1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 /* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status
{
47 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
48 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
49 u16 dael
:1; /* bit 2 Direct Access error Log */
50 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
51 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
52 u16 reserved1
:2; /* bit 13:6 Reserved */
53 u16 reserved2
:6; /* bit 13:6 Reserved */
54 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
55 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl
{
64 u16 flcgo
:1; /* 0 Flash Cycle Go */
65 u16 flcycle
:2; /* 2:1 Flash Cycle */
66 u16 reserved
:5; /* 7:3 Reserved */
67 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
68 u16 flockdn
:6; /* 15:10 Reserved */
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc
{
76 u32 grra
:8; /* 0:7 GbE region Read Access */
77 u32 grwa
:8; /* 8:15 GbE region Write Access */
78 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
79 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range
{
87 u32 base
:13; /* 0:12 Protected Range Base */
88 u32 reserved1
:2; /* 13:14 Reserved */
89 u32 rpe
:1; /* 15 Read Protection Enable */
90 u32 limit
:13; /* 16:28 Protected Range Limit */
91 u32 reserved2
:2; /* 29:30 Reserved */
92 u32 wpe
:1; /* 31 Write Protection Enable */
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
99 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
100 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
101 u32 offset
, u8 byte
);
102 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
104 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
106 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
108 static s32
e1000_read_flash_data32_ich8lan(struct e1000_hw
*hw
, u32 offset
,
110 static s32
e1000_read_flash_dword_ich8lan(struct e1000_hw
*hw
,
111 u32 offset
, u32
*data
);
112 static s32
e1000_write_flash_data32_ich8lan(struct e1000_hw
*hw
,
113 u32 offset
, u32 data
);
114 static s32
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw
*hw
,
115 u32 offset
, u32 dword
);
116 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
117 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
118 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
119 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
120 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
121 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
122 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
123 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
124 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
125 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
128 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
129 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
132 static int e1000_rar_set_pch2lan(struct e1000_hw
*hw
, u8
*addr
, u32 index
);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw
*hw
, u8
*addr
, u32 index
);
134 static u32
e1000_rar_get_count_pch_lpt(struct e1000_hw
*hw
);
135 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
);
137 static s32
e1000_disable_ulp_lpt_lp(struct e1000_hw
*hw
, bool force
);
138 static s32
e1000_setup_copper_link_pch_lpt(struct e1000_hw
*hw
);
139 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
);
141 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
143 return readw(hw
->flash_address
+ reg
);
146 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
148 return readl(hw
->flash_address
+ reg
);
151 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
153 writew(val
, hw
->flash_address
+ reg
);
156 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
158 writel(val
, hw
->flash_address
+ reg
);
161 #define er16flash(reg) __er16flash(hw, (reg))
162 #define er32flash(reg) __er32flash(hw, (reg))
163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 * @hw: pointer to the HW structure
170 * Test access to the PHY registers by reading the PHY ID registers. If
171 * the PHY ID is already known (e.g. resume path) compare it with known ID,
172 * otherwise assume the read PHY ID is correct if it is valid.
174 * Assumes the sw/fw/hw semaphore is already acquired.
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw
*hw
)
184 for (retry_count
= 0; retry_count
< 2; retry_count
++) {
185 ret_val
= e1e_rphy_locked(hw
, MII_PHYSID1
, &phy_reg
);
186 if (ret_val
|| (phy_reg
== 0xFFFF))
188 phy_id
= (u32
)(phy_reg
<< 16);
190 ret_val
= e1e_rphy_locked(hw
, MII_PHYSID2
, &phy_reg
);
191 if (ret_val
|| (phy_reg
== 0xFFFF)) {
195 phy_id
|= (u32
)(phy_reg
& PHY_REVISION_MASK
);
200 if (hw
->phy
.id
== phy_id
)
204 hw
->phy
.revision
= (u32
)(phy_reg
& ~PHY_REVISION_MASK
);
208 /* In case the PHY needs to be in mdio slow mode,
209 * set slow mode and try to get the PHY id again.
211 if (hw
->mac
.type
< e1000_pch_lpt
) {
212 hw
->phy
.ops
.release(hw
);
213 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
215 ret_val
= e1000e_get_phy_id(hw
);
216 hw
->phy
.ops
.acquire(hw
);
222 if (hw
->mac
.type
>= e1000_pch_lpt
) {
223 /* Only unforce SMBus if ME is not active */
224 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
225 /* Switching PHY interface always returns MDI error
226 * so disable retry mechanism to avoid wasting time
228 e1000e_disable_phy_retry(hw
);
230 /* Unforce SMBus mode in PHY */
231 e1e_rphy_locked(hw
, CV_SMB_CTRL
, &phy_reg
);
232 phy_reg
&= ~CV_SMB_CTRL_FORCE_SMBUS
;
233 e1e_wphy_locked(hw
, CV_SMB_CTRL
, phy_reg
);
235 e1000e_enable_phy_retry(hw
);
237 /* Unforce SMBus mode in MAC */
238 mac_reg
= er32(CTRL_EXT
);
239 mac_reg
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
240 ew32(CTRL_EXT
, mac_reg
);
248 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249 * @hw: pointer to the HW structure
251 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252 * used to reset the PHY to a quiescent state when necessary.
254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw
*hw
)
258 /* Set Phy Config Counter to 50msec */
259 mac_reg
= er32(FEXTNVM3
);
260 mac_reg
&= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK
;
261 mac_reg
|= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC
;
262 ew32(FEXTNVM3
, mac_reg
);
264 /* Toggle LANPHYPC Value bit */
265 mac_reg
= er32(CTRL
);
266 mac_reg
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
267 mac_reg
&= ~E1000_CTRL_LANPHYPC_VALUE
;
270 usleep_range(10, 20);
271 mac_reg
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
275 if (hw
->mac
.type
< e1000_pch_lpt
) {
281 usleep_range(5000, 6000);
282 } while (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LPCD
) && count
--);
289 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290 * @hw: pointer to the HW structure
292 * Workarounds/flow necessary for PHY initialization during driver load
295 static s32
e1000_init_phy_workarounds_pchlan(struct e1000_hw
*hw
)
297 struct e1000_adapter
*adapter
= hw
->adapter
;
298 u32 mac_reg
, fwsm
= er32(FWSM
);
301 /* Gate automatic PHY configuration by hardware on managed and
302 * non-managed 82579 and newer adapters.
304 e1000_gate_hw_phy_config_ich8lan(hw
, true);
306 /* It is not possible to be certain of the current state of ULP
307 * so forcibly disable it.
309 hw
->dev_spec
.ich8lan
.ulp_state
= e1000_ulp_state_unknown
;
310 ret_val
= e1000_disable_ulp_lpt_lp(hw
, true);
312 e_warn("Failed to disable ULP\n");
314 ret_val
= hw
->phy
.ops
.acquire(hw
);
316 e_dbg("Failed to initialize PHY flow\n");
320 /* There is no guarantee that the PHY is accessible at this time
321 * so disable retry mechanism to avoid wasting time
323 e1000e_disable_phy_retry(hw
);
325 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
326 * inaccessible and resetting the PHY is not blocked, toggle the
327 * LANPHYPC Value bit to force the interconnect to PCIe mode.
329 switch (hw
->mac
.type
) {
339 if (e1000_phy_is_accessible_pchlan(hw
))
342 /* Before toggling LANPHYPC, see if PHY is accessible by
343 * forcing MAC to SMBus mode first.
345 mac_reg
= er32(CTRL_EXT
);
346 mac_reg
|= E1000_CTRL_EXT_FORCE_SMBUS
;
347 ew32(CTRL_EXT
, mac_reg
);
349 /* Wait 50 milliseconds for MAC to finish any retries
350 * that it might be trying to perform from previous
351 * attempts to acknowledge any phy read requests.
357 if (e1000_phy_is_accessible_pchlan(hw
))
362 if ((hw
->mac
.type
== e1000_pchlan
) &&
363 (fwsm
& E1000_ICH_FWSM_FW_VALID
))
366 if (hw
->phy
.ops
.check_reset_block(hw
)) {
367 e_dbg("Required LANPHYPC toggle blocked by ME\n");
368 ret_val
= -E1000_ERR_PHY
;
372 /* Toggle LANPHYPC Value bit */
373 e1000_toggle_lanphypc_pch_lpt(hw
);
374 if (hw
->mac
.type
>= e1000_pch_lpt
) {
375 if (e1000_phy_is_accessible_pchlan(hw
))
378 /* Toggling LANPHYPC brings the PHY out of SMBus mode
379 * so ensure that the MAC is also out of SMBus mode
381 mac_reg
= er32(CTRL_EXT
);
382 mac_reg
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
383 ew32(CTRL_EXT
, mac_reg
);
385 if (e1000_phy_is_accessible_pchlan(hw
))
388 ret_val
= -E1000_ERR_PHY
;
395 e1000e_enable_phy_retry(hw
);
397 hw
->phy
.ops
.release(hw
);
400 /* Check to see if able to reset PHY. Print error if not */
401 if (hw
->phy
.ops
.check_reset_block(hw
)) {
402 e_err("Reset blocked by ME\n");
406 /* Reset the PHY before any access to it. Doing so, ensures
407 * that the PHY is in a known good state before we read/write
408 * PHY registers. The generic reset is sufficient here,
409 * because we haven't determined the PHY type yet.
411 ret_val
= e1000e_phy_hw_reset_generic(hw
);
415 /* On a successful reset, possibly need to wait for the PHY
416 * to quiesce to an accessible state before returning control
417 * to the calling function. If the PHY does not quiesce, then
418 * return E1000E_BLK_PHY_RESET, as this is the condition that
421 ret_val
= hw
->phy
.ops
.check_reset_block(hw
);
423 e_err("ME blocked access to PHY after reset\n");
427 /* Ungate automatic PHY configuration on non-managed 82579 */
428 if ((hw
->mac
.type
== e1000_pch2lan
) &&
429 !(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
430 usleep_range(10000, 11000);
431 e1000_gate_hw_phy_config_ich8lan(hw
, false);
438 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
439 * @hw: pointer to the HW structure
441 * Initialize family-specific PHY parameters and function pointers.
443 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
445 struct e1000_phy_info
*phy
= &hw
->phy
;
449 phy
->reset_delay_us
= 100;
451 phy
->ops
.set_page
= e1000_set_page_igp
;
452 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
453 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
454 phy
->ops
.read_reg_page
= e1000_read_phy_reg_page_hv
;
455 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
456 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
457 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
458 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
459 phy
->ops
.write_reg_page
= e1000_write_phy_reg_page_hv
;
460 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
461 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
462 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
464 phy
->id
= e1000_phy_unknown
;
466 if (hw
->mac
.type
== e1000_pch_mtp
) {
467 phy
->retry_count
= 2;
468 e1000e_enable_phy_retry(hw
);
471 ret_val
= e1000_init_phy_workarounds_pchlan(hw
);
475 if (phy
->id
== e1000_phy_unknown
)
476 switch (hw
->mac
.type
) {
478 ret_val
= e1000e_get_phy_id(hw
);
481 if ((phy
->id
!= 0) && (phy
->id
!= PHY_REVISION_MASK
))
494 /* In case the PHY needs to be in mdio slow mode,
495 * set slow mode and try to get the PHY id again.
497 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
500 ret_val
= e1000e_get_phy_id(hw
);
505 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
508 case e1000_phy_82577
:
509 case e1000_phy_82579
:
511 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
512 phy
->ops
.force_speed_duplex
=
513 e1000_phy_force_speed_duplex_82577
;
514 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
515 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
516 phy
->ops
.commit
= e1000e_phy_sw_reset
;
518 case e1000_phy_82578
:
519 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
520 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
521 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
522 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
525 ret_val
= -E1000_ERR_PHY
;
533 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
534 * @hw: pointer to the HW structure
536 * Initialize family-specific PHY parameters and function pointers.
538 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
540 struct e1000_phy_info
*phy
= &hw
->phy
;
545 phy
->reset_delay_us
= 100;
547 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
548 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
550 /* We may need to do this twice - once for IGP and if that fails,
551 * we'll set BM func pointers and try again
553 ret_val
= e1000e_determine_phy_address(hw
);
555 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
556 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
557 ret_val
= e1000e_determine_phy_address(hw
);
559 e_dbg("Cannot determine PHY addr. Erroring out\n");
565 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
567 usleep_range(1000, 1100);
568 ret_val
= e1000e_get_phy_id(hw
);
575 case IGP03E1000_E_PHY_ID
:
576 phy
->type
= e1000_phy_igp_3
;
577 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
578 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
579 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
580 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
581 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
582 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
585 case IFE_PLUS_E_PHY_ID
:
587 phy
->type
= e1000_phy_ife
;
588 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
589 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
590 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
591 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
593 case BME1000_E_PHY_ID
:
594 phy
->type
= e1000_phy_bm
;
595 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
596 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
597 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
598 phy
->ops
.commit
= e1000e_phy_sw_reset
;
599 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
600 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
601 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
604 return -E1000_ERR_PHY
;
611 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
612 * @hw: pointer to the HW structure
614 * Initialize family-specific NVM parameters and function
617 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
619 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
620 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
621 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
625 nvm
->type
= e1000_nvm_flash_sw
;
627 if (hw
->mac
.type
>= e1000_pch_spt
) {
628 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
629 * STRAP register. This is because in SPT the GbE Flash region
630 * is no longer accessed through the flash registers. Instead,
631 * the mechanism has changed, and the Flash region access
632 * registers are now implemented in GbE memory space.
634 nvm
->flash_base_addr
= 0;
635 nvm_size
= (((er32(STRAP
) >> 1) & 0x1F) + 1)
636 * NVM_SIZE_MULTIPLIER
;
637 nvm
->flash_bank_size
= nvm_size
/ 2;
638 /* Adjust to word count */
639 nvm
->flash_bank_size
/= sizeof(u16
);
640 /* Set the base address for flash register access */
641 hw
->flash_address
= hw
->hw_addr
+ E1000_FLASH_BASE_ADDR
;
643 /* Can't read flash registers if register set isn't mapped. */
644 if (!hw
->flash_address
) {
645 e_dbg("ERROR: Flash registers not mapped\n");
646 return -E1000_ERR_CONFIG
;
649 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
651 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
652 * Add 1 to sector_end_addr since this sector is included in
655 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
656 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
658 /* flash_base_addr is byte-aligned */
659 nvm
->flash_base_addr
= sector_base_addr
660 << FLASH_SECTOR_ADDR_SHIFT
;
662 /* find total size of the NVM, then cut in half since the total
663 * size represents two separate NVM banks.
665 nvm
->flash_bank_size
= ((sector_end_addr
- sector_base_addr
)
666 << FLASH_SECTOR_ADDR_SHIFT
);
667 nvm
->flash_bank_size
/= 2;
668 /* Adjust to word count */
669 nvm
->flash_bank_size
/= sizeof(u16
);
672 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
674 /* Clear shadow ram */
675 for (i
= 0; i
< nvm
->word_size
; i
++) {
676 dev_spec
->shadow_ram
[i
].modified
= false;
677 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
684 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
685 * @hw: pointer to the HW structure
687 * Initialize family-specific MAC parameters and function
690 static s32
e1000_init_mac_params_ich8lan(struct e1000_hw
*hw
)
692 struct e1000_mac_info
*mac
= &hw
->mac
;
694 /* Set media type function pointer */
695 hw
->phy
.media_type
= e1000_media_type_copper
;
697 /* Set mta register count */
698 mac
->mta_reg_count
= 32;
699 /* Set rar entry count */
700 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
701 if (mac
->type
== e1000_ich8lan
)
702 mac
->rar_entry_count
--;
704 mac
->has_fwsm
= true;
705 /* ARC subsystem not supported */
706 mac
->arc_subsystem_valid
= false;
707 /* Adaptive IFS supported */
708 mac
->adaptive_ifs
= true;
710 /* LED and other operations */
715 /* check management mode */
716 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
718 mac
->ops
.id_led_init
= e1000e_id_led_init_generic
;
720 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
722 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
724 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
725 /* turn on/off LED */
726 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
727 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
730 mac
->rar_entry_count
= E1000_PCH2_RAR_ENTRIES
;
731 mac
->ops
.rar_set
= e1000_rar_set_pch2lan
;
743 /* check management mode */
744 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
746 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
748 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
750 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
751 /* turn on/off LED */
752 mac
->ops
.led_on
= e1000_led_on_pchlan
;
753 mac
->ops
.led_off
= e1000_led_off_pchlan
;
759 if (mac
->type
>= e1000_pch_lpt
) {
760 mac
->rar_entry_count
= E1000_PCH_LPT_RAR_ENTRIES
;
761 mac
->ops
.rar_set
= e1000_rar_set_pch_lpt
;
762 mac
->ops
.setup_physical_interface
=
763 e1000_setup_copper_link_pch_lpt
;
764 mac
->ops
.rar_get_count
= e1000_rar_get_count_pch_lpt
;
767 /* Enable PCS Lock-loss workaround for ICH8 */
768 if (mac
->type
== e1000_ich8lan
)
769 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
775 * __e1000_access_emi_reg_locked - Read/write EMI register
776 * @hw: pointer to the HW structure
777 * @address: EMI address to program
778 * @data: pointer to value to read/write from/to the EMI address
779 * @read: boolean flag to indicate read or write
781 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
783 static s32
__e1000_access_emi_reg_locked(struct e1000_hw
*hw
, u16 address
,
784 u16
*data
, bool read
)
788 ret_val
= e1e_wphy_locked(hw
, I82579_EMI_ADDR
, address
);
793 ret_val
= e1e_rphy_locked(hw
, I82579_EMI_DATA
, data
);
795 ret_val
= e1e_wphy_locked(hw
, I82579_EMI_DATA
, *data
);
801 * e1000_read_emi_reg_locked - Read Extended Management Interface register
802 * @hw: pointer to the HW structure
803 * @addr: EMI address to program
804 * @data: value to be read from the EMI address
806 * Assumes the SW/FW/HW Semaphore is already acquired.
808 s32
e1000_read_emi_reg_locked(struct e1000_hw
*hw
, u16 addr
, u16
*data
)
810 return __e1000_access_emi_reg_locked(hw
, addr
, data
, true);
814 * e1000_write_emi_reg_locked - Write Extended Management Interface register
815 * @hw: pointer to the HW structure
816 * @addr: EMI address to program
817 * @data: value to be written to the EMI address
819 * Assumes the SW/FW/HW Semaphore is already acquired.
821 s32
e1000_write_emi_reg_locked(struct e1000_hw
*hw
, u16 addr
, u16 data
)
823 return __e1000_access_emi_reg_locked(hw
, addr
, &data
, false);
827 * e1000_set_eee_pchlan - Enable/disable EEE support
828 * @hw: pointer to the HW structure
830 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
831 * the link and the EEE capabilities of the link partner. The LPI Control
832 * register bits will remain set only if/when link is up.
