Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / most / most_usb.c
blob485d5ca399513c240f0b8f9ee4ec0b9998bff578
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * usb.c - Hardware dependent module for USB
5 * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG
6 */
8 #include <linux/module.h>
9 #include <linux/fs.h>
10 #include <linux/usb.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/list.h>
16 #include <linux/completion.h>
17 #include <linux/mutex.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/workqueue.h>
21 #include <linux/sysfs.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/etherdevice.h>
24 #include <linux/uaccess.h>
25 #include <linux/most.h>
27 #define USB_MTU 512
28 #define NO_ISOCHRONOUS_URB 0
29 #define AV_PACKETS_PER_XACT 2
30 #define BUF_CHAIN_SIZE 0xFFFF
31 #define MAX_NUM_ENDPOINTS 30
32 #define MAX_SUFFIX_LEN 10
33 #define MAX_STRING_LEN 80
34 #define MAX_BUF_SIZE 0xFFFF
36 #define USB_VENDOR_ID_SMSC 0x0424 /* VID: SMSC */
37 #define USB_DEV_ID_BRDG 0xC001 /* PID: USB Bridge */
38 #define USB_DEV_ID_OS81118 0xCF18 /* PID: USB OS81118 */
39 #define USB_DEV_ID_OS81119 0xCF19 /* PID: USB OS81119 */
40 #define USB_DEV_ID_OS81210 0xCF30 /* PID: USB OS81210 */
41 /* DRCI Addresses */
42 #define DRCI_REG_NI_STATE 0x0100
43 #define DRCI_REG_PACKET_BW 0x0101
44 #define DRCI_REG_NODE_ADDR 0x0102
45 #define DRCI_REG_NODE_POS 0x0103
46 #define DRCI_REG_MEP_FILTER 0x0140
47 #define DRCI_REG_HASH_TBL0 0x0141
48 #define DRCI_REG_HASH_TBL1 0x0142
49 #define DRCI_REG_HASH_TBL2 0x0143
50 #define DRCI_REG_HASH_TBL3 0x0144
51 #define DRCI_REG_HW_ADDR_HI 0x0145
52 #define DRCI_REG_HW_ADDR_MI 0x0146
53 #define DRCI_REG_HW_ADDR_LO 0x0147
54 #define DRCI_REG_BASE 0x1100
55 #define DRCI_COMMAND 0x02
56 #define DRCI_READ_REQ 0xA0
57 #define DRCI_WRITE_REQ 0xA1
59 /**
60 * struct most_dci_obj - Direct Communication Interface
61 * @kobj:position in sysfs
62 * @usb_device: pointer to the usb device
63 * @reg_addr: register address for arbitrary DCI access
65 struct most_dci_obj {
66 struct device dev;
67 struct usb_device *usb_device;
68 u16 reg_addr;
71 #define to_dci_obj(p) container_of(p, struct most_dci_obj, dev)
73 struct most_dev;
75 struct clear_hold_work {
76 struct work_struct ws;
77 struct most_dev *mdev;
78 unsigned int channel;
79 int pipe;
82 #define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws)
84 /**
85 * struct most_dev - holds all usb interface specific stuff
86 * @usb_device: pointer to usb device
87 * @iface: hardware interface
88 * @cap: channel capabilities
89 * @conf: channel configuration
90 * @dci: direct communication interface of hardware
91 * @ep_address: endpoint address table
92 * @description: device description
93 * @suffix: suffix for channel name
94 * @channel_lock: synchronize channel access
95 * @padding_active: indicates channel uses padding
96 * @is_channel_healthy: health status table of each channel
97 * @busy_urbs: list of anchored items
98 * @io_mutex: synchronize I/O with disconnect
99 * @link_stat_timer: timer for link status reports
100 * @poll_work_obj: work for polling link status
102 struct most_dev {
103 struct device dev;
104 struct usb_device *usb_device;
105 struct most_interface iface;
106 struct most_channel_capability *cap;
107 struct most_channel_config *conf;
108 struct most_dci_obj *dci;
109 u8 *ep_address;
110 char description[MAX_STRING_LEN];
111 char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN];
112 spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */
113 bool padding_active[MAX_NUM_ENDPOINTS];
114 bool is_channel_healthy[MAX_NUM_ENDPOINTS];
115 struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS];
116 struct usb_anchor *busy_urbs;
117 struct mutex io_mutex;
118 struct timer_list link_stat_timer;
119 struct work_struct poll_work_obj;
120 void (*on_netinfo)(struct most_interface *most_iface,
121 unsigned char link_state, unsigned char *addrs);
124 #define to_mdev(d) container_of(d, struct most_dev, iface)
125 #define to_mdev_from_dev(d) container_of(d, struct most_dev, dev)
126 #define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj)
128 static void wq_clear_halt(struct work_struct *wq_obj);
129 static void wq_netinfo(struct work_struct *wq_obj);
132 * drci_rd_reg - read a DCI register
133 * @dev: usb device
134 * @reg: register address
135 * @buf: buffer to store data
137 * This is reads data from INIC's direct register communication interface
