1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
4 #include <linux/bitfield.h>
9 * e1000e_get_bus_info_pcie - Get PCIe bus information
10 * @hw: pointer to the HW structure
12 * Determines and stores the system bus information for a particular
13 * network interface. The following bus information is determined and stored:
14 * bus speed, bus width, type (PCIe), and PCIe function.
16 s32
e1000e_get_bus_info_pcie(struct e1000_hw
*hw
)
18 struct pci_dev
*pdev
= hw
->adapter
->pdev
;
19 struct e1000_mac_info
*mac
= &hw
->mac
;
20 struct e1000_bus_info
*bus
= &hw
->bus
;
23 if (!pci_pcie_cap(pdev
)) {
24 bus
->width
= e1000_bus_width_unknown
;
26 pcie_capability_read_word(pdev
, PCI_EXP_LNKSTA
, &pcie_link_status
);
27 bus
->width
= (enum e1000_bus_width
)FIELD_GET(PCI_EXP_LNKSTA_NLW
,
31 mac
->ops
.set_lan_id(hw
);
37 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
39 * @hw: pointer to the HW structure
41 * Determines the LAN function id by reading memory-mapped registers
42 * and swaps the port value if requested.
44 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw
*hw
)
46 struct e1000_bus_info
*bus
= &hw
->bus
;
49 /* The status register reports the correct function number
50 * for the device regardless of function swap state.
53 bus
->func
= FIELD_GET(E1000_STATUS_FUNC_MASK
, reg
);
57 * e1000_set_lan_id_single_port - Set LAN id for a single port device
58 * @hw: pointer to the HW structure
60 * Sets the LAN function id to zero for a single port device.
62 void e1000_set_lan_id_single_port(struct e1000_hw
*hw
)
64 struct e1000_bus_info
*bus
= &hw
->bus
;
70 * e1000_clear_vfta_generic - Clear VLAN filter table
71 * @hw: pointer to the HW structure
73 * Clears the register array which contains the VLAN filter table by
74 * setting all the values to 0.
76 void e1000_clear_vfta_generic(struct e1000_hw
*hw
)
80 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
81 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, 0);
87 * e1000_write_vfta_generic - Write value to VLAN filter table
88 * @hw: pointer to the HW structure
89 * @offset: register offset in VLAN filter table
90 * @value: register value written to VLAN filter table
92 * Writes value at the given offset in the register array which stores
93 * the VLAN filter table.
95 void e1000_write_vfta_generic(struct e1000_hw
*hw
, u32 offset
, u32 value
)
97 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
102 * e1000e_init_rx_addrs - Initialize receive address's
103 * @hw: pointer to the HW structure
104 * @rar_count: receive address registers
106 * Setup the receive address registers by setting the base receive address
107 * register to the devices MAC address and clearing all the other receive
108 * address registers to 0.
110 void e1000e_init_rx_addrs(struct e1000_hw
*hw
, u16 rar_count
)
113 u8 mac_addr
[ETH_ALEN
] = { 0 };
115 /* Setup the receive address */
116 e_dbg("Programming MAC Address into RAR[0]\n");
118 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
120 /* Zero out the other (rar_entry_count - 1) receive addresses */
121 e_dbg("Clearing RAR[1-%u]\n", rar_count
- 1);
122 for (i
= 1; i
< rar_count
; i
++)
123 hw
->mac
.ops
.rar_set(hw
, mac_addr
, i
);
127 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
128 * @hw: pointer to the HW structure
130 * Checks the nvm for an alternate MAC address. An alternate MAC address
131 * can be setup by pre-boot software and must be treated like a permanent
132 * address and must override the actual permanent MAC address. If an
133 * alternate MAC address is found it is programmed into RAR0, replacing
134 * the permanent address that was installed into RAR0 by the Si on reset.
135 * This function will return SUCCESS unless it encounters an error while
136 * reading the EEPROM.
138 s32
e1000_check_alt_mac_addr_generic(struct e1000_hw
*hw
)
142 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
143 u8 alt_mac_addr
[ETH_ALEN
];
145 ret_val
= e1000_read_nvm(hw
, NVM_COMPAT
, 1, &nvm_data
);
149 /* not supported on 82573 */
150 if (hw
->mac
.type
== e1000_82573
)
153 ret_val
= e1000_read_nvm(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
154 &nvm_alt_mac_addr_offset
);
156 e_dbg("NVM Read Error\n");
160 if ((nvm_alt_mac_addr_offset
== 0xFFFF) ||
161 (nvm_alt_mac_addr_offset
== 0x0000))
162 /* There is no Alternate MAC Address */
165 if (hw
->bus
.func
== E1000_FUNC_1
)
166 nvm_alt_mac_addr_offset
+= E1000_ALT_MAC_ADDRESS_OFFSET_LAN1
;
167 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
168 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
169 ret_val
= e1000_read_nvm(hw
, offset
, 1, &nvm_data
);
171 e_dbg("NVM Read Error\n");
175 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
176 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
179 /* if multicast bit is set, the alternate address will not be used */
180 if (is_multicast_ether_addr(alt_mac_addr
)) {
181 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
185 /* We have a valid alternate MAC address, and we want to treat it the
186 * same as the normal permanent MAC address stored by the HW into the
187 * RAR. Do this by mapping this address into RAR0.
189 hw
->mac
.ops
.rar_set(hw
, alt_mac_addr
, 0);
194 u32
e1000e_rar_get_count_generic(struct e1000_hw
*hw
)
196 return hw
->mac
.rar_entry_count
;
200 * e1000e_rar_set_generic - Set receive address register
201 * @hw: pointer to the HW structure
202 * @addr: pointer to the receive address
203 * @index: receive address array register
205 * Sets the receive address array register at index to the address passed
208 int e1000e_rar_set_generic(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
210 u32 rar_low
, rar_high
;
212 /* HW expects these in little endian so we reverse the byte order
213 * from network order (big endian) to little endian
215 rar_low
= ((u32
)addr
[0] | ((u32
)addr
[1] << 8) |
216 ((u32
)addr
[2] << 16) | ((u32
)addr
[3] << 24));
218 rar_high
= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
220 /* If MAC address zero, no need to set the AV bit */
221 if (rar_low
|| rar_high
)
222 rar_high
|= E1000_RAH_AV
;
224 /* Some bridges will combine consecutive 32-bit writes into
225 * a single burst write, which will malfunction on some parts.
