1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
4 #include <linux/bpf_trace.h>
5 #include <linux/net/intel/libie/rx.h>
6 #include <linux/prefetch.h>
7 #include <linux/sctp.h>
10 #include "i40e_txrx_common.h"
11 #include "i40e_trace.h"
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
22 static void i40e_fdir(struct i40e_ring
*tx_ring
,
23 struct i40e_fdir_filter
*fdata
, bool add
)
25 struct i40e_filter_program_desc
*fdir_desc
;
26 struct i40e_pf
*pf
= tx_ring
->vsi
->back
;
27 u32 flex_ptype
, dtype_cmd
, vsi_id
;
30 /* grab the next descriptor */
31 i
= tx_ring
->next_to_use
;
32 fdir_desc
= I40E_TX_FDIRDESC(tx_ring
, i
);
35 tx_ring
->next_to_use
= (i
< tx_ring
->count
) ? i
: 0;
37 flex_ptype
= FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK
, fdata
->q_index
);
39 flex_ptype
|= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK
,
42 flex_ptype
|= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK
, fdata
->pctype
);
44 /* Use LAN VSI Id if not programmed by user */
45 vsi_id
= fdata
->dest_vsi
? : i40e_pf_get_main_vsi(pf
)->id
;
46 flex_ptype
|= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK
, vsi_id
);
48 dtype_cmd
= I40E_TX_DESC_DTYPE_FILTER_PROG
;
51 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE
<<
52 I40E_TXD_FLTR_QW1_PCMD_SHIFT
:
53 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE
<<
54 I40E_TXD_FLTR_QW1_PCMD_SHIFT
;
56 dtype_cmd
|= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK
, fdata
->dest_ctl
);
58 dtype_cmd
|= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK
,
61 if (fdata
->cnt_index
) {
62 dtype_cmd
|= I40E_TXD_FLTR_QW1_CNT_ENA_MASK
;
63 dtype_cmd
|= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK
,
67 fdir_desc
->qindex_flex_ptype_vsi
= cpu_to_le32(flex_ptype
);
68 fdir_desc
->rsvd
= cpu_to_le32(0);
69 fdir_desc
->dtype_cmd_cntindex
= cpu_to_le32(dtype_cmd
);
70 fdir_desc
->fd_id
= cpu_to_le32(fdata
->fd_id
);
73 #define I40E_FD_CLEAN_DELAY 10
75 * i40e_program_fdir_filter - Program a Flow Director filter
76 * @fdir_data: Packet data that will be filter parameters
77 * @raw_packet: the pre-allocated packet buffer for FDir
79 * @add: True for add/update, False for remove
81 static int i40e_program_fdir_filter(struct i40e_fdir_filter
*fdir_data
,
82 u8
*raw_packet
, struct i40e_pf
*pf
,
85 struct i40e_tx_buffer
*tx_buf
, *first
;
86 struct i40e_tx_desc
*tx_desc
;
87 struct i40e_ring
*tx_ring
;
94 /* find existing FDIR VSI */
95 vsi
= i40e_find_vsi_by_type(pf
, I40E_VSI_FDIR
);
99 tx_ring
= vsi
->tx_rings
[0];
102 /* we need two descriptors to add/del a filter and we can wait */
103 for (i
= I40E_FD_CLEAN_DELAY
; I40E_DESC_UNUSED(tx_ring
) < 2; i
--) {
106 msleep_interruptible(1);
109 dma
= dma_map_single(dev
, raw_packet
,
110 I40E_FDIR_MAX_RAW_PACKET_SIZE
, DMA_TO_DEVICE
);
111 if (dma_mapping_error(dev
, dma
))
114 /* grab the next descriptor */
115 i
= tx_ring
->next_to_use
;
116 first
= &tx_ring
->tx_bi
[i
];
117 i40e_fdir(tx_ring
, fdir_data
, add
);
119 /* Now program a dummy descriptor */
120 i
= tx_ring
->next_to_use
;
121 tx_desc
= I40E_TX_DESC(tx_ring
, i
);
122 tx_buf
= &tx_ring
->tx_bi
[i
];
124 tx_ring
->next_to_use
= ((i
+ 1) < tx_ring
->count
) ? i
+ 1 : 0;
126 memset(tx_buf
, 0, sizeof(struct i40e_tx_buffer
));
128 /* record length, and DMA address */
129 dma_unmap_len_set(tx_buf
, len
, I40E_FDIR_MAX_RAW_PACKET_SIZE
);
130 dma_unmap_addr_set(tx_buf
, dma
, dma
);
132 tx_desc
->buffer_addr
= cpu_to_le64(dma
);
133 td_cmd
= I40E_TXD_CMD
| I40E_TX_DESC_CMD_DUMMY
;
135 tx_buf
->tx_flags
= I40E_TX_FLAGS_FD_SB
;
136 tx_buf
->raw_buf
= (void *)raw_packet
;
138 tx_desc
->cmd_type_offset_bsz
=
139 build_ctob(td_cmd
, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE
, 0);
141 /* Force memory writes to complete before letting h/w
142 * know there are new descriptors to fetch.
146 /* Mark the data descriptor to be watched */
147 first
->next_to_watch
= tx_desc
;
149 writel(tx_ring
->next_to_use
, tx_ring
->tail
);
157 * i40e_create_dummy_packet - Constructs dummy packet for HW
158 * @dummy_packet: preallocated space for dummy packet
159 * @ipv4: is layer 3 packet of version 4 or 6
160 * @l4proto: next level protocol used in data portion of l3
163 * Returns address of layer 4 protocol dummy packet.
165 static char *i40e_create_dummy_packet(u8
*dummy_packet
, bool ipv4
, u8 l4proto
,
166 struct i40e_fdir_filter
*data
)
168 bool is_vlan
= !!data
->vlan_tag
;
169 struct vlan_hdr vlan
= {};
170 struct ipv6hdr ipv6
= {};
171 struct ethhdr eth
= {};
172 struct iphdr ip
= {};
176 eth
.h_proto
= cpu_to_be16(ETH_P_IP
);
177 ip
.protocol
= l4proto
;
181 ip
.daddr
= data
->dst_ip
;
182 ip
.saddr
= data
->src_ip
;
184 eth
.h_proto
= cpu_to_be16(ETH_P_IPV6
);
185 ipv6
.nexthdr
= l4proto
;
188 memcpy(&ipv6
.saddr
.in6_u
.u6_addr32
, data
->src_ip6
,
190 memcpy(&ipv6
.daddr
.in6_u
.u6_addr32
, data
->dst_ip6
,
195 vlan
.h_vlan_TCI
= data
->vlan_tag
;
196 vlan
.h_vlan_encapsulated_proto
= eth
.h_proto
;
197 eth
.h_proto
= data
->vlan_etype
;
201 memcpy(tmp
, ð
, sizeof(eth
));
205 memcpy(tmp
, &vlan
, sizeof(vlan
));
210 memcpy(tmp
, &ip
, sizeof(ip
));
213 memcpy(tmp
, &ipv6
, sizeof(ipv6
));
221 * i40e_create_dummy_udp_packet - helper function to create UDP packet
222 * @raw_packet: preallocated space for dummy packet
223 * @ipv4: is layer 3 packet of version 4 or 6
224 * @l4proto: next level protocol used in data portion of l3
227 * Helper function to populate udp fields.
229 static void i40e_create_dummy_udp_packet(u8
*raw_packet
, bool ipv4
, u8 l4proto
,
230 struct i40e_fdir_filter
*data
)
235 tmp
= i40e_create_dummy_packet(raw_packet
, ipv4
, IPPROTO_UDP
, data
);
236 udp
= (struct udphdr
*)(tmp
);
237 udp
->dest
= data
->dst_port
;
238 udp
->source
= data
->src_port
;
242 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
243 * @raw_packet: preallocated space for dummy packet
244 * @ipv4: is layer 3 packet of version 4 or 6
245 * @l4proto: next level protocol used in data portion of l3
248 * Helper function to populate tcp fields.
250 static void i40e_create_dummy_tcp_packet(u8
*raw_packet
, bool ipv4
, u8 l4proto
,
251 struct i40e_fdir_filter
*data
)
255 /* Dummy tcp packet */
256 static const char tcp_packet
[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
257 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
259 tmp
= i40e_create_dummy_packet(raw_packet
, ipv4
, IPPROTO_TCP
, data
);
261 tcp
= (struct tcphdr
*)tmp
;
262 memcpy(tcp
, tcp_packet
, sizeof(tcp_packet
));
263 tcp
->dest
= data
->dst_port
;
264 tcp
->source
= data
->src_port
;
268 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
269 * @raw_packet: preallocated space for dummy packet
270 * @ipv4: is layer 3 packet of version 4 or 6
271 * @l4proto: next level protocol used in data portion of l3
274 * Helper function to populate sctp fields.
276 static void i40e_create_dummy_sctp_packet(u8
*raw_packet
, bool ipv4
,
278 struct i40e_fdir_filter
*data
)
280 struct sctphdr
*sctp
;
283 tmp
= i40e_create_dummy_packet(raw_packet
, ipv4
, IPPROTO_SCTP
, data
);
285 sctp
= (struct sctphdr
*)tmp
;
286 sctp
->dest
= data
->dst_port
;
287 sctp
->source
= data
->src_port
;
291 * i40e_prepare_fdir_filter - Prepare and program fdir filter
292 * @pf: physical function to attach filter to
293 * @fd_data: filter data
294 * @add: add or delete filter
295 * @packet_addr: address of dummy packet, used in filtering
296 * @payload_offset: offset from dummy packet address to user defined data
297 * @pctype: Packet type for which filter is used
299 * Helper function to offset data of dummy packet, program it and
302 static int i40e_prepare_fdir_filter(struct i40e_pf
*pf
,
303 struct i40e_fdir_filter
*fd_data
,
304 bool add
, char *packet_addr
,
305 int payload_offset
, u8 pctype
)
309 if (fd_data
->flex_filter
) {
311 __be16 pattern
= fd_data
->flex_word
;
312 u16 off
= fd_data
->flex_offset
;
314 payload
= packet_addr
+ payload_offset
;
316 /* If user provided vlan, offset payload by vlan header length */
317 if (!!fd_data
->vlan_tag
)
318 payload
+= VLAN_HLEN
;
320 *((__force __be16
*)(payload
+ off
)) = pattern
;
323 fd_data
->pctype
= pctype
;
324 ret
= i40e_program_fdir_filter(fd_data
, packet_addr
, pf
, add
);
326 dev_info(&pf
->pdev
->dev
,
327 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
328 fd_data
->pctype
, fd_data
->fd_id
, ret
);
329 /* Free the packet buffer since it wasn't added to the ring */
331 } else if (I40E_DEBUG_FD
& pf
->hw
.debug_mask
) {
333 dev_info(&pf
->pdev
->dev
,
334 "Filter OK for PCTYPE %d loc = %d\n",
335 fd_data
->pctype
, fd_data
->fd_id
);
337 dev_info(&pf
->pdev
->dev
,
338 "Filter deleted for PCTYPE %d loc = %d\n",
339 fd_data
->pctype
, fd_data
->fd_id
);
346 * i40e_change_filter_num - Prepare and program fdir filter
347 * @ipv4: is layer 3 packet of version 4 or 6
348 * @add: add or delete filter
349 * @ipv4_filter_num: field to update
350 * @ipv6_filter_num: field to update
352 * Update filter number field for pf.
354 static void i40e_change_filter_num(bool ipv4
, bool add
, u16
*ipv4_filter_num
,
355 u16
*ipv6_filter_num
)
359 (*ipv4_filter_num
)++;
361 (*ipv6_filter_num
)++;
364 (*ipv4_filter_num
)--;
366 (*ipv6_filter_num
)--;
370 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
371 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
373 * i40e_add_del_fdir_udp - Add/Remove UDP filters
374 * @vsi: pointer to the targeted VSI
375 * @fd_data: the flow director data required for the FDir descriptor
376 * @add: true adds a filter, false removes it
377 * @ipv4: true is v4, false is v6
379 * Returns 0 if the filters were successfully added or removed
381 static int i40e_add_del_fdir_udp(struct i40e_vsi
*vsi
,
382 struct i40e_fdir_filter
*fd_data
,
386 struct i40e_pf
*pf
= vsi
->back
;
390 raw_packet
= kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE
, GFP_KERNEL
);
394 i40e_create_dummy_udp_packet(raw_packet
, ipv4
, IPPROTO_UDP
, fd_data
);
397 ret
= i40e_prepare_fdir_filter
398 (pf
, fd_data
, add
, raw_packet
,
399 I40E_UDPIP_DUMMY_PACKET_LEN
,
400 I40E_FILTER_PCTYPE_NONF_IPV4_UDP
);
402 ret
= i40e_prepare_fdir_filter
403 (pf
, fd_data
, add
, raw_packet
,
404 I40E_UDPIP6_DUMMY_PACKET_LEN
,
405 I40E_FILTER_PCTYPE_NONF_IPV6_UDP
);
412 i40e_change_filter_num(ipv4
, add
, &pf
->fd_udp4_filter_cnt
,
413 &pf
->fd_udp6_filter_cnt
);
418 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
419 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
421 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
422 * @vsi: pointer to the targeted VSI
423 * @fd_data: the flow director data required for the FDir descriptor
424 * @add: true adds a filter, false removes it
425 * @ipv4: true is v4, false is v6
427 * Returns 0 if the filters were successfully added or removed
429 static int i40e_add_del_fdir_tcp(struct i40e_vsi
*vsi
,
430 struct i40e_fdir_filter
*fd_data
,
434 struct i40e_pf
*pf
= vsi
->back
;
438 raw_packet
= kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE
, GFP_KERNEL
);
442 i40e_create_dummy_tcp_packet(raw_packet
, ipv4
, IPPROTO_TCP
, fd_data
);
444 ret
= i40e_prepare_fdir_filter
445 (pf
, fd_data
, add
, raw_packet
,
446 I40E_TCPIP_DUMMY_PACKET_LEN
,
447 I40E_FILTER_PCTYPE_NONF_IPV4_TCP
);
449 ret
= i40e_prepare_fdir_filter
450 (pf
, fd_data
, add
, raw_packet
,
451 I40E_TCPIP6_DUMMY_PACKET_LEN
,
452 I40E_FILTER_PCTYPE_NONF_IPV6_TCP
);
459 i40e_change_filter_num(ipv4
, add
, &pf
->fd_tcp4_filter_cnt
,
460 &pf
->fd_tcp6_filter_cnt
);
463 if (test_bit(I40E_FLAG_FD_ATR_ENA
, pf
->flags
) &&
464 I40E_DEBUG_FD
& pf
->hw
.debug_mask
)
465 dev_info(&pf
->pdev
->dev
, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
466 set_bit(__I40E_FD_ATR_AUTO_DISABLED
, pf
->state
);
471 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
472 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
474 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
475 * a specific flow spec
476 * @vsi: pointer to the targeted VSI
477 * @fd_data: the flow director data required for the FDir descriptor
478 * @add: true adds a filter, false removes it
479 * @ipv4: true is v4, false is v6
481 * Returns 0 if the filters were successfully added or removed
483 static int i40e_add_del_fdir_sctp(struct i40e_vsi
*vsi
,
484 struct i40e_fdir_filter
*fd_data
,
488 struct i40e_pf
*pf
= vsi
->back
;
492 raw_packet
= kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE
, GFP_KERNEL
);
496 i40e_create_dummy_sctp_packet(raw_packet
, ipv4
, IPPROTO_SCTP
, fd_data
);
499 ret
= i40e_prepare_fdir_filter
500 (pf
, fd_data
, add
, raw_packet
,
501 I40E_SCTPIP_DUMMY_PACKET_LEN
,
502 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP
);
504 ret
= i40e_prepare_fdir_filter
505 (pf
, fd_data
, add
, raw_packet
,
506 I40E_SCTPIP6_DUMMY_PACKET_LEN
,
507 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP
);
514 i40e_change_filter_num(ipv4
, add
, &pf
->fd_sctp4_filter_cnt
,
515 &pf
->fd_sctp6_filter_cnt
);
520 #define I40E_IP_DUMMY_PACKET_LEN 34
521 #define I40E_IP6_DUMMY_PACKET_LEN 54
523 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
524 * a specific flow spec
525 * @vsi: pointer to the targeted VSI
526 * @fd_data: the flow director data required for the FDir descriptor
527 * @add: true adds a filter, false removes it
528 * @ipv4: true is v4, false is v6
530 * Returns 0 if the filters were successfully added or removed
532 static int i40e_add_del_fdir_ip(struct i40e_vsi
*vsi
,
533 struct i40e_fdir_filter
*fd_data
,
537 struct i40e_pf
*pf
= vsi
->back
;
546 iter_start
= I40E_FILTER_PCTYPE_NONF_IPV4_OTHER
;
547 iter_end
= I40E_FILTER_PCTYPE_FRAG_IPV4
;
549 iter_start
= I40E_FILTER_PCTYPE_NONF_IPV6_OTHER
;
550 iter_end
= I40E_FILTER_PCTYPE_FRAG_IPV6
;
553 for (i
= iter_start
; i
<= iter_end
; i
++) {
554 raw_packet
= kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE
, GFP_KERNEL
);
558 /* IPv6 no header option differs from IPv4 */
559 (void)i40e_create_dummy_packet
560 (raw_packet
, ipv4
, (ipv4
) ? IPPROTO_IP
: IPPROTO_NONE
,
563 payload_offset
= (ipv4
) ? I40E_IP_DUMMY_PACKET_LEN
:
564 I40E_IP6_DUMMY_PACKET_LEN
;
565 ret
= i40e_prepare_fdir_filter(pf
, fd_data
, add
, raw_packet
,
571 i40e_change_filter_num(ipv4
, add
, &pf
->fd_ip4_filter_cnt
,
572 &pf
->fd_ip6_filter_cnt
);
581 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
582 * @vsi: pointer to the targeted VSI
583 * @input: filter to add or delete
584 * @add: true adds a filter, false removes it
587 int i40e_add_del_fdir(struct i40e_vsi
*vsi
,
588 struct i40e_fdir_filter
*input
, bool add
)
590 enum ip_ver
{ ipv6
= 0, ipv4
= 1 };
591 struct i40e_pf
*pf
= vsi
->back
;
594 switch (input
->flow_type
& ~FLOW_EXT
) {
596 ret
= i40e_add_del_fdir_tcp(vsi
, input
, add
, ipv4
);
599 ret
= i40e_add_del_fdir_udp(vsi
, input
, add
, ipv4
);
602 ret
= i40e_add_del_fdir_sctp(vsi
, input
, add
, ipv4
);
605 ret
= i40e_add_del_fdir_tcp(vsi
, input
, add
, ipv6
);
608 ret
= i40e_add_del_fdir_udp(vsi
, input
, add
, ipv6
);
611 ret
= i40e_add_del_fdir_sctp(vsi
, input
, add
, ipv6
);
614 switch (input
->ipl4_proto
) {
616 ret
= i40e_add_del_fdir_tcp(vsi
, input
, add
, ipv4
);
619 ret
= i40e_add_del_fdir_udp(vsi
, input
, add
, ipv4
);
622 ret
= i40e_add_del_fdir_sctp(vsi
, input
, add
, ipv4
);
625 ret
= i40e_add_del_fdir_ip(vsi
, input
, add
, ipv4
);
628 /* We cannot support masking based on protocol */
629 dev_info(&pf
->pdev
->dev
, "Unsupported IPv4 protocol 0x%02x\n",
635 switch (input
->ipl4_proto
) {
637 ret
= i40e_add_del_fdir_tcp(vsi
, input
, add
, ipv6
);
640 ret
= i40e_add_del_fdir_udp(vsi
, input
, add
, ipv6
);
643 ret
= i40e_add_del_fdir_sctp(vsi
, input
, add
, ipv6
);
646 ret
= i40e_add_del_fdir_ip(vsi
, input
, add
, ipv6
);
649 /* We cannot support masking based on protocol */
650 dev_info(&pf
->pdev
->dev
, "Unsupported IPv6 protocol 0x%02x\n",
656 dev_info(&pf
->pdev
->dev
, "Unsupported flow type 0x%02x\n",
661 /* The buffer allocated here will be normally be freed by
662 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
663 * completion. In the event of an error adding the buffer to the FDIR
664 * ring, it will immediately be freed. It may also be freed by
665 * i40e_clean_tx_ring() when closing the VSI.
