1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Xilinx CAN device driver
4 * Copyright (C) 2012 - 2022 Xilinx, Inc.
5 * Copyright (C) 2009 PetaLogix. All rights reserved.
6 * Copyright (C) 2017 - 2018 Sandvik Mining and Construction Oy
9 * This driver is developed for AXI CAN IP, AXI CANFD IP, CANPS and CANFD PS Controller.
12 #include <linux/bitfield.h>
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/ethtool.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
23 #include <linux/platform_device.h>
24 #include <linux/property.h>
25 #include <linux/skbuff.h>
26 #include <linux/spinlock.h>
27 #include <linux/string.h>
28 #include <linux/types.h>
29 #include <linux/can/dev.h>
30 #include <linux/can/error.h>
31 #include <linux/phy/phy.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/reset.h>
34 #include <linux/u64_stats_sync.h>
36 #define DRIVER_NAME "xilinx_can"
38 /* CAN registers set */
40 XCAN_SRR_OFFSET
= 0x00, /* Software reset */
41 XCAN_MSR_OFFSET
= 0x04, /* Mode select */
42 XCAN_BRPR_OFFSET
= 0x08, /* Baud rate prescaler */
43 XCAN_BTR_OFFSET
= 0x0C, /* Bit timing */
44 XCAN_ECR_OFFSET
= 0x10, /* Error counter */
45 XCAN_ESR_OFFSET
= 0x14, /* Error status */
46 XCAN_SR_OFFSET
= 0x18, /* Status */
47 XCAN_ISR_OFFSET
= 0x1C, /* Interrupt status */
48 XCAN_IER_OFFSET
= 0x20, /* Interrupt enable */
49 XCAN_ICR_OFFSET
= 0x24, /* Interrupt clear */
51 /* not on CAN FD cores */
52 XCAN_TXFIFO_OFFSET
= 0x30, /* TX FIFO base */
53 XCAN_RXFIFO_OFFSET
= 0x50, /* RX FIFO base */
54 XCAN_AFR_OFFSET
= 0x60, /* Acceptance Filter */
56 /* only on CAN FD cores */
57 XCAN_F_BRPR_OFFSET
= 0x088, /* Data Phase Baud Rate
60 XCAN_F_BTR_OFFSET
= 0x08C, /* Data Phase Bit Timing */
61 XCAN_TRR_OFFSET
= 0x0090, /* TX Buffer Ready Request */
63 /* only on AXI CAN cores */
64 XCAN_ECC_CFG_OFFSET
= 0xC8, /* ECC Configuration */
65 XCAN_TXTLFIFO_ECC_OFFSET
= 0xCC, /* TXTL FIFO ECC error counter */
66 XCAN_TXOLFIFO_ECC_OFFSET
= 0xD0, /* TXOL FIFO ECC error counter */
67 XCAN_RXFIFO_ECC_OFFSET
= 0xD4, /* RX FIFO ECC error counter */
69 XCAN_AFR_EXT_OFFSET
= 0x00E0, /* Acceptance Filter */
70 XCAN_FSR_OFFSET
= 0x00E8, /* RX FIFO Status */
71 XCAN_TXMSG_BASE_OFFSET
= 0x0100, /* TX Message Space */
72 XCAN_RXMSG_BASE_OFFSET
= 0x1100, /* RX Message Space */
73 XCAN_RXMSG_2_BASE_OFFSET
= 0x2100, /* RX Message Space */
74 XCAN_AFR_2_MASK_OFFSET
= 0x0A00, /* Acceptance Filter MASK */
75 XCAN_AFR_2_ID_OFFSET
= 0x0A04, /* Acceptance Filter ID */
78 #define XCAN_FRAME_ID_OFFSET(frame_base) ((frame_base) + 0x00)
79 #define XCAN_FRAME_DLC_OFFSET(frame_base) ((frame_base) + 0x04)
80 #define XCAN_FRAME_DW1_OFFSET(frame_base) ((frame_base) + 0x08)
81 #define XCAN_FRAME_DW2_OFFSET(frame_base) ((frame_base) + 0x0C)
82 #define XCANFD_FRAME_DW_OFFSET(frame_base) ((frame_base) + 0x08)
84 #define XCAN_CANFD_FRAME_SIZE 0x48
85 #define XCAN_TXMSG_FRAME_OFFSET(n) (XCAN_TXMSG_BASE_OFFSET + \
86 XCAN_CANFD_FRAME_SIZE * (n))
87 #define XCAN_RXMSG_FRAME_OFFSET(n) (XCAN_RXMSG_BASE_OFFSET + \
88 XCAN_CANFD_FRAME_SIZE * (n))
89 #define XCAN_RXMSG_2_FRAME_OFFSET(n) (XCAN_RXMSG_2_BASE_OFFSET + \
90 XCAN_CANFD_FRAME_SIZE * (n))
92 /* the single TX mailbox used by this driver on CAN FD HW */
93 #define XCAN_TX_MAILBOX_IDX 0
95 /* CAN register bit masks - XCAN_<REG>_<BIT>_MASK */
96 #define XCAN_SRR_CEN_MASK 0x00000002 /* CAN enable */
97 #define XCAN_SRR_RESET_MASK 0x00000001 /* Soft Reset the CAN core */
98 #define XCAN_MSR_LBACK_MASK 0x00000002 /* Loop back mode select */
99 #define XCAN_MSR_SLEEP_MASK 0x00000001 /* Sleep mode select */
100 #define XCAN_BRPR_BRP_MASK 0x000000FF /* Baud rate prescaler */
101 #define XCAN_BRPR_TDCO_MASK GENMASK(12, 8) /* TDCO */
102 #define XCAN_2_BRPR_TDCO_MASK GENMASK(13, 8) /* TDCO for CANFD 2.0 */
103 #define XCAN_BTR_SJW_MASK 0x00000180 /* Synchronous jump width */
104 #define XCAN_BTR_TS2_MASK 0x00000070 /* Time segment 2 */
105 #define XCAN_BTR_TS1_MASK 0x0000000F /* Time segment 1 */
106 #define XCAN_BTR_SJW_MASK_CANFD 0x000F0000 /* Synchronous jump width */
107 #define XCAN_BTR_TS2_MASK_CANFD 0x00000F00 /* Time segment 2 */
108 #define XCAN_BTR_TS1_MASK_CANFD 0x0000003F /* Time segment 1 */
109 #define XCAN_ECR_REC_MASK 0x0000FF00 /* Receive error counter */
110 #define XCAN_ECR_TEC_MASK 0x000000FF /* Transmit error counter */
111 #define XCAN_ESR_ACKER_MASK 0x00000010 /* ACK error */
112 #define XCAN_ESR_BERR_MASK 0x00000008 /* Bit error */
113 #define XCAN_ESR_STER_MASK 0x00000004 /* Stuff error */
114 #define XCAN_ESR_FMER_MASK 0x00000002 /* Form error */
115 #define XCAN_ESR_CRCER_MASK 0x00000001 /* CRC error */
116 #define XCAN_SR_TDCV_MASK GENMASK(22, 16) /* TDCV Value */
117 #define XCAN_SR_TXFLL_MASK 0x00000400 /* TX FIFO is full */
118 #define XCAN_SR_ESTAT_MASK 0x00000180 /* Error status */
119 #define XCAN_SR_ERRWRN_MASK 0x00000040 /* Error warning */
120 #define XCAN_SR_NORMAL_MASK 0x00000008 /* Normal mode */
121 #define XCAN_SR_LBACK_MASK 0x00000002 /* Loop back mode */
122 #define XCAN_SR_CONFIG_MASK 0x00000001 /* Configuration mode */
123 #define XCAN_IXR_RXMNF_MASK 0x00020000 /* RX match not finished */
124 #define XCAN_IXR_TXFEMP_MASK 0x00004000 /* TX FIFO Empty */
125 #define XCAN_IXR_WKUP_MASK 0x00000800 /* Wake up interrupt */
126 #define XCAN_IXR_SLP_MASK 0x00000400 /* Sleep interrupt */
127 #define XCAN_IXR_BSOFF_MASK 0x00000200 /* Bus off interrupt */
128 #define XCAN_IXR_ERROR_MASK 0x00000100 /* Error interrupt */
129 #define XCAN_IXR_RXNEMP_MASK 0x00000080 /* RX FIFO NotEmpty intr */
130 #define XCAN_IXR_RXOFLW_MASK 0x00000040 /* RX FIFO Overflow intr */
131 #define XCAN_IXR_RXOK_MASK 0x00000010 /* Message received intr */
132 #define XCAN_IXR_TXFLL_MASK 0x00000004 /* Tx FIFO Full intr */
133 #define XCAN_IXR_TXOK_MASK 0x00000002 /* TX successful intr */
134 #define XCAN_IXR_ARBLST_MASK 0x00000001 /* Arbitration lost intr */
135 #define XCAN_IXR_E2BERX_MASK BIT(23) /* RX FIFO two bit ECC error */
136 #define XCAN_IXR_E1BERX_MASK BIT(22) /* RX FIFO one bit ECC error */
137 #define XCAN_IXR_E2BETXOL_MASK BIT(21) /* TXOL FIFO two bit ECC error */
138 #define XCAN_IXR_E1BETXOL_MASK BIT(20) /* TXOL FIFO One bit ECC error */
139 #define XCAN_IXR_E2BETXTL_MASK BIT(19) /* TXTL FIFO Two bit ECC error */
140 #define XCAN_IXR_E1BETXTL_MASK BIT(18) /* TXTL FIFO One bit ECC error */
141 #define XCAN_IXR_ECC_MASK (XCAN_IXR_E2BERX_MASK | \
142 XCAN_IXR_E1BERX_MASK | \
143 XCAN_IXR_E2BETXOL_MASK | \
144 XCAN_IXR_E1BETXOL_MASK | \
145 XCAN_IXR_E2BETXTL_MASK | \
146 XCAN_IXR_E1BETXTL_MASK)
147 #define XCAN_IDR_ID1_MASK 0xFFE00000 /* Standard msg identifier */
148 #define XCAN_IDR_SRR_MASK 0x00100000 /* Substitute remote TXreq */
149 #define XCAN_IDR_IDE_MASK 0x00080000 /* Identifier extension */
150 #define XCAN_IDR_ID2_MASK 0x0007FFFE /* Extended message ident */
151 #define XCAN_IDR_RTR_MASK 0x00000001 /* Remote TX request */
152 #define XCAN_DLCR_DLC_MASK 0xF0000000 /* Data length code */
153 #define XCAN_FSR_FL_MASK 0x00003F00 /* RX Fill Level */
154 #define XCAN_2_FSR_FL_MASK 0x00007F00 /* RX Fill Level */
155 #define XCAN_FSR_IRI_MASK 0x00000080 /* RX Increment Read Index */
156 #define XCAN_FSR_RI_MASK 0x0000001F /* RX Read Index */
157 #define XCAN_2_FSR_RI_MASK 0x0000003F /* RX Read Index */
158 #define XCAN_DLCR_EDL_MASK 0x08000000 /* EDL Mask in DLC */
159 #define XCAN_DLCR_BRS_MASK 0x04000000 /* BRS Mask in DLC */
160 #define XCAN_ECC_CFG_REECRX_MASK BIT(2) /* Reset RX FIFO ECC error counters */
161 #define XCAN_ECC_CFG_REECTXOL_MASK BIT(1) /* Reset TXOL FIFO ECC error counters */
162 #define XCAN_ECC_CFG_REECTXTL_MASK BIT(0) /* Reset TXTL FIFO ECC error counters */
163 #define XCAN_ECC_1BIT_CNT_MASK GENMASK(15, 0) /* FIFO ECC 1bit count mask */
