1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (c) International Business Machines Corp., 2006
4 * Copyright (c) Nokia Corporation, 2006, 2007
6 * Author: Artem Bityutskiy (Битюцкий Артём)
10 * UBI input/output sub-system.
12 * This sub-system provides a uniform way to work with all kinds of the
13 * underlying MTD devices. It also implements handy functions for reading and
14 * writing UBI headers.
16 * We are trying to have a paranoid mindset and not to trust to what we read
17 * from the flash media in order to be more secure and robust. So this
18 * sub-system validates every single header it reads from the flash media.
20 * Some words about how the eraseblock headers are stored.
22 * The erase counter header is always stored at offset zero. By default, the
23 * VID header is stored after the EC header at the closest aligned offset
24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
25 * header at the closest aligned offset. But this default layout may be
26 * changed. For example, for different reasons (e.g., optimization) UBI may be
27 * asked to put the VID header at further offset, and even at an unaligned
28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
29 * proper padding in front of it. Data offset may also be changed but it has to
32 * About minimal I/O units. In general, UBI assumes flash device model where
33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
35 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
37 * to do different optimizations.
39 * This is extremely useful in case of NAND flashes which admit of several
40 * write operations to one NAND page. In this case UBI can fit EC and VID
41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
51 * device, e.g., make @ubi->min_io_size = 512 in the example above?
53 * A: because when writing a sub-page, MTD still writes a full 2K page but the
54 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
56 * Thus, we prefer to use sub-pages only for EC and VID headers.
58 * As it was noted above, the VID header may start at a non-aligned offset.
59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
60 * the VID header may reside at offset 1984 which is the last 64 bytes of the
61 * last sub-page (EC header is always at offset zero). This causes some
62 * difficulties when reading and writing VID headers.
64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
65 * the data and want to write this VID header out. As we can only write in
66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
67 * to offset 448 of this buffer.
69 * The I/O sub-system does the following trick in order to avoid this extra
70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
72 * When the VID header is being written out, it shifts the VID header pointer
73 * back and writes the whole sub-page.
76 #include <linux/crc32.h>
77 #include <linux/err.h>
78 #include <linux/slab.h>
81 static int self_check_not_bad(const struct ubi_device
*ubi
, int pnum
);
82 static int self_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
);
83 static int self_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
84 const struct ubi_ec_hdr
*ec_hdr
);
85 static int self_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
);
86 static int self_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
87 const struct ubi_vid_hdr
*vid_hdr
);
88 static int self_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
92 * ubi_io_read - read data from a physical eraseblock.
93 * @ubi: UBI device description object
94 * @buf: buffer where to store the read data
95 * @pnum: physical eraseblock number to read from
96 * @offset: offset within the physical eraseblock from where to read
97 * @len: how many bytes to read
99 * This function reads data from offset @offset of physical eraseblock @pnum
100 * and stores the read data in the @buf buffer. The following return codes are
103 * o %0 if all the requested data were successfully read;
104 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
105 * correctable bit-flips were detected; this is harmless but may indicate
106 * that this eraseblock may become bad soon (but do not have to);
107 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
108 * example it can be an ECC error in case of NAND; this most probably means
109 * that the data is corrupted;
110 * o %-EIO if some I/O error occurred;
111 * o other negative error codes in case of other errors.
113 int ubi_io_read(const struct ubi_device
*ubi
, void *buf
, int pnum
, int offset
,
116 int err
, retries
= 0;
120 dbg_io("read %d bytes from PEB %d:%d", len
, pnum
, offset
);
122 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
123 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
126 err
= self_check_not_bad(ubi
, pnum
);
131 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
132 * do not do this, the following may happen:
133 * 1. The buffer contains data from previous operation, e.g., read from
134 * another PEB previously. The data looks like expected, e.g., if we
135 * just do not read anything and return - the caller would not
136 * notice this. E.g., if we are reading a VID header, the buffer may
137 * contain a valid VID header from another PEB.
138 * 2. The driver is buggy and returns us success or -EBADMSG or
139 * -EUCLEAN, but it does not actually put any data to the buffer.
141 * This may confuse UBI or upper layers - they may think the buffer
142 * contains valid data while in fact it is just old data. This is
143 * especially possible because UBI (and UBIFS) relies on CRC, and
144 * treats data as correct even in case of ECC errors if the CRC is
147 * Try to prevent this situation by changing the first byte of the
150 *((uint8_t *)buf
) ^= 0xFF;
152 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
154 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf
);
156 const char *errstr
= mtd_is_eccerr(err
) ? " (ECC error)" : "";
158 if (mtd_is_bitflip(err
)) {
160 * -EUCLEAN is reported if there was a bit-flip which
161 * was corrected, so this is harmless.
163 * We do not report about it here unless debugging is
164 * enabled. A corresponding message will be printed
165 * later, when it is has been scrubbed.
