer, then CRC ...
532 * either TX-only, or RX with TX-ones.
535 memset(t
, 0, sizeof(*t
));
536 t
->tx_buf
= host
->ones
;
537 /* length and actual buffer info are written later */
538 spi_message_add_tail(t
, &host
->m
);
541 memset(t
, 0, sizeof(*t
));
544 /* the actual CRC may get written later */
545 t
->tx_buf
= &scratch
->crc_val
;
547 t
->tx_buf
= host
->ones
;
548 t
->rx_buf
= &scratch
->crc_val
;
550 spi_message_add_tail(t
, &host
->m
);
553 * A single block read is followed by N(EC) [0+] all-ones bytes
554 * before deselect ... don't bother.
556 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
557 * the next block is read, or a STOP_TRANSMISSION is issued. We'll
558 * collect that single byte, so readblock() doesn't need to.
560 * For a write, the one-byte data response follows immediately, then
561 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
562 * Then single block reads may deselect, and multiblock ones issue
563 * the next token (next data block, or STOP_TRAN). We can try to
564 * minimize I/O ops by using a single read to collect end-of-busy.
566 if (multiple
|| write
) {
567 t
= &host
->early_status
;
568 memset(t
, 0, sizeof(*t
));
569 t
->len
= write
? sizeof(scratch
->status
) : 1;
570 t
->tx_buf
= host
->ones
;
571 t
->rx_buf
= scratch
->status
;
573 spi_message_add_tail(t
, &host
->m
);
579 * - caller handled preceding N(WR) [1+] all-ones bytes
584 * - an all-ones byte ... card writes a data-response byte
585 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
587 * Return negative errno, else success.
590 mmc_spi_writeblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
591 unsigned long timeout
)
593 struct spi_device
*spi
= host
->spi
;
595 struct scratch
*scratch
= host
->data
;
598 if (host
->mmc
->use_spi_crc
)
599 scratch
->crc_val
= cpu_to_be16(crc_itu_t(0, t
->tx_buf
, t
->len
));
601 status
= spi_sync_locked(spi
, &host
->m
);
603 dev_dbg(&spi
->dev
, "write error (%d)\n", status
);
608 * Get the transmission data-response reply. It must follow
609 * immediately after the data block we transferred. This reply
610 * doesn't necessarily tell whether the write operation succeeded;
611 * it just says if the transmission was ok and whether *earlier*
612 * writes succeeded; see the standard.
614 * In practice, there are (even modern SDHC-)cards which are late
615 * in sending the response, and miss the time frame by a few bits,
616 * so we have to cope with this situation and check the response
617 * bit-by-bit. Arggh!!!
619 pattern
= get_unaligned_be32(scratch
->status
);
621 /* First 3 bit of pattern are undefined */
622 pattern
|= 0xE0000000;
624 /* left-adjust to leading 0 bit */
625 while (pattern
& 0x80000000)
627 /* right-adjust for pattern matching. Code is in bit 4..0 now. */
631 case SPI_RESPONSE_ACCEPTED
:
634 case SPI_RESPONSE_CRC_ERR
:
635 /* host shall then issue MMC_STOP_TRANSMISSION */
638 case SPI_RESPONSE_WRITE_ERR
:
639 /* host shall then issue MMC_STOP_TRANSMISSION,
640 * and should MMC_SEND_STATUS to sort it out
649 dev_dbg(&spi
->dev
, "write error %02x (%d)\n",
650 scratch
->status
[0], status
);
656 /* Return when not busy. If we didn't collect that status yet,
657 * we'll need some more I/O.
659 for (i
= 4; i
< sizeof(scratch
->status
); i
++) {
660 /* card is non-busy if the most recent bit is 1 */
661 if (scratch
->status
[i
] & 0x01)
664 return mmc_spi_wait_unbusy(host
, timeout
);
669 * - skip leading all-ones bytes ... either
670 * + N(AC) [1..f(clock,CSD)] usually, else
671 * + N(CX) [0..8] when reading CSD or CID
673 * + token ... if error token, no data or crc
677 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
678 * before dropping chipselect.
680 * For multiblock reads, caller either reads the next block or issues a
681 * STOP_TRANSMISSION command.