164 #define XCAN_ECC_2BIT_CNT_MASK GENMASK(31, 16) /* FIFO ECC 2bit count mask */
166 /* CAN register bit shift - XCAN_<REG>_<BIT>_SHIFT */
167 #define XCAN_BRPR_TDC_ENABLE BIT(16) /* Transmitter Delay Compensation (TDC) Enable */
168 #define XCAN_BTR_SJW_SHIFT 7 /* Synchronous jump width */
169 #define XCAN_BTR_TS2_SHIFT 4 /* Time segment 2 */
170 #define XCAN_BTR_SJW_SHIFT_CANFD 16 /* Synchronous jump width */
171 #define XCAN_BTR_TS2_SHIFT_CANFD 8 /* Time segment 2 */
172 #define XCAN_IDR_ID1_SHIFT 21 /* Standard Messg Identifier */
173 #define XCAN_IDR_ID2_SHIFT 1 /* Extended Message Identifier */
174 #define XCAN_DLCR_DLC_SHIFT 28 /* Data length code */
175 #define XCAN_ESR_REC_SHIFT 8 /* Rx Error Count */
177 /* CAN frame length constants */
178 #define XCAN_FRAME_MAX_DATA_LEN 8
179 #define XCANFD_DW_BYTES 4
180 #define XCAN_TIMEOUT (1 * HZ)
182 /* TX-FIFO-empty interrupt available */
183 #define XCAN_FLAG_TXFEMP 0x0001
184 /* RX Match Not Finished interrupt available */
185 #define XCAN_FLAG_RXMNF 0x0002
186 /* Extended acceptance filters with control at 0xE0 */
187 #define XCAN_FLAG_EXT_FILTERS 0x0004
188 /* TX mailboxes instead of TX FIFO */
189 #define XCAN_FLAG_TX_MAILBOXES 0x0008
190 /* RX FIFO with each buffer in separate registers at 0x1100
191 * instead of the regular FIFO at 0x50
193 #define XCAN_FLAG_RX_FIFO_MULTI 0x0010
194 #define XCAN_FLAG_CANFD_2 0x0020
203 struct xcan_devtype_data
{
204 enum xcan_ip_type cantype
;
206 const struct can_bittiming_const
*bittiming_const
;
207 const char *bus_clk_name
;
208 unsigned int btr_ts2_shift
;
209 unsigned int btr_sjw_shift
;
213 * struct xcan_priv - This definition define CAN driver instance
214 * @can: CAN private data structure.
215 * @tx_lock: Lock for synchronizing TX interrupt handling
216 * @tx_head: Tx CAN packets ready to send on the queue
217 * @tx_tail: Tx CAN packets successfully sended on the queue
218 * @tx_max: Maximum number packets the driver can send
219 * @napi: NAPI structure
220 * @read_reg: For reading data from CAN registers
221 * @write_reg: For writing data to CAN registers
222 * @dev: Network device data structure
223 * @reg_base: Ioremapped address to registers
224 * @irq_flags: For request_irq()
225 * @bus_clk: Pointer to struct clk
226 * @can_clk: Pointer to struct clk
227 * @devtype: Device type specific constants
228 * @transceiver: Optional pointer to associated CAN transceiver
229 * @rstc: Pointer to reset control
230 * @ecc_enable: ECC enable flag
231 * @syncp: synchronization for ECC error stats
232 * @ecc_rx_2_bit_errors: RXFIFO 2bit ECC count
233 * @ecc_rx_1_bit_errors: RXFIFO 1bit ECC count
234 * @ecc_txol_2_bit_errors: TXOLFIFO 2bit ECC count
235 * @ecc_txol_1_bit_errors: TXOLFIFO 1bit ECC count
236 * @ecc_txtl_2_bit_errors: TXTLFIFO 2bit ECC count
237 * @ecc_txtl_1_bit_errors: TXTLFIFO 1bit ECC count
241 spinlock_t tx_lock
; /* Lock for synchronizing TX interrupt handling */
242 unsigned int tx_head
;
243 unsigned int tx_tail
;
245 struct napi_struct napi
;
246 u32 (*read_reg
)(const struct xcan_priv
*priv
, enum xcan_reg reg
);
247 void (*write_reg
)(const struct xcan_priv
*priv
, enum xcan_reg reg
,
250 void __iomem
*reg_base
;
251 unsigned long irq_flags
;
254 struct xcan_devtype_data devtype
;
255 struct phy
*transceiver
;
256 struct reset_control
*rstc
;
258 struct u64_stats_sync syncp
;
259 u64_stats_t ecc_rx_2_bit_errors
;
260 u64_stats_t ecc_rx_1_bit_errors
;
261 u64_stats_t ecc_txol_2_bit_errors
;
262 u64_stats_t ecc_txol_1_bit_errors
;
263 u64_stats_t ecc_txtl_2_bit_errors
;
264 u64_stats_t ecc_txtl_1_bit_errors
;
267 /* CAN Bittiming constants as per Xilinx CAN specs */
268 static const struct can_bittiming_const xcan_bittiming_const
= {
280 /* AXI CANFD Arbitration Bittiming constants as per AXI CANFD 1.0 spec */
281 static const struct can_bittiming_const xcan_bittiming_const_canfd
= {
293 /* AXI CANFD Data Bittiming constants as per AXI CANFD 1.0 specs */
294 static const struct can_bittiming_const xcan_data_bittiming_const_canfd
= {
306 /* AXI CANFD 2.0 Arbitration Bittiming constants as per AXI CANFD 2.0 spec */
307 static const struct can_bittiming_const xcan_bittiming_const_canfd2
= {
319 /* AXI CANFD 2.0 Data Bittiming constants as per AXI CANFD 2.0 spec */
320 static const struct can_bittiming_const xcan_data_bittiming_const_canfd2
= {
332 /* Transmission Delay Compensation constants for CANFD 1.0 */
333 static const struct can_tdc_const xcan_tdc_const_canfd
= {
335 .tdcv_max
= 0, /* Manual mode not supported. */
338 .tdcf_min
= 0, /* Filter window not supported */
342 /* Transmission Delay Compensation constants for CANFD 2.0 */
343 static const struct can_tdc_const xcan_tdc_const_canfd2
= {
345 .tdcv_max
= 0, /* Manual mode not supported. */
348 .tdcf_min
= 0, /* Filter window not supported */
352 enum xcan_stats_type
{
353 XCAN_ECC_RX_2_BIT_ERRORS
,
354 XCAN_ECC_RX_1_BIT_ERRORS
,
355 XCAN_ECC_TXOL_2_BIT_ERRORS
,
356 XCAN_ECC_TXOL_1_BIT_ERRORS
,
357 XCAN_ECC_TXTL_2_BIT_ERRORS
,
358 XCAN_ECC_TXTL_1_BIT_ERRORS
,
361 static const char xcan_priv_flags_strings
[][ETH_GSTRING_LEN
] = {
362 [XCAN_ECC_RX_2_BIT_ERRORS
] = "ecc_rx_2_bit_errors",
363 [XCAN_ECC_RX_1_BIT_ERRORS
] = "ecc_rx_1_bit_errors",
364 [XCAN_ECC_TXOL_2_BIT_ERRORS
] = "ecc_txol_2_bit_errors",
365 [XCAN_ECC_TXOL_1_BIT_ERRORS
] = "ecc_txol_1_bit_errors",
366 [XCAN_ECC_TXTL_2_BIT_ERRORS
] = "ecc_txtl_2_bit_errors",
367 [XCAN_ECC_TXTL_1_BIT_ERRORS
] = "ecc_txtl_1_bit_errors",
371 * xcan_write_reg_le - Write a value to the device register little endian
372 * @priv: Driver private data structure
373 * @reg: Register offset
374 * @val: Value to write at the Register offset
376 * Write data to the paricular CAN register
378 static void xcan_write_reg_le(const struct xcan_priv
*priv
, enum xcan_reg reg
,
381 iowrite32(val
, priv
->reg_base
+ reg
);
385 * xcan_read_reg_le - Read a value from the device register little endian
386 * @priv: Driver private data structure
387 * @reg: Register offset
389 * Read data from the particular CAN register
390 * Return: value read from the CAN register
392 static u32
xcan_read_reg_le(const struct xcan_priv
*priv
, enum xcan_reg reg
)
394 return ioread32(priv
->reg_base
+ reg
);
398 * xcan_write_reg_be - Write a value to the device register big endian
399 * @priv: Driver private data structure
400 * @reg: Register offset
401 * @val: Value to write at the Register offset
403 * Write data to the paricular CAN register
405 static void xcan_write_reg_be(const struct xcan_priv
*priv
, enum xcan_reg reg
,
408 iowrite32be(val
, priv
->reg_base
+ reg
);
412 * xcan_read_reg_be - Read a value from the device register big endian
413 * @priv: Driver private data structure
414 * @reg: Register offset
416 * Read data from the particular CAN register
417 * Return: value read from the CAN register
419 static u32
xcan_read_reg_be(const struct xcan_priv
*priv
, enum xcan_reg reg
)
421 return ioread32be(priv
->reg_base
+ reg
);
425 * xcan_rx_int_mask - Get the mask for the receive interrupt
426 * @priv: Driver private data structure
428 * Return: The receive interrupt mask used by the driver on this HW
430 static u32
xcan_rx_int_mask(const struct xcan_priv
*priv
)
432 /* RXNEMP is better suited for our use case as it cannot be cleared
433 * while the FIFO is non-empty, but CAN FD HW does not have it
435 if (priv
->devtype
.flags
& XCAN_FLAG_RX_FIFO_MULTI
)
436 return XCAN_IXR_RXOK_MASK
;
438 return XCAN_IXR_RXNEMP_MASK
;
442 * set_reset_mode - Resets the CAN device mode
443 * @ndev: Pointer to net_device structure
445 * This is the driver reset mode routine.The driver
446 * enters into configuration mode.