167 ubi_msg(ubi
, "fixable bit-flip detected at PEB %d",
169 ubi_assert(len
== read
);
170 return UBI_IO_BITFLIPS
;
173 if (retries
++ < UBI_IO_RETRIES
) {
174 ubi_warn(ubi
, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
175 err
, errstr
, len
, pnum
, offset
, read
);
180 ubi_err(ubi
, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
181 err
, errstr
, len
, pnum
, offset
, read
);
185 * The driver should never return -EBADMSG if it failed to read
186 * all the requested data. But some buggy drivers might do
187 * this, so we change it to -EIO.
189 if (read
!= len
&& mtd_is_eccerr(err
)) {
194 ubi_assert(len
== read
);
196 if (ubi_dbg_is_bitflip(ubi
)) {
197 dbg_gen("bit-flip (emulated)");
198 return UBI_IO_BITFLIPS
;
201 if (ubi_dbg_is_read_failure(ubi
, MASK_READ_FAILURE
)) {
202 ubi_warn(ubi
, "cannot read %d bytes from PEB %d:%d (emulated)",
207 if (ubi_dbg_is_eccerr(ubi
)) {
208 ubi_warn(ubi
, "ECC error (emulated) while reading %d bytes from PEB %d:%d, read %zd bytes",
209 len
, pnum
, offset
, read
);
218 * ubi_io_write - write data to a physical eraseblock.
219 * @ubi: UBI device description object
220 * @buf: buffer with the data to write
221 * @pnum: physical eraseblock number to write to
222 * @offset: offset within the physical eraseblock where to write
223 * @len: how many bytes to write
225 * This function writes @len bytes of data from buffer @buf to offset @offset
226 * of physical eraseblock @pnum. If all the data were successfully written,
227 * zero is returned. If an error occurred, this function returns a negative
228 * error code. If %-EIO is returned, the physical eraseblock most probably went
231 * Note, in case of an error, it is possible that something was still written
232 * to the flash media, but may be some garbage.
234 int ubi_io_write(struct ubi_device
*ubi
, const void *buf
, int pnum
, int offset
,
241 dbg_io("write %d bytes to PEB %d:%d", len
, pnum
, offset
);
243 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
244 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
245 ubi_assert(offset
% ubi
->hdrs_min_io_size
== 0);
246 ubi_assert(len
> 0 && len
% ubi
->hdrs_min_io_size
== 0);
249 ubi_err(ubi
, "read-only mode");
253 err
= self_check_not_bad(ubi
, pnum
);
257 /* The area we are writing to has to contain all 0xFF bytes */
258 err
= ubi_self_check_all_ff(ubi
, pnum
, offset
, len
);
262 if (offset
>= ubi
->leb_start
) {
264 * We write to the data area of the physical eraseblock. Make
265 * sure it has valid EC and VID headers.
267 err
= self_check_peb_ec_hdr(ubi
, pnum
);
270 err
= self_check_peb_vid_hdr(ubi
, pnum
);
275 if (ubi_dbg_is_write_failure(ubi
)) {
276 ubi_err(ubi
, "cannot write %d bytes to PEB %d:%d (emulated)",
282 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
283 err
= mtd_write(ubi
->mtd
, addr
, len
, &written
, buf
);
285 ubi_err(ubi
, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
286 err
, len
, pnum
, offset
, written
);
288 ubi_dump_flash(ubi
, pnum
, offset
, len
);
290 ubi_assert(written
== len
);
293 err
= self_check_write(ubi
, buf
, pnum
, offset
, len
);
298 * Since we always write sequentially, the rest of the PEB has
299 * to contain only 0xFF bytes.
302 len
= ubi
->peb_size
- offset
;
304 err
= ubi_self_check_all_ff(ubi
, pnum
, offset
, len
);
311 * do_sync_erase - synchronously erase a physical eraseblock.
312 * @ubi: UBI device description object
313 * @pnum: the physical eraseblock number to erase
315 * This function synchronously erases physical eraseblock @pnum and returns
316 * zero in case of success and a negative error code in case of failure. If
317 * %-EIO is returned, the physical eraseblock most probably went bad.
319 static int do_sync_erase(struct ubi_device
*ubi
, int pnum
)
321 int err
, retries
= 0;
322 struct erase_info ei
;
324 dbg_io("erase PEB %d", pnum
);
325 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
328 ubi_err(ubi
, "read-only mode");
333 memset(&ei
, 0, sizeof(struct erase_info
));
335 ei
.addr
= (loff_t
)pnum
* ubi
->peb_size
;
336 ei
.len
= ubi
->peb_size
;
338 err
= mtd_erase(ubi
->mtd
, &ei
);
340 if (retries
++ < UBI_IO_RETRIES
) {
341 ubi_warn(ubi
, "error %d while erasing PEB %d, retry",
346 ubi_err(ubi
, "cannot erase PEB %d, error %d", pnum
, err
);
351 err
= ubi_self_check_all_ff(ubi
, pnum
, 0, ubi
->peb_size
);
355 if (ubi_dbg_is_erase_failure(ubi
)) {
356 ubi_err(ubi
, "cannot erase PEB %d (emulated)", pnum
);
363 /* Patterns to write to a physical eraseblock when torturing it */
364 static uint8_t patterns
[] = {0xa5, 0x5a, 0x0};
367 * torture_peb - test a supposedly bad physical eraseblock.