834 * EEE LPI must not be asserted earlier than one second after link is up.
835 * On 82579, EEE LPI should not be enabled until such time otherwise there
836 * can be link issues with some switches. Other devices can have EEE LPI
837 * enabled immediately upon link up since they have a timer in hardware which
838 * prevents LPI from being asserted too early.
840 s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
842 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
844 u16 lpa
, pcs_status
, adv
, adv_addr
, lpi_ctrl
, data
;
846 switch (hw
->phy
.type
) {
847 case e1000_phy_82579
:
848 lpa
= I82579_EEE_LP_ABILITY
;
849 pcs_status
= I82579_EEE_PCS_STATUS
;
850 adv_addr
= I82579_EEE_ADVERTISEMENT
;
853 lpa
= I217_EEE_LP_ABILITY
;
854 pcs_status
= I217_EEE_PCS_STATUS
;
855 adv_addr
= I217_EEE_ADVERTISEMENT
;
861 ret_val
= hw
->phy
.ops
.acquire(hw
);
865 ret_val
= e1e_rphy_locked(hw
, I82579_LPI_CTRL
, &lpi_ctrl
);
869 /* Clear bits that enable EEE in various speeds */
870 lpi_ctrl
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
872 /* Enable EEE if not disabled by user */
873 if (!dev_spec
->eee_disable
) {
874 /* Save off link partner's EEE ability */
875 ret_val
= e1000_read_emi_reg_locked(hw
, lpa
,
876 &dev_spec
->eee_lp_ability
);
880 /* Read EEE advertisement */
881 ret_val
= e1000_read_emi_reg_locked(hw
, adv_addr
, &adv
);
885 /* Enable EEE only for speeds in which the link partner is
886 * EEE capable and for which we advertise EEE.
888 if (adv
& dev_spec
->eee_lp_ability
& I82579_EEE_1000_SUPPORTED
)
889 lpi_ctrl
|= I82579_LPI_CTRL_1000_ENABLE
;
891 if (adv
& dev_spec
->eee_lp_ability
& I82579_EEE_100_SUPPORTED
) {
892 e1e_rphy_locked(hw
, MII_LPA
, &data
);
893 if (data
& LPA_100FULL
)
894 lpi_ctrl
|= I82579_LPI_CTRL_100_ENABLE
;
896 /* EEE is not supported in 100Half, so ignore
897 * partner's EEE in 100 ability if full-duplex
900 dev_spec
->eee_lp_ability
&=
901 ~I82579_EEE_100_SUPPORTED
;
905 if (hw
->phy
.type
== e1000_phy_82579
) {
906 ret_val
= e1000_read_emi_reg_locked(hw
, I82579_LPI_PLL_SHUT
,
911 data
&= ~I82579_LPI_100_PLL_SHUT
;
912 ret_val
= e1000_write_emi_reg_locked(hw
, I82579_LPI_PLL_SHUT
,
916 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
917 ret_val
= e1000_read_emi_reg_locked(hw
, pcs_status
, &data
);
921 ret_val
= e1e_wphy_locked(hw
, I82579_LPI_CTRL
, lpi_ctrl
);
923 hw
->phy
.ops
.release(hw
);
929 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
930 * @hw: pointer to the HW structure
931 * @link: link up bool flag
933 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
934 * preventing further DMA write requests. Workaround the issue by disabling
935 * the de-assertion of the clock request when in 1Gpbs mode.
936 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
937 * speeds in order to avoid Tx hangs.
939 static s32
e1000_k1_workaround_lpt_lp(struct e1000_hw
*hw
, bool link
)
941 u32 fextnvm6
= er32(FEXTNVM6
);
942 u32 status
= er32(STATUS
);
946 if (link
&& (status
& E1000_STATUS_SPEED_1000
)) {
947 ret_val
= hw
->phy
.ops
.acquire(hw
);
952 e1000e_read_kmrn_reg_locked(hw
, E1000_KMRNCTRLSTA_K1_CONFIG
,
958 e1000e_write_kmrn_reg_locked(hw
,
959 E1000_KMRNCTRLSTA_K1_CONFIG
,
961 ~E1000_KMRNCTRLSTA_K1_ENABLE
);
965 usleep_range(10, 20);
967 ew32(FEXTNVM6
, fextnvm6
| E1000_FEXTNVM6_REQ_PLL_CLK
);
970 e1000e_write_kmrn_reg_locked(hw
,
971 E1000_KMRNCTRLSTA_K1_CONFIG
,
974 hw
->phy
.ops
.release(hw
);
976 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
977 fextnvm6
&= ~E1000_FEXTNVM6_REQ_PLL_CLK
;
979 if ((hw
->phy
.revision
> 5) || !link
||
980 ((status
& E1000_STATUS_SPEED_100
) &&
981 (status
& E1000_STATUS_FD
)))
982 goto update_fextnvm6
;
984 ret_val
= e1e_rphy(hw
, I217_INBAND_CTRL
, ®
);
988 /* Clear link status transmit timeout */
989 reg
&= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK
;
991 if (status
& E1000_STATUS_SPEED_100
) {
992 /* Set inband Tx timeout to 5x10us for 100Half */
993 reg
|= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT
;
995 /* Do not extend the K1 entry latency for 100Half */
996 fextnvm6
&= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION
;
998 /* Set inband Tx timeout to 50x10us for 10Full/Half */
1000 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT
;
1002 /* Extend the K1 entry latency for 10 Mbps */
1003 fextnvm6
|= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION
;
1006 ret_val
= e1e_wphy(hw
, I217_INBAND_CTRL
, reg
);
1011 ew32(FEXTNVM6
, fextnvm6
);
1018 * e1000_platform_pm_pch_lpt - Set platform power management values
1019 * @hw: pointer to the HW structure
1020 * @link: bool indicating link status
1022 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 * when link is up (which must not exceed the maximum latency supported
1025 * by the platform), otherwise specify there is no LTR requirement.
1026 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 * Capability register set, on this device LTR is set by writing the
1029 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 * message to the PMC.
1033 static s32
e1000_platform_pm_pch_lpt(struct e1000_hw
*hw
, bool link
)
1035 u32 reg
= link
<< (E1000_LTRV_REQ_SHIFT
+ E1000_LTRV_NOSNOOP_SHIFT
) |
1036 link
<< E1000_LTRV_REQ_SHIFT
| E1000_LTRV_SEND
;
1037 u32 max_ltr_enc_d
= 0; /* maximum LTR decoded by platform */
1038 u32 lat_enc_d
= 0; /* latency decoded */
1039 u16 lat_enc
= 0; /* latency encoded */
1042 u16 speed
, duplex
, scale
= 0;
1043 u16 max_snoop
, max_nosnoop
;
1044 u16 max_ltr_enc
; /* max LTR latency encoded */
1048 if (!hw
->adapter
->max_frame_size
) {
1049 e_dbg("max_frame_size not set.\n");
1050 return -E1000_ERR_CONFIG
;
1053 hw
->mac
.ops
.get_link_up_info(hw
, &speed
, &duplex
);
1055 e_dbg("Speed not set.\n");
1056 return -E1000_ERR_CONFIG
;
1059 /* Rx Packet Buffer Allocation size (KB) */
1060 rxa
= er32(PBA
) & E1000_PBA_RXA_MASK
;
1062 /* Determine the maximum latency tolerated by the device.
1064 * Per the PCIe spec, the tolerated latencies are encoded as
1065 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1068 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1071 value
= (rxa
> hw
->adapter
->max_frame_size
) ?
1072 (rxa
- hw
->adapter
->max_frame_size
) * (16000 / speed
) :
1075 while (value
> PCI_LTR_VALUE_MASK
) {
1077 value
= DIV_ROUND_UP(value
, BIT(5));
1079 if (scale
> E1000_LTRV_SCALE_MAX
) {
1080 e_dbg("Invalid LTR latency scale %d\n", scale
);
1081 return -E1000_ERR_CONFIG
;
1083 lat_enc
= (u16
)((scale
<< PCI_LTR_SCALE_SHIFT
) | value
);
1085 /* Determine the maximum latency tolerated by the platform */
1086 pci_read_config_word(hw
->adapter
->pdev
, E1000_PCI_LTR_CAP_LPT
,
1088 pci_read_config_word(hw
->adapter
->pdev
,
1089 E1000_PCI_LTR_CAP_LPT
+ 2, &max_nosnoop
);
1090 max_ltr_enc
= max_t(u16
, max_snoop
, max_nosnoop
);
1092 lat_enc_d
= (lat_enc
& E1000_LTRV_VALUE_MASK
) *
1093 (1U << (E1000_LTRV_SCALE_FACTOR
*
1094 FIELD_GET(E1000_LTRV_SCALE_MASK
, lat_enc
)));
1096 max_ltr_enc_d
= (max_ltr_enc
& E1000_LTRV_VALUE_MASK
) *
1097 (1U << (E1000_LTRV_SCALE_FACTOR
*
1098 FIELD_GET(E1000_LTRV_SCALE_MASK
, max_ltr_enc
)));
1100 if (lat_enc_d
> max_ltr_enc_d
)
1101 lat_enc
= max_ltr_enc
;
1104 /* Set Snoop and No-Snoop latencies the same */
1105 reg
|= lat_enc
| (lat_enc
<< E1000_LTRV_NOSNOOP_SHIFT
);
1112 * e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1113 * @hw: pointer to the HW structure
1115 * Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1118 * Return: 0 on success, negative errno on failure.
1120 static s32
e1000e_force_smbus(struct e1000_hw
*hw
)
1126 /* Switching PHY interface always returns MDI error
1127 * so disable retry mechanism to avoid wasting time
1129 e1000e_disable_phy_retry(hw
);
1131 /* Force SMBus mode in the PHY */
1132 ret_val
= e1000_read_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, &smb_ctrl
);
1134 e1000e_enable_phy_retry(hw
);
1138 smb_ctrl
|= CV_SMB_CTRL_FORCE_SMBUS
;
1139 e1000_write_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, smb_ctrl
);
1141 e1000e_enable_phy_retry(hw
);
1143 /* Force SMBus mode in the MAC */
1144 ctrl_ext
= er32(CTRL_EXT
);
1145 ctrl_ext
|= E1000_CTRL_EXT_FORCE_SMBUS
;
1146 ew32(CTRL_EXT
, ctrl_ext
);
1152 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1153 * @hw: pointer to the HW structure
1154 * @to_sx: boolean indicating a system power state transition to Sx
1156 * When link is down, configure ULP mode to significantly reduce the power
1157 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1158 * ME firmware to start the ULP configuration. If not on an ME enabled
1159 * system, configure the ULP mode by software.
1161 s32
e1000_enable_ulp_lpt_lp(struct e1000_hw
*hw
, bool to_sx
)
1168 if ((hw
->mac
.type
< e1000_pch_lpt
) ||
1169 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_LM
) ||
1170 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_V
) ||
1171 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_LM2
) ||
1172 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_V2
) ||
1173 (hw
->dev_spec
.ich8lan
.ulp_state
== e1000_ulp_state_on
))
1176 if (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
) {
1177 /* Request ME configure ULP mode in the PHY */
1178 mac_reg
= er32(H2ME
);
1179 mac_reg
|= E1000_H2ME_ULP
| E1000_H2ME_ENFORCE_SETTINGS
;
1180 ew32(H2ME
, mac_reg
);
1188 /* Poll up to 5 seconds for Cable Disconnected indication */
1189 while (!(er32(FEXT
) & E1000_FEXT_PHY_CABLE_DISCONNECTED
)) {
1190 /* Bail if link is re-acquired */
1191 if (er32(STATUS
) & E1000_STATUS_LU
)
1192 return -E1000_ERR_PHY
;
1199 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1201 E1000_FEXT_PHY_CABLE_DISCONNECTED
) ? "" : "not", i
* 50);
1204 ret_val
= hw
->phy
.ops
.acquire(hw
);
1208 ret_val
= e1000e_force_smbus(hw
);
1210 e_dbg("Failed to force SMBUS: %d\n", ret_val
);
1214 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1215 * LPLU and disable Gig speed when entering ULP
1217 if ((hw
->phy
.type
== e1000_phy_i217
) && (hw
->phy
.revision
== 6)) {
1218 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_OEM_BITS
,
1224 phy_reg
|= HV_OEM_BITS_LPLU
| HV_OEM_BITS_GBE_DIS
;
1226 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_OEM_BITS
,
1233 /* Set Inband ULP Exit, Reset to SMBus mode and
1234 * Disable SMBus Release on PERST# in PHY
1236 ret_val
= e1000_read_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, &phy_reg
);
1239 phy_reg
|= (I218_ULP_CONFIG1_RESET_TO_SMBUS
|
1240 I218_ULP_CONFIG1_DISABLE_SMB_PERST
);
1242 if (er32(WUFC
) & E1000_WUFC_LNKC
)
1243 phy_reg
|= I218_ULP_CONFIG1_WOL_HOST
;
1245 phy_reg
&= ~I218_ULP_CONFIG1_WOL_HOST
;
1247 phy_reg
|= I218_ULP_CONFIG1_STICKY_ULP
;
1248 phy_reg
&= ~I218_ULP_CONFIG1_INBAND_EXIT
;
1250 phy_reg
|= I218_ULP_CONFIG1_INBAND_EXIT
;
1251 phy_reg
&= ~I218_ULP_CONFIG1_STICKY_ULP
;
1252 phy_reg
&= ~I218_ULP_CONFIG1_WOL_HOST
;
1254 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1256 /* Set Disable SMBus Release on PERST# in MAC */
1257 mac_reg
= er32(FEXTNVM7
);
1258 mac_reg
|= E1000_FEXTNVM7_DISABLE_SMB_PERST
;
1259 ew32(FEXTNVM7
, mac_reg
);
1261 /* Commit ULP changes in PHY by starting auto ULP configuration */
1262 phy_reg
|= I218_ULP_CONFIG1_START
;
1263 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1265 if ((hw
->phy
.type
== e1000_phy_i217
) && (hw
->phy
.revision
== 6) &&
1266 to_sx
&& (er32(STATUS
) & E1000_STATUS_LU
)) {
1267 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_OEM_BITS
,
1274 hw
->phy
.ops
.release(hw
);
1277 e_dbg("Error in ULP enable flow: %d\n", ret_val
);
1279 hw
->dev_spec
.ich8lan
.ulp_state
= e1000_ulp_state_on
;
1285 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1286 * @hw: pointer to the HW structure
1287 * @force: boolean indicating whether or not to force disabling ULP
1289 * Un-configure ULP mode when link is up, the system is transitioned from
1290 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1291 * system, poll for an indication from ME that ULP has been un-configured.
1292 * If not on an ME enabled system, un-configure the ULP mode by software.
1294 * During nominal operation, this function is called when link is acquired
1295 * to disable ULP mode (force=false); otherwise, for example when unloading
1296 * the driver or during Sx->S0 transitions, this is called with force=true
1297 * to forcibly disable ULP.
1299 static s32
e1000_disable_ulp_lpt_lp(struct e1000_hw
*hw
, bool force
)
1306 if ((hw
->mac
.type
< e1000_pch_lpt
) ||
1307 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_LM
) ||
1308 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPT_I217_V
) ||
1309 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_LM2
) ||
1310 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_V2
) ||
1311 (hw
->dev_spec
.ich8lan
.ulp_state
== e1000_ulp_state_off
))
1314 if (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
) {
1315 struct e1000_adapter
*adapter
= hw
->adapter
;
1316 bool firmware_bug
= false;
1319 /* Request ME un-configure ULP mode in the PHY */
1320 mac_reg
= er32(H2ME
);
1321 mac_reg
&= ~E1000_H2ME_ULP
;
1322 mac_reg
|= E1000_H2ME_ENFORCE_SETTINGS
;
1323 ew32(H2ME
, mac_reg
);
1326 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1327 * If this takes more than 1 second, show a warning indicating a
1330 while (er32(FWSM
) & E1000_FWSM_ULP_CFG_DONE
) {
1332 ret_val
= -E1000_ERR_PHY
;
1335 if (i
> 100 && !firmware_bug
)
1336 firmware_bug
= true;
1338 usleep_range(10000, 11000);
1341 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1344 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1348 mac_reg
= er32(H2ME
);
1349 mac_reg
&= ~E1000_H2ME_ENFORCE_SETTINGS
;
1350 ew32(H2ME
, mac_reg
);
1352 /* Clear H2ME.ULP after ME ULP configuration */
1353 mac_reg
= er32(H2ME
);
1354 mac_reg
&= ~E1000_H2ME_ULP
;
1355 ew32(H2ME
, mac_reg
);
1361 ret_val
= hw
->phy
.ops
.acquire(hw
);
1366 /* Toggle LANPHYPC Value bit */
1367 e1000_toggle_lanphypc_pch_lpt(hw
);
1369 /* Switching PHY interface always returns MDI error
1370 * so disable retry mechanism to avoid wasting time
1372 e1000e_disable_phy_retry(hw
);
1374 /* Unforce SMBus mode in PHY */
1375 ret_val
= e1000_read_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, &phy_reg
);
1377 /* The MAC might be in PCIe mode, so temporarily force to
1378 * SMBus mode in order to access the PHY.
1380 mac_reg
= er32(CTRL_EXT
);
1381 mac_reg
|= E1000_CTRL_EXT_FORCE_SMBUS
;
1382 ew32(CTRL_EXT
, mac_reg
);
1386 ret_val
= e1000_read_phy_reg_hv_locked(hw
, CV_SMB_CTRL
,
1391 phy_reg
&= ~CV_SMB_CTRL_FORCE_SMBUS
;
1392 e1000_write_phy_reg_hv_locked(hw
, CV_SMB_CTRL
, phy_reg
);
1394 e1000e_enable_phy_retry(hw
);
1396 /* Unforce SMBus mode in MAC */
1397 mac_reg
= er32(CTRL_EXT
);
1398 mac_reg
&= ~E1000_CTRL_EXT_FORCE_SMBUS
;
1399 ew32(CTRL_EXT
, mac_reg
);
1401 /* When ULP mode was previously entered, K1 was disabled by the
1402 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1404 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_PM_CTRL
, &phy_reg
);
1407 phy_reg
|= HV_PM_CTRL_K1_ENABLE
;
1408 e1000_write_phy_reg_hv_locked(hw
, HV_PM_CTRL
, phy_reg
);
1410 /* Clear ULP enabled configuration */
1411 ret_val
= e1000_read_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, &phy_reg
);
1414 phy_reg
&= ~(I218_ULP_CONFIG1_IND
|
1415 I218_ULP_CONFIG1_STICKY_ULP
|
1416 I218_ULP_CONFIG1_RESET_TO_SMBUS
|
1417 I218_ULP_CONFIG1_WOL_HOST
|
1418 I218_ULP_CONFIG1_INBAND_EXIT
|
1419 I218_ULP_CONFIG1_EN_ULP_LANPHYPC
|
1420 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST
|
1421 I218_ULP_CONFIG1_DISABLE_SMB_PERST
);
1422 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1424 /* Commit ULP changes by starting auto ULP configuration */
1425 phy_reg
|= I218_ULP_CONFIG1_START
;
1426 e1000_write_phy_reg_hv_locked(hw
, I218_ULP_CONFIG1
, phy_reg
);
1428 /* Clear Disable SMBus Release on PERST# in MAC */
1429 mac_reg
= er32(FEXTNVM7
);
1430 mac_reg
&= ~E1000_FEXTNVM7_DISABLE_SMB_PERST
;
1431 ew32(FEXTNVM7
, mac_reg
);
1434 hw
->phy
.ops
.release(hw
);
1436 e1000_phy_hw_reset(hw
);
1441 e_dbg("Error in ULP disable flow: %d\n", ret_val
);
1443 hw
->dev_spec
.ich8lan
.ulp_state
= e1000_ulp_state_off
;
1449 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1450 * @hw: pointer to the HW structure
1452 * Checks to see of the link status of the hardware has changed. If a
1453 * change in link status has been detected, then we read the PHY registers
1454 * to get the current speed/duplex if link exists.