671 * i40e_fd_handle_status - check the Programming Status for FD
672 * @rx_ring: the Rx ring for this descriptor
673 * @qword0_raw: qword0
674 * @qword1: qword1 after le_to_cpu
675 * @prog_id: the id originally used for programming
677 * This is used to verify if the FD programming or invalidation
678 * requested by SW to the HW is successful or not and take actions accordingly.
680 static void i40e_fd_handle_status(struct i40e_ring
*rx_ring
, u64 qword0_raw
,
681 u64 qword1
, u8 prog_id
)
683 struct i40e_pf
*pf
= rx_ring
->vsi
->back
;
684 struct pci_dev
*pdev
= pf
->pdev
;
685 struct i40e_16b_rx_wb_qw0
*qw0
;
686 u32 fcnt_prog
, fcnt_avail
;
689 qw0
= (struct i40e_16b_rx_wb_qw0
*)&qword0_raw
;
690 error
= FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK
, qword1
);
692 if (error
== BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT
)) {
693 pf
->fd_inv
= le32_to_cpu(qw0
->hi_dword
.fd_id
);
694 if (qw0
->hi_dword
.fd_id
!= 0 ||
695 (I40E_DEBUG_FD
& pf
->hw
.debug_mask
))
696 dev_warn(&pdev
->dev
, "ntuple filter loc = %d, could not be added\n",
699 /* Check if the programming error is for ATR.
700 * If so, auto disable ATR and set a state for
701 * flush in progress. Next time we come here if flush is in
702 * progress do nothing, once flush is complete the state will
705 if (test_bit(__I40E_FD_FLUSH_REQUESTED
, pf
->state
))
709 /* store the current atr filter count */
710 pf
->fd_atr_cnt
= i40e_get_current_atr_cnt(pf
);
712 if (qw0
->hi_dword
.fd_id
== 0 &&
713 test_bit(__I40E_FD_SB_AUTO_DISABLED
, pf
->state
)) {
714 /* These set_bit() calls aren't atomic with the
715 * test_bit() here, but worse case we potentially
716 * disable ATR and queue a flush right after SB
717 * support is re-enabled. That shouldn't cause an
720 set_bit(__I40E_FD_ATR_AUTO_DISABLED
, pf
->state
);
721 set_bit(__I40E_FD_FLUSH_REQUESTED
, pf
->state
);
724 /* filter programming failed most likely due to table full */
725 fcnt_prog
= i40e_get_global_fd_count(pf
);
726 fcnt_avail
= pf
->fdir_pf_filter_count
;
727 /* If ATR is running fcnt_prog can quickly change,
728 * if we are very close to full, it makes sense to disable
729 * FD ATR/SB and then re-enable it when there is room.
731 if (fcnt_prog
>= (fcnt_avail
- I40E_FDIR_BUFFER_FULL_MARGIN
)) {
732 if (test_bit(I40E_FLAG_FD_SB_ENA
, pf
->flags
) &&
733 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED
,
735 if (I40E_DEBUG_FD
& pf
->hw
.debug_mask
)
736 dev_warn(&pdev
->dev
, "FD filter space full, new ntuple rules will not be added\n");
738 } else if (error
== BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT
)) {
739 if (I40E_DEBUG_FD
& pf
->hw
.debug_mask
)
740 dev_info(&pdev
->dev
, "ntuple filter fd_id = %d, could not be removed\n",
741 qw0
->hi_dword
.fd_id
);
746 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
747 * @ring: the ring that owns the buffer
748 * @tx_buffer: the buffer to free
750 static void i40e_unmap_and_free_tx_resource(struct i40e_ring
*ring
,
751 struct i40e_tx_buffer
*tx_buffer
)
753 if (tx_buffer
->skb
) {
754 if (tx_buffer
->tx_flags
& I40E_TX_FLAGS_FD_SB
)
755 kfree(tx_buffer
->raw_buf
);
756 else if (ring_is_xdp(ring
))
757 xdp_return_frame(tx_buffer
->xdpf
);
759 dev_kfree_skb_any(tx_buffer
->skb
);
760 if (dma_unmap_len(tx_buffer
, len
))
761 dma_unmap_single(ring
->dev
,
762 dma_unmap_addr(tx_buffer
, dma
),
763 dma_unmap_len(tx_buffer
, len
),
765 } else if (dma_unmap_len(tx_buffer
, len
)) {
766 dma_unmap_page(ring
->dev
,
767 dma_unmap_addr(tx_buffer
, dma
),
768 dma_unmap_len(tx_buffer
, len
),
772 tx_buffer
->next_to_watch
= NULL
;
773 tx_buffer
->skb
= NULL
;
774 dma_unmap_len_set(tx_buffer
, len
, 0);
775 /* tx_buffer must be completely set up in the transmit path */
779 * i40e_clean_tx_ring - Free any empty Tx buffers
780 * @tx_ring: ring to be cleaned
782 void i40e_clean_tx_ring(struct i40e_ring
*tx_ring
)
784 unsigned long bi_size
;
787 if (ring_is_xdp(tx_ring
) && tx_ring
->xsk_pool
) {
788 i40e_xsk_clean_tx_ring(tx_ring
);
790 /* ring already cleared, nothing to do */
794 /* Free all the Tx ring sk_buffs */
795 for (i
= 0; i
< tx_ring
->count
; i
++)
796 i40e_unmap_and_free_tx_resource(tx_ring
,
800 bi_size
= sizeof(struct i40e_tx_buffer
) * tx_ring
->count
;
801 memset(tx_ring
->tx_bi
, 0, bi_size
);
803 /* Zero out the descriptor ring */
804 memset(tx_ring
->desc
, 0, tx_ring
->size
);
806 tx_ring
->next_to_use
= 0;
807 tx_ring
->next_to_clean
= 0;
809 if (!tx_ring
->netdev
)
812 /* cleanup Tx queue statistics */
813 netdev_tx_reset_queue(txring_txq(tx_ring
));
817 * i40e_free_tx_resources - Free Tx resources per queue
818 * @tx_ring: Tx descriptor ring for a specific queue
820 * Free all transmit software resources
822 void i40e_free_tx_resources(struct i40e_ring
*tx_ring
)
824 i40e_clean_tx_ring(tx_ring
);
825 kfree(tx_ring
->tx_bi
);
826 tx_ring
->tx_bi
= NULL
;
829 dma_free_coherent(tx_ring
->dev
, tx_ring
->size
,
830 tx_ring
->desc
, tx_ring
->dma
);
831 tx_ring
->desc
= NULL
;
836 * i40e_get_tx_pending - how many tx descriptors not processed
837 * @ring: the ring of descriptors
838 * @in_sw: use SW variables
840 * Since there is no access to the ring head register
841 * in XL710, we need to use our local copies
843 u32
i40e_get_tx_pending(struct i40e_ring
*ring
, bool in_sw
)
848 head
= i40e_get_head(ring
);
849 tail
= readl(ring
->tail
);
851 head
= ring
->next_to_clean
;
852 tail
= ring
->next_to_use
;
856 return (head
< tail
) ?
857 tail
- head
: (tail
+ ring
->count
- head
);
863 * i40e_detect_recover_hung - Function to detect and recover hung_queues
864 * @pf: pointer to PF struct
866 * LAN VSI has netdev and netdev has TX queues. This function is to check
867 * each of those TX queues if they are hung, trigger recovery by issuing
870 void i40e_detect_recover_hung(struct i40e_pf
*pf
)
872 struct i40e_vsi
*vsi
= i40e_pf_get_main_vsi(pf
);
873 struct i40e_ring
*tx_ring
= NULL
;
874 struct net_device
*netdev
;
881 if (test_bit(__I40E_VSI_DOWN
, vsi
->state
))
884 netdev
= vsi
->netdev
;
888 if (!netif_carrier_ok(netdev
))
891 for (i
= 0; i
< vsi
->num_queue_pairs
; i
++) {
892 tx_ring
= vsi
->tx_rings
[i
];
893 if (tx_ring
&& tx_ring
->desc
) {
894 /* If packet counter has not changed the queue is
895 * likely stalled, so force an interrupt for this
898 * prev_pkt_ctr would be negative if there was no
901 packets
= tx_ring
->stats
.packets
& INT_MAX
;
902 if (tx_ring
->tx_stats
.prev_pkt_ctr
== packets
) {
903 i40e_force_wb(vsi
, tx_ring
->q_vector
);
907 /* Memory barrier between read of packet count and call
908 * to i40e_get_tx_pending()
911 tx_ring
->tx_stats
.prev_pkt_ctr
=
912 i40e_get_tx_pending(tx_ring
, true) ? packets
: -1;
918 * i40e_clean_tx_irq - Reclaim resources after transmit completes
919 * @vsi: the VSI we care about
920 * @tx_ring: Tx ring to clean
921 * @napi_budget: Used to determine if we are in netpoll
922 * @tx_cleaned: Out parameter set to the number of TXes cleaned
924 * Returns true if there's any budget left (e.g. the clean is finished)
926 static bool i40e_clean_tx_irq(struct i40e_vsi
*vsi
,
927 struct i40e_ring
*tx_ring
, int napi_budget
,
928 unsigned int *tx_cleaned
)
930 int i
= tx_ring
->next_to_clean
;
931 struct i40e_tx_buffer
*tx_buf
;
932 struct i40e_tx_desc
*tx_head
;
933 struct i40e_tx_desc
*tx_desc
;
934 unsigned int total_bytes
= 0, total_packets
= 0;
935 unsigned int budget
= vsi
->work_limit
;
937 tx_buf
= &tx_ring
->tx_bi
[i
];
938 tx_desc
= I40E_TX_DESC(tx_ring
, i
);
941 tx_head
= I40E_TX_DESC(tx_ring
, i40e_get_head(tx_ring
));
944 struct i40e_tx_desc
*eop_desc
= tx_buf
->next_to_watch
;
946 /* if next_to_watch is not set then there is no work pending */
950 /* prevent any other reads prior to eop_desc */
953 i40e_trace(clean_tx_irq
, tx_ring
, tx_desc
, tx_buf
);
954 /* we have caught up to head, no work left to do */
955 if (tx_head
== tx_desc
)
958 /* clear next_to_watch to prevent false hangs */
959 tx_buf
->next_to_watch
= NULL
;
961 /* update the statistics for this packet */
962 total_bytes
+= tx_buf
->bytecount
;
963 total_packets
+= tx_buf
->gso_segs
;
965 /* free the skb/XDP data */
966 if (ring_is_xdp(tx_ring
))
967 xdp_return_frame(tx_buf
->xdpf
);
969 napi_consume_skb(tx_buf
->skb
, napi_budget
);
971 /* unmap skb header data */
972 dma_unmap_single(tx_ring
->dev
,
973 dma_unmap_addr(tx_buf
, dma
),
974 dma_unmap_len(tx_buf
, len
),
977 /* clear tx_buffer data */
979 dma_unmap_len_set(tx_buf
, len
, 0);
981 /* unmap remaining buffers */
982 while (tx_desc
!= eop_desc
) {
983 i40e_trace(clean_tx_irq_unmap
,
984 tx_ring
, tx_desc
, tx_buf
);
991 tx_buf
= tx_ring
->tx_bi
;
992 tx_desc
= I40E_TX_DESC(tx_ring
, 0);
995 /* unmap any remaining paged data */
996 if (dma_unmap_len(tx_buf
, len
)) {
997 dma_unmap_page(tx_ring
->dev
,
998 dma_unmap_addr(tx_buf
, dma
),
999 dma_unmap_len(tx_buf
, len
),
1001 dma_unmap_len_set(tx_buf
, len
, 0);
1005 /* move us one more past the eop_desc for start of next pkt */
1010 i
-= tx_ring
->count
;
1011 tx_buf
= tx_ring
->tx_bi
;
1012 tx_desc
= I40E_TX_DESC(tx_ring
, 0);
1017 /* update budget accounting */
1019 } while (likely(budget
));
1021 i
+= tx_ring
->count
;
1022 tx_ring
->next_to_clean
= i
;
1023 i40e_update_tx_stats(tx_ring
, total_packets
, total_bytes
);
1024 i40e_arm_wb(tx_ring
, vsi
, budget
);
1026 if (ring_is_xdp(tx_ring
))
1029 /* notify netdev of completed buffers */
1030 netdev_tx_completed_queue(txring_txq(tx_ring
),
1031 total_packets
, total_bytes
);
1033 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1034 if (unlikely(total_packets
&& netif_carrier_ok(tx_ring
->netdev
) &&
1035 (I40E_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
))) {
1036 /* Make sure that anybody stopping the queue after this
1037 * sees the new next_to_clean.