368 * @ubi: UBI device description object
369 * @pnum: the physical eraseblock number to test
371 * This function returns %-EIO if the physical eraseblock did not pass the
372 * test, a positive number of erase operations done if the test was
373 * successfully passed, and other negative error codes in case of other errors.
375 static int torture_peb(struct ubi_device
*ubi
, int pnum
)
377 int err
, i
, patt_count
;
379 ubi_msg(ubi
, "run torture test for PEB %d", pnum
);
380 patt_count
= ARRAY_SIZE(patterns
);
381 ubi_assert(patt_count
> 0);
383 mutex_lock(&ubi
->buf_mutex
);
384 for (i
= 0; i
< patt_count
; i
++) {
385 err
= do_sync_erase(ubi
, pnum
);
389 /* Make sure the PEB contains only 0xFF bytes */
390 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
394 err
= ubi_check_pattern(ubi
->peb_buf
, 0xFF, ubi
->peb_size
);
396 ubi_err(ubi
, "erased PEB %d, but a non-0xFF byte found",
402 /* Write a pattern and check it */
403 memset(ubi
->peb_buf
, patterns
[i
], ubi
->peb_size
);
404 err
= ubi_io_write(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
408 memset(ubi
->peb_buf
, ~patterns
[i
], ubi
->peb_size
);
409 err
= ubi_io_read(ubi
, ubi
->peb_buf
, pnum
, 0, ubi
->peb_size
);
413 err
= ubi_check_pattern(ubi
->peb_buf
, patterns
[i
],
416 ubi_err(ubi
, "pattern %x checking failed for PEB %d",
424 ubi_msg(ubi
, "PEB %d passed torture test, do not mark it as bad", pnum
);
427 mutex_unlock(&ubi
->buf_mutex
);
428 if (err
== UBI_IO_BITFLIPS
|| mtd_is_eccerr(err
)) {
430 * If a bit-flip or data integrity error was detected, the test
431 * has not passed because it happened on a freshly erased
432 * physical eraseblock which means something is wrong with it.
434 ubi_err(ubi
, "read problems on freshly erased PEB %d, must be bad",
442 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
443 * @ubi: UBI device description object
444 * @pnum: physical eraseblock number to prepare
446 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
447 * algorithm: the PEB is first filled with zeroes, then it is erased. And
448 * filling with zeroes starts from the end of the PEB. This was observed with
449 * Spansion S29GL512N NOR flash.
451 * This means that in case of a power cut we may end up with intact data at the
452 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
453 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
454 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
455 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
457 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
458 * magic numbers in order to invalidate them and prevent the failures. Returns
459 * zero in case of success and a negative error code in case of failure.
461 static int nor_erase_prepare(struct ubi_device
*ubi
, int pnum
)
467 struct ubi_ec_hdr ec_hdr
;
468 struct ubi_vid_io_buf vidb
;
471 * Note, we cannot generally define VID header buffers on stack,
472 * because of the way we deal with these buffers (see the header
473 * comment in this file). But we know this is a NOR-specific piece of
474 * code, so we can do this. But yes, this is error-prone and we should
475 * (pre-)allocate VID header buffer instead.
477 struct ubi_vid_hdr vid_hdr
;
480 * If VID or EC is valid, we have to corrupt them before erasing.
481 * It is important to first invalidate the EC header, and then the VID
482 * header. Otherwise a power cut may lead to valid EC header and
483 * invalid VID header, in which case UBI will treat this PEB as
484 * corrupted and will try to preserve it, and print scary warnings.
486 addr
= (loff_t
)pnum
* ubi
->peb_size
;
487 err
= ubi_io_read_ec_hdr(ubi
, pnum
, &ec_hdr
, 0);
488 if (err
!= UBI_IO_BAD_HDR_EBADMSG
&& err
!= UBI_IO_BAD_HDR
&&
490 err
= mtd_write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
495 ubi_init_vid_buf(ubi
, &vidb
, &vid_hdr
);
496 ubi_assert(&vid_hdr
== ubi_get_vid_hdr(&vidb
));
498 err
= ubi_io_read_vid_hdr(ubi
, pnum
, &vidb
, 0);
499 if (err
!= UBI_IO_BAD_HDR_EBADMSG
&& err
!= UBI_IO_BAD_HDR
&&
501 addr
+= ubi
->vid_hdr_aloffset
;
502 err
= mtd_write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
510 * The PEB contains a valid VID or EC header, but we cannot invalidate
511 * it. Supposedly the flash media or the driver is screwed up, so
514 ubi_err(ubi
, "cannot invalidate PEB %d, write returned %d", pnum
, err
);
515 ubi_dump_flash(ubi
, pnum
, 0, ubi
->peb_size
);
520 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
521 * @ubi: UBI device description object
522 * @pnum: physical eraseblock number to erase
523 * @torture: if this physical eraseblock has to be tortured
525 * This function synchronously erases physical eraseblock @pnum. If @torture
526 * flag is not zero, the physical eraseblock is checked by means of writing
527 * different patterns to it and reading them back. If the torturing is enabled,
528 * the physical eraseblock is erased more than once.