448 * Return: 0 on success and failure value on error
450 static int set_reset_mode(struct net_device
*ndev
)
452 struct xcan_priv
*priv
= netdev_priv(ndev
);
453 unsigned long timeout
;
455 priv
->write_reg(priv
, XCAN_SRR_OFFSET
, XCAN_SRR_RESET_MASK
);
457 timeout
= jiffies
+ XCAN_TIMEOUT
;
458 while (!(priv
->read_reg(priv
, XCAN_SR_OFFSET
) & XCAN_SR_CONFIG_MASK
)) {
459 if (time_after(jiffies
, timeout
)) {
460 netdev_warn(ndev
, "timed out for config mode\n");
463 usleep_range(500, 10000);
466 /* reset clears FIFOs */
474 * xcan_set_bittiming - CAN set bit timing routine
475 * @ndev: Pointer to net_device structure
477 * This is the driver set bittiming routine.
478 * Return: 0 on success and failure value on error
480 static int xcan_set_bittiming(struct net_device
*ndev
)
482 struct xcan_priv
*priv
= netdev_priv(ndev
);
483 struct can_bittiming
*bt
= &priv
->can
.bittiming
;
484 struct can_bittiming
*dbt
= &priv
->can
.data_bittiming
;
488 /* Check whether Xilinx CAN is in configuration mode.
489 * It cannot set bit timing if Xilinx CAN is not in configuration mode.
491 is_config_mode
= priv
->read_reg(priv
, XCAN_SR_OFFSET
) &
493 if (!is_config_mode
) {
495 "BUG! Cannot set bittiming - CAN is not in config mode\n");
499 /* Setting Baud Rate prescaler value in BRPR Register */
500 btr0
= (bt
->brp
- 1);
502 /* Setting Time Segment 1 in BTR Register */
503 btr1
= (bt
->prop_seg
+ bt
->phase_seg1
- 1);
505 /* Setting Time Segment 2 in BTR Register */
506 btr1
|= (bt
->phase_seg2
- 1) << priv
->devtype
.btr_ts2_shift
;
508 /* Setting Synchronous jump width in BTR Register */
509 btr1
|= (bt
->sjw
- 1) << priv
->devtype
.btr_sjw_shift
;
511 priv
->write_reg(priv
, XCAN_BRPR_OFFSET
, btr0
);
512 priv
->write_reg(priv
, XCAN_BTR_OFFSET
, btr1
);
514 if (priv
->devtype
.cantype
== XAXI_CANFD
||
515 priv
->devtype
.cantype
== XAXI_CANFD_2_0
) {
516 /* Setting Baud Rate prescaler value in F_BRPR Register */
518 if (can_tdc_is_enabled(&priv
->can
)) {
519 if (priv
->devtype
.cantype
== XAXI_CANFD
)
520 btr0
|= FIELD_PREP(XCAN_BRPR_TDCO_MASK
, priv
->can
.tdc
.tdco
) |
521 XCAN_BRPR_TDC_ENABLE
;
523 btr0
|= FIELD_PREP(XCAN_2_BRPR_TDCO_MASK
, priv
->can
.tdc
.tdco
) |
524 XCAN_BRPR_TDC_ENABLE
;
527 /* Setting Time Segment 1 in BTR Register */
528 btr1
= dbt
->prop_seg
+ dbt
->phase_seg1
- 1;
530 /* Setting Time Segment 2 in BTR Register */
531 btr1
|= (dbt
->phase_seg2
- 1) << priv
->devtype
.btr_ts2_shift
;
533 /* Setting Synchronous jump width in BTR Register */
534 btr1
|= (dbt
->sjw
- 1) << priv
->devtype
.btr_sjw_shift
;
536 priv
->write_reg(priv
, XCAN_F_BRPR_OFFSET
, btr0
);
537 priv
->write_reg(priv
, XCAN_F_BTR_OFFSET
, btr1
);
540 netdev_dbg(ndev
, "BRPR=0x%08x, BTR=0x%08x\n",
541 priv
->read_reg(priv
, XCAN_BRPR_OFFSET
),
542 priv
->read_reg(priv
, XCAN_BTR_OFFSET
));
548 * xcan_chip_start - This the drivers start routine
549 * @ndev: Pointer to net_device structure
551 * This is the drivers start routine.
552 * Based on the State of the CAN device it puts
553 * the CAN device into a proper mode.
555 * Return: 0 on success and failure value on error
557 static int xcan_chip_start(struct net_device
*ndev
)
559 struct xcan_priv
*priv
= netdev_priv(ndev
);
564 /* Check if it is in reset mode */
565 err
= set_reset_mode(ndev
);
569 err
= xcan_set_bittiming(ndev
);
575 * We enable the ERROR interrupt even with
576 * CAN_CTRLMODE_BERR_REPORTING disabled as there is no
577 * dedicated interrupt for a state change to
578 * ERROR_WARNING/ERROR_PASSIVE.
580 ier
= XCAN_IXR_TXOK_MASK
| XCAN_IXR_BSOFF_MASK
|
581 XCAN_IXR_WKUP_MASK
| XCAN_IXR_SLP_MASK
|
582 XCAN_IXR_ERROR_MASK
| XCAN_IXR_RXOFLW_MASK
|
583 XCAN_IXR_ARBLST_MASK
| xcan_rx_int_mask(priv
);
585 if (priv
->ecc_enable
)
586 ier
|= XCAN_IXR_ECC_MASK
;
588 if (priv
->devtype
.flags
& XCAN_FLAG_RXMNF
)
589 ier
|= XCAN_IXR_RXMNF_MASK
;
591 priv
->write_reg(priv
, XCAN_IER_OFFSET
, ier
);
593 /* Check whether it is loopback mode or normal mode */
594 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_LOOPBACK
)
595 reg_msr
= XCAN_MSR_LBACK_MASK
;
599 /* enable the first extended filter, if any, as cores with extended
600 * filtering default to non-receipt if all filters are disabled
602 if (priv
->devtype
.flags
& XCAN_FLAG_EXT_FILTERS
)
603 priv
->write_reg(priv
, XCAN_AFR_EXT_OFFSET
, 0x00000001);
605 priv
->write_reg(priv
, XCAN_MSR_OFFSET
, reg_msr
);
606 priv
->write_reg(priv
, XCAN_SRR_OFFSET
, XCAN_SRR_CEN_MASK
);
608 netdev_dbg(ndev
, "status:#x%08x\n",
609 priv
->read_reg(priv
, XCAN_SR_OFFSET
));
611 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
616 * xcan_do_set_mode - This sets the mode of the driver
617 * @ndev: Pointer to net_device structure
618 * @mode: Tells the mode of the driver
620 * This check the drivers state and calls the corresponding modes to set.
622 * Return: 0 on success and failure value on error
624 static int xcan_do_set_mode(struct net_device
*ndev
, enum can_mode mode
)
630 ret
= xcan_chip_start(ndev
);
632 netdev_err(ndev
, "xcan_chip_start failed!\n");
635 netif_wake_queue(ndev
);
646 * xcan_write_frame - Write a frame to HW
647 * @ndev: Pointer to net_device structure
648 * @skb: sk_buff pointer that contains data to be Txed
649 * @frame_offset: Register offset to write the frame to
651 static void xcan_write_frame(struct net_device
*ndev
, struct sk_buff
*skb
,
654 u32 id
, dlc
, data
[2] = {0, 0};
655 struct canfd_frame
*cf
= (struct canfd_frame
*)skb
->data
;
656 u32 ramoff
, dwindex
= 0, i
;
657 struct xcan_priv
*priv
= netdev_priv(ndev
);
659 /* Watch carefully on the bit sequence */
660 if (cf
->can_id
& CAN_EFF_FLAG
) {
661 /* Extended CAN ID format */
662 id
= ((cf
->can_id
& CAN_EFF_MASK
) << XCAN_IDR_ID2_SHIFT
) &
664 id
|= (((cf
->can_id
& CAN_EFF_MASK
) >>
665 (CAN_EFF_ID_BITS
- CAN_SFF_ID_BITS
)) <<
666 XCAN_IDR_ID1_SHIFT
) & XCAN_IDR_ID1_MASK
;
668 /* The substibute remote TX request bit should be "1"
669 * for extended frames as in the Xilinx CAN datasheet
671 id
|= XCAN_IDR_IDE_MASK
| XCAN_IDR_SRR_MASK
;
673 if (cf
->can_id
& CAN_RTR_FLAG
)
674 /* Extended frames remote TX request */
675 id
|= XCAN_IDR_RTR_MASK
;
677 /* Standard CAN ID format */
678 id
= ((cf
->can_id
& CAN_SFF_MASK
) << XCAN_IDR_ID1_SHIFT
) &
681 if (cf
->can_id
& CAN_RTR_FLAG
)
682 /* Standard frames remote TX request */
683 id
|= XCAN_IDR_SRR_MASK
;
686 dlc
= can_fd_len2dlc(cf
->len
) << XCAN_DLCR_DLC_SHIFT
;
687 if (can_is_canfd_skb(skb
)) {
688 if (cf
->flags
& CANFD_BRS
)
689 dlc
|= XCAN_DLCR_BRS_MASK
;
690 dlc
|= XCAN_DLCR_EDL_MASK
;
693 if (!(priv
->devtype
.flags
& XCAN_FLAG_TX_MAILBOXES
) &&
694 (priv
->devtype
.flags
& XCAN_FLAG_TXFEMP
))
695 can_put_echo_skb(skb
, ndev
, priv
->tx_head
% priv
->tx_max
, 0);
697 can_put_echo_skb(skb
, ndev
, 0, 0);
701 priv
->write_reg(priv
, XCAN_FRAME_ID_OFFSET(frame_offset
), id
);
702 /* If the CAN frame is RTR frame this write triggers transmission
705 priv
->write_reg(priv
, XCAN_FRAME_DLC_OFFSET(frame_offset
), dlc
);
706 if (priv
->devtype
.cantype
== XAXI_CANFD
||
707 priv
->devtype
.cantype
== XAXI_CANFD_2_0
) {
708 for (i
= 0; i
< cf
->len
; i
+= 4) {
709 ramoff
= XCANFD_FRAME_DW_OFFSET(frame_offset
) +
710 (dwindex
* XCANFD_DW_BYTES
);
711 priv
->write_reg(priv
, ramoff
,
712 be32_to_cpup((__be32
*)(cf
->data
+ i
)));
717 data
[0] = be32_to_cpup((__be32
*)(cf
->data
+ 0));
719 data
[1] = be32_to_cpup((__be32
*)(cf
->data
+ 4));
721 if (!(cf
->can_id
& CAN_RTR_FLAG
)) {
722 priv
->write_reg(priv
,
723 XCAN_FRAME_DW1_OFFSET(frame_offset
),
725 /* If the CAN frame is Standard/Extended frame this
726 * write triggers transmission (not on CAN FD)
728 priv
->write_reg(priv
,
729 XCAN_FRAME_DW2_OFFSET(frame_offset
),
736 * xcan_start_xmit_fifo - Starts the transmission (FIFO mode)
737 * @skb: sk_buff pointer that contains data to be Txed
738 * @ndev: Pointer to net_device structure
740 * Return: 0 on success, -ENOSPC if FIFO is full.