139 static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf)
141 int retval;
142 __le16 *dma_buf;
143 u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
145 dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
146 if (!dma_buf)
147 return -ENOMEM;
149 retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
150 DRCI_READ_REQ, req_type,
151 0x0000,
152 reg, dma_buf, sizeof(*dma_buf),
153 USB_CTRL_GET_TIMEOUT);
154 *buf = le16_to_cpu(*dma_buf);
155 kfree(dma_buf);
157 if (retval < 0)
158 return retval;
159 return 0;
163 * drci_wr_reg - write a DCI register
164 * @dev: usb device
165 * @reg: register address
166 * @data: data to write
168 * This is writes data to INIC's direct register communication interface
170 static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data)
172 return usb_control_msg(dev,
173 usb_sndctrlpipe(dev, 0),
174 DRCI_WRITE_REQ,
175 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
176 data,
177 reg,
178 NULL,
180 USB_CTRL_SET_TIMEOUT);
183 static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep)
185 return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1);
189 * get_stream_frame_size - calculate frame size of current configuration
190 * @dev: device structure
191 * @cfg: channel configuration
193 static unsigned int get_stream_frame_size(struct device *dev,
194 struct most_channel_config *cfg)
196 unsigned int frame_size;
197 unsigned int sub_size = cfg->subbuffer_size;
199 if (!sub_size) {
200 dev_warn(dev, "Misconfig: Subbuffer size zero.\n");
201 return 0;
203 switch (cfg->data_type) {
204 case MOST_CH_ISOC:
205 frame_size = AV_PACKETS_PER_XACT * sub_size;
206 break;
207 case MOST_CH_SYNC:
208 if (cfg->packets_per_xact == 0) {
209 dev_warn(dev, "Misconfig: Packets per XACT zero\n");
210 frame_size = 0;
211 } else if (cfg->packets_per_xact == 0xFF) {
212 frame_size = (USB_MTU / sub_size) * sub_size;
213 } else {
214 frame_size = cfg->packets_per_xact * sub_size;
216 break;
217 default:
218 dev_warn(dev, "Query frame size of non-streaming channel\n");
219 frame_size = 0;
220 break;
222 return frame_size;
226 * hdm_poison_channel - mark buffers of this channel as invalid
227 * @iface: pointer to the interface
228 * @channel: channel ID
230 * This unlinks all URBs submitted to the HCD,
231 * calls the associated completion function of the core and removes
232 * them from the list.
234 * Returns 0 on success or error code otherwise.
236 static int hdm_poison_channel(struct most_interface *iface, int channel)
238 struct most_dev *mdev = to_mdev(iface);
239 unsigned long flags;
240 spinlock_t *lock; /* temp. lock */
242 if (channel < 0 || channel >= iface->num_channels) {
243 dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n");
244 return -ECHRNG;
247 lock = mdev->channel_lock + channel;
248 spin_lock_irqsave(lock, flags);
249 mdev->is_channel_healthy[channel] = false;
250 spin_unlock_irqrestore(lock, flags);
252 cancel_work_sync(&mdev->clear_work[channel].ws);
254 mutex_lock(&mdev->io_mutex);
255 usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
256 if (mdev->padding_active[channel])
257 mdev->padding_active[channel] = false;
259 if (mdev->conf[channel].data_type == MOST_CH_ASYNC) {
260 del_timer_sync(&mdev->link_stat_timer);
261 cancel_work_sync(&mdev->poll_work_obj);
263 mutex_unlock(&mdev->io_mutex);
264 return 0;
268 * hdm_add_padding - add padding bytes
269 * @mdev: most device
270 * @channel: channel ID
271 * @mbo: buffer object
273 * This inserts the INIC hardware specific padding bytes into a streaming
274 * channel's buffer
276 static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo)
278 struct most_channel_config *conf = &mdev->conf[channel];
279 unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
280 unsigned int j, num_frames;
282 if (!frame_size)
283 return -EINVAL;
284 num_frames = mbo->buffer_length / frame_size;
286 if (num_frames < 1) {
287 dev_err(&mdev->usb_device->dev,
288 "Missed minimal transfer unit.\n");
289 return -EINVAL;
292 for (j = num_frames - 1; j > 0; j--)
293 memmove(mbo->virt_address + j * USB_MTU,
294 mbo->virt_address + j * frame_size,
295 frame_size);
296 mbo->buffer_length = num_frames * USB_MTU;
297 return 0;
301 * hdm_remove_padding - remove padding bytes
302 * @mdev: most device
303 * @channel: channel ID
304 * @mbo: buffer object
306 * This takes the INIC hardware specific padding bytes off a streaming
307 * channel's buffer.