684 mmc_spi_readblock(struct mmc_spi_host
*host
, struct spi_transfer
*t
,
685 unsigned long timeout
)
687 struct spi_device
*spi
= host
->spi
;
689 struct scratch
*scratch
= host
->data
;
690 unsigned int bitshift
;
693 /* At least one SD card sends an all-zeroes byte when N(CX)
694 * applies, before the all-ones bytes ... just cope with that.
696 status
= mmc_spi_readbytes(host
, 1);
699 status
= scratch
->status
[0];
700 if (status
== 0xff || status
== 0)
701 status
= mmc_spi_readtoken(host
, timeout
);
704 dev_dbg(&spi
->dev
, "read error %02x (%d)\n", status
, status
);
708 /* The token may be bit-shifted...
709 * the first 0-bit precedes the data stream.
712 while (status
& 0x80) {
716 leftover
= status
<< 1;
718 status
= spi_sync_locked(spi
, &host
->m
);
720 dev_dbg(&spi
->dev
, "read error %d\n", status
);
725 /* Walk through the data and the crc and do
726 * all the magic to get byte-aligned data.
730 unsigned int bitright
= 8 - bitshift
;
732 for (len
= t
->len
; len
; len
--) {
734 *cp
++ = leftover
| (temp
>> bitshift
);
735 leftover
= temp
<< bitright
;
737 cp
= (u8
*) &scratch
->crc_val
;
739 *cp
++ = leftover
| (temp
>> bitshift
);
740 leftover
= temp
<< bitright
;
742 *cp
= leftover
| (temp
>> bitshift
);
745 if (host
->mmc
->use_spi_crc
) {
746 u16 crc
= crc_itu_t(0, t
->rx_buf
, t
->len
);
748 be16_to_cpus(&scratch
->crc_val
);
749 if (scratch
->crc_val
!= crc
) {
751 "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
752 scratch
->crc_val
, crc
, t
->len
);
763 * An MMC/SD data stage includes one or more blocks, optional CRCs,
764 * and inline handshaking. That handhaking makes it unlike most
765 * other SPI protocol stacks.
768 mmc_spi_data_do(struct mmc_spi_host
*host
, struct mmc_command
*cmd
,
769 struct mmc_data
*data
, u32 blk_size
)
771 struct spi_device
*spi
= host
->spi
;
772 struct spi_transfer
*t
;
773 struct scatterlist
*sg
;
775 bool multiple
= (data
->blocks
> 1);
776 bool write
= (data
->flags
& MMC_DATA_WRITE
);
777 const char *write_or_read
= write
? "write" : "read";
779 unsigned long timeout
;
781 mmc_spi_setup_data_message(host
, multiple
, write
);
785 clock_rate
= t
->speed_hz
;
787 clock_rate
= spi
->max_speed_hz
;
789 timeout
= data
->timeout_ns
/ 1000 +
790 data
->timeout_clks
* 1000000 / clock_rate
;
791 timeout
= usecs_to_jiffies((unsigned int)timeout
) + 1;
793 /* Handle scatterlist segments one at a time, with synch for
794 * each 512-byte block
796 for_each_sg(data
->sg
, sg
, data
->sg_len
, n_sg
) {
799 unsigned length
= sg
->length
;
801 /* allow pio too; we don't allow highmem */
802 kmap_addr
= kmap(sg_page(sg
));
804 t
->tx_buf
= kmap_addr
+ sg
->offset
;
806 t
->rx_buf
= kmap_addr
+ sg
->offset
;
808 /* transfer each block, and update request status */
810 t
->len
= min(length
, blk_size
);
812 dev_dbg(&spi
->dev
, " %s block, %d bytes\n", write_or_read
, t
->len
);
815 status
= mmc_spi_writeblock(host
, t
, timeout
);
817 status
= mmc_spi_readblock(host
, t
, timeout
);
821 data
->bytes_xfered
+= t
->len
;
828 /* discard mappings */
832 flush_dcache_page(sg_page(sg
));
836 data
->error
= status
;
837 dev_dbg(&spi
->dev
, "%s status %d\n", write_or_read
, status
);
842 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
843 * can be issued before multiblock writes. Unlike its more widely
844 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
845 * that can affect the STOP_TRAN logic. Complete (and current)
846 * MMC specs should sort that out before Linux starts using CMD23.
