1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/ethtool.h>
9 #include <linux/if_vlan.h>
10 #include <linux/init.h>
11 #include <linux/ipv6.h>
12 #include <linux/mii.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/prefetch.h>
18 #include <linux/sctp.h>
19 #include <linux/slab.h>
20 #include <linux/tcp.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
27 char igbvf_driver_name
[] = "igbvf";
28 static const char igbvf_driver_string
[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright
[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug
= -1;
35 module_param(debug
, int, 0);
36 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
38 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
39 static void igbvf_reset(struct igbvf_adapter
*);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
43 static struct igbvf_info igbvf_vf_info
= {
47 .init_ops
= e1000_init_function_pointers_vf
,
50 static struct igbvf_info igbvf_i350_vf_info
= {
51 .mac
= e1000_vfadapt_i350
,
54 .init_ops
= e1000_init_function_pointers_vf
,
57 static const struct igbvf_info
*igbvf_info_tbl
[] = {
58 [board_vf
] = &igbvf_vf_info
,
59 [board_i350_vf
] = &igbvf_i350_vf_info
,
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
66 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
68 if (ring
->next_to_clean
> ring
->next_to_use
)
69 return ring
->next_to_clean
- ring
->next_to_use
- 1;
71 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
83 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
84 struct net_device
*netdev
,
86 u32 status
, __le16 vlan
)
90 if (status
& E1000_RXD_STAT_VP
) {
91 if ((adapter
->flags
& IGBVF_FLAG_RX_LB_VLAN_BSWAP
) &&
92 (status
& E1000_RXDEXT_STATERR_LB
))
93 vid
= be16_to_cpu((__force __be16
)vlan
) & E1000_RXD_SPC_VLAN_MASK
;
95 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
96 if (test_bit(vid
, adapter
->active_vlans
))
97 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vid
);
100 napi_gro_receive(&adapter
->rx_ring
->napi
, skb
);
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
104 u32 status_err
, struct sk_buff
*skb
)
106 skb_checksum_none_assert(skb
);
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
110 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
113 /* TCP/UDP checksum error bit is set */
115 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
116 /* let the stack verify checksum errors */
117 adapter
->hw_csum_err
++;
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
123 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
125 adapter
->hw_csum_good
++;
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
136 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
137 struct net_device
*netdev
= adapter
->netdev
;
138 struct pci_dev
*pdev
= adapter
->pdev
;
139 union e1000_adv_rx_desc
*rx_desc
;
140 struct igbvf_buffer
*buffer_info
;
145 i
= rx_ring
->next_to_use
;
146 buffer_info
= &rx_ring
->buffer_info
[i
];
148 if (adapter
->rx_ps_hdr_size
)
149 bufsz
= adapter
->rx_ps_hdr_size
;
151 bufsz
= adapter
->rx_buffer_len
;
153 while (cleaned_count
--) {
154 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
156 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
157 if (!buffer_info
->page
) {
158 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
159 if (!buffer_info
->page
) {
160 adapter
->alloc_rx_buff_failed
++;
163 buffer_info
->page_offset
= 0;
165 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
167 buffer_info
->page_dma
=
168 dma_map_page(&pdev
->dev
, buffer_info
->page
,
169 buffer_info
->page_offset
,
172 if (dma_mapping_error(&pdev
->dev
,
173 buffer_info
->page_dma
)) {
174 __free_page(buffer_info
->page
);
175 buffer_info
->page
= NULL
;
176 dev_err(&pdev
->dev
, "RX DMA map failed\n");
181 if (!buffer_info
->skb
) {
182 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
184 adapter
->alloc_rx_buff_failed
++;
188 buffer_info
->skb
= skb
;
189 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
192 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
193 dev_kfree_skb(buffer_info
->skb
);
194 buffer_info
->skb
= NULL
;
195 dev_err(&pdev
->dev
, "RX DMA map failed\n");
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
202 if (adapter
->rx_ps_hdr_size
) {
203 rx_desc
->read
.pkt_addr
=
204 cpu_to_le64(buffer_info
->page_dma
);
205 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
207 rx_desc
->read
.pkt_addr
= cpu_to_le64(buffer_info
->dma
);
208 rx_desc
->read
.hdr_addr
= 0;
212 if (i
== rx_ring
->count
)
214 buffer_info
= &rx_ring
->buffer_info
[i
];
218 if (rx_ring
->next_to_use
!= i
) {
219 rx_ring
->next_to_use
= i
;
221 i
= (rx_ring
->count
- 1);
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
231 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
244 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
245 int *work_done
, int work_to_do
)
247 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
248 struct net_device
*netdev
= adapter
->netdev
;
249 struct pci_dev
*pdev
= adapter
->pdev
;
250 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
251 struct igbvf_buffer
*buffer_info
, *next_buffer
;
253 bool cleaned
= false;
254 int cleaned_count
= 0;
255 unsigned int total_bytes
= 0, total_packets
= 0;
257 u32 length
, hlen
, staterr
;
259 i
= rx_ring
->next_to_clean
;
260 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
261 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
263 while (staterr
& E1000_RXD_STAT_DD
) {
264 if (*work_done
>= work_to_do
)
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
269 buffer_info
= &rx_ring
->buffer_info
[i
];
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
276 hlen
= le16_get_bits(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
,
277 E1000_RXDADV_HDRBUFLEN_MASK
);
278 if (hlen
> adapter
->rx_ps_hdr_size
)
279 hlen
= adapter
->rx_ps_hdr_size
;
281 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
285 skb
= buffer_info
->skb
;
286 prefetch(skb
->data
- NET_IP_ALIGN
);
287 buffer_info
->skb
= NULL
;
288 if (!adapter
->rx_ps_hdr_size
) {
289 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
290 adapter
->rx_buffer_len
,
292 buffer_info
->dma
= 0;
293 skb_put(skb
, length
);
297 if (!skb_shinfo(skb
)->nr_frags
) {
298 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
299 adapter
->rx_ps_hdr_size
,
301 buffer_info
->dma
= 0;
306 dma_unmap_page(&pdev
->dev
, buffer_info
->page_dma
,
309 buffer_info
->page_dma
= 0;
311 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
313 buffer_info
->page_offset
,
316 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
317 (page_count(buffer_info
->page
) != 1))
318 buffer_info
->page
= NULL
;
320 get_page(buffer_info
->page
);
323 skb
->data_len
+= length
;
324 skb
->truesize
+= PAGE_SIZE
/ 2;
328 if (i
== rx_ring
->count
)
330 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
332 next_buffer
= &rx_ring
->buffer_info
[i
];
334 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
335 buffer_info
->skb
= next_buffer
->skb
;
336 buffer_info
->dma
= next_buffer
->dma
;
337 next_buffer
->skb
= skb
;
338 next_buffer
->dma
= 0;
342 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
343 dev_kfree_skb_irq(skb
);
347 total_bytes
+= skb
->len
;
350 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
352 skb
->protocol
= eth_type_trans(skb
, netdev
);
354 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
355 rx_desc
->wb
.upper
.vlan
);
358 rx_desc
->wb
.upper
.status_error
= 0;
360 /* return some buffers to hardware, one at a time is too slow */
361 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
362 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
366 /* use prefetched values */
368 buffer_info
= next_buffer
;
370 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
373 rx_ring
->next_to_clean
= i
;
374 cleaned_count
= igbvf_desc_unused(rx_ring
);
377 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
379 adapter
->total_rx_packets
+= total_packets
;
380 adapter
->total_rx_bytes
+= total_bytes
;
381 netdev
->stats
.rx_bytes
+= total_bytes
;
382 netdev
->stats
.rx_packets
+= total_packets
;
386 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
387 struct igbvf_buffer
*buffer_info
)
389 if (buffer_info
->dma
) {
390 if (buffer_info
->mapped_as_page
)
391 dma_unmap_page(&adapter
->pdev
->dev
,
396 dma_unmap_single(&adapter
->pdev
->dev
,
400 buffer_info
->dma
= 0;
402 if (buffer_info
->skb
) {
403 dev_kfree_skb_any(buffer_info
->skb
);
404 buffer_info
->skb
= NULL
;
406 buffer_info
->time_stamp
= 0;
410 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