226 * The flushes avoid this.
228 ew32(RAL(index
), rar_low
);
230 ew32(RAH(index
), rar_high
);
237 * e1000_hash_mc_addr - Generate a multicast hash value
238 * @hw: pointer to the HW structure
239 * @mc_addr: pointer to a multicast address
241 * Generates a multicast address hash value which is used to determine
242 * the multicast filter table array address and new table value.
244 static u32
e1000_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
246 u32 hash_value
, hash_mask
;
249 /* Register count multiplied by bits per register */
250 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
252 /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
253 * where 0xFF would still fall within the hash mask.
255 while (hash_mask
>> bit_shift
!= 0xFF)
258 /* The portion of the address that is used for the hash table
259 * is determined by the mc_filter_type setting.
260 * The algorithm is such that there is a total of 8 bits of shifting.
261 * The bit_shift for a mc_filter_type of 0 represents the number of
262 * left-shifts where the MSB of mc_addr[5] would still fall within
263 * the hash_mask. Case 0 does this exactly. Since there are a total
264 * of 8 bits of shifting, then mc_addr[4] will shift right the
265 * remaining number of bits. Thus 8 - bit_shift. The rest of the
266 * cases are a variation of this algorithm...essentially raising the
267 * number of bits to shift mc_addr[5] left, while still keeping the
268 * 8-bit shifting total.
270 * For example, given the following Destination MAC Address and an
271 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
272 * we can see that the bit_shift for case 0 is 4. These are the hash
273 * values resulting from each mc_filter_type...
274 * [0] [1] [2] [3] [4] [5]
278 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
279 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
280 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
281 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
283 switch (hw
->mac
.mc_filter_type
) {
298 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
299 (((u16
)mc_addr
[5]) << bit_shift
)));
305 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
306 * @hw: pointer to the HW structure
307 * @mc_addr_list: array of multicast addresses to program
308 * @mc_addr_count: number of multicast addresses to program
310 * Updates entire Multicast Table Array.
311 * The caller must have a packed mc_addr_list of multicast addresses.
313 void e1000e_update_mc_addr_list_generic(struct e1000_hw
*hw
,
314 u8
*mc_addr_list
, u32 mc_addr_count
)
316 u32 hash_value
, hash_bit
, hash_reg
;
319 /* clear mta_shadow */
320 memset(&hw
->mac
.mta_shadow
, 0, sizeof(hw
->mac
.mta_shadow
));
322 /* update mta_shadow from mc_addr_list */
323 for (i
= 0; (u32
)i
< mc_addr_count
; i
++) {
324 hash_value
= e1000_hash_mc_addr(hw
, mc_addr_list
);
326 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
327 hash_bit
= hash_value
& 0x1F;
329 hw
->mac
.mta_shadow
[hash_reg
] |= BIT(hash_bit
);
330 mc_addr_list
+= (ETH_ALEN
);
333 /* replace the entire MTA table */
334 for (i
= hw
->mac
.mta_reg_count
- 1; i
>= 0; i
--)
335 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, hw
->mac
.mta_shadow
[i
]);
340 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
341 * @hw: pointer to the HW structure
343 * Clears the base hardware counters by reading the counter registers.
345 void e1000e_clear_hw_cntrs_base(struct e1000_hw
*hw
)
387 * e1000e_check_for_copper_link - Check for link (Copper)
388 * @hw: pointer to the HW structure
390 * Checks to see of the link status of the hardware has changed. If a
391 * change in link status has been detected, then we read the PHY registers
392 * to get the current speed/duplex if link exists.
394 s32
e1000e_check_for_copper_link(struct e1000_hw
*hw
)
396 struct e1000_mac_info
*mac
= &hw
->mac
;
400 /* We only want to go out to the PHY registers to see if Auto-Neg
401 * has completed and/or if our link status has changed. The
402 * get_link_status flag is set upon receiving a Link Status
403 * Change or Rx Sequence Error interrupt.
405 if (!mac
->get_link_status
)
407 mac
->get_link_status
= false;
409 /* First we want to see if the MII Status Register reports
410 * link. If so, then we want to get the current speed/duplex
413 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
414 if (ret_val
|| !link
)
417 /* Check if there was DownShift, must be checked
418 * immediately after link-up
420 e1000e_check_downshift(hw
);
422 /* If we are forcing speed/duplex, then we simply return since
423 * we have already determined whether we have link or not.
426 return -E1000_ERR_CONFIG
;
428 /* Auto-Neg is enabled. Auto Speed Detection takes care
429 * of MAC speed/duplex configuration. So we only need to
430 * configure Collision Distance in the MAC.
432 mac
->ops
.config_collision_dist(hw
);
434 /* Configure Flow Control now that Auto-Neg has completed.
435 * First, we need to restore the desired flow control
436 * settings because we may have had to re-autoneg with a
437 * different link partner.
439 ret_val
= e1000e_config_fc_after_link_up(hw
);
441 e_dbg("Error configuring flow control\n");
446 mac
->get_link_status
= true;
451 * e1000e_check_for_fiber_link - Check for link (Fiber)
452 * @hw: pointer to the HW structure
454 * Checks for link up on the hardware. If link is not up and we have
455 * a signal, then we need to force link up.
457 s32
e1000e_check_for_fiber_link(struct e1000_hw
*hw
)
459 struct e1000_mac_info
*mac
= &hw
->mac
;
466 status
= er32(STATUS
);
469 /* If we don't have link (auto-negotiation failed or link partner
470 * cannot auto-negotiate), the cable is plugged in (we have signal),
471 * and our link partner is not trying to auto-negotiate with us (we
472 * are receiving idles or data), we need to force link up. We also
473 * need to give auto-negotiation time to complete, in case the cable
474 * was just plugged in. The autoneg_failed flag does this.