530 * This function returns the number of erasures made in case of success, %-EIO
531 * if the erasure failed or the torturing test failed, and other negative error
532 * codes in case of other errors. Note, %-EIO means that the physical
535 int ubi_io_sync_erase(struct ubi_device
*ubi
, int pnum
, int torture
)
539 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
541 err
= self_check_not_bad(ubi
, pnum
);
546 ubi_err(ubi
, "read-only mode");
551 * If the flash is ECC-ed then we have to erase the ECC block before we
552 * can write to it. But the write is in preparation to an erase in the
553 * first place. This means we cannot zero out EC and VID before the
554 * erase and we just have to hope the flash starts erasing from the
557 if (ubi
->nor_flash
&& ubi
->mtd
->writesize
== 1) {
558 err
= nor_erase_prepare(ubi
, pnum
);
564 ret
= torture_peb(ubi
, pnum
);
569 err
= do_sync_erase(ubi
, pnum
);
577 * ubi_io_is_bad - check if a physical eraseblock is bad.
578 * @ubi: UBI device description object
579 * @pnum: the physical eraseblock number to check
581 * This function returns a positive number if the physical eraseblock is bad,
582 * zero if not, and a negative error code if an error occurred.
584 int ubi_io_is_bad(const struct ubi_device
*ubi
, int pnum
)
586 struct mtd_info
*mtd
= ubi
->mtd
;
588 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
590 if (ubi
->bad_allowed
) {
593 ret
= mtd_block_isbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
595 ubi_err(ubi
, "error %d while checking if PEB %d is bad",
598 dbg_io("PEB %d is bad", pnum
);
606 * ubi_io_mark_bad - mark a physical eraseblock as bad.
607 * @ubi: UBI device description object
608 * @pnum: the physical eraseblock number to mark
610 * This function returns zero in case of success and a negative error code in
613 int ubi_io_mark_bad(const struct ubi_device
*ubi
, int pnum
)
616 struct mtd_info
*mtd
= ubi
->mtd
;
618 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
621 ubi_err(ubi
, "read-only mode");
625 if (!ubi
->bad_allowed
)
628 err
= mtd_block_markbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
630 ubi_err(ubi
, "cannot mark PEB %d bad, error %d", pnum
, err
);
635 * validate_ec_hdr - validate an erase counter header.
636 * @ubi: UBI device description object
637 * @ec_hdr: the erase counter header to check
639 * This function returns zero if the erase counter header is OK, and %1 if
642 static int validate_ec_hdr(const struct ubi_device
*ubi
,
643 const struct ubi_ec_hdr
*ec_hdr
)
646 int vid_hdr_offset
, leb_start
;
648 ec
= be64_to_cpu(ec_hdr
->ec
);
649 vid_hdr_offset
= be32_to_cpu(ec_hdr
->vid_hdr_offset
);
650 leb_start
= be32_to_cpu(ec_hdr
->data_offset
);
652 if (ec_hdr
->version
!= UBI_VERSION
) {
653 ubi_err(ubi
, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
654 UBI_VERSION
, (int)ec_hdr
->version
);
658 if (vid_hdr_offset
!= ubi
->vid_hdr_offset
) {
659 ubi_err(ubi
, "bad VID header offset %d, expected %d",
660 vid_hdr_offset
, ubi
->vid_hdr_offset
);
664 if (leb_start
!= ubi
->leb_start
) {
665 ubi_err(ubi
, "bad data offset %d, expected %d",
666 leb_start
, ubi
->leb_start
);
670 if (ec
< 0 || ec
> UBI_MAX_ERASECOUNTER
) {
671 ubi_err(ubi
, "bad erase counter %lld", ec
);
678 ubi_err(ubi
, "bad EC header");
679 ubi_dump_ec_hdr(ec_hdr
);
685 * ubi_io_read_ec_hdr - read and check an erase counter header.
686 * @ubi: UBI device description object
687 * @pnum: physical eraseblock to read from
688 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
690 * @verbose: be verbose if the header is corrupted or was not found
692 * This function reads erase counter header from physical eraseblock @pnum and
693 * stores it in @ec_hdr. This function also checks CRC checksum of the read
694 * erase counter header. The following codes may be returned:
696 * o %0 if the CRC checksum is correct and the header was successfully read;
697 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
698 * and corrected by the flash driver; this is harmless but may indicate that
699 * this eraseblock may become bad soon (but may be not);
700 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
701 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
702 * a data integrity error (uncorrectable ECC error in case of NAND);
703 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
704 * o a negative error code in case of failure.
706 int ubi_io_read_ec_hdr(struct ubi_device
*ubi
, int pnum
,
707 struct ubi_ec_hdr
*ec_hdr
, int verbose
)
710 uint32_t crc
, magic
, hdr_crc
;
712 dbg_io("read EC header from PEB %d", pnum
);
713 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
715 read_err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
717 if (read_err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(read_err
))
721 * We read all the data, but either a correctable bit-flip
722 * occurred, or MTD reported a data integrity error
723 * (uncorrectable ECC error in case of NAND). The former is
724 * harmless, the later may mean that the read data is
725 * corrupted. But we have a CRC check-sum and we will detect
726 * this. If the EC header is still OK, we just report this as
727 * there was a bit-flip, to force scrubbing.