848 if (write
&& multiple
) {
849 struct scratch
*scratch
= host
->data
;
851 const unsigned statlen
= sizeof(scratch
->status
);
853 dev_dbg(&spi
->dev
, " STOP_TRAN\n");
855 /* Tweak the per-block message we set up earlier by morphing
856 * it to hold single buffer with the token followed by some
857 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
858 * "not busy any longer" status, and leave chip selected.
860 INIT_LIST_HEAD(&host
->m
.transfers
);
861 list_add(&host
->early_status
.transfer_list
,
864 memset(scratch
->status
, 0xff, statlen
);
865 scratch
->status
[0] = SPI_TOKEN_STOP_TRAN
;
867 host
->early_status
.tx_buf
= host
->early_status
.rx_buf
;
868 host
->early_status
.len
= statlen
;
870 tmp
= spi_sync_locked(spi
, &host
->m
);
877 /* Ideally we collected "not busy" status with one I/O,
878 * avoiding wasteful byte-at-a-time scanning... but more
879 * I/O is often needed.
881 for (tmp
= 2; tmp
< statlen
; tmp
++) {
882 if (scratch
->status
[tmp
] != 0)
885 tmp
= mmc_spi_wait_unbusy(host
, timeout
);
886 if (tmp
< 0 && !data
->error
)
891 /****************************************************************************/
894 * MMC driver implementation -- the interface to the MMC stack
897 static void mmc_spi_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
899 struct mmc_spi_host
*host
= mmc_priv(mmc
);
900 int status
= -EINVAL
;
902 struct mmc_command stop
;
905 /* MMC core and layered drivers *MUST* issue SPI-aware commands */
907 struct mmc_command
*cmd
;
911 if (!mmc_spi_resp_type(cmd
)) {
912 dev_dbg(&host
->spi
->dev
, "bogus command\n");
913 cmd
->error
= -EINVAL
;
918 if (cmd
&& !mmc_spi_resp_type(cmd
)) {
919 dev_dbg(&host
->spi
->dev
, "bogus STOP command\n");
920 cmd
->error
= -EINVAL
;
926 mmc_request_done(host
->mmc
, mrq
);
932 /* request exclusive bus access */
933 spi_bus_lock(host
->spi
->controller
);
936 /* issue command; then optionally data and stop */
937 status
= mmc_spi_command_send(host
, mrq
, mrq
->cmd
, mrq
->data
!= NULL
);
938 if (status
== 0 && mrq
->data
) {
939 mmc_spi_data_do(host
, mrq
->cmd
, mrq
->data
, mrq
->data
->blksz
);
942 * The SPI bus is not always reliable for large data transfers.
943 * If an occasional crc error is reported by the SD device with
944 * data read/write over SPI, it may be recovered by repeating
945 * the last SD command again. The retry count is set to 5 to
946 * ensure the driver passes stress tests.
948 if (mrq
->data
->error
== -EILSEQ
&& crc_retry
) {
949 stop
.opcode
= MMC_STOP_TRANSMISSION
;
951 stop
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
952 status
= mmc_spi_command_send(host
, mrq
, &stop
, 0);
954 mrq
->data
->error
= 0;
959 status
= mmc_spi_command_send(host
, mrq
, mrq
->stop
, 0);
964 /* release the bus */
965 spi_bus_unlock(host
->spi
->controller
);
967 mmc_request_done(host
->mmc
, mrq
);
970 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
972 * NOTE that here we can't know that the card has just been powered up;
973 * not all MMC/SD sockets support power switching.
975 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
976 * this doesn't seem to do the right thing at all...
978 static void mmc_spi_initsequence(struct mmc_spi_host
*host
)
980 /* Try to be very sure any previous command has completed;
981 * wait till not-busy, skip debris from any old commands.
983 mmc_spi_wait_unbusy(host
, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS
));
984 mmc_spi_readbytes(host
, 10);
987 * Do a burst with chipselect active-high. We need to do this to
988 * meet the requirement of 74 clock cycles with both chipselect
989 * and CMD (MOSI) high before CMD0 ... after the card has been
990 * powered up to Vdd(min), and so is ready to take commands.