476 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
477 if ((ctrl
& E1000_CTRL_SWDPIN1
) && !(status
& E1000_STATUS_LU
) &&
478 !(rxcw
& E1000_RXCW_C
)) {
479 if (!mac
->autoneg_failed
) {
480 mac
->autoneg_failed
= true;
483 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
485 /* Disable auto-negotiation in the TXCW register */
486 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
488 /* Force link-up and also force full-duplex. */
490 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
493 /* Configure Flow Control after forcing link up. */
494 ret_val
= e1000e_config_fc_after_link_up(hw
);
496 e_dbg("Error configuring flow control\n");
499 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
500 /* If we are forcing link and we are receiving /C/ ordered
501 * sets, re-enable auto-negotiation in the TXCW register
502 * and disable forced link in the Device Control register
503 * in an attempt to auto-negotiate with our link partner.
505 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
506 ew32(TXCW
, mac
->txcw
);
507 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
509 mac
->serdes_has_link
= true;
516 * e1000e_check_for_serdes_link - Check for link (Serdes)
517 * @hw: pointer to the HW structure
519 * Checks for link up on the hardware. If link is not up and we have
520 * a signal, then we need to force link up.
522 s32
e1000e_check_for_serdes_link(struct e1000_hw
*hw
)
524 struct e1000_mac_info
*mac
= &hw
->mac
;
531 status
= er32(STATUS
);
534 /* If we don't have link (auto-negotiation failed or link partner
535 * cannot auto-negotiate), and our link partner is not trying to
536 * auto-negotiate with us (we are receiving idles or data),
537 * we need to force link up. We also need to give auto-negotiation
540 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
541 if (!(status
& E1000_STATUS_LU
) && !(rxcw
& E1000_RXCW_C
)) {
542 if (!mac
->autoneg_failed
) {
543 mac
->autoneg_failed
= true;
546 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
548 /* Disable auto-negotiation in the TXCW register */
549 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
551 /* Force link-up and also force full-duplex. */
553 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
556 /* Configure Flow Control after forcing link up. */
557 ret_val
= e1000e_config_fc_after_link_up(hw
);
559 e_dbg("Error configuring flow control\n");
562 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
563 /* If we are forcing link and we are receiving /C/ ordered
564 * sets, re-enable auto-negotiation in the TXCW register
565 * and disable forced link in the Device Control register
566 * in an attempt to auto-negotiate with our link partner.
568 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
569 ew32(TXCW
, mac
->txcw
);
570 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
572 mac
->serdes_has_link
= true;
573 } else if (!(E1000_TXCW_ANE
& er32(TXCW
))) {
574 /* If we force link for non-auto-negotiation switch, check
575 * link status based on MAC synchronization for internal
578 /* SYNCH bit and IV bit are sticky. */
579 usleep_range(10, 20);
581 if (rxcw
& E1000_RXCW_SYNCH
) {
582 if (!(rxcw
& E1000_RXCW_IV
)) {
583 mac
->serdes_has_link
= true;
584 e_dbg("SERDES: Link up - forced.\n");
587 mac
->serdes_has_link
= false;
588 e_dbg("SERDES: Link down - force failed.\n");
592 if (E1000_TXCW_ANE
& er32(TXCW
)) {
593 status
= er32(STATUS
);
594 if (status
& E1000_STATUS_LU
) {
595 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
596 usleep_range(10, 20);
598 if (rxcw
& E1000_RXCW_SYNCH
) {
599 if (!(rxcw
& E1000_RXCW_IV
)) {
600 mac
->serdes_has_link
= true;
601 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
603 mac
->serdes_has_link
= false;
604 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
607 mac
->serdes_has_link
= false;
608 e_dbg("SERDES: Link down - no sync.\n");
611 mac
->serdes_has_link
= false;
612 e_dbg("SERDES: Link down - autoneg failed\n");
620 * e1000_set_default_fc_generic - Set flow control default values
621 * @hw: pointer to the HW structure
623 * Read the EEPROM for the default values for flow control and store the
626 static s32
e1000_set_default_fc_generic(struct e1000_hw
*hw
)
631 /* Read and store word 0x0F of the EEPROM. This word contains bits
632 * that determine the hardware's default PAUSE (flow control) mode,
633 * a bit that determines whether the HW defaults to enabling or
634 * disabling auto-negotiation, and the direction of the
635 * SW defined pins. If there is no SW over-ride of the flow
636 * control setting, then the variable hw->fc will
637 * be initialized based on a value in the EEPROM.
639 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
642 e_dbg("NVM Read Error\n");
646 if (!(nvm_data
& NVM_WORD0F_PAUSE_MASK
))
647 hw
->fc
.requested_mode
= e1000_fc_none
;
648 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == NVM_WORD0F_ASM_DIR
)
649 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
651 hw
->fc
.requested_mode
= e1000_fc_full
;
657 * e1000e_setup_link_generic - Setup flow control and link settings
658 * @hw: pointer to the HW structure
660 * Determines which flow control settings to use, then configures flow
661 * control. Calls the appropriate media-specific link configuration
662 * function. Assuming the adapter has a valid link partner, a valid link
663 * should be established. Assumes the hardware has previously been reset
664 * and the transmitter and receiver are not enabled.
666 s32
e1000e_setup_link_generic(struct e1000_hw
*hw
)
670 /* In the case of the phy reset being blocked, we already have a link.
671 * We do not need to set it up again.
673 if (hw
->phy
.ops
.check_reset_block
&& hw
->phy
.ops
.check_reset_block(hw
))
676 /* If requested flow control is set to default, set flow control
677 * based on the EEPROM flow control settings.
679 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
680 ret_val
= e1000_set_default_fc_generic(hw
);
685 /* Save off the requested flow control mode for use later. Depending
686 * on the link partner's capabilities, we may or may not use this mode.
688 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
690 e_dbg("After fix-ups FlowControl is now = %x\n", hw
->fc
.current_mode
);
692 /* Call the necessary media_type subroutine to configure the link. */
693 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
697 /* Initialize the flow control address, type, and PAUSE timer
698 * registers to their default values. This is done even if flow
699 * control is disabled, because it does not hurt anything to
700 * initialize these registers.