309 static int hdm_remove_padding(struct most_dev *mdev, int channel,
310 struct mbo *mbo)
312 struct most_channel_config *const conf = &mdev->conf[channel];
313 unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
314 unsigned int j, num_frames;
316 if (!frame_size)
317 return -EINVAL;
318 num_frames = mbo->processed_length / USB_MTU;
320 for (j = 1; j < num_frames; j++)
321 memmove(mbo->virt_address + frame_size * j,
322 mbo->virt_address + USB_MTU * j,
323 frame_size);
325 mbo->processed_length = frame_size * num_frames;
326 return 0;
330 * hdm_write_completion - completion function for submitted Tx URBs
331 * @urb: the URB that has been completed
333 * This checks the status of the completed URB. In case the URB has been
334 * unlinked before, it is immediately freed. On any other error the MBO
335 * transfer flag is set. On success it frees allocated resources and calls
336 * the completion function.
338 * Context: interrupt!
340 static void hdm_write_completion(struct urb *urb)
342 struct mbo *mbo = urb->context;
343 struct most_dev *mdev = to_mdev(mbo->ifp);
344 unsigned int channel = mbo->hdm_channel_id;
345 spinlock_t *lock = mdev->channel_lock + channel;
346 unsigned long flags;
348 spin_lock_irqsave(lock, flags);
350 mbo->processed_length = 0;
351 mbo->status = MBO_E_INVAL;
352 if (likely(mdev->is_channel_healthy[channel])) {
353 switch (urb->status) {
354 case 0:
355 case -ESHUTDOWN:
356 mbo->processed_length = urb->actual_length;
357 mbo->status = MBO_SUCCESS;
358 break;
359 case -EPIPE:
360 dev_warn(&mdev->usb_device->dev,
361 "Broken pipe on ep%02x\n",
362 mdev->ep_address[channel]);
363 mdev->is_channel_healthy[channel] = false;
364 mdev->clear_work[channel].pipe = urb->pipe;
365 schedule_work(&mdev->clear_work[channel].ws);
366 break;
367 case -ENODEV:
368 case -EPROTO:
369 mbo->status = MBO_E_CLOSE;
370 break;
374 spin_unlock_irqrestore(lock, flags);
376 if (likely(mbo->complete))
377 mbo->complete(mbo);
378 usb_free_urb(urb);
382 * hdm_read_completion - completion function for submitted Rx URBs
383 * @urb: the URB that has been completed
385 * This checks the status of the completed URB. In case the URB has been
386 * unlinked before it is immediately freed. On any other error the MBO transfer
387 * flag is set. On success it frees allocated resources, removes
388 * padding bytes -if necessary- and calls the completion function.
390 * Context: interrupt!
392 static void hdm_read_completion(struct urb *urb)
394 struct mbo *mbo = urb->context;
395 struct most_dev *mdev = to_mdev(mbo->ifp);
396 unsigned int channel = mbo->hdm_channel_id;
397 struct device *dev = &mdev->usb_device->dev;
398 spinlock_t *lock = mdev->channel_lock + channel;
399 unsigned long flags;
401 spin_lock_irqsave(lock, flags);
403 mbo->processed_length = 0;
404 mbo->status = MBO_E_INVAL;
405 if (likely(mdev->is_channel_healthy[channel])) {
406 switch (urb->status) {
407 case 0:
408 case -ESHUTDOWN:
409 mbo->processed_length = urb->actual_length;
410 mbo->status = MBO_SUCCESS;
411 if (mdev->padding_active[channel] &&
412 hdm_remove_padding(mdev, channel, mbo)) {
413 mbo->processed_length = 0;
414 mbo->status = MBO_E_INVAL;
416 break;
417 case -EPIPE:
418 dev_warn(dev, "Broken pipe on ep%02x\n",
419 mdev->ep_address[channel]);
420 mdev->is_channel_healthy[channel] = false;
421 mdev->clear_work[channel].pipe = urb->pipe;
422 schedule_work(&mdev->clear_work[channel].ws);
423 break;
424 case -ENODEV:
425 case -EPROTO:
426 mbo->status = MBO_E_CLOSE;
427 break;
428 case -EOVERFLOW:
429 dev_warn(dev, "Babble on ep%02x\n",
430 mdev->ep_address[channel]);
431 break;
435 spin_unlock_irqrestore(lock, flags);
437 if (likely(mbo->complete))
438 mbo->complete(mbo);
439 usb_free_urb(urb);
443 * hdm_enqueue - receive a buffer to be used for data transfer
444 * @iface: interface to enqueue to
445 * @channel: ID of the channel
446 * @mbo: pointer to the buffer object
448 * This allocates a new URB and fills it according to the channel
449 * that is being used for transmission of data. Before the URB is
450 * submitted it is stored in the private anchor list.