411 * @adapter: board private structure
412 * @tx_ring: ring being initialized
414 * Return 0 on success, negative on failure
416 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
417 struct igbvf_ring
*tx_ring
)
419 struct pci_dev
*pdev
= adapter
->pdev
;
422 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
423 tx_ring
->buffer_info
= vzalloc(size
);
424 if (!tx_ring
->buffer_info
)
427 /* round up to nearest 4K */
428 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
429 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
431 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
432 &tx_ring
->dma
, GFP_KERNEL
);
436 tx_ring
->adapter
= adapter
;
437 tx_ring
->next_to_use
= 0;
438 tx_ring
->next_to_clean
= 0;
442 vfree(tx_ring
->buffer_info
);
443 dev_err(&adapter
->pdev
->dev
,
444 "Unable to allocate memory for the transmit descriptor ring\n");
449 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
450 * @adapter: board private structure
451 * @rx_ring: ring being initialized
453 * Returns 0 on success, negative on failure
455 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
456 struct igbvf_ring
*rx_ring
)
458 struct pci_dev
*pdev
= adapter
->pdev
;
461 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
462 rx_ring
->buffer_info
= vzalloc(size
);
463 if (!rx_ring
->buffer_info
)
466 desc_len
= sizeof(union e1000_adv_rx_desc
);
468 /* Round up to nearest 4K */
469 rx_ring
->size
= rx_ring
->count
* desc_len
;
470 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
472 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
473 &rx_ring
->dma
, GFP_KERNEL
);
477 rx_ring
->next_to_clean
= 0;
478 rx_ring
->next_to_use
= 0;
480 rx_ring
->adapter
= adapter
;
485 vfree(rx_ring
->buffer_info
);
486 rx_ring
->buffer_info
= NULL
;
487 dev_err(&adapter
->pdev
->dev
,
488 "Unable to allocate memory for the receive descriptor ring\n");
493 * igbvf_clean_tx_ring - Free Tx Buffers
494 * @tx_ring: ring to be cleaned
496 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
498 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
499 struct igbvf_buffer
*buffer_info
;
503 if (!tx_ring
->buffer_info
)
506 /* Free all the Tx ring sk_buffs */
507 for (i
= 0; i
< tx_ring
->count
; i
++) {
508 buffer_info
= &tx_ring
->buffer_info
[i
];
509 igbvf_put_txbuf(adapter
, buffer_info
);
512 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
513 memset(tx_ring
->buffer_info
, 0, size
);
515 /* Zero out the descriptor ring */
516 memset(tx_ring
->desc
, 0, tx_ring
->size
);
518 tx_ring
->next_to_use
= 0;
519 tx_ring
->next_to_clean
= 0;
521 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
522 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
526 * igbvf_free_tx_resources - Free Tx Resources per Queue
527 * @tx_ring: ring to free resources from
529 * Free all transmit software resources
531 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
533 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
535 igbvf_clean_tx_ring(tx_ring
);
537 vfree(tx_ring
->buffer_info
);
538 tx_ring
->buffer_info
= NULL
;
540 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
543 tx_ring
->desc
= NULL
;
547 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
548 * @rx_ring: ring structure pointer to free buffers from
550 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
552 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
553 struct igbvf_buffer
*buffer_info
;
554 struct pci_dev
*pdev
= adapter
->pdev
;
558 if (!rx_ring
->buffer_info
)
561 /* Free all the Rx ring sk_buffs */
562 for (i
= 0; i
< rx_ring
->count
; i
++) {
563 buffer_info
= &rx_ring
->buffer_info
[i
];
564 if (buffer_info
->dma
) {
565 if (adapter
->rx_ps_hdr_size
) {
566 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
567 adapter
->rx_ps_hdr_size
,
570 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
571 adapter
->rx_buffer_len
,
574 buffer_info
->dma
= 0;
577 if (buffer_info
->skb
) {
578 dev_kfree_skb(buffer_info
->skb
);
579 buffer_info
->skb
= NULL
;
582 if (buffer_info
->page
) {
583 if (buffer_info
->page_dma
)
584 dma_unmap_page(&pdev
->dev
,
585 buffer_info
->page_dma
,
588 put_page(buffer_info
->page
);
589 buffer_info
->page
= NULL
;
590 buffer_info
->page_dma
= 0;
591 buffer_info
->page_offset
= 0;
595 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
596 memset(rx_ring
->buffer_info
, 0, size
);
598 /* Zero out the descriptor ring */
599 memset(rx_ring
->desc
, 0, rx_ring
->size
);
601 rx_ring
->next_to_clean
= 0;
602 rx_ring
->next_to_use
= 0;
604 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
605 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
609 * igbvf_free_rx_resources - Free Rx Resources
610 * @rx_ring: ring to clean the resources from
612 * Free all receive software resources
615 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
617 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
619 igbvf_clean_rx_ring(rx_ring
);
621 vfree(rx_ring
->buffer_info
);
622 rx_ring
->buffer_info
= NULL
;
624 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
626 rx_ring
->desc
= NULL
;
630 * igbvf_update_itr - update the dynamic ITR value based on statistics
631 * @adapter: pointer to adapter
632 * @itr_setting: current adapter->itr
633 * @packets: the number of packets during this measurement interval
634 * @bytes: the number of bytes during this measurement interval
636 * Stores a new ITR value based on packets and byte counts during the last
637 * interrupt. The advantage of per interrupt computation is faster updates
638 * and more accurate ITR for the current traffic pattern. Constants in this
639 * function were computed based on theoretical maximum wire speed and thresholds
640 * were set based on testing data as well as attempting to minimize response
641 * time while increasing bulk throughput.
643 static enum latency_range
igbvf_update_itr(struct igbvf_adapter
*adapter
,
644 enum latency_range itr_setting
,
645 int packets
, int bytes
)
647 enum latency_range retval
= itr_setting
;
650 goto update_itr_done
;
652 switch (itr_setting
) {
654 /* handle TSO and jumbo frames */
655 if (bytes
/packets
> 8000)
656 retval
= bulk_latency
;
657 else if ((packets
< 5) && (bytes
> 512))
658 retval
= low_latency
;
660 case low_latency
: /* 50 usec aka 20000 ints/s */
662 /* this if handles the TSO accounting */
663 if (bytes
/packets
> 8000)
664 retval
= bulk_latency
;
665 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
666 retval
= bulk_latency
;
667 else if ((packets
> 35))
668 retval
= lowest_latency
;
669 } else if (bytes
/packets
> 2000) {
670 retval
= bulk_latency
;
671 } else if (packets
<= 2 && bytes
< 512) {
672 retval
= lowest_latency
;
675 case bulk_latency
: /* 250 usec aka 4000 ints/s */
678 retval
= low_latency
;
679 } else if (bytes
< 6000) {
680 retval
= low_latency
;
691 static int igbvf_range_to_itr(enum latency_range current_range
)
695 switch (current_range
) {
696 /* counts and packets in update_itr are dependent on these numbers */
698 new_itr
= IGBVF_70K_ITR
;
701 new_itr
= IGBVF_20K_ITR
;
704 new_itr
= IGBVF_4K_ITR
;
707 new_itr
= IGBVF_START_ITR
;
713 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
717 adapter
->tx_ring
->itr_range
=
718 igbvf_update_itr(adapter
,
719 adapter
->tx_ring
->itr_val
,
720 adapter
->total_tx_packets
,
721 adapter
->total_tx_bytes
);
723 /* conservative mode (itr 3) eliminates the lowest_latency setting */
724 if (adapter
->requested_itr
== 3 &&
725 adapter
->tx_ring
->itr_range
== lowest_latency
)
726 adapter
->tx_ring
->itr_range
= low_latency
;
728 new_itr
= igbvf_range_to_itr(adapter
->tx_ring
->itr_range
);
730 if (new_itr
!= adapter
->tx_ring
->itr_val
) {
731 u32 current_itr
= adapter
->tx_ring
->itr_val
;
732 /* this attempts to bias the interrupt rate towards Bulk
733 * by adding intermediate steps when interrupt rate is
736 new_itr
= new_itr
> current_itr
?
737 min(current_itr
+ (new_itr
>> 2), new_itr
) :
739 adapter
->tx_ring
->itr_val
= new_itr
;
741 adapter
->tx_ring
->set_itr
= 1;
744 adapter
->rx_ring
->itr_range
=
745 igbvf_update_itr(adapter
, adapter
->rx_ring
->itr_val
,
746 adapter
->total_rx_packets
,
747 adapter
->total_rx_bytes
);
748 if (adapter
->requested_itr
== 3 &&
749 adapter
->rx_ring
->itr_range
== lowest_latency
)
750 adapter
->rx_ring
->itr_range
= low_latency
;
752 new_itr
= igbvf_range_to_itr(adapter
->rx_ring
->itr_range
);
754 if (new_itr
!= adapter
->rx_ring
->itr_val
) {
755 u32 current_itr
= adapter
->rx_ring
->itr_val
;
757 new_itr
= new_itr
> current_itr
?