702 e_dbg("Initializing the Flow Control address, type and timer regs\n");
703 ew32(FCT
, FLOW_CONTROL_TYPE
);
704 ew32(FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
705 ew32(FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
707 ew32(FCTTV
, hw
->fc
.pause_time
);
709 return e1000e_set_fc_watermarks(hw
);
713 * e1000_commit_fc_settings_generic - Configure flow control
714 * @hw: pointer to the HW structure
716 * Write the flow control settings to the Transmit Config Word Register (TXCW)
717 * base on the flow control settings in e1000_mac_info.
719 static s32
e1000_commit_fc_settings_generic(struct e1000_hw
*hw
)
721 struct e1000_mac_info
*mac
= &hw
->mac
;
724 /* Check for a software override of the flow control settings, and
725 * setup the device accordingly. If auto-negotiation is enabled, then
726 * software will have to set the "PAUSE" bits to the correct value in
727 * the Transmit Config Word Register (TXCW) and re-start auto-
728 * negotiation. However, if auto-negotiation is disabled, then
729 * software will have to manually configure the two flow control enable
730 * bits in the CTRL register.
732 * The possible values of the "fc" parameter are:
733 * 0: Flow control is completely disabled
734 * 1: Rx flow control is enabled (we can receive pause frames,
735 * but not send pause frames).
736 * 2: Tx flow control is enabled (we can send pause frames but we
737 * do not support receiving pause frames).
738 * 3: Both Rx and Tx flow control (symmetric) are enabled.
740 switch (hw
->fc
.current_mode
) {
742 /* Flow control completely disabled by a software over-ride. */
743 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
745 case e1000_fc_rx_pause
:
746 /* Rx Flow control is enabled and Tx Flow control is disabled
747 * by a software over-ride. Since there really isn't a way to
748 * advertise that we are capable of Rx Pause ONLY, we will
749 * advertise that we support both symmetric and asymmetric Rx
750 * PAUSE. Later, we will disable the adapter's ability to send
753 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
755 case e1000_fc_tx_pause
:
756 /* Tx Flow control is enabled, and Rx Flow control is disabled,
757 * by a software over-ride.
759 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
762 /* Flow control (both Rx and Tx) is enabled by a software
765 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
768 e_dbg("Flow control param set incorrectly\n");
769 return -E1000_ERR_CONFIG
;
779 * e1000_poll_fiber_serdes_link_generic - Poll for link up
780 * @hw: pointer to the HW structure
782 * Polls for link up by reading the status register, if link fails to come
783 * up with auto-negotiation, then the link is forced if a signal is detected.
785 static s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw
*hw
)
787 struct e1000_mac_info
*mac
= &hw
->mac
;
791 /* If we have a signal (the cable is plugged in, or assumed true for
792 * serdes media) then poll for a "Link-Up" indication in the Device
793 * Status Register. Time-out if a link isn't seen in 500 milliseconds
794 * seconds (Auto-negotiation should complete in less than 500
795 * milliseconds even if the other end is doing it in SW).
797 for (i
= 0; i
< FIBER_LINK_UP_LIMIT
; i
++) {
798 usleep_range(10000, 11000);
799 status
= er32(STATUS
);
800 if (status
& E1000_STATUS_LU
)
803 if (i
== FIBER_LINK_UP_LIMIT
) {
804 e_dbg("Never got a valid link from auto-neg!!!\n");
805 mac
->autoneg_failed
= true;
806 /* AutoNeg failed to achieve a link, so we'll call
807 * mac->check_for_link. This routine will force the
808 * link up if we detect a signal. This will allow us to
809 * communicate with non-autonegotiating link partners.
811 ret_val
= mac
->ops
.check_for_link(hw
);
813 e_dbg("Error while checking for link\n");
816 mac
->autoneg_failed
= false;
818 mac
->autoneg_failed
= false;
819 e_dbg("Valid Link Found\n");
826 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
827 * @hw: pointer to the HW structure
829 * Configures collision distance and flow control for fiber and serdes
830 * links. Upon successful setup, poll for link.
832 s32
e1000e_setup_fiber_serdes_link(struct e1000_hw
*hw
)
839 /* Take the link out of reset */
840 ctrl
&= ~E1000_CTRL_LRST
;
842 hw
->mac
.ops
.config_collision_dist(hw
);
844 ret_val
= e1000_commit_fc_settings_generic(hw
);
848 /* Since auto-negotiation is enabled, take the link out of reset (the
849 * link will be in reset, because we previously reset the chip). This
850 * will restart auto-negotiation. If auto-negotiation is successful
851 * then the link-up status bit will be set and the flow control enable
852 * bits (RFCE and TFCE) will be set according to their negotiated value.
854 e_dbg("Auto-negotiation enabled\n");
858 usleep_range(1000, 2000);
860 /* For these adapters, the SW definable pin 1 is set when the optics
861 * detect a signal. If we have a signal, then poll for a "Link-Up"
864 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
865 (er32(CTRL
) & E1000_CTRL_SWDPIN1
)) {
866 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
868 e_dbg("No signal detected\n");
875 * e1000e_config_collision_dist_generic - Configure collision distance
876 * @hw: pointer to the HW structure
878 * Configures the collision distance to the default value and is used
881 void e1000e_config_collision_dist_generic(struct e1000_hw
*hw
)
887 tctl
&= ~E1000_TCTL_COLD
;
888 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
895 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
896 * @hw: pointer to the HW structure
898 * Sets the flow control high/low threshold (watermark) registers. If
899 * flow control XON frame transmission is enabled, then set XON frame
900 * transmission as well.
902 s32
e1000e_set_fc_watermarks(struct e1000_hw
*hw
)
904 u32 fcrtl
= 0, fcrth
= 0;
906 /* Set the flow control receive threshold registers. Normally,
907 * these registers will be set to a default threshold that may be
908 * adjusted later by the driver's runtime code. However, if the
909 * ability to transmit pause frames is not enabled, then these
910 * registers will be set to 0.
912 if (hw
->fc
.current_mode
& e1000_fc_tx_pause
) {
913 /* We need to set up the Receive Threshold high and low water
914 * marks as well as (optionally) enabling the transmission of
917 fcrtl
= hw
->fc
.low_water
;
919 fcrtl
|= E1000_FCRTL_XONE
;
921 fcrth
= hw
->fc
.high_water
;
930 * e1000e_force_mac_fc - Force the MAC's flow control settings
931 * @hw: pointer to the HW structure
933 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
934 * device control register to reflect the adapter settings. TFCE and RFCE
935 * need to be explicitly set by software when a copper PHY is used because
936 * autonegotiation is managed by the PHY rather than the MAC. Software must
937 * also configure these bits when link is forced on a fiber connection.