452 * Returns 0 on success. On any error the URB is freed and a error code
453 * is returned.
455 * Context: Could in _some_ cases be interrupt!
457 static int hdm_enqueue(struct most_interface *iface, int channel,
458 struct mbo *mbo)
460 struct most_dev *mdev = to_mdev(iface);
461 struct most_channel_config *conf;
462 int retval = 0;
463 struct urb *urb;
464 unsigned long length;
465 void *virt_address;
467 if (!mbo)
468 return -EINVAL;
469 if (iface->num_channels <= channel || channel < 0)
470 return -ECHRNG;
472 urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_KERNEL);
473 if (!urb)
474 return -ENOMEM;
476 conf = &mdev->conf[channel];
478 mutex_lock(&mdev->io_mutex);
479 if (!mdev->usb_device) {
480 retval = -ENODEV;
481 goto err_free_urb;
484 if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] &&
485 hdm_add_padding(mdev, channel, mbo)) {
486 retval = -EINVAL;
487 goto err_free_urb;
490 urb->transfer_dma = mbo->bus_address;
491 virt_address = mbo->virt_address;
492 length = mbo->buffer_length;
494 if (conf->direction & MOST_CH_TX) {
495 usb_fill_bulk_urb(urb, mdev->usb_device,
496 usb_sndbulkpipe(mdev->usb_device,
497 mdev->ep_address[channel]),
498 virt_address,
499 length,
500 hdm_write_completion,
501 mbo);
502 if (conf->data_type != MOST_CH_ISOC &&
503 conf->data_type != MOST_CH_SYNC)
504 urb->transfer_flags |= URB_ZERO_PACKET;
505 } else {
506 usb_fill_bulk_urb(urb, mdev->usb_device,
507 usb_rcvbulkpipe(mdev->usb_device,
508 mdev->ep_address[channel]),
509 virt_address,
510 length + conf->extra_len,
511 hdm_read_completion,
512 mbo);
514 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
516 usb_anchor_urb(urb, &mdev->busy_urbs[channel]);
518 retval = usb_submit_urb(urb, GFP_KERNEL);
519 if (retval) {
520 dev_err(&mdev->usb_device->dev,
521 "URB submit failed with error %d.\n", retval);
522 goto err_unanchor_urb;
524 mutex_unlock(&mdev->io_mutex);
525 return 0;
527 err_unanchor_urb:
528 usb_unanchor_urb(urb);
529 err_free_urb:
530 usb_free_urb(urb);
531 mutex_unlock(&mdev->io_mutex);
532 return retval;
535 static void *hdm_dma_alloc(struct mbo *mbo, u32 size)
537 struct most_dev *mdev = to_mdev(mbo->ifp);
539 return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL,
540 &mbo->bus_address);
543 static void hdm_dma_free(struct mbo *mbo, u32 size)
545 struct most_dev *mdev = to_mdev(mbo->ifp);
547 usb_free_coherent(mdev->usb_device, size, mbo->virt_address,
548 mbo->bus_address);
552 * hdm_configure_channel - receive channel configuration from core
553 * @iface: interface
554 * @channel: channel ID
555 * @conf: structure that holds the configuration information
557 * The attached network interface controller (NIC) supports a padding mode
558 * to avoid short packets on USB, hence increasing the performance due to a
559 * lower interrupt load. This mode is default for synchronous data and can
560 * be switched on for isochronous data. In case padding is active the
561 * driver needs to know the frame size of the payload in order to calculate
562 * the number of bytes it needs to pad when transmitting or to cut off when
563 * receiving data.
566 static int hdm_configure_channel(struct most_interface *iface, int channel,
567 struct most_channel_config *conf)
569 unsigned int num_frames;
570 unsigned int frame_size;
571 struct most_dev *mdev = to_mdev(iface);
572 struct device *dev = &mdev->usb_device->dev;
574 if (!conf) {
575 dev_err(dev, "Bad config pointer.\n");
576 return -EINVAL;
578 if (channel < 0 || channel >= iface->num_channels) {
579 dev_err(dev, "Channel ID out of range.\n");
580 return -EINVAL;
583 mdev->is_channel_healthy[channel] = true;
584 mdev->clear_work[channel].channel = channel;
585 mdev->clear_work[channel].mdev = mdev;
586 INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt);
588 if (!conf->num_buffers || !conf->buffer_size) {
589 dev_err(dev, "Misconfig: buffer size or #buffers zero.\n");
590 return -EINVAL;
593 if (conf->data_type != MOST_CH_SYNC &&
594 !(conf->data_type == MOST_CH_ISOC &&
595 conf->packets_per_xact != 0xFF)) {
596 mdev->padding_active[channel] = false;
598 * Since the NIC's padding mode is not going to be
599 * used, we can skip the frame size calculations and
600 * move directly on to exit.