758 min(current_itr
+ (new_itr
>> 2), new_itr
) :
760 adapter
->rx_ring
->itr_val
= new_itr
;
762 adapter
->rx_ring
->set_itr
= 1;
767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768 * @tx_ring: ring structure to clean descriptors from
770 * returns true if ring is completely cleaned
772 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
774 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
775 struct net_device
*netdev
= adapter
->netdev
;
776 struct igbvf_buffer
*buffer_info
;
778 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
779 unsigned int total_bytes
= 0, total_packets
= 0;
780 unsigned int i
, count
= 0;
781 bool cleaned
= false;
783 i
= tx_ring
->next_to_clean
;
784 buffer_info
= &tx_ring
->buffer_info
[i
];
785 eop_desc
= buffer_info
->next_to_watch
;
788 /* if next_to_watch is not set then there is no work pending */
792 /* prevent any other reads prior to eop_desc */
795 /* if DD is not set pending work has not been completed */
796 if (!(eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)))
799 /* clear next_to_watch to prevent false hangs */
800 buffer_info
->next_to_watch
= NULL
;
802 for (cleaned
= false; !cleaned
; count
++) {
803 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
804 cleaned
= (tx_desc
== eop_desc
);
805 skb
= buffer_info
->skb
;
808 unsigned int segs
, bytecount
;
810 /* gso_segs is currently only valid for tcp */
811 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
812 /* multiply data chunks by size of headers */
813 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
815 total_packets
+= segs
;
816 total_bytes
+= bytecount
;
819 igbvf_put_txbuf(adapter
, buffer_info
);
820 tx_desc
->wb
.status
= 0;
823 if (i
== tx_ring
->count
)
826 buffer_info
= &tx_ring
->buffer_info
[i
];
829 eop_desc
= buffer_info
->next_to_watch
;
830 } while (count
< tx_ring
->count
);
832 tx_ring
->next_to_clean
= i
;
834 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
835 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
836 /* Make sure that anybody stopping the queue after this
837 * sees the new next_to_clean.
840 if (netif_queue_stopped(netdev
) &&
841 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
842 netif_wake_queue(netdev
);
843 ++adapter
->restart_queue
;
847 netdev
->stats
.tx_bytes
+= total_bytes
;
848 netdev
->stats
.tx_packets
+= total_packets
;
849 return count
< tx_ring
->count
;
852 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
854 struct net_device
*netdev
= data
;
855 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
856 struct e1000_hw
*hw
= &adapter
->hw
;
858 adapter
->int_counter1
++;
860 hw
->mac
.get_link_status
= 1;
861 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
862 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
864 ew32(EIMS
, adapter
->eims_other
);
869 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
871 struct net_device
*netdev
= data
;
872 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
873 struct e1000_hw
*hw
= &adapter
->hw
;
874 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
876 if (tx_ring
->set_itr
) {
877 writel(tx_ring
->itr_val
,
878 adapter
->hw
.hw_addr
+ tx_ring
->itr_register
);
879 adapter
->tx_ring
->set_itr
= 0;
882 adapter
->total_tx_bytes
= 0;
883 adapter
->total_tx_packets
= 0;
885 /* auto mask will automatically re-enable the interrupt when we write
888 if (!igbvf_clean_tx_irq(tx_ring
))
889 /* Ring was not completely cleaned, so fire another interrupt */
890 ew32(EICS
, tx_ring
->eims_value
);
892 ew32(EIMS
, tx_ring
->eims_value
);
897 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
899 struct net_device
*netdev
= data
;
900 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
902 adapter
->int_counter0
++;
904 /* Write the ITR value calculated at the end of the
905 * previous interrupt.
907 if (adapter
->rx_ring
->set_itr
) {
908 writel(adapter
->rx_ring
->itr_val
,
909 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
910 adapter
->rx_ring
->set_itr
= 0;
913 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
914 adapter
->total_rx_bytes
= 0;
915 adapter
->total_rx_packets
= 0;
916 __napi_schedule(&adapter
->rx_ring
->napi
);
922 #define IGBVF_NO_QUEUE -1
924 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
925 int tx_queue
, int msix_vector
)
927 struct e1000_hw
*hw
= &adapter
->hw
;
930 /* 82576 uses a table-based method for assigning vectors.
931 * Each queue has a single entry in the table to which we write
932 * a vector number along with a "valid" bit. Sadly, the layout
933 * of the table is somewhat counterintuitive.
935 if (rx_queue
> IGBVF_NO_QUEUE
) {
936 index
= (rx_queue
>> 1);
937 ivar
= array_er32(IVAR0
, index
);
938 if (rx_queue
& 0x1) {
939 /* vector goes into third byte of register */
940 ivar
= ivar
& 0xFF00FFFF;
941 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
943 /* vector goes into low byte of register */
944 ivar
= ivar
& 0xFFFFFF00;
945 ivar
|= msix_vector
| E1000_IVAR_VALID
;
947 adapter
->rx_ring
[rx_queue
].eims_value
= BIT(msix_vector
);
948 array_ew32(IVAR0
, index
, ivar
);
950 if (tx_queue
> IGBVF_NO_QUEUE
) {
951 index
= (tx_queue
>> 1);
952 ivar
= array_er32(IVAR0
, index
);
953 if (tx_queue
& 0x1) {
954 /* vector goes into high byte of register */
955 ivar
= ivar
& 0x00FFFFFF;
956 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
958 /* vector goes into second byte of register */
959 ivar
= ivar
& 0xFFFF00FF;
960 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
962 adapter
->tx_ring
[tx_queue
].eims_value
= BIT(msix_vector
);
963 array_ew32(IVAR0
, index
, ivar
);
968 * igbvf_configure_msix - Configure MSI-X hardware
969 * @adapter: board private structure
971 * igbvf_configure_msix sets up the hardware to properly
972 * generate MSI-X interrupts.
974 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
977 struct e1000_hw
*hw
= &adapter
->hw
;
978 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
979 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
982 adapter
->eims_enable_mask
= 0;
984 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
985 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
986 writel(tx_ring
->itr_val
, hw
->hw_addr
+ tx_ring
->itr_register
);
987 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
988 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
989 writel(rx_ring
->itr_val
, hw
->hw_addr
+ rx_ring
->itr_register
);
991 /* set vector for other causes, i.e. link changes */
993 tmp
= (vector
++ | E1000_IVAR_VALID
);
995 ew32(IVAR_MISC
, tmp
);
997 adapter
->eims_enable_mask
= GENMASK(vector
- 1, 0);
998 adapter
->eims_other
= BIT(vector
- 1);
1002 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
1004 if (adapter
->msix_entries
) {
1005 pci_disable_msix(adapter
->pdev
);
1006 kfree(adapter
->msix_entries
);
1007 adapter
->msix_entries
= NULL
;
1012 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1013 * @adapter: board private structure
1015 * Attempt to configure interrupts using the best available
1016 * capabilities of the hardware and kernel.
1018 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
1023 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1024 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
1026 if (adapter
->msix_entries
) {
1027 for (i
= 0; i
< 3; i
++)
1028 adapter
->msix_entries
[i
].entry
= i
;
1030 err
= pci_enable_msix_range(adapter
->pdev
,
1031 adapter
->msix_entries
, 3, 3);
1036 dev_err(&adapter
->pdev
->dev
,
1037 "Failed to initialize MSI-X interrupts.\n");
1038 igbvf_reset_interrupt_capability(adapter
);
1043 * igbvf_request_msix - Initialize MSI-X interrupts
1044 * @adapter: board private structure
1046 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1049 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1051 struct net_device
*netdev
= adapter
->netdev
;
1052 int err
= 0, vector
= 0;
1054 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1055 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1056 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1058 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1059 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1062 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1063 igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1068 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1069 adapter
->tx_ring
->itr_val
= adapter
->current_itr
;
1072 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1073 igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1078 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1079 adapter
->rx_ring
->itr_val
= adapter
->current_itr
;
1082 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1083 igbvf_msix_other
, 0, netdev
->name
, netdev
);
1087 igbvf_configure_msix(adapter
);
1090 free_irq(adapter
->msix_entries
[--vector
].vector
, netdev
);
1092 free_irq(adapter
->msix_entries
[--vector
].vector
, netdev
);
1098 * igbvf_alloc_queues - Allocate memory for all rings
1099 * @adapter: board private structure to initialize
1101 static int igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1103 struct net_device
*netdev
= adapter
->netdev
;
1105 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1106 if (!adapter
->tx_ring
)
1109 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1110 if (!adapter
->rx_ring
) {
1111 kfree(adapter
->tx_ring
);
1115 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
);
1121 * igbvf_request_irq - initialize interrupts
1122 * @adapter: board private structure
1124 * Attempts to configure interrupts using the best available
1125 * capabilities of the hardware and kernel.
