1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 /* 82571EB Gigabit Ethernet Controller
5 * 82571EB Gigabit Ethernet Controller (Copper)
6 * 82571EB Gigabit Ethernet Controller (Fiber)
7 * 82571EB Dual Port Gigabit Mezzanine Adapter
8 * 82571EB Quad Port Gigabit Mezzanine Adapter
9 * 82571PT Gigabit PT Quad Port Server ExpressModule
10 * 82572EI Gigabit Ethernet Controller (Copper)
11 * 82572EI Gigabit Ethernet Controller (Fiber)
12 * 82572EI Gigabit Ethernet Controller
13 * 82573V Gigabit Ethernet Controller (Copper)
14 * 82573E Gigabit Ethernet Controller (Copper)
15 * 82573L Gigabit Ethernet Controller
16 * 82574L Gigabit Network Connection
17 * 82583V Gigabit Network Connection
22 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
23 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
24 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
25 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
);
26 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
27 u16 words
, u16
*data
);
28 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
29 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
30 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
31 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
);
32 static s32
e1000_led_on_82574(struct e1000_hw
*hw
);
33 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
);
34 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
);
35 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
);
36 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
);
37 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
);
38 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
39 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
42 * e1000_init_phy_params_82571 - Init PHY func ptrs.
43 * @hw: pointer to the HW structure
45 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
47 struct e1000_phy_info
*phy
= &hw
->phy
;
50 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
51 phy
->type
= e1000_phy_none
;
56 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
57 phy
->reset_delay_us
= 100;
59 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
60 phy
->ops
.power_down
= e1000_power_down_phy_copper_82571
;
62 switch (hw
->mac
.type
) {
65 phy
->type
= e1000_phy_igp_2
;
68 phy
->type
= e1000_phy_m88
;
72 phy
->type
= e1000_phy_bm
;
73 phy
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
74 phy
->ops
.release
= e1000_put_hw_semaphore_82574
;
75 phy
->ops
.set_d0_lplu_state
= e1000_set_d0_lplu_state_82574
;
76 phy
->ops
.set_d3_lplu_state
= e1000_set_d3_lplu_state_82574
;
79 return -E1000_ERR_PHY
;
82 /* This can only be done after all function pointers are setup. */
83 ret_val
= e1000_get_phy_id_82571(hw
);
85 e_dbg("Error getting PHY ID\n");
90 switch (hw
->mac
.type
) {
93 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
94 ret_val
= -E1000_ERR_PHY
;
97 if (phy
->id
!= M88E1111_I_PHY_ID
)
98 ret_val
= -E1000_ERR_PHY
;
102 if (phy
->id
!= BME1000_E_PHY_ID_R2
)
103 ret_val
= -E1000_ERR_PHY
;
106 ret_val
= -E1000_ERR_PHY
;
111 e_dbg("PHY ID unknown: type = 0x%08x\n", phy
->id
);
117 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
118 * @hw: pointer to the HW structure
120 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
122 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
123 u32 eecd
= er32(EECD
);
126 nvm
->opcode_bits
= 8;
128 switch (nvm
->override
) {
129 case e1000_nvm_override_spi_large
:
131 nvm
->address_bits
= 16;
133 case e1000_nvm_override_spi_small
:
135 nvm
->address_bits
= 8;
138 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
139 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
143 switch (hw
->mac
.type
) {
147 if (((eecd
>> 15) & 0x3) == 0x3) {
148 nvm
->type
= e1000_nvm_flash_hw
;
149 nvm
->word_size
= 2048;
150 /* Autonomous Flash update bit must be cleared due
151 * to Flash update issue.
153 eecd
&= ~E1000_EECD_AUPDEN
;
159 nvm
->type
= e1000_nvm_eeprom_spi
;
160 size
= (u16
)FIELD_GET(E1000_EECD_SIZE_EX_MASK
, eecd
);
161 /* Added to a constant, "size" becomes the left-shift value
162 * for setting word_size.
164 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
166 /* EEPROM access above 16k is unsupported */
169 nvm
->word_size
= BIT(size
);
173 /* Function Pointers */
174 switch (hw
->mac
.type
) {
177 nvm
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
178 nvm
->ops
.release
= e1000_put_hw_semaphore_82574
;
188 * e1000_init_mac_params_82571 - Init MAC func ptrs.
189 * @hw: pointer to the HW structure
191 static s32
e1000_init_mac_params_82571(struct e1000_hw
*hw
)
193 struct e1000_mac_info
*mac
= &hw
->mac
;
196 bool force_clear_smbi
= false;
198 /* Set media type and media-dependent function pointers */
199 switch (hw
->adapter
->pdev
->device
) {
200 case E1000_DEV_ID_82571EB_FIBER
:
201 case E1000_DEV_ID_82572EI_FIBER
:
202 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
203 hw
->phy
.media_type
= e1000_media_type_fiber
;
204 mac
->ops
.setup_physical_interface
=
205 e1000_setup_fiber_serdes_link_82571
;
206 mac
->ops
.check_for_link
= e1000e_check_for_fiber_link
;
207 mac
->ops
.get_link_up_info
=
208 e1000e_get_speed_and_duplex_fiber_serdes
;
210 case E1000_DEV_ID_82571EB_SERDES
:
211 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
212 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
213 case E1000_DEV_ID_82572EI_SERDES
:
214 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
215 mac
->ops
.setup_physical_interface
=
216 e1000_setup_fiber_serdes_link_82571
;
217 mac
->ops
.check_for_link
= e1000_check_for_serdes_link_82571
;
218 mac
->ops
.get_link_up_info
=
219 e1000e_get_speed_and_duplex_fiber_serdes
;
222 hw
->phy
.media_type
= e1000_media_type_copper
;
223 mac
->ops
.setup_physical_interface
=
224 e1000_setup_copper_link_82571
;
225 mac
->ops
.check_for_link
= e1000e_check_for_copper_link
;
226 mac
->ops
.get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
230 /* Set mta register count */
231 mac
->mta_reg_count
= 128;
232 /* Set rar entry count */
233 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
234 /* Adaptive IFS supported */
235 mac
->adaptive_ifs
= true;
237 /* MAC-specific function pointers */
238 switch (hw
->mac
.type
) {
240 mac
->ops
.set_lan_id
= e1000_set_lan_id_single_port
;
241 mac
->ops
.check_mng_mode
= e1000e_check_mng_mode_generic
;
242 mac
->ops
.led_on
= e1000e_led_on_generic
;
243 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
246 mac
->has_fwsm
= true;
247 /* ARC supported; valid only if manageability features are
250 mac
->arc_subsystem_valid
= !!(er32(FWSM
) &
251 E1000_FWSM_MODE_MASK
);
255 mac
->ops
.set_lan_id
= e1000_set_lan_id_single_port
;
256 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_82574
;
257 mac
->ops
.led_on
= e1000_led_on_82574
;
260 mac
->ops
.check_mng_mode
= e1000e_check_mng_mode_generic
;
261 mac
->ops
.led_on
= e1000e_led_on_generic
;
262 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
265 mac
->has_fwsm
= true;
269 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
270 * first NVM or PHY access. This should be done for single-port
271 * devices, and for one port only on dual-port devices so that
272 * for those devices we can still use the SMBI lock to synchronize
273 * inter-port accesses to the PHY & NVM.