992 * Some cards are particularly needy of this (e.g. Viking "SD256")
993 * while most others don't seem to care.
995 * Note that this is one of the places MMC/SD plays games with the
996 * SPI protocol. Another is that when chipselect is released while
997 * the card returns BUSY status, the clock must issue several cycles
998 * with chipselect high before the card will stop driving its output.
1000 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1001 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1002 * inverted by gpiolib, so if we want to ascertain to drive it high
1003 * we should toggle the default with an XOR as we do here.
1005 host
->spi
->mode
^= SPI_CS_HIGH
;
1006 if (spi_setup(host
->spi
) != 0) {
1007 /* Just warn; most cards work without it. */
1008 dev_warn(&host
->spi
->dev
,
1009 "can't change chip-select polarity\n");
1010 host
->spi
->mode
^= SPI_CS_HIGH
;
1012 mmc_spi_readbytes(host
, 18);
1014 host
->spi
->mode
^= SPI_CS_HIGH
;
1015 if (spi_setup(host
->spi
) != 0) {
1016 /* Wot, we can't get the same setup we had before? */
1017 dev_err(&host
->spi
->dev
,
1018 "can't restore chip-select polarity\n");
1023 static char *mmc_powerstring(u8 power_mode
)
1025 switch (power_mode
) {
1026 case MMC_POWER_OFF
: return "off";
1027 case MMC_POWER_UP
: return "up";
1028 case MMC_POWER_ON
: return "on";
1033 static void mmc_spi_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1035 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1037 if (host
->power_mode
!= ios
->power_mode
) {
1040 canpower
= host
->pdata
&& host
->pdata
->setpower
;
1042 dev_dbg(&host
->spi
->dev
, "power %s (%d)%s\n",
1043 mmc_powerstring(ios
->power_mode
),
1045 canpower
? ", can switch" : "");
1047 /* switch power on/off if possible, accounting for
1048 * max 250msec powerup time if needed.
1051 switch (ios
->power_mode
) {
1054 host
->pdata
->setpower(&host
->spi
->dev
,
1056 if (ios
->power_mode
== MMC_POWER_UP
)
1057 msleep(host
->powerup_msecs
);
1061 /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1062 if (ios
->power_mode
== MMC_POWER_ON
)
1063 mmc_spi_initsequence(host
);
1065 /* If powering down, ground all card inputs to avoid power
1066 * delivery from data lines! On a shared SPI bus, this
1067 * will probably be temporary; 6.4.2 of the simplified SD
1068 * spec says this must last at least 1msec.
1070 * - Clock low means CPOL 0, e.g. mode 0
1071 * - MOSI low comes from writing zero
1072 * - Chipselect is usually active low...
1074 if (canpower
&& ios
->power_mode
== MMC_POWER_OFF
) {
1078 host
->spi
->mode
&= ~(SPI_CPOL
|SPI_CPHA
);
1079 mres
= spi_setup(host
->spi
);
1081 dev_dbg(&host
->spi
->dev
,
1082 "switch to SPI mode 0 failed\n");
1084 if (spi_write(host
->spi
, &nullbyte
, 1) < 0)
1085 dev_dbg(&host
->spi
->dev
,
1086 "put spi signals to low failed\n");
1089 * Now clock should be low due to spi mode 0;
1090 * MOSI should be low because of written 0x00;
1091 * chipselect should be low (it is active low)
1092 * power supply is off, so now MMC is off too!
1094 * FIXME no, chipselect can be high since the
1095 * device is inactive and SPI_CS_HIGH is clear...