742 static int xcan_start_xmit_fifo(struct sk_buff
*skb
, struct net_device
*ndev
)
744 struct xcan_priv
*priv
= netdev_priv(ndev
);
747 /* Check if the TX buffer is full */
748 if (unlikely(priv
->read_reg(priv
, XCAN_SR_OFFSET
) &
752 spin_lock_irqsave(&priv
->tx_lock
, flags
);
754 xcan_write_frame(ndev
, skb
, XCAN_TXFIFO_OFFSET
);
756 /* Clear TX-FIFO-empty interrupt for xcan_tx_interrupt() */
757 if (priv
->tx_max
> 1)
758 priv
->write_reg(priv
, XCAN_ICR_OFFSET
, XCAN_IXR_TXFEMP_MASK
);
760 /* Check if the TX buffer is full */
761 if ((priv
->tx_head
- priv
->tx_tail
) == priv
->tx_max
)
762 netif_stop_queue(ndev
);
764 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
770 * xcan_start_xmit_mailbox - Starts the transmission (mailbox mode)
771 * @skb: sk_buff pointer that contains data to be Txed
772 * @ndev: Pointer to net_device structure
774 * Return: 0 on success, -ENOSPC if there is no space
776 static int xcan_start_xmit_mailbox(struct sk_buff
*skb
, struct net_device
*ndev
)
778 struct xcan_priv
*priv
= netdev_priv(ndev
);
781 if (unlikely(priv
->read_reg(priv
, XCAN_TRR_OFFSET
) &
782 BIT(XCAN_TX_MAILBOX_IDX
)))
785 spin_lock_irqsave(&priv
->tx_lock
, flags
);
787 xcan_write_frame(ndev
, skb
,
788 XCAN_TXMSG_FRAME_OFFSET(XCAN_TX_MAILBOX_IDX
));
790 /* Mark buffer as ready for transmit */
791 priv
->write_reg(priv
, XCAN_TRR_OFFSET
, BIT(XCAN_TX_MAILBOX_IDX
));
793 netif_stop_queue(ndev
);
795 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
801 * xcan_start_xmit - Starts the transmission
802 * @skb: sk_buff pointer that contains data to be Txed
803 * @ndev: Pointer to net_device structure
805 * This function is invoked from upper layers to initiate transmission.
807 * Return: NETDEV_TX_OK on success and NETDEV_TX_BUSY when the tx queue is full
809 static netdev_tx_t
xcan_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
811 struct xcan_priv
*priv
= netdev_priv(ndev
);
814 if (can_dev_dropped_skb(ndev
, skb
))
817 if (priv
->devtype
.flags
& XCAN_FLAG_TX_MAILBOXES
)
818 ret
= xcan_start_xmit_mailbox(skb
, ndev
);
820 ret
= xcan_start_xmit_fifo(skb
, ndev
);
823 netdev_err(ndev
, "BUG!, TX full when queue awake!\n");
824 netif_stop_queue(ndev
);
825 return NETDEV_TX_BUSY
;
832 * xcan_rx - Is called from CAN isr to complete the received
834 * @ndev: Pointer to net_device structure
835 * @frame_base: Register offset to the frame to be read
837 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
838 * does minimal processing and invokes "netif_receive_skb" to complete further
840 * Return: 1 on success and 0 on failure.
842 static int xcan_rx(struct net_device
*ndev
, int frame_base
)
844 struct xcan_priv
*priv
= netdev_priv(ndev
);
845 struct net_device_stats
*stats
= &ndev
->stats
;
846 struct can_frame
*cf
;
848 u32 id_xcan
, dlc
, data
[2] = {0, 0};
850 skb
= alloc_can_skb(ndev
, &cf
);
851 if (unlikely(!skb
)) {
856 /* Read a frame from Xilinx zynq CANPS */
857 id_xcan
= priv
->read_reg(priv
, XCAN_FRAME_ID_OFFSET(frame_base
));
858 dlc
= priv
->read_reg(priv
, XCAN_FRAME_DLC_OFFSET(frame_base
)) >>
861 /* Change Xilinx CAN data length format to socketCAN data format */
862 cf
->len
= can_cc_dlc2len(dlc
);
864 /* Change Xilinx CAN ID format to socketCAN ID format */
865 if (id_xcan
& XCAN_IDR_IDE_MASK
) {
866 /* The received frame is an Extended format frame */
867 cf
->can_id
= (id_xcan
& XCAN_IDR_ID1_MASK
) >> 3;
868 cf
->can_id
|= (id_xcan
& XCAN_IDR_ID2_MASK
) >>
870 cf
->can_id
|= CAN_EFF_FLAG
;
871 if (id_xcan
& XCAN_IDR_RTR_MASK
)
872 cf
->can_id
|= CAN_RTR_FLAG
;
874 /* The received frame is a standard format frame */
875 cf
->can_id
= (id_xcan
& XCAN_IDR_ID1_MASK
) >>
877 if (id_xcan
& XCAN_IDR_SRR_MASK
)
878 cf
->can_id
|= CAN_RTR_FLAG
;
881 /* DW1/DW2 must always be read to remove message from RXFIFO */
882 data
[0] = priv
->read_reg(priv
, XCAN_FRAME_DW1_OFFSET(frame_base
));
883 data
[1] = priv
->read_reg(priv
, XCAN_FRAME_DW2_OFFSET(frame_base
));
885 if (!(cf
->can_id
& CAN_RTR_FLAG
)) {
886 /* Change Xilinx CAN data format to socketCAN data format */
888 *(__be32
*)(cf
->data
) = cpu_to_be32(data
[0]);
890 *(__be32
*)(cf
->data
+ 4) = cpu_to_be32(data
[1]);
892 stats
->rx_bytes
+= cf
->len
;
896 netif_receive_skb(skb
);
902 * xcanfd_rx - Is called from CAN isr to complete the received
904 * @ndev: Pointer to net_device structure
905 * @frame_base: Register offset to the frame to be read
907 * This function is invoked from the CAN isr(poll) to process the Rx frames. It
908 * does minimal processing and invokes "netif_receive_skb" to complete further
910 * Return: 1 on success and 0 on failure.
912 static int xcanfd_rx(struct net_device
*ndev
, int frame_base
)
914 struct xcan_priv
*priv
= netdev_priv(ndev
);
915 struct net_device_stats
*stats
= &ndev
->stats
;
916 struct canfd_frame
*cf
;
918 u32 id_xcan
, dlc
, data
[2] = {0, 0}, dwindex
= 0, i
, dw_offset
;
920 id_xcan
= priv
->read_reg(priv
, XCAN_FRAME_ID_OFFSET(frame_base
));
921 dlc
= priv
->read_reg(priv
, XCAN_FRAME_DLC_OFFSET(frame_base
));
922 if (dlc
& XCAN_DLCR_EDL_MASK
)
923 skb
= alloc_canfd_skb(ndev
, &cf
);
925 skb
= alloc_can_skb(ndev
, (struct can_frame
**)&cf
);
927 if (unlikely(!skb
)) {
932 /* Change Xilinx CANFD data length format to socketCAN data
935 if (dlc
& XCAN_DLCR_EDL_MASK
)
936 cf
->len
= can_fd_dlc2len((dlc
& XCAN_DLCR_DLC_MASK
) >>
937 XCAN_DLCR_DLC_SHIFT
);
939 cf
->len
= can_cc_dlc2len((dlc
& XCAN_DLCR_DLC_MASK
) >>
940 XCAN_DLCR_DLC_SHIFT
);
942 /* Change Xilinx CAN ID format to socketCAN ID format */
943 if (id_xcan
& XCAN_IDR_IDE_MASK
) {
944 /* The received frame is an Extended format frame */
945 cf
->can_id
= (id_xcan
& XCAN_IDR_ID1_MASK
) >> 3;
946 cf
->can_id
|= (id_xcan
& XCAN_IDR_ID2_MASK
) >>
948 cf
->can_id
|= CAN_EFF_FLAG
;
949 if (id_xcan
& XCAN_IDR_RTR_MASK
)
950 cf
->can_id
|= CAN_RTR_FLAG
;
952 /* The received frame is a standard format frame */
953 cf
->can_id
= (id_xcan
& XCAN_IDR_ID1_MASK
) >>
955 if (!(dlc
& XCAN_DLCR_EDL_MASK
) && (id_xcan
&
957 cf
->can_id
|= CAN_RTR_FLAG
;
960 /* Check the frame received is FD or not*/
961 if (dlc
& XCAN_DLCR_EDL_MASK
) {
962 for (i
= 0; i
< cf
->len
; i
+= 4) {
963 dw_offset
= XCANFD_FRAME_DW_OFFSET(frame_base
) +
964 (dwindex
* XCANFD_DW_BYTES
);
965 data
[0] = priv
->read_reg(priv
, dw_offset
);
966 *(__be32
*)(cf
->data
+ i
) = cpu_to_be32(data
[0]);
970 for (i
= 0; i
< cf
->len
; i
+= 4) {
971 dw_offset
= XCANFD_FRAME_DW_OFFSET(frame_base
);
972 data
[0] = priv
->read_reg(priv
, dw_offset
+ i
);
973 *(__be32
*)(cf
->data
+ i
) = cpu_to_be32(data
[0]);
977 if (!(cf
->can_id
& CAN_RTR_FLAG
))
978 stats
->rx_bytes
+= cf
->len
;
981 netif_receive_skb(skb
);
987 * xcan_current_error_state - Get current error state from HW
988 * @ndev: Pointer to net_device structure
990 * Checks the current CAN error state from the HW. Note that this
991 * only checks for ERROR_PASSIVE and ERROR_WARNING.