275 switch (hw
->mac
.type
) {
280 if (!(swsm2
& E1000_SWSM2_LOCK
)) {
281 /* Only do this for the first interface on this card */
282 ew32(SWSM2
, swsm2
| E1000_SWSM2_LOCK
);
283 force_clear_smbi
= true;
285 force_clear_smbi
= false;
289 force_clear_smbi
= true;
293 if (force_clear_smbi
) {
294 /* Make sure SWSM.SMBI is clear */
296 if (swsm
& E1000_SWSM_SMBI
) {
297 /* This bit should not be set on a first interface, and
298 * indicates that the bootagent or EFI code has
299 * improperly left this bit enabled
301 e_dbg("Please update your 82571 Bootagent\n");
303 ew32(SWSM
, swsm
& ~E1000_SWSM_SMBI
);
306 /* Initialize device specific counter of SMBI acquisition timeouts. */
307 hw
->dev_spec
.e82571
.smb_counter
= 0;
312 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
314 struct e1000_hw
*hw
= &adapter
->hw
;
315 static int global_quad_port_a
; /* global port a indication */
316 struct pci_dev
*pdev
= adapter
->pdev
;
317 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
320 rc
= e1000_init_mac_params_82571(hw
);
324 rc
= e1000_init_nvm_params_82571(hw
);
328 rc
= e1000_init_phy_params_82571(hw
);
332 /* tag quad port adapters first, it's used below */
333 switch (pdev
->device
) {
334 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
335 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
336 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
337 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
338 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
339 /* mark the first port */
340 if (global_quad_port_a
== 0)
341 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
342 /* Reset for multiple quad port adapters */
343 global_quad_port_a
++;
344 if (global_quad_port_a
== 4)
345 global_quad_port_a
= 0;
351 switch (adapter
->hw
.mac
.type
) {
353 /* these dual ports don't have WoL on port B at all */
354 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
355 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
356 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
358 adapter
->flags
&= ~FLAG_HAS_WOL
;
359 /* quad ports only support WoL on port A */
360 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
361 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
362 adapter
->flags
&= ~FLAG_HAS_WOL
;
363 /* Does not support WoL on any port */
364 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
365 adapter
->flags
&= ~FLAG_HAS_WOL
;
368 if (pdev
->device
== E1000_DEV_ID_82573L
) {
369 adapter
->flags
|= FLAG_HAS_JUMBO_FRAMES
;
370 adapter
->max_hw_frame_size
= DEFAULT_JUMBO
;
381 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
382 * @hw: pointer to the HW structure
384 * Reads the PHY registers and stores the PHY ID and possibly the PHY
385 * revision in the hardware structure.
387 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
389 struct e1000_phy_info
*phy
= &hw
->phy
;
393 switch (hw
->mac
.type
) {
396 /* The 82571 firmware may still be configuring the PHY.
397 * In this case, we cannot access the PHY until the
398 * configuration is done. So we explicitly set the
401 phy
->id
= IGP01E1000_I_PHY_ID
;
404 return e1000e_get_phy_id(hw
);
407 ret_val
= e1e_rphy(hw
, MII_PHYSID1
, &phy_id
);
411 phy
->id
= (u32
)(phy_id
<< 16);
412 usleep_range(20, 40);
413 ret_val
= e1e_rphy(hw
, MII_PHYSID2
, &phy_id
);
417 phy
->id
|= (u32
)(phy_id
);
418 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
421 return -E1000_ERR_PHY
;
428 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
429 * @hw: pointer to the HW structure
431 * Acquire the HW semaphore to access the PHY or NVM
433 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
436 s32 sw_timeout
= hw
->nvm
.word_size
+ 1;
437 s32 fw_timeout
= hw
->nvm
.word_size
+ 1;
440 /* If we have timedout 3 times on trying to acquire
441 * the inter-port SMBI semaphore, there is old code
442 * operating on the other port, and it is not
443 * releasing SMBI. Modify the number of times that
444 * we try for the semaphore to interwork with this
447 if (hw
->dev_spec
.e82571
.smb_counter
> 2)
450 /* Get the SW semaphore */
451 while (i
< sw_timeout
) {
453 if (!(swsm
& E1000_SWSM_SMBI
))
456 usleep_range(50, 100);
460 if (i
== sw_timeout
) {
461 e_dbg("Driver can't access device - SMBI bit is set.\n");
462 hw
->dev_spec
.e82571
.smb_counter
++;
464 /* Get the FW semaphore. */
465 for (i
= 0; i
< fw_timeout
; i
++) {
467 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
469 /* Semaphore acquired if bit latched */
470 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
473 usleep_range(50, 100);
476 if (i
== fw_timeout
) {
477 /* Release semaphores */
478 e1000_put_hw_semaphore_82571(hw
);
479 e_dbg("Driver can't access the NVM\n");
480 return -E1000_ERR_NVM
;
487 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
488 * @hw: pointer to the HW structure
490 * Release hardware semaphore used to access the PHY or NVM
492 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
497 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
502 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
503 * @hw: pointer to the HW structure
505 * Acquire the HW semaphore during reset.