1099 host
->spi
->mode
|= (SPI_CPOL
|SPI_CPHA
);
1100 mres
= spi_setup(host
->spi
);
1102 dev_dbg(&host
->spi
->dev
,
1103 "switch back to SPI mode 3 failed\n");
1107 host
->power_mode
= ios
->power_mode
;
1110 if (host
->spi
->max_speed_hz
!= ios
->clock
&& ios
->clock
!= 0) {
1113 host
->spi
->max_speed_hz
= ios
->clock
;
1114 status
= spi_setup(host
->spi
);
1115 dev_dbg(&host
->spi
->dev
, " clock to %d Hz, %d\n",
1116 host
->spi
->max_speed_hz
, status
);
1120 static const struct mmc_host_ops mmc_spi_ops
= {
1121 .request
= mmc_spi_request
,
1122 .set_ios
= mmc_spi_set_ios
,
1123 .get_ro
= mmc_gpio_get_ro
,
1124 .get_cd
= mmc_gpio_get_cd
,
1128 /****************************************************************************/
1131 * SPI driver implementation
1135 mmc_spi_detect_irq(int irq
, void *mmc
)
1137 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1138 u16 delay_msec
= max(host
->pdata
->detect_delay
, (u16
)100);
1140 mmc_detect_change(mmc
, msecs_to_jiffies(delay_msec
));
1144 static int mmc_spi_probe(struct spi_device
*spi
)
1147 struct mmc_host
*mmc
;
1148 struct mmc_spi_host
*host
;
1150 bool has_ro
= false;
1152 /* We rely on full duplex transfers, mostly to reduce
1153 * per-transfer overheads (by making fewer transfers).
1155 if (spi
->controller
->flags
& SPI_CONTROLLER_HALF_DUPLEX
)
1158 /* MMC and SD specs only seem to care that sampling is on the
1159 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode
1160 * should be legit. We'll use mode 0 since the steady state is 0,
1161 * which is appropriate for hotplugging, unless the platform data
1162 * specify mode 3 (if hardware is not compatible to mode 0).
1164 if (spi
->mode
!= SPI_MODE_3
)
1165 spi
->mode
= SPI_MODE_0
;
1166 spi
->bits_per_word
= 8;
1168 status
= spi_setup(spi
);
1170 dev_dbg(&spi
->dev
, "needs SPI mode %02x, %d KHz; %d\n",
1171 spi
->mode
, spi
->max_speed_hz
/ 1000,
1176 /* We need a supply of ones to transmit. This is the only time
1177 * the CPU touches these, so cache coherency isn't a concern.
1179 * NOTE if many systems use more than one MMC-over-SPI connector
1180 * it'd save some memory to share this. That's evidently rare.
1183 ones
= kmalloc(MMC_SPI_BLOCKSIZE
, GFP_KERNEL
);
1186 memset(ones
, 0xff, MMC_SPI_BLOCKSIZE
);
1188 mmc
= mmc_alloc_host(sizeof(*host
), &spi
->dev
);
1192 mmc
->ops
= &mmc_spi_ops
;
1193 mmc
->max_blk_size
= MMC_SPI_BLOCKSIZE
;
1194 mmc
->max_segs
= MMC_SPI_BLOCKSATONCE
;
1195 mmc
->max_req_size
= MMC_SPI_BLOCKSATONCE
* MMC_SPI_BLOCKSIZE
;
1196 mmc
->max_blk_count
= MMC_SPI_BLOCKSATONCE
;
1198 mmc
->caps
= MMC_CAP_SPI
;
1200 /* SPI doesn't need the lowspeed device identification thing for
1201 * MMC or SD cards, since it never comes up in open drain mode.
1202 * That's good; some SPI masters can't handle very low speeds!
1204 * However, low speed SDIO cards need not handle over 400 KHz;
1205 * that's the only reason not to use a few MHz for f_min (until
1206 * the upper layer reads the target frequency from the CSD).
1208 if (spi
->controller
->min_speed_hz
> 400000)
1209 dev_warn(&spi
->dev
,"Controller unable to reduce bus clock to 400 KHz\n");
1211 mmc
->f_min
= max(spi
->controller
->min_speed_hz
, 400000);
1212 mmc
->f_max
= spi
->max_speed_hz
;
1214 host
= mmc_priv(mmc
);
1220 dev_set_drvdata(&spi
->dev
, mmc
);
1222 /* Platform data is used to hook up things like card sensing
1223 * and power switching gpios.