994 * ERROR_PASSIVE or ERROR_WARNING if either is active, ERROR_ACTIVE
997 static enum can_state
xcan_current_error_state(struct net_device
*ndev
)
999 struct xcan_priv
*priv
= netdev_priv(ndev
);
1000 u32 status
= priv
->read_reg(priv
, XCAN_SR_OFFSET
);
1002 if ((status
& XCAN_SR_ESTAT_MASK
) == XCAN_SR_ESTAT_MASK
)
1003 return CAN_STATE_ERROR_PASSIVE
;
1004 else if (status
& XCAN_SR_ERRWRN_MASK
)
1005 return CAN_STATE_ERROR_WARNING
;
1007 return CAN_STATE_ERROR_ACTIVE
;
1011 * xcan_set_error_state - Set new CAN error state
1012 * @ndev: Pointer to net_device structure
1013 * @new_state: The new CAN state to be set
1014 * @cf: Error frame to be populated or NULL
1016 * Set new CAN error state for the device, updating statistics and
1017 * populating the error frame if given.
1019 static void xcan_set_error_state(struct net_device
*ndev
,
1020 enum can_state new_state
,
1021 struct can_frame
*cf
)
1023 struct xcan_priv
*priv
= netdev_priv(ndev
);
1024 u32 ecr
= priv
->read_reg(priv
, XCAN_ECR_OFFSET
);
1025 u32 txerr
= ecr
& XCAN_ECR_TEC_MASK
;
1026 u32 rxerr
= (ecr
& XCAN_ECR_REC_MASK
) >> XCAN_ESR_REC_SHIFT
;
1027 enum can_state tx_state
= txerr
>= rxerr
? new_state
: 0;
1028 enum can_state rx_state
= txerr
<= rxerr
? new_state
: 0;
1030 /* non-ERROR states are handled elsewhere */
1031 if (WARN_ON(new_state
> CAN_STATE_ERROR_PASSIVE
))
1034 can_change_state(ndev
, cf
, tx_state
, rx_state
);
1037 cf
->can_id
|= CAN_ERR_CNT
;
1038 cf
->data
[6] = txerr
;
1039 cf
->data
[7] = rxerr
;
1044 * xcan_update_error_state_after_rxtx - Update CAN error state after RX/TX
1045 * @ndev: Pointer to net_device structure
1047 * If the device is in a ERROR-WARNING or ERROR-PASSIVE state, check if
1048 * the performed RX/TX has caused it to drop to a lesser state and set
1049 * the interface state accordingly.
1051 static void xcan_update_error_state_after_rxtx(struct net_device
*ndev
)
1053 struct xcan_priv
*priv
= netdev_priv(ndev
);
1054 enum can_state old_state
= priv
->can
.state
;
1055 enum can_state new_state
;
1057 /* changing error state due to successful frame RX/TX can only
1058 * occur from these states
1060 if (old_state
!= CAN_STATE_ERROR_WARNING
&&
1061 old_state
!= CAN_STATE_ERROR_PASSIVE
)
1064 new_state
= xcan_current_error_state(ndev
);
1066 if (new_state
!= old_state
) {
1067 struct sk_buff
*skb
;
1068 struct can_frame
*cf
;
1070 skb
= alloc_can_err_skb(ndev
, &cf
);
1072 xcan_set_error_state(ndev
, new_state
, skb
? cf
: NULL
);
1080 * xcan_err_interrupt - error frame Isr
1081 * @ndev: net_device pointer
1082 * @isr: interrupt status register value
1084 * This is the CAN error interrupt and it will
1085 * check the type of error and forward the error
1086 * frame to upper layers.
1088 static void xcan_err_interrupt(struct net_device
*ndev
, u32 isr
)
1090 struct xcan_priv
*priv
= netdev_priv(ndev
);
1091 struct net_device_stats
*stats
= &ndev
->stats
;
1092 struct can_frame cf
= { };
1095 err_status
= priv
->read_reg(priv
, XCAN_ESR_OFFSET
);
1096 priv
->write_reg(priv
, XCAN_ESR_OFFSET
, err_status
);
1098 if (isr
& XCAN_IXR_BSOFF_MASK
) {
1099 priv
->can
.state
= CAN_STATE_BUS_OFF
;
1100 priv
->can
.can_stats
.bus_off
++;
1101 /* Leave device in Config Mode in bus-off state */
1102 priv
->write_reg(priv
, XCAN_SRR_OFFSET
, XCAN_SRR_RESET_MASK
);
1104 cf
.can_id
|= CAN_ERR_BUSOFF
;
1106 enum can_state new_state
= xcan_current_error_state(ndev
);
1108 if (new_state
!= priv
->can
.state
)
1109 xcan_set_error_state(ndev
, new_state
, &cf
);
1112 /* Check for Arbitration lost interrupt */
1113 if (isr
& XCAN_IXR_ARBLST_MASK
) {
1114 priv
->can
.can_stats
.arbitration_lost
++;
1115 cf
.can_id
|= CAN_ERR_LOSTARB
;
1116 cf
.data
[0] = CAN_ERR_LOSTARB_UNSPEC
;
1119 /* Check for RX FIFO Overflow interrupt */
1120 if (isr
& XCAN_IXR_RXOFLW_MASK
) {
1121 stats
->rx_over_errors
++;
1123 cf
.can_id
|= CAN_ERR_CRTL
;
1124 cf
.data
[1] |= CAN_ERR_CRTL_RX_OVERFLOW
;
1127 /* Check for RX Match Not Finished interrupt */
1128 if (isr
& XCAN_IXR_RXMNF_MASK
) {
1129 stats
->rx_dropped
++;
1131 netdev_err(ndev
, "RX match not finished, frame discarded\n");
1132 cf
.can_id
|= CAN_ERR_CRTL
;
1133 cf
.data
[1] |= CAN_ERR_CRTL_UNSPEC
;
1136 /* Check for error interrupt */
1137 if (isr
& XCAN_IXR_ERROR_MASK
) {
1138 bool berr_reporting
= false;
1140 if (priv
->can
.ctrlmode
& CAN_CTRLMODE_BERR_REPORTING
) {
1141 berr_reporting
= true;
1142 cf
.can_id
|= CAN_ERR_PROT
| CAN_ERR_BUSERROR
;
1145 /* Check for Ack error interrupt */
1146 if (err_status
& XCAN_ESR_ACKER_MASK
) {
1148 if (berr_reporting
) {
1149 cf
.can_id
|= CAN_ERR_ACK
;
1150 cf
.data
[3] = CAN_ERR_PROT_LOC_ACK
;
1154 /* Check for Bit error interrupt */
1155 if (err_status
& XCAN_ESR_BERR_MASK
) {
1157 if (berr_reporting
) {
1158 cf
.can_id
|= CAN_ERR_PROT
;
1159 cf
.data
[2] = CAN_ERR_PROT_BIT
;
1163 /* Check for Stuff error interrupt */
1164 if (err_status
& XCAN_ESR_STER_MASK
) {
1166 if (berr_reporting
) {
1167 cf
.can_id
|= CAN_ERR_PROT
;
1168 cf
.data
[2] = CAN_ERR_PROT_STUFF
;
1172 /* Check for Form error interrupt */
1173 if (err_status
& XCAN_ESR_FMER_MASK
) {
1175 if (berr_reporting
) {
1176 cf
.can_id
|= CAN_ERR_PROT
;
1177 cf
.data
[2] = CAN_ERR_PROT_FORM
;
1181 /* Check for CRC error interrupt */
1182 if (err_status
& XCAN_ESR_CRCER_MASK
) {
1184 if (berr_reporting
) {
1185 cf
.can_id
|= CAN_ERR_PROT
;
1186 cf
.data
[3] = CAN_ERR_PROT_LOC_CRC_SEQ
;
1189 priv
->can
.can_stats
.bus_error
++;
1192 if (priv
->ecc_enable
&& isr
& XCAN_IXR_ECC_MASK
) {
1193 u32 reg_rx_ecc
, reg_txol_ecc
, reg_txtl_ecc
;
1195 reg_rx_ecc
= priv
->read_reg(priv
, XCAN_RXFIFO_ECC_OFFSET
);
1196 reg_txol_ecc
= priv
->read_reg(priv
, XCAN_TXOLFIFO_ECC_OFFSET
);
1197 reg_txtl_ecc
= priv
->read_reg(priv
, XCAN_TXTLFIFO_ECC_OFFSET
);
1199 /* The counter reaches its maximum at 0xffff and does not overflow.
1200 * Accept the small race window between reading and resetting ECC counters.
1202 priv
->write_reg(priv
, XCAN_ECC_CFG_OFFSET
, XCAN_ECC_CFG_REECRX_MASK
|
1203 XCAN_ECC_CFG_REECTXOL_MASK
| XCAN_ECC_CFG_REECTXTL_MASK
);
1205 u64_stats_update_begin(&priv
->syncp
);
1207 if (isr
& XCAN_IXR_E2BERX_MASK
) {
1208 u64_stats_add(&priv
->ecc_rx_2_bit_errors
,
1209 FIELD_GET(XCAN_ECC_2BIT_CNT_MASK
, reg_rx_ecc
));
1212 if (isr
& XCAN_IXR_E1BERX_MASK
) {
1213 u64_stats_add(&priv
->ecc_rx_1_bit_errors
,
1214 FIELD_GET(XCAN_ECC_1BIT_CNT_MASK
, reg_rx_ecc
));
1217 if (isr
& XCAN_IXR_E2BETXOL_MASK
) {
1218 u64_stats_add(&priv
->ecc_txol_2_bit_errors
,
1219 FIELD_GET(XCAN_ECC_2BIT_CNT_MASK
, reg_txol_ecc
));
1222 if (isr
& XCAN_IXR_E1BETXOL_MASK
) {
1223 u64_stats_add(&priv
->ecc_txol_1_bit_errors
,
1224 FIELD_GET(XCAN_ECC_1BIT_CNT_MASK
, reg_txol_ecc
));
1227 if (isr
& XCAN_IXR_E2BETXTL_MASK
) {
1228 u64_stats_add(&priv
->ecc_txtl_2_bit_errors
,
1229 FIELD_GET(XCAN_ECC_2BIT_CNT_MASK
, reg_txtl_ecc
));
1232 if (isr
& XCAN_IXR_E1BETXTL_MASK
) {
1233 u64_stats_add(&priv
->ecc_txtl_1_bit_errors
,
1234 FIELD_GET(XCAN_ECC_1BIT_CNT_MASK
, reg_txtl_ecc
));
1237 u64_stats_update_end(&priv
->syncp
);
1241 struct can_frame
*skb_cf
;
1242 struct sk_buff
*skb
= alloc_can_err_skb(ndev
, &skb_cf
);
1245 skb_cf
->can_id
|= cf
.can_id
;
1246 memcpy(skb_cf
->data
, cf
.data
, CAN_ERR_DLC
);
1251 netdev_dbg(ndev
, "%s: error status register:0x%x\n",
1252 __func__
, priv
->read_reg(priv
, XCAN_ESR_OFFSET
));
1256 * xcan_state_interrupt - It will check the state of the CAN device
1257 * @ndev: net_device pointer
1258 * @isr: interrupt status register value
1260 * This will checks the state of the CAN device
1261 * and puts the device into appropriate state.