1456 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
1458 struct e1000_mac_info
*mac
= &hw
->mac
;
1459 s32 ret_val
, tipg_reg
= 0;
1460 u16 emi_addr
, emi_val
= 0;
1464 /* We only want to go out to the PHY registers to see if Auto-Neg
1465 * has completed and/or if our link status has changed. The
1466 * get_link_status flag is set upon receiving a Link Status
1467 * Change or Rx Sequence Error interrupt.
1469 if (!mac
->get_link_status
)
1471 mac
->get_link_status
= false;
1473 /* First we want to see if the MII Status Register reports
1474 * link. If so, then we want to get the current speed/duplex
1477 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1481 if (hw
->mac
.type
== e1000_pchlan
) {
1482 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
1487 /* When connected at 10Mbps half-duplex, some parts are excessively
1488 * aggressive resulting in many collisions. To avoid this, increase
1489 * the IPG and reduce Rx latency in the PHY.
1491 if ((hw
->mac
.type
>= e1000_pch2lan
) && link
) {
1494 e1000e_get_speed_and_duplex_copper(hw
, &speed
, &duplex
);
1495 tipg_reg
= er32(TIPG
);
1496 tipg_reg
&= ~E1000_TIPG_IPGT_MASK
;
1498 if (duplex
== HALF_DUPLEX
&& speed
== SPEED_10
) {
1500 /* Reduce Rx latency in analog PHY */
1502 } else if (hw
->mac
.type
>= e1000_pch_spt
&&
1503 duplex
== FULL_DUPLEX
&& speed
!= SPEED_1000
) {
1508 /* Roll back the default values */
1513 ew32(TIPG
, tipg_reg
);
1515 ret_val
= hw
->phy
.ops
.acquire(hw
);
1519 if (hw
->mac
.type
== e1000_pch2lan
)
1520 emi_addr
= I82579_RX_CONFIG
;
1522 emi_addr
= I217_RX_CONFIG
;
1523 ret_val
= e1000_write_emi_reg_locked(hw
, emi_addr
, emi_val
);
1525 if (hw
->mac
.type
>= e1000_pch_lpt
) {
1528 e1e_rphy_locked(hw
, I217_PLL_CLOCK_GATE_REG
, &phy_reg
);
1529 phy_reg
&= ~I217_PLL_CLOCK_GATE_MASK
;
1530 if (speed
== SPEED_100
|| speed
== SPEED_10
)
1534 e1e_wphy_locked(hw
, I217_PLL_CLOCK_GATE_REG
, phy_reg
);
1536 if (speed
== SPEED_1000
) {
1537 hw
->phy
.ops
.read_reg_locked(hw
, HV_PM_CTRL
,
1540 phy_reg
|= HV_PM_CTRL_K1_CLK_REQ
;
1542 hw
->phy
.ops
.write_reg_locked(hw
, HV_PM_CTRL
,
1546 hw
->phy
.ops
.release(hw
);
1551 if (hw
->mac
.type
>= e1000_pch_spt
) {
1555 if (speed
== SPEED_1000
) {
1556 ret_val
= hw
->phy
.ops
.acquire(hw
);
1560 ret_val
= e1e_rphy_locked(hw
,
1564 hw
->phy
.ops
.release(hw
);
1568 ptr_gap
= (data
& (0x3FF << 2)) >> 2;
1569 if (ptr_gap
< 0x18) {
1570 data
&= ~(0x3FF << 2);
1571 data
|= (0x18 << 2);
1577 hw
->phy
.ops
.release(hw
);
1581 ret_val
= hw
->phy
.ops
.acquire(hw
);
1585 ret_val
= e1e_wphy_locked(hw
,
1588 hw
->phy
.ops
.release(hw
);
1596 /* I217 Packet Loss issue:
1597 * ensure that FEXTNVM4 Beacon Duration is set correctly
1599 * Set the Beacon Duration for I217 to 8 usec
1601 if (hw
->mac
.type
>= e1000_pch_lpt
) {
1604 mac_reg
= er32(FEXTNVM4
);
1605 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
1606 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_8USEC
;
1607 ew32(FEXTNVM4
, mac_reg
);
1610 /* Work-around I218 hang issue */
1611 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPTLP_I218_LM
) ||
1612 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_LPTLP_I218_V
) ||
1613 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_LM3
) ||
1614 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_PCH_I218_V3
)) {
1615 ret_val
= e1000_k1_workaround_lpt_lp(hw
, link
);
1619 if (hw
->mac
.type
>= e1000_pch_lpt
) {
1620 /* Set platform power management values for
1621 * Latency Tolerance Reporting (LTR)
1623 ret_val
= e1000_platform_pm_pch_lpt(hw
, link
);
1628 /* Clear link partner's EEE ability */
1629 hw
->dev_spec
.ich8lan
.eee_lp_ability
= 0;
1631 if (hw
->mac
.type
>= e1000_pch_lpt
) {
1632 u32 fextnvm6
= er32(FEXTNVM6
);
1634 if (hw
->mac
.type
== e1000_pch_spt
) {
1635 /* FEXTNVM6 K1-off workaround - for SPT only */
1636 u32 pcieanacfg
= er32(PCIEANACFG
);
1638 if (pcieanacfg
& E1000_FEXTNVM6_K1_OFF_ENABLE
)
1639 fextnvm6
|= E1000_FEXTNVM6_K1_OFF_ENABLE
;
1641 fextnvm6
&= ~E1000_FEXTNVM6_K1_OFF_ENABLE
;
1644 ew32(FEXTNVM6
, fextnvm6
);
1650 switch (hw
->mac
.type
) {
1652 ret_val
= e1000_k1_workaround_lv(hw
);
1657 if (hw
->phy
.type
== e1000_phy_82578
) {
1658 ret_val
= e1000_link_stall_workaround_hv(hw
);
1663 /* Workaround for PCHx parts in half-duplex:
1664 * Set the number of preambles removed from the packet
1665 * when it is passed from the PHY to the MAC to prevent
1666 * the MAC from misinterpreting the packet type.
1668 e1e_rphy(hw
, HV_KMRN_FIFO_CTRLSTA
, &phy_reg
);
1669 phy_reg
&= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK
;
1671 if ((er32(STATUS
) & E1000_STATUS_FD
) != E1000_STATUS_FD
)
1672 phy_reg
|= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT
);
1674 e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, phy_reg
);
1680 /* Check if there was DownShift, must be checked
1681 * immediately after link-up
1683 e1000e_check_downshift(hw
);
1685 /* Enable/Disable EEE after link up */
1686 if (hw
->phy
.type
> e1000_phy_82579
) {
1687 ret_val
= e1000_set_eee_pchlan(hw
);
1692 /* If we are forcing speed/duplex, then we simply return since
1693 * we have already determined whether we have link or not.
1696 return -E1000_ERR_CONFIG
;
1698 /* Auto-Neg is enabled. Auto Speed Detection takes care
1699 * of MAC speed/duplex configuration. So we only need to
1700 * configure Collision Distance in the MAC.
1702 mac
->ops
.config_collision_dist(hw
);
1704 /* Configure Flow Control now that Auto-Neg has completed.
1705 * First, we need to restore the desired flow control
1706 * settings because we may have had to re-autoneg with a
1707 * different link partner.
1709 ret_val
= e1000e_config_fc_after_link_up(hw
);
1711 e_dbg("Error configuring flow control\n");
1716 mac
->get_link_status
= true;
1720 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
1722 struct e1000_hw
*hw
= &adapter
->hw
;
1725 rc
= e1000_init_mac_params_ich8lan(hw
);
1729 rc
= e1000_init_nvm_params_ich8lan(hw
);
1733 switch (hw
->mac
.type
) {
1736 case e1000_ich10lan
:
1737 rc
= e1000_init_phy_params_ich8lan(hw
);
1750 rc
= e1000_init_phy_params_pchlan(hw
);
1758 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1759 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1761 if ((adapter
->hw
.phy
.type
== e1000_phy_ife
) ||
1762 ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
1763 (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LSECCK
)))) {
1764 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
1765 adapter
->max_hw_frame_size
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
;
1767 hw
->mac
.ops
.blink_led
= NULL
;
1770 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
1771 (adapter
->hw
.phy
.type
!= e1000_phy_ife
))
1772 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
1774 /* Enable workaround for 82579 w/ ME enabled */
1775 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
1776 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
1777 adapter
->flags2
|= FLAG2_PCIM2PCI_ARBITER_WA
;
1782 static DEFINE_MUTEX(nvm_mutex
);
1785 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1786 * @hw: pointer to the HW structure
1788 * Acquires the mutex for performing NVM operations.
1790 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused
*hw
)
1792 mutex_lock(&nvm_mutex
);
1798 * e1000_release_nvm_ich8lan - Release NVM mutex
1799 * @hw: pointer to the HW structure
1801 * Releases the mutex used while performing NVM operations.
1803 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused
*hw
)
1805 mutex_unlock(&nvm_mutex
);
1809 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1810 * @hw: pointer to the HW structure
1812 * Acquires the software control flag for performing PHY and select
1815 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
1817 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
1820 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE
,
1821 &hw
->adapter
->state
)) {
1822 e_dbg("contention for Phy access\n");
1823 return -E1000_ERR_PHY
;
1827 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1828 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
1836 e_dbg("SW has already locked the resource.\n");
1837 ret_val
= -E1000_ERR_CONFIG
;
1841 timeout
= SW_FLAG_TIMEOUT
;
1843 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
1844 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1847 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1848 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
1856 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1857 er32(FWSM
), extcnf_ctrl
);
1858 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
1859 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1860 ret_val
= -E1000_ERR_CONFIG
;
1866 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
1872 * e1000_release_swflag_ich8lan - Release software control flag
1873 * @hw: pointer to the HW structure
1875 * Releases the software control flag for performing PHY and select
1878 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
1882 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1884 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
) {
1885 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
1886 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1888 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1891 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
1895 * e1000_check_mng_mode_ich8lan - Checks management mode
1896 * @hw: pointer to the HW structure
1898 * This checks if the adapter has any manageability enabled.
1899 * This is a function pointer entry point only called by read/write
1900 * routines for the PHY and NVM parts.
1902 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
1907 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
1908 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
1909 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
1913 * e1000_check_mng_mode_pchlan - Checks management mode
1914 * @hw: pointer to the HW structure
1916 * This checks if the adapter has iAMT enabled.
1917 * This is a function pointer entry point only called by read/write
1918 * routines for the PHY and NVM parts.
1920 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
1925 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
1926 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
1930 * e1000_rar_set_pch2lan - Set receive address register
1931 * @hw: pointer to the HW structure
1932 * @addr: pointer to the receive address
1933 * @index: receive address array register
1935 * Sets the receive address array register at index to the address passed
1936 * in by addr. For 82579, RAR[0] is the base address register that is to
1937 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1938 * Use SHRA[0-3] in place of those reserved for ME.
1940 static int e1000_rar_set_pch2lan(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
1942 u32 rar_low
, rar_high
;
1944 /* HW expects these in little endian so we reverse the byte order
1945 * from network order (big endian) to little endian
1947 rar_low
= ((u32
)addr
[0] |
1948 ((u32
)addr
[1] << 8) |
1949 ((u32
)addr
[2] << 16) | ((u32
)addr
[3] << 24));
1951 rar_high
= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1953 /* If MAC address zero, no need to set the AV bit */
1954 if (rar_low
|| rar_high
)
1955 rar_high
|= E1000_RAH_AV
;
1958 ew32(RAL(index
), rar_low
);
1960 ew32(RAH(index
), rar_high
);
1965 /* RAR[1-6] are owned by manageability. Skip those and program the
1966 * next address into the SHRA register array.
1968 if (index
< (u32
)(hw
->mac
.rar_entry_count
)) {
1971 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
1975 ew32(SHRAL(index
- 1), rar_low
);
1977 ew32(SHRAH(index
- 1), rar_high
);
1980 e1000_release_swflag_ich8lan(hw
);
1982 /* verify the register updates */
1983 if ((er32(SHRAL(index
- 1)) == rar_low
) &&
1984 (er32(SHRAH(index
- 1)) == rar_high
))
1987 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1988 (index
- 1), er32(FWSM
));
1992 e_dbg("Failed to write receive address at index %d\n", index
);
1993 return -E1000_ERR_CONFIG
;
1997 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1998 * @hw: pointer to the HW structure
2000 * Get the number of available receive registers that the Host can
2001 * program. SHRA[0-10] are the shared receive address registers
2002 * that are shared between the Host and manageability engine (ME).
2003 * ME can reserve any number of addresses and the host needs to be
2004 * able to tell how many available registers it has access to.
2006 static u32
e1000_rar_get_count_pch_lpt(struct e1000_hw
*hw
)
2011 wlock_mac
= er32(FWSM
) & E1000_FWSM_WLOCK_MAC_MASK
;
2012 wlock_mac
>>= E1000_FWSM_WLOCK_MAC_SHIFT
;
2014 switch (wlock_mac
) {
2016 /* All SHRA[0..10] and RAR[0] available */
2017 num_entries
= hw
->mac
.rar_entry_count
;
2020 /* Only RAR[0] available */
2024 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2025 num_entries
= wlock_mac
+ 1;
2033 * e1000_rar_set_pch_lpt - Set receive address registers
2034 * @hw: pointer to the HW structure
2035 * @addr: pointer to the receive address
2036 * @index: receive address array register
2038 * Sets the receive address register array at index to the address passed
2039 * in by addr. For LPT, RAR[0] is the base address register that is to
2040 * contain the MAC address. SHRA[0-10] are the shared receive address
2041 * registers that are shared between the Host and manageability engine (ME).
2043 static int e1000_rar_set_pch_lpt(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
2045 u32 rar_low
, rar_high
;
2048 /* HW expects these in little endian so we reverse the byte order
2049 * from network order (big endian) to little endian
2051 rar_low
= ((u32
)addr
[0] | ((u32
)addr
[1] << 8) |
2052 ((u32
)addr
[2] << 16) | ((u32
)addr
[3] << 24));
2054 rar_high
= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
2056 /* If MAC address zero, no need to set the AV bit */
2057 if (rar_low
|| rar_high
)
2058 rar_high
|= E1000_RAH_AV
;
2061 ew32(RAL(index
), rar_low
);
2063 ew32(RAH(index
), rar_high
);
2068 /* The manageability engine (ME) can lock certain SHRAR registers that
2069 * it is using - those registers are unavailable for use.
2071 if (index
< hw
->mac
.rar_entry_count
) {
2072 wlock_mac
= er32(FWSM
) & E1000_FWSM_WLOCK_MAC_MASK
;
2073 wlock_mac
>>= E1000_FWSM_WLOCK_MAC_SHIFT
;
2075 /* Check if all SHRAR registers are locked */
2079 if ((wlock_mac
== 0) || (index
<= wlock_mac
)) {
2082 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
2087 ew32(SHRAL_PCH_LPT(index
- 1), rar_low
);
2089 ew32(SHRAH_PCH_LPT(index
- 1), rar_high
);
2092 e1000_release_swflag_ich8lan(hw
);
2094 /* verify the register updates */
2095 if ((er32(SHRAL_PCH_LPT(index
- 1)) == rar_low
) &&
2096 (er32(SHRAH_PCH_LPT(index
- 1)) == rar_high
))
2102 e_dbg("Failed to write receive address at index %d\n", index
);
2103 return -E1000_ERR_CONFIG
;
2107 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2108 * @hw: pointer to the HW structure
2110 * Checks if firmware is blocking the reset of the PHY.
2111 * This is a function pointer entry point only called by
2114 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
2116 bool blocked
= false;
2119 while ((blocked
= !(er32(FWSM
) & E1000_ICH_FWSM_RSPCIPHY
)) &&
2121 usleep_range(10000, 11000);
2122 return blocked
? E1000_BLK_PHY_RESET
: 0;
2126 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2127 * @hw: pointer to the HW structure
2129 * Assumes semaphore already acquired.
2132 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
2135 u32 strap
= er32(STRAP
);
2136 u32 freq
= FIELD_GET(E1000_STRAP_SMT_FREQ_MASK
, strap
);
2139 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
2141 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
2145 phy_data
&= ~HV_SMB_ADDR_MASK
;
2146 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
2147 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
2149 if (hw
->phy
.type
== e1000_phy_i217
) {
2150 /* Restore SMBus frequency */
2152 phy_data
&= ~HV_SMB_ADDR_FREQ_MASK
;
2153 phy_data
|= (freq
& BIT(0)) <<
2154 HV_SMB_ADDR_FREQ_LOW_SHIFT
;
2155 phy_data
|= (freq
& BIT(1)) <<
2156 (HV_SMB_ADDR_FREQ_HIGH_SHIFT
- 1);
2158 e_dbg("Unsupported SMB frequency in PHY\n");
2162 return e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
2166 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2167 * @hw: pointer to the HW structure
2169 * SW should configure the LCD from the NVM extended configuration region
2170 * as a workaround for certain parts.
2172 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
2174 struct e1000_phy_info
*phy
= &hw
->phy
;
2175 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
2177 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
2179 /* Initialize the PHY from the NVM on ICH platforms. This
2180 * is needed due to an issue where the NVM configuration is
2181 * not properly autoloaded after power transitions.
2182 * Therefore, after each PHY reset, we will load the
2183 * configuration data out of the NVM manually.