1040 if (__netif_subqueue_stopped(tx_ring
->netdev
,
1041 tx_ring
->queue_index
) &&
1042 !test_bit(__I40E_VSI_DOWN
, vsi
->state
)) {
1043 netif_wake_subqueue(tx_ring
->netdev
,
1044 tx_ring
->queue_index
);
1045 ++tx_ring
->tx_stats
.restart_queue
;
1049 *tx_cleaned
= total_packets
;
1054 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1055 * @vsi: the VSI we care about
1056 * @q_vector: the vector on which to enable writeback
1059 static void i40e_enable_wb_on_itr(struct i40e_vsi
*vsi
,
1060 struct i40e_q_vector
*q_vector
)
1062 u16 flags
= q_vector
->tx
.ring
[0].flags
;
1065 if (!(flags
& I40E_TXR_FLAGS_WB_ON_ITR
))
1068 if (q_vector
->arm_wb_state
)
1071 if (test_bit(I40E_FLAG_MSIX_ENA
, vsi
->back
->flags
)) {
1072 val
= I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK
|
1073 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK
; /* set noitr */
1075 wr32(&vsi
->back
->hw
,
1076 I40E_PFINT_DYN_CTLN(q_vector
->reg_idx
),
1079 val
= I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK
|
1080 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK
; /* set noitr */
1082 wr32(&vsi
->back
->hw
, I40E_PFINT_DYN_CTL0
, val
);
1084 q_vector
->arm_wb_state
= true;
1088 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1089 * @vsi: the VSI we care about
1090 * @q_vector: the vector on which to force writeback
1093 void i40e_force_wb(struct i40e_vsi
*vsi
, struct i40e_q_vector
*q_vector
)
1095 if (test_bit(I40E_FLAG_MSIX_ENA
, vsi
->back
->flags
)) {
1096 u32 val
= I40E_PFINT_DYN_CTLN_INTENA_MASK
|
1097 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK
| /* set noitr */
1098 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK
|
1099 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK
;
1100 /* allow 00 to be written to the index */
1102 wr32(&vsi
->back
->hw
,
1103 I40E_PFINT_DYN_CTLN(q_vector
->reg_idx
), val
);
1105 u32 val
= I40E_PFINT_DYN_CTL0_INTENA_MASK
|
1106 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK
| /* set noitr */
1107 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK
|
1108 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK
;
1109 /* allow 00 to be written to the index */
1111 wr32(&vsi
->back
->hw
, I40E_PFINT_DYN_CTL0
, val
);
1115 static inline bool i40e_container_is_rx(struct i40e_q_vector
*q_vector
,
1116 struct i40e_ring_container
*rc
)
1118 return &q_vector
->rx
== rc
;
1121 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector
*q_vector
)
1123 unsigned int divisor
;
1125 switch (q_vector
->vsi
->back
->hw
.phy
.link_info
.link_speed
) {
1126 case I40E_LINK_SPEED_40GB
:
1127 divisor
= I40E_ITR_ADAPTIVE_MIN_INC
* 1024;
1129 case I40E_LINK_SPEED_25GB
:
1130 case I40E_LINK_SPEED_20GB
:
1131 divisor
= I40E_ITR_ADAPTIVE_MIN_INC
* 512;
1134 case I40E_LINK_SPEED_10GB
:
1135 divisor
= I40E_ITR_ADAPTIVE_MIN_INC
* 256;
1137 case I40E_LINK_SPEED_1GB
:
1138 case I40E_LINK_SPEED_100MB
:
1139 divisor
= I40E_ITR_ADAPTIVE_MIN_INC
* 32;
1147 * i40e_update_itr - update the dynamic ITR value based on statistics
1148 * @q_vector: structure containing interrupt and ring information
1149 * @rc: structure containing ring performance data
1151 * Stores a new ITR value based on packets and byte
1152 * counts during the last interrupt. The advantage of per interrupt
1153 * computation is faster updates and more accurate ITR for the current
1154 * traffic pattern. Constants in this function were computed
1155 * based on theoretical maximum wire speed and thresholds were set based
1156 * on testing data as well as attempting to minimize response time
1157 * while increasing bulk throughput.
1159 static void i40e_update_itr(struct i40e_q_vector
*q_vector
,
1160 struct i40e_ring_container
*rc
)
1162 unsigned int avg_wire_size
, packets
, bytes
, itr
;
1163 unsigned long next_update
= jiffies
;
1165 /* If we don't have any rings just leave ourselves set for maximum
1166 * possible latency so we take ourselves out of the equation.
1168 if (!rc
->ring
|| !ITR_IS_DYNAMIC(rc
->ring
->itr_setting
))
1171 /* For Rx we want to push the delay up and default to low latency.
1172 * for Tx we want to pull the delay down and default to high latency.
1174 itr
= i40e_container_is_rx(q_vector
, rc
) ?
1175 I40E_ITR_ADAPTIVE_MIN_USECS
| I40E_ITR_ADAPTIVE_LATENCY
:
1176 I40E_ITR_ADAPTIVE_MAX_USECS
| I40E_ITR_ADAPTIVE_LATENCY
;
1178 /* If we didn't update within up to 1 - 2 jiffies we can assume
1179 * that either packets are coming in so slow there hasn't been
1180 * any work, or that there is so much work that NAPI is dealing
1181 * with interrupt moderation and we don't need to do anything.
1183 if (time_after(next_update
, rc
->next_update
))
1186 /* If itr_countdown is set it means we programmed an ITR within
1187 * the last 4 interrupt cycles. This has a side effect of us
1188 * potentially firing an early interrupt. In order to work around
1189 * this we need to throw out any data received for a few
1190 * interrupts following the update.
1192 if (q_vector
->itr_countdown
) {
1193 itr
= rc
->target_itr
;
1197 packets
= rc
->total_packets
;
1198 bytes
= rc
->total_bytes
;
1200 if (i40e_container_is_rx(q_vector
, rc
)) {
1201 /* If Rx there are 1 to 4 packets and bytes are less than
1202 * 9000 assume insufficient data to use bulk rate limiting
1203 * approach unless Tx is already in bulk rate limiting. We
1204 * are likely latency driven.
1206 if (packets
&& packets
< 4 && bytes
< 9000 &&
1207 (q_vector
->tx
.target_itr
& I40E_ITR_ADAPTIVE_LATENCY
)) {
1208 itr
= I40E_ITR_ADAPTIVE_LATENCY
;
1209 goto adjust_by_size
;
1211 } else if (packets
< 4) {
1212 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1213 * bulk mode and we are receiving 4 or fewer packets just
1214 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1215 * that the Rx can relax.
1217 if (rc
->target_itr
== I40E_ITR_ADAPTIVE_MAX_USECS
&&
1218 (q_vector
->rx
.target_itr
& I40E_ITR_MASK
) ==
1219 I40E_ITR_ADAPTIVE_MAX_USECS
)
1221 } else if (packets
> 32) {
1222 /* If we have processed over 32 packets in a single interrupt
1223 * for Tx assume we need to switch over to "bulk" mode.
1225 rc
->target_itr
&= ~I40E_ITR_ADAPTIVE_LATENCY
;
1228 /* We have no packets to actually measure against. This means
1229 * either one of the other queues on this vector is active or
1230 * we are a Tx queue doing TSO with too high of an interrupt rate.
1232 * Between 4 and 56 we can assume that our current interrupt delay
1233 * is only slightly too low. As such we should increase it by a small
1237 itr
= rc
->target_itr
+ I40E_ITR_ADAPTIVE_MIN_INC
;
1238 if ((itr
& I40E_ITR_MASK
) > I40E_ITR_ADAPTIVE_MAX_USECS
) {
1239 itr
&= I40E_ITR_ADAPTIVE_LATENCY
;
1240 itr
+= I40E_ITR_ADAPTIVE_MAX_USECS
;
1245 if (packets
<= 256) {
1246 itr
= min(q_vector
->tx
.current_itr
, q_vector
->rx
.current_itr
);
1247 itr
&= I40E_ITR_MASK
;
1249 /* Between 56 and 112 is our "goldilocks" zone where we are
1250 * working out "just right". Just report that our current
1251 * ITR is good for us.
1256 /* If packet count is 128 or greater we are likely looking
1257 * at a slight overrun of the delay we want. Try halving
1258 * our delay to see if that will cut the number of packets
1259 * in half per interrupt.
1262 itr
&= I40E_ITR_MASK
;
1263 if (itr
< I40E_ITR_ADAPTIVE_MIN_USECS
)
1264 itr
= I40E_ITR_ADAPTIVE_MIN_USECS
;
1269 /* The paths below assume we are dealing with a bulk ITR since
1270 * number of packets is greater than 256. We are just going to have
1271 * to compute a value and try to bring the count under control,
1272 * though for smaller packet sizes there isn't much we can do as
1273 * NAPI polling will likely be kicking in sooner rather than later.
1275 itr
= I40E_ITR_ADAPTIVE_BULK
;
1278 /* If packet counts are 256 or greater we can assume we have a gross
1279 * overestimation of what the rate should be. Instead of trying to fine
1280 * tune it just use the formula below to try and dial in an exact value
1281 * give the current packet size of the frame.
1283 avg_wire_size
= bytes
/ packets
;
1285 /* The following is a crude approximation of:
1286 * wmem_default / (size + overhead) = desired_pkts_per_int
1287 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1288 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1290 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1291 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1294 * (170 * (size + 24)) / (size + 640) = ITR
1296 * We first do some math on the packet size and then finally bitshift
1297 * by 8 after rounding up. We also have to account for PCIe link speed
1298 * difference as ITR scales based on this.
1300 if (avg_wire_size
<= 60) {
1301 /* Start at 250k ints/sec */
1302 avg_wire_size
= 4096;
1303 } else if (avg_wire_size
<= 380) {
1304 /* 250K ints/sec to 60K ints/sec */
1305 avg_wire_size
*= 40;
1306 avg_wire_size
+= 1696;
1307 } else if (avg_wire_size
<= 1084) {
1308 /* 60K ints/sec to 36K ints/sec */
1309 avg_wire_size
*= 15;
1310 avg_wire_size
+= 11452;
1311 } else if (avg_wire_size
<= 1980) {
1312 /* 36K ints/sec to 30K ints/sec */
1314 avg_wire_size
+= 22420;
1316 /* plateau at a limit of 30K ints/sec */
1317 avg_wire_size
= 32256;
1320 /* If we are in low latency mode halve our delay which doubles the
1321 * rate to somewhere between 100K to 16K ints/sec
1323 if (itr
& I40E_ITR_ADAPTIVE_LATENCY
)
1326 /* Resultant value is 256 times larger than it needs to be. This
1327 * gives us room to adjust the value as needed to either increase
1328 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1330 * Use addition as we have already recorded the new latency flag
1331 * for the ITR value.
1333 itr
+= DIV_ROUND_UP(avg_wire_size
, i40e_itr_divisor(q_vector
)) *
1334 I40E_ITR_ADAPTIVE_MIN_INC
;
1336 if ((itr
& I40E_ITR_MASK
) > I40E_ITR_ADAPTIVE_MAX_USECS
) {
1337 itr
&= I40E_ITR_ADAPTIVE_LATENCY
;
1338 itr
+= I40E_ITR_ADAPTIVE_MAX_USECS
;
1342 /* write back value */
1343 rc
->target_itr
= itr
;
1345 /* next update should occur within next jiffy */
1346 rc
->next_update
= next_update
+ 1;
1348 rc
->total_bytes
= 0;
1349 rc
->total_packets
= 0;
1352 static struct i40e_rx_buffer
*i40e_rx_bi(struct i40e_ring
*rx_ring
, u32 idx
)
1354 return &rx_ring
->rx_bi
[idx
];
1358 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1359 * @rx_ring: rx descriptor ring to store buffers on
1360 * @old_buff: donor buffer to have page reused
1362 * Synchronizes page for reuse by the adapter
1364 static void i40e_reuse_rx_page(struct i40e_ring
*rx_ring
,
1365 struct i40e_rx_buffer
*old_buff
)
1367 struct i40e_rx_buffer
*new_buff
;
1368 u16 nta
= rx_ring
->next_to_alloc
;
1370 new_buff
= i40e_rx_bi(rx_ring
, nta
);
1372 /* update, and store next to alloc */
1374 rx_ring
->next_to_alloc
= (nta
< rx_ring
->count
) ? nta
: 0;
1376 /* transfer page from old buffer to new buffer */
1377 new_buff
->dma
= old_buff
->dma
;
1378 new_buff
->page
= old_buff
->page
;
1379 new_buff
->page_offset
= old_buff
->page_offset
;
1380 new_buff
->pagecnt_bias
= old_buff
->pagecnt_bias
;
1382 /* clear contents of buffer_info */
1383 old_buff
->page
= NULL
;
1387 * i40e_clean_programming_status - clean the programming status descriptor
1388 * @rx_ring: the rx ring that has this descriptor
1389 * @qword0_raw: qword0
1390 * @qword1: qword1 representing status_error_len in CPU ordering
1392 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1393 * status being successful or not and take actions accordingly. FCoE should
1394 * handle its context/filter programming/invalidation status and take actions.
1396 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1398 void i40e_clean_programming_status(struct i40e_ring
*rx_ring
, u64 qword0_raw
,
1403 id
= FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK
, qword1
);
1405 if (id
== I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS
)
1406 i40e_fd_handle_status(rx_ring
, qword0_raw
, qword1
, id
);
1410 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1411 * @tx_ring: the tx ring to set up
1413 * Return 0 on success, negative on error
1415 int i40e_setup_tx_descriptors(struct i40e_ring
*tx_ring
)
1417 struct device
*dev
= tx_ring
->dev
;
1423 /* warn if we are about to overwrite the pointer */
1424 WARN_ON(tx_ring
->tx_bi
);
1425 bi_size
= sizeof(struct i40e_tx_buffer
) * tx_ring
->count
;
1426 tx_ring
->tx_bi
= kzalloc(bi_size
, GFP_KERNEL
);
1427 if (!tx_ring
->tx_bi
)
1430 u64_stats_init(&tx_ring
->syncp
);
1432 /* round up to nearest 4K */
1433 tx_ring
->size
= tx_ring
->count
* sizeof(struct i40e_tx_desc
);
1434 /* add u32 for head writeback, align after this takes care of
1435 * guaranteeing this is at least one cache line in size
1437 tx_ring
->size
+= sizeof(u32
);
1438 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1439 tx_ring
->desc
= dma_alloc_coherent(dev
, tx_ring
->size
,
1440 &tx_ring
->dma
, GFP_KERNEL
);
1441 if (!tx_ring
->desc
) {
1442 dev_info(dev
, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1447 tx_ring
->next_to_use
= 0;
1448 tx_ring
->next_to_clean
= 0;
1449 tx_ring
->tx_stats
.prev_pkt_ctr
= -1;
1453 kfree(tx_ring
->tx_bi
);
1454 tx_ring
->tx_bi
= NULL
;
1458 static void i40e_clear_rx_bi(struct i40e_ring
*rx_ring
)
1460 memset(rx_ring
->rx_bi
, 0, sizeof(*rx_ring
->rx_bi
) * rx_ring
->count
);
1464 * i40e_clean_rx_ring - Free Rx buffers
1465 * @rx_ring: ring to be cleaned
1467 void i40e_clean_rx_ring(struct i40e_ring
*rx_ring
)
1471 /* ring already cleared, nothing to do */
1472 if (!rx_ring
->rx_bi
)
1475 if (rx_ring
->xsk_pool
) {
1476 i40e_xsk_clean_rx_ring(rx_ring
);
1480 /* Free all the Rx ring sk_buffs */
1481 for (i
= 0; i
< rx_ring
->count
; i
++) {
1482 struct i40e_rx_buffer
*rx_bi
= i40e_rx_bi(rx_ring
, i
);
1487 /* Invalidate cache lines that may have been written to by
1488 * device so that we avoid corrupting memory.
1490 dma_sync_single_range_for_cpu(rx_ring
->dev
,
1493 rx_ring
->rx_buf_len
,
1496 /* free resources associated with mapping */
1497 dma_unmap_page_attrs(rx_ring
->dev
, rx_bi
->dma
,
1498 i40e_rx_pg_size(rx_ring
),
1502 __page_frag_cache_drain(rx_bi
->page
, rx_bi
->pagecnt_bias
);
1505 rx_bi
->page_offset
= 0;
1509 if (rx_ring
->xsk_pool
)
1510 i40e_clear_rx_bi_zc(rx_ring
);
1512 i40e_clear_rx_bi(rx_ring
);
1514 /* Zero out the descriptor ring */
1515 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1517 rx_ring
->next_to_alloc
= 0;
1518 rx_ring
->next_to_clean
= 0;
1519 rx_ring
->next_to_process
= 0;
1520 rx_ring
->next_to_use
= 0;
1524 * i40e_free_rx_resources - Free Rx resources
1525 * @rx_ring: ring to clean the resources from
1527 * Free all receive software resources
1529 void i40e_free_rx_resources(struct i40e_ring
*rx_ring
)
1531 i40e_clean_rx_ring(rx_ring
);
1532 if (rx_ring
->vsi
->type
== I40E_VSI_MAIN
)
1533 xdp_rxq_info_unreg(&rx_ring
->xdp_rxq
);
1534 rx_ring
->xdp_prog
= NULL
;
1535 kfree(rx_ring
->rx_bi
);
1536 rx_ring
->rx_bi
= NULL
;
1538 if (rx_ring
->desc
) {
1539 dma_free_coherent(rx_ring
->dev
, rx_ring
->size
,
1540 rx_ring
->desc
, rx_ring
->dma
);
1541 rx_ring
->desc
= NULL
;
1546 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1547 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1549 * Returns 0 on success, negative on failure
1551 int i40e_setup_rx_descriptors(struct i40e_ring
*rx_ring
)
1553 struct device
*dev
= rx_ring
->dev
;
1555 u64_stats_init(&rx_ring
->syncp
);
1557 /* Round up to nearest 4K */
1558 rx_ring
->size
= rx_ring
->count
* sizeof(union i40e_rx_desc
);
1559 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1560 rx_ring
->desc
= dma_alloc_coherent(dev
, rx_ring
->size
,
1561 &rx_ring
->dma
, GFP_KERNEL
);
1563 if (!rx_ring
->desc
) {
1564 dev_info(dev
, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1569 rx_ring
->next_to_alloc
= 0;
1570 rx_ring
->next_to_clean
= 0;
1571 rx_ring
->next_to_process
= 0;
1572 rx_ring
->next_to_use
= 0;
1574 rx_ring
->xdp_prog
= rx_ring
->vsi
->xdp_prog
;
1577 kcalloc(rx_ring
->count
, sizeof(*rx_ring
->rx_bi
), GFP_KERNEL
);
1578 if (!rx_ring
->rx_bi
)
1585 * i40e_release_rx_desc - Store the new tail and head values
1586 * @rx_ring: ring to bump
1587 * @val: new head index
1589 void i40e_release_rx_desc(struct i40e_ring
*rx_ring
, u32 val
)
1591 rx_ring
->next_to_use
= val
;
1593 /* update next to alloc since we have filled the ring */
1594 rx_ring
->next_to_alloc
= val
;
1596 /* Force memory writes to complete before letting h/w
1597 * know there are new descriptors to fetch. (Only
1598 * applicable for weak-ordered memory model archs,
1602 writel(val
, rx_ring
->tail
);
1605 #if (PAGE_SIZE >= 8192)
1606 static unsigned int i40e_rx_frame_truesize(struct i40e_ring
*rx_ring
,
1609 unsigned int truesize
;
1611 truesize
= rx_ring
->rx_offset
?