1263 static void xcan_state_interrupt(struct net_device
*ndev
, u32 isr
)
1265 struct xcan_priv
*priv
= netdev_priv(ndev
);
1267 /* Check for Sleep interrupt if set put CAN device in sleep state */
1268 if (isr
& XCAN_IXR_SLP_MASK
)
1269 priv
->can
.state
= CAN_STATE_SLEEPING
;
1271 /* Check for Wake up interrupt if set put CAN device in Active state */
1272 if (isr
& XCAN_IXR_WKUP_MASK
)
1273 priv
->can
.state
= CAN_STATE_ERROR_ACTIVE
;
1277 * xcan_rx_fifo_get_next_frame - Get register offset of next RX frame
1278 * @priv: Driver private data structure
1280 * Return: Register offset of the next frame in RX FIFO.
1282 static int xcan_rx_fifo_get_next_frame(struct xcan_priv
*priv
)
1286 if (priv
->devtype
.flags
& XCAN_FLAG_RX_FIFO_MULTI
) {
1289 /* clear RXOK before the is-empty check so that any newly
1290 * received frame will reassert it without a race
1292 priv
->write_reg(priv
, XCAN_ICR_OFFSET
, XCAN_IXR_RXOK_MASK
);
1294 fsr
= priv
->read_reg(priv
, XCAN_FSR_OFFSET
);
1296 /* check if RX FIFO is empty */
1297 if (priv
->devtype
.flags
& XCAN_FLAG_CANFD_2
)
1298 mask
= XCAN_2_FSR_FL_MASK
;
1300 mask
= XCAN_FSR_FL_MASK
;
1305 if (priv
->devtype
.flags
& XCAN_FLAG_CANFD_2
)
1307 XCAN_RXMSG_2_FRAME_OFFSET(fsr
& XCAN_2_FSR_RI_MASK
);
1310 XCAN_RXMSG_FRAME_OFFSET(fsr
& XCAN_FSR_RI_MASK
);
1313 /* check if RX FIFO is empty */
1314 if (!(priv
->read_reg(priv
, XCAN_ISR_OFFSET
) &
1315 XCAN_IXR_RXNEMP_MASK
))
1318 /* frames are read from a static offset */
1319 offset
= XCAN_RXFIFO_OFFSET
;
1326 * xcan_rx_poll - Poll routine for rx packets (NAPI)
1327 * @napi: napi structure pointer
1328 * @quota: Max number of rx packets to be processed.
1330 * This is the poll routine for rx part.
1331 * It will process the packets maximux quota value.
1333 * Return: number of packets received
1335 static int xcan_rx_poll(struct napi_struct
*napi
, int quota
)
1337 struct net_device
*ndev
= napi
->dev
;
1338 struct xcan_priv
*priv
= netdev_priv(ndev
);
1343 while ((frame_offset
= xcan_rx_fifo_get_next_frame(priv
)) >= 0 &&
1344 (work_done
< quota
)) {
1345 if (xcan_rx_int_mask(priv
) & XCAN_IXR_RXOK_MASK
)
1346 work_done
+= xcanfd_rx(ndev
, frame_offset
);
1348 work_done
+= xcan_rx(ndev
, frame_offset
);
1350 if (priv
->devtype
.flags
& XCAN_FLAG_RX_FIFO_MULTI
)
1351 /* increment read index */
1352 priv
->write_reg(priv
, XCAN_FSR_OFFSET
,
1355 /* clear rx-not-empty (will actually clear only if
1358 priv
->write_reg(priv
, XCAN_ICR_OFFSET
,
1359 XCAN_IXR_RXNEMP_MASK
);
1363 xcan_update_error_state_after_rxtx(ndev
);
1365 if (work_done
< quota
) {
1366 if (napi_complete_done(napi
, work_done
)) {
1367 ier
= priv
->read_reg(priv
, XCAN_IER_OFFSET
);
1368 ier
|= xcan_rx_int_mask(priv
);
1369 priv
->write_reg(priv
, XCAN_IER_OFFSET
, ier
);
1376 * xcan_tx_interrupt - Tx Done Isr
1377 * @ndev: net_device pointer
1378 * @isr: Interrupt status register value
1380 static void xcan_tx_interrupt(struct net_device
*ndev
, u32 isr
)
1382 struct xcan_priv
*priv
= netdev_priv(ndev
);
1383 struct net_device_stats
*stats
= &ndev
->stats
;
1384 unsigned int frames_in_fifo
;
1385 int frames_sent
= 1; /* TXOK => at least 1 frame was sent */
1386 unsigned long flags
;
1389 /* Synchronize with xmit as we need to know the exact number
1390 * of frames in the FIFO to stay in sync due to the TXFEMP
1392 * This also prevents a race between netif_wake_queue() and
1393 * netif_stop_queue().
1395 spin_lock_irqsave(&priv
->tx_lock
, flags
);
1397 frames_in_fifo
= priv
->tx_head
- priv
->tx_tail
;
1399 if (WARN_ON_ONCE(frames_in_fifo
== 0)) {
1400 /* clear TXOK anyway to avoid getting back here */
1401 priv
->write_reg(priv
, XCAN_ICR_OFFSET
, XCAN_IXR_TXOK_MASK
);
1402 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1406 /* Check if 2 frames were sent (TXOK only means that at least 1
1409 if (frames_in_fifo
> 1) {
1410 WARN_ON(frames_in_fifo
> priv
->tx_max
);
1412 /* Synchronize TXOK and isr so that after the loop:
1413 * (1) isr variable is up-to-date at least up to TXOK clear
1414 * time. This avoids us clearing a TXOK of a second frame
1415 * but not noticing that the FIFO is now empty and thus
1416 * marking only a single frame as sent.
1417 * (2) No TXOK is left. Having one could mean leaving a
1418 * stray TXOK as we might process the associated frame
1419 * via TXFEMP handling as we read TXFEMP *after* TXOK
1420 * clear to satisfy (1).
1422 while ((isr
& XCAN_IXR_TXOK_MASK
) &&
1423 !WARN_ON(++retries
== 100)) {
1424 priv
->write_reg(priv
, XCAN_ICR_OFFSET
,
1425 XCAN_IXR_TXOK_MASK
);
1426 isr
= priv
->read_reg(priv
, XCAN_ISR_OFFSET
);
1429 if (isr
& XCAN_IXR_TXFEMP_MASK
) {
1430 /* nothing in FIFO anymore */
1431 frames_sent
= frames_in_fifo
;
1434 /* single frame in fifo, just clear TXOK */
1435 priv
->write_reg(priv
, XCAN_ICR_OFFSET
, XCAN_IXR_TXOK_MASK
);
1438 while (frames_sent
--) {
1439 stats
->tx_bytes
+= can_get_echo_skb(ndev
, priv
->tx_tail
%
1440 priv
->tx_max
, NULL
);
1442 stats
->tx_packets
++;
1445 netif_wake_queue(ndev
);
1447 spin_unlock_irqrestore(&priv
->tx_lock
, flags
);
1449 xcan_update_error_state_after_rxtx(ndev
);
1453 * xcan_interrupt - CAN Isr
1455 * @dev_id: device id pointer
1457 * This is the xilinx CAN Isr. It checks for the type of interrupt
1458 * and invokes the corresponding ISR.
1461 * IRQ_NONE - If CAN device is in sleep mode, IRQ_HANDLED otherwise
1463 static irqreturn_t
xcan_interrupt(int irq
, void *dev_id
)
1465 struct net_device
*ndev
= (struct net_device
*)dev_id
;
1466 struct xcan_priv
*priv
= netdev_priv(ndev
);
1467 u32 isr_errors
, mask
;
1469 u32 rx_int_mask
= xcan_rx_int_mask(priv
);
1471 /* Get the interrupt status from Xilinx CAN */
1472 isr
= priv
->read_reg(priv
, XCAN_ISR_OFFSET
);
1476 /* Check for the type of interrupt and Processing it */
1477 if (isr
& (XCAN_IXR_SLP_MASK
| XCAN_IXR_WKUP_MASK
)) {
1478 priv
->write_reg(priv
, XCAN_ICR_OFFSET
, (XCAN_IXR_SLP_MASK
|
1479 XCAN_IXR_WKUP_MASK
));
1480 xcan_state_interrupt(ndev
, isr
);
1483 /* Check for Tx interrupt and Processing it */
1484 if (isr
& XCAN_IXR_TXOK_MASK
)
1485 xcan_tx_interrupt(ndev
, isr
);
1487 mask
= XCAN_IXR_ERROR_MASK
| XCAN_IXR_RXOFLW_MASK
|
1488 XCAN_IXR_BSOFF_MASK
| XCAN_IXR_ARBLST_MASK
|
1489 XCAN_IXR_RXMNF_MASK
;
1491 if (priv
->ecc_enable
)
1492 mask
|= XCAN_IXR_ECC_MASK
;
1494 /* Check for the type of error interrupt and Processing it */
1495 isr_errors
= isr
& mask
;
1497 priv
->write_reg(priv
, XCAN_ICR_OFFSET
, isr_errors
);
1498 xcan_err_interrupt(ndev
, isr
);
1501 /* Check for the type of receive interrupt and Processing it */
1502 if (isr
& rx_int_mask
) {
1503 ier
= priv
->read_reg(priv
, XCAN_IER_OFFSET
);
1504 ier
&= ~rx_int_mask
;
1505 priv
->write_reg(priv
, XCAN_IER_OFFSET
, ier
);
1506 napi_schedule(&priv
->napi
);
1512 * xcan_chip_stop - Driver stop routine
1513 * @ndev: Pointer to net_device structure
1515 * This is the drivers stop routine. It will disable the
1516 * interrupts and put the device into configuration mode.