2185 switch (hw
->mac
.type
) {
2187 if (phy
->type
!= e1000_phy_igp_3
)
2190 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
2191 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
2192 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
2207 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
2213 ret_val
= hw
->phy
.ops
.acquire(hw
);
2217 data
= er32(FEXTNVM
);
2218 if (!(data
& sw_cfg_mask
))
2221 /* Make sure HW does not configure LCD from PHY
2222 * extended configuration before SW configuration
2224 data
= er32(EXTCNF_CTRL
);
2225 if ((hw
->mac
.type
< e1000_pch2lan
) &&
2226 (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
))
2229 cnf_size
= er32(EXTCNF_SIZE
);
2230 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
2231 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
2235 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
2236 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
2238 if (((hw
->mac
.type
== e1000_pchlan
) &&
2239 !(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)) ||
2240 (hw
->mac
.type
> e1000_pchlan
)) {
2241 /* HW configures the SMBus address and LEDs when the
2242 * OEM and LCD Write Enable bits are set in the NVM.
2243 * When both NVM bits are cleared, SW will configure
2246 ret_val
= e1000_write_smbus_addr(hw
);
2250 data
= er32(LEDCTL
);
2251 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
2257 /* Configure LCD from extended configuration region. */
2259 /* cnf_base_addr is in DWORD */
2260 word_addr
= (u16
)(cnf_base_addr
<< 1);
2262 for (i
= 0; i
< cnf_size
; i
++) {
2263 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1, ®_data
);
2267 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
2272 /* Save off the PHY page for future writes. */
2273 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
2274 phy_page
= reg_data
;
2278 reg_addr
&= PHY_REG_MASK
;
2279 reg_addr
|= phy_page
;
2281 ret_val
= e1e_wphy_locked(hw
, (u32
)reg_addr
, reg_data
);
2287 hw
->phy
.ops
.release(hw
);
2292 * e1000_k1_gig_workaround_hv - K1 Si workaround
2293 * @hw: pointer to the HW structure
2294 * @link: link up bool flag
2296 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2297 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2298 * If link is down, the function will restore the default K1 setting located
2301 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
2305 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
2307 if (hw
->mac
.type
!= e1000_pchlan
)
2310 /* Wrap the whole flow with the sw flag */
2311 ret_val
= hw
->phy
.ops
.acquire(hw
);
2315 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2317 if (hw
->phy
.type
== e1000_phy_82578
) {
2318 ret_val
= e1e_rphy_locked(hw
, BM_CS_STATUS
,
2323 status_reg
&= (BM_CS_STATUS_LINK_UP
|
2324 BM_CS_STATUS_RESOLVED
|
2325 BM_CS_STATUS_SPEED_MASK
);
2327 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
2328 BM_CS_STATUS_RESOLVED
|
2329 BM_CS_STATUS_SPEED_1000
))
2333 if (hw
->phy
.type
== e1000_phy_82577
) {
2334 ret_val
= e1e_rphy_locked(hw
, HV_M_STATUS
, &status_reg
);
2338 status_reg
&= (HV_M_STATUS_LINK_UP
|
2339 HV_M_STATUS_AUTONEG_COMPLETE
|
2340 HV_M_STATUS_SPEED_MASK
);
2342 if (status_reg
== (HV_M_STATUS_LINK_UP
|
2343 HV_M_STATUS_AUTONEG_COMPLETE
|
2344 HV_M_STATUS_SPEED_1000
))
2348 /* Link stall fix for link up */
2349 ret_val
= e1e_wphy_locked(hw
, PHY_REG(770, 19), 0x0100);
2354 /* Link stall fix for link down */
2355 ret_val
= e1e_wphy_locked(hw
, PHY_REG(770, 19), 0x4100);
2360 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
2363 hw
->phy
.ops
.release(hw
);
2369 * e1000_configure_k1_ich8lan - Configure K1 power state
2370 * @hw: pointer to the HW structure
2371 * @k1_enable: K1 state to configure
2373 * Configure the K1 power state based on the provided parameter.
2374 * Assumes semaphore already acquired.
2376 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2378 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
2386 ret_val
= e1000e_read_kmrn_reg_locked(hw
, E1000_KMRNCTRLSTA_K1_CONFIG
,
2392 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
2394 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
2396 ret_val
= e1000e_write_kmrn_reg_locked(hw
, E1000_KMRNCTRLSTA_K1_CONFIG
,
2401 usleep_range(20, 40);
2402 ctrl_ext
= er32(CTRL_EXT
);
2403 ctrl_reg
= er32(CTRL
);
2405 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
2406 reg
|= E1000_CTRL_FRCSPD
;
2409 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
2411 usleep_range(20, 40);
2412 ew32(CTRL
, ctrl_reg
);
2413 ew32(CTRL_EXT
, ctrl_ext
);
2415 usleep_range(20, 40);
2421 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2422 * @hw: pointer to the HW structure
2423 * @d0_state: boolean if entering d0 or d3 device state
2425 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2426 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2427 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2429 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
2435 if (hw
->mac
.type
< e1000_pchlan
)
2438 ret_val
= hw
->phy
.ops
.acquire(hw
);
2442 if (hw
->mac
.type
== e1000_pchlan
) {
2443 mac_reg
= er32(EXTCNF_CTRL
);
2444 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
2448 mac_reg
= er32(FEXTNVM
);
2449 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
2452 mac_reg
= er32(PHY_CTRL
);
2454 ret_val
= e1e_rphy_locked(hw
, HV_OEM_BITS
, &oem_reg
);
2458 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
2461 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
2462 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
2464 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
2465 oem_reg
|= HV_OEM_BITS_LPLU
;
2467 if (mac_reg
& (E1000_PHY_CTRL_GBE_DISABLE
|
2468 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
))
2469 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
2471 if (mac_reg
& (E1000_PHY_CTRL_D0A_LPLU
|
2472 E1000_PHY_CTRL_NOND0A_LPLU
))
2473 oem_reg
|= HV_OEM_BITS_LPLU
;
2476 /* Set Restart auto-neg to activate the bits */
2477 if ((d0_state
|| (hw
->mac
.type
!= e1000_pchlan
)) &&
2478 !hw
->phy
.ops
.check_reset_block(hw
))
2479 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
2481 ret_val
= e1e_wphy_locked(hw
, HV_OEM_BITS
, oem_reg
);
2484 hw
->phy
.ops
.release(hw
);
2490 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2491 * @hw: pointer to the HW structure
2493 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
2498 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
2502 data
|= HV_KMRN_MDIO_SLOW
;
2504 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
2510 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2511 * @hw: pointer to the HW structure
2513 * A series of PHY workarounds to be done after every PHY reset.
2515 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
2520 if (hw
->mac
.type
!= e1000_pchlan
)
2523 /* Set MDIO slow mode before any other MDIO access */
2524 if (hw
->phy
.type
== e1000_phy_82577
) {
2525 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
2530 if (((hw
->phy
.type
== e1000_phy_82577
) &&
2531 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
2532 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
2533 /* Disable generation of early preamble */
2534 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
2538 /* Preamble tuning for SSC */
2539 ret_val
= e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, 0xA204);
2544 if (hw
->phy
.type
== e1000_phy_82578
) {
2545 /* Return registers to default by doing a soft reset then
2546 * writing 0x3140 to the control register.
2548 if (hw
->phy
.revision
< 2) {
2549 e1000e_phy_sw_reset(hw
);
2550 ret_val
= e1e_wphy(hw
, MII_BMCR
, 0x3140);
2557 ret_val
= hw
->phy
.ops
.acquire(hw
);
2562 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
2563 hw
->phy
.ops
.release(hw
);
2567 /* Configure the K1 Si workaround during phy reset assuming there is
2568 * link so that it disables K1 if link is in 1Gbps.
2570 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
2574 /* Workaround for link disconnects on a busy hub in half duplex */
2575 ret_val
= hw
->phy
.ops
.acquire(hw
);
2578 ret_val
= e1e_rphy_locked(hw
, BM_PORT_GEN_CFG
, &phy_data
);
2581 ret_val
= e1e_wphy_locked(hw
, BM_PORT_GEN_CFG
, phy_data
& 0x00FF);
2585 /* set MSE higher to enable link to stay up when noise is high */
2586 ret_val
= e1000_write_emi_reg_locked(hw
, I82577_MSE_THRESHOLD
, 0x0034);
2588 hw
->phy
.ops
.release(hw
);
2594 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2595 * @hw: pointer to the HW structure
2597 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
2603 ret_val
= hw
->phy
.ops
.acquire(hw
);
2606 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2610 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2611 for (i
= 0; i
< (hw
->mac
.rar_entry_count
); i
++) {
2612 mac_reg
= er32(RAL(i
));
2613 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_L(i
),
2614 (u16
)(mac_reg
& 0xFFFF));
2615 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_M(i
),
2616 (u16
)((mac_reg
>> 16) & 0xFFFF));
2618 mac_reg
= er32(RAH(i
));
2619 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_H(i
),
2620 (u16
)(mac_reg
& 0xFFFF));
2621 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_CTRL(i
),
2622 (u16
)((mac_reg
& E1000_RAH_AV
) >> 16));
2625 e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
2628 hw
->phy
.ops
.release(hw
);
2632 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2634 * @hw: pointer to the HW structure
2635 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2637 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
2644 if (hw
->mac
.type
< e1000_pch2lan
)
2647 /* disable Rx path while enabling/disabling workaround */
2648 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
2649 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| BIT(14));
2654 /* Write Rx addresses (rar_entry_count for RAL/H, and
2655 * SHRAL/H) and initial CRC values to the MAC
2657 for (i
= 0; i
< hw
->mac
.rar_entry_count
; i
++) {
2658 u8 mac_addr
[ETH_ALEN
] = { 0 };
2659 u32 addr_high
, addr_low
;
2661 addr_high
= er32(RAH(i
));
2662 if (!(addr_high
& E1000_RAH_AV
))
2664 addr_low
= er32(RAL(i
));
2665 mac_addr
[0] = (addr_low
& 0xFF);
2666 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
2667 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
2668 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
2669 mac_addr
[4] = (addr_high
& 0xFF);
2670 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
2672 ew32(PCH_RAICC(i
), ~ether_crc_le(ETH_ALEN
, mac_addr
));
2675 /* Write Rx addresses to the PHY */
2676 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
2678 /* Enable jumbo frame workaround in the MAC */
2679 mac_reg
= er32(FFLT_DBG
);
2680 mac_reg
&= ~BIT(14);
2681 mac_reg
|= (7 << 15);
2682 ew32(FFLT_DBG
, mac_reg
);
2684 mac_reg
= er32(RCTL
);
2685 mac_reg
|= E1000_RCTL_SECRC
;
2686 ew32(RCTL
, mac_reg
);
2688 ret_val
= e1000e_read_kmrn_reg(hw
,
2689 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2693 ret_val
= e1000e_write_kmrn_reg(hw
,
2694 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2698 ret_val
= e1000e_read_kmrn_reg(hw
,
2699 E1000_KMRNCTRLSTA_HD_CTRL
,
2703 data
&= ~(0xF << 8);
2705 ret_val
= e1000e_write_kmrn_reg(hw
,
2706 E1000_KMRNCTRLSTA_HD_CTRL
,
2711 /* Enable jumbo frame workaround in the PHY */
2712 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
2713 data
&= ~(0x7F << 5);
2714 data
|= (0x37 << 5);
2715 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
2718 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
2720 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
2723 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
2724 data
&= ~(0x3FF << 2);
2725 data
|= (E1000_TX_PTR_GAP
<< 2);
2726 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
2729 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xF100);
2732 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
2733 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| BIT(10));
2737 /* Write MAC register values back to h/w defaults */
2738 mac_reg
= er32(FFLT_DBG
);
2739 mac_reg
&= ~(0xF << 14);
2740 ew32(FFLT_DBG
, mac_reg
);
2742 mac_reg
= er32(RCTL
);
2743 mac_reg
&= ~E1000_RCTL_SECRC
;
2744 ew32(RCTL
, mac_reg
);
2746 ret_val
= e1000e_read_kmrn_reg(hw
,
2747 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2751 ret_val
= e1000e_write_kmrn_reg(hw
,
2752 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
2756 ret_val
= e1000e_read_kmrn_reg(hw
,
2757 E1000_KMRNCTRLSTA_HD_CTRL
,
2761 data
&= ~(0xF << 8);
2763 ret_val
= e1000e_write_kmrn_reg(hw
,
2764 E1000_KMRNCTRLSTA_HD_CTRL
,
2769 /* Write PHY register values back to h/w defaults */
2770 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
2771 data
&= ~(0x7F << 5);
2772 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
2775 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
2777 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
2780 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
2781 data
&= ~(0x3FF << 2);
2783 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
2786 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
2789 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
2790 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~BIT(10));
2795 /* re-enable Rx path after enabling/disabling workaround */
2796 return e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~BIT(14));
2800 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2801 * @hw: pointer to the HW structure
2803 * A series of PHY workarounds to be done after every PHY reset.
2805 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
2809 if (hw
->mac
.type
!= e1000_pch2lan
)
2812 /* Set MDIO slow mode before any other MDIO access */
2813 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
2817 ret_val
= hw
->phy
.ops
.acquire(hw
);
2820 /* set MSE higher to enable link to stay up when noise is high */
2821 ret_val
= e1000_write_emi_reg_locked(hw
, I82579_MSE_THRESHOLD
, 0x0034);
2824 /* drop link after 5 times MSE threshold was reached */
2825 ret_val
= e1000_write_emi_reg_locked(hw
, I82579_MSE_LINK_DOWN
, 0x0005);
2827 hw
->phy
.ops
.release(hw
);
2833 * e1000_k1_workaround_lv - K1 Si workaround
2834 * @hw: pointer to the HW structure
2836 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2837 * Disable K1 in 1000Mbps and 100Mbps
2839 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
)
2844 if (hw
->mac
.type
!= e1000_pch2lan
)
2847 /* Set K1 beacon duration based on 10Mbs speed */
2848 ret_val
= e1e_rphy(hw
, HV_M_STATUS
, &status_reg
);
2852 if ((status_reg
& (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
))
2853 == (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
)) {
2855 (HV_M_STATUS_SPEED_1000
| HV_M_STATUS_SPEED_100
)) {
2858 /* LV 1G/100 Packet drop issue wa */
2859 ret_val
= e1e_rphy(hw
, HV_PM_CTRL
, &pm_phy_reg
);
2862 pm_phy_reg
&= ~HV_PM_CTRL_K1_ENABLE
;
2863 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, pm_phy_reg
);
2869 mac_reg
= er32(FEXTNVM4
);
2870 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
2871 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_16USEC
;
2872 ew32(FEXTNVM4
, mac_reg
);
2880 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2881 * @hw: pointer to the HW structure
2882 * @gate: boolean set to true to gate, false to ungate
2884 * Gate/ungate the automatic PHY configuration via hardware; perform
2885 * the configuration via software instead.
2887 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
)
2891 if (hw
->mac
.type
< e1000_pch2lan
)
2894 extcnf_ctrl
= er32(EXTCNF_CTRL
);
2897 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
2899 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
2901 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
2905 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2906 * @hw: pointer to the HW structure
2908 * Check the appropriate indication the MAC has finished configuring the
2909 * PHY after a software reset.
2911 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
2913 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
2915 /* Wait for basic configuration completes before proceeding */
2917 data
= er32(STATUS
);
2918 data
&= E1000_STATUS_LAN_INIT_DONE
;
2919 usleep_range(100, 200);
2920 } while ((!data
) && --loop
);
2922 /* If basic configuration is incomplete before the above loop
2923 * count reaches 0, loading the configuration from NVM will
2924 * leave the PHY in a bad state possibly resulting in no link.
2927 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2929 /* Clear the Init Done bit for the next init event */
2930 data
= er32(STATUS
);
2931 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
2936 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2937 * @hw: pointer to the HW structure
2939 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
2944 if (hw
->phy
.ops
.check_reset_block(hw
))
2947 /* Allow time for h/w to get to quiescent state after reset */
2948 usleep_range(10000, 11000);
2950 /* Perform any necessary post-reset workarounds */
2951 switch (hw
->mac
.type
) {
2953 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
2958 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
2966 /* Clear the host wakeup bit after lcd reset */
2967 if (hw
->mac
.type
>= e1000_pchlan
) {
2968 e1e_rphy(hw
, BM_PORT_GEN_CFG
, ®
);
2969 reg
&= ~BM_WUC_HOST_WU_BIT
;
2970 e1e_wphy(hw
, BM_PORT_GEN_CFG
, reg
);
2973 /* Configure the LCD with the extended configuration region in NVM */
2974 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
2978 /* Configure the LCD with the OEM bits in NVM */
2979 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
2981 if (hw
->mac
.type
== e1000_pch2lan
) {
2982 /* Ungate automatic PHY configuration on non-managed 82579 */
2983 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
2984 usleep_range(10000, 11000);
2985 e1000_gate_hw_phy_config_ich8lan(hw
, false);
2988 /* Set EEE LPI Update Timer to 200usec */
2989 ret_val
= hw
->phy
.ops
.acquire(hw
);
2992 ret_val
= e1000_write_emi_reg_locked(hw
,
2993 I82579_LPI_UPDATE_TIMER
,
2995 hw
->phy
.ops
.release(hw
);
3002 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3003 * @hw: pointer to the HW structure
3006 * This is a function pointer entry point called by drivers
3007 * or other shared routines.
3009 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
3013 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
3014 if ((hw
->mac
.type
== e1000_pch2lan
) &&
3015 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
3016 e1000_gate_hw_phy_config_ich8lan(hw
, true);
3018 ret_val
= e1000e_phy_hw_reset_generic(hw
);
3022 return e1000_post_phy_reset_ich8lan(hw
);
3026 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3027 * @hw: pointer to the HW structure
3028 * @active: true to enable LPLU, false to disable
3030 * Sets the LPLU state according to the active flag. For PCH, if OEM write
3031 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3032 * the phy speed. This function will manually set the LPLU bit and restart
3033 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
3034 * since it configures the same bit.
3036 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
3041 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
3046 oem_reg
|= HV_OEM_BITS_LPLU
;
3048 oem_reg
&= ~HV_OEM_BITS_LPLU
;
3050 if (!hw
->phy
.ops
.check_reset_block(hw
))
3051 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
3053 return e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
3057 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3058 * @hw: pointer to the HW structure
3059 * @active: true to enable LPLU, false to disable
3061 * Sets the LPLU D0 state according to the active flag. When
3062 * activating LPLU this function also disables smart speed
3063 * and vice versa. LPLU will not be activated unless the
3064 * device autonegotiation advertisement meets standards of
3065 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3066 * This is a function pointer entry point only called by
3067 * PHY setup routines.