602 goto exit;
605 mdev->padding_active[channel] = true;
607 frame_size = get_stream_frame_size(&mdev->dev, conf);
608 if (frame_size == 0 || frame_size > USB_MTU) {
609 dev_warn(dev, "Misconfig: frame size wrong\n");
610 return -EINVAL;
613 num_frames = conf->buffer_size / frame_size;
615 if (conf->buffer_size % frame_size) {
616 u16 old_size = conf->buffer_size;
618 conf->buffer_size = num_frames * frame_size;
619 dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n",
620 mdev->suffix[channel], old_size, conf->buffer_size);
623 /* calculate extra length to comply w/ HW padding */
624 conf->extra_len = num_frames * (USB_MTU - frame_size);
626 exit:
627 mdev->conf[channel] = *conf;
628 if (conf->data_type == MOST_CH_ASYNC) {
629 u16 ep = mdev->ep_address[channel];
631 if (start_sync_ep(mdev->usb_device, ep) < 0)
632 dev_warn(dev, "sync for ep%02x failed", ep);
634 return 0;
638 * hdm_request_netinfo - request network information
639 * @iface: pointer to interface
640 * @channel: channel ID
642 * This is used as trigger to set up the link status timer that
643 * polls for the NI state of the INIC every 2 seconds.
646 static void hdm_request_netinfo(struct most_interface *iface, int channel,
647 void (*on_netinfo)(struct most_interface *,
648 unsigned char,
649 unsigned char *))
651 struct most_dev *mdev = to_mdev(iface);
653 mdev->on_netinfo = on_netinfo;
654 if (!on_netinfo)
655 return;
657 mdev->link_stat_timer.expires = jiffies + HZ;
658 mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires);
662 * link_stat_timer_handler - schedule work obtaining mac address and link status
663 * @t: pointer to timer_list which holds a pointer to the USB device instance
665 * The handler runs in interrupt context. That's why we need to defer the
666 * tasks to a work queue.
668 static void link_stat_timer_handler(struct timer_list *t)
670 struct most_dev *mdev = from_timer(mdev, t, link_stat_timer);
672 schedule_work(&mdev->poll_work_obj);
673 mdev->link_stat_timer.expires = jiffies + (2 * HZ);
674 add_timer(&mdev->link_stat_timer);
678 * wq_netinfo - work queue function to deliver latest networking information
679 * @wq_obj: object that holds data for our deferred work to do
681 * This retrieves the network interface status of the USB INIC
683 static void wq_netinfo(struct work_struct *wq_obj)
685 struct most_dev *mdev = to_mdev_from_work(wq_obj);
686 struct usb_device *usb_device = mdev->usb_device;
687 struct device *dev = &usb_device->dev;
688 u16 hi, mi, lo, link;
689 u8 hw_addr[6];
691 if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi)) {
692 dev_err(dev, "Vendor request 'hw_addr_hi' failed\n");
693 return;
696 if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi)) {
697 dev_err(dev, "Vendor request 'hw_addr_mid' failed\n");
698 return;
701 if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo)) {
702 dev_err(dev, "Vendor request 'hw_addr_low' failed\n");
703 return;
706 if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link)) {
707 dev_err(dev, "Vendor request 'link status' failed\n");
708 return;
711 hw_addr[0] = hi >> 8;
712 hw_addr[1] = hi;
713 hw_addr[2] = mi >> 8;
714 hw_addr[3] = mi;
715 hw_addr[4] = lo >> 8;
716 hw_addr[5] = lo;
718 if (mdev->on_netinfo)
719 mdev->on_netinfo(&mdev->iface, link, hw_addr);
723 * wq_clear_halt - work queue function
724 * @wq_obj: work_struct object to execute
726 * This sends a clear_halt to the given USB pipe.
728 static void wq_clear_halt(struct work_struct *wq_obj)
730 struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj);
731 struct most_dev *mdev = clear_work->mdev;
732 unsigned int channel = clear_work->channel;
733 int pipe = clear_work->pipe;
734 int snd_pipe;
735 int peer;
737 mutex_lock(&mdev->io_mutex);
738 most_stop_enqueue(&mdev->iface, channel);
739 usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
740 if (usb_clear_halt(mdev->usb_device, pipe))
741 dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n");
743 /* If the functional Stall condition has been set on an
744 * asynchronous rx channel, we need to clear the tx channel
745 * too, since the hardware runs its clean-up sequence on both
746 * channels, as they are physically one on the network.
748 * The USB interface that exposes the asynchronous channels
749 * contains always two endpoints, and two only.