1518 static void xcan_chip_stop(struct net_device
*ndev
)
1520 struct xcan_priv
*priv
= netdev_priv(ndev
);
1523 /* Disable interrupts and leave the can in configuration mode */
1524 ret
= set_reset_mode(ndev
);
1526 netdev_dbg(ndev
, "set_reset_mode() Failed\n");
1528 priv
->can
.state
= CAN_STATE_STOPPED
;
1532 * xcan_open - Driver open routine
1533 * @ndev: Pointer to net_device structure
1535 * This is the driver open routine.
1536 * Return: 0 on success and failure value on error
1538 static int xcan_open(struct net_device
*ndev
)
1540 struct xcan_priv
*priv
= netdev_priv(ndev
);
1543 ret
= phy_power_on(priv
->transceiver
);
1547 ret
= pm_runtime_get_sync(priv
->dev
);
1549 netdev_err(ndev
, "%s: pm_runtime_get failed(%d)\n",
1554 ret
= request_irq(ndev
->irq
, xcan_interrupt
, priv
->irq_flags
,
1557 netdev_err(ndev
, "irq allocation for CAN failed\n");
1561 /* Set chip into reset mode */
1562 ret
= set_reset_mode(ndev
);
1564 netdev_err(ndev
, "mode resetting failed!\n");
1569 ret
= open_candev(ndev
);
1573 ret
= xcan_chip_start(ndev
);
1575 netdev_err(ndev
, "xcan_chip_start failed!\n");
1579 napi_enable(&priv
->napi
);
1580 netif_start_queue(ndev
);
1587 free_irq(ndev
->irq
, ndev
);
1589 pm_runtime_put(priv
->dev
);
1590 phy_power_off(priv
->transceiver
);
1596 * xcan_close - Driver close routine
1597 * @ndev: Pointer to net_device structure
1601 static int xcan_close(struct net_device
*ndev
)
1603 struct xcan_priv
*priv
= netdev_priv(ndev
);
1605 netif_stop_queue(ndev
);
1606 napi_disable(&priv
->napi
);
1607 xcan_chip_stop(ndev
);
1608 free_irq(ndev
->irq
, ndev
);
1611 pm_runtime_put(priv
->dev
);
1612 phy_power_off(priv
->transceiver
);
1618 * xcan_get_berr_counter - error counter routine
1619 * @ndev: Pointer to net_device structure
1620 * @bec: Pointer to can_berr_counter structure
1622 * This is the driver error counter routine.
1623 * Return: 0 on success and failure value on error
1625 static int xcan_get_berr_counter(const struct net_device
*ndev
,
1626 struct can_berr_counter
*bec
)
1628 struct xcan_priv
*priv
= netdev_priv(ndev
);
1631 ret
= pm_runtime_get_sync(priv
->dev
);
1633 netdev_err(ndev
, "%s: pm_runtime_get failed(%d)\n",
1635 pm_runtime_put(priv
->dev
);
1639 bec
->txerr
= priv
->read_reg(priv
, XCAN_ECR_OFFSET
) & XCAN_ECR_TEC_MASK
;
1640 bec
->rxerr
= ((priv
->read_reg(priv
, XCAN_ECR_OFFSET
) &
1641 XCAN_ECR_REC_MASK
) >> XCAN_ESR_REC_SHIFT
);
1643 pm_runtime_put(priv
->dev
);
1649 * xcan_get_auto_tdcv - Get Transmitter Delay Compensation Value
1650 * @ndev: Pointer to net_device structure
1651 * @tdcv: Pointer to TDCV value
1653 * Return: 0 on success
1655 static int xcan_get_auto_tdcv(const struct net_device
*ndev
, u32
*tdcv
)
1657 struct xcan_priv
*priv
= netdev_priv(ndev
);
1659 *tdcv
= FIELD_GET(XCAN_SR_TDCV_MASK
, priv
->read_reg(priv
, XCAN_SR_OFFSET
));
1664 static void xcan_get_strings(struct net_device
*ndev
, u32 stringset
, u8
*buf
)
1666 switch (stringset
) {
1668 memcpy(buf
, &xcan_priv_flags_strings
,
1669 sizeof(xcan_priv_flags_strings
));
1673 static int xcan_get_sset_count(struct net_device
*netdev
, int sset
)
1677 return ARRAY_SIZE(xcan_priv_flags_strings
);
1683 static void xcan_get_ethtool_stats(struct net_device
*ndev
,
1684 struct ethtool_stats
*stats
, u64
*data
)
1686 struct xcan_priv
*priv
= netdev_priv(ndev
);
1690 start
= u64_stats_fetch_begin(&priv
->syncp
);
1692 data
[XCAN_ECC_RX_2_BIT_ERRORS
] = u64_stats_read(&priv
->ecc_rx_2_bit_errors
);
1693 data
[XCAN_ECC_RX_1_BIT_ERRORS
] = u64_stats_read(&priv
->ecc_rx_1_bit_errors
);
1694 data
[XCAN_ECC_TXOL_2_BIT_ERRORS
] = u64_stats_read(&priv
->ecc_txol_2_bit_errors
);
1695 data
[XCAN_ECC_TXOL_1_BIT_ERRORS
] = u64_stats_read(&priv
->ecc_txol_1_bit_errors
);
1696 data
[XCAN_ECC_TXTL_2_BIT_ERRORS
] = u64_stats_read(&priv
->ecc_txtl_2_bit_errors
);
1697 data
[XCAN_ECC_TXTL_1_BIT_ERRORS
] = u64_stats_read(&priv
->ecc_txtl_1_bit_errors
);
1698 } while (u64_stats_fetch_retry(&priv
->syncp
, start
));
1701 static const struct net_device_ops xcan_netdev_ops
= {
1702 .ndo_open
= xcan_open
,
1703 .ndo_stop
= xcan_close
,
1704 .ndo_start_xmit
= xcan_start_xmit
,
1705 .ndo_change_mtu
= can_change_mtu
,
1708 static const struct ethtool_ops xcan_ethtool_ops
= {
1709 .get_ts_info
= ethtool_op_get_ts_info
,
1710 .get_strings
= xcan_get_strings
,
1711 .get_sset_count
= xcan_get_sset_count
,
1712 .get_ethtool_stats
= xcan_get_ethtool_stats
,
1716 * xcan_suspend - Suspend method for the driver
1717 * @dev: Address of the device structure
1719 * Put the driver into low power mode.
1720 * Return: 0 on success and failure value on error
1722 static int __maybe_unused
xcan_suspend(struct device
*dev
)
1724 struct net_device
*ndev
= dev_get_drvdata(dev
);
1726 if (netif_running(ndev
)) {
1727 netif_stop_queue(ndev
);
1728 netif_device_detach(ndev
);
1729 xcan_chip_stop(ndev
);
1732 return pm_runtime_force_suspend(dev
);
1736 * xcan_resume - Resume from suspend
1737 * @dev: Address of the device structure
1739 * Resume operation after suspend.
1740 * Return: 0 on success and failure value on error
1742 static int __maybe_unused
xcan_resume(struct device
*dev
)
1744 struct net_device
*ndev
= dev_get_drvdata(dev
);
1747 ret
= pm_runtime_force_resume(dev
);
1749 dev_err(dev
, "pm_runtime_force_resume failed on resume\n");
1753 if (netif_running(ndev
)) {
1754 ret
= xcan_chip_start(ndev
);
1756 dev_err(dev
, "xcan_chip_start failed on resume\n");
1760 netif_device_attach(ndev
);
1761 netif_start_queue(ndev
);
1768 * xcan_runtime_suspend - Runtime suspend method for the driver
1769 * @dev: Address of the device structure
1771 * Put the driver into low power mode.
1774 static int __maybe_unused
xcan_runtime_suspend(struct device
*dev
)
1776 struct net_device
*ndev
= dev_get_drvdata(dev
);
1777 struct xcan_priv
*priv
= netdev_priv(ndev
);
1779 clk_disable_unprepare(priv
->bus_clk
);
1780 clk_disable_unprepare(priv
->can_clk
);
1786 * xcan_runtime_resume - Runtime resume from suspend
1787 * @dev: Address of the device structure
1789 * Resume operation after suspend.
1790 * Return: 0 on success and failure value on error
1792 static int __maybe_unused
xcan_runtime_resume(struct device
*dev
)
1794 struct net_device
*ndev
= dev_get_drvdata(dev
);
1795 struct xcan_priv
*priv
= netdev_priv(ndev
);
1798 ret
= clk_prepare_enable(priv
->bus_clk
);
1800 dev_err(dev
, "Cannot enable clock.\n");
1803 ret
= clk_prepare_enable(priv
->can_clk
);
1805 dev_err(dev
, "Cannot enable clock.\n");
1806 clk_disable_unprepare(priv
->bus_clk
);
1813 static const struct dev_pm_ops xcan_dev_pm_ops
= {
1814 SET_SYSTEM_SLEEP_PM_OPS(xcan_suspend
, xcan_resume
)
1815 SET_RUNTIME_PM_OPS(xcan_runtime_suspend
, xcan_runtime_resume
, NULL
)
1818 static const struct xcan_devtype_data xcan_zynq_data
= {
1819 .cantype
= XZYNQ_CANPS
,
1820 .flags
= XCAN_FLAG_TXFEMP
,
1821 .bittiming_const
= &xcan_bittiming_const
,
1822 .btr_ts2_shift
= XCAN_BTR_TS2_SHIFT
,
1823 .btr_sjw_shift
= XCAN_BTR_SJW_SHIFT
,
1824 .bus_clk_name
= "pclk",
1827 static const struct xcan_devtype_data xcan_axi_data
= {
1828 .cantype
= XAXI_CAN
,
1829 .bittiming_const
= &xcan_bittiming_const
,
1830 .btr_ts2_shift
= XCAN_BTR_TS2_SHIFT
,
1831 .btr_sjw_shift
= XCAN_BTR_SJW_SHIFT
,
1832 .bus_clk_name
= "s_axi_aclk",
1835 static const struct xcan_devtype_data xcan_canfd_data
= {
1836 .cantype
= XAXI_CANFD
,
1837 .flags
= XCAN_FLAG_EXT_FILTERS
|
1839 XCAN_FLAG_TX_MAILBOXES
|
1840 XCAN_FLAG_RX_FIFO_MULTI
,
1841 .bittiming_const
= &xcan_bittiming_const_canfd
,
1842 .btr_ts2_shift
= XCAN_BTR_TS2_SHIFT_CANFD
,
1843 .btr_sjw_shift
= XCAN_BTR_SJW_SHIFT_CANFD
,
1844 .bus_clk_name
= "s_axi_aclk",
1847 static const struct xcan_devtype_data xcan_canfd2_data
= {
1848 .cantype
= XAXI_CANFD_2_0
,
1849 .flags
= XCAN_FLAG_EXT_FILTERS
|
1851 XCAN_FLAG_TX_MAILBOXES
|
1853 XCAN_FLAG_RX_FIFO_MULTI
,
1854 .bittiming_const
= &xcan_bittiming_const_canfd2
,
1855 .btr_ts2_shift
= XCAN_BTR_TS2_SHIFT_CANFD
,
1856 .btr_sjw_shift
= XCAN_BTR_SJW_SHIFT_CANFD
,
1857 .bus_clk_name
= "s_axi_aclk",
1860 /* Match table for OF platform binding */
1861 static const struct of_device_id xcan_of_match
[] = {
1862 { .compatible
= "xlnx,zynq-can-1.0", .data
= &xcan_zynq_data
},
1863 { .compatible
= "xlnx,axi-can-1.00.a", .data
= &xcan_axi_data
},
1864 { .compatible
= "xlnx,canfd-1.0", .data
= &xcan_canfd_data
},
1865 { .compatible
= "xlnx,canfd-2.0", .data
= &xcan_canfd2_data
},
1866 { /* end of list */ },
1868 MODULE_DEVICE_TABLE(of
, xcan_of_match
);
1871 * xcan_probe - Platform registration call
1872 * @pdev: Handle to the platform device structure
1874 * This function does all the memory allocation and registration for the CAN
1877 * Return: 0 on success and failure value on error
1879 static int xcan_probe(struct platform_device
*pdev
)
1881 struct net_device
*ndev
;
1882 struct xcan_priv
*priv
;
1883 struct phy
*transceiver
;
1884 const struct xcan_devtype_data
*devtype
;
1888 u32 hw_tx_max
= 0, hw_rx_max
= 0;
1889 const char *hw_tx_max_property
;
1891 /* Get the virtual base address for the device */
1892 addr
= devm_platform_ioremap_resource(pdev
, 0);
1894 ret
= PTR_ERR(addr
);
1898 devtype
= device_get_match_data(&pdev
->dev
);
1900 hw_tx_max_property
= devtype
->flags
& XCAN_FLAG_TX_MAILBOXES
?