3069 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
3071 struct e1000_phy_info
*phy
= &hw
->phy
;
3076 if (phy
->type
== e1000_phy_ife
)
3079 phy_ctrl
= er32(PHY_CTRL
);
3082 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
3083 ew32(PHY_CTRL
, phy_ctrl
);
3085 if (phy
->type
!= e1000_phy_igp_3
)
3088 /* Call gig speed drop workaround on LPLU before accessing
3091 if (hw
->mac
.type
== e1000_ich8lan
)
3092 e1000e_gig_downshift_workaround_ich8lan(hw
);
3094 /* When LPLU is enabled, we should disable SmartSpeed */
3095 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
3098 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
3099 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
3103 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
3104 ew32(PHY_CTRL
, phy_ctrl
);
3106 if (phy
->type
!= e1000_phy_igp_3
)
3109 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3110 * during Dx states where the power conservation is most
3111 * important. During driver activity we should enable
3112 * SmartSpeed, so performance is maintained.
3114 if (phy
->smart_speed
== e1000_smart_speed_on
) {
3115 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3120 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
3121 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3125 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
3126 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3131 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
3132 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3143 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3144 * @hw: pointer to the HW structure
3145 * @active: true to enable LPLU, false to disable
3147 * Sets the LPLU D3 state according to the active flag. When
3148 * activating LPLU this function also disables smart speed
3149 * and vice versa. LPLU will not be activated unless the
3150 * device autonegotiation advertisement meets standards of
3151 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3152 * This is a function pointer entry point only called by
3153 * PHY setup routines.
3155 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
3157 struct e1000_phy_info
*phy
= &hw
->phy
;
3162 phy_ctrl
= er32(PHY_CTRL
);
3165 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
3166 ew32(PHY_CTRL
, phy_ctrl
);
3168 if (phy
->type
!= e1000_phy_igp_3
)
3171 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3172 * during Dx states where the power conservation is most
3173 * important. During driver activity we should enable
3174 * SmartSpeed, so performance is maintained.
3176 if (phy
->smart_speed
== e1000_smart_speed_on
) {
3177 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3182 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
3183 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3187 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
3188 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3193 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
3194 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
3199 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
3200 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
3201 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
3202 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
3203 ew32(PHY_CTRL
, phy_ctrl
);
3205 if (phy
->type
!= e1000_phy_igp_3
)
3208 /* Call gig speed drop workaround on LPLU before accessing
3211 if (hw
->mac
.type
== e1000_ich8lan
)
3212 e1000e_gig_downshift_workaround_ich8lan(hw
);
3214 /* When LPLU is enabled, we should disable SmartSpeed */
3215 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
3219 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
3220 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
3227 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3228 * @hw: pointer to the HW structure
3229 * @bank: pointer to the variable that returns the active bank
3231 * Reads signature byte from the NVM using the flash access registers.
3232 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3234 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
3237 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3238 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
3239 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
3244 switch (hw
->mac
.type
) {
3253 bank1_offset
= nvm
->flash_bank_size
;
3254 act_offset
= E1000_ICH_NVM_SIG_WORD
;
3256 /* set bank to 0 in case flash read fails */
3260 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
,
3264 sig_byte
= FIELD_GET(0xFF00, nvm_dword
);
3265 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3266 E1000_ICH_NVM_SIG_VALUE
) {
3272 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
+
3277 sig_byte
= FIELD_GET(0xFF00, nvm_dword
);
3278 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3279 E1000_ICH_NVM_SIG_VALUE
) {
3284 e_dbg("ERROR: No valid NVM bank present\n");
3285 return -E1000_ERR_NVM
;
3289 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
3290 E1000_EECD_SEC1VAL_VALID_MASK
) {
3291 if (eecd
& E1000_EECD_SEC1VAL
)
3298 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3301 /* set bank to 0 in case flash read fails */
3305 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
3309 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3310 E1000_ICH_NVM_SIG_VALUE
) {
3316 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
3321 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
3322 E1000_ICH_NVM_SIG_VALUE
) {
3327 e_dbg("ERROR: No valid NVM bank present\n");
3328 return -E1000_ERR_NVM
;
3333 * e1000_read_nvm_spt - NVM access for SPT
3334 * @hw: pointer to the HW structure
3335 * @offset: The offset (in bytes) of the word(s) to read.
3336 * @words: Size of data to read in words.
3337 * @data: pointer to the word(s) to read at offset.
3339 * Reads a word(s) from the NVM
3341 static s32
e1000_read_nvm_spt(struct e1000_hw
*hw
, u16 offset
, u16 words
,
3344 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3345 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3353 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
3355 e_dbg("nvm parameter(s) out of bounds\n");
3356 ret_val
= -E1000_ERR_NVM
;
3360 nvm
->ops
.acquire(hw
);
3362 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3364 e_dbg("Could not detect valid bank, assuming bank 0\n");
3368 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
3369 act_offset
+= offset
;
3373 for (i
= 0; i
< words
; i
+= 2) {
3374 if (words
- i
== 1) {
3375 if (dev_spec
->shadow_ram
[offset
+ i
].modified
) {
3377 dev_spec
->shadow_ram
[offset
+ i
].value
;
3379 offset_to_read
= act_offset
+ i
-
3380 ((act_offset
+ i
) % 2);
3382 e1000_read_flash_dword_ich8lan(hw
,
3387 if ((act_offset
+ i
) % 2 == 0)
3388 data
[i
] = (u16
)(dword
& 0xFFFF);
3390 data
[i
] = (u16
)((dword
>> 16) & 0xFFFF);
3393 offset_to_read
= act_offset
+ i
;
3394 if (!(dev_spec
->shadow_ram
[offset
+ i
].modified
) ||
3395 !(dev_spec
->shadow_ram
[offset
+ i
+ 1].modified
)) {
3397 e1000_read_flash_dword_ich8lan(hw
,
3403 if (dev_spec
->shadow_ram
[offset
+ i
].modified
)
3405 dev_spec
->shadow_ram
[offset
+ i
].value
;
3407 data
[i
] = (u16
)(dword
& 0xFFFF);
3408 if (dev_spec
->shadow_ram
[offset
+ i
].modified
)
3410 dev_spec
->shadow_ram
[offset
+ i
+ 1].value
;
3412 data
[i
+ 1] = (u16
)(dword
>> 16 & 0xFFFF);
3416 nvm
->ops
.release(hw
);
3420 e_dbg("NVM read error: %d\n", ret_val
);
3426 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3427 * @hw: pointer to the HW structure
3428 * @offset: The offset (in bytes) of the word(s) to read.
3429 * @words: Size of data to read in words
3430 * @data: Pointer to the word(s) to read at offset.
3432 * Reads a word(s) from the NVM using the flash access registers.
3434 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
3437 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3438 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3444 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
3446 e_dbg("nvm parameter(s) out of bounds\n");
3447 ret_val
= -E1000_ERR_NVM
;
3451 nvm
->ops
.acquire(hw
);
3453 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3455 e_dbg("Could not detect valid bank, assuming bank 0\n");
3459 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
3460 act_offset
+= offset
;
3463 for (i
= 0; i
< words
; i
++) {
3464 if (dev_spec
->shadow_ram
[offset
+ i
].modified
) {
3465 data
[i
] = dev_spec
->shadow_ram
[offset
+ i
].value
;
3467 ret_val
= e1000_read_flash_word_ich8lan(hw
,
3476 nvm
->ops
.release(hw
);
3480 e_dbg("NVM read error: %d\n", ret_val
);
3486 * e1000_flash_cycle_init_ich8lan - Initialize flash
3487 * @hw: pointer to the HW structure
3489 * This function does initial flash setup so that a new read/write/erase cycle
3492 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
3494 union ich8_hws_flash_status hsfsts
;
3495 s32 ret_val
= -E1000_ERR_NVM
;
3497 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3499 /* Check if the flash descriptor is valid */
3500 if (!hsfsts
.hsf_status
.fldesvalid
) {
3501 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3502 return -E1000_ERR_NVM
;
3505 /* Clear FCERR and DAEL in hw status by writing 1 */
3506 hsfsts
.hsf_status
.flcerr
= 1;
3507 hsfsts
.hsf_status
.dael
= 1;
3508 if (hw
->mac
.type
>= e1000_pch_spt
)
3509 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
& 0xFFFF);
3511 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
3513 /* Either we should have a hardware SPI cycle in progress
3514 * bit to check against, in order to start a new cycle or
3515 * FDONE bit should be changed in the hardware so that it
3516 * is 1 after hardware reset, which can then be used as an
3517 * indication whether a cycle is in progress or has been
3521 if (!hsfsts
.hsf_status
.flcinprog
) {
3522 /* There is no cycle running at present,
3523 * so we can start a cycle.
3524 * Begin by setting Flash Cycle Done.
3526 hsfsts
.hsf_status
.flcdone
= 1;
3527 if (hw
->mac
.type
>= e1000_pch_spt
)
3528 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
& 0xFFFF);
3530 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
3535 /* Otherwise poll for sometime so the current
3536 * cycle has a chance to end before giving up.
3538 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
3539 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3540 if (!hsfsts
.hsf_status
.flcinprog
) {
3547 /* Successful in waiting for previous cycle to timeout,
3548 * now set the Flash Cycle Done.
3550 hsfsts
.hsf_status
.flcdone
= 1;
3551 if (hw
->mac
.type
>= e1000_pch_spt
)
3552 ew32flash(ICH_FLASH_HSFSTS
,
3553 hsfsts
.regval
& 0xFFFF);
3555 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
3557 e_dbg("Flash controller busy, cannot get access\n");
3565 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3566 * @hw: pointer to the HW structure
3567 * @timeout: maximum time to wait for completion
3569 * This function starts a flash cycle and waits for its completion.
3571 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
3573 union ich8_hws_flash_ctrl hsflctl
;
3574 union ich8_hws_flash_status hsfsts
;
3577 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3578 if (hw
->mac
.type
>= e1000_pch_spt
)
3579 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
) >> 16;
3581 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
3582 hsflctl
.hsf_ctrl
.flcgo
= 1;
3584 if (hw
->mac
.type
>= e1000_pch_spt
)
3585 ew32flash(ICH_FLASH_HSFSTS
, hsflctl
.regval
<< 16);
3587 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
3589 /* wait till FDONE bit is set to 1 */
3591 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3592 if (hsfsts
.hsf_status
.flcdone
)
3595 } while (i
++ < timeout
);
3597 if (hsfsts
.hsf_status
.flcdone
&& !hsfsts
.hsf_status
.flcerr
)
3600 return -E1000_ERR_NVM
;
3604 * e1000_read_flash_dword_ich8lan - Read dword from flash
3605 * @hw: pointer to the HW structure
3606 * @offset: offset to data location
3607 * @data: pointer to the location for storing the data
3609 * Reads the flash dword at offset into data. Offset is converted
3610 * to bytes before read.
3612 static s32
e1000_read_flash_dword_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3615 /* Must convert word offset into bytes. */
3617 return e1000_read_flash_data32_ich8lan(hw
, offset
, data
);
3621 * e1000_read_flash_word_ich8lan - Read word from flash
3622 * @hw: pointer to the HW structure
3623 * @offset: offset to data location
3624 * @data: pointer to the location for storing the data
3626 * Reads the flash word at offset into data. Offset is converted
3627 * to bytes before read.
3629 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3632 /* Must convert offset into bytes. */
3635 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
3639 * e1000_read_flash_byte_ich8lan - Read byte from flash
3640 * @hw: pointer to the HW structure
3641 * @offset: The offset of the byte to read.
3642 * @data: Pointer to a byte to store the value read.
3644 * Reads a single byte from the NVM using the flash access registers.
3646 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3652 /* In SPT, only 32 bits access is supported,
3653 * so this function should not be called.
3655 if (hw
->mac
.type
>= e1000_pch_spt
)
3656 return -E1000_ERR_NVM
;
3658 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
3669 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3670 * @hw: pointer to the HW structure
3671 * @offset: The offset (in bytes) of the byte or word to read.
3672 * @size: Size of data to read, 1=byte 2=word
3673 * @data: Pointer to the word to store the value read.
3675 * Reads a byte or word from the NVM using the flash access registers.
3677 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3680 union ich8_hws_flash_status hsfsts
;
3681 union ich8_hws_flash_ctrl hsflctl
;
3682 u32 flash_linear_addr
;
3684 s32 ret_val
= -E1000_ERR_NVM
;
3687 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
3688 return -E1000_ERR_NVM
;
3690 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
3691 hw
->nvm
.flash_base_addr
);
3696 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
3700 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
3701 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3702 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
3703 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
3704 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
3706 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
3709 e1000_flash_cycle_ich8lan(hw
,
3710 ICH_FLASH_READ_COMMAND_TIMEOUT
);
3712 /* Check if FCERR is set to 1, if set to 1, clear it
3713 * and try the whole sequence a few more times, else
3714 * read in (shift in) the Flash Data0, the order is
3715 * least significant byte first msb to lsb
3718 flash_data
= er32flash(ICH_FLASH_FDATA0
);
3720 *data
= (u8
)(flash_data
& 0x000000FF);
3722 *data
= (u16
)(flash_data
& 0x0000FFFF);
3725 /* If we've gotten here, then things are probably
3726 * completely hosed, but if the error condition is
3727 * detected, it won't hurt to give it another try...
3728 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3730 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3731 if (hsfsts
.hsf_status
.flcerr
) {
3732 /* Repeat for some time before giving up. */
3734 } else if (!hsfsts
.hsf_status
.flcdone
) {
3735 e_dbg("Timeout error - flash cycle did not complete.\n");
3739 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
3745 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3746 * @hw: pointer to the HW structure
3747 * @offset: The offset (in bytes) of the dword to read.
3748 * @data: Pointer to the dword to store the value read.
3750 * Reads a byte or word from the NVM using the flash access registers.
3753 static s32
e1000_read_flash_data32_ich8lan(struct e1000_hw
*hw
, u32 offset
,
3756 union ich8_hws_flash_status hsfsts
;
3757 union ich8_hws_flash_ctrl hsflctl
;
3758 u32 flash_linear_addr
;
3759 s32 ret_val
= -E1000_ERR_NVM
;
3762 if (offset
> ICH_FLASH_LINEAR_ADDR_MASK
|| hw
->mac
.type
< e1000_pch_spt
)
3763 return -E1000_ERR_NVM
;
3764 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
3765 hw
->nvm
.flash_base_addr
);
3770 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
3773 /* In SPT, This register is in Lan memory space, not flash.
3774 * Therefore, only 32 bit access is supported
3776 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
) >> 16;
3778 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3779 hsflctl
.hsf_ctrl
.fldbcount
= sizeof(u32
) - 1;
3780 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
3781 /* In SPT, This register is in Lan memory space, not flash.
3782 * Therefore, only 32 bit access is supported
3784 ew32flash(ICH_FLASH_HSFSTS
, (u32
)hsflctl
.regval
<< 16);
3785 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
3788 e1000_flash_cycle_ich8lan(hw
,
3789 ICH_FLASH_READ_COMMAND_TIMEOUT
);
3791 /* Check if FCERR is set to 1, if set to 1, clear it
3792 * and try the whole sequence a few more times, else
3793 * read in (shift in) the Flash Data0, the order is
3794 * least significant byte first msb to lsb
3797 *data
= er32flash(ICH_FLASH_FDATA0
);
3800 /* If we've gotten here, then things are probably
3801 * completely hosed, but if the error condition is
3802 * detected, it won't hurt to give it another try...
3803 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3805 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
3806 if (hsfsts
.hsf_status
.flcerr
) {
3807 /* Repeat for some time before giving up. */
3809 } else if (!hsfsts
.hsf_status
.flcdone
) {
3810 e_dbg("Timeout error - flash cycle did not complete.\n");
3814 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
3820 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3821 * @hw: pointer to the HW structure
3822 * @offset: The offset (in bytes) of the word(s) to write.
3823 * @words: Size of data to write in words
3824 * @data: Pointer to the word(s) to write at offset.
3826 * Writes a byte or word to the NVM using the flash access registers.
3828 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
3831 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3832 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3835 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
3837 e_dbg("nvm parameter(s) out of bounds\n");
3838 return -E1000_ERR_NVM
;
3841 nvm
->ops
.acquire(hw
);
3843 for (i
= 0; i
< words
; i
++) {
3844 dev_spec
->shadow_ram
[offset
+ i
].modified
= true;
3845 dev_spec
->shadow_ram
[offset
+ i
].value
= data
[i
];
3848 nvm
->ops
.release(hw
);
3854 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3855 * @hw: pointer to the HW structure
3857 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3858 * which writes the checksum to the shadow ram. The changes in the shadow
3859 * ram are then committed to the EEPROM by processing each bank at a time
3860 * checking for the modified bit and writing only the pending changes.
3861 * After a successful commit, the shadow ram is cleared and is ready for
3864 static s32
e1000_update_nvm_checksum_spt(struct e1000_hw
*hw
)
3866 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
3867 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3868 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
3872 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
3876 if (nvm
->type
!= e1000_nvm_flash_sw
)
3879 nvm
->ops
.acquire(hw
);
3881 /* We're writing to the opposite bank so if we're on bank 1,
3882 * write to bank 0 etc. We also need to erase the segment that
3883 * is going to be written
3885 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
3887 e_dbg("Could not detect valid bank, assuming bank 0\n");
3892 new_bank_offset
= nvm
->flash_bank_size
;
3893 old_bank_offset
= 0;
3894 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
3898 old_bank_offset
= nvm
->flash_bank_size
;
3899 new_bank_offset
= 0;
3900 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
3904 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
+= 2) {
3905 /* Determine whether to write the value stored
3906 * in the other NVM bank or a modified value stored
3909 ret_val
= e1000_read_flash_dword_ich8lan(hw
,
3910 i
+ old_bank_offset
,
3913 if (dev_spec
->shadow_ram
[i
].modified
) {
3914 dword
&= 0xffff0000;
3915 dword
|= (dev_spec
->shadow_ram
[i
].value
& 0xffff);
3917 if (dev_spec
->shadow_ram
[i
+ 1].modified
) {
3918 dword
&= 0x0000ffff;
3919 dword
|= ((dev_spec
->shadow_ram
[i
+ 1].value
& 0xffff)
3925 /* If the word is 0x13, then make sure the signature bits
3926 * (15:14) are 11b until the commit has completed.
3927 * This will allow us to write 10b which indicates the
3928 * signature is valid. We want to do this after the write
3929 * has completed so that we don't mark the segment valid
3930 * while the write is still in progress
3932 if (i
== E1000_ICH_NVM_SIG_WORD
- 1)
3933 dword
|= E1000_ICH_NVM_SIG_MASK
<< 16;
3935 /* Convert offset to bytes. */
3936 act_offset
= (i
+ new_bank_offset
) << 1;
3938 usleep_range(100, 200);
3940 /* Write the data to the new bank. Offset in words */
3941 act_offset
= i
+ new_bank_offset
;
3942 ret_val
= e1000_retry_write_flash_dword_ich8lan(hw
, act_offset
,
3948 /* Don't bother writing the segment valid bits if sector
3949 * programming failed.