508 static s32
e1000_get_hw_semaphore_82573(struct e1000_hw
*hw
)
513 extcnf_ctrl
= er32(EXTCNF_CTRL
);
515 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
516 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
517 extcnf_ctrl
= er32(EXTCNF_CTRL
);
519 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
522 usleep_range(2000, 4000);
524 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
526 if (i
== MDIO_OWNERSHIP_TIMEOUT
) {
527 /* Release semaphores */
528 e1000_put_hw_semaphore_82573(hw
);
529 e_dbg("Driver can't access the PHY\n");
530 return -E1000_ERR_PHY
;
537 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
538 * @hw: pointer to the HW structure
540 * Release hardware semaphore used during reset.
543 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
)
547 extcnf_ctrl
= er32(EXTCNF_CTRL
);
548 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
549 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
552 static DEFINE_MUTEX(swflag_mutex
);
555 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
556 * @hw: pointer to the HW structure
558 * Acquire the HW semaphore to access the PHY or NVM.
561 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
)
565 mutex_lock(&swflag_mutex
);
566 ret_val
= e1000_get_hw_semaphore_82573(hw
);
568 mutex_unlock(&swflag_mutex
);
573 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
574 * @hw: pointer to the HW structure
576 * Release hardware semaphore used to access the PHY or NVM
579 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
)
581 e1000_put_hw_semaphore_82573(hw
);
582 mutex_unlock(&swflag_mutex
);
586 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
587 * @hw: pointer to the HW structure
588 * @active: true to enable LPLU, false to disable
590 * Sets the LPLU D0 state according to the active flag.
591 * LPLU will not be activated unless the
592 * device autonegotiation advertisement meets standards of
593 * either 10 or 10/100 or 10/100/1000 at all duplexes.
594 * This is a function pointer entry point only called by
595 * PHY setup routines.
597 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
599 u32 data
= er32(POEMB
);
602 data
|= E1000_PHY_CTRL_D0A_LPLU
;
604 data
&= ~E1000_PHY_CTRL_D0A_LPLU
;
611 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
612 * @hw: pointer to the HW structure
613 * @active: boolean used to enable/disable lplu
615 * The low power link up (lplu) state is set to the power management level D3
616 * when active is true, else clear lplu for D3. LPLU
617 * is used during Dx states where the power conservation is most important.
618 * During driver activity, SmartSpeed should be enabled so performance is
621 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
623 u32 data
= er32(POEMB
);
626 data
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
627 } else if ((hw
->phy
.autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
628 (hw
->phy
.autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
629 (hw
->phy
.autoneg_advertised
== E1000_ALL_10_SPEED
)) {
630 data
|= E1000_PHY_CTRL_NOND0A_LPLU
;
638 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
639 * @hw: pointer to the HW structure
641 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
642 * Then for non-82573 hardware, set the EEPROM access request bit and wait
643 * for EEPROM access grant bit. If the access grant bit is not set, release
644 * hardware semaphore.
646 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
650 ret_val
= e1000_get_hw_semaphore_82571(hw
);
654 switch (hw
->mac
.type
) {
658 ret_val
= e1000e_acquire_nvm(hw
);
663 e1000_put_hw_semaphore_82571(hw
);
669 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
670 * @hw: pointer to the HW structure
672 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
674 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
676 e1000e_release_nvm(hw
);
677 e1000_put_hw_semaphore_82571(hw
);
681 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
682 * @hw: pointer to the HW structure
683 * @offset: offset within the EEPROM to be written to
684 * @words: number of words to write
685 * @data: 16 bit word(s) to be written to the EEPROM
687 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
689 * If e1000e_update_nvm_checksum is not called after this function, the
690 * EEPROM will most likely contain an invalid checksum.
692 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
697 switch (hw
->mac
.type
) {
701 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
705 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
708 ret_val
= -E1000_ERR_NVM
;
716 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
717 * @hw: pointer to the HW structure
719 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
720 * up to the checksum. Then calculates the EEPROM checksum and writes the
721 * value to the EEPROM.
723 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
729 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
733 /* If our nvm is an EEPROM, then we're done
734 * otherwise, commit the checksum to the flash NVM.
736 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
739 /* Check for pending operations. */
740 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
741 usleep_range(1000, 2000);
742 if (!(er32(EECD
) & E1000_EECD_FLUPD
))
746 if (i
== E1000_FLASH_UPDATES
)
747 return -E1000_ERR_NVM
;
749 /* Reset the firmware if using STM opcode. */
750 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
751 /* The enabling of and the actual reset must be done
752 * in two write cycles.
754 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
756 ew32(HICR
, E1000_HICR_FW_RESET
);
759 /* Commit the write to flash */
760 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
763 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
764 usleep_range(1000, 2000);
765 if (!(er32(EECD
) & E1000_EECD_FLUPD
))
769 if (i
== E1000_FLASH_UPDATES
)
770 return -E1000_ERR_NVM
;
776 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
777 * @hw: pointer to the HW structure
779 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
780 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
782 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
784 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
785 e1000_fix_nvm_checksum_82571(hw
);
787 return e1000e_validate_nvm_checksum_generic(hw
);
791 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
792 * @hw: pointer to the HW structure
793 * @offset: offset within the EEPROM to be written to
794 * @words: number of words to write
795 * @data: 16 bit word(s) to be written to the EEPROM
797 * After checking for invalid values, poll the EEPROM to ensure the previous
798 * command has completed before trying to write the next word. After write
799 * poll for completion.
801 * If e1000e_update_nvm_checksum is not called after this function, the
802 * EEPROM will most likely contain an invalid checksum.
804 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
805 u16 words
, u16
*data
)
807 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
811 /* A check for invalid values: offset too large, too many words,
812 * and not enough words.
814 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
816 e_dbg("nvm parameter(s) out of bounds\n");
817 return -E1000_ERR_NVM
;
820 for (i
= 0; i
< words
; i
++) {
821 eewr
= ((data
[i
] << E1000_NVM_RW_REG_DATA
) |
822 ((offset
+ i
) << E1000_NVM_RW_ADDR_SHIFT
) |
823 E1000_NVM_RW_REG_START
);
825 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
831 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
840 * e1000_get_cfg_done_82571 - Poll for configuration done
841 * @hw: pointer to the HW structure
843 * Reads the management control register for the config done bit to be set.