1612 SKB_DATA_ALIGN(size
+ rx_ring
->rx_offset
) +
1613 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) :
1614 SKB_DATA_ALIGN(size
);
1620 * i40e_alloc_mapped_page - recycle or make a new page
1621 * @rx_ring: ring to use
1622 * @bi: rx_buffer struct to modify
1624 * Returns true if the page was successfully allocated or
1627 static bool i40e_alloc_mapped_page(struct i40e_ring
*rx_ring
,
1628 struct i40e_rx_buffer
*bi
)
1630 struct page
*page
= bi
->page
;
1633 /* since we are recycling buffers we should seldom need to alloc */
1635 rx_ring
->rx_stats
.page_reuse_count
++;
1639 /* alloc new page for storage */
1640 page
= dev_alloc_pages(i40e_rx_pg_order(rx_ring
));
1641 if (unlikely(!page
)) {
1642 rx_ring
->rx_stats
.alloc_page_failed
++;
1646 rx_ring
->rx_stats
.page_alloc_count
++;
1648 /* map page for use */
1649 dma
= dma_map_page_attrs(rx_ring
->dev
, page
, 0,
1650 i40e_rx_pg_size(rx_ring
),
1654 /* if mapping failed free memory back to system since
1655 * there isn't much point in holding memory we can't use
1657 if (dma_mapping_error(rx_ring
->dev
, dma
)) {
1658 __free_pages(page
, i40e_rx_pg_order(rx_ring
));
1659 rx_ring
->rx_stats
.alloc_page_failed
++;
1665 bi
->page_offset
= rx_ring
->rx_offset
;
1666 page_ref_add(page
, USHRT_MAX
- 1);
1667 bi
->pagecnt_bias
= USHRT_MAX
;
1673 * i40e_alloc_rx_buffers - Replace used receive buffers
1674 * @rx_ring: ring to place buffers on
1675 * @cleaned_count: number of buffers to replace
1677 * Returns false if all allocations were successful, true if any fail
1679 bool i40e_alloc_rx_buffers(struct i40e_ring
*rx_ring
, u16 cleaned_count
)
1681 u16 ntu
= rx_ring
->next_to_use
;
1682 union i40e_rx_desc
*rx_desc
;
1683 struct i40e_rx_buffer
*bi
;
1685 /* do nothing if no valid netdev defined */
1686 if (!rx_ring
->netdev
|| !cleaned_count
)
1689 rx_desc
= I40E_RX_DESC(rx_ring
, ntu
);
1690 bi
= i40e_rx_bi(rx_ring
, ntu
);
1693 if (!i40e_alloc_mapped_page(rx_ring
, bi
))
1696 /* sync the buffer for use by the device */
1697 dma_sync_single_range_for_device(rx_ring
->dev
, bi
->dma
,
1699 rx_ring
->rx_buf_len
,
1702 /* Refresh the desc even if buffer_addrs didn't change
1703 * because each write-back erases this info.
1705 rx_desc
->read
.pkt_addr
= cpu_to_le64(bi
->dma
+ bi
->page_offset
);
1710 if (unlikely(ntu
== rx_ring
->count
)) {
1711 rx_desc
= I40E_RX_DESC(rx_ring
, 0);
1712 bi
= i40e_rx_bi(rx_ring
, 0);
1716 /* clear the status bits for the next_to_use descriptor */
1717 rx_desc
->wb
.qword1
.status_error_len
= 0;
1720 } while (cleaned_count
);
1722 if (rx_ring
->next_to_use
!= ntu
)
1723 i40e_release_rx_desc(rx_ring
, ntu
);
1728 if (rx_ring
->next_to_use
!= ntu
)
1729 i40e_release_rx_desc(rx_ring
, ntu
);
1731 /* make sure to come back via polling to try again after
1732 * allocation failure
1738 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1739 * @vsi: the VSI we care about
1740 * @skb: skb currently being received and modified
1741 * @rx_desc: the receive descriptor
1743 static inline void i40e_rx_checksum(struct i40e_vsi
*vsi
,
1744 struct sk_buff
*skb
,
1745 union i40e_rx_desc
*rx_desc
)
1747 struct libeth_rx_pt decoded
;
1748 u32 rx_error
, rx_status
;
1753 skb
->ip_summed
= CHECKSUM_NONE
;
1755 qword
= le64_to_cpu(rx_desc
->wb
.qword1
.status_error_len
);
1756 ptype
= FIELD_GET(I40E_RXD_QW1_PTYPE_MASK
, qword
);
1758 decoded
= libie_rx_pt_parse(ptype
);
1759 if (!libeth_rx_pt_has_checksum(vsi
->netdev
, decoded
))
1762 rx_error
= FIELD_GET(I40E_RXD_QW1_ERROR_MASK
, qword
);
1763 rx_status
= FIELD_GET(I40E_RXD_QW1_STATUS_MASK
, qword
);
1765 /* did the hardware decode the packet and checksum? */
1766 if (!(rx_status
& BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT
)))
1769 ipv4
= libeth_rx_pt_get_ip_ver(decoded
) == LIBETH_RX_PT_OUTER_IPV4
;
1770 ipv6
= libeth_rx_pt_get_ip_ver(decoded
) == LIBETH_RX_PT_OUTER_IPV6
;
1773 (rx_error
& (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT
) |
1774 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT
))))
1777 /* likely incorrect csum if alternate IP extension headers found */
1779 rx_status
& BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT
))
1780 /* don't increment checksum err here, non-fatal err */
1783 /* there was some L4 error, count error and punt packet to the stack */
1784 if (rx_error
& BIT(I40E_RX_DESC_ERROR_L4E_SHIFT
))
1787 /* handle packets that were not able to be checksummed due
1788 * to arrival speed, in this case the stack can compute
1791 if (rx_error
& BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT
))
1794 /* If there is an outer header present that might contain a checksum
1795 * we need to bump the checksum level by 1 to reflect the fact that
1796 * we are indicating we validated the inner checksum.
1798 if (decoded
.tunnel_type
>= LIBETH_RX_PT_TUNNEL_IP_GRENAT
)
1799 skb
->csum_level
= 1;
1801 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1805 vsi
->back
->hw_csum_rx_error
++;
1809 * i40e_rx_hash - set the hash value in the skb
1810 * @ring: descriptor ring
1811 * @rx_desc: specific descriptor
1812 * @skb: skb currently being received and modified
1813 * @rx_ptype: Rx packet type
1815 static inline void i40e_rx_hash(struct i40e_ring
*ring
,
1816 union i40e_rx_desc
*rx_desc
,
1817 struct sk_buff
*skb
,
1820 struct libeth_rx_pt decoded
;
1822 const __le64 rss_mask
=
1823 cpu_to_le64((u64
)I40E_RX_DESC_FLTSTAT_RSS_HASH
<<
1824 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT
);
1826 decoded
= libie_rx_pt_parse(rx_ptype
);
1827 if (!libeth_rx_pt_has_hash(ring
->netdev
, decoded
))
1830 if ((rx_desc
->wb
.qword1
.status_error_len
& rss_mask
) == rss_mask
) {
1831 hash
= le32_to_cpu(rx_desc
->wb
.qword0
.hi_dword
.rss
);
1832 libeth_rx_pt_set_hash(skb
, hash
, decoded
);
1837 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1838 * @rx_ring: rx descriptor ring packet is being transacted on
1839 * @rx_desc: pointer to the EOP Rx descriptor
1840 * @skb: pointer to current skb being populated
1842 * This function checks the ring, descriptor, and packet information in
1843 * order to populate the hash, checksum, VLAN, protocol, and
1844 * other fields within the skb.
1846 void i40e_process_skb_fields(struct i40e_ring
*rx_ring
,
1847 union i40e_rx_desc
*rx_desc
, struct sk_buff
*skb
)
1849 u64 qword
= le64_to_cpu(rx_desc
->wb
.qword1
.status_error_len
);
1850 u32 rx_status
= FIELD_GET(I40E_RXD_QW1_STATUS_MASK
, qword
);
1851 u32 tsynvalid
= rx_status
& I40E_RXD_QW1_STATUS_TSYNVALID_MASK
;
1852 u32 tsyn
= FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK
, rx_status
);
1853 u8 rx_ptype
= FIELD_GET(I40E_RXD_QW1_PTYPE_MASK
, qword
);
1855 if (unlikely(tsynvalid
))
1856 i40e_ptp_rx_hwtstamp(rx_ring
->vsi
->back
, skb
, tsyn
);
1858 i40e_rx_hash(rx_ring
, rx_desc
, skb
, rx_ptype
);
1860 i40e_rx_checksum(rx_ring
->vsi
, skb
, rx_desc
);
1862 skb_record_rx_queue(skb
, rx_ring
->queue_index
);
1864 if (qword
& BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT
)) {
1865 __le16 vlan_tag
= rx_desc
->wb
.qword0
.lo_dword
.l2tag1
;
1867 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
),
1868 le16_to_cpu(vlan_tag
));
1871 /* modifies the skb - consumes the enet header */
1872 skb
->protocol
= eth_type_trans(skb
, rx_ring
->netdev
);
1876 * i40e_cleanup_headers - Correct empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @skb: pointer to current skb being fixed
1879 * @rx_desc: pointer to the EOP Rx descriptor
1881 * In addition if skb is not at least 60 bytes we need to pad it so that
1882 * it is large enough to qualify as a valid Ethernet frame.
1884 * Returns true if an error was encountered and skb was freed.
1886 static bool i40e_cleanup_headers(struct i40e_ring
*rx_ring
, struct sk_buff
*skb
,
1887 union i40e_rx_desc
*rx_desc
)
1890 /* ERR_MASK will only have valid bits if EOP set, and
1891 * what we are doing here is actually checking
1892 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1895 if (unlikely(i40e_test_staterr(rx_desc
,
1896 BIT(I40E_RXD_QW1_ERROR_SHIFT
)))) {
1897 dev_kfree_skb_any(skb
);
1901 /* if eth_skb_pad returns an error the skb was freed */
1902 if (eth_skb_pad(skb
))
1909 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1910 * @rx_buffer: buffer containing the page
1911 * @rx_stats: rx stats structure for the rx ring
1913 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1914 * which will assign the current buffer to the buffer that next_to_alloc is
1915 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1918 * rx_stats will be updated to indicate whether the page was waived
1919 * or busy if it could not be reused.
1921 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer
*rx_buffer
,
1922 struct i40e_rx_queue_stats
*rx_stats
)
1924 unsigned int pagecnt_bias
= rx_buffer
->pagecnt_bias
;
1925 struct page
*page
= rx_buffer
->page
;
1927 /* Is any reuse possible? */
1928 if (!dev_page_is_reusable(page
)) {
1929 rx_stats
->page_waive_count
++;
1933 #if (PAGE_SIZE < 8192)
1934 /* if we are only owner of page we can reuse it */
1935 if (unlikely((rx_buffer
->page_count
- pagecnt_bias
) > 1)) {
1936 rx_stats
->page_busy_count
++;
1940 #define I40E_LAST_OFFSET \
1941 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1942 if (rx_buffer
->page_offset
> I40E_LAST_OFFSET
) {
1943 rx_stats
->page_busy_count
++;
1948 /* If we have drained the page fragment pool we need to update
1949 * the pagecnt_bias and page count so that we fully restock the
1950 * number of references the driver holds.
1952 if (unlikely(pagecnt_bias
== 1)) {
1953 page_ref_add(page
, USHRT_MAX
- 1);
1954 rx_buffer
->pagecnt_bias
= USHRT_MAX
;
1961 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1962 * @rx_buffer: Rx buffer to adjust
1963 * @truesize: Size of adjustment
1965 static void i40e_rx_buffer_flip(struct i40e_rx_buffer
*rx_buffer
,
1966 unsigned int truesize
)
1968 #if (PAGE_SIZE < 8192)
1969 rx_buffer
->page_offset
^= truesize
;
1971 rx_buffer
->page_offset
+= truesize
;
1976 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1977 * @rx_ring: rx descriptor ring to transact packets on
1978 * @size: size of buffer to add to skb
1980 * This function will pull an Rx buffer from the ring and synchronize it
1981 * for use by the CPU.
1983 static struct i40e_rx_buffer
*i40e_get_rx_buffer(struct i40e_ring
*rx_ring
,
1984 const unsigned int size
)
1986 struct i40e_rx_buffer
*rx_buffer
;
1988 rx_buffer
= i40e_rx_bi(rx_ring
, rx_ring
->next_to_process
);
1989 rx_buffer
->page_count
=
1990 #if (PAGE_SIZE < 8192)
1991 page_count(rx_buffer
->page
);
1995 prefetch_page_address(rx_buffer
->page
);
1997 /* we are reusing so sync this buffer for CPU use */
1998 dma_sync_single_range_for_cpu(rx_ring
->dev
,
2000 rx_buffer
->page_offset
,
2004 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2005 rx_buffer
->pagecnt_bias
--;
2011 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2012 * @rx_ring: rx descriptor ring to transact packets on
2013 * @rx_buffer: rx buffer to pull data from
2015 * This function will clean up the contents of the rx_buffer. It will
2016 * either recycle the buffer or unmap it and free the associated resources.
2018 static void i40e_put_rx_buffer(struct i40e_ring
*rx_ring
,
2019 struct i40e_rx_buffer
*rx_buffer
)
2021 if (i40e_can_reuse_rx_page(rx_buffer
, &rx_ring
->rx_stats
)) {
2022 /* hand second half of page back to the ring */
2023 i40e_reuse_rx_page(rx_ring
, rx_buffer
);
2025 /* we are not reusing the buffer so unmap it */
2026 dma_unmap_page_attrs(rx_ring
->dev
, rx_buffer
->dma
,
2027 i40e_rx_pg_size(rx_ring
),
2028 DMA_FROM_DEVICE
, I40E_RX_DMA_ATTR
);
2029 __page_frag_cache_drain(rx_buffer
->page
,
2030 rx_buffer
->pagecnt_bias
);
2031 /* clear contents of buffer_info */
2032 rx_buffer
->page
= NULL
;
2037 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2038 * @rx_ring: Rx descriptor ring to transact packets on
2039 * @xdp_res: Result of the XDP program
2040 * @xdp: xdp_buff pointing to the data
2042 static void i40e_process_rx_buffs(struct i40e_ring
*rx_ring
, int xdp_res
,
2043 struct xdp_buff
*xdp
)
2045 u32 nr_frags
= xdp_get_shared_info_from_buff(xdp
)->nr_frags
;
2046 u32 next
= rx_ring
->next_to_clean
, i
= 0;
2047 struct i40e_rx_buffer
*rx_buffer
;
2052 rx_buffer
= i40e_rx_bi(rx_ring
, next
);
2053 if (++next
== rx_ring
->count
)
2056 if (!rx_buffer
->page
)
2059 if (xdp_res
!= I40E_XDP_CONSUMED
)
2060 i40e_rx_buffer_flip(rx_buffer
, xdp
->frame_sz
);
2061 else if (i
++ <= nr_frags
)
2062 rx_buffer
->pagecnt_bias
++;
2064 /* EOP buffer will be put in i40e_clean_rx_irq() */
2065 if (next
== rx_ring
->next_to_process
)
2068 i40e_put_rx_buffer(rx_ring
, rx_buffer
);
2073 * i40e_construct_skb - Allocate skb and populate it
2074 * @rx_ring: rx descriptor ring to transact packets on
2075 * @xdp: xdp_buff pointing to the data
2077 * This function allocates an skb. It then populates it with the page
2078 * data from the current receive descriptor, taking care to set up the
2081 static struct sk_buff
*i40e_construct_skb(struct i40e_ring
*rx_ring
,
2082 struct xdp_buff
*xdp
)
2084 unsigned int size
= xdp
->data_end
- xdp
->data
;
2085 struct i40e_rx_buffer
*rx_buffer
;
2086 struct skb_shared_info
*sinfo
;
2087 unsigned int headlen
;
2088 struct sk_buff
*skb
;
2091 /* prefetch first cache line of first page */
2092 net_prefetch(xdp
->data
);
2094 /* Note, we get here by enabling legacy-rx via:
2096 * ethtool --set-priv-flags <dev> legacy-rx on
2098 * In this mode, we currently get 0 extra XDP headroom as
2099 * opposed to having legacy-rx off, where we process XDP
2100 * packets going to stack via i40e_build_skb(). The latter
2101 * provides us currently with 192 bytes of headroom.