1127 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1131 /* igbvf supports msi-x only */
1132 if (adapter
->msix_entries
)
1133 err
= igbvf_request_msix(adapter
);
1138 dev_err(&adapter
->pdev
->dev
,
1139 "Unable to allocate interrupt, Error: %d\n", err
);
1144 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1146 struct net_device
*netdev
= adapter
->netdev
;
1149 if (adapter
->msix_entries
) {
1150 for (vector
= 0; vector
< 3; vector
++)
1151 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1156 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1157 * @adapter: board private structure
1159 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1161 struct e1000_hw
*hw
= &adapter
->hw
;
1165 if (adapter
->msix_entries
)
1170 * igbvf_irq_enable - Enable default interrupt generation settings
1171 * @adapter: board private structure
1173 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1175 struct e1000_hw
*hw
= &adapter
->hw
;
1177 ew32(EIAC
, adapter
->eims_enable_mask
);
1178 ew32(EIAM
, adapter
->eims_enable_mask
);
1179 ew32(EIMS
, adapter
->eims_enable_mask
);
1183 * igbvf_poll - NAPI Rx polling callback
1184 * @napi: struct associated with this polling callback
1185 * @budget: amount of packets driver is allowed to process this poll
1187 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1189 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1190 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1191 struct e1000_hw
*hw
= &adapter
->hw
;
1194 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1196 if (work_done
== budget
)
1199 /* Exit the polling mode, but don't re-enable interrupts if stack might
1200 * poll us due to busy-polling
1202 if (likely(napi_complete_done(napi
, work_done
))) {
1203 if (adapter
->requested_itr
& 3)
1204 igbvf_set_itr(adapter
);
1206 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1207 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1214 * igbvf_set_rlpml - set receive large packet maximum length
1215 * @adapter: board private structure
1217 * Configure the maximum size of packets that will be received
1219 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1222 struct e1000_hw
*hw
= &adapter
->hw
;
1224 max_frame_size
= adapter
->max_frame_size
+ VLAN_TAG_SIZE
;
1226 spin_lock_bh(&hw
->mbx_lock
);
1228 e1000_rlpml_set_vf(hw
, max_frame_size
);
1230 spin_unlock_bh(&hw
->mbx_lock
);
1233 static int igbvf_vlan_rx_add_vid(struct net_device
*netdev
,
1234 __be16 proto
, u16 vid
)
1236 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1237 struct e1000_hw
*hw
= &adapter
->hw
;
1239 spin_lock_bh(&hw
->mbx_lock
);
1241 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true)) {
1242 dev_warn(&adapter
->pdev
->dev
, "Vlan id %d\n is not added", vid
);
1243 spin_unlock_bh(&hw
->mbx_lock
);
1247 spin_unlock_bh(&hw
->mbx_lock
);
1249 set_bit(vid
, adapter
->active_vlans
);
1253 static int igbvf_vlan_rx_kill_vid(struct net_device
*netdev
,
1254 __be16 proto
, u16 vid
)
1256 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1257 struct e1000_hw
*hw
= &adapter
->hw
;
1259 spin_lock_bh(&hw
->mbx_lock
);
1261 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false)) {
1262 dev_err(&adapter
->pdev
->dev
,
1263 "Failed to remove vlan id %d\n", vid
);
1264 spin_unlock_bh(&hw
->mbx_lock
);
1268 spin_unlock_bh(&hw
->mbx_lock
);
1270 clear_bit(vid
, adapter
->active_vlans
);
1274 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1278 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
1279 igbvf_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
1283 * igbvf_configure_tx - Configure Transmit Unit after Reset
1284 * @adapter: board private structure
1286 * Configure the Tx unit of the MAC after a reset.
1288 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1290 struct e1000_hw
*hw
= &adapter
->hw
;
1291 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1293 u32 txdctl
, dca_txctrl
;
1295 /* disable transmits */
1296 txdctl
= er32(TXDCTL(0));
1297 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1301 /* Setup the HW Tx Head and Tail descriptor pointers */
1302 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1303 tdba
= tx_ring
->dma
;
1304 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1305 ew32(TDBAH(0), (tdba
>> 32));
1308 tx_ring
->head
= E1000_TDH(0);
1309 tx_ring
->tail
= E1000_TDT(0);
1311 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1312 * MUST be delivered in order or it will completely screw up
1315 dca_txctrl
= er32(DCA_TXCTRL(0));
1316 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1317 ew32(DCA_TXCTRL(0), dca_txctrl
);
1319 /* enable transmits */
1320 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1321 ew32(TXDCTL(0), txdctl
);
1323 /* Setup Transmit Descriptor Settings for eop descriptor */
1324 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1326 /* enable Report Status bit */
1327 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1331 * igbvf_setup_srrctl - configure the receive control registers
1332 * @adapter: Board private structure
1334 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1336 struct e1000_hw
*hw
= &adapter
->hw
;
1339 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1340 E1000_SRRCTL_BSIZEHDR_MASK
|
1341 E1000_SRRCTL_BSIZEPKT_MASK
);
1343 /* Enable queue drop to avoid head of line blocking */
1344 srrctl
|= E1000_SRRCTL_DROP_EN
;
1346 /* Setup buffer sizes */
1347 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1348 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1350 if (adapter
->rx_buffer_len
< 2048) {
1351 adapter
->rx_ps_hdr_size
= 0;
1352 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1354 adapter
->rx_ps_hdr_size
= 128;
1355 srrctl
|= adapter
->rx_ps_hdr_size
<<
1356 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1357 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1360 ew32(SRRCTL(0), srrctl
);
1364 * igbvf_configure_rx - Configure Receive Unit after Reset
1365 * @adapter: board private structure
1367 * Configure the Rx unit of the MAC after a reset.
1369 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1371 struct e1000_hw
*hw
= &adapter
->hw
;
1372 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1376 /* disable receives */
1377 rxdctl
= er32(RXDCTL(0));
1378 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1382 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1383 * the Base and Length of the Rx Descriptor Ring
1385 rdba
= rx_ring
->dma
;
1386 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1387 ew32(RDBAH(0), (rdba
>> 32));
1388 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1389 rx_ring
->head
= E1000_RDH(0);
1390 rx_ring
->tail
= E1000_RDT(0);
1394 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1395 rxdctl
&= 0xFFF00000;
1396 rxdctl
|= IGBVF_RX_PTHRESH
;
1397 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1398 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1400 igbvf_set_rlpml(adapter
);
1402 /* enable receives */
1403 ew32(RXDCTL(0), rxdctl
);
1407 * igbvf_set_multi - Multicast and Promiscuous mode set
1408 * @netdev: network interface device structure
1410 * The set_multi entry point is called whenever the multicast address
1411 * list or the network interface flags are updated. This routine is
1412 * responsible for configuring the hardware for proper multicast,
1413 * promiscuous mode, and all-multi behavior.
1415 static void igbvf_set_multi(struct net_device
*netdev
)
1417 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1418 struct e1000_hw
*hw
= &adapter
->hw
;
1419 struct netdev_hw_addr
*ha
;
1420 u8
*mta_list
= NULL
;
1423 if (!netdev_mc_empty(netdev
)) {
1424 mta_list
= kmalloc_array(netdev_mc_count(netdev
), ETH_ALEN
,
1430 /* prepare a packed array of only addresses. */
1432 netdev_for_each_mc_addr(ha
, netdev
)
1433 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
1435 spin_lock_bh(&hw
->mbx_lock
);
1437 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1439 spin_unlock_bh(&hw
->mbx_lock
);
1444 * igbvf_set_uni - Configure unicast MAC filters
1445 * @netdev: network interface device structure
1447 * This routine is responsible for configuring the hardware for proper
1450 static int igbvf_set_uni(struct net_device
*netdev
)
1452 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1453 struct e1000_hw
*hw
= &adapter
->hw
;
1455 if (netdev_uc_count(netdev
) > IGBVF_MAX_MAC_FILTERS
) {
1456 pr_err("Too many unicast filters - No Space\n");
1460 spin_lock_bh(&hw
->mbx_lock
);
1462 /* Clear all unicast MAC filters */
1463 hw
->mac
.ops
.set_uc_addr(hw
, E1000_VF_MAC_FILTER_CLR
, NULL
);
1465 spin_unlock_bh(&hw
->mbx_lock
);
1467 if (!netdev_uc_empty(netdev
)) {
1468 struct netdev_hw_addr
*ha
;
1470 /* Add MAC filters one by one */
1471 netdev_for_each_uc_addr(ha
, netdev
) {
1472 spin_lock_bh(&hw
->mbx_lock
);
1474 hw
->mac
.ops
.set_uc_addr(hw
, E1000_VF_MAC_FILTER_ADD
,
1477 spin_unlock_bh(&hw
->mbx_lock
);
1485 static void igbvf_set_rx_mode(struct net_device
*netdev
)
1487 igbvf_set_multi(netdev
);
1488 igbvf_set_uni(netdev
);
1492 * igbvf_configure - configure the hardware for Rx and Tx
1493 * @adapter: private board structure
1495 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1497 igbvf_set_rx_mode(adapter
->netdev
);
1499 igbvf_restore_vlan(adapter
);
1501 igbvf_configure_tx(adapter
);
1502 igbvf_setup_srrctl(adapter
);
1503 igbvf_configure_rx(adapter
);
1504 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1505 igbvf_desc_unused(adapter
->rx_ring
));
1508 /* igbvf_reset - bring the hardware into a known good state
1509 * @adapter: private board structure
1511 * This function boots the hardware and enables some settings that
1512 * require a configuration cycle of the hardware - those cannot be
1513 * set/changed during runtime. After reset the device needs to be
1514 * properly configured for Rx, Tx etc.