751 if (mdev->conf[channel].data_type == MOST_CH_ASYNC &&
752 mdev->conf[channel].direction == MOST_CH_RX) {
753 if (channel == 0)
754 peer = 1;
755 else
756 peer = 0;
757 snd_pipe = usb_sndbulkpipe(mdev->usb_device,
758 mdev->ep_address[peer]);
759 usb_clear_halt(mdev->usb_device, snd_pipe);
761 mdev->is_channel_healthy[channel] = true;
762 most_resume_enqueue(&mdev->iface, channel);
763 mutex_unlock(&mdev->io_mutex);
767 * hdm_usb_fops - file operation table for USB driver
769 static const struct file_operations hdm_usb_fops = {
770 .owner = THIS_MODULE,
774 * usb_device_id - ID table for HCD device probing
776 static const struct usb_device_id usbid[] = {
777 { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), },
778 { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), },
779 { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), },
780 { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), },
781 { } /* Terminating entry */
784 struct regs {
785 const char *name;
786 u16 reg;
789 static const struct regs ro_regs[] = {
790 { "ni_state", DRCI_REG_NI_STATE },
791 { "packet_bandwidth", DRCI_REG_PACKET_BW },
792 { "node_address", DRCI_REG_NODE_ADDR },
793 { "node_position", DRCI_REG_NODE_POS },
796 static const struct regs rw_regs[] = {
797 { "mep_filter", DRCI_REG_MEP_FILTER },
798 { "mep_hash0", DRCI_REG_HASH_TBL0 },
799 { "mep_hash1", DRCI_REG_HASH_TBL1 },
800 { "mep_hash2", DRCI_REG_HASH_TBL2 },
801 { "mep_hash3", DRCI_REG_HASH_TBL3 },
802 { "mep_eui48_hi", DRCI_REG_HW_ADDR_HI },
803 { "mep_eui48_mi", DRCI_REG_HW_ADDR_MI },
804 { "mep_eui48_lo", DRCI_REG_HW_ADDR_LO },
807 static int get_stat_reg_addr(const struct regs *regs, int size,
808 const char *name, u16 *reg_addr)
810 int i;
812 for (i = 0; i < size; i++) {
813 if (sysfs_streq(name, regs[i].name)) {
814 *reg_addr = regs[i].reg;
815 return 0;
818 return -EINVAL;
821 #define get_static_reg_addr(regs, name, reg_addr) \
822 get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr)
824 static ssize_t value_show(struct device *dev, struct device_attribute *attr,
825 char *buf)
827 const char *name = attr->attr.name;
828 struct most_dci_obj *dci_obj = to_dci_obj(dev);
829 u16 val;
830 u16 reg_addr;
831 int err;
833 if (sysfs_streq(name, "arb_address"))
834 return sysfs_emit(buf, "%04x\n", dci_obj->reg_addr);
836 if (sysfs_streq(name, "arb_value"))
837 reg_addr = dci_obj->reg_addr;
838 else if (get_static_reg_addr(ro_regs, name, &reg_addr) &&
839 get_static_reg_addr(rw_regs, name, &reg_addr))
840 return -EINVAL;
842 err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val);
843 if (err < 0)
844 return err;
846 return sysfs_emit(buf, "%04x\n", val);
849 static ssize_t value_store(struct device *dev, struct device_attribute *attr,
850 const char *buf, size_t count)
852 u16 val;
853 u16 reg_addr;
854 const char *name = attr->attr.name;
855 struct most_dci_obj *dci_obj = to_dci_obj(dev);
856 struct usb_device *usb_dev = dci_obj->usb_device;
857 int err;
859 err = kstrtou16(buf, 16, &val);
860 if (err)
861 return err;
863 if (sysfs_streq(name, "arb_address")) {
864 dci_obj->reg_addr = val;
865 return count;
868 if (sysfs_streq(name, "arb_value"))
869 err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val);
870 else if (sysfs_streq(name, "sync_ep"))
871 err = start_sync_ep(usb_dev, val);
872 else if (!get_static_reg_addr(rw_regs, name, &reg_addr))
873 err = drci_wr_reg(usb_dev, reg_addr, val);
874 else
875 return -EINVAL;
877 if (err < 0)
878 return err;
880 return count;
883 static DEVICE_ATTR(ni_state, 0444, value_show, NULL);
884 static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL);
885 static DEVICE_ATTR(node_address, 0444, value_show, NULL);
886 static DEVICE_ATTR(node_position, 0444, value_show, NULL);
887 static DEVICE_ATTR(sync_ep, 0200, NULL, value_store);
888 static DEVICE_ATTR(mep_filter, 0644, value_show, value_store);
889 static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store);
890 static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store);
891 static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store);
892 static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store);
893 static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store);
894 static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store);
895 static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store);
896 static DEVICE_ATTR(arb_address, 0644, value_show, value_store);
897 static DEVICE_ATTR(arb_value, 0644, value_show, value_store);
899 static struct attribute *dci_attrs[] = {
900 &dev_attr_ni_state.attr,
901 &dev_attr_packet_bandwidth.attr,
902 &dev_attr_node_address.attr,
903 &dev_attr_node_position.attr,
904 &dev_attr_sync_ep.attr,
905 &dev_attr_mep_filter.attr,
906 &dev_attr_mep_hash0.attr,
907 &dev_attr_mep_hash1.attr,
908 &dev_attr_mep_hash2.attr,
909 &dev_attr_mep_hash3.attr,
910 &dev_attr_mep_eui48_hi.attr,
911 &dev_attr_mep_eui48_mi.attr,
912 &dev_attr_mep_eui48_lo.attr,
913 &dev_attr_arb_address.attr,
914 &dev_attr_arb_value.attr,
915 NULL,
918 ATTRIBUTE_GROUPS(dci);
920 static void release_dci(struct device *dev)
922 struct most_dci_obj *dci = to_dci_obj(dev);
924 put_device(dev->parent);
925 kfree(dci);
928 static void release_mdev(struct device *dev)
930 struct most_dev *mdev = to_mdev_from_dev(dev);
932 kfree(mdev);
935 * hdm_probe - probe function of USB device driver
936 * @interface: Interface of the attached USB device
937 * @id: Pointer to the USB ID table.