845 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
847 s32 timeout
= PHY_CFG_TIMEOUT
;
850 if (er32(EEMNGCTL
) & E1000_NVM_CFG_DONE_PORT_0
)
852 usleep_range(1000, 2000);
856 e_dbg("MNG configuration cycle has not completed.\n");
857 return -E1000_ERR_RESET
;
864 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
865 * @hw: pointer to the HW structure
866 * @active: true to enable LPLU, false to disable
868 * Sets the LPLU D0 state according to the active flag. When activating LPLU
869 * this function also disables smart speed and vice versa. LPLU will not be
870 * activated unless the device autonegotiation advertisement meets standards
871 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
872 * pointer entry point only called by PHY setup routines.
874 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
876 struct e1000_phy_info
*phy
= &hw
->phy
;
880 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
885 data
|= IGP02E1000_PM_D0_LPLU
;
886 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
890 /* When LPLU is enabled, we should disable SmartSpeed */
891 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
894 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
895 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
899 data
&= ~IGP02E1000_PM_D0_LPLU
;
900 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
903 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
904 * during Dx states where the power conservation is most
905 * important. During driver activity we should enable
906 * SmartSpeed, so performance is maintained.
908 if (phy
->smart_speed
== e1000_smart_speed_on
) {
909 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
914 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
915 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
919 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
920 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
925 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
926 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
937 * e1000_reset_hw_82571 - Reset hardware
938 * @hw: pointer to the HW structure
940 * This resets the hardware into a known state.
942 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
944 u32 ctrl
, ctrl_ext
, eecd
, tctl
;
947 /* Prevent the PCI-E bus from sticking if there is no TLP connection
948 * on the last TLP read/write transaction when MAC is reset.
950 ret_val
= e1000e_disable_pcie_master(hw
);
952 e_dbg("PCI-E Master disable polling has failed.\n");
954 e_dbg("Masking off all interrupts\n");
955 ew32(IMC
, 0xffffffff);
959 tctl
&= ~E1000_TCTL_EN
;
963 usleep_range(10000, 11000);
965 /* Must acquire the MDIO ownership before MAC reset.
966 * Ownership defaults to firmware after a reset.
968 switch (hw
->mac
.type
) {
970 ret_val
= e1000_get_hw_semaphore_82573(hw
);
974 ret_val
= e1000_get_hw_semaphore_82574(hw
);
982 e_dbg("Issuing a global reset to MAC\n");
983 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
985 /* Must release MDIO ownership and mutex after MAC reset. */
986 switch (hw
->mac
.type
) {
988 /* Release mutex only if the hw semaphore is acquired */
990 e1000_put_hw_semaphore_82573(hw
);
994 /* Release mutex only if the hw semaphore is acquired */
996 e1000_put_hw_semaphore_82574(hw
);
1002 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
1003 usleep_range(10, 20);
1004 ctrl_ext
= er32(CTRL_EXT
);
1005 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
1006 ew32(CTRL_EXT
, ctrl_ext
);
1010 ret_val
= e1000e_get_auto_rd_done(hw
);
1012 /* We don't want to continue accessing MAC registers. */
1015 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1016 * Need to wait for Phy configuration completion before accessing
1020 switch (hw
->mac
.type
) {
1023 /* REQ and GNT bits need to be cleared when using AUTO_RD
1024 * to access the EEPROM.
1027 eecd
&= ~(E1000_EECD_REQ
| E1000_EECD_GNT
);
1039 /* Clear any pending interrupt events. */
1040 ew32(IMC
, 0xffffffff);
1043 if (hw
->mac
.type
== e1000_82571
) {
1044 /* Install any alternate MAC address into RAR0 */
1045 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1049 e1000e_set_laa_state_82571(hw
, true);
1052 /* Reinitialize the 82571 serdes link state machine */
1053 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1054 hw
->mac
.serdes_link_state
= e1000_serdes_link_down
;
1060 * e1000_init_hw_82571 - Initialize hardware
1061 * @hw: pointer to the HW structure
1063 * This inits the hardware readying it for operation.
1065 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
1067 struct e1000_mac_info
*mac
= &hw
->mac
;
1070 u16 i
, rar_count
= mac
->rar_entry_count
;
1072 e1000_initialize_hw_bits_82571(hw
);
1074 /* Initialize identification LED */
1075 ret_val
= mac
->ops
.id_led_init(hw
);
1076 /* An error is not fatal and we should not stop init due to this */
1078 e_dbg("Error initializing identification LED\n");
1080 /* Disabling VLAN filtering */
1081 e_dbg("Initializing the IEEE VLAN\n");
1082 mac
->ops
.clear_vfta(hw
);
1084 /* Setup the receive address.
1085 * If, however, a locally administered address was assigned to the
1086 * 82571, we must reserve a RAR for it to work around an issue where
1087 * resetting one port will reload the MAC on the other port.
1089 if (e1000e_get_laa_state_82571(hw
))
1091 e1000e_init_rx_addrs(hw
, rar_count
);
1093 /* Zero out the Multicast HASH table */
1094 e_dbg("Zeroing the MTA\n");
1095 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1096 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1098 /* Setup link and flow control */
1099 ret_val
= mac
->ops
.setup_link(hw
);
1101 /* Set the transmit descriptor write-back policy */
1102 reg_data
= er32(TXDCTL(0));
1103 reg_data
= ((reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1104 E1000_TXDCTL_FULL_TX_DESC_WB
| E1000_TXDCTL_COUNT_DESC
);
1105 ew32(TXDCTL(0), reg_data
);
1107 /* ...for both queues. */
1108 switch (mac
->type
) {
1110 e1000e_enable_tx_pkt_filtering(hw
);
1114 reg_data
= er32(GCR
);
1115 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1116 ew32(GCR
, reg_data
);
1119 reg_data
= er32(TXDCTL(1));
1120 reg_data
= ((reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1121 E1000_TXDCTL_FULL_TX_DESC_WB
|
1122 E1000_TXDCTL_COUNT_DESC
);
1123 ew32(TXDCTL(1), reg_data
);
1127 /* Clear all of the statistics registers (clear on read). It is
1128 * important that we do this after we have tried to establish link
1129 * because the symbol error count will increment wildly if there
1132 e1000_clear_hw_cntrs_82571(hw
);
1138 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1139 * @hw: pointer to the HW structure
1141 * Initializes required hardware-dependent bits needed for normal operation.