1516 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1518 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1519 struct net_device
*netdev
= adapter
->netdev
;
1520 struct e1000_hw
*hw
= &adapter
->hw
;
1522 spin_lock_bh(&hw
->mbx_lock
);
1524 /* Allow time for pending master requests to run */
1525 if (mac
->ops
.reset_hw(hw
))
1526 dev_info(&adapter
->pdev
->dev
, "PF still resetting\n");
1528 mac
->ops
.init_hw(hw
);
1530 spin_unlock_bh(&hw
->mbx_lock
);
1532 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1533 eth_hw_addr_set(netdev
, adapter
->hw
.mac
.addr
);
1534 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1538 adapter
->last_reset
= jiffies
;
1541 int igbvf_up(struct igbvf_adapter
*adapter
)
1543 struct e1000_hw
*hw
= &adapter
->hw
;
1545 /* hardware has been reset, we need to reload some things */
1546 igbvf_configure(adapter
);
1548 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1550 napi_enable(&adapter
->rx_ring
->napi
);
1551 if (adapter
->msix_entries
)
1552 igbvf_configure_msix(adapter
);
1554 /* Clear any pending interrupts. */
1556 igbvf_irq_enable(adapter
);
1558 /* start the watchdog */
1559 hw
->mac
.get_link_status
= 1;
1560 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1565 void igbvf_down(struct igbvf_adapter
*adapter
)
1567 struct net_device
*netdev
= adapter
->netdev
;
1568 struct e1000_hw
*hw
= &adapter
->hw
;
1571 /* signal that we're down so the interrupt handler does not
1572 * reschedule our watchdog timer
1574 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1576 /* disable receives in the hardware */
1577 rxdctl
= er32(RXDCTL(0));
1578 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1580 netif_carrier_off(netdev
);
1581 netif_stop_queue(netdev
);
1583 /* disable transmits in the hardware */
1584 txdctl
= er32(TXDCTL(0));
1585 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1587 /* flush both disables and wait for them to finish */
1591 napi_disable(&adapter
->rx_ring
->napi
);
1593 igbvf_irq_disable(adapter
);
1595 del_timer_sync(&adapter
->watchdog_timer
);
1597 /* record the stats before reset*/
1598 igbvf_update_stats(adapter
);
1600 adapter
->link_speed
= 0;
1601 adapter
->link_duplex
= 0;
1603 igbvf_reset(adapter
);
1604 igbvf_clean_tx_ring(adapter
->tx_ring
);
1605 igbvf_clean_rx_ring(adapter
->rx_ring
);
1608 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1611 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1612 usleep_range(1000, 2000);
1613 igbvf_down(adapter
);
1615 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1619 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1620 * @adapter: board private structure to initialize
1622 * igbvf_sw_init initializes the Adapter private data structure.
1623 * Fields are initialized based on PCI device information and
1624 * OS network device settings (MTU size).
1626 static int igbvf_sw_init(struct igbvf_adapter
*adapter
)
1628 struct net_device
*netdev
= adapter
->netdev
;
1631 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1632 adapter
->rx_ps_hdr_size
= 0;
1633 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1634 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1636 adapter
->tx_int_delay
= 8;
1637 adapter
->tx_abs_int_delay
= 32;
1638 adapter
->rx_int_delay
= 0;
1639 adapter
->rx_abs_int_delay
= 8;
1640 adapter
->requested_itr
= 3;
1641 adapter
->current_itr
= IGBVF_START_ITR
;
1643 /* Set various function pointers */
1644 adapter
->ei
->init_ops(&adapter
->hw
);
1646 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1650 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1654 igbvf_set_interrupt_capability(adapter
);
1656 if (igbvf_alloc_queues(adapter
))
1659 /* Explicitly disable IRQ since the NIC can be in any state. */
1660 igbvf_irq_disable(adapter
);
1662 spin_lock_init(&adapter
->hw
.mbx_lock
);
1664 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1668 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1670 struct e1000_hw
*hw
= &adapter
->hw
;
1672 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1673 adapter
->stats
.last_gorc
= er32(VFGORC
);
1674 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1675 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1676 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1677 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1678 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1679 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1680 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1682 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1683 adapter
->stats
.base_gorc
= er32(VFGORC
);
1684 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1685 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1686 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1687 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1688 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1689 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1690 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1694 * igbvf_open - Called when a network interface is made active
1695 * @netdev: network interface device structure
1697 * Returns 0 on success, negative value on failure
1699 * The open entry point is called when a network interface is made
1700 * active by the system (IFF_UP). At this point all resources needed
1701 * for transmit and receive operations are allocated, the interrupt
1702 * handler is registered with the OS, the watchdog timer is started,
1703 * and the stack is notified that the interface is ready.
1705 static int igbvf_open(struct net_device
*netdev
)
1707 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1708 struct e1000_hw
*hw
= &adapter
->hw
;
1711 /* disallow open during test */
1712 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1715 /* allocate transmit descriptors */
1716 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1720 /* allocate receive descriptors */
1721 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1725 /* before we allocate an interrupt, we must be ready to handle it.
1726 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1727 * as soon as we call pci_request_irq, so we have to setup our
1728 * clean_rx handler before we do so.
1730 igbvf_configure(adapter
);
1732 err
= igbvf_request_irq(adapter
);
1736 /* From here on the code is the same as igbvf_up() */
1737 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1739 napi_enable(&adapter
->rx_ring
->napi
);
1741 /* clear any pending interrupts */
1744 igbvf_irq_enable(adapter
);
1746 /* start the watchdog */
1747 hw
->mac
.get_link_status
= 1;
1748 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1753 igbvf_free_rx_resources(adapter
->rx_ring
);
1755 igbvf_free_tx_resources(adapter
->tx_ring
);
1757 igbvf_reset(adapter
);
1763 * igbvf_close - Disables a network interface
1764 * @netdev: network interface device structure
1766 * Returns 0, this is not allowed to fail
1768 * The close entry point is called when an interface is de-activated
1769 * by the OS. The hardware is still under the drivers control, but
1770 * needs to be disabled. A global MAC reset is issued to stop the
1771 * hardware, and all transmit and receive resources are freed.
1773 static int igbvf_close(struct net_device
*netdev
)
1775 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1777 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1778 igbvf_down(adapter
);
1780 igbvf_free_irq(adapter
);
1782 igbvf_free_tx_resources(adapter
->tx_ring
);
1783 igbvf_free_rx_resources(adapter
->rx_ring
);
1789 * igbvf_set_mac - Change the Ethernet Address of the NIC
1790 * @netdev: network interface device structure
1791 * @p: pointer to an address structure
1793 * Returns 0 on success, negative on failure
1795 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1797 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1798 struct e1000_hw
*hw
= &adapter
->hw
;
1799 struct sockaddr
*addr
= p
;
1801 if (!is_valid_ether_addr(addr
->sa_data
))
1802 return -EADDRNOTAVAIL
;
1804 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1806 spin_lock_bh(&hw
->mbx_lock
);
1808 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1810 spin_unlock_bh(&hw
->mbx_lock
);
1812 if (!ether_addr_equal(addr
->sa_data
, hw
->mac
.addr
))
1813 return -EADDRNOTAVAIL
;
1815 eth_hw_addr_set(netdev
, addr
->sa_data
);
1820 #define UPDATE_VF_COUNTER(reg, name) \
1822 u32 current_counter = er32(reg); \
1823 if (current_counter < adapter->stats.last_##name) \
1824 adapter->stats.name += 0x100000000LL; \
1825 adapter->stats.last_##name = current_counter; \
1826 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1827 adapter->stats.name |= current_counter; \
1831 * igbvf_update_stats - Update the board statistics counters
1832 * @adapter: board private structure
1834 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1836 struct e1000_hw
*hw
= &adapter
->hw
;
1837 struct pci_dev
*pdev
= adapter
->pdev
;
1839 /* Prevent stats update while adapter is being reset, link is down
1840 * or if the pci connection is down.