939 s32
e1000e_force_mac_fc(struct e1000_hw
*hw
)
945 /* Because we didn't get link via the internal auto-negotiation
946 * mechanism (we either forced link or we got link via PHY
947 * auto-neg), we have to manually enable/disable transmit an
948 * receive flow control.
950 * The "Case" statement below enables/disable flow control
951 * according to the "hw->fc.current_mode" parameter.
953 * The possible values of the "fc" parameter are:
954 * 0: Flow control is completely disabled
955 * 1: Rx flow control is enabled (we can receive pause
956 * frames but not send pause frames).
957 * 2: Tx flow control is enabled (we can send pause frames
958 * but we do not receive pause frames).
959 * 3: Both Rx and Tx flow control (symmetric) is enabled.
960 * other: No other values should be possible at this point.
962 e_dbg("hw->fc.current_mode = %u\n", hw
->fc
.current_mode
);
964 switch (hw
->fc
.current_mode
) {
966 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
968 case e1000_fc_rx_pause
:
969 ctrl
&= (~E1000_CTRL_TFCE
);
970 ctrl
|= E1000_CTRL_RFCE
;
972 case e1000_fc_tx_pause
:
973 ctrl
&= (~E1000_CTRL_RFCE
);
974 ctrl
|= E1000_CTRL_TFCE
;
977 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
980 e_dbg("Flow control param set incorrectly\n");
981 return -E1000_ERR_CONFIG
;
990 * e1000e_config_fc_after_link_up - Configures flow control after link
991 * @hw: pointer to the HW structure
993 * Checks the status of auto-negotiation after link up to ensure that the
994 * speed and duplex were not forced. If the link needed to be forced, then
995 * flow control needs to be forced also. If auto-negotiation is enabled
996 * and did not fail, then we configure flow control based on our link
999 s32
e1000e_config_fc_after_link_up(struct e1000_hw
*hw
)
1001 struct e1000_mac_info
*mac
= &hw
->mac
;
1003 u32 pcs_status_reg
, pcs_adv_reg
, pcs_lp_ability_reg
, pcs_ctrl_reg
;
1004 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
1007 /* Check for the case where we have fiber media and auto-neg failed
1008 * so we had to force link. In this case, we need to force the
1009 * configuration of the MAC to match the "fc" parameter.
1011 if (mac
->autoneg_failed
) {
1012 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1013 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1014 ret_val
= e1000e_force_mac_fc(hw
);
1016 if (hw
->phy
.media_type
== e1000_media_type_copper
)
1017 ret_val
= e1000e_force_mac_fc(hw
);
1021 e_dbg("Error forcing flow control settings\n");
1025 /* Check for the case where we have copper media and auto-neg is
1026 * enabled. In this case, we need to check and see if Auto-Neg
1027 * has completed, and if so, how the PHY and link partner has
1028 * flow control configured.
1030 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
1031 /* Read the MII Status Register and check to see if AutoNeg
1032 * has completed. We read this twice because this reg has
1033 * some "sticky" (latched) bits.
1035 ret_val
= e1e_rphy(hw
, MII_BMSR
, &mii_status_reg
);
1038 ret_val
= e1e_rphy(hw
, MII_BMSR
, &mii_status_reg
);
1042 if (!(mii_status_reg
& BMSR_ANEGCOMPLETE
)) {
1043 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1047 /* The AutoNeg process has completed, so we now need to
1048 * read both the Auto Negotiation Advertisement
1049 * Register (Address 4) and the Auto_Negotiation Base
1050 * Page Ability Register (Address 5) to determine how
1051 * flow control was negotiated.
1053 ret_val
= e1e_rphy(hw
, MII_ADVERTISE
, &mii_nway_adv_reg
);
1056 ret_val
= e1e_rphy(hw
, MII_LPA
, &mii_nway_lp_ability_reg
);
1060 /* Two bits in the Auto Negotiation Advertisement Register
1061 * (Address 4) and two bits in the Auto Negotiation Base
1062 * Page Ability Register (Address 5) determine flow control
1063 * for both the PHY and the link partner. The following
1064 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1065 * 1999, describes these PAUSE resolution bits and how flow
1066 * control is determined based upon these settings.
1067 * NOTE: DC = Don't Care
1069 * LOCAL DEVICE | LINK PARTNER
1070 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1071 *-------|---------|-------|---------|--------------------
1072 * 0 | 0 | DC | DC | e1000_fc_none
1073 * 0 | 1 | 0 | DC | e1000_fc_none
1074 * 0 | 1 | 1 | 0 | e1000_fc_none
1075 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1076 * 1 | 0 | 0 | DC | e1000_fc_none
1077 * 1 | DC | 1 | DC | e1000_fc_full
1078 * 1 | 1 | 0 | 0 | e1000_fc_none
1079 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1081 * Are both PAUSE bits set to 1? If so, this implies
1082 * Symmetric Flow Control is enabled at both ends. The
1083 * ASM_DIR bits are irrelevant per the spec.
1085 * For Symmetric Flow Control:
1087 * LOCAL DEVICE | LINK PARTNER
1088 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1089 *-------|---------|-------|---------|--------------------
1090 * 1 | DC | 1 | DC | E1000_fc_full
1093 if ((mii_nway_adv_reg
& ADVERTISE_PAUSE_CAP
) &&
1094 (mii_nway_lp_ability_reg
& LPA_PAUSE_CAP
)) {
1095 /* Now we need to check if the user selected Rx ONLY
1096 * of pause frames. In this case, we had to advertise
1097 * FULL flow control because we could not advertise Rx
1098 * ONLY. Hence, we must now check to see if we need to
1099 * turn OFF the TRANSMISSION of PAUSE frames.