2103 * For i40e_construct_skb() mode it means that the
2104 * xdp->data_meta will always point to xdp->data, since
2105 * the helper cannot expand the head. Should this ever
2106 * change in future for legacy-rx mode on, then lets also
2107 * add xdp->data_meta handling here.
2110 /* allocate a skb to store the frags */
2111 skb
= napi_alloc_skb(&rx_ring
->q_vector
->napi
, I40E_RX_HDR_SIZE
);
2115 /* Determine available headroom for copy */
2117 if (headlen
> I40E_RX_HDR_SIZE
)
2118 headlen
= eth_get_headlen(skb
->dev
, xdp
->data
,
2121 /* align pull length to size of long to optimize memcpy performance */
2122 memcpy(__skb_put(skb
, headlen
), xdp
->data
,
2123 ALIGN(headlen
, sizeof(long)));
2125 if (unlikely(xdp_buff_has_frags(xdp
))) {
2126 sinfo
= xdp_get_shared_info_from_buff(xdp
);
2127 nr_frags
= sinfo
->nr_frags
;
2129 rx_buffer
= i40e_rx_bi(rx_ring
, rx_ring
->next_to_clean
);
2130 /* update all of the pointers */
2133 if (unlikely(nr_frags
>= MAX_SKB_FRAGS
)) {
2137 skb_add_rx_frag(skb
, 0, rx_buffer
->page
,
2138 rx_buffer
->page_offset
+ headlen
,
2139 size
, xdp
->frame_sz
);
2140 /* buffer is used by skb, update page_offset */
2141 i40e_rx_buffer_flip(rx_buffer
, xdp
->frame_sz
);
2143 /* buffer is unused, reset bias back to rx_buffer */
2144 rx_buffer
->pagecnt_bias
++;
2147 if (unlikely(xdp_buff_has_frags(xdp
))) {
2148 struct skb_shared_info
*skinfo
= skb_shinfo(skb
);
2150 memcpy(&skinfo
->frags
[skinfo
->nr_frags
], &sinfo
->frags
[0],
2151 sizeof(skb_frag_t
) * nr_frags
);
2153 xdp_update_skb_shared_info(skb
, skinfo
->nr_frags
+ nr_frags
,
2154 sinfo
->xdp_frags_size
,
2155 nr_frags
* xdp
->frame_sz
,
2156 xdp_buff_is_frag_pfmemalloc(xdp
));
2158 /* First buffer has already been processed, so bump ntc */
2159 if (++rx_ring
->next_to_clean
== rx_ring
->count
)
2160 rx_ring
->next_to_clean
= 0;
2162 i40e_process_rx_buffs(rx_ring
, I40E_XDP_PASS
, xdp
);
2169 * i40e_build_skb - Build skb around an existing buffer
2170 * @rx_ring: Rx descriptor ring to transact packets on
2171 * @xdp: xdp_buff pointing to the data
2173 * This function builds an skb around an existing Rx buffer, taking care
2174 * to set up the skb correctly and avoid any memcpy overhead.
2176 static struct sk_buff
*i40e_build_skb(struct i40e_ring
*rx_ring
,
2177 struct xdp_buff
*xdp
)
2179 unsigned int metasize
= xdp
->data
- xdp
->data_meta
;
2180 struct skb_shared_info
*sinfo
;
2181 struct sk_buff
*skb
;
2184 /* Prefetch first cache line of first page. If xdp->data_meta
2185 * is unused, this points exactly as xdp->data, otherwise we
2186 * likely have a consumer accessing first few bytes of meta
2187 * data, and then actual data.
2189 net_prefetch(xdp
->data_meta
);
2191 if (unlikely(xdp_buff_has_frags(xdp
))) {
2192 sinfo
= xdp_get_shared_info_from_buff(xdp
);
2193 nr_frags
= sinfo
->nr_frags
;
2196 /* build an skb around the page buffer */
2197 skb
= napi_build_skb(xdp
->data_hard_start
, xdp
->frame_sz
);
2201 /* update pointers within the skb to store the data */
2202 skb_reserve(skb
, xdp
->data
- xdp
->data_hard_start
);
2203 __skb_put(skb
, xdp
->data_end
- xdp
->data
);
2205 skb_metadata_set(skb
, metasize
);
2207 if (unlikely(xdp_buff_has_frags(xdp
))) {
2208 xdp_update_skb_shared_info(skb
, nr_frags
,
2209 sinfo
->xdp_frags_size
,
2210 nr_frags
* xdp
->frame_sz
,
2211 xdp_buff_is_frag_pfmemalloc(xdp
));
2213 i40e_process_rx_buffs(rx_ring
, I40E_XDP_PASS
, xdp
);
2215 struct i40e_rx_buffer
*rx_buffer
;
2217 rx_buffer
= i40e_rx_bi(rx_ring
, rx_ring
->next_to_clean
);
2218 /* buffer is used by skb, update page_offset */
2219 i40e_rx_buffer_flip(rx_buffer
, xdp
->frame_sz
);
2226 * i40e_is_non_eop - process handling of non-EOP buffers
2227 * @rx_ring: Rx ring being processed
2228 * @rx_desc: Rx descriptor for current buffer
2230 * If the buffer is an EOP buffer, this function exits returning false,
2231 * otherwise return true indicating that this is in fact a non-EOP buffer.
2233 bool i40e_is_non_eop(struct i40e_ring
*rx_ring
,
2234 union i40e_rx_desc
*rx_desc
)
2236 /* if we are the last buffer then there is nothing else to do */
2237 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2238 if (likely(i40e_test_staterr(rx_desc
, I40E_RXD_EOF
)))
2241 rx_ring
->rx_stats
.non_eop_descs
++;
2246 static int i40e_xmit_xdp_ring(struct xdp_frame
*xdpf
,
2247 struct i40e_ring
*xdp_ring
);
2249 int i40e_xmit_xdp_tx_ring(struct xdp_buff
*xdp
, struct i40e_ring
*xdp_ring
)
2251 struct xdp_frame
*xdpf
= xdp_convert_buff_to_frame(xdp
);
2253 if (unlikely(!xdpf
))
2254 return I40E_XDP_CONSUMED
;
2256 return i40e_xmit_xdp_ring(xdpf
, xdp_ring
);
2260 * i40e_run_xdp - run an XDP program
2261 * @rx_ring: Rx ring being processed
2262 * @xdp: XDP buffer containing the frame
2263 * @xdp_prog: XDP program to run
2265 static int i40e_run_xdp(struct i40e_ring
*rx_ring
, struct xdp_buff
*xdp
, struct bpf_prog
*xdp_prog
)
2267 int err
, result
= I40E_XDP_PASS
;
2268 struct i40e_ring
*xdp_ring
;
2274 prefetchw(xdp
->data_hard_start
); /* xdp_frame write */
2276 act
= bpf_prog_run_xdp(xdp_prog
, xdp
);
2281 xdp_ring
= rx_ring
->vsi
->xdp_rings
[rx_ring
->queue_index
];
2282 result
= i40e_xmit_xdp_tx_ring(xdp
, xdp_ring
);
2283 if (result
== I40E_XDP_CONSUMED
)
2287 err
= xdp_do_redirect(rx_ring
->netdev
, xdp
, xdp_prog
);
2290 result
= I40E_XDP_REDIR
;
2293 bpf_warn_invalid_xdp_action(rx_ring
->netdev
, xdp_prog
, act
);
2297 trace_xdp_exception(rx_ring
->netdev
, xdp_prog
, act
);
2298 fallthrough
; /* handle aborts by dropping packet */
2300 result
= I40E_XDP_CONSUMED
;
2308 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2309 * @xdp_ring: XDP Tx ring
2311 * This function updates the XDP Tx ring tail register.
2313 void i40e_xdp_ring_update_tail(struct i40e_ring
*xdp_ring
)
2315 /* Force memory writes to complete before letting h/w
2316 * know there are new descriptors to fetch.
2319 writel_relaxed(xdp_ring
->next_to_use
, xdp_ring
->tail
);
2323 * i40e_update_rx_stats - Update Rx ring statistics
2324 * @rx_ring: rx descriptor ring
2325 * @total_rx_bytes: number of bytes received
2326 * @total_rx_packets: number of packets received
2328 * This function updates the Rx ring statistics.
2330 void i40e_update_rx_stats(struct i40e_ring
*rx_ring
,
2331 unsigned int total_rx_bytes
,
2332 unsigned int total_rx_packets
)
2334 u64_stats_update_begin(&rx_ring
->syncp
);
2335 rx_ring
->stats
.packets
+= total_rx_packets
;
2336 rx_ring
->stats
.bytes
+= total_rx_bytes
;
2337 u64_stats_update_end(&rx_ring
->syncp
);
2338 rx_ring
->q_vector
->rx
.total_packets
+= total_rx_packets
;
2339 rx_ring
->q_vector
->rx
.total_bytes
+= total_rx_bytes
;
2343 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2345 * @xdp_res: Result of the receive batch
2347 * This function bumps XDP Tx tail and/or flush redirect map, and
2348 * should be called when a batch of packets has been processed in the
2351 void i40e_finalize_xdp_rx(struct i40e_ring
*rx_ring
, unsigned int xdp_res
)
2353 if (xdp_res
& I40E_XDP_REDIR
)
2356 if (xdp_res
& I40E_XDP_TX
) {
2357 struct i40e_ring
*xdp_ring
=
2358 rx_ring
->vsi
->xdp_rings
[rx_ring
->queue_index
];
2360 i40e_xdp_ring_update_tail(xdp_ring
);
2365 * i40e_inc_ntp: Advance the next_to_process index
2368 static void i40e_inc_ntp(struct i40e_ring
*rx_ring
)
2370 u32 ntp
= rx_ring
->next_to_process
+ 1;
2372 ntp
= (ntp
< rx_ring
->count
) ? ntp
: 0;
2373 rx_ring
->next_to_process
= ntp
;
2374 prefetch(I40E_RX_DESC(rx_ring
, ntp
));
2378 * i40e_add_xdp_frag: Add a frag to xdp_buff
2379 * @xdp: xdp_buff pointing to the data
2380 * @nr_frags: return number of buffers for the packet
2381 * @rx_buffer: rx_buffer holding data of the current frag
2382 * @size: size of data of current frag
2384 static int i40e_add_xdp_frag(struct xdp_buff
*xdp
, u32
*nr_frags
,
2385 struct i40e_rx_buffer
*rx_buffer
, u32 size
)
2387 struct skb_shared_info
*sinfo
= xdp_get_shared_info_from_buff(xdp
);
2389 if (!xdp_buff_has_frags(xdp
)) {
2390 sinfo
->nr_frags
= 0;
2391 sinfo
->xdp_frags_size
= 0;
2392 xdp_buff_set_frags_flag(xdp
);
2393 } else if (unlikely(sinfo
->nr_frags
>= MAX_SKB_FRAGS
)) {
2394 /* Overflowing packet: All frags need to be dropped */
2398 __skb_fill_page_desc_noacc(sinfo
, sinfo
->nr_frags
++, rx_buffer
->page
,
2399 rx_buffer
->page_offset
, size
);
2401 sinfo
->xdp_frags_size
+= size
;
2403 if (page_is_pfmemalloc(rx_buffer
->page
))
2404 xdp_buff_set_frag_pfmemalloc(xdp
);
2405 *nr_frags
= sinfo
->nr_frags
;
2411 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2412 * @rx_ring: rx descriptor ring to transact packets on
2413 * @xdp: xdp_buff pointing to the data
2414 * @rx_buffer: rx_buffer of eop desc
2416 static void i40e_consume_xdp_buff(struct i40e_ring
*rx_ring
,
2417 struct xdp_buff
*xdp
,
2418 struct i40e_rx_buffer
*rx_buffer
)
2420 i40e_process_rx_buffs(rx_ring
, I40E_XDP_CONSUMED
, xdp
);
2421 i40e_put_rx_buffer(rx_ring
, rx_buffer
);
2422 rx_ring
->next_to_clean
= rx_ring
->next_to_process
;
2427 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2428 * @rx_ring: rx descriptor ring to transact packets on
2429 * @budget: Total limit on number of packets to process
2430 * @rx_cleaned: Out parameter of the number of packets processed
2432 * This function provides a "bounce buffer" approach to Rx interrupt
2433 * processing. The advantage to this is that on systems that have
2434 * expensive overhead for IOMMU access this provides a means of avoiding
2435 * it by maintaining the mapping of the page to the system.
2437 * Returns amount of work completed
2439 static int i40e_clean_rx_irq(struct i40e_ring
*rx_ring
, int budget
,
2440 unsigned int *rx_cleaned
)
2442 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
2443 u16 cleaned_count
= I40E_DESC_UNUSED(rx_ring
);
2444 u16 clean_threshold
= rx_ring
->count
/ 2;
2445 unsigned int offset
= rx_ring
->rx_offset
;
2446 struct xdp_buff
*xdp
= &rx_ring
->xdp
;
2447 unsigned int xdp_xmit
= 0;
2448 struct bpf_prog
*xdp_prog
;
2449 bool failure
= false;
2452 xdp_prog
= READ_ONCE(rx_ring
->xdp_prog
);
2454 while (likely(total_rx_packets
< (unsigned int)budget
)) {
2455 u16 ntp
= rx_ring
->next_to_process
;
2456 struct i40e_rx_buffer
*rx_buffer
;
2457 union i40e_rx_desc
*rx_desc
;
2458 struct sk_buff
*skb
;
2464 /* return some buffers to hardware, one at a time is too slow */
2465 if (cleaned_count
>= clean_threshold
) {
2466 failure
= failure
||
2467 i40e_alloc_rx_buffers(rx_ring
, cleaned_count
);
2471 rx_desc
= I40E_RX_DESC(rx_ring
, ntp
);
2473 /* status_error_len will always be zero for unused descriptors
2474 * because it's cleared in cleanup, and overlaps with hdr_addr
2475 * which is always zero because packet split isn't used, if the
2476 * hardware wrote DD then the length will be non-zero
2478 qword
= le64_to_cpu(rx_desc
->wb
.qword1
.status_error_len
);
2480 /* This memory barrier is needed to keep us from reading
2481 * any other fields out of the rx_desc until we have
2482 * verified the descriptor has been written back.
2486 if (i40e_rx_is_programming_status(qword
)) {
2487 i40e_clean_programming_status(rx_ring
,
2488 rx_desc
->raw
.qword
[0],
2490 rx_buffer
= i40e_rx_bi(rx_ring
, ntp
);
2491 i40e_inc_ntp(rx_ring
);
2492 i40e_reuse_rx_page(rx_ring
, rx_buffer
);
2493 /* Update ntc and bump cleaned count if not in the
2494 * middle of mb packet.
2496 if (rx_ring
->next_to_clean
== ntp
) {
2497 rx_ring
->next_to_clean
=
2498 rx_ring
->next_to_process
;
2504 size
= FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK
, qword
);
2508 i40e_trace(clean_rx_irq
, rx_ring
, rx_desc
, xdp
);
2509 /* retrieve a buffer from the ring */
2510 rx_buffer
= i40e_get_rx_buffer(rx_ring
, size
);
2512 neop
= i40e_is_non_eop(rx_ring
, rx_desc
);
2513 i40e_inc_ntp(rx_ring
);
2516 unsigned char *hard_start
;
2518 hard_start
= page_address(rx_buffer
->page
) +
2519 rx_buffer
->page_offset
- offset
;
2520 xdp_prepare_buff(xdp
, hard_start
, offset
, size
, true);
2521 #if (PAGE_SIZE > 4096)
2522 /* At larger PAGE_SIZE, frame_sz depend on len size */
2523 xdp
->frame_sz
= i40e_rx_frame_truesize(rx_ring
, size
);
2525 } else if (i40e_add_xdp_frag(xdp
, &nfrags
, rx_buffer
, size
) &&
2527 /* Overflowing packet: Drop all frags on EOP */
2528 i40e_consume_xdp_buff(rx_ring
, xdp
, rx_buffer
);
2535 xdp_res
= i40e_run_xdp(rx_ring
, xdp
, xdp_prog
);
2538 xdp_xmit
|= xdp_res
& (I40E_XDP_TX
| I40E_XDP_REDIR
);
2540 if (unlikely(xdp_buff_has_frags(xdp
))) {
2541 i40e_process_rx_buffs(rx_ring
, xdp_res
, xdp
);
2542 size
= xdp_get_buff_len(xdp
);
2543 } else if (xdp_res
& (I40E_XDP_TX
| I40E_XDP_REDIR
)) {
2544 i40e_rx_buffer_flip(rx_buffer
, xdp
->frame_sz
);
2546 rx_buffer
->pagecnt_bias
++;
2548 total_rx_bytes
+= size
;
2550 if (ring_uses_build_skb(rx_ring
))
2551 skb
= i40e_build_skb(rx_ring
, xdp
);
2553 skb
= i40e_construct_skb(rx_ring
, xdp
);
2555 /* drop if we failed to retrieve a buffer */
2557 rx_ring
->rx_stats
.alloc_buff_failed
++;
2558 i40e_consume_xdp_buff(rx_ring
, xdp
, rx_buffer
);
2562 if (i40e_cleanup_headers(rx_ring
, skb
, rx_desc
))
2565 /* probably a little skewed due to removing CRC */
2566 total_rx_bytes
+= skb
->len
;
2568 /* populate checksum, VLAN, and protocol */
2569 i40e_process_skb_fields(rx_ring
, rx_desc
, skb
);
2571 i40e_trace(clean_rx_irq_rx
, rx_ring
, rx_desc
, xdp
);
2572 napi_gro_receive(&rx_ring
->q_vector
->napi
, skb
);
2575 /* update budget accounting */
2578 cleaned_count
+= nfrags
+ 1;
2579 i40e_put_rx_buffer(rx_ring
, rx_buffer
);
2580 rx_ring
->next_to_clean
= rx_ring
->next_to_process
;
2585 i40e_finalize_xdp_rx(rx_ring
, xdp_xmit
);
2587 i40e_update_rx_stats(rx_ring
, total_rx_bytes
, total_rx_packets
);
2589 *rx_cleaned
= total_rx_packets
;
2591 /* guarantee a trip back through this routine if there was a failure */
2592 return failure
? budget
: (int)total_rx_packets
;
2596 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2597 * @itr_idx: interrupt throttling index
2598 * @interval: interrupt throttling interval value in usecs
2599 * @force_swint: force software interrupt
2601 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2602 * is used to update interrupt throttling interval for specified ITR index
2603 * and optionally enforces a software interrupt. If the @itr_idx is equal
2604 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2605 * parameter is taken into account. If the interval change and enforced
2606 * software interrupt are not requested then the built value just enables
2607 * appropriate vector interrupt.