1143 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
1147 /* Transmit Descriptor Control 0 */
1148 reg
= er32(TXDCTL(0));
1150 ew32(TXDCTL(0), reg
);
1152 /* Transmit Descriptor Control 1 */
1153 reg
= er32(TXDCTL(1));
1155 ew32(TXDCTL(1), reg
);
1157 /* Transmit Arbitration Control 0 */
1158 reg
= er32(TARC(0));
1159 reg
&= ~(0xF << 27); /* 30:27 */
1160 switch (hw
->mac
.type
) {
1163 reg
|= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1174 /* Transmit Arbitration Control 1 */
1175 reg
= er32(TARC(1));
1176 switch (hw
->mac
.type
) {
1179 reg
&= ~(BIT(29) | BIT(30));
1180 reg
|= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1181 if (er32(TCTL
) & E1000_TCTL_MULR
)
1191 /* Device Control */
1192 switch (hw
->mac
.type
) {
1204 /* Extended Device Control */
1205 switch (hw
->mac
.type
) {
1209 reg
= er32(CTRL_EXT
);
1212 ew32(CTRL_EXT
, reg
);
1218 if (hw
->mac
.type
== e1000_82571
) {
1219 reg
= er32(PBA_ECC
);
1220 reg
|= E1000_PBA_ECC_CORR_EN
;
1224 /* Workaround for hardware errata.
1225 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1227 if ((hw
->mac
.type
== e1000_82571
) || (hw
->mac
.type
== e1000_82572
)) {
1228 reg
= er32(CTRL_EXT
);
1229 reg
&= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
1230 ew32(CTRL_EXT
, reg
);
1233 /* Disable IPv6 extension header parsing because some malformed
1234 * IPv6 headers can hang the Rx.
1236 if (hw
->mac
.type
<= e1000_82573
) {
1238 reg
|= (E1000_RFCTL_IPV6_EX_DIS
| E1000_RFCTL_NEW_IPV6_EXT_DIS
);
1242 /* PCI-Ex Control Registers */
1243 switch (hw
->mac
.type
) {
1250 /* Workaround for hardware errata.
1251 * apply workaround for hardware errata documented in errata
1252 * docs Fixes issue where some error prone or unreliable PCIe
1253 * completions are occurring, particularly with ASPM enabled.
1254 * Without fix, issue can cause Tx timeouts.
1266 * e1000_clear_vfta_82571 - Clear VLAN filter table
1267 * @hw: pointer to the HW structure
1269 * Clears the register array which contains the VLAN filter table by
1270 * setting all the values to 0.
1272 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
)
1276 u32 vfta_offset
= 0;
1277 u32 vfta_bit_in_reg
= 0;
1279 switch (hw
->mac
.type
) {
1283 if (hw
->mng_cookie
.vlan_id
!= 0) {
1284 /* The VFTA is a 4096b bit-field, each identifying
1285 * a single VLAN ID. The following operations
1286 * determine which 32b entry (i.e. offset) into the
1287 * array we want to set the VLAN ID (i.e. bit) of
1288 * the manageability unit.
1290 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
1291 E1000_VFTA_ENTRY_SHIFT
) &
1292 E1000_VFTA_ENTRY_MASK
;
1294 BIT(hw
->mng_cookie
.vlan_id
&
1295 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
1301 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
1302 /* If the offset we want to clear is the same offset of the
1303 * manageability VLAN ID, then clear all bits except that of
1304 * the manageability unit.
1306 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
1307 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
1313 * e1000_check_mng_mode_82574 - Check manageability is enabled
1314 * @hw: pointer to the HW structure
1316 * Reads the NVM Initialization Control Word 2 and returns true
1317 * (>0) if any manageability is enabled, else false (0).
1319 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
)
1323 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1324 return (data
& E1000_NVM_INIT_CTRL2_MNGM
) != 0;
1328 * e1000_led_on_82574 - Turn LED on
1329 * @hw: pointer to the HW structure
1333 static s32
e1000_led_on_82574(struct e1000_hw
*hw
)
1338 ctrl
= hw
->mac
.ledctl_mode2
;
1339 if (!(E1000_STATUS_LU
& er32(STATUS
))) {
1340 /* If no link, then turn LED on by setting the invert bit
1341 * for each LED that's "on" (0x0E) in ledctl_mode2.
1343 for (i
= 0; i
< 4; i
++)
1344 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1345 E1000_LEDCTL_MODE_LED_ON
)
1346 ctrl
|= (E1000_LEDCTL_LED0_IVRT
<< (i
* 8));
1354 * e1000_check_phy_82574 - check 82574 phy hung state
1355 * @hw: pointer to the HW structure
1357 * Returns whether phy is hung or not
1359 bool e1000_check_phy_82574(struct e1000_hw
*hw
)
1361 u16 status_1kbt
= 0;
1362 u16 receive_errors
= 0;
1365 /* Read PHY Receive Error counter first, if its is max - all F's then
1366 * read the Base1000T status register If both are max then PHY is hung.
1368 ret_val
= e1e_rphy(hw
, E1000_RECEIVE_ERROR_COUNTER
, &receive_errors
);
1371 if (receive_errors
== E1000_RECEIVE_ERROR_MAX
) {
1372 ret_val
= e1e_rphy(hw
, E1000_BASE1000T_STATUS
, &status_1kbt
);
1375 if ((status_1kbt
& E1000_IDLE_ERROR_COUNT_MASK
) ==
1376 E1000_IDLE_ERROR_COUNT_MASK
)
1384 * e1000_setup_link_82571 - Setup flow control and link settings
1385 * @hw: pointer to the HW structure
1387 * Determines which flow control settings to use, then configures flow
1388 * control. Calls the appropriate media-specific link configuration
1389 * function. Assuming the adapter has a valid link partner, a valid link
1390 * should be established. Assumes the hardware has previously been reset
1391 * and the transmitter and receiver are not enabled.
1393 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1395 /* 82573 does not have a word in the NVM to determine
1396 * the default flow control setting, so we explicitly
1399 switch (hw
->mac
.type
) {
1403 if (hw
->fc
.requested_mode
== e1000_fc_default
)
1404 hw
->fc
.requested_mode
= e1000_fc_full
;
1410 return e1000e_setup_link_generic(hw
);
1414 * e1000_setup_copper_link_82571 - Configure copper link settings
1415 * @hw: pointer to the HW structure
1417 * Configures the link for auto-neg or forced speed and duplex. Then we check
1418 * for link, once link is established calls to configure collision distance
1419 * and flow control are called.