1101 if (hw
->fc
.requested_mode
== e1000_fc_full
) {
1102 hw
->fc
.current_mode
= e1000_fc_full
;
1103 e_dbg("Flow Control = FULL.\n");
1105 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1106 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1109 /* For receiving PAUSE frames ONLY.
1111 * LOCAL DEVICE | LINK PARTNER
1112 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1113 *-------|---------|-------|---------|--------------------
1114 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1116 else if (!(mii_nway_adv_reg
& ADVERTISE_PAUSE_CAP
) &&
1117 (mii_nway_adv_reg
& ADVERTISE_PAUSE_ASYM
) &&
1118 (mii_nway_lp_ability_reg
& LPA_PAUSE_CAP
) &&
1119 (mii_nway_lp_ability_reg
& LPA_PAUSE_ASYM
)) {
1120 hw
->fc
.current_mode
= e1000_fc_tx_pause
;
1121 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1123 /* For transmitting PAUSE frames ONLY.
1125 * LOCAL DEVICE | LINK PARTNER
1126 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1127 *-------|---------|-------|---------|--------------------
1128 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1130 else if ((mii_nway_adv_reg
& ADVERTISE_PAUSE_CAP
) &&
1131 (mii_nway_adv_reg
& ADVERTISE_PAUSE_ASYM
) &&
1132 !(mii_nway_lp_ability_reg
& LPA_PAUSE_CAP
) &&
1133 (mii_nway_lp_ability_reg
& LPA_PAUSE_ASYM
)) {
1134 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1135 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1137 /* Per the IEEE spec, at this point flow control
1138 * should be disabled.
1140 hw
->fc
.current_mode
= e1000_fc_none
;
1141 e_dbg("Flow Control = NONE.\n");
1144 /* Now we need to do one last check... If we auto-
1145 * negotiated to HALF DUPLEX, flow control should not be
1146 * enabled per IEEE 802.3 spec.
1148 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1150 e_dbg("Error getting link speed and duplex\n");
1154 if (duplex
== HALF_DUPLEX
)
1155 hw
->fc
.current_mode
= e1000_fc_none
;
1157 /* Now we call a subroutine to actually force the MAC
1158 * controller to use the correct flow control settings.
1160 ret_val
= e1000e_force_mac_fc(hw
);
1162 e_dbg("Error forcing flow control settings\n");
1167 /* Check for the case where we have SerDes media and auto-neg is
1168 * enabled. In this case, we need to check and see if Auto-Neg
1169 * has completed, and if so, how the PHY and link partner has
1170 * flow control configured.
1172 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
1174 /* Read the PCS_LSTS and check to see if AutoNeg
1177 pcs_status_reg
= er32(PCS_LSTAT
);
1179 if (!(pcs_status_reg
& E1000_PCS_LSTS_AN_COMPLETE
)) {
1180 e_dbg("PCS Auto Neg has not completed.\n");
1184 /* The AutoNeg process has completed, so we now need to
1185 * read both the Auto Negotiation Advertisement
1186 * Register (PCS_ANADV) and the Auto_Negotiation Base
1187 * Page Ability Register (PCS_LPAB) to determine how
1188 * flow control was negotiated.
1190 pcs_adv_reg
= er32(PCS_ANADV
);
1191 pcs_lp_ability_reg
= er32(PCS_LPAB
);
1193 /* Two bits in the Auto Negotiation Advertisement Register
1194 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1195 * Page Ability Register (PCS_LPAB) determine flow control
1196 * for both the PHY and the link partner. The following
1197 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1198 * 1999, describes these PAUSE resolution bits and how flow
1199 * control is determined based upon these settings.
1200 * NOTE: DC = Don't Care
1202 * LOCAL DEVICE | LINK PARTNER
1203 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1204 *-------|---------|-------|---------|--------------------
1205 * 0 | 0 | DC | DC | e1000_fc_none
1206 * 0 | 1 | 0 | DC | e1000_fc_none
1207 * 0 | 1 | 1 | 0 | e1000_fc_none
1208 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1209 * 1 | 0 | 0 | DC | e1000_fc_none
1210 * 1 | DC | 1 | DC | e1000_fc_full
1211 * 1 | 1 | 0 | 0 | e1000_fc_none
1212 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1214 * Are both PAUSE bits set to 1? If so, this implies
1215 * Symmetric Flow Control is enabled at both ends. The
1216 * ASM_DIR bits are irrelevant per the spec.
1218 * For Symmetric Flow Control:
1220 * LOCAL DEVICE | LINK PARTNER
1221 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1222 *-------|---------|-------|---------|--------------------
1223 * 1 | DC | 1 | DC | e1000_fc_full
1226 if ((pcs_adv_reg
& E1000_TXCW_PAUSE
) &&
1227 (pcs_lp_ability_reg
& E1000_TXCW_PAUSE
)) {
1228 /* Now we need to check if the user selected Rx ONLY
1229 * of pause frames. In this case, we had to advertise
1230 * FULL flow control because we could not advertise Rx
1231 * ONLY. Hence, we must now check to see if we need to
1232 * turn OFF the TRANSMISSION of PAUSE frames.
1234 if (hw
->fc
.requested_mode
== e1000_fc_full
) {
1235 hw
->fc
.current_mode
= e1000_fc_full
;
1236 e_dbg("Flow Control = FULL.\n");
1238 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1239 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1242 /* For receiving PAUSE frames ONLY.
1244 * LOCAL DEVICE | LINK PARTNER
1245 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1246 *-------|---------|-------|---------|--------------------
1247 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1249 else if (!(pcs_adv_reg
& E1000_TXCW_PAUSE
) &&
1250 (pcs_adv_reg
& E1000_TXCW_ASM_DIR
) &&
1251 (pcs_lp_ability_reg
& E1000_TXCW_PAUSE
) &&
1252 (pcs_lp_ability_reg
& E1000_TXCW_ASM_DIR
)) {
1253 hw
->fc
.current_mode
= e1000_fc_tx_pause
;
1254 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1256 /* For transmitting PAUSE frames ONLY.