1901 "tx-mailbox-count" : "tx-fifo-depth";
1903 ret
= of_property_read_u32(pdev
->dev
.of_node
, hw_tx_max_property
,
1906 dev_err(&pdev
->dev
, "missing %s property\n",
1907 hw_tx_max_property
);
1911 ret
= of_property_read_u32(pdev
->dev
.of_node
, "rx-fifo-depth",
1915 "missing rx-fifo-depth property (mailbox mode is not supported)\n");
1921 * There is no way to directly figure out how many frames have been
1922 * sent when the TXOK interrupt is processed. If TXFEMP
1923 * is supported, we can have 2 frames in the FIFO and use TXFEMP
1924 * to determine if 1 or 2 frames have been sent.
1925 * Theoretically we should be able to use TXFWMEMP to determine up
1926 * to 3 frames, but it seems that after putting a second frame in the
1927 * FIFO, with watermark at 2 frames, it can happen that TXFWMEMP (less
1928 * than 2 frames in FIFO) is set anyway with no TXOK (a frame was
1929 * sent), which is not a sensible state - possibly TXFWMEMP is not
1930 * completely synchronized with the rest of the bits?
1932 * With TX mailboxes:
1934 * HW sends frames in CAN ID priority order. To preserve FIFO ordering
1935 * we submit frames one at a time.
1937 if (!(devtype
->flags
& XCAN_FLAG_TX_MAILBOXES
) &&
1938 (devtype
->flags
& XCAN_FLAG_TXFEMP
))
1939 tx_max
= min(hw_tx_max
, 2U);
1945 /* Create a CAN device instance */
1946 ndev
= alloc_candev(sizeof(struct xcan_priv
), tx_max
);
1950 priv
= netdev_priv(ndev
);
1951 priv
->ecc_enable
= of_property_read_bool(pdev
->dev
.of_node
, "xlnx,has-ecc");
1952 priv
->dev
= &pdev
->dev
;
1953 priv
->can
.bittiming_const
= devtype
->bittiming_const
;
1954 priv
->can
.do_set_mode
= xcan_do_set_mode
;
1955 priv
->can
.do_get_berr_counter
= xcan_get_berr_counter
;
1956 priv
->can
.ctrlmode_supported
= CAN_CTRLMODE_LOOPBACK
|
1957 CAN_CTRLMODE_BERR_REPORTING
;
1958 priv
->rstc
= devm_reset_control_get_optional_exclusive(&pdev
->dev
, NULL
);
1959 if (IS_ERR(priv
->rstc
)) {
1960 dev_err(&pdev
->dev
, "Cannot get CAN reset.\n");
1961 ret
= PTR_ERR(priv
->rstc
);
1965 ret
= reset_control_reset(priv
->rstc
);
1969 if (devtype
->cantype
== XAXI_CANFD
) {
1970 priv
->can
.data_bittiming_const
=
1971 &xcan_data_bittiming_const_canfd
;
1972 priv
->can
.tdc_const
= &xcan_tdc_const_canfd
;
1975 if (devtype
->cantype
== XAXI_CANFD_2_0
) {
1976 priv
->can
.data_bittiming_const
=
1977 &xcan_data_bittiming_const_canfd2
;
1978 priv
->can
.tdc_const
= &xcan_tdc_const_canfd2
;
1981 if (devtype
->cantype
== XAXI_CANFD
||
1982 devtype
->cantype
== XAXI_CANFD_2_0
) {
1983 priv
->can
.ctrlmode_supported
|= CAN_CTRLMODE_FD
|
1984 CAN_CTRLMODE_TDC_AUTO
;
1985 priv
->can
.do_get_auto_tdcv
= xcan_get_auto_tdcv
;
1988 priv
->reg_base
= addr
;
1989 priv
->tx_max
= tx_max
;
1990 priv
->devtype
= *devtype
;
1991 spin_lock_init(&priv
->tx_lock
);
1993 /* Get IRQ for the device */
1994 ret
= platform_get_irq(pdev
, 0);
2000 ndev
->flags
|= IFF_ECHO
; /* We support local echo */
2002 platform_set_drvdata(pdev
, ndev
);
2003 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
2004 ndev
->netdev_ops
= &xcan_netdev_ops
;
2005 ndev
->ethtool_ops
= &xcan_ethtool_ops
;
2007 /* Getting the CAN can_clk info */
2008 priv
->can_clk
= devm_clk_get(&pdev
->dev
, "can_clk");
2009 if (IS_ERR(priv
->can_clk
)) {
2010 ret
= dev_err_probe(&pdev
->dev
, PTR_ERR(priv
->can_clk
),
2011 "device clock not found\n");
2015 priv
->bus_clk
= devm_clk_get(&pdev
->dev
, devtype
->bus_clk_name
);
2016 if (IS_ERR(priv
->bus_clk
)) {
2017 ret
= dev_err_probe(&pdev
->dev
, PTR_ERR(priv
->bus_clk
),
2018 "bus clock not found\n");
2022 transceiver
= devm_phy_optional_get(&pdev
->dev
, NULL
);
2023 if (IS_ERR(transceiver
)) {
2024 ret
= PTR_ERR(transceiver
);
2025 dev_err_probe(&pdev
->dev
, ret
, "failed to get phy\n");
2028 priv
->transceiver
= transceiver
;
2030 priv
->write_reg
= xcan_write_reg_le
;
2031 priv
->read_reg
= xcan_read_reg_le
;
2033 pm_runtime_enable(&pdev
->dev
);
2034 ret
= pm_runtime_get_sync(&pdev
->dev
);
2036 netdev_err(ndev
, "%s: pm_runtime_get failed(%d)\n",
2038 goto err_disableclks
;
2041 if (priv
->read_reg(priv
, XCAN_SR_OFFSET
) != XCAN_SR_CONFIG_MASK
) {
2042 priv
->write_reg
= xcan_write_reg_be
;
2043 priv
->read_reg
= xcan_read_reg_be
;
2046 priv
->can
.clock
.freq
= clk_get_rate(priv
->can_clk
);
2048 netif_napi_add_weight(ndev
, &priv
->napi
, xcan_rx_poll
, rx_max
);
2050 ret
= register_candev(ndev
);
2052 dev_err(&pdev
->dev
, "fail to register failed (err=%d)\n", ret
);
2053 goto err_disableclks
;
2056 of_can_transceiver(ndev
);
2057 pm_runtime_put(&pdev
->dev
);
2059 if (priv
->devtype
.flags
& XCAN_FLAG_CANFD_2
) {
2060 priv
->write_reg(priv
, XCAN_AFR_2_ID_OFFSET
, 0x00000000);
2061 priv
->write_reg(priv
, XCAN_AFR_2_MASK_OFFSET
, 0x00000000);
2064 netdev_dbg(ndev
, "reg_base=0x%p irq=%d clock=%d, tx buffers: actual %d, using %d\n",
2065 priv
->reg_base
, ndev
->irq
, priv
->can
.clock
.freq
,
2066 hw_tx_max
, priv
->tx_max
);
2068 if (priv
->ecc_enable
) {
2069 /* Reset FIFO ECC counters */
2070 priv
->write_reg(priv
, XCAN_ECC_CFG_OFFSET
, XCAN_ECC_CFG_REECRX_MASK
|
2071 XCAN_ECC_CFG_REECTXOL_MASK
| XCAN_ECC_CFG_REECTXTL_MASK
);
2076 pm_runtime_put(priv
->dev
);
2077 pm_runtime_disable(&pdev
->dev
);
2079 reset_control_assert(priv
->rstc
);
2087 * xcan_remove - Unregister the device after releasing the resources
2088 * @pdev: Handle to the platform device structure
2090 * This function frees all the resources allocated to the device.
2093 static void xcan_remove(struct platform_device
*pdev
)
2095 struct net_device
*ndev
= platform_get_drvdata(pdev
);
2096 struct xcan_priv
*priv
= netdev_priv(ndev
);
2098 unregister_candev(ndev
);
2099 pm_runtime_disable(&pdev
->dev
);
2100 reset_control_assert(priv
->rstc
);
2104 static struct platform_driver xcan_driver
= {
2105 .probe
= xcan_probe
,
2106 .remove
= xcan_remove
,
2108 .name
= DRIVER_NAME
,
2109 .pm
= &xcan_dev_pm_ops
,
2110 .of_match_table
= xcan_of_match
,
2114 module_platform_driver(xcan_driver
);
2116 MODULE_LICENSE("GPL");
2117 MODULE_AUTHOR("Xilinx Inc");
2118 MODULE_DESCRIPTION("Xilinx CAN interface");