1421 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1427 ctrl
|= E1000_CTRL_SLU
;
1428 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1431 switch (hw
->phy
.type
) {
1434 ret_val
= e1000e_copper_link_setup_m88(hw
);
1436 case e1000_phy_igp_2
:
1437 ret_val
= e1000e_copper_link_setup_igp(hw
);
1440 return -E1000_ERR_PHY
;
1446 return e1000e_setup_copper_link(hw
);
1450 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1451 * @hw: pointer to the HW structure
1453 * Configures collision distance and flow control for fiber and serdes links.
1454 * Upon successful setup, poll for link.
1456 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1458 switch (hw
->mac
.type
) {
1461 /* If SerDes loopback mode is entered, there is no form
1462 * of reset to take the adapter out of that mode. So we
1463 * have to explicitly take the adapter out of loopback
1464 * mode. This prevents drivers from twiddling their thumbs
1465 * if another tool failed to take it out of loopback mode.
1467 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1473 return e1000e_setup_fiber_serdes_link(hw
);
1477 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1478 * @hw: pointer to the HW structure
1480 * Reports the link state as up or down.
1482 * If autonegotiation is supported by the link partner, the link state is
1483 * determined by the result of autonegotiation. This is the most likely case.
1484 * If autonegotiation is not supported by the link partner, and the link
1485 * has a valid signal, force the link up.
1487 * The link state is represented internally here by 4 states:
1490 * 2) autoneg_progress
1491 * 3) autoneg_complete (the link successfully autonegotiated)
1492 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1495 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
)
1497 struct e1000_mac_info
*mac
= &hw
->mac
;
1506 status
= er32(STATUS
);
1508 /* SYNCH bit and IV bit are sticky */
1509 usleep_range(10, 20);
1512 if ((rxcw
& E1000_RXCW_SYNCH
) && !(rxcw
& E1000_RXCW_IV
)) {
1513 /* Receiver is synchronized with no invalid bits. */
1514 switch (mac
->serdes_link_state
) {
1515 case e1000_serdes_link_autoneg_complete
:
1516 if (!(status
& E1000_STATUS_LU
)) {
1517 /* We have lost link, retry autoneg before
1518 * reporting link failure
1520 mac
->serdes_link_state
=
1521 e1000_serdes_link_autoneg_progress
;
1522 mac
->serdes_has_link
= false;
1523 e_dbg("AN_UP -> AN_PROG\n");
1525 mac
->serdes_has_link
= true;
1529 case e1000_serdes_link_forced_up
:
1530 /* If we are receiving /C/ ordered sets, re-enable
1531 * auto-negotiation in the TXCW register and disable
1532 * forced link in the Device Control register in an
1533 * attempt to auto-negotiate with our link partner.
1535 if (rxcw
& E1000_RXCW_C
) {
1536 /* Enable autoneg, and unforce link up */
1537 ew32(TXCW
, mac
->txcw
);
1538 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1539 mac
->serdes_link_state
=
1540 e1000_serdes_link_autoneg_progress
;
1541 mac
->serdes_has_link
= false;
1542 e_dbg("FORCED_UP -> AN_PROG\n");
1544 mac
->serdes_has_link
= true;
1548 case e1000_serdes_link_autoneg_progress
:
1549 if (rxcw
& E1000_RXCW_C
) {
1550 /* We received /C/ ordered sets, meaning the
1551 * link partner has autonegotiated, and we can
1552 * trust the Link Up (LU) status bit.
1554 if (status
& E1000_STATUS_LU
) {
1555 mac
->serdes_link_state
=
1556 e1000_serdes_link_autoneg_complete
;
1557 e_dbg("AN_PROG -> AN_UP\n");
1558 mac
->serdes_has_link
= true;
1560 /* Autoneg completed, but failed. */
1561 mac
->serdes_link_state
=
1562 e1000_serdes_link_down
;
1563 e_dbg("AN_PROG -> DOWN\n");
1566 /* The link partner did not autoneg.
1567 * Force link up and full duplex, and change
1570 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
1571 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1574 /* Configure Flow Control after link up. */
1575 ret_val
= e1000e_config_fc_after_link_up(hw
);
1577 e_dbg("Error config flow control\n");
1580 mac
->serdes_link_state
=
1581 e1000_serdes_link_forced_up
;
1582 mac
->serdes_has_link
= true;
1583 e_dbg("AN_PROG -> FORCED_UP\n");
1587 case e1000_serdes_link_down
:
1589 /* The link was down but the receiver has now gained
1590 * valid sync, so lets see if we can bring the link
1593 ew32(TXCW
, mac
->txcw
);
1594 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1595 mac
->serdes_link_state
=
1596 e1000_serdes_link_autoneg_progress
;
1597 mac
->serdes_has_link
= false;
1598 e_dbg("DOWN -> AN_PROG\n");
1602 if (!(rxcw
& E1000_RXCW_SYNCH
)) {
1603 mac
->serdes_has_link
= false;
1604 mac
->serdes_link_state
= e1000_serdes_link_down
;
1605 e_dbg("ANYSTATE -> DOWN\n");
1607 /* Check several times, if SYNCH bit and CONFIG
1608 * bit both are consistently 1 then simply ignore
1609 * the IV bit and restart Autoneg
1611 for (i
= 0; i
< AN_RETRY_COUNT
; i
++) {
1612 usleep_range(10, 20);
1614 if ((rxcw
& E1000_RXCW_SYNCH
) &&
1615 (rxcw
& E1000_RXCW_C
))
1618 if (rxcw
& E1000_RXCW_IV
) {
1619 mac
->serdes_has_link
= false;
1620 mac
->serdes_link_state
=
1621 e1000_serdes_link_down
;
1622 e_dbg("ANYSTATE -> DOWN\n");
1627 if (i
== AN_RETRY_COUNT
) {
1629 txcw
|= E1000_TXCW_ANE
;
1631 mac
->serdes_link_state
=
1632 e1000_serdes_link_autoneg_progress
;
1633 mac
->serdes_has_link
= false;
1634 e_dbg("ANYSTATE -> AN_PROG\n");
1643 * e1000_valid_led_default_82571 - Verify a valid default LED config
1644 * @hw: pointer to the HW structure
1645 * @data: pointer to the NVM (EEPROM)
1647 * Read the EEPROM for the current default LED configuration. If the
1648 * LED configuration is not valid, set to a valid LED configuration.