1258 * LOCAL DEVICE | LINK PARTNER
1259 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1260 *-------|---------|-------|---------|--------------------
1261 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1263 else if ((pcs_adv_reg
& E1000_TXCW_PAUSE
) &&
1264 (pcs_adv_reg
& E1000_TXCW_ASM_DIR
) &&
1265 !(pcs_lp_ability_reg
& E1000_TXCW_PAUSE
) &&
1266 (pcs_lp_ability_reg
& E1000_TXCW_ASM_DIR
)) {
1267 hw
->fc
.current_mode
= e1000_fc_rx_pause
;
1268 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1270 /* Per the IEEE spec, at this point flow control
1271 * should be disabled.
1273 hw
->fc
.current_mode
= e1000_fc_none
;
1274 e_dbg("Flow Control = NONE.\n");
1277 /* Now we call a subroutine to actually force the MAC
1278 * controller to use the correct flow control settings.
1280 pcs_ctrl_reg
= er32(PCS_LCTL
);
1281 pcs_ctrl_reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1282 ew32(PCS_LCTL
, pcs_ctrl_reg
);
1284 ret_val
= e1000e_force_mac_fc(hw
);
1286 e_dbg("Error forcing flow control settings\n");
1295 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1296 * @hw: pointer to the HW structure
1297 * @speed: stores the current speed
1298 * @duplex: stores the current duplex
1300 * Read the status register for the current speed/duplex and store the current
1301 * speed and duplex for copper connections.
1303 s32
e1000e_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
,
1308 status
= er32(STATUS
);
1309 if (status
& E1000_STATUS_SPEED_1000
)
1310 *speed
= SPEED_1000
;
1311 else if (status
& E1000_STATUS_SPEED_100
)
1316 if (status
& E1000_STATUS_FD
)
1317 *duplex
= FULL_DUPLEX
;
1319 *duplex
= HALF_DUPLEX
;
1321 e_dbg("%u Mbps, %s Duplex\n",
1322 *speed
== SPEED_1000
? 1000 : *speed
== SPEED_100
? 100 : 10,
1323 *duplex
== FULL_DUPLEX
? "Full" : "Half");
1329 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1330 * @hw: pointer to the HW structure
1331 * @speed: stores the current speed
1332 * @duplex: stores the current duplex
1334 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1335 * for fiber/serdes links.
1337 s32
e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1338 *hw
, u16
*speed
, u16
*duplex
)
1340 *speed
= SPEED_1000
;
1341 *duplex
= FULL_DUPLEX
;
1347 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1348 * @hw: pointer to the HW structure
1350 * Acquire the HW semaphore to access the PHY or NVM
1352 s32
e1000e_get_hw_semaphore(struct e1000_hw
*hw
)
1355 s32 timeout
= hw
->nvm
.word_size
+ 1;
1358 /* Get the SW semaphore */
1359 while (i
< timeout
) {
1361 if (!(swsm
& E1000_SWSM_SMBI
))
1369 e_dbg("Driver can't access device - SMBI bit is set.\n");
1370 return -E1000_ERR_NVM
;
1373 /* Get the FW semaphore. */
1374 for (i
= 0; i
< timeout
; i
++) {
1376 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1378 /* Semaphore acquired if bit latched */
1379 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
1386 /* Release semaphores */
1387 e1000e_put_hw_semaphore(hw
);
1388 e_dbg("Driver can't access the NVM\n");
1389 return -E1000_ERR_NVM
;
1396 * e1000e_put_hw_semaphore - Release hardware semaphore
1397 * @hw: pointer to the HW structure
1399 * Release hardware semaphore used to access the PHY or NVM
1401 void e1000e_put_hw_semaphore(struct e1000_hw
*hw
)
1406 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1411 * e1000e_get_auto_rd_done - Check for auto read completion
1412 * @hw: pointer to the HW structure
1414 * Check EEPROM for Auto Read done bit.
1416 s32
e1000e_get_auto_rd_done(struct e1000_hw
*hw
)
1420 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1421 if (er32(EECD
) & E1000_EECD_AUTO_RD
)
1423 usleep_range(1000, 2000);
1427 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1428 e_dbg("Auto read by HW from NVM has not completed.\n");
1429 return -E1000_ERR_RESET
;
1436 * e1000e_valid_led_default - Verify a valid default LED config
1437 * @hw: pointer to the HW structure
1438 * @data: pointer to the NVM (EEPROM)
1440 * Read the EEPROM for the current default LED configuration. If the
1441 * LED configuration is not valid, set to a valid LED configuration.
1443 s32
e1000e_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1447 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1449 e_dbg("NVM Read Error\n");
1453 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1454 *data
= ID_LED_DEFAULT
;
1460 * e1000e_id_led_init_generic -
1461 * @hw: pointer to the HW structure
1464 s32
e1000e_id_led_init_generic(struct e1000_hw
*hw
)
1466 struct e1000_mac_info
*mac
= &hw
->mac
;
1468 const u32 ledctl_mask
= 0x000000FF;
1469 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1470 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1472 const u16 led_mask
= 0x0F;
1474 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
1478 mac
->ledctl_default
= er32(LEDCTL
);
1479 mac
->ledctl_mode1
= mac
->ledctl_default
;
1480 mac
->ledctl_mode2
= mac
->ledctl_default
;
1482 for (i
= 0; i
< 4; i
++) {
1483 temp
= (data
>> (i
<< 2)) & led_mask
;
1485 case ID_LED_ON1_DEF2
:
1486 case ID_LED_ON1_ON2
:
1487 case ID_LED_ON1_OFF2
:
1488 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1489 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1491 case ID_LED_OFF1_DEF2
:
1492 case ID_LED_OFF1_ON2
:
1493 case ID_LED_OFF1_OFF2
:
1494 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1495 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1502 case ID_LED_DEF1_ON2
:
1503 case ID_LED_ON1_ON2
:
1504 case ID_LED_OFF1_ON2
:
1505 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1506 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1508 case ID_LED_DEF1_OFF2
:
1509 case ID_LED_ON1_OFF2
:
1510 case ID_LED_OFF1_OFF2
:
1511 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1512 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1524 * e1000e_setup_led_generic - Configures SW controllable LED
1525 * @hw: pointer to the HW structure
1527 * This prepares the SW controllable LED for use and saves the current state
1528 * of the LED so it can be later restored.