2609 static u32
i40e_buildreg_itr(enum i40e_dyn_idx itr_idx
, u16 interval
,
2614 /* We don't bother with setting the CLEARPBA bit as the data sheet
2615 * points out doing so is "meaningless since it was already
2616 * auto-cleared". The auto-clearing happens when the interrupt is
2619 * Hardware errata 28 for also indicates that writing to a
2620 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2621 * an event in the PBA anyway so we need to rely on the automask
2622 * to hold pending events for us until the interrupt is re-enabled
2624 * We have to shift the given value as it is reported in microseconds
2625 * and the register value is recorded in 2 microsecond units.
2629 /* 1. Enable vector interrupt
2630 * 2. Update the interval for the specified ITR index
2631 * (I40E_ITR_NONE in the register is used to indicate that
2632 * no interval update is requested)
2634 val
= I40E_PFINT_DYN_CTLN_INTENA_MASK
|
2635 FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK
, itr_idx
) |
2636 FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK
, interval
);
2638 /* 3. Enforce software interrupt trigger if requested
2639 * (These software interrupts rate is limited by ITR2 that is
2640 * set to 20K interrupts per second)
2643 val
|= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK
|
2644 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK
|
2645 FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK
,
2651 /* The act of updating the ITR will cause it to immediately trigger. In order
2652 * to prevent this from throwing off adaptive update statistics we defer the
2653 * update so that it can only happen so often. So after either Tx or Rx are
2654 * updated we make the adaptive scheme wait until either the ITR completely
2655 * expires via the next_update expiration or we have been through at least
2658 #define ITR_COUNTDOWN_START 3
2661 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2662 * @vsi: the VSI we care about
2663 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2666 static inline void i40e_update_enable_itr(struct i40e_vsi
*vsi
,
2667 struct i40e_q_vector
*q_vector
)
2669 enum i40e_dyn_idx itr_idx
= I40E_ITR_NONE
;
2670 struct i40e_hw
*hw
= &vsi
->back
->hw
;
2674 /* If we don't have MSIX, then we only need to re-enable icr0 */
2675 if (!test_bit(I40E_FLAG_MSIX_ENA
, vsi
->back
->flags
)) {
2676 i40e_irq_dynamic_enable_icr0(vsi
->back
);
2680 /* These will do nothing if dynamic updates are not enabled */
2681 i40e_update_itr(q_vector
, &q_vector
->tx
);
2682 i40e_update_itr(q_vector
, &q_vector
->rx
);
2684 /* This block of logic allows us to get away with only updating
2685 * one ITR value with each interrupt. The idea is to perform a
2686 * pseudo-lazy update with the following criteria.
2688 * 1. Rx is given higher priority than Tx if both are in same state
2689 * 2. If we must reduce an ITR that is given highest priority.
2690 * 3. We then give priority to increasing ITR based on amount.
2692 if (q_vector
->rx
.target_itr
< q_vector
->rx
.current_itr
) {
2693 /* Rx ITR needs to be reduced, this is highest priority */
2694 itr_idx
= I40E_RX_ITR
;
2695 interval
= q_vector
->rx
.target_itr
;
2696 q_vector
->rx
.current_itr
= q_vector
->rx
.target_itr
;
2697 q_vector
->itr_countdown
= ITR_COUNTDOWN_START
;
2698 } else if ((q_vector
->tx
.target_itr
< q_vector
->tx
.current_itr
) ||
2699 ((q_vector
->rx
.target_itr
- q_vector
->rx
.current_itr
) <
2700 (q_vector
->tx
.target_itr
- q_vector
->tx
.current_itr
))) {
2701 /* Tx ITR needs to be reduced, this is second priority
2702 * Tx ITR needs to be increased more than Rx, fourth priority
2704 itr_idx
= I40E_TX_ITR
;
2705 interval
= q_vector
->tx
.target_itr
;
2706 q_vector
->tx
.current_itr
= q_vector
->tx
.target_itr
;
2707 q_vector
->itr_countdown
= ITR_COUNTDOWN_START
;
2708 } else if (q_vector
->rx
.current_itr
!= q_vector
->rx
.target_itr
) {
2709 /* Rx ITR needs to be increased, third priority */
2710 itr_idx
= I40E_RX_ITR
;
2711 interval
= q_vector
->rx
.target_itr
;
2712 q_vector
->rx
.current_itr
= q_vector
->rx
.target_itr
;
2713 q_vector
->itr_countdown
= ITR_COUNTDOWN_START
;
2715 /* No ITR update, lowest priority */
2716 if (q_vector
->itr_countdown
)
2717 q_vector
->itr_countdown
--;
2720 /* Do not update interrupt control register if VSI is down */
2721 if (test_bit(__I40E_VSI_DOWN
, vsi
->state
))
2724 /* Update ITR interval if necessary and enforce software interrupt
2725 * if we are exiting busy poll.
2727 if (q_vector
->in_busy_poll
) {
2728 itr_val
= i40e_buildreg_itr(itr_idx
, interval
, true);
2729 q_vector
->in_busy_poll
= false;
2731 itr_val
= i40e_buildreg_itr(itr_idx
, interval
, false);
2733 wr32(hw
, I40E_PFINT_DYN_CTLN(q_vector
->reg_idx
), itr_val
);
2737 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2738 * @napi: napi struct with our devices info in it
2739 * @budget: amount of work driver is allowed to do this pass, in packets
2741 * This function will clean all queues associated with a q_vector.
2743 * Returns the amount of work done
2745 int i40e_napi_poll(struct napi_struct
*napi
, int budget
)
2747 struct i40e_q_vector
*q_vector
=
2748 container_of(napi
, struct i40e_q_vector
, napi
);
2749 struct i40e_vsi
*vsi
= q_vector
->vsi
;
2750 struct i40e_ring
*ring
;
2751 bool tx_clean_complete
= true;
2752 bool rx_clean_complete
= true;
2753 unsigned int tx_cleaned
= 0;
2754 unsigned int rx_cleaned
= 0;
2755 bool clean_complete
= true;
2756 bool arm_wb
= false;
2757 int budget_per_ring
;
2760 if (test_bit(__I40E_VSI_DOWN
, vsi
->state
)) {
2761 napi_complete(napi
);
2765 /* Since the actual Tx work is minimal, we can give the Tx a larger
2766 * budget and be more aggressive about cleaning up the Tx descriptors.
2768 i40e_for_each_ring(ring
, q_vector
->tx
) {
2769 bool wd
= ring
->xsk_pool
?
2770 i40e_clean_xdp_tx_irq(vsi
, ring
) :
2771 i40e_clean_tx_irq(vsi
, ring
, budget
, &tx_cleaned
);
2774 clean_complete
= tx_clean_complete
= false;
2777 arm_wb
|= ring
->arm_wb
;
2778 ring
->arm_wb
= false;
2781 /* Handle case where we are called by netpoll with a budget of 0 */
2785 /* normally we have 1 Rx ring per q_vector */
2786 if (unlikely(q_vector
->num_ringpairs
> 1))
2787 /* We attempt to distribute budget to each Rx queue fairly, but
2788 * don't allow the budget to go below 1 because that would exit
2791 budget_per_ring
= max_t(int, budget
/ q_vector
->num_ringpairs
, 1);
2793 /* Max of 1 Rx ring in this q_vector so give it the budget */
2794 budget_per_ring
= budget
;
2796 i40e_for_each_ring(ring
, q_vector
->rx
) {
2797 int cleaned
= ring
->xsk_pool
?
2798 i40e_clean_rx_irq_zc(ring
, budget_per_ring
) :
2799 i40e_clean_rx_irq(ring
, budget_per_ring
, &rx_cleaned
);
2801 work_done
+= cleaned
;
2802 /* if we clean as many as budgeted, we must not be done */
2803 if (cleaned
>= budget_per_ring
)
2804 clean_complete
= rx_clean_complete
= false;
2807 if (!i40e_enabled_xdp_vsi(vsi
))
2808 trace_i40e_napi_poll(napi
, q_vector
, budget
, budget_per_ring
, rx_cleaned
,
2809 tx_cleaned
, rx_clean_complete
, tx_clean_complete
);
2811 /* If work not completed, return budget and polling will return */
2812 if (!clean_complete
) {
2813 int cpu_id
= smp_processor_id();
2815 /* It is possible that the interrupt affinity has changed but,
2816 * if the cpu is pegged at 100%, polling will never exit while
2817 * traffic continues and the interrupt will be stuck on this
2818 * cpu. We check to make sure affinity is correct before we
2819 * continue to poll, otherwise we must stop polling so the
2820 * interrupt can move to the correct cpu.
2822 if (!cpumask_test_cpu(cpu_id
, &q_vector
->affinity_mask
)) {
2823 /* Tell napi that we are done polling */
2824 napi_complete_done(napi
, work_done
);
2826 /* Force an interrupt */
2827 i40e_force_wb(vsi
, q_vector
);
2829 /* Return budget-1 so that polling stops */
2834 q_vector
->tx
.ring
[0].tx_stats
.tx_force_wb
++;
2835 i40e_enable_wb_on_itr(vsi
, q_vector
);
2840 if (q_vector
->tx
.ring
[0].flags
& I40E_TXR_FLAGS_WB_ON_ITR
)
2841 q_vector
->arm_wb_state
= false;
2843 /* Exit the polling mode, but don't re-enable interrupts if stack might
2844 * poll us due to busy-polling
2846 if (likely(napi_complete_done(napi
, work_done
)))
2847 i40e_update_enable_itr(vsi
, q_vector
);
2849 q_vector
->in_busy_poll
= true;
2851 return min(work_done
, budget
- 1);
2855 * i40e_atr - Add a Flow Director ATR filter
2856 * @tx_ring: ring to add programming descriptor to
2858 * @tx_flags: send tx flags
2860 static void i40e_atr(struct i40e_ring
*tx_ring
, struct sk_buff
*skb
,
2863 struct i40e_filter_program_desc
*fdir_desc
;
2864 struct i40e_pf
*pf
= tx_ring
->vsi
->back
;
2866 unsigned char *network
;
2868 struct ipv6hdr
*ipv6
;
2872 u32 flex_ptype
, dtype_cmd
;
2876 /* make sure ATR is enabled */
2877 if (!test_bit(I40E_FLAG_FD_ATR_ENA
, pf
->flags
))
2880 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED
, pf
->state
))
2883 /* if sampling is disabled do nothing */
2884 if (!tx_ring
->atr_sample_rate
)
2887 /* Currently only IPv4/IPv6 with TCP is supported */
2888 if (!(tx_flags
& (I40E_TX_FLAGS_IPV4
| I40E_TX_FLAGS_IPV6
)))
2891 /* snag network header to get L4 type and address */
2892 hdr
.network
= (tx_flags
& I40E_TX_FLAGS_UDP_TUNNEL
) ?
2893 skb_inner_network_header(skb
) : skb_network_header(skb
);
2895 /* Note: tx_flags gets modified to reflect inner protocols in
2896 * tx_enable_csum function if encap is enabled.
2898 if (tx_flags
& I40E_TX_FLAGS_IPV4
) {
2899 /* access ihl as u8 to avoid unaligned access on ia64 */
2900 hlen
= (hdr
.network
[0] & 0x0F) << 2;
2901 l4_proto
= hdr
.ipv4
->protocol
;
2903 /* find the start of the innermost ipv6 header */
2904 unsigned int inner_hlen
= hdr
.network
- skb
->data
;
2905 unsigned int h_offset
= inner_hlen
;
2907 /* this function updates h_offset to the end of the header */
2909 ipv6_find_hdr(skb
, &h_offset
, IPPROTO_TCP
, NULL
, NULL
);
2910 /* hlen will contain our best estimate of the tcp header */
2911 hlen
= h_offset
- inner_hlen
;
2914 if (l4_proto
!= IPPROTO_TCP
)
2917 th
= (struct tcphdr
*)(hdr
.network
+ hlen
);
2919 /* Due to lack of space, no more new filters can be programmed */
2920 if (th
->syn
&& test_bit(__I40E_FD_ATR_AUTO_DISABLED
, pf
->state
))
2922 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA
, pf
->flags
)) {
2923 /* HW ATR eviction will take care of removing filters on FIN
2926 if (th
->fin
|| th
->rst
)
2930 tx_ring
->atr_count
++;
2932 /* sample on all syn/fin/rst packets or once every atr sample rate */
2936 (tx_ring
->atr_count
< tx_ring
->atr_sample_rate
))
2939 tx_ring
->atr_count
= 0;
2941 /* grab the next descriptor */
2942 i
= tx_ring
->next_to_use
;
2943 fdir_desc
= I40E_TX_FDIRDESC(tx_ring
, i
);
2946 tx_ring
->next_to_use
= (i
< tx_ring
->count
) ? i
: 0;
2948 flex_ptype
= FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK
,
2949 tx_ring
->queue_index
);
2950 flex_ptype
|= (tx_flags
& I40E_TX_FLAGS_IPV4
) ?
2951 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP
<<
2952 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT
) :
2953 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP
<<
2954 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT
);
2956 flex_ptype
|= tx_ring
->vsi
->id
<< I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT
;
2958 dtype_cmd
= I40E_TX_DESC_DTYPE_FILTER_PROG
;
2960 dtype_cmd
|= (th
->fin
|| th
->rst
) ?
2961 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE
<<
2962 I40E_TXD_FLTR_QW1_PCMD_SHIFT
) :
2963 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE
<<
2964 I40E_TXD_FLTR_QW1_PCMD_SHIFT
);
2966 dtype_cmd
|= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX
<<
2967 I40E_TXD_FLTR_QW1_DEST_SHIFT
;
2969 dtype_cmd
|= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID
<<
2970 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT
;
2972 dtype_cmd
|= I40E_TXD_FLTR_QW1_CNT_ENA_MASK
;
2973 if (!(tx_flags
& I40E_TX_FLAGS_UDP_TUNNEL
))
2975 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK
,
2976 I40E_FD_ATR_STAT_IDX(pf
->hw
.pf_id
));
2979 FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK
,
2980 I40E_FD_ATR_TUNNEL_STAT_IDX(pf
->hw
.pf_id
));
2982 if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA
, pf
->flags
))
2983 dtype_cmd
|= I40E_TXD_FLTR_QW1_ATR_MASK
;
2985 fdir_desc
->qindex_flex_ptype_vsi
= cpu_to_le32(flex_ptype
);
2986 fdir_desc
->rsvd
= cpu_to_le32(0);
2987 fdir_desc
->dtype_cmd_cntindex
= cpu_to_le32(dtype_cmd
);
2988 fdir_desc
->fd_id
= cpu_to_le32(0);
2992 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2994 * @tx_ring: ring to send buffer on
2995 * @flags: the tx flags to be set
2997 * Checks the skb and set up correspondingly several generic transmit flags
2998 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3000 * Returns error code indicate the frame should be dropped upon error and the
3001 * otherwise returns 0 to indicate the flags has been set properly.
3003 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff
*skb
,
3004 struct i40e_ring
*tx_ring
,
3007 __be16 protocol
= skb
->protocol
;
3010 if (protocol
== htons(ETH_P_8021Q
) &&
3011 !(tx_ring
->netdev
->features
& NETIF_F_HW_VLAN_CTAG_TX
)) {
3012 /* When HW VLAN acceleration is turned off by the user the
3013 * stack sets the protocol to 8021q so that the driver
3014 * can take any steps required to support the SW only
3015 * VLAN handling. In our case the driver doesn't need
3016 * to take any further steps so just set the protocol
3017 * to the encapsulated ethertype.