3952 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3953 e_dbg("Flash commit failed.\n");
3957 /* Finally validate the new segment by setting bit 15:14
3958 * to 10b in word 0x13 , this can be done without an
3959 * erase as well since these bits are 11 to start with
3960 * and we need to change bit 14 to 0b
3962 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
3964 /*offset in words but we read dword */
3966 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
, &dword
);
3971 dword
&= 0xBFFFFFFF;
3972 ret_val
= e1000_retry_write_flash_dword_ich8lan(hw
, act_offset
, dword
);
3977 /* offset in words but we read dword */
3978 act_offset
= old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
- 1;
3979 ret_val
= e1000_read_flash_dword_ich8lan(hw
, act_offset
, &dword
);
3984 dword
&= 0x00FFFFFF;
3985 ret_val
= e1000_retry_write_flash_dword_ich8lan(hw
, act_offset
, dword
);
3990 /* Great! Everything worked, we can now clear the cached entries. */
3991 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
3992 dev_spec
->shadow_ram
[i
].modified
= false;
3993 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
3997 nvm
->ops
.release(hw
);
3999 /* Reload the EEPROM, or else modifications will not appear
4000 * until after the next adapter reset.
4003 nvm
->ops
.reload(hw
);
4004 usleep_range(10000, 11000);
4009 e_dbg("NVM update error: %d\n", ret_val
);
4015 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4016 * @hw: pointer to the HW structure
4018 * The NVM checksum is updated by calling the generic update_nvm_checksum,
4019 * which writes the checksum to the shadow ram. The changes in the shadow
4020 * ram are then committed to the EEPROM by processing each bank at a time
4021 * checking for the modified bit and writing only the pending changes.
4022 * After a successful commit, the shadow ram is cleared and is ready for
4025 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
4027 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
4028 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
4029 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
4033 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
4037 if (nvm
->type
!= e1000_nvm_flash_sw
)
4040 nvm
->ops
.acquire(hw
);
4042 /* We're writing to the opposite bank so if we're on bank 1,
4043 * write to bank 0 etc. We also need to erase the segment that
4044 * is going to be written
4046 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
4048 e_dbg("Could not detect valid bank, assuming bank 0\n");
4053 new_bank_offset
= nvm
->flash_bank_size
;
4054 old_bank_offset
= 0;
4055 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
4059 old_bank_offset
= nvm
->flash_bank_size
;
4060 new_bank_offset
= 0;
4061 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
4065 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
4066 if (dev_spec
->shadow_ram
[i
].modified
) {
4067 data
= dev_spec
->shadow_ram
[i
].value
;
4069 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
4076 /* If the word is 0x13, then make sure the signature bits
4077 * (15:14) are 11b until the commit has completed.
4078 * This will allow us to write 10b which indicates the
4079 * signature is valid. We want to do this after the write
4080 * has completed so that we don't mark the segment valid
4081 * while the write is still in progress
4083 if (i
== E1000_ICH_NVM_SIG_WORD
)
4084 data
|= E1000_ICH_NVM_SIG_MASK
;
4086 /* Convert offset to bytes. */
4087 act_offset
= (i
+ new_bank_offset
) << 1;
4089 usleep_range(100, 200);
4090 /* Write the bytes to the new bank. */
4091 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
4097 usleep_range(100, 200);
4098 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
4105 /* Don't bother writing the segment valid bits if sector
4106 * programming failed.
4109 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4110 e_dbg("Flash commit failed.\n");
4114 /* Finally validate the new segment by setting bit 15:14
4115 * to 10b in word 0x13 , this can be done without an
4116 * erase as well since these bits are 11 to start with
4117 * and we need to change bit 14 to 0b
4119 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
4120 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
4125 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
4131 /* And invalidate the previously valid segment by setting
4132 * its signature word (0x13) high_byte to 0b. This can be
4133 * done without an erase because flash erase sets all bits
4134 * to 1's. We can write 1's to 0's without an erase
4136 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
4137 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
4141 /* Great! Everything worked, we can now clear the cached entries. */
4142 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
4143 dev_spec
->shadow_ram
[i
].modified
= false;
4144 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
4148 nvm
->ops
.release(hw
);
4150 /* Reload the EEPROM, or else modifications will not appear
4151 * until after the next adapter reset.
4154 nvm
->ops
.reload(hw
);
4155 usleep_range(10000, 11000);
4160 e_dbg("NVM update error: %d\n", ret_val
);
4166 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4167 * @hw: pointer to the HW structure
4169 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4170 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4171 * calculated, in which case we need to calculate the checksum and set bit 6.
4173 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
4178 u16 valid_csum_mask
;
4180 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4181 * the checksum needs to be fixed. This bit is an indication that
4182 * the NVM was prepared by OEM software and did not calculate
4183 * the checksum...a likely scenario.
4185 switch (hw
->mac
.type
) {
4196 valid_csum_mask
= NVM_COMPAT_VALID_CSUM
;
4199 word
= NVM_FUTURE_INIT_WORD1
;
4200 valid_csum_mask
= NVM_FUTURE_INIT_WORD1_VALID_CSUM
;
4204 ret_val
= e1000_read_nvm(hw
, word
, 1, &data
);
4208 if (!(data
& valid_csum_mask
)) {
4209 e_dbg("NVM Checksum valid bit not set\n");
4211 if (hw
->mac
.type
< e1000_pch_tgp
) {
4212 data
|= valid_csum_mask
;
4213 ret_val
= e1000_write_nvm(hw
, word
, 1, &data
);
4216 ret_val
= e1000e_update_nvm_checksum(hw
);
4222 return e1000e_validate_nvm_checksum_generic(hw
);
4226 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4227 * @hw: pointer to the HW structure
4229 * To prevent malicious write/erase of the NVM, set it to be read-only
4230 * so that the hardware ignores all write/erase cycles of the NVM via
4231 * the flash control registers. The shadow-ram copy of the NVM will
4232 * still be updated, however any updates to this copy will not stick
4233 * across driver reloads.
4235 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
4237 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
4238 union ich8_flash_protected_range pr0
;
4239 union ich8_hws_flash_status hsfsts
;
4242 nvm
->ops
.acquire(hw
);
4244 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
4246 /* Write-protect GbE Sector of NVM */
4247 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
4248 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
4249 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
4250 pr0
.range
.wpe
= true;
4251 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
4253 /* Lock down a subset of GbE Flash Control Registers, e.g.
4254 * PR0 to prevent the write-protection from being lifted.
4255 * Once FLOCKDN is set, the registers protected by it cannot
4256 * be written until FLOCKDN is cleared by a hardware reset.
4258 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4259 hsfsts
.hsf_status
.flockdn
= true;
4260 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
4262 nvm
->ops
.release(hw
);
4266 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4267 * @hw: pointer to the HW structure
4268 * @offset: The offset (in bytes) of the byte/word to read.
4269 * @size: Size of data to read, 1=byte 2=word
4270 * @data: The byte(s) to write to the NVM.
4272 * Writes one/two bytes to the NVM using the flash access registers.
4274 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
4277 union ich8_hws_flash_status hsfsts
;
4278 union ich8_hws_flash_ctrl hsflctl
;
4279 u32 flash_linear_addr
;
4284 if (hw
->mac
.type
>= e1000_pch_spt
) {
4285 if (size
!= 4 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
4286 return -E1000_ERR_NVM
;
4288 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
4289 return -E1000_ERR_NVM
;
4292 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
4293 hw
->nvm
.flash_base_addr
);
4298 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
4301 /* In SPT, This register is in Lan memory space, not
4302 * flash. Therefore, only 32 bit access is supported
4304 if (hw
->mac
.type
>= e1000_pch_spt
)
4305 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
) >> 16;
4307 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
4309 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4310 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
4311 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
4312 /* In SPT, This register is in Lan memory space,
4313 * not flash. Therefore, only 32 bit access is
4316 if (hw
->mac
.type
>= e1000_pch_spt
)
4317 ew32flash(ICH_FLASH_HSFSTS
, hsflctl
.regval
<< 16);
4319 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
4321 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
4324 flash_data
= (u32
)data
& 0x00FF;
4326 flash_data
= (u32
)data
;
4328 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
4330 /* check if FCERR is set to 1 , if set to 1, clear it
4331 * and try the whole sequence a few more times else done
4334 e1000_flash_cycle_ich8lan(hw
,
4335 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
4339 /* If we're here, then things are most likely
4340 * completely hosed, but if the error condition
4341 * is detected, it won't hurt to give it another
4342 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4344 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4345 if (hsfsts
.hsf_status
.flcerr
)
4346 /* Repeat for some time before giving up. */
4348 if (!hsfsts
.hsf_status
.flcdone
) {
4349 e_dbg("Timeout error - flash cycle did not complete.\n");
4352 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
4358 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4359 * @hw: pointer to the HW structure
4360 * @offset: The offset (in bytes) of the dwords to read.
4361 * @data: The 4 bytes to write to the NVM.
4363 * Writes one/two/four bytes to the NVM using the flash access registers.
4365 static s32
e1000_write_flash_data32_ich8lan(struct e1000_hw
*hw
, u32 offset
,
4368 union ich8_hws_flash_status hsfsts
;
4369 union ich8_hws_flash_ctrl hsflctl
;
4370 u32 flash_linear_addr
;
4374 if (hw
->mac
.type
>= e1000_pch_spt
) {
4375 if (offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
4376 return -E1000_ERR_NVM
;
4378 flash_linear_addr
= ((ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
4379 hw
->nvm
.flash_base_addr
);
4383 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
4387 /* In SPT, This register is in Lan memory space, not
4388 * flash. Therefore, only 32 bit access is supported
4390 if (hw
->mac
.type
>= e1000_pch_spt
)
4391 hsflctl
.regval
= er32flash(ICH_FLASH_HSFSTS
)
4394 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
4396 hsflctl
.hsf_ctrl
.fldbcount
= sizeof(u32
) - 1;
4397 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
4399 /* In SPT, This register is in Lan memory space,
4400 * not flash. Therefore, only 32 bit access is
4403 if (hw
->mac
.type
>= e1000_pch_spt
)
4404 ew32flash(ICH_FLASH_HSFSTS
, hsflctl
.regval
<< 16);
4406 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
4408 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
4410 ew32flash(ICH_FLASH_FDATA0
, data
);
4412 /* check if FCERR is set to 1 , if set to 1, clear it
4413 * and try the whole sequence a few more times else done
4416 e1000_flash_cycle_ich8lan(hw
,
4417 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
4422 /* If we're here, then things are most likely
4423 * completely hosed, but if the error condition
4424 * is detected, it won't hurt to give it another
4425 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4427 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4429 if (hsfsts
.hsf_status
.flcerr
)
4430 /* Repeat for some time before giving up. */
4432 if (!hsfsts
.hsf_status
.flcdone
) {
4433 e_dbg("Timeout error - flash cycle did not complete.\n");
4436 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
4442 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4443 * @hw: pointer to the HW structure
4444 * @offset: The index of the byte to read.
4445 * @data: The byte to write to the NVM.
4447 * Writes a single byte to the NVM using the flash access registers.
4449 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
4452 u16 word
= (u16
)data
;
4454 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
4458 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4459 * @hw: pointer to the HW structure
4460 * @offset: The offset of the word to write.
4461 * @dword: The dword to write to the NVM.
4463 * Writes a single dword to the NVM using the flash access registers.
4464 * Goes through a retry algorithm before giving up.
4466 static s32
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw
*hw
,
4467 u32 offset
, u32 dword
)
4470 u16 program_retries
;
4472 /* Must convert word offset into bytes. */
4474 ret_val
= e1000_write_flash_data32_ich8lan(hw
, offset
, dword
);
4478 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
4479 e_dbg("Retrying Byte %8.8X at offset %u\n", dword
, offset
);
4480 usleep_range(100, 200);
4481 ret_val
= e1000_write_flash_data32_ich8lan(hw
, offset
, dword
);
4485 if (program_retries
== 100)
4486 return -E1000_ERR_NVM
;
4492 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4493 * @hw: pointer to the HW structure
4494 * @offset: The offset of the byte to write.
4495 * @byte: The byte to write to the NVM.
4497 * Writes a single byte to the NVM using the flash access registers.
4498 * Goes through a retry algorithm before giving up.
4500 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
4501 u32 offset
, u8 byte
)
4504 u16 program_retries
;
4506 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
4510 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
4511 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
4512 usleep_range(100, 200);
4513 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
4517 if (program_retries
== 100)
4518 return -E1000_ERR_NVM
;
4524 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4525 * @hw: pointer to the HW structure
4526 * @bank: 0 for first bank, 1 for second bank, etc.
4528 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4529 * bank N is 4096 * N + flash_reg_addr.
4531 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
4533 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
4534 union ich8_hws_flash_status hsfsts
;
4535 union ich8_hws_flash_ctrl hsflctl
;
4536 u32 flash_linear_addr
;
4537 /* bank size is in 16bit words - adjust to bytes */
4538 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
4541 s32 j
, iteration
, sector_size
;
4543 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4545 /* Determine HW Sector size: Read BERASE bits of hw flash status
4547 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4548 * consecutive sectors. The start index for the nth Hw sector
4549 * can be calculated as = bank * 4096 + n * 256
4550 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4551 * The start index for the nth Hw sector can be calculated
4553 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4554 * (ich9 only, otherwise error condition)
4555 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4557 switch (hsfsts
.hsf_status
.berasesz
) {
4559 /* Hw sector size 256 */
4560 sector_size
= ICH_FLASH_SEG_SIZE_256
;
4561 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
4564 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
4568 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
4572 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
4576 return -E1000_ERR_NVM
;
4579 /* Start with the base address, then add the sector offset. */
4580 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
4581 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
4583 for (j
= 0; j
< iteration
; j
++) {
4585 u32 timeout
= ICH_FLASH_ERASE_COMMAND_TIMEOUT
;
4588 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
4592 /* Write a value 11 (block Erase) in Flash
4593 * Cycle field in hw flash control
4595 if (hw
->mac
.type
>= e1000_pch_spt
)
4597 er32flash(ICH_FLASH_HSFSTS
) >> 16;
4599 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
4601 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
4602 if (hw
->mac
.type
>= e1000_pch_spt
)
4603 ew32flash(ICH_FLASH_HSFSTS
,
4604 hsflctl
.regval
<< 16);
4606 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
4608 /* Write the last 24 bits of an index within the
4609 * block into Flash Linear address field in Flash
4612 flash_linear_addr
+= (j
* sector_size
);
4613 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
4615 ret_val
= e1000_flash_cycle_ich8lan(hw
, timeout
);
4619 /* Check if FCERR is set to 1. If 1,
4620 * clear it and try the whole sequence
4621 * a few more times else Done
4623 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
4624 if (hsfsts
.hsf_status
.flcerr
)
4625 /* repeat for some time before giving up */
4627 else if (!hsfsts
.hsf_status
.flcdone
)
4629 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
4636 * e1000_valid_led_default_ich8lan - Set the default LED settings
4637 * @hw: pointer to the HW structure
4638 * @data: Pointer to the LED settings
4640 * Reads the LED default settings from the NVM to data. If the NVM LED
4641 * settings is all 0's or F's, set the LED default to a valid LED default
4644 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
4648 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
4650 e_dbg("NVM Read Error\n");
4654 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
4655 *data
= ID_LED_DEFAULT_ICH8LAN
;
4661 * e1000_id_led_init_pchlan - store LED configurations
4662 * @hw: pointer to the HW structure
4664 * PCH does not control LEDs via the LEDCTL register, rather it uses
4665 * the PHY LED configuration register.
4667 * PCH also does not have an "always on" or "always off" mode which
4668 * complicates the ID feature. Instead of using the "on" mode to indicate
4669 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4670 * use "link_up" mode. The LEDs will still ID on request if there is no
4671 * link based on logic in e1000_led_[on|off]_pchlan().
4673 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
4675 struct e1000_mac_info
*mac
= &hw
->mac
;
4677 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
4678 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
4679 u16 data
, i
, temp
, shift
;
4681 /* Get default ID LED modes */
4682 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
4686 mac
->ledctl_default
= er32(LEDCTL
);
4687 mac
->ledctl_mode1
= mac
->ledctl_default
;
4688 mac
->ledctl_mode2
= mac
->ledctl_default
;
4690 for (i
= 0; i
< 4; i
++) {
4691 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
4694 case ID_LED_ON1_DEF2
:
4695 case ID_LED_ON1_ON2
:
4696 case ID_LED_ON1_OFF2
:
4697 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4698 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
4700 case ID_LED_OFF1_DEF2
:
4701 case ID_LED_OFF1_ON2
:
4702 case ID_LED_OFF1_OFF2
:
4703 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4704 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
4711 case ID_LED_DEF1_ON2
:
4712 case ID_LED_ON1_ON2
:
4713 case ID_LED_OFF1_ON2
:
4714 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4715 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
4717 case ID_LED_DEF1_OFF2
:
4718 case ID_LED_ON1_OFF2
:
4719 case ID_LED_OFF1_OFF2
:
4720 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
4721 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
4733 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4734 * @hw: pointer to the HW structure
4736 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4737 * register, so the bus width is hard coded.
4739 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
4741 struct e1000_bus_info
*bus
= &hw
->bus
;
4744 ret_val
= e1000e_get_bus_info_pcie(hw
);
4746 /* ICH devices are "PCI Express"-ish. They have
4747 * a configuration space, but do not contain
4748 * PCI Express Capability registers, so bus width
4749 * must be hardcoded.
4751 if (bus
->width
== e1000_bus_width_unknown
)
4752 bus
->width
= e1000_bus_width_pcie_x1
;
4758 * e1000_reset_hw_ich8lan - Reset the hardware
4759 * @hw: pointer to the HW structure
4761 * Does a full reset of the hardware which includes a reset of the PHY and
4764 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
4766 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
4771 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4772 * on the last TLP read/write transaction when MAC is reset.
4774 ret_val
= e1000e_disable_pcie_master(hw
);
4776 e_dbg("PCI-E Master disable polling has failed.\n");
4778 e_dbg("Masking off all interrupts\n");
4779 ew32(IMC
, 0xffffffff);
4781 /* Disable the Transmit and Receive units. Then delay to allow
4782 * any pending transactions to complete before we hit the MAC
4783 * with the global reset.