1530 s32
e1000e_setup_led_generic(struct e1000_hw
*hw
)
1534 if (hw
->mac
.ops
.setup_led
!= e1000e_setup_led_generic
)
1535 return -E1000_ERR_CONFIG
;
1537 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1538 ledctl
= er32(LEDCTL
);
1539 hw
->mac
.ledctl_default
= ledctl
;
1541 ledctl
&= ~(E1000_LEDCTL_LED0_IVRT
| E1000_LEDCTL_LED0_BLINK
|
1542 E1000_LEDCTL_LED0_MODE_MASK
);
1543 ledctl
|= (E1000_LEDCTL_MODE_LED_OFF
<<
1544 E1000_LEDCTL_LED0_MODE_SHIFT
);
1545 ew32(LEDCTL
, ledctl
);
1546 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1547 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1554 * e1000e_cleanup_led_generic - Set LED config to default operation
1555 * @hw: pointer to the HW structure
1557 * Remove the current LED configuration and set the LED configuration
1558 * to the default value, saved from the EEPROM.
1560 s32
e1000e_cleanup_led_generic(struct e1000_hw
*hw
)
1562 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
1567 * e1000e_blink_led_generic - Blink LED
1568 * @hw: pointer to the HW structure
1570 * Blink the LEDs which are set to be on.
1572 s32
e1000e_blink_led_generic(struct e1000_hw
*hw
)
1574 u32 ledctl_blink
= 0;
1577 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1578 /* always blink LED0 for PCI-E fiber */
1579 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1580 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1582 /* Set the blink bit for each LED that's "on" (0x0E)
1583 * (or "off" if inverted) in ledctl_mode2. The blink
1584 * logic in hardware only works when mode is set to "on"
1585 * so it must be changed accordingly when the mode is
1586 * "off" and inverted.
1588 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1589 for (i
= 0; i
< 32; i
+= 8) {
1590 u32 mode
= (hw
->mac
.ledctl_mode2
>> i
) &
1591 E1000_LEDCTL_LED0_MODE_MASK
;
1592 u32 led_default
= hw
->mac
.ledctl_default
>> i
;
1594 if ((!(led_default
& E1000_LEDCTL_LED0_IVRT
) &&
1595 (mode
== E1000_LEDCTL_MODE_LED_ON
)) ||
1596 ((led_default
& E1000_LEDCTL_LED0_IVRT
) &&
1597 (mode
== E1000_LEDCTL_MODE_LED_OFF
))) {
1599 ~(E1000_LEDCTL_LED0_MODE_MASK
<< i
);
1600 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
|
1601 E1000_LEDCTL_MODE_LED_ON
) << i
;
1606 ew32(LEDCTL
, ledctl_blink
);
1612 * e1000e_led_on_generic - Turn LED on
1613 * @hw: pointer to the HW structure
1617 s32
e1000e_led_on_generic(struct e1000_hw
*hw
)
1621 switch (hw
->phy
.media_type
) {
1622 case e1000_media_type_fiber
:
1624 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1625 ctrl
|= E1000_CTRL_SWDPIO0
;
1628 case e1000_media_type_copper
:
1629 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
1639 * e1000e_led_off_generic - Turn LED off
1640 * @hw: pointer to the HW structure
1644 s32
e1000e_led_off_generic(struct e1000_hw
*hw
)
1648 switch (hw
->phy
.media_type
) {
1649 case e1000_media_type_fiber
:
1651 ctrl
|= E1000_CTRL_SWDPIN0
;
1652 ctrl
|= E1000_CTRL_SWDPIO0
;
1655 case e1000_media_type_copper
:
1656 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
1666 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1667 * @hw: pointer to the HW structure
1668 * @no_snoop: bitmap of snoop events
1670 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1672 void e1000e_set_pcie_no_snoop(struct e1000_hw
*hw
, u32 no_snoop
)
1678 gcr
&= ~(PCIE_NO_SNOOP_ALL
);
1685 * e1000e_disable_pcie_master - Disables PCI-express master access
1686 * @hw: pointer to the HW structure
1688 * Returns 0 if successful, else returns -10
1689 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1690 * the master requests to be disabled.
1692 * Disables PCI-Express master access and verifies there are no pending
1695 s32
e1000e_disable_pcie_master(struct e1000_hw
*hw
)
1698 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1701 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1705 if (!(er32(STATUS
) & E1000_STATUS_GIO_MASTER_ENABLE
))
1707 usleep_range(100, 200);
1712 e_dbg("Master requests are pending.\n");
1713 return -E1000_ERR_MASTER_REQUESTS_PENDING
;
1720 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1721 * @hw: pointer to the HW structure
1723 * Reset the Adaptive Interframe Spacing throttle to default values.
1725 void e1000e_reset_adaptive(struct e1000_hw
*hw
)
1727 struct e1000_mac_info
*mac
= &hw
->mac
;
1729 if (!mac
->adaptive_ifs
) {
1730 e_dbg("Not in Adaptive IFS mode!\n");
1734 mac
->current_ifs_val
= 0;
1735 mac
->ifs_min_val
= IFS_MIN
;
1736 mac
->ifs_max_val
= IFS_MAX
;
1737 mac
->ifs_step_size
= IFS_STEP
;
1738 mac
->ifs_ratio
= IFS_RATIO
;
1740 mac
->in_ifs_mode
= false;
1745 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1746 * @hw: pointer to the HW structure
1748 * Update the Adaptive Interframe Spacing Throttle value based on the
1749 * time between transmitted packets and time between collisions.
1751 void e1000e_update_adaptive(struct e1000_hw
*hw
)
1753 struct e1000_mac_info
*mac
= &hw
->mac
;
1755 if (!mac
->adaptive_ifs
) {
1756 e_dbg("Not in Adaptive IFS mode!\n");
1760 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1761 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1762 mac
->in_ifs_mode
= true;
1763 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1764 if (!mac
->current_ifs_val
)
1765 mac
->current_ifs_val
= mac
->ifs_min_val
;
1767 mac
->current_ifs_val
+=
1769 ew32(AIT
, mac
->current_ifs_val
);
1773 if (mac
->in_ifs_mode
&&
1774 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1775 mac
->current_ifs_val
= 0;
1776 mac
->in_ifs_mode
= false;