1842 if (adapter
->link_speed
== 0)
1845 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1848 if (pci_channel_offline(pdev
))
1851 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1852 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1853 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1854 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1855 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1856 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1857 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1858 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1859 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1861 /* Fill out the OS statistics structure */
1862 adapter
->netdev
->stats
.multicast
= adapter
->stats
.mprc
;
1865 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1867 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s Duplex\n",
1868 adapter
->link_speed
,
1869 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half");
1872 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1874 struct e1000_hw
*hw
= &adapter
->hw
;
1875 s32 ret_val
= E1000_SUCCESS
;
1878 /* If interface is down, stay link down */
1879 if (test_bit(__IGBVF_DOWN
, &adapter
->state
))
1882 spin_lock_bh(&hw
->mbx_lock
);
1884 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1886 spin_unlock_bh(&hw
->mbx_lock
);
1888 link_active
= !hw
->mac
.get_link_status
;
1890 /* if check for link returns error we will need to reset */
1891 if (ret_val
&& time_after(jiffies
, adapter
->last_reset
+ (10 * HZ
)))
1892 schedule_work(&adapter
->reset_task
);
1898 * igbvf_watchdog - Timer Call-back
1899 * @t: timer list pointer containing private struct
1901 static void igbvf_watchdog(struct timer_list
*t
)
1903 struct igbvf_adapter
*adapter
= from_timer(adapter
, t
, watchdog_timer
);
1905 /* Do the rest outside of interrupt context */
1906 schedule_work(&adapter
->watchdog_task
);
1909 static void igbvf_watchdog_task(struct work_struct
*work
)
1911 struct igbvf_adapter
*adapter
= container_of(work
,
1912 struct igbvf_adapter
,
1914 struct net_device
*netdev
= adapter
->netdev
;
1915 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1916 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1917 struct e1000_hw
*hw
= &adapter
->hw
;
1921 link
= igbvf_has_link(adapter
);
1924 if (!netif_carrier_ok(netdev
)) {
1925 mac
->ops
.get_link_up_info(&adapter
->hw
,
1926 &adapter
->link_speed
,
1927 &adapter
->link_duplex
);
1928 igbvf_print_link_info(adapter
);
1930 netif_carrier_on(netdev
);
1931 netif_wake_queue(netdev
);
1934 if (netif_carrier_ok(netdev
)) {
1935 adapter
->link_speed
= 0;
1936 adapter
->link_duplex
= 0;
1937 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1938 netif_carrier_off(netdev
);
1939 netif_stop_queue(netdev
);
1943 if (netif_carrier_ok(netdev
)) {
1944 igbvf_update_stats(adapter
);
1946 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1949 /* We've lost link, so the controller stops DMA,
1950 * but we've got queued Tx work that's never going
1951 * to get done, so reset controller to flush Tx.
1952 * (Do the reset outside of interrupt context).
1954 adapter
->tx_timeout_count
++;
1955 schedule_work(&adapter
->reset_task
);
1959 /* Cause software interrupt to ensure Rx ring is cleaned */
1960 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1962 /* Reset the timer */
1963 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1964 mod_timer(&adapter
->watchdog_timer
,
1965 round_jiffies(jiffies
+ (2 * HZ
)));
1968 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1969 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1970 #define IGBVF_TX_FLAGS_TSO 0x00000004
1971 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1972 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1973 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1975 static void igbvf_tx_ctxtdesc(struct igbvf_ring
*tx_ring
, u32 vlan_macip_lens
,
1976 u32 type_tucmd
, u32 mss_l4len_idx
)
1978 struct e1000_adv_tx_context_desc
*context_desc
;
1979 struct igbvf_buffer
*buffer_info
;
1980 u16 i
= tx_ring
->next_to_use
;
1982 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1983 buffer_info
= &tx_ring
->buffer_info
[i
];
1986 tx_ring
->next_to_use
= (i
< tx_ring
->count
) ? i
: 0;
1988 /* set bits to identify this as an advanced context descriptor */
1989 type_tucmd
|= E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
;
1991 context_desc
->vlan_macip_lens
= cpu_to_le32(vlan_macip_lens
);
1992 context_desc
->seqnum_seed
= 0;
1993 context_desc
->type_tucmd_mlhl
= cpu_to_le32(type_tucmd
);
1994 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
1996 buffer_info
->time_stamp
= jiffies
;
1997 buffer_info
->dma
= 0;
2000 static int igbvf_tso(struct igbvf_ring
*tx_ring
,
2001 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2003 u32 vlan_macip_lens
, type_tucmd
, mss_l4len_idx
;
2013 u32 paylen
, l4_offset
;
2016 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2019 if (!skb_is_gso(skb
))
2022 err
= skb_cow_head(skb
, 0);
2026 ip
.hdr
= skb_network_header(skb
);
2027 l4
.hdr
= skb_checksum_start(skb
);
2029 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2030 type_tucmd
= E1000_ADVTXD_TUCMD_L4T_TCP
;
2032 /* initialize outer IP header fields */
2033 if (ip
.v4
->version
== 4) {
2034 unsigned char *csum_start
= skb_checksum_start(skb
);
2035 unsigned char *trans_start
= ip
.hdr
+ (ip
.v4
->ihl
* 4);
2037 /* IP header will have to cancel out any data that
2038 * is not a part of the outer IP header
2040 ip
.v4
->check
= csum_fold(csum_partial(trans_start
,
2041 csum_start
- trans_start
,
2043 type_tucmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2047 ip
.v6
->payload_len
= 0;
2050 /* determine offset of inner transport header */
2051 l4_offset
= l4
.hdr
- skb
->data
;
2053 /* compute length of segmentation header */
2054 *hdr_len
= (l4
.tcp
->doff
* 4) + l4_offset
;
2056 /* remove payload length from inner checksum */
2057 paylen
= skb
->len
- l4_offset
;
2058 csum_replace_by_diff(&l4
.tcp
->check
, (__force __wsum
)htonl(paylen
));
2061 mss_l4len_idx
= (*hdr_len
- l4_offset
) << E1000_ADVTXD_L4LEN_SHIFT
;
2062 mss_l4len_idx
|= skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
;
2064 /* VLAN MACLEN IPLEN */
2065 vlan_macip_lens
= l4
.hdr
- ip
.hdr
;
2066 vlan_macip_lens
|= (ip
.hdr
- skb
->data
) << E1000_ADVTXD_MACLEN_SHIFT
;
2067 vlan_macip_lens
|= tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
;
2069 igbvf_tx_ctxtdesc(tx_ring
, vlan_macip_lens
, type_tucmd
, mss_l4len_idx
);
2074 static bool igbvf_tx_csum(struct igbvf_ring
*tx_ring
, struct sk_buff
*skb
,
2075 u32 tx_flags
, __be16 protocol
)
2077 u32 vlan_macip_lens
= 0;
2080 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
2082 if (!(tx_flags
& IGBVF_TX_FLAGS_VLAN
))
2087 switch (skb
->csum_offset
) {
2088 case offsetof(struct tcphdr
, check
):
2089 type_tucmd
= E1000_ADVTXD_TUCMD_L4T_TCP
;
2091 case offsetof(struct udphdr
, check
):
2093 case offsetof(struct sctphdr
, checksum
):
2094 /* validate that this is actually an SCTP request */
2095 if (skb_csum_is_sctp(skb
)) {
2096 type_tucmd
= E1000_ADVTXD_TUCMD_L4T_SCTP
;
2101 skb_checksum_help(skb
);
2105 vlan_macip_lens
= skb_checksum_start_offset(skb
) -
2106 skb_network_offset(skb
);
2108 vlan_macip_lens
|= skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
;
2109 vlan_macip_lens
|= tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
;
2111 igbvf_tx_ctxtdesc(tx_ring
, vlan_macip_lens
, type_tucmd
, 0);
2115 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
2117 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2119 /* there is enough descriptors then we don't need to worry */
2120 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2123 netif_stop_queue(netdev
);
2125 /* Herbert's original patch had:
2126 * smp_mb__after_netif_stop_queue();
2127 * but since that doesn't exist yet, just open code it.