4786 ew32(TCTL
, E1000_TCTL_PSP
);
4789 usleep_range(10000, 11000);
4791 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4792 if (hw
->mac
.type
== e1000_ich8lan
) {
4793 /* Set Tx and Rx buffer allocation to 8k apiece. */
4794 ew32(PBA
, E1000_PBA_8K
);
4795 /* Set Packet Buffer Size to 16k. */
4796 ew32(PBS
, E1000_PBS_16K
);
4799 if (hw
->mac
.type
== e1000_pchlan
) {
4800 /* Save the NVM K1 bit setting */
4801 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, &kum_cfg
);
4805 if (kum_cfg
& E1000_NVM_K1_ENABLE
)
4806 dev_spec
->nvm_k1_enabled
= true;
4808 dev_spec
->nvm_k1_enabled
= false;
4813 if (!hw
->phy
.ops
.check_reset_block(hw
)) {
4814 /* Full-chip reset requires MAC and PHY reset at the same
4815 * time to make sure the interface between MAC and the
4816 * external PHY is reset.
4818 ctrl
|= E1000_CTRL_PHY_RST
;
4820 /* Gate automatic PHY configuration by hardware on
4823 if ((hw
->mac
.type
== e1000_pch2lan
) &&
4824 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
4825 e1000_gate_hw_phy_config_ich8lan(hw
, true);
4827 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
4828 e_dbg("Issuing a global reset to ich8lan\n");
4829 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
4830 /* cannot issue a flush here because it hangs the hardware */
4833 /* Set Phy Config Counter to 50msec */
4834 if (hw
->mac
.type
== e1000_pch2lan
) {
4835 reg
= er32(FEXTNVM3
);
4836 reg
&= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK
;
4837 reg
|= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC
;
4838 ew32(FEXTNVM3
, reg
);
4842 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
4844 if (ctrl
& E1000_CTRL_PHY_RST
) {
4845 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
4849 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
4854 /* For PCH, this write will make sure that any noise
4855 * will be detected as a CRC error and be dropped rather than show up
4856 * as a bad packet to the DMA engine.
4858 if (hw
->mac
.type
== e1000_pchlan
)
4859 ew32(CRC_OFFSET
, 0x65656565);
4861 ew32(IMC
, 0xffffffff);
4864 reg
= er32(KABGTXD
);
4865 reg
|= E1000_KABGTXD_BGSQLBIAS
;
4872 * e1000_init_hw_ich8lan - Initialize the hardware
4873 * @hw: pointer to the HW structure
4875 * Prepares the hardware for transmit and receive by doing the following:
4876 * - initialize hardware bits
4877 * - initialize LED identification
4878 * - setup receive address registers
4879 * - setup flow control
4880 * - setup transmit descriptors
4881 * - clear statistics
4883 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
4885 struct e1000_mac_info
*mac
= &hw
->mac
;
4886 u32 ctrl_ext
, txdctl
, snoop
, fflt_dbg
;
4890 e1000_initialize_hw_bits_ich8lan(hw
);
4892 /* Initialize identification LED */
4893 ret_val
= mac
->ops
.id_led_init(hw
);
4894 /* An error is not fatal and we should not stop init due to this */
4896 e_dbg("Error initializing identification LED\n");
4898 /* Setup the receive address. */
4899 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
4901 /* Zero out the Multicast HASH table */
4902 e_dbg("Zeroing the MTA\n");
4903 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
4904 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
4906 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4907 * the ME. Disable wakeup by clearing the host wakeup bit.
4908 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4910 if (hw
->phy
.type
== e1000_phy_82578
) {
4911 e1e_rphy(hw
, BM_PORT_GEN_CFG
, &i
);
4912 i
&= ~BM_WUC_HOST_WU_BIT
;
4913 e1e_wphy(hw
, BM_PORT_GEN_CFG
, i
);
4914 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
4919 /* Setup link and flow control */
4920 ret_val
= mac
->ops
.setup_link(hw
);
4922 /* Set the transmit descriptor write-back policy for both queues */
4923 txdctl
= er32(TXDCTL(0));
4924 txdctl
= ((txdctl
& ~E1000_TXDCTL_WTHRESH
) |
4925 E1000_TXDCTL_FULL_TX_DESC_WB
);
4926 txdctl
= ((txdctl
& ~E1000_TXDCTL_PTHRESH
) |
4927 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
);
4928 ew32(TXDCTL(0), txdctl
);
4929 txdctl
= er32(TXDCTL(1));
4930 txdctl
= ((txdctl
& ~E1000_TXDCTL_WTHRESH
) |
4931 E1000_TXDCTL_FULL_TX_DESC_WB
);
4932 txdctl
= ((txdctl
& ~E1000_TXDCTL_PTHRESH
) |
4933 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
);
4934 ew32(TXDCTL(1), txdctl
);
4936 /* ICH8 has opposite polarity of no_snoop bits.
4937 * By default, we should use snoop behavior.
4939 if (mac
->type
== e1000_ich8lan
)
4940 snoop
= PCIE_ICH8_SNOOP_ALL
;
4942 snoop
= (u32
)~(PCIE_NO_SNOOP_ALL
);
4943 e1000e_set_pcie_no_snoop(hw
, snoop
);
4945 /* Enable workaround for packet loss issue on TGP PCH
4946 * Do not gate DMA clock from the modPHY block
4948 if (mac
->type
>= e1000_pch_tgp
) {
4949 fflt_dbg
= er32(FFLT_DBG
);
4950 fflt_dbg
|= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK
;
4951 ew32(FFLT_DBG
, fflt_dbg
);
4954 ctrl_ext
= er32(CTRL_EXT
);
4955 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
4956 ew32(CTRL_EXT
, ctrl_ext
);
4958 /* Clear all of the statistics registers (clear on read). It is
4959 * important that we do this after we have tried to establish link
4960 * because the symbol error count will increment wildly if there
4963 e1000_clear_hw_cntrs_ich8lan(hw
);
4969 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4970 * @hw: pointer to the HW structure
4972 * Sets/Clears required hardware bits necessary for correctly setting up the
4973 * hardware for transmit and receive.
4975 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
4979 /* Extended Device Control */
4980 reg
= er32(CTRL_EXT
);
4982 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4983 if (hw
->mac
.type
>= e1000_pchlan
)
4984 reg
|= E1000_CTRL_EXT_PHYPDEN
;
4985 ew32(CTRL_EXT
, reg
);
4987 /* Transmit Descriptor Control 0 */
4988 reg
= er32(TXDCTL(0));
4990 ew32(TXDCTL(0), reg
);
4992 /* Transmit Descriptor Control 1 */
4993 reg
= er32(TXDCTL(1));
4995 ew32(TXDCTL(1), reg
);
4997 /* Transmit Arbitration Control 0 */
4998 reg
= er32(TARC(0));
4999 if (hw
->mac
.type
== e1000_ich8lan
)
5000 reg
|= BIT(28) | BIT(29);
5001 reg
|= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5004 /* Transmit Arbitration Control 1 */
5005 reg
= er32(TARC(1));
5006 if (er32(TCTL
) & E1000_TCTL_MULR
)
5010 reg
|= BIT(24) | BIT(26) | BIT(30);
5014 if (hw
->mac
.type
== e1000_ich8lan
) {
5020 /* work-around descriptor data corruption issue during nfs v2 udp
5021 * traffic, just disable the nfs filtering capability
5024 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
5026 /* Disable IPv6 extension header parsing because some malformed
5027 * IPv6 headers can hang the Rx.
5029 if (hw
->mac
.type
== e1000_ich8lan
)
5030 reg
|= (E1000_RFCTL_IPV6_EX_DIS
| E1000_RFCTL_NEW_IPV6_EXT_DIS
);
5033 /* Enable ECC on Lynxpoint */
5034 if (hw
->mac
.type
>= e1000_pch_lpt
) {
5035 reg
= er32(PBECCSTS
);
5036 reg
|= E1000_PBECCSTS_ECC_ENABLE
;
5037 ew32(PBECCSTS
, reg
);
5040 reg
|= E1000_CTRL_MEHE
;
5046 * e1000_setup_link_ich8lan - Setup flow control and link settings
5047 * @hw: pointer to the HW structure
5049 * Determines which flow control settings to use, then configures flow
5050 * control. Calls the appropriate media-specific link configuration
5051 * function. Assuming the adapter has a valid link partner, a valid link
5052 * should be established. Assumes the hardware has previously been reset
5053 * and the transmitter and receiver are not enabled.
5055 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
5059 if (hw
->phy
.ops
.check_reset_block(hw
))
5062 /* ICH parts do not have a word in the NVM to determine
5063 * the default flow control setting, so we explicitly
5066 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
5067 /* Workaround h/w hang when Tx flow control enabled */
5068 if (hw
->mac
.type
== e1000_pchlan
)
5069 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
5071 hw
->fc
.requested_mode
= e1000_fc_full
;
5074 /* Save off the requested flow control mode for use later. Depending
5075 * on the link partner's capabilities, we may or may not use this mode.
5077 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
5079 e_dbg("After fix-ups FlowControl is now = %x\n", hw
->fc
.current_mode
);
5081 /* Continue to configure the copper link. */
5082 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
5086 ew32(FCTTV
, hw
->fc
.pause_time
);
5087 if ((hw
->phy
.type
== e1000_phy_82578
) ||
5088 (hw
->phy
.type
== e1000_phy_82579
) ||
5089 (hw
->phy
.type
== e1000_phy_i217
) ||
5090 (hw
->phy
.type
== e1000_phy_82577
)) {
5091 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
5093 ret_val
= e1e_wphy(hw
, PHY_REG(BM_PORT_CTRL_PAGE
, 27),
5099 return e1000e_set_fc_watermarks(hw
);
5103 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5104 * @hw: pointer to the HW structure
5106 * Configures the kumeran interface to the PHY to wait the appropriate time
5107 * when polling the PHY, then call the generic setup_copper_link to finish
5108 * configuring the copper link.
5110 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
5117 ctrl
|= E1000_CTRL_SLU
;
5118 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
5121 /* Set the mac to wait the maximum time between each iteration
5122 * and increase the max iterations when polling the phy;
5123 * this fixes erroneous timeouts at 10Mbps.
5125 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
5128 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
5133 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
5138 switch (hw
->phy
.type
) {
5139 case e1000_phy_igp_3
:
5140 ret_val
= e1000e_copper_link_setup_igp(hw
);
5145 case e1000_phy_82578
:
5146 ret_val
= e1000e_copper_link_setup_m88(hw
);
5150 case e1000_phy_82577
:
5151 case e1000_phy_82579
:
5152 ret_val
= e1000_copper_link_setup_82577(hw
);
5157 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
5161 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
5163 switch (hw
->phy
.mdix
) {
5165 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
5168 reg_data
|= IFE_PMC_FORCE_MDIX
;
5172 reg_data
|= IFE_PMC_AUTO_MDIX
;
5175 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
5183 return e1000e_setup_copper_link(hw
);
5187 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5188 * @hw: pointer to the HW structure
5190 * Calls the PHY specific link setup function and then calls the
5191 * generic setup_copper_link to finish configuring the link for
5192 * Lynxpoint PCH devices
5194 static s32
e1000_setup_copper_link_pch_lpt(struct e1000_hw
*hw
)
5200 ctrl
|= E1000_CTRL_SLU
;
5201 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
5204 ret_val
= e1000_copper_link_setup_82577(hw
);
5208 return e1000e_setup_copper_link(hw
);
5212 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5213 * @hw: pointer to the HW structure
5214 * @speed: pointer to store current link speed
5215 * @duplex: pointer to store the current link duplex
5217 * Calls the generic get_speed_and_duplex to retrieve the current link
5218 * information and then calls the Kumeran lock loss workaround for links at
5221 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
5226 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
5230 if ((hw
->mac
.type
== e1000_ich8lan
) &&
5231 (hw
->phy
.type
== e1000_phy_igp_3
) && (*speed
== SPEED_1000
)) {
5232 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
5239 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5240 * @hw: pointer to the HW structure
5242 * Work-around for 82566 Kumeran PCS lock loss:
5243 * On link status change (i.e. PCI reset, speed change) and link is up and
5245 * 0) if workaround is optionally disabled do nothing
5246 * 1) wait 1ms for Kumeran link to come up
5247 * 2) check Kumeran Diagnostic register PCS lock loss bit
5248 * 3) if not set the link is locked (all is good), otherwise...
5250 * 5) repeat up to 10 times
5251 * Note: this is only called for IGP3 copper when speed is 1gb.
5253 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
5255 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
5261 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
5264 /* Make sure link is up before proceeding. If not just return.
5265 * Attempting this while link is negotiating fouled up link
5268 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
5272 for (i
= 0; i
< 10; i
++) {
5273 /* read once to clear */
5274 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
5277 /* and again to get new status */
5278 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
5282 /* check for PCS lock */
5283 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
5286 /* Issue PHY reset */
5287 e1000_phy_hw_reset(hw
);
5290 /* Disable GigE link negotiation */
5291 phy_ctrl
= er32(PHY_CTRL
);
5292 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
5293 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
5294 ew32(PHY_CTRL
, phy_ctrl
);
5296 /* Call gig speed drop workaround on Gig disable before accessing
5299 e1000e_gig_downshift_workaround_ich8lan(hw
);
5301 /* unable to acquire PCS lock */
5302 return -E1000_ERR_PHY
;
5306 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5307 * @hw: pointer to the HW structure
5308 * @state: boolean value used to set the current Kumeran workaround state
5310 * If ICH8, set the current Kumeran workaround state (enabled - true
5311 * /disabled - false).
5313 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
5316 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
5318 if (hw
->mac
.type
!= e1000_ich8lan
) {
5319 e_dbg("Workaround applies to ICH8 only.\n");
5323 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
5327 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5328 * @hw: pointer to the HW structure
5330 * Workaround for 82566 power-down on D3 entry:
5331 * 1) disable gigabit link
5332 * 2) write VR power-down enable
5334 * Continue if successful, else issue LCD reset and repeat
5336 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
5342 if (hw
->phy
.type
!= e1000_phy_igp_3
)
5345 /* Try the workaround twice (if needed) */
5348 reg
= er32(PHY_CTRL
);
5349 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
5350 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
5351 ew32(PHY_CTRL
, reg
);
5353 /* Call gig speed drop workaround on Gig disable before
5354 * accessing any PHY registers
5356 if (hw
->mac
.type
== e1000_ich8lan
)
5357 e1000e_gig_downshift_workaround_ich8lan(hw
);
5359 /* Write VR power-down enable */
5360 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
5361 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
5362 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
5364 /* Read it back and test */
5365 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
5366 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
5367 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
5370 /* Issue PHY reset and repeat at most one more time */
5372 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
5378 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5379 * @hw: pointer to the HW structure
5381 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5382 * LPLU, Gig disable, MDIC PHY reset):
5383 * 1) Set Kumeran Near-end loopback
5384 * 2) Clear Kumeran Near-end loopback
5385 * Should only be called for ICH8[m] devices with any 1G Phy.
5387 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
5392 if ((hw
->mac
.type
!= e1000_ich8lan
) || (hw
->phy
.type
== e1000_phy_ife
))
5395 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
5399 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
5400 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
5404 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
5405 e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
, reg_data
);
5409 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5410 * @hw: pointer to the HW structure
5412 * During S0 to Sx transition, it is possible the link remains at gig
5413 * instead of negotiating to a lower speed. Before going to Sx, set
5414 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5415 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5416 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5417 * needs to be written.
5418 * Parts that support (and are linked to a partner which support) EEE in
5419 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5420 * than 10Mbps w/o EEE.
5422 void e1000_suspend_workarounds_ich8lan(struct e1000_hw
*hw
)
5424 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
5428 phy_ctrl
= er32(PHY_CTRL
);
5429 phy_ctrl
|= E1000_PHY_CTRL_GBE_DISABLE
;
5431 if (hw
->phy
.type
== e1000_phy_i217
) {
5432 u16 phy_reg
, device_id
= hw
->adapter
->pdev
->device
;
5434 if ((device_id
== E1000_DEV_ID_PCH_LPTLP_I218_LM
) ||
5435 (device_id
== E1000_DEV_ID_PCH_LPTLP_I218_V
) ||
5436 (device_id
== E1000_DEV_ID_PCH_I218_LM3
) ||
5437 (device_id
== E1000_DEV_ID_PCH_I218_V3
) ||
5438 (hw
->mac
.type
>= e1000_pch_spt
)) {
5439 u32 fextnvm6
= er32(FEXTNVM6
);
5441 ew32(FEXTNVM6
, fextnvm6
& ~E1000_FEXTNVM6_REQ_PLL_CLK
);
5444 ret_val
= hw
->phy
.ops
.acquire(hw
);
5448 if (!dev_spec
->eee_disable
) {
5452 e1000_read_emi_reg_locked(hw
,
5453 I217_EEE_ADVERTISEMENT
,
5458 /* Disable LPLU if both link partners support 100BaseT
5459 * EEE and 100Full is advertised on both ends of the
5460 * link, and enable Auto Enable LPI since there will
5461 * be no driver to enable LPI while in Sx.
5463 if ((eee_advert
& I82579_EEE_100_SUPPORTED
) &&
5464 (dev_spec
->eee_lp_ability
&
5465 I82579_EEE_100_SUPPORTED
) &&
5466 (hw
->phy
.autoneg_advertised
& ADVERTISE_100_FULL
)) {
5467 phy_ctrl
&= ~(E1000_PHY_CTRL_D0A_LPLU
|
5468 E1000_PHY_CTRL_NOND0A_LPLU
);
5470 /* Set Auto Enable LPI after link up */
5472 I217_LPI_GPIO_CTRL
, &phy_reg
);
5473 phy_reg
|= I217_LPI_GPIO_CTRL_AUTO_EN_LPI
;
5475 I217_LPI_GPIO_CTRL
, phy_reg
);
5479 /* For i217 Intel Rapid Start Technology support,
5480 * when the system is going into Sx and no manageability engine
5481 * is present, the driver must configure proxy to reset only on
5482 * power good. LPI (Low Power Idle) state must also reset only
5483 * on power good, as well as the MTA (Multicast table array).
5484 * The SMBus release must also be disabled on LCD reset.