731 magic
= be32_to_cpu(ec_hdr
->magic
);
732 if (magic
!= UBI_EC_HDR_MAGIC
) {
733 if (mtd_is_eccerr(read_err
))
734 return UBI_IO_BAD_HDR_EBADMSG
;
737 * The magic field is wrong. Let's check if we have read all
738 * 0xFF. If yes, this physical eraseblock is assumed to be
741 if (ubi_check_pattern(ec_hdr
, 0xFF, UBI_EC_HDR_SIZE
)) {
742 /* The physical eraseblock is supposedly empty */
744 ubi_warn(ubi
, "no EC header found at PEB %d, only 0xFF bytes",
746 dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
751 return UBI_IO_FF_BITFLIPS
;
755 * This is not a valid erase counter header, and these are not
756 * 0xFF bytes. Report that the header is corrupted.
759 ubi_warn(ubi
, "bad magic number at PEB %d: %08x instead of %08x",
760 pnum
, magic
, UBI_EC_HDR_MAGIC
);
761 ubi_dump_ec_hdr(ec_hdr
);
763 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
764 pnum
, magic
, UBI_EC_HDR_MAGIC
);
765 return UBI_IO_BAD_HDR
;
768 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
769 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
771 if (hdr_crc
!= crc
) {
773 ubi_warn(ubi
, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
775 ubi_dump_ec_hdr(ec_hdr
);
777 dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
781 return UBI_IO_BAD_HDR
;
783 return UBI_IO_BAD_HDR_EBADMSG
;
786 /* And of course validate what has just been read from the media */
787 err
= validate_ec_hdr(ubi
, ec_hdr
);
789 ubi_err(ubi
, "validation failed for PEB %d", pnum
);
794 * If there was %-EBADMSG, but the header CRC is still OK, report about
795 * a bit-flip to force scrubbing on this PEB.
798 return UBI_IO_BITFLIPS
;
800 if (ubi_dbg_is_read_failure(ubi
, MASK_READ_FAILURE_EC
)) {
801 ubi_warn(ubi
, "cannot read EC header from PEB %d (emulated)",
806 if (ubi_dbg_is_ff(ubi
, MASK_IO_FF_EC
)) {
807 ubi_warn(ubi
, "bit-all-ff (emulated)");
811 if (ubi_dbg_is_ff_bitflips(ubi
, MASK_IO_FF_BITFLIPS_EC
)) {
812 ubi_warn(ubi
, "bit-all-ff with error reported by MTD driver (emulated)");
813 return UBI_IO_FF_BITFLIPS
;
816 if (ubi_dbg_is_bad_hdr(ubi
, MASK_BAD_HDR_EC
)) {
817 ubi_warn(ubi
, "bad_hdr (emulated)");
818 return UBI_IO_BAD_HDR
;
821 if (ubi_dbg_is_bad_hdr_ebadmsg(ubi
, MASK_BAD_HDR_EBADMSG_EC
)) {
822 ubi_warn(ubi
, "bad_hdr with ECC error (emulated)");
823 return UBI_IO_BAD_HDR_EBADMSG
;
830 * ubi_io_write_ec_hdr - write an erase counter header.
831 * @ubi: UBI device description object
832 * @pnum: physical eraseblock to write to
833 * @ec_hdr: the erase counter header to write
835 * This function writes erase counter header described by @ec_hdr to physical
836 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
837 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
840 * This function returns zero in case of success and a negative error code in
841 * case of failure. If %-EIO is returned, the physical eraseblock most probably
844 int ubi_io_write_ec_hdr(struct ubi_device
*ubi
, int pnum
,
845 struct ubi_ec_hdr
*ec_hdr
)
850 dbg_io("write EC header to PEB %d", pnum
);
851 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
853 ec_hdr
->magic
= cpu_to_be32(UBI_EC_HDR_MAGIC
);
854 ec_hdr
->version
= UBI_VERSION
;
855 ec_hdr
->vid_hdr_offset
= cpu_to_be32(ubi
->vid_hdr_offset
);
856 ec_hdr
->data_offset
= cpu_to_be32(ubi
->leb_start
);
857 ec_hdr
->image_seq
= cpu_to_be32(ubi
->image_seq
);
858 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
859 ec_hdr
->hdr_crc
= cpu_to_be32(crc
);
861 err
= self_check_ec_hdr(ubi
, pnum
, ec_hdr
);
865 if (ubi_dbg_is_power_cut(ubi
, MASK_POWER_CUT_EC
)) {
866 ubi_warn(ubi
, "emulating a power cut when writing EC header");
871 err
= ubi_io_write(ubi
, ec_hdr
, pnum
, 0, ubi
->ec_hdr_alsize
);
876 * validate_vid_hdr - validate a volume identifier header.