2131 /* We need to check again just in case room has been made available */
2132 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2135 netif_wake_queue(netdev
);
2137 ++adapter
->restart_queue
;
2141 #define IGBVF_MAX_TXD_PWR 16
2142 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2144 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2145 struct igbvf_ring
*tx_ring
,
2146 struct sk_buff
*skb
)
2148 struct igbvf_buffer
*buffer_info
;
2149 struct pci_dev
*pdev
= adapter
->pdev
;
2150 unsigned int len
= skb_headlen(skb
);
2151 unsigned int count
= 0, i
;
2154 i
= tx_ring
->next_to_use
;
2156 buffer_info
= &tx_ring
->buffer_info
[i
];
2157 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2158 buffer_info
->length
= len
;
2159 /* set time_stamp *before* dma to help avoid a possible race */
2160 buffer_info
->time_stamp
= jiffies
;
2161 buffer_info
->mapped_as_page
= false;
2162 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
, len
,
2164 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2167 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2168 const skb_frag_t
*frag
;
2172 if (i
== tx_ring
->count
)
2175 frag
= &skb_shinfo(skb
)->frags
[f
];
2176 len
= skb_frag_size(frag
);
2178 buffer_info
= &tx_ring
->buffer_info
[i
];
2179 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2180 buffer_info
->length
= len
;
2181 buffer_info
->time_stamp
= jiffies
;
2182 buffer_info
->mapped_as_page
= true;
2183 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
, 0, len
,
2185 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2189 tx_ring
->buffer_info
[i
].skb
= skb
;
2194 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2196 /* clear timestamp and dma mappings for failed buffer_info mapping */
2197 buffer_info
->dma
= 0;
2198 buffer_info
->time_stamp
= 0;
2199 buffer_info
->length
= 0;
2200 buffer_info
->mapped_as_page
= false;
2204 /* clear timestamp and dma mappings for remaining portion of packet */
2207 i
+= tx_ring
->count
;
2209 buffer_info
= &tx_ring
->buffer_info
[i
];
2210 igbvf_put_txbuf(adapter
, buffer_info
);
2216 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2217 struct igbvf_ring
*tx_ring
,
2218 int tx_flags
, int count
,
2219 unsigned int first
, u32 paylen
,
2222 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2223 struct igbvf_buffer
*buffer_info
;
2224 u32 olinfo_status
= 0, cmd_type_len
;
2227 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2228 E1000_ADVTXD_DCMD_DEXT
);
2230 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2231 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2233 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2234 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2236 /* insert tcp checksum */
2237 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2239 /* insert ip checksum */
2240 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2241 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2243 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2244 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2247 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2249 i
= tx_ring
->next_to_use
;
2251 buffer_info
= &tx_ring
->buffer_info
[i
];
2252 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2253 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2254 tx_desc
->read
.cmd_type_len
=
2255 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2256 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2258 if (i
== tx_ring
->count
)
2262 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2263 /* Force memory writes to complete before letting h/w
2264 * know there are new descriptors to fetch. (Only
2265 * applicable for weak-ordered memory model archs,
2270 tx_ring
->buffer_info
[first
].next_to_watch
= tx_desc
;
2271 tx_ring
->next_to_use
= i
;
2272 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2275 static netdev_tx_t
igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2276 struct net_device
*netdev
,
2277 struct igbvf_ring
*tx_ring
)
2279 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2280 unsigned int first
, tx_flags
= 0;
2284 __be16 protocol
= vlan_get_protocol(skb
);
2286 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2287 dev_kfree_skb_any(skb
);
2288 return NETDEV_TX_OK
;
2291 if (skb
->len
<= 0) {
2292 dev_kfree_skb_any(skb
);
2293 return NETDEV_TX_OK
;
2296 /* need: count + 4 desc gap to keep tail from touching
2297 * + 2 desc gap to keep tail from touching head,
2298 * + 1 desc for skb->data,
2299 * + 1 desc for context descriptor,
2300 * head, otherwise try next time
2302 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2303 /* this is a hard error */
2304 return NETDEV_TX_BUSY
;
2307 if (skb_vlan_tag_present(skb
)) {
2308 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2309 tx_flags
|= (skb_vlan_tag_get(skb
) <<
2310 IGBVF_TX_FLAGS_VLAN_SHIFT
);
2313 if (protocol
== htons(ETH_P_IP
))
2314 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2316 first
= tx_ring
->next_to_use
;
2318 tso
= igbvf_tso(tx_ring
, skb
, tx_flags
, &hdr_len
);
2319 if (unlikely(tso
< 0)) {
2320 dev_kfree_skb_any(skb
);
2321 return NETDEV_TX_OK
;
2325 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2326 else if (igbvf_tx_csum(tx_ring
, skb
, tx_flags
, protocol
) &&
2327 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2328 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2330 /* count reflects descriptors mapped, if 0 then mapping error
2331 * has occurred and we need to rewind the descriptor queue
2333 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
);
2336 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2337 first
, skb
->len
, hdr_len
);
2338 /* Make sure there is space in the ring for the next send. */
2339 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2341 dev_kfree_skb_any(skb
);
2342 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2343 tx_ring
->next_to_use
= first
;
2346 return NETDEV_TX_OK
;
2349 static netdev_tx_t
igbvf_xmit_frame(struct sk_buff
*skb
,
2350 struct net_device
*netdev
)
2352 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2353 struct igbvf_ring
*tx_ring
;
2355 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2356 dev_kfree_skb_any(skb
);
2357 return NETDEV_TX_OK
;
2360 tx_ring
= &adapter
->tx_ring
[0];
2362 return igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2366 * igbvf_tx_timeout - Respond to a Tx Hang
2367 * @netdev: network interface device structure
2368 * @txqueue: queue timing out (unused)
2370 static void igbvf_tx_timeout(struct net_device
*netdev
, unsigned int __always_unused txqueue
)
2372 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2374 /* Do the reset outside of interrupt context */
2375 adapter
->tx_timeout_count
++;
2376 schedule_work(&adapter
->reset_task
);
2379 static void igbvf_reset_task(struct work_struct
*work
)
2381 struct igbvf_adapter
*adapter
;
2383 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2385 igbvf_reinit_locked(adapter
);
2389 * igbvf_change_mtu - Change the Maximum Transfer Unit
2390 * @netdev: network interface device structure
2391 * @new_mtu: new value for maximum frame size
2393 * Returns 0 on success, negative on failure
2395 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2397 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2398 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2400 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2401 usleep_range(1000, 2000);
2402 /* igbvf_down has a dependency on max_frame_size */
2403 adapter
->max_frame_size
= max_frame
;
2404 if (netif_running(netdev
))
2405 igbvf_down(adapter
);
2407 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2408 * means we reserve 2 more, this pushes us to allocate from the next
2410 * i.e. RXBUFFER_2048 --> size-4096 slab
2411 * However with the new *_jumbo_rx* routines, jumbo receives will use
2415 if (max_frame
<= 1024)
2416 adapter
->rx_buffer_len
= 1024;
2417 else if (max_frame
<= 2048)
2418 adapter
->rx_buffer_len
= 2048;
2420 #if (PAGE_SIZE / 2) > 16384
2421 adapter
->rx_buffer_len
= 16384;
2423 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2426 /* adjust allocation if LPE protects us, and we aren't using SBP */
2427 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2428 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2429 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2432 netdev_dbg(netdev
, "changing MTU from %d to %d\n",
2433 netdev
->mtu
, new_mtu
);
2434 WRITE_ONCE(netdev
->mtu
, new_mtu
);
2436 if (netif_running(netdev
))
2439 igbvf_reset(adapter
);
2441 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2446 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2454 static int igbvf_suspend(struct device
*dev_d
)
2456 struct net_device
*netdev
= dev_get_drvdata(dev_d
);
2457 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2459 netif_device_detach(netdev
);
2461 if (netif_running(netdev
)) {
2462 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2463 igbvf_down(adapter
);
2464 igbvf_free_irq(adapter
);
2470 static int igbvf_resume(struct device
*dev_d
)
2472 struct pci_dev
*pdev
= to_pci_dev(dev_d
);
2473 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2474 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2477 pci_set_master(pdev
);
2479 if (netif_running(netdev
)) {
2480 err
= igbvf_request_irq(adapter
);
2485 igbvf_reset(adapter
);
2487 if (netif_running(netdev
))
2490 netif_device_attach(netdev
);
2495 static void igbvf_shutdown(struct pci_dev
*pdev
)
2497 igbvf_suspend(&pdev
->dev
);
2500 #ifdef CONFIG_NET_POLL_CONTROLLER
2501 /* Polling 'interrupt' - used by things like netconsole to send skbs
2502 * without having to re-enable interrupts. It's not called while
2503 * the interrupt routine is executing.
2505 static void igbvf_netpoll(struct net_device
*netdev
)
2507 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2509 disable_irq(adapter
->pdev
->irq
);
2511 igbvf_clean_tx_irq(adapter
->tx_ring
);
2513 enable_irq(adapter
->pdev
->irq
);
2518 * igbvf_io_error_detected - called when PCI error is detected
2519 * @pdev: Pointer to PCI device
2520 * @state: The current pci connection state
2522 * This function is called after a PCI bus error affecting
2523 * this device has been detected.