939 * This allocates and initializes the device instance, adds the new
940 * entry to the internal list, scans the USB descriptors and registers
941 * the interface with the core.
942 * Additionally, the DCI objects are created and the hardware is sync'd.
944 * Return 0 on success. In case of an error a negative number is returned.
946 static int
947 hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
949 struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
950 struct usb_device *usb_dev = interface_to_usbdev(interface);
951 struct device *dev = &usb_dev->dev;
952 struct most_dev *mdev;
953 unsigned int i;
954 unsigned int num_endpoints;
955 struct most_channel_capability *tmp_cap;
956 struct usb_endpoint_descriptor *ep_desc;
957 int ret = -ENOMEM;
959 mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
960 if (!mdev)
961 return -ENOMEM;
963 usb_set_intfdata(interface, mdev);
964 num_endpoints = usb_iface_desc->desc.bNumEndpoints;
965 if (num_endpoints > MAX_NUM_ENDPOINTS) {
966 kfree(mdev);
967 return -EINVAL;
969 mutex_init(&mdev->io_mutex);
970 INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
971 timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0);
973 mdev->usb_device = usb_dev;
974 mdev->link_stat_timer.expires = jiffies + (2 * HZ);
976 mdev->iface.mod = hdm_usb_fops.owner;
977 mdev->iface.dev = &mdev->dev;
978 mdev->iface.driver_dev = &interface->dev;
979 mdev->iface.interface = ITYPE_USB;
980 mdev->iface.configure = hdm_configure_channel;
981 mdev->iface.request_netinfo = hdm_request_netinfo;
982 mdev->iface.enqueue = hdm_enqueue;
983 mdev->iface.poison_channel = hdm_poison_channel;
984 mdev->iface.dma_alloc = hdm_dma_alloc;
985 mdev->iface.dma_free = hdm_dma_free;
986 mdev->iface.description = mdev->description;
987 mdev->iface.num_channels = num_endpoints;
989 snprintf(mdev->description, sizeof(mdev->description),
990 "%d-%s:%d.%d",
991 usb_dev->bus->busnum,
992 usb_dev->devpath,
993 usb_dev->config->desc.bConfigurationValue,
994 usb_iface_desc->desc.bInterfaceNumber);
996 mdev->dev.init_name = mdev->description;
997 mdev->dev.parent = &interface->dev;
998 mdev->dev.release = release_mdev;
999 mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
1000 if (!mdev->conf)
1001 goto err_free_mdev;
1003 mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
1004 if (!mdev->cap)
1005 goto err_free_conf;
1007 mdev->iface.channel_vector = mdev->cap;
1008 mdev->ep_address =
1009 kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
1010 if (!mdev->ep_address)
1011 goto err_free_cap;
1013 mdev->busy_urbs =
1014 kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
1015 if (!mdev->busy_urbs)
1016 goto err_free_ep_address;
1018 tmp_cap = mdev->cap;
1019 for (i = 0; i < num_endpoints; i++) {
1020 ep_desc = &usb_iface_desc->endpoint[i].desc;
1021 mdev->ep_address[i] = ep_desc->bEndpointAddress;
1022 mdev->padding_active[i] = false;
1023 mdev->is_channel_healthy[i] = true;
1025 snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
1026 mdev->ep_address[i]);
1028 tmp_cap->name_suffix = &mdev->suffix[i][0];
1029 tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
1030 tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
1031 tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
1032 tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
1033 tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
1034 MOST_CH_ISOC | MOST_CH_SYNC;
1035 if (usb_endpoint_dir_in(ep_desc))
1036 tmp_cap->direction = MOST_CH_RX;
1037 else
1038 tmp_cap->direction = MOST_CH_TX;
1039 tmp_cap++;
1040 init_usb_anchor(&mdev->busy_urbs[i]);
1041 spin_lock_init(&mdev->channel_lock[i]);