877 * @ubi: UBI device description object
878 * @vid_hdr: the volume identifier header to check
880 * This function checks that data stored in the volume identifier header
881 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
883 static int validate_vid_hdr(const struct ubi_device
*ubi
,
884 const struct ubi_vid_hdr
*vid_hdr
)
886 int vol_type
= vid_hdr
->vol_type
;
887 int copy_flag
= vid_hdr
->copy_flag
;
888 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
889 int lnum
= be32_to_cpu(vid_hdr
->lnum
);
890 int compat
= vid_hdr
->compat
;
891 int data_size
= be32_to_cpu(vid_hdr
->data_size
);
892 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
893 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
894 int data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
895 int usable_leb_size
= ubi
->leb_size
- data_pad
;
897 if (copy_flag
!= 0 && copy_flag
!= 1) {
898 ubi_err(ubi
, "bad copy_flag");
902 if (vol_id
< 0 || lnum
< 0 || data_size
< 0 || used_ebs
< 0 ||
904 ubi_err(ubi
, "negative values");
908 if (vol_id
>= UBI_MAX_VOLUMES
&& vol_id
< UBI_INTERNAL_VOL_START
) {
909 ubi_err(ubi
, "bad vol_id");
913 if (vol_id
< UBI_INTERNAL_VOL_START
&& compat
!= 0) {
914 ubi_err(ubi
, "bad compat");
918 if (vol_id
>= UBI_INTERNAL_VOL_START
&& compat
!= UBI_COMPAT_DELETE
&&
919 compat
!= UBI_COMPAT_RO
&& compat
!= UBI_COMPAT_PRESERVE
&&
920 compat
!= UBI_COMPAT_REJECT
) {
921 ubi_err(ubi
, "bad compat");
925 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
926 ubi_err(ubi
, "bad vol_type");
930 if (data_pad
>= ubi
->leb_size
/ 2) {
931 ubi_err(ubi
, "bad data_pad");
935 if (data_size
> ubi
->leb_size
) {
936 ubi_err(ubi
, "bad data_size");
940 if (vol_type
== UBI_VID_STATIC
) {
942 * Although from high-level point of view static volumes may
943 * contain zero bytes of data, but no VID headers can contain
944 * zero at these fields, because they empty volumes do not have
945 * mapped logical eraseblocks.
948 ubi_err(ubi
, "zero used_ebs");
951 if (data_size
== 0) {
952 ubi_err(ubi
, "zero data_size");
955 if (lnum
< used_ebs
- 1) {
956 if (data_size
!= usable_leb_size
) {
957 ubi_err(ubi
, "bad data_size");
960 } else if (lnum
> used_ebs
- 1) {
961 ubi_err(ubi
, "too high lnum");
965 if (copy_flag
== 0) {
967 ubi_err(ubi
, "non-zero data CRC");
970 if (data_size
!= 0) {
971 ubi_err(ubi
, "non-zero data_size");
975 if (data_size
== 0) {
976 ubi_err(ubi
, "zero data_size of copy");
981 ubi_err(ubi
, "bad used_ebs");
989 ubi_err(ubi
, "bad VID header");
990 ubi_dump_vid_hdr(vid_hdr
);
996 * ubi_io_read_vid_hdr - read and check a volume identifier header.
997 * @ubi: UBI device description object
998 * @pnum: physical eraseblock number to read from
999 * @vidb: the volume identifier buffer to store data in
1000 * @verbose: be verbose if the header is corrupted or wasn't found
1002 * This function reads the volume identifier header from physical eraseblock
1003 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
1004 * volume identifier header. The error codes are the same as in
1005 * 'ubi_io_read_ec_hdr()'.
1007 * Note, the implementation of this function is also very similar to
1008 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1010 int ubi_io_read_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1011 struct ubi_vid_io_buf
*vidb
, int verbose
)
1014 uint32_t crc
, magic
, hdr_crc
;
1015 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1016 void *p
= vidb
->buffer
;
1018 dbg_io("read VID header from PEB %d", pnum
);
1019 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1021 read_err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1022 ubi
->vid_hdr_shift
+ UBI_VID_HDR_SIZE
);
1023 if (read_err
&& read_err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(read_err
))
1026 magic
= be32_to_cpu(vid_hdr
->magic
);
1027 if (magic
!= UBI_VID_HDR_MAGIC
) {
1028 if (mtd_is_eccerr(read_err
))
1029 return UBI_IO_BAD_HDR_EBADMSG
;
1031 if (ubi_check_pattern(vid_hdr
, 0xFF, UBI_VID_HDR_SIZE
)) {
1033 ubi_warn(ubi
, "no VID header found at PEB %d, only 0xFF bytes",
1035 dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1040 return UBI_IO_FF_BITFLIPS
;
1044 ubi_warn(ubi
, "bad magic number at PEB %d: %08x instead of %08x",
1045 pnum
, magic
, UBI_VID_HDR_MAGIC
);
1046 ubi_dump_vid_hdr(vid_hdr
);
1048 dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1049 pnum
, magic
, UBI_VID_HDR_MAGIC
);
1050 return UBI_IO_BAD_HDR
;
1053 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1054 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1056 if (hdr_crc
!= crc
) {
1058 ubi_warn(ubi
, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1059 pnum
, crc
, hdr_crc
);
1060 ubi_dump_vid_hdr(vid_hdr
);
1062 dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1063 pnum
, crc
, hdr_crc