2525 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2526 pci_channel_state_t state
)
2528 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2529 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2531 netif_device_detach(netdev
);
2533 if (state
== pci_channel_io_perm_failure
)
2534 return PCI_ERS_RESULT_DISCONNECT
;
2536 if (netif_running(netdev
))
2537 igbvf_down(adapter
);
2538 pci_disable_device(pdev
);
2540 /* Request a slot reset. */
2541 return PCI_ERS_RESULT_NEED_RESET
;
2545 * igbvf_io_slot_reset - called after the pci bus has been reset.
2546 * @pdev: Pointer to PCI device
2548 * Restart the card from scratch, as if from a cold-boot. Implementation
2549 * resembles the first-half of the igbvf_resume routine.
2551 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2553 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2554 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2556 if (pci_enable_device_mem(pdev
)) {
2558 "Cannot re-enable PCI device after reset.\n");
2559 return PCI_ERS_RESULT_DISCONNECT
;
2561 pci_set_master(pdev
);
2563 igbvf_reset(adapter
);
2565 return PCI_ERS_RESULT_RECOVERED
;
2569 * igbvf_io_resume - called when traffic can start flowing again.
2570 * @pdev: Pointer to PCI device
2572 * This callback is called when the error recovery driver tells us that
2573 * its OK to resume normal operation. Implementation resembles the
2574 * second-half of the igbvf_resume routine.
2576 static void igbvf_io_resume(struct pci_dev
*pdev
)
2578 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2579 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2581 if (netif_running(netdev
)) {
2582 if (igbvf_up(adapter
)) {
2584 "can't bring device back up after reset\n");
2589 netif_device_attach(netdev
);
2593 * igbvf_io_prepare - prepare device driver for PCI reset
2594 * @pdev: PCI device information struct
2596 static void igbvf_io_prepare(struct pci_dev
*pdev
)
2598 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2599 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2601 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2602 usleep_range(1000, 2000);
2603 igbvf_down(adapter
);
2607 * igbvf_io_reset_done - PCI reset done, device driver reset can begin
2608 * @pdev: PCI device information struct
2610 static void igbvf_io_reset_done(struct pci_dev
*pdev
)
2612 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2613 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2616 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2619 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2621 struct e1000_hw
*hw
= &adapter
->hw
;
2622 struct net_device
*netdev
= adapter
->netdev
;
2623 struct pci_dev
*pdev
= adapter
->pdev
;
2625 if (hw
->mac
.type
== e1000_vfadapt_i350
)
2626 dev_info(&pdev
->dev
, "Intel(R) I350 Virtual Function\n");
2628 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2629 dev_info(&pdev
->dev
, "Address: %pM\n", netdev
->dev_addr
);
2632 static int igbvf_set_features(struct net_device
*netdev
,
2633 netdev_features_t features
)
2635 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2637 if (features
& NETIF_F_RXCSUM
)
2638 adapter
->flags
&= ~IGBVF_FLAG_RX_CSUM_DISABLED
;
2640 adapter
->flags
|= IGBVF_FLAG_RX_CSUM_DISABLED
;
2645 #define IGBVF_MAX_MAC_HDR_LEN 127
2646 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2648 static netdev_features_t
2649 igbvf_features_check(struct sk_buff
*skb
, struct net_device
*dev
,
2650 netdev_features_t features
)
2652 unsigned int network_hdr_len
, mac_hdr_len
;
2654 /* Make certain the headers can be described by a context descriptor */
2655 mac_hdr_len
= skb_network_offset(skb
);
2656 if (unlikely(mac_hdr_len
> IGBVF_MAX_MAC_HDR_LEN
))
2657 return features
& ~(NETIF_F_HW_CSUM
|
2659 NETIF_F_HW_VLAN_CTAG_TX
|
2663 network_hdr_len
= skb_checksum_start(skb
) - skb_network_header(skb
);
2664 if (unlikely(network_hdr_len
> IGBVF_MAX_NETWORK_HDR_LEN
))
2665 return features
& ~(NETIF_F_HW_CSUM
|
2670 /* We can only support IPV4 TSO in tunnels if we can mangle the
2671 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2673 if (skb
->encapsulation
&& !(features
& NETIF_F_TSO_MANGLEID
))
2674 features
&= ~NETIF_F_TSO
;
2679 static const struct net_device_ops igbvf_netdev_ops
= {
2680 .ndo_open
= igbvf_open
,
2681 .ndo_stop
= igbvf_close
,
2682 .ndo_start_xmit
= igbvf_xmit_frame
,
2683 .ndo_set_rx_mode
= igbvf_set_rx_mode
,
2684 .ndo_set_mac_address
= igbvf_set_mac
,
2685 .ndo_change_mtu
= igbvf_change_mtu
,
2686 .ndo_eth_ioctl
= igbvf_ioctl
,
2687 .ndo_tx_timeout
= igbvf_tx_timeout
,
2688 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2689 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2690 #ifdef CONFIG_NET_POLL_CONTROLLER
2691 .ndo_poll_controller
= igbvf_netpoll
,
2693 .ndo_set_features
= igbvf_set_features
,
2694 .ndo_features_check
= igbvf_features_check
,
2698 * igbvf_probe - Device Initialization Routine
2699 * @pdev: PCI device information struct
2700 * @ent: entry in igbvf_pci_tbl
2702 * Returns 0 on success, negative on failure
2704 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2705 * The OS initialization, configuring of the adapter private structure,
2706 * and a hardware reset occur.
2708 static int igbvf_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2710 struct net_device
*netdev
;
2711 struct igbvf_adapter
*adapter
;
2712 struct e1000_hw
*hw
;
2713 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2714 static int cards_found
;
2717 err
= pci_enable_device_mem(pdev
);
2721 err
= dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
2724 "No usable DMA configuration, aborting\n");
2728 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2732 pci_set_master(pdev
);
2735 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2737 goto err_alloc_etherdev
;
2739 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2741 pci_set_drvdata(pdev
, netdev
);
2742 adapter
= netdev_priv(netdev
);
2744 adapter
->netdev
= netdev
;
2745 adapter
->pdev
= pdev
;
2747 adapter
->pba
= ei
->pba
;
2748 adapter
->flags
= ei
->flags
;
2749 adapter
->hw
.back
= adapter
;
2750 adapter
->hw
.mac
.type
= ei
->mac
;
2751 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
2753 /* PCI config space info */
2755 hw
->vendor_id
= pdev
->vendor
;
2756 hw
->device_id
= pdev
->device
;
2757 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2758 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2759 hw
->revision_id
= pdev
->revision
;
2762 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2763 pci_resource_len(pdev
, 0));
2765 if (!adapter
->hw
.hw_addr
)
2768 if (ei
->get_variants
) {
2769 err
= ei
->get_variants(adapter
);
2771 goto err_get_variants
;
2774 /* setup adapter struct */
2775 err
= igbvf_sw_init(adapter
);
2779 /* construct the net_device struct */
2780 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2782 igbvf_set_ethtool_ops(netdev
);
2783 netdev
->watchdog_timeo
= 5 * HZ
;
2784 strscpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
));
2786 adapter
->bd_number
= cards_found
++;
2788 netdev
->hw_features
= NETIF_F_SG
|
2795 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2796 NETIF_F_GSO_GRE_CSUM | \
2797 NETIF_F_GSO_IPXIP4 | \
2798 NETIF_F_GSO_IPXIP6 | \
2799 NETIF_F_GSO_UDP_TUNNEL | \
2800 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2802 netdev
->gso_partial_features
= IGBVF_GSO_PARTIAL_FEATURES
;
2803 netdev
->hw_features
|= NETIF_F_GSO_PARTIAL
|
2804 IGBVF_GSO_PARTIAL_FEATURES
;
2806 netdev
->features
= netdev
->hw_features
| NETIF_F_HIGHDMA
;
2808 netdev
->vlan_features
|= netdev
->features
| NETIF_F_TSO_MANGLEID
;
2809 netdev
->mpls_features
|= NETIF_F_HW_CSUM
;
2810 netdev
->hw_enc_features
|= netdev
->vlan_features
;
2812 /* set this bit last since it cannot be part of vlan_features */
2813 netdev
->features
|= NETIF_F_HW_VLAN_CTAG_FILTER
|
2814 NETIF_F_HW_VLAN_CTAG_RX
|
2815 NETIF_F_HW_VLAN_CTAG_TX
;
2817 /* MTU range: 68 - 9216 */
2818 netdev
->min_mtu
= ETH_MIN_MTU
;
2819 netdev
->max_mtu
= MAX_STD_JUMBO_FRAME_SIZE
;
2821 spin_lock_bh(&hw
->mbx_lock
);
2823 /*reset the controller to put the device in a known good state */
2824 err
= hw
->mac
.ops
.reset_hw(hw
);
2826 dev_info(&pdev
->dev
,
2827 "PF still in reset state. Is the PF interface up?\n");
2829 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2831 dev_info(&pdev
->dev
, "Error reading MAC address.\n