1650 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1654 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1656 e_dbg("NVM Read Error\n");
1660 switch (hw
->mac
.type
) {
1664 if (*data
== ID_LED_RESERVED_F746
)
1665 *data
= ID_LED_DEFAULT_82573
;
1668 if (*data
== ID_LED_RESERVED_0000
||
1669 *data
== ID_LED_RESERVED_FFFF
)
1670 *data
= ID_LED_DEFAULT
;
1678 * e1000e_get_laa_state_82571 - Get locally administered address state
1679 * @hw: pointer to the HW structure
1681 * Retrieve and return the current locally administered address state.
1683 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1685 if (hw
->mac
.type
!= e1000_82571
)
1688 return hw
->dev_spec
.e82571
.laa_is_present
;
1692 * e1000e_set_laa_state_82571 - Set locally administered address state
1693 * @hw: pointer to the HW structure
1694 * @state: enable/disable locally administered address
1696 * Enable/Disable the current locally administered address state.
1698 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1700 if (hw
->mac
.type
!= e1000_82571
)
1703 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1705 /* If workaround is activated... */
1707 /* Hold a copy of the LAA in RAR[14] This is done so that
1708 * between the time RAR[0] gets clobbered and the time it
1709 * gets fixed, the actual LAA is in one of the RARs and no
1710 * incoming packets directed to this port are dropped.
1711 * Eventually the LAA will be in RAR[0] and RAR[14].
1713 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
,
1714 hw
->mac
.rar_entry_count
- 1);
1718 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1719 * @hw: pointer to the HW structure
1721 * Verifies that the EEPROM has completed the update. After updating the
1722 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1723 * the checksum fix is not implemented, we need to set the bit and update
1724 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1725 * we need to return bad checksum.
1727 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1729 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1733 if (nvm
->type
!= e1000_nvm_flash_hw
)
1736 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1737 * 10h-12h. Checksum may need to be fixed.
1739 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1743 if (!(data
& 0x10)) {
1744 /* Read 0x23 and check bit 15. This bit is a 1
1745 * when the checksum has already been fixed. If
1746 * the checksum is still wrong and this bit is a
1747 * 1, we need to return bad checksum. Otherwise,
1748 * we need to set this bit to a 1 and update the
1751 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1755 if (!(data
& 0x8000)) {
1757 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1760 ret_val
= e1000e_update_nvm_checksum(hw
);
1770 * e1000_read_mac_addr_82571 - Read device MAC address
1771 * @hw: pointer to the HW structure
1773 static s32
e1000_read_mac_addr_82571(struct e1000_hw
*hw
)
1775 if (hw
->mac
.type
== e1000_82571
) {
1778 /* If there's an alternate MAC address place it in RAR0
1779 * so that it will override the Si installed default perm
1782 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1787 return e1000_read_mac_addr_generic(hw
);
1791 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1792 * @hw: pointer to the HW structure
1794 * In the case of a PHY power down to save power, or to turn off link during a
1795 * driver unload, or wake on lan is not enabled, remove the link.
1797 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
)
1799 struct e1000_phy_info
*phy
= &hw
->phy
;
1800 struct e1000_mac_info
*mac
= &hw
->mac
;
1802 if (!phy
->ops
.check_reset_block
)
1805 /* If the management interface is not enabled, then power down */
1806 if (!(mac
->ops
.check_mng_mode(hw
) || phy
->ops
.check_reset_block(hw
)))
1807 e1000_power_down_phy_copper(hw
);
1811 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1812 * @hw: pointer to the HW structure
1814 * Clears the hardware counters by reading the counter registers.
1816 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1818 e1000e_clear_hw_cntrs_base(hw
);
1856 static const struct e1000_mac_operations e82571_mac_ops
= {
1857 /* .check_mng_mode: mac type dependent */
1858 /* .check_for_link: media type dependent */
1859 .id_led_init
= e1000e_id_led_init_generic
,
1860 .cleanup_led
= e1000e_cleanup_led_generic
,
1861 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1862 .get_bus_info
= e1000e_get_bus_info_pcie
,
1863 .set_lan_id
= e1000_set_lan_id_multi_port_pcie
,
1864 /* .get_link_up_info: media type dependent */
1865 /* .led_on: mac type dependent */
1866 .led_off
= e1000e_led_off_generic
,
1867 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1868 .write_vfta
= e1000_write_vfta_generic
,
1869 .clear_vfta
= e1000_clear_vfta_82571
,
1870 .reset_hw
= e1000_reset_hw_82571
,
1871 .init_hw
= e1000_init_hw_82571
,
1872 .setup_link
= e1000_setup_link_82571
,
1873 /* .setup_physical_interface: media type dependent */
1874 .setup_led
= e1000e_setup_led_generic
,
1875 .config_collision_dist
= e1000e_config_collision_dist_generic
,
1876 .read_mac_addr
= e1000_read_mac_addr_82571
,
1877 .rar_set
= e1000e_rar_set_generic
,
1878 .rar_get_count
= e1000e_rar_get_count_generic
,
1881 static const struct e1000_phy_operations e82_phy_ops_igp
= {
1882 .acquire
= e1000_get_hw_semaphore_82571
,
1883 .check_polarity