);
1065 return UBI_IO_BAD_HDR
;
1067 return UBI_IO_BAD_HDR_EBADMSG
;
1070 err
= validate_vid_hdr(ubi
, vid_hdr
);
1072 ubi_err(ubi
, "validation failed for PEB %d", pnum
);
1077 return UBI_IO_BITFLIPS
;
1079 if (ubi_dbg_is_read_failure(ubi
, MASK_READ_FAILURE_VID
)) {
1080 ubi_warn(ubi
, "cannot read VID header from PEB %d (emulated)",
1085 if (ubi_dbg_is_ff(ubi
, MASK_IO_FF_VID
)) {
1086 ubi_warn(ubi
, "bit-all-ff (emulated)");
1090 if (ubi_dbg_is_ff_bitflips(ubi
, MASK_IO_FF_BITFLIPS_VID
)) {
1091 ubi_warn(ubi
, "bit-all-ff with error reported by MTD driver (emulated)");
1092 return UBI_IO_FF_BITFLIPS
;
1095 if (ubi_dbg_is_bad_hdr(ubi
, MASK_BAD_HDR_VID
)) {
1096 ubi_warn(ubi
, "bad_hdr (emulated)");
1097 return UBI_IO_BAD_HDR
;
1100 if (ubi_dbg_is_bad_hdr_ebadmsg(ubi
, MASK_BAD_HDR_EBADMSG_VID
)) {
1101 ubi_warn(ubi
, "bad_hdr with ECC error (emulated)");
1102 return UBI_IO_BAD_HDR_EBADMSG
;
1109 * ubi_io_write_vid_hdr - write a volume identifier header.
1110 * @ubi: UBI device description object
1111 * @pnum: the physical eraseblock number to write to
1112 * @vidb: the volume identifier buffer to write
1114 * This function writes the volume identifier header described by @vid_hdr to
1115 * physical eraseblock @pnum. This function automatically fills the
1116 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1117 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1119 * This function returns zero in case of success and a negative error code in
1120 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1123 int ubi_io_write_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1124 struct ubi_vid_io_buf
*vidb
)
1126 struct ubi_vid_hdr
*vid_hdr
= ubi_get_vid_hdr(vidb
);
1129 void *p
= vidb
->buffer
;
1131 dbg_io("write VID header to PEB %d", pnum
);
1132 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1134 err
= self_check_peb_ec_hdr(ubi
, pnum
);
1138 vid_hdr
->magic
= cpu_to_be32(UBI_VID_HDR_MAGIC
);
1139 vid_hdr
->version
= UBI_VERSION
;
1140 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1141 vid_hdr
->hdr_crc
= cpu_to_be32(crc
);
1143 err
= self_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1147 if (ubi_dbg_is_power_cut(ubi
, MASK_POWER_CUT_VID
)) {
1148 ubi_warn(ubi
, "emulating a power cut when writing VID header");
1153 err
= ubi_io_write(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1154 ubi
->vid_hdr_alsize
);
1159 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1160 * @ubi: UBI device description object
1161 * @pnum: physical eraseblock number to check
1163 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1164 * it is bad and a negative error code if an error occurred.
1166 static int self_check_not_bad(const struct ubi_device
*ubi
, int pnum
)
1170 if (!ubi_dbg_chk_io(ubi
))
1173 err
= ubi_io_is_bad(ubi
, pnum
);
1177 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1179 return err
> 0 ? -EINVAL
: err
;
1183 * self_check_ec_hdr - check if an erase counter header is all right.
1184 * @ubi: UBI device description object
1185 * @pnum: physical eraseblock number the erase counter header belongs to
1186 * @ec_hdr: the erase counter header to check
1188 * This function returns zero if the erase counter header contains valid
1189 * values, and %-EINVAL if not.
1191 static int self_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
1192 const struct ubi_ec_hdr
*ec_hdr
)
1197 if (!ubi_dbg_chk_io(ubi
))
1200 magic
= be32_to_cpu(ec_hdr
->magic
);
1201 if (magic
!= UBI_EC_HDR_MAGIC
) {
1202 ubi_err(ubi
, "bad magic %#08x, must be %#08x",
1203 magic
, UBI_EC_HDR_MAGIC
);
1207 err
= validate_ec_hdr(ubi
, ec_hdr
);
1209 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1216 ubi_dump_ec_hdr(ec_hdr
);
1222 * self_check_peb_ec_hdr - check erase counter header.
1223 * @ubi: UBI device description object
1224 * @pnum: the physical eraseblock number to check
1226 * This function returns zero if the erase counter header is all right and
1227 * a negative error code if not or if an error occurred.
1229 static int self_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
)
1232 uint32_t crc
, hdr_crc
;
1233 struct ubi_ec_hdr
*ec_hdr
;
1235 if (!ubi_dbg_chk_io(ubi
))
1238 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1242 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
1243 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
1246 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
1247 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
1248 if (hdr_crc
!= crc
) {
1249 ubi_err(ubi
, "bad CRC, calculated %#08x, read %#08x",
1251 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1252 ubi_dump_ec_hdr(ec_hdr
);
1258 err
= self_check_ec_hdr(ubi
, pnum
, ec_hdr
);
1266 * self_check_vid_hdr - check that a volume identifier header is all right.