1043 dev_dbg(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
1044 le16_to_cpu(usb_dev->descriptor.idVendor),
1045 le16_to_cpu(usb_dev->descriptor.idProduct),
1046 usb_dev->bus->busnum,
1047 usb_dev->devnum);
1049 dev_dbg(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
1050 usb_dev->bus->busnum,
1051 usb_dev->devpath,
1052 usb_dev->config->desc.bConfigurationValue,
1053 usb_iface_desc->desc.bInterfaceNumber);
1055 ret = most_register_interface(&mdev->iface);
1056 if (ret)
1057 goto err_free_busy_urbs;
1059 mutex_lock(&mdev->io_mutex);
1060 if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
1061 le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
1062 le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
1063 mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL);
1064 if (!mdev->dci) {
1065 mutex_unlock(&mdev->io_mutex);
1066 most_deregister_interface(&mdev->iface);
1067 ret = -ENOMEM;
1068 goto err_free_busy_urbs;
1071 mdev->dci->dev.init_name = "dci";
1072 mdev->dci->dev.parent = get_device(mdev->iface.dev);
1073 mdev->dci->dev.groups = dci_groups;
1074 mdev->dci->dev.release = release_dci;
1075 if (device_register(&mdev->dci->dev)) {
1076 mutex_unlock(&mdev->io_mutex);
1077 most_deregister_interface(&mdev->iface);
1078 ret = -ENOMEM;
1079 goto err_free_dci;
1081 mdev->dci->usb_device = mdev->usb_device;
1083 mutex_unlock(&mdev->io_mutex);
1084 return 0;
1085 err_free_dci:
1086 put_device(&mdev->dci->dev);
1087 err_free_busy_urbs:
1088 kfree(mdev->busy_urbs);
1089 err_free_ep_address:
1090 kfree(mdev->ep_address);
1091 err_free_cap:
1092 kfree(mdev->cap);
1093 err_free_conf:
1094 kfree(mdev->conf);
1095 err_free_mdev:
1096 put_device(&mdev->dev);
1097 return ret;
1101 * hdm_disconnect - disconnect function of USB device driver
1102 * @interface: Interface of the attached USB device
1104 * This deregisters the interface with the core, removes the kernel timer
1105 * and frees resources.
1107 * Context: hub kernel thread
1109 static void hdm_disconnect(struct usb_interface *interface)
1111 struct most_dev *mdev = usb_get_intfdata(interface);
1113 mutex_lock(&mdev->io_mutex);
1114 usb_set_intfdata(interface, NULL);
1115 mdev->usb_device = NULL;
1116 mutex_unlock(&mdev->io_mutex);
1118 del_timer_sync(&mdev->link_stat_timer);
1119 cancel_work_sync(&mdev->poll_work_obj);
1121 if (mdev->dci)
1122 device_unregister(&mdev->dci->dev);
1123 most_deregister_interface(&mdev->iface);
1125 kfree(mdev->busy_urbs);
1126 kfree(mdev->cap);
1127 kfree(mdev->conf);
1128 kfree(mdev->ep_address);
1129 put_device(&mdev->dci->dev);
1130 put_device(&mdev->dev);
1133 static int hdm_suspend(struct usb_interface *interface, pm_message_t message)
1135 struct most_dev *mdev = usb_get_intfdata(interface);
1136 int i;
1138 mutex_lock(&mdev->io_mutex);
1139 for (i = 0; i < mdev->iface.num_channels; i++) {
1140 most_stop_enqueue(&mdev->iface, i);
1141 usb_kill_anchored_urbs(&mdev->busy_urbs[i]);
1143 mutex_unlock(&mdev->io_mutex);
1144 return 0;
1147 static int hdm_resume(struct usb_interface *interface)
1149 struct most_dev *mdev = usb_get_intfdata(interface);
1150 int i;
1152 mutex_lock(&mdev->io_mutex);
1153 for (i = 0; i < mdev->iface.num_channels; i++)
1154 most_resume_enqueue(&mdev->iface, i);
1155 mutex_unlock(&mdev->io_mutex);
1156 return 0;
1159 static struct usb_driver hdm_usb = {
1160 .name = "hdm_usb",
1161 .id_table = usbid,
1162 .probe = hdm_probe,
1163 .disconnect = hdm_disconnect,
1164 .resume = hdm_resume,
1165 .suspend = hdm_suspend,
1168 module_usb_driver(hdm_usb);
1169 MODULE_LICENSE("GPL");
1170 MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1171 MODULE_DESCRIPTION("HDM_4_USB");