1225 host
->pdata
= mmc_spi_get_pdata(spi
);
1227 mmc
->ocr_avail
= host
->pdata
->ocr_mask
;
1228 if (!mmc
->ocr_avail
) {
1229 dev_warn(&spi
->dev
, "ASSUMING 3.2-3.4 V slot power\n");
1230 mmc
->ocr_avail
= MMC_VDD_32_33
|MMC_VDD_33_34
;
1232 if (host
->pdata
&& host
->pdata
->setpower
) {
1233 host
->powerup_msecs
= host
->pdata
->powerup_msecs
;
1234 if (!host
->powerup_msecs
|| host
->powerup_msecs
> 250)
1235 host
->powerup_msecs
= 250;
1238 /* Preallocate buffers */
1239 host
->data
= kmalloc(sizeof(*host
->data
), GFP_KERNEL
);
1243 /* setup message for status/busy readback */
1244 spi_message_init(&host
->readback
);
1246 spi_message_add_tail(&host
->status
, &host
->readback
);
1247 host
->status
.tx_buf
= host
->ones
;
1248 host
->status
.rx_buf
= &host
->data
->status
;
1249 host
->status
.cs_change
= 1;
1251 /* register card detect irq */
1252 if (host
->pdata
&& host
->pdata
->init
) {
1253 status
= host
->pdata
->init(&spi
->dev
, mmc_spi_detect_irq
, mmc
);
1255 goto fail_glue_init
;
1258 /* pass platform capabilities, if any */
1260 mmc
->caps
|= host
->pdata
->caps
;
1261 mmc
->caps2
|= host
->pdata
->caps2
;
1264 status
= mmc_add_host(mmc
);
1266 goto fail_glue_init
;
1269 * Index 0 is card detect
1270 * Old boardfiles were specifying 1 ms as debounce
1272 status
= mmc_gpiod_request_cd(mmc
, NULL
, 0, false, 1000);
1273 if (status
== -EPROBE_DEFER
)
1274 goto fail_gpiod_request
;
1277 * The platform has a CD GPIO signal that may support
1278 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1279 * if polling is needed or not.
1281 mmc
->caps
&= ~MMC_CAP_NEEDS_POLL
;
1282 mmc_gpiod_request_cd_irq(mmc
);
1284 mmc_detect_change(mmc
, 0);
1286 /* Index 1 is write protect/read only */
1287 status
= mmc_gpiod_request_ro(mmc
, NULL
, 1, 0);
1288 if (status
== -EPROBE_DEFER
)
1289 goto fail_gpiod_request
;
1293 dev_info(&spi
->dev
, "SD/MMC host %s%s%s%s\n",
1294 dev_name(&mmc
->class_dev
),
1295 has_ro
? "" : ", no WP",
1296 (host
->pdata
&& host
->pdata
->setpower
)
1297 ? "" : ", no poweroff",
1298 (mmc
->caps
& MMC_CAP_NEEDS_POLL
)
1299 ? ", cd polling" : "");
1303 mmc_remove_host(mmc
);
1307 mmc_spi_put_pdata(spi
);
1315 static void mmc_spi_remove(struct spi_device
*spi
)
1317 struct mmc_host
*mmc
= dev_get_drvdata(&spi
->dev
);
1318 struct mmc_spi_host
*host
= mmc_priv(mmc
);
1320 /* prevent new mmc_detect_change() calls */
1321 if (host
->pdata
&& host
->pdata
->exit
)
1322 host
->pdata
->exit(&spi
->dev
, mmc
);
1324 mmc_remove_host(mmc
);
1329 spi
->max_speed_hz
= mmc
->f_max
;
1330 mmc_spi_put_pdata(spi
);
1334 static const struct spi_device_id mmc_spi_dev_ids
[] = {
1338 MODULE_DEVICE_TABLE(spi
, mmc_spi_dev_ids
);
1340 static const struct of_device_id mmc_spi_of_match_table
[] = {
1341 { .compatible
= "mmc-spi-slot", },
1344 MODULE_DEVICE_TABLE(of
, mmc_spi_of_match_table
);
1346 static struct spi_driver mmc_spi_driver
= {
1349 .of_match_table
= mmc_spi_of_match_table
,
1351 .id_table
= mmc_spi_dev_ids
,
1352 .probe
= mmc_spi_probe
,
1353 .remove
= mmc_spi_remove
,
1356 module_spi_driver(mmc_spi_driver
);
1358 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1359 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1360 MODULE_LICENSE("GPL");
1361 MODULE_ALIAS("spi:mmc_spi");