1267 * @ubi: UBI device description object
1268 * @pnum: physical eraseblock number the volume identifier header belongs to
1269 * @vid_hdr: the volume identifier header to check
1271 * This function returns zero if the volume identifier header is all right, and
1274 static int self_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
1275 const struct ubi_vid_hdr
*vid_hdr
)
1280 if (!ubi_dbg_chk_io(ubi
))
1283 magic
= be32_to_cpu(vid_hdr
->magic
);
1284 if (magic
!= UBI_VID_HDR_MAGIC
) {
1285 ubi_err(ubi
, "bad VID header magic %#08x at PEB %d, must be %#08x",
1286 magic
, pnum
, UBI_VID_HDR_MAGIC
);
1290 err
= validate_vid_hdr(ubi
, vid_hdr
);
1292 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1299 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1300 ubi_dump_vid_hdr(vid_hdr
);
1307 * self_check_peb_vid_hdr - check volume identifier header.
1308 * @ubi: UBI device description object
1309 * @pnum: the physical eraseblock number to check
1311 * This function returns zero if the volume identifier header is all right,
1312 * and a negative error code if not or if an error occurred.
1314 static int self_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
)
1317 uint32_t crc
, hdr_crc
;
1318 struct ubi_vid_io_buf
*vidb
;
1319 struct ubi_vid_hdr
*vid_hdr
;
1322 if (!ubi_dbg_chk_io(ubi
))
1325 vidb
= ubi_alloc_vid_buf(ubi
, GFP_NOFS
);
1329 vid_hdr
= ubi_get_vid_hdr(vidb
);
1331 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1332 ubi
->vid_hdr_alsize
);
1333 if (err
&& err
!= UBI_IO_BITFLIPS
&& !mtd_is_eccerr(err
))
1336 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1337 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1338 if (hdr_crc
!= crc
) {
1339 ubi_err(ubi
, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1340 pnum
, crc
, hdr_crc
);
1341 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1342 ubi_dump_vid_hdr(vid_hdr
);
1348 err
= self_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1351 ubi_free_vid_buf(vidb
);
1356 * self_check_write - make sure write succeeded.
1357 * @ubi: UBI device description object
1358 * @buf: buffer with data which were written
1359 * @pnum: physical eraseblock number the data were written to
1360 * @offset: offset within the physical eraseblock the data were written to
1361 * @len: how many bytes were written
1363 * This functions reads data which were recently written and compares it with
1364 * the original data buffer - the data have to match. Returns zero if the data
1365 * match and a negative error code if not or in case of failure.
1367 static int self_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
1368 int offset
, int len
)
1373 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1375 if (!ubi_dbg_chk_io(ubi
))
1378 buf1
= __vmalloc(len
, GFP_NOFS
);
1380 ubi_err(ubi
, "cannot allocate memory to check writes");
1384 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf1
);
1385 if (err
&& !mtd_is_bitflip(err
))
1388 for (i
= 0; i
< len
; i
++) {
1389 uint8_t c
= ((uint8_t *)buf
)[i
];
1390 uint8_t c1
= ((uint8_t *)buf1
)[i
];
1396 ubi_err(ubi
, "self-check failed for PEB %d:%d, len %d",
1398 ubi_msg(ubi
, "data differ at position %d", i
);
1399 dump_len
= max_t(int, 128, len
- i
);
1400 ubi_msg(ubi
, "hex dump of the original buffer from %d to %d",
1402 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1403 buf
+ i
, dump_len
, 1);
1404 ubi_msg(ubi
, "hex dump of the read buffer from %d to %d",
1406 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1407 buf1
+ i
, dump_len
, 1);
1422 * ubi_self_check_all_ff - check that a region of flash is empty.
1423 * @ubi: UBI device description object
1424 * @pnum: the physical eraseblock number to check
1425 * @offset: the starting offset within the physical eraseblock to check
1426 * @len: the length of the region to check
1428 * This function returns zero if only 0xFF bytes are present at offset
1429 * @offset of the physical eraseblock @pnum, and a negative error code if not
1430 * or if an error occurred.
1432 int ubi_self_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
, int len
)
1437 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1439 if (!ubi_dbg_chk_io(ubi
))
1442 buf
= __vmalloc(len
, GFP_NOFS
);
1444 ubi_err(ubi
, "cannot allocate memory to check for 0xFFs");
1448 err
= mtd_read(ubi
->mtd
, addr
, len
, &read
, buf
);
1449 if (err
&& !mtd_is_bitflip(err
)) {
1450 ubi_err(ubi
, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1451 err
, len
, pnum
, offset
, read
);
1455 err
= ubi_check_pattern(buf
, 0xFF, len
);
1457 ubi_err(ubi
, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1466 ubi_err(ubi
, "self-check failed for PEB %d", pnum
);
1467 ubi_msg(ubi
, "hex dump of the %d-%d region", offset
, offset
+ len
);
1468 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1, buf
, len
, 1);