5486 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
5487 /* Enable proxy to reset only on power good. */
5488 e1e_rphy_locked(hw
, I217_PROXY_CTRL
, &phy_reg
);
5489 phy_reg
|= I217_PROXY_CTRL_AUTO_DISABLE
;
5490 e1e_wphy_locked(hw
, I217_PROXY_CTRL
, phy_reg
);
5492 /* Set bit enable LPI (EEE) to reset only on
5495 e1e_rphy_locked(hw
, I217_SxCTRL
, &phy_reg
);
5496 phy_reg
|= I217_SxCTRL_ENABLE_LPI_RESET
;
5497 e1e_wphy_locked(hw
, I217_SxCTRL
, phy_reg
);
5499 /* Disable the SMB release on LCD reset. */
5500 e1e_rphy_locked(hw
, I217_MEMPWR
, &phy_reg
);
5501 phy_reg
&= ~I217_MEMPWR_DISABLE_SMB_RELEASE
;
5502 e1e_wphy_locked(hw
, I217_MEMPWR
, phy_reg
);
5505 /* Enable MTA to reset for Intel Rapid Start Technology
5508 e1e_rphy_locked(hw
, I217_CGFREG
, &phy_reg
);
5509 phy_reg
|= I217_CGFREG_ENABLE_MTA_RESET
;
5510 e1e_wphy_locked(hw
, I217_CGFREG
, phy_reg
);
5513 hw
->phy
.ops
.release(hw
);
5516 ew32(PHY_CTRL
, phy_ctrl
);
5518 if (hw
->mac
.type
== e1000_ich8lan
)
5519 e1000e_gig_downshift_workaround_ich8lan(hw
);
5521 if (hw
->mac
.type
>= e1000_pchlan
) {
5522 e1000_oem_bits_config_ich8lan(hw
, false);
5524 /* Reset PHY to activate OEM bits on 82577/8 */
5525 if (hw
->mac
.type
== e1000_pchlan
)
5526 e1000e_phy_hw_reset_generic(hw
);
5528 ret_val
= hw
->phy
.ops
.acquire(hw
);
5531 e1000_write_smbus_addr(hw
);
5532 hw
->phy
.ops
.release(hw
);
5537 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5538 * @hw: pointer to the HW structure
5540 * During Sx to S0 transitions on non-managed devices or managed devices
5541 * on which PHY resets are not blocked, if the PHY registers cannot be
5542 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5544 * On i217, setup Intel Rapid Start Technology.
5546 void e1000_resume_workarounds_pchlan(struct e1000_hw
*hw
)
5550 if (hw
->mac
.type
< e1000_pch2lan
)
5553 ret_val
= e1000_init_phy_workarounds_pchlan(hw
);
5555 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val
);
5559 /* For i217 Intel Rapid Start Technology support when the system
5560 * is transitioning from Sx and no manageability engine is present
5561 * configure SMBus to restore on reset, disable proxy, and enable
5562 * the reset on MTA (Multicast table array).
5564 if (hw
->phy
.type
== e1000_phy_i217
) {
5567 ret_val
= hw
->phy
.ops
.acquire(hw
);
5569 e_dbg("Failed to setup iRST\n");
5573 /* Clear Auto Enable LPI after link up */
5574 e1e_rphy_locked(hw
, I217_LPI_GPIO_CTRL
, &phy_reg
);
5575 phy_reg
&= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI
;
5576 e1e_wphy_locked(hw
, I217_LPI_GPIO_CTRL
, phy_reg
);
5578 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
5579 /* Restore clear on SMB if no manageability engine
5582 ret_val
= e1e_rphy_locked(hw
, I217_MEMPWR
, &phy_reg
);
5585 phy_reg
|= I217_MEMPWR_DISABLE_SMB_RELEASE
;
5586 e1e_wphy_locked(hw
, I217_MEMPWR
, phy_reg
);
5589 e1e_wphy_locked(hw
, I217_PROXY_CTRL
, 0);
5591 /* Enable reset on MTA */
5592 ret_val
= e1e_rphy_locked(hw
, I217_CGFREG
, &phy_reg
);
5595 phy_reg
&= ~I217_CGFREG_ENABLE_MTA_RESET
;
5596 e1e_wphy_locked(hw
, I217_CGFREG
, phy_reg
);
5599 e_dbg("Error %d in resume workarounds\n", ret_val
);
5600 hw
->phy
.ops
.release(hw
);
5605 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5606 * @hw: pointer to the HW structure
5608 * Return the LED back to the default configuration.
5610 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
5612 if (hw
->phy
.type
== e1000_phy_ife
)
5613 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
5615 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
5620 * e1000_led_on_ich8lan - Turn LEDs on
5621 * @hw: pointer to the HW structure
5625 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
5627 if (hw
->phy
.type
== e1000_phy_ife
)
5628 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
5629 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
5631 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
5636 * e1000_led_off_ich8lan - Turn LEDs off
5637 * @hw: pointer to the HW structure
5639 * Turn off the LEDs.
5641 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
5643 if (hw
->phy
.type
== e1000_phy_ife
)
5644 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
5645 (IFE_PSCL_PROBE_MODE
|
5646 IFE_PSCL_PROBE_LEDS_OFF
));
5648 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
5653 * e1000_setup_led_pchlan - Configures SW controllable LED
5654 * @hw: pointer to the HW structure
5656 * This prepares the SW controllable LED for use.
5658 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
5660 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_mode1
);
5664 * e1000_cleanup_led_pchlan - Restore the default LED operation
5665 * @hw: pointer to the HW structure
5667 * Return the LED back to the default configuration.
5669 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
5671 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_default
);
5675 * e1000_led_on_pchlan - Turn LEDs on
5676 * @hw: pointer to the HW structure
5680 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
5682 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
5685 /* If no link, then turn LED on by setting the invert bit
5686 * for each LED that's mode is "link_up" in ledctl_mode2.
5688 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
5689 for (i
= 0; i
< 3; i
++) {
5690 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
5691 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
5692 E1000_LEDCTL_MODE_LINK_UP
)
5694 if (led
& E1000_PHY_LED0_IVRT
)
5695 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
5697 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
5701 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
5705 * e1000_led_off_pchlan - Turn LEDs off
5706 * @hw: pointer to the HW structure
5708 * Turn off the LEDs.
5710 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
5712 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
5715 /* If no link, then turn LED off by clearing the invert bit
5716 * for each LED that's mode is "link_up" in ledctl_mode1.
5718 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
5719 for (i
= 0; i
< 3; i
++) {
5720 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
5721 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
5722 E1000_LEDCTL_MODE_LINK_UP
)
5724 if (led
& E1000_PHY_LED0_IVRT
)
5725 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
5727 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
5731 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
5735 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5736 * @hw: pointer to the HW structure
5738 * Read appropriate register for the config done bit for completion status
5739 * and configure the PHY through s/w for EEPROM-less parts.
5741 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5742 * config done bit, so only an error is logged and continues. If we were
5743 * to return with error, EEPROM-less silicon would not be able to be reset
5746 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
5752 e1000e_get_cfg_done_generic(hw
);
5754 /* Wait for indication from h/w that it has completed basic config */
5755 if (hw
->mac
.type
>= e1000_ich10lan
) {
5756 e1000_lan_init_done_ich8lan(hw
);
5758 ret_val
= e1000e_get_auto_rd_done(hw
);
5760 /* When auto config read does not complete, do not
5761 * return with an error. This can happen in situations
5762 * where there is no eeprom and prevents getting link.
5764 e_dbg("Auto Read Done did not complete\n");
5769 /* Clear PHY Reset Asserted bit */
5770 status
= er32(STATUS
);
5771 if (status
& E1000_STATUS_PHYRA
)
5772 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
5774 e_dbg("PHY Reset Asserted not set - needs delay\n");
5776 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5777 if (hw
->mac
.type
<= e1000_ich9lan
) {
5778 if (!(er32(EECD
) & E1000_EECD_PRES
) &&
5779 (hw
->phy
.type
== e1000_phy_igp_3
)) {
5780 e1000e_phy_init_script_igp3(hw
);
5783 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
5784 /* Maybe we should do a basic PHY config */
5785 e_dbg("EEPROM not present\n");
5786 ret_val
= -E1000_ERR_CONFIG
;
5794 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5795 * @hw: pointer to the HW structure
5797 * In the case of a PHY power down to save power, or to turn off link during a
5798 * driver unload, or wake on lan is not enabled, remove the link.
5800 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
5802 /* If the management interface is not enabled, then power down */
5803 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
5804 hw
->phy
.ops
.check_reset_block(hw
)))
5805 e1000_power_down_phy_copper(hw
);
5809 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5810 * @hw: pointer to the HW structure
5812 * Clears hardware counters specific to the silicon family and calls
5813 * clear_hw_cntrs_generic to clear all general purpose counters.
5815 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
5820 e1000e_clear_hw_cntrs_base(hw
);
5836 /* Clear PHY statistics registers */
5837 if ((hw
->phy
.type
== e1000_phy_82578
) ||
5838 (hw
->phy
.type
== e1000_phy_82579
) ||
5839 (hw
->phy
.type
== e1000_phy_i217
) ||
5840 (hw
->phy
.type
== e1000_phy_82577
)) {
5841 ret_val
= hw
->phy
.ops
.acquire(hw
);
5844 ret_val
= hw
->phy
.ops
.set_page(hw
,
5845 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
5848 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
5849 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
5850 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
5851 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
5852 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
5853 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
5854 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
5855 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
5856 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
5857 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
5858 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
5859 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
5860 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
5861 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
5863 hw
->phy
.ops
.release(hw
);
5867 static const struct e1000_mac_operations ich8_mac_ops
= {
5868 /* check_mng_mode dependent on mac type */
5869 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
5870 /* cleanup_led dependent on mac type */
5871 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
5872 .get_bus_info
= e1000_get_bus_info_ich8lan
,
5873 .set_lan_id
= e1000_set_lan_id_single_port
,
5874 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
5875 /* led_on dependent on mac type */
5876 /* led_off dependent on mac type */
5877 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
5878 .reset_hw
= e1000_reset_hw_ich8lan
,
5879 .init_hw
= e1000_init_hw_ich8lan
,
5880 .setup_link
= e1000_setup_link_ich8lan
,
5881 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
5882 /* id_led_init dependent on mac type */
5883 .config_collision_dist
= e1000e_config_collision_dist_generic
,
5884 .rar_set
= e1000e_rar_set_generic
,
5885 .rar_get_count
= e1000e_rar_get_count_generic
,
5888 static const struct e1000_phy_operations ich8_phy_ops
= {
5889 .acquire
= e1000_acquire_swflag_ich8lan
,
5890 .check_reset_block
= e1000_check_reset_block_ich8lan
,
5892 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
5893 .get_cable_length
= e1000e_get_cable_length_igp_2
,
5894 .read_reg
= e1000e_read_phy_reg_igp
,
5895 .release
= e1000_release_swflag_ich8lan
,
5896 .reset
= e1000_phy_hw_reset_ich8lan
,
5897 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
5898 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
5899 .write_reg
= e1000e_write_phy_reg_igp
,
5902 static const struct e1000_nvm_operations ich8_nvm_ops
= {
5903 .acquire
= e1000_acquire_nvm_ich8lan
,
5904 .read
= e1000_read_nvm_ich8lan
,
5905 .release
= e1000_release_nvm_ich8lan
,
5906 .reload
= e1000e_reload_nvm_generic
,
5907 .update
= e1000_update_nvm_checksum_ich8lan
,
5908 .valid_led_default
= e1000_valid_led_default_ich8lan
,
5909 .validate
= e1000_validate_nvm_checksum_ich8lan
,
5910 .write
= e1000_write_nvm_ich8lan
,
5913 static const struct e1000_nvm_operations spt_nvm_ops
= {
5914 .acquire
= e1000_acquire_nvm_ich8lan
,
5915 .release
= e1000_release_nvm_ich8lan
,
5916 .read
= e1000_read_nvm_spt
,
5917 .update
= e1000_update_nvm_checksum_spt
,
5918 .reload
= e1000e_reload_nvm_generic
,
5919 .valid_led_default
= e1000_valid_led_default_ich8lan
,
5920 .validate
= e1000_validate_nvm_checksum_ich8lan
,
5921 .write
= e1000_write_nvm_ich8lan
,
5924 const struct e1000_info e1000_ich8_info
= {
5925 .mac
= e1000_ich8lan
,
5926 .flags
= FLAG_HAS_WOL
5928 | FLAG_HAS_CTRLEXT_ON_LOAD
5933 .max_hw_frame_size
= VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
,
5934 .get_variants
= e1000_get_variants_ich8lan
,
5935 .mac_ops
= &ich8_mac_ops
,
5936 .phy_ops
= &ich8_phy_ops
,
5937 .nvm_ops
= &ich8_nvm_ops
,
5940 const struct e1000_info e1000_ich9_info
= {
5941 .mac
= e1000_ich9lan
,
5942 .flags
= FLAG_HAS_JUMBO_FRAMES
5945 | FLAG_HAS_CTRLEXT_ON_LOAD
5950 .max_hw_frame_size
= DEFAULT_JUMBO
,
5951 .get_variants
= e1000_get_variants_ich8lan
,
5952 .mac_ops
= &ich8_mac_ops
,
5953 .phy_ops
= &ich8_phy_ops
,
5954 .nvm_ops
= &ich8_nvm_ops
,
5957 const struct e1000_info e1000_ich10_info
= {
5958 .mac
= e1000_ich10lan
,
5959 .flags
= FLAG_HAS_JUMBO_FRAMES
5962 | FLAG_HAS_CTRLEXT_ON_LOAD
5967 .max_hw_frame_size
= DEFAULT_JUMBO
,
5968 .get_variants
= e1000_get_variants_ich8lan
,
5969 .mac_ops
= &ich8_mac_ops
,
5970 .phy_ops
= &ich8_phy_ops
,
5971 .nvm_ops
= &ich8_nvm_ops
,
5974 const struct e1000_info e1000_pch_info
= {
5975 .mac
= e1000_pchlan
,
5976 .flags
= FLAG_IS_ICH
5978 | FLAG_HAS_CTRLEXT_ON_LOAD
5981 | FLAG_HAS_JUMBO_FRAMES
5982 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
5984 .flags2
= FLAG2_HAS_PHY_STATS
,
5986 .max_hw_frame_size
= 4096,
5987 .get_variants
= e1000_get_variants_ich8lan
,
5988 .mac_ops
= &ich8_mac_ops
,
5989 .phy_ops
= &ich8_phy_ops
,
5990 .nvm_ops
= &ich8_nvm_ops
,
5993 const struct e1000_info e1000_pch2_info
= {
5994 .mac
= e1000_pch2lan
,
5995 .flags
= FLAG_IS_ICH
5997 | FLAG_HAS_HW_TIMESTAMP
5998 | FLAG_HAS_CTRLEXT_ON_LOAD
6001 | FLAG_HAS_JUMBO_FRAMES
6003 .flags2
= FLAG2_HAS_PHY_STATS
6005 | FLAG2_CHECK_SYSTIM_OVERFLOW
,
6007 .max_hw_frame_size
= 9022,
6008 .get_variants
= e1000_get_variants_ich8lan
,
6009 .mac_ops
= &ich8_mac_ops
,
6010 .phy_ops
= &ich8_phy_ops
,
6011 .nvm_ops
= &ich8_nvm_ops
,
6014 const struct e1000_info e1000_pch_lpt_info
= {
6015 .mac
= e1000_pch_lpt
,
6016 .flags
= FLAG_IS_ICH
6018 | FLAG_HAS_HW_TIMESTAMP
6019 | FLAG_HAS_CTRLEXT_ON_LOAD
6022 | FLAG_HAS_JUMBO_FRAMES
6024 .flags2
= FLAG2_HAS_PHY_STATS
6026 | FLAG2_CHECK_SYSTIM_OVERFLOW
,
6028 .max_hw_frame_size
= 9022,
6029 .get_variants
= e1000_get_variants_ich8lan
,
6030 .mac_ops
= &ich8_mac_ops
,
6031 .phy_ops
= &ich8_phy_ops
,
6032 .nvm_ops
= &ich8_nvm_ops
,
6035 const struct e1000_info e1000_pch_spt_info
= {
6036 .mac
= e1000_pch_spt
,
6037 .flags
= FLAG_IS_ICH
6039 | FLAG_HAS_HW_TIMESTAMP
6040 | FLAG_HAS_CTRLEXT_ON_LOAD
6043 | FLAG_HAS_JUMBO_FRAMES
6045 .flags2
= FLAG2_HAS_PHY_STATS
6048 .max_hw_frame_size
= 9022,
6049 .get_variants
= e1000_get_variants_ich8lan
,
6050 .mac_ops
= &ich8_mac_ops
,
6051 .phy_ops
= &ich8_phy_ops
,
6052 .nvm_ops
= &spt_nvm_ops
,
6055 const struct e1000_info e1000_pch_cnp_info
= {
6056 .mac
= e1000_pch_cnp
,
6057 .flags
= FLAG_IS_ICH
6059 | FLAG_HAS_HW_TIMESTAMP
6060 | FLAG_HAS_CTRLEXT_ON_LOAD
6063 | FLAG_HAS_JUMBO_FRAMES
6065 .flags2
= FLAG2_HAS_PHY_STATS
6068 .max_hw_frame_size
= 9022,
6069 .get_variants
= e1000_get_variants_ich8lan
,
6070 .mac_ops
= &ich8_mac_ops
,
6071 .phy_ops
= &ich8_phy_ops
,
6072 .nvm_ops
= &spt_nvm_ops
,
6075 const struct e1000_info e1000_pch_tgp_info
= {
6076 .mac
= e1000_pch_tgp
,
6077 .flags
= FLAG_IS_ICH
6079 | FLAG_HAS_HW_TIMESTAMP
6080 | FLAG_HAS_CTRLEXT_ON_LOAD
6083 | FLAG_HAS_JUMBO_FRAMES
6085 .flags2
= FLAG2_HAS_PHY_STATS
6088 .max_hw_frame_size
= 9022,
6089 .get_variants
= e1000_get_variants_ich8lan
,
6090 .mac_ops
= &ich8_mac_ops
,
6091 .phy_ops
= &ich8_phy_ops
,
6092 .nvm_ops
= &spt_nvm_ops
,
6095 const struct e1000_info e1000_pch_adp_info
= {
6096 .mac
= e1000_pch_adp
,
6097 .flags
= FLAG_IS_ICH
6099 | FLAG_HAS_HW_TIMESTAMP
6100 | FLAG_HAS_CTRLEXT_ON_LOAD
6103 | FLAG_HAS_JUMBO_FRAMES
6105 .flags2
= FLAG2_HAS_PHY_STATS
6108 .max_hw_frame_size
= 9022,
6109 .get_variants
= e1000_get_variants_ich8lan
,
6110 .mac_ops
= &ich8_mac_ops
,
6111 .phy_ops
= &ich8_phy_ops
,
6112 .nvm_ops
= &spt_nvm_ops
,
6115 const struct e1000_info e1000_pch_mtp_info
= {
6116 .mac
= e1000_pch_mtp
,
6117 .flags
= FLAG_IS_ICH
6119 | FLAG_HAS_HW_TIMESTAMP
6120 | FLAG_HAS_CTRLEXT_ON_LOAD
6123 | FLAG_HAS_JUMBO_FRAMES
6125 .flags2
= FLAG2_HAS_PHY_STATS
6128 .max_hw_frame_size
= 9022,
6129 .get_variants
= e1000_get_variants_ich8lan
,
6130 .mac_ops
= &ich8_mac_ops
,
6131 .phy_ops
= &ich8_phy_ops
,
6132 .nvm_ops
= &spt_nvm_ops
,