3019 skb
->protocol
= vlan_get_protocol(skb
);
3023 /* if we have a HW VLAN tag being added, default to the HW one */
3024 if (skb_vlan_tag_present(skb
)) {
3025 tx_flags
|= skb_vlan_tag_get(skb
) << I40E_TX_FLAGS_VLAN_SHIFT
;
3026 tx_flags
|= I40E_TX_FLAGS_HW_VLAN
;
3027 /* else if it is a SW VLAN, check the next protocol and store the tag */
3028 } else if (protocol
== htons(ETH_P_8021Q
)) {
3029 struct vlan_hdr
*vhdr
, _vhdr
;
3031 vhdr
= skb_header_pointer(skb
, ETH_HLEN
, sizeof(_vhdr
), &_vhdr
);
3035 protocol
= vhdr
->h_vlan_encapsulated_proto
;
3036 tx_flags
|= ntohs(vhdr
->h_vlan_TCI
) << I40E_TX_FLAGS_VLAN_SHIFT
;
3037 tx_flags
|= I40E_TX_FLAGS_SW_VLAN
;
3040 if (!test_bit(I40E_FLAG_DCB_ENA
, tx_ring
->vsi
->back
->flags
))
3043 /* Insert 802.1p priority into VLAN header */
3044 if ((tx_flags
& (I40E_TX_FLAGS_HW_VLAN
| I40E_TX_FLAGS_SW_VLAN
)) ||
3045 (skb
->priority
!= TC_PRIO_CONTROL
)) {
3046 tx_flags
&= ~I40E_TX_FLAGS_VLAN_PRIO_MASK
;
3047 tx_flags
|= (skb
->priority
& 0x7) <<
3048 I40E_TX_FLAGS_VLAN_PRIO_SHIFT
;
3049 if (tx_flags
& I40E_TX_FLAGS_SW_VLAN
) {
3050 struct vlan_ethhdr
*vhdr
;
3053 rc
= skb_cow_head(skb
, 0);
3056 vhdr
= skb_vlan_eth_hdr(skb
);
3057 vhdr
->h_vlan_TCI
= htons(tx_flags
>>
3058 I40E_TX_FLAGS_VLAN_SHIFT
);
3060 tx_flags
|= I40E_TX_FLAGS_HW_VLAN
;
3070 * i40e_tso - set up the tso context descriptor
3071 * @first: pointer to first Tx buffer for xmit
3072 * @hdr_len: ptr to the size of the packet header
3073 * @cd_type_cmd_tso_mss: Quad Word 1
3075 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3077 static int i40e_tso(struct i40e_tx_buffer
*first
, u8
*hdr_len
,
3078 u64
*cd_type_cmd_tso_mss
)
3080 struct sk_buff
*skb
= first
->skb
;
3081 u64 cd_cmd
, cd_tso_len
, cd_mss
;
3093 u32 paylen
, l4_offset
;
3097 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3100 if (!skb_is_gso(skb
))
3103 err
= skb_cow_head(skb
, 0);
3107 protocol
= vlan_get_protocol(skb
);
3109 if (eth_p_mpls(protocol
))
3110 ip
.hdr
= skb_inner_network_header(skb
);
3112 ip
.hdr
= skb_network_header(skb
);
3113 l4
.hdr
= skb_checksum_start(skb
);
3115 /* initialize outer IP header fields */
3116 if (ip
.v4
->version
== 4) {
3120 first
->tx_flags
|= I40E_TX_FLAGS_TSO
;
3122 ip
.v6
->payload_len
= 0;
3123 first
->tx_flags
|= I40E_TX_FLAGS_TSO
;
3126 if (skb_shinfo(skb
)->gso_type
& (SKB_GSO_GRE
|
3130 SKB_GSO_UDP_TUNNEL
|
3131 SKB_GSO_UDP_TUNNEL_CSUM
)) {
3132 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
) &&
3133 (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_TUNNEL_CSUM
)) {
3136 /* determine offset of outer transport header */
3137 l4_offset
= l4
.hdr
- skb
->data
;
3139 /* remove payload length from outer checksum */
3140 paylen
= skb
->len
- l4_offset
;
3141 csum_replace_by_diff(&l4
.udp
->check
,
3142 (__force __wsum
)htonl(paylen
));
3145 /* reset pointers to inner headers */
3146 ip
.hdr
= skb_inner_network_header(skb
);
3147 l4
.hdr
= skb_inner_transport_header(skb
);
3149 /* initialize inner IP header fields */
3150 if (ip
.v4
->version
== 4) {
3154 ip
.v6
->payload_len
= 0;
3158 /* determine offset of inner transport header */
3159 l4_offset
= l4
.hdr
- skb
->data
;
3161 /* remove payload length from inner checksum */
3162 paylen
= skb
->len
- l4_offset
;
3164 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_L4
) {
3165 csum_replace_by_diff(&l4
.udp
->check
, (__force __wsum
)htonl(paylen
));
3166 /* compute length of segmentation header */
3167 *hdr_len
= sizeof(*l4
.udp
) + l4_offset
;
3169 csum_replace_by_diff(&l4
.tcp
->check
, (__force __wsum
)htonl(paylen
));
3170 /* compute length of segmentation header */
3171 *hdr_len
= (l4
.tcp
->doff
* 4) + l4_offset
;
3174 /* pull values out of skb_shinfo */
3175 gso_size
= skb_shinfo(skb
)->gso_size
;
3177 /* update GSO size and bytecount with header size */
3178 first
->gso_segs
= skb_shinfo(skb
)->gso_segs
;
3179 first
->bytecount
+= (first
->gso_segs
- 1) * *hdr_len
;
3181 /* find the field values */
3182 cd_cmd
= I40E_TX_CTX_DESC_TSO
;
3183 cd_tso_len
= skb
->len
- *hdr_len
;
3185 *cd_type_cmd_tso_mss
|= (cd_cmd
<< I40E_TXD_CTX_QW1_CMD_SHIFT
) |
3186 (cd_tso_len
<< I40E_TXD_CTX_QW1_TSO_LEN_SHIFT
) |
3187 (cd_mss
<< I40E_TXD_CTX_QW1_MSS_SHIFT
);
3192 * i40e_tsyn - set up the tsyn context descriptor
3193 * @tx_ring: ptr to the ring to send
3194 * @skb: ptr to the skb we're sending
3195 * @tx_flags: the collected send information
3196 * @cd_type_cmd_tso_mss: Quad Word 1
3198 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3200 static int i40e_tsyn(struct i40e_ring
*tx_ring
, struct sk_buff
*skb
,
3201 u32 tx_flags
, u64
*cd_type_cmd_tso_mss
)
3205 if (likely(!(skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
)))
3208 /* Tx timestamps cannot be sampled when doing TSO */
3209 if (tx_flags
& I40E_TX_FLAGS_TSO
)
3212 /* only timestamp the outbound packet if the user has requested it and
3213 * we are not already transmitting a packet to be timestamped
3215 pf
= i40e_netdev_to_pf(tx_ring
->netdev
);
3216 if (!test_bit(I40E_FLAG_PTP_ENA
, pf
->flags
))
3220 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS
, pf
->state
)) {
3221 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
3222 pf
->ptp_tx_start
= jiffies
;
3223 pf
->ptp_tx_skb
= skb_get(skb
);
3225 pf
->tx_hwtstamp_skipped
++;
3229 *cd_type_cmd_tso_mss
|= (u64
)I40E_TX_CTX_DESC_TSYN
<<
3230 I40E_TXD_CTX_QW1_CMD_SHIFT
;
3236 * i40e_tx_enable_csum - Enable Tx checksum offloads
3238 * @tx_flags: pointer to Tx flags currently set
3239 * @td_cmd: Tx descriptor command bits to set
3240 * @td_offset: Tx descriptor header offsets to set
3241 * @tx_ring: Tx descriptor ring
3242 * @cd_tunneling: ptr to context desc bits
3244 static int i40e_tx_enable_csum(struct sk_buff
*skb
, u32
*tx_flags
,
3245 u32
*td_cmd
, u32
*td_offset
,
3246 struct i40e_ring
*tx_ring
,
3259 unsigned char *exthdr
;
3260 u32 offset
, cmd
= 0;
3265 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3268 protocol
= vlan_get_protocol(skb
);
3270 if (eth_p_mpls(protocol
)) {
3271 ip
.hdr
= skb_inner_network_header(skb
);
3272 l4
.hdr
= skb_checksum_start(skb
);
3274 ip
.hdr
= skb_network_header(skb
);
3275 l4
.hdr
= skb_transport_header(skb
);
3278 /* set the tx_flags to indicate the IP protocol type. this is
3279 * required so that checksum header computation below is accurate.
3281 if (ip
.v4
->version
== 4)
3282 *tx_flags
|= I40E_TX_FLAGS_IPV4
;
3284 *tx_flags
|= I40E_TX_FLAGS_IPV6
;
3286 /* compute outer L2 header size */
3287 offset
= ((ip
.hdr
- skb
->data
) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT
;
3289 if (skb
->encapsulation
) {
3291 /* define outer network header type */
3292 if (*tx_flags
& I40E_TX_FLAGS_IPV4
) {
3293 tunnel
|= (*tx_flags
& I40E_TX_FLAGS_TSO
) ?
3294 I40E_TX_CTX_EXT_IP_IPV4
:
3295 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM
;
3297 l4_proto
= ip
.v4
->protocol
;
3298 } else if (*tx_flags
& I40E_TX_FLAGS_IPV6
) {
3301 tunnel
|= I40E_TX_CTX_EXT_IP_IPV6
;
3303 exthdr
= ip
.hdr
+ sizeof(*ip
.v6
);
3304 l4_proto
= ip
.v6
->nexthdr
;
3305 ret
= ipv6_skip_exthdr(skb
, exthdr
- skb
->data
,
3306 &l4_proto
, &frag_off
);
3311 /* define outer transport */
3314 tunnel
|= I40E_TXD_CTX_UDP_TUNNELING
;
3315 *tx_flags
|= I40E_TX_FLAGS_UDP_TUNNEL
;
3318 tunnel
|= I40E_TXD_CTX_GRE_TUNNELING
;
3319 *tx_flags
|= I40E_TX_FLAGS_UDP_TUNNEL
;
3323 *tx_flags
|= I40E_TX_FLAGS_UDP_TUNNEL
;
3324 l4
.hdr
= skb_inner_network_header(skb
);
3327 if (*tx_flags
& I40E_TX_FLAGS_TSO
)
3330 skb_checksum_help(skb
);
3334 /* compute outer L3 header size */
3335 tunnel
|= ((l4
.hdr
- ip
.hdr
) / 4) <<
3336 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT
;
3338 /* switch IP header pointer from outer to inner header */
3339 ip
.hdr
= skb_inner_network_header(skb
);
3341 /* compute tunnel header size */
3342 tunnel
|= ((ip
.hdr
- l4
.hdr
) / 2) <<
3343 I40E_TXD_CTX_QW0_NATLEN_SHIFT
;
3345 /* indicate if we need to offload outer UDP header */
3346 if ((*tx_flags
& I40E_TX_FLAGS_TSO
) &&
3347 !(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
) &&
3348 (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP_TUNNEL_CSUM
))
3349 tunnel
|= I40E_TXD_CTX_QW0_L4T_CS_MASK
;
3351 /* record tunnel offload values */
3352 *cd_tunneling
|= tunnel
;
3354 /* switch L4 header pointer from outer to inner */
3355 l4
.hdr
= skb_inner_transport_header(skb
);
3358 /* reset type as we transition from outer to inner headers */
3359 *tx_flags
&= ~(I40E_TX_FLAGS_IPV4
| I40E_TX_FLAGS_IPV6
);
3360 if (ip
.v4
->version
== 4)
3361 *tx_flags
|= I40E_TX_FLAGS_IPV4
;
3362 if (ip
.v6
->version
== 6)
3363 *tx_flags
|= I40E_TX_FLAGS_IPV6
;
3366 /* Enable IP checksum offloads */
3367 if (*tx_flags
& I40E_TX_FLAGS_IPV4
) {
3368 l4_proto
= ip
.v4
->protocol
;
3369 /* the stack computes the IP header already, the only time we
3370 * need the hardware to recompute it is in the case of TSO.
3372 cmd
|= (*tx_flags
& I40E_TX_FLAGS_TSO
) ?
3373 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM
:
3374 I40E_TX_DESC_CMD_IIPT_IPV4
;
3375 } else if (*tx_flags
& I40E_TX_FLAGS_IPV6
) {
3376 cmd
|= I40E_TX_DESC_CMD_IIPT_IPV6
;
3378 exthdr
= ip
.hdr
+ sizeof(*ip
.v6
);
3379 l4_proto
= ip
.v6
->nexthdr
;
3380 if (l4
.hdr
!= exthdr
)
3381 ipv6_skip_exthdr(skb
, exthdr
- skb
->data
,
3382 &l4_proto
, &frag_off
);
3385 /* compute inner L3 header size */
3386 offset
|= ((l4
.hdr
- ip
.hdr
) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT
;
3388 /* Enable L4 checksum offloads */
3391 /* enable checksum offloads */
3392 cmd
|= I40E_TX_DESC_CMD_L4T_EOFT_TCP
;
3393 offset
|= l4
.tcp
->doff
<< I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT
;
3396 /* enable SCTP checksum offload */
3397 cmd
|= I40E_TX_DESC_CMD_L4T_EOFT_SCTP
;
3398 offset
|= (sizeof(struct sctphdr
) >> 2) <<
3399 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT
;
3402 /* enable UDP checksum offload */
3403 cmd
|= I40E_TX_DESC_CMD_L4T_EOFT_UDP
;
3404 offset
|= (sizeof(struct udphdr
) >> 2) <<
3405 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT
;
3408 if (*tx_flags
& I40E_TX_FLAGS_TSO
)
3410 skb_checksum_help(skb
);
3415 *td_offset
|= offset
;
3421 * i40e_create_tx_ctx - Build the Tx context descriptor
3422 * @tx_ring: ring to create the descriptor on
3423 * @cd_type_cmd_tso_mss: Quad Word 1
3424 * @cd_tunneling: Quad Word 0 - bits 0-31
3425 * @cd_l2tag2: Quad Word 0 - bits 32-63
3427 static void i40e_create_tx_ctx(struct i40e_ring
*tx_ring
,
3428 const u64 cd_type_cmd_tso_mss
,
3429 const u32 cd_tunneling
, const u32 cd_l2tag2
)
3431 struct i40e_tx_context_desc
*context_desc
;
3432 int i
= tx_ring
->next_to_use
;
3434 if ((cd_type_cmd_tso_mss
== I40E_TX_DESC_DTYPE_CONTEXT
) &&
3435 !cd_tunneling
&& !cd_l2tag2
)
3438 /* grab the next descriptor */
3439 context_desc
= I40E_TX_CTXTDESC(tx_ring
, i
);
3442 tx_ring
->next_to_use
= (i
< tx_ring
->count
) ? i
: 0;
3444 /* cpu_to_le32 and assign to struct fields */
3445 context_desc
->tunneling_params
= cpu_to_le32(cd_tunneling
);
3446 context_desc
->l2tag2
= cpu_to_le16(cd_l2tag2
);
3447 context_desc
->rsvd
= cpu_to_le16(0);
3448 context_desc
->type_cmd_tso_mss
= cpu_to_le64(cd_type_cmd_tso_mss
);
3452 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3453 * @tx_ring: the ring to be checked
3454 * @size: the size buffer we want to assure is available
3456 * Returns -EBUSY if a stop is needed, else 0
3458 int __i40e_maybe_stop_tx(struct i40e_ring
*tx_ring
, int size
)
3460 netif_stop_subqueue(tx_ring
->netdev
, tx_ring
->queue_index
);
3461 /* Memory barrier before checking head and tail */
3464 ++tx_ring
->tx_stats
.tx_stopped
;
3466 /* Check again in a case another CPU has just made room available. */
3467 if (likely(I40E_DESC_UNUSED(tx_ring
) < size
))
3470 /* A reprieve! - use start_queue because it doesn't call schedule */
3471 netif_start_subqueue(tx_ring
->netdev
, tx_ring
->queue_index
);
3472 ++tx_ring
->tx_stats
.restart_queue
;
3477 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3480 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3481 * and so we need to figure out the cases where we need to linearize the skb.
3483 * For TSO we need to count the TSO header and segment payload separately.
3484 * As such we need to check cases where we have 7 fragments or more as we
3485 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3486 * the segment payload in the first descriptor, and another 7 for the
3489 bool __i40e_chk_linearize(struct sk_buff
*skb
)
3491 const skb_frag_t
*frag
, *stale
;
3494 /* no need to check if number of frags is less than 7 */
3495 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3496 if (nr_frags
< (I40E_MAX_BUFFER_TXD
- 1))
3499 /* We need to walk through the list and validate that each group
3500 * of 6 fragments totals at least gso_size.
3502 nr_frags
-= I40E_MAX_BUFFER_TXD
- 2;
3503 frag
= &skb_shinfo(skb
)->frags
[0];
3505 /* Initialize size to the negative value of gso_size minus 1. We
3506 * use this as the worst case scenerio in which the frag ahead
3507 * of us only provides one byte which is why we are limited to 6
3508 * descriptors for a single transmit as the header and previous
3509 * fragment are already consuming 2 descriptors.
3511 sum
= 1 - skb_shinfo(skb
)->gso_size
;
3513 /* Add size of frags 0 through 4 to create our initial sum */
3514 sum
+= skb_frag_size(frag
++);
3515 sum
+= skb_frag_size(frag
++);
3516 sum
+= skb_frag_size(frag
++);
3517 sum
+= skb_frag_size(frag
++);
3518 sum
+= skb_frag_size(frag
++);
3520 /* Walk through fragments adding latest fragment, testing it, and
3521 * then removing stale fragments from the sum.