= e1000_check_polarity_igp
,
1884 .check_reset_block
= e1000e_check_reset_block_generic
,
1886 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1887 .get_cfg_done
= e1000_get_cfg_done_82571
,
1888 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1889 .get_info
= e1000e_get_phy_info_igp
,
1890 .read_reg
= e1000e_read_phy_reg_igp
,
1891 .release
= e1000_put_hw_semaphore_82571
,
1892 .reset
= e1000e_phy_hw_reset_generic
,
1893 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1894 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1895 .write_reg
= e1000e_write_phy_reg_igp
,
1896 .cfg_on_link_up
= NULL
,
1899 static const struct e1000_phy_operations e82_phy_ops_m88
= {
1900 .acquire
= e1000_get_hw_semaphore_82571
,
1901 .check_polarity
= e1000_check_polarity_m88
,
1902 .check_reset_block
= e1000e_check_reset_block_generic
,
1903 .commit
= e1000e_phy_sw_reset
,
1904 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1905 .get_cfg_done
= e1000e_get_cfg_done_generic
,
1906 .get_cable_length
= e1000e_get_cable_length_m88
,
1907 .get_info
= e1000e_get_phy_info_m88
,
1908 .read_reg
= e1000e_read_phy_reg_m88
,
1909 .release
= e1000_put_hw_semaphore_82571
,
1910 .reset
= e1000e_phy_hw_reset_generic
,
1911 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1912 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1913 .write_reg
= e1000e_write_phy_reg_m88
,
1914 .cfg_on_link_up
= NULL
,
1917 static const struct e1000_phy_operations e82_phy_ops_bm
= {
1918 .acquire
= e1000_get_hw_semaphore_82571
,
1919 .check_polarity
= e1000_check_polarity_m88
,
1920 .check_reset_block
= e1000e_check_reset_block_generic
,
1921 .commit
= e1000e_phy_sw_reset
,
1922 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1923 .get_cfg_done
= e1000e_get_cfg_done_generic
,
1924 .get_cable_length
= e1000e_get_cable_length_m88
,
1925 .get_info
= e1000e_get_phy_info_m88
,
1926 .read_reg
= e1000e_read_phy_reg_bm2
,
1927 .release
= e1000_put_hw_semaphore_82571
,
1928 .reset
= e1000e_phy_hw_reset_generic
,
1929 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1930 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1931 .write_reg
= e1000e_write_phy_reg_bm2
,
1932 .cfg_on_link_up
= NULL
,
1935 static const struct e1000_nvm_operations e82571_nvm_ops
= {
1936 .acquire
= e1000_acquire_nvm_82571
,
1937 .read
= e1000e_read_nvm_eerd
,
1938 .release
= e1000_release_nvm_82571
,
1939 .reload
= e1000e_reload_nvm_generic
,
1940 .update
= e1000_update_nvm_checksum_82571
,
1941 .valid_led_default
= e1000_valid_led_default_82571
,
1942 .validate
= e1000_validate_nvm_checksum_82571
,
1943 .write
= e1000_write_nvm_82571
,
1946 const struct e1000_info e1000_82571_info
= {
1948 .flags
= FLAG_HAS_HW_VLAN_FILTER
1949 | FLAG_HAS_JUMBO_FRAMES
1951 | FLAG_APME_IN_CTRL3
1952 | FLAG_HAS_CTRLEXT_ON_LOAD
1953 | FLAG_HAS_SMART_POWER_DOWN
1954 | FLAG_RESET_OVERWRITES_LAA
/* errata */
1955 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
1956 | FLAG_APME_CHECK_PORT_B
,
1957 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
1960 .max_hw_frame_size
= DEFAULT_JUMBO
,
1961 .get_variants
= e1000_get_variants_82571
,
1962 .mac_ops
= &e82571_mac_ops
,
1963 .phy_ops
= &e82_phy_ops_igp
,
1964 .nvm_ops
= &e82571_nvm_ops
,
1967 const struct e1000_info e1000_82572_info
= {
1969 .flags
= FLAG_HAS_HW_VLAN_FILTER
1970 | FLAG_HAS_JUMBO_FRAMES
1972 | FLAG_APME_IN_CTRL3
1973 | FLAG_HAS_CTRLEXT_ON_LOAD
1974 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
1975 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
1978 .max_hw_frame_size
= DEFAULT_JUMBO
,
1979 .get_variants
= e1000_get_variants_82571
,
1980 .mac_ops
= &e82571_mac_ops
,
1981 .phy_ops
= &e82_phy_ops_igp
,
1982 .nvm_ops
= &e82571_nvm_ops
,
1985 const struct e1000_info e1000_82573_info
= {
1987 .flags
= FLAG_HAS_HW_VLAN_FILTER
1989 | FLAG_APME_IN_CTRL3
1990 | FLAG_HAS_SMART_POWER_DOWN
1992 | FLAG_HAS_SWSM_ON_LOAD
,
1993 .flags2
= FLAG2_DISABLE_ASPM_L1
1994 | FLAG2_DISABLE_ASPM_L0S
,
1996 .max_hw_frame_size
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
,
1997 .get_variants
= e1000_get_variants_82571
,
1998 .mac_ops
= &e82571_mac_ops
,
1999 .phy_ops
= &e82_phy_ops_m88
,
2000 .nvm_ops
= &e82571_nvm_ops
,
2003 const struct e1000_info e1000_82574_info
= {
2005 .flags
= FLAG_HAS_HW_VLAN_FILTER
2007 | FLAG_HAS_JUMBO_FRAMES
2009 | FLAG_HAS_HW_TIMESTAMP
2010 | FLAG_APME_IN_CTRL3
2011 | FLAG_HAS_SMART_POWER_DOWN
2013 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2014 .flags2
= FLAG2_CHECK_PHY_HANG
2015 | FLAG2_DISABLE_ASPM_L0S
2016 | FLAG2_DISABLE_ASPM_L1
2017 | FLAG2_NO_DISABLE_RX
2019 | FLAG2_CHECK_SYSTIM_OVERFLOW
,
2021 .max_hw_frame_size
= DEFAULT_JUMBO
,
2022 .get_variants
= e1000_get_variants_82571
,
2023 .mac_ops
= &e82571_mac_ops
,
2024 .phy_ops
= &e82_phy_ops_bm
,
2025 .nvm_ops
= &e82571_nvm_ops
,
2028 const struct e1000_info e1000_82583_info
= {
2030 .flags
= FLAG_HAS_HW_VLAN_FILTER
2032 | FLAG_HAS_HW_TIMESTAMP
2033 | FLAG_APME_IN_CTRL3
2034 | FLAG_HAS_SMART_POWER_DOWN
2036 | FLAG_HAS_JUMBO_FRAMES
2037 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2038 .flags2
= FLAG2_DISABLE_ASPM_L0S
2039 | FLAG2_DISABLE_ASPM_L1
2040 | FLAG2_NO_DISABLE_RX
2041 | FLAG2_CHECK_SYSTIM_OVERFLOW
,
2043 .max_hw_frame_size
= DEFAULT_JUMBO
,
2044 .get_variants
= e1000_get_variants_82571
,
2045 .mac_ops
= &e82571_mac_ops
,
2046 .phy_ops
= &e82_phy_ops_bm
,
2047 .nvm_ops
= &e82571_nvm_ops
,