3523 for (stale
= &skb_shinfo(skb
)->frags
[0];; stale
++) {
3524 int stale_size
= skb_frag_size(stale
);
3526 sum
+= skb_frag_size(frag
++);
3528 /* The stale fragment may present us with a smaller
3529 * descriptor than the actual fragment size. To account
3530 * for that we need to remove all the data on the front and
3531 * figure out what the remainder would be in the last
3532 * descriptor associated with the fragment.
3534 if (stale_size
> I40E_MAX_DATA_PER_TXD
) {
3535 int align_pad
= -(skb_frag_off(stale
)) &
3536 (I40E_MAX_READ_REQ_SIZE
- 1);
3539 stale_size
-= align_pad
;
3542 sum
-= I40E_MAX_DATA_PER_TXD_ALIGNED
;
3543 stale_size
-= I40E_MAX_DATA_PER_TXD_ALIGNED
;
3544 } while (stale_size
> I40E_MAX_DATA_PER_TXD
);
3547 /* if sum is negative we failed to make sufficient progress */
3561 * i40e_tx_map - Build the Tx descriptor
3562 * @tx_ring: ring to send buffer on
3564 * @first: first buffer info buffer to use
3565 * @tx_flags: collected send information
3566 * @hdr_len: size of the packet header
3567 * @td_cmd: the command field in the descriptor
3568 * @td_offset: offset for checksum or crc
3570 * Returns 0 on success, -1 on failure to DMA
3572 static inline int i40e_tx_map(struct i40e_ring
*tx_ring
, struct sk_buff
*skb
,
3573 struct i40e_tx_buffer
*first
, u32 tx_flags
,
3574 const u8 hdr_len
, u32 td_cmd
, u32 td_offset
)
3576 unsigned int data_len
= skb
->data_len
;
3577 unsigned int size
= skb_headlen(skb
);
3579 struct i40e_tx_buffer
*tx_bi
;
3580 struct i40e_tx_desc
*tx_desc
;
3581 u16 i
= tx_ring
->next_to_use
;
3586 if (tx_flags
& I40E_TX_FLAGS_HW_VLAN
) {
3587 td_cmd
|= I40E_TX_DESC_CMD_IL2TAG1
;
3588 td_tag
= FIELD_GET(I40E_TX_FLAGS_VLAN_MASK
, tx_flags
);
3591 first
->tx_flags
= tx_flags
;
3593 dma
= dma_map_single(tx_ring
->dev
, skb
->data
, size
, DMA_TO_DEVICE
);
3595 tx_desc
= I40E_TX_DESC(tx_ring
, i
);
3598 for (frag
= &skb_shinfo(skb
)->frags
[0];; frag
++) {
3599 unsigned int max_data
= I40E_MAX_DATA_PER_TXD_ALIGNED
;
3601 if (dma_mapping_error(tx_ring
->dev
, dma
))
3604 /* record length, and DMA address */
3605 dma_unmap_len_set(tx_bi
, len
, size
);
3606 dma_unmap_addr_set(tx_bi
, dma
, dma
);
3608 /* align size to end of page */
3609 max_data
+= -dma
& (I40E_MAX_READ_REQ_SIZE
- 1);
3610 tx_desc
->buffer_addr
= cpu_to_le64(dma
);
3612 while (unlikely(size
> I40E_MAX_DATA_PER_TXD
)) {
3613 tx_desc
->cmd_type_offset_bsz
=
3614 build_ctob(td_cmd
, td_offset
,
3621 if (i
== tx_ring
->count
) {
3622 tx_desc
= I40E_TX_DESC(tx_ring
, 0);
3629 max_data
= I40E_MAX_DATA_PER_TXD_ALIGNED
;
3630 tx_desc
->buffer_addr
= cpu_to_le64(dma
);
3633 if (likely(!data_len
))
3636 tx_desc
->cmd_type_offset_bsz
= build_ctob(td_cmd
, td_offset
,
3643 if (i
== tx_ring
->count
) {
3644 tx_desc
= I40E_TX_DESC(tx_ring
, 0);
3648 size
= skb_frag_size(frag
);
3651 dma
= skb_frag_dma_map(tx_ring
->dev
, frag
, 0, size
,
3654 tx_bi
= &tx_ring
->tx_bi
[i
];
3657 netdev_tx_sent_queue(txring_txq(tx_ring
), first
->bytecount
);
3660 if (i
== tx_ring
->count
)
3663 tx_ring
->next_to_use
= i
;
3665 i40e_maybe_stop_tx(tx_ring
, DESC_NEEDED
);
3667 /* write last descriptor with EOP bit */
3668 td_cmd
|= I40E_TX_DESC_CMD_EOP
;
3670 /* We OR these values together to check both against 4 (WB_STRIDE)
3671 * below. This is safe since we don't re-use desc_count afterwards.
3673 desc_count
|= ++tx_ring
->packet_stride
;
3675 if (desc_count
>= WB_STRIDE
) {
3676 /* write last descriptor with RS bit set */
3677 td_cmd
|= I40E_TX_DESC_CMD_RS
;
3678 tx_ring
->packet_stride
= 0;
3681 tx_desc
->cmd_type_offset_bsz
=
3682 build_ctob(td_cmd
, td_offset
, size
, td_tag
);
3684 skb_tx_timestamp(skb
);
3686 /* Force memory writes to complete before letting h/w know there
3687 * are new descriptors to fetch.
3689 * We also use this memory barrier to make certain all of the
3690 * status bits have been updated before next_to_watch is written.
3694 /* set next_to_watch value indicating a packet is present */
3695 first
->next_to_watch
= tx_desc
;
3697 /* notify HW of packet */
3698 if (netif_xmit_stopped(txring_txq(tx_ring
)) || !netdev_xmit_more()) {
3699 writel(i
, tx_ring
->tail
);
3705 dev_info(tx_ring
->dev
, "TX DMA map failed\n");
3707 /* clear dma mappings for failed tx_bi map */
3709 tx_bi
= &tx_ring
->tx_bi
[i
];
3710 i40e_unmap_and_free_tx_resource(tx_ring
, tx_bi
);
3718 tx_ring
->next_to_use
= i
;
3723 static u16
i40e_swdcb_skb_tx_hash(struct net_device
*dev
,
3724 const struct sk_buff
*skb
,
3727 u32 jhash_initval_salt
= 0xd631614b;
3730 if (skb
->sk
&& skb
->sk
->sk_hash
)
3731 hash
= skb
->sk
->sk_hash
;
3733 hash
= (__force u16
)skb
->protocol
^ skb
->hash
;
3735 hash
= jhash_1word(hash
, jhash_initval_salt
);
3737 return (u16
)(((u64
)hash
* num_tx_queues
) >> 32);
3740 u16
i40e_lan_select_queue(struct net_device
*netdev
,
3741 struct sk_buff
*skb
,
3742 struct net_device __always_unused
*sb_dev
)
3744 struct i40e_netdev_priv
*np
= netdev_priv(netdev
);
3745 struct i40e_vsi
*vsi
= np
->vsi
;
3753 /* is DCB enabled at all? */
3754 if (vsi
->tc_config
.numtc
== 1 ||
3755 i40e_is_tc_mqprio_enabled(vsi
->back
))
3756 return netdev_pick_tx(netdev
, skb
, sb_dev
);
3758 prio
= skb
->priority
;
3759 hw
= &vsi
->back
->hw
;
3760 tclass
= hw
->local_dcbx_config
.etscfg
.prioritytable
[prio
];
3762 if (unlikely(!(vsi
->tc_config
.enabled_tc
& BIT(tclass
))))
3765 /* select a queue assigned for the given TC */
3766 qcount
= vsi
->tc_config
.tc_info
[tclass
].qcount
;
3767 hash
= i40e_swdcb_skb_tx_hash(netdev
, skb
, qcount
);
3769 qoffset
= vsi
->tc_config
.tc_info
[tclass
].qoffset
;
3770 return qoffset
+ hash
;
3774 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3775 * @xdpf: data to transmit
3776 * @xdp_ring: XDP Tx ring
3778 static int i40e_xmit_xdp_ring(struct xdp_frame
*xdpf
,
3779 struct i40e_ring
*xdp_ring
)
3781 struct skb_shared_info
*sinfo
= xdp_get_shared_info_from_frame(xdpf
);
3782 u8 nr_frags
= unlikely(xdp_frame_has_frags(xdpf
)) ? sinfo
->nr_frags
: 0;
3783 u16 i
= 0, index
= xdp_ring
->next_to_use
;
3784 struct i40e_tx_buffer
*tx_head
= &xdp_ring
->tx_bi
[index
];
3785 struct i40e_tx_buffer
*tx_bi
= tx_head
;
3786 struct i40e_tx_desc
*tx_desc
= I40E_TX_DESC(xdp_ring
, index
);
3787 void *data
= xdpf
->data
;
3788 u32 size
= xdpf
->len
;
3790 if (unlikely(I40E_DESC_UNUSED(xdp_ring
) < 1 + nr_frags
)) {
3791 xdp_ring
->tx_stats
.tx_busy
++;
3792 return I40E_XDP_CONSUMED
;
3795 tx_head
->bytecount
= xdp_get_frame_len(xdpf
);
3796 tx_head
->gso_segs
= 1;
3797 tx_head
->xdpf
= xdpf
;
3802 dma
= dma_map_single(xdp_ring
->dev
, data
, size
, DMA_TO_DEVICE
);
3803 if (dma_mapping_error(xdp_ring
->dev
, dma
))
3806 /* record length, and DMA address */
3807 dma_unmap_len_set(tx_bi
, len
, size
);
3808 dma_unmap_addr_set(tx_bi
, dma
, dma
);
3810 tx_desc
->buffer_addr
= cpu_to_le64(dma
);
3811 tx_desc
->cmd_type_offset_bsz
=
3812 build_ctob(I40E_TX_DESC_CMD_ICRC
, 0, size
, 0);
3814 if (++index
== xdp_ring
->count
)
3820 tx_bi
= &xdp_ring
->tx_bi
[index
];
3821 tx_desc
= I40E_TX_DESC(xdp_ring
, index
);
3823 data
= skb_frag_address(&sinfo
->frags
[i
]);
3824 size
= skb_frag_size(&sinfo
->frags
[i
]);
3828 tx_desc
->cmd_type_offset_bsz
|=
3829 cpu_to_le64(I40E_TXD_CMD
<< I40E_TXD_QW1_CMD_SHIFT
);
3831 /* Make certain all of the status bits have been updated
3832 * before next_to_watch is written.
3836 xdp_ring
->xdp_tx_active
++;
3838 tx_head
->next_to_watch
= tx_desc
;
3839 xdp_ring
->next_to_use
= index
;
3845 tx_bi
= &xdp_ring
->tx_bi
[index
];
3846 if (dma_unmap_len(tx_bi
, len
))
3847 dma_unmap_page(xdp_ring
->dev
,
3848 dma_unmap_addr(tx_bi
, dma
),
3849 dma_unmap_len(tx_bi
, len
),
3851 dma_unmap_len_set(tx_bi
, len
, 0);
3852 if (tx_bi
== tx_head
)
3856 index
+= xdp_ring
->count
;
3860 return I40E_XDP_CONSUMED
;
3864 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3866 * @tx_ring: ring to send buffer on
3868 * Returns NETDEV_TX_OK if sent, else an error code
3870 static netdev_tx_t
i40e_xmit_frame_ring(struct sk_buff
*skb
,
3871 struct i40e_ring
*tx_ring
)
3873 u64 cd_type_cmd_tso_mss
= I40E_TX_DESC_DTYPE_CONTEXT
;
3874 u32 cd_tunneling
= 0, cd_l2tag2
= 0;
3875 struct i40e_tx_buffer
*first
;
3883 /* prefetch the data, we'll need it later */
3884 prefetch(skb
->data
);
3886 i40e_trace(xmit_frame_ring
, skb
, tx_ring
);
3888 count
= i40e_xmit_descriptor_count(skb
);
3889 if (i40e_chk_linearize(skb
, count
)) {
3890 if (__skb_linearize(skb
)) {
3891 dev_kfree_skb_any(skb
);
3892 return NETDEV_TX_OK
;
3894 count
= i40e_txd_use_count(skb
->len
);
3895 tx_ring
->tx_stats
.tx_linearize
++;
3898 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3899 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3900 * + 4 desc gap to avoid the cache line where head is,
3901 * + 1 desc for context descriptor,
3902 * otherwise try next time
3904 if (i40e_maybe_stop_tx(tx_ring
, count
+ 4 + 1)) {
3905 tx_ring
->tx_stats
.tx_busy
++;
3906 return NETDEV_TX_BUSY
;
3909 /* record the location of the first descriptor for this packet */
3910 first
= &tx_ring
->tx_bi
[tx_ring
->next_to_use
];
3912 first
->bytecount
= skb
->len
;
3913 first
->gso_segs
= 1;
3915 /* prepare the xmit flags */
3916 if (i40e_tx_prepare_vlan_flags(skb
, tx_ring
, &tx_flags
))
3919 tso
= i40e_tso(first
, &hdr_len
, &cd_type_cmd_tso_mss
);
3924 tx_flags
|= I40E_TX_FLAGS_TSO
;
3926 /* Always offload the checksum, since it's in the data descriptor */
3927 tso
= i40e_tx_enable_csum(skb
, &tx_flags
, &td_cmd
, &td_offset
,
3928 tx_ring
, &cd_tunneling
);
3932 tsyn
= i40e_tsyn(tx_ring
, skb
, tx_flags
, &cd_type_cmd_tso_mss
);
3935 tx_flags
|= I40E_TX_FLAGS_TSYN
;
3937 /* always enable CRC insertion offload */
3938 td_cmd
|= I40E_TX_DESC_CMD_ICRC
;
3940 i40e_create_tx_ctx(tx_ring
, cd_type_cmd_tso_mss
,
3941 cd_tunneling
, cd_l2tag2
);
3943 /* Add Flow Director ATR if it's enabled.
3945 * NOTE: this must always be directly before the data descriptor.
3947 i40e_atr(tx_ring
, skb
, tx_flags
);
3949 if (i40e_tx_map(tx_ring
, skb
, first
, tx_flags
, hdr_len
,
3951 goto cleanup_tx_tstamp
;
3953 return NETDEV_TX_OK
;
3956 i40e_trace(xmit_frame_ring_drop
, first
->skb
, tx_ring
);
3957 dev_kfree_skb_any(first
->skb
);
3960 if (unlikely(tx_flags
& I40E_TX_FLAGS_TSYN
)) {
3961 struct i40e_pf
*pf
= i40e_netdev_to_pf(tx_ring
->netdev
);
3963 dev_kfree_skb_any(pf
->ptp_tx_skb
);
3964 pf
->ptp_tx_skb
= NULL
;
3965 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS
, pf
->state
);
3968 return NETDEV_TX_OK
;
3972 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3974 * @netdev: network interface device structure
3976 * Returns NETDEV_TX_OK if sent, else an error code
3978 netdev_tx_t
i40e_lan_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
3980 struct i40e_netdev_priv
*np
= netdev_priv(netdev
);
3981 struct i40e_vsi
*vsi
= np
->vsi
;
3982 struct i40e_ring
*tx_ring
= vsi
->tx_rings
[skb
->queue_mapping
];
3984 /* hardware can't handle really short frames, hardware padding works
3987 if (skb_put_padto(skb
, I40E_MIN_TX_LEN
))
3988 return NETDEV_TX_OK
;
3990 return i40e_xmit_frame_ring(skb
, tx_ring
);
3994 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3996 * @n: number of frames
3997 * @frames: array of XDP buffer pointers
3998 * @flags: XDP extra info
4000 * Returns number of frames successfully sent. Failed frames
4001 * will be free'ed by XDP core.
4003 * For error cases, a negative errno code is returned and no-frames
4004 * are transmitted (caller must handle freeing frames).
4006 int i40e_xdp_xmit(struct net_device
*dev
, int n
, struct xdp_frame
**frames
,
4009 struct i40e_netdev_priv
*np
= netdev_priv(dev
);
4010 unsigned int queue_index
= smp_processor_id();
4011 struct i40e_vsi
*vsi
= np
->vsi
;
4012 struct i40e_pf
*pf
= vsi
->back
;
4013 struct i40e_ring
*xdp_ring
;
4017 if (test_bit(__I40E_VSI_DOWN
, vsi
->state
))
4020 if (!i40e_enabled_xdp_vsi(vsi
) || queue_index
>= vsi
->num_queue_pairs
||
4021 test_bit(__I40E_CONFIG_BUSY
, pf
->state
))
4024 if (unlikely(flags
& ~XDP_XMIT_FLAGS_MASK
))
4027 xdp_ring
= vsi
->xdp_rings
[queue_index
];
4029 for (i
= 0; i
< n
; i
++) {
4030 struct xdp_frame
*xdpf
= frames
[i
];
4033 err
= i40e_xmit_xdp_ring(xdpf
, xdp_ring
);
4034 if (err
!= I40E_XDP_TX
)
4039 if (unlikely(flags
& XDP_XMIT_FLUSH
))
4040 i40e_xdp_ring_update_tail(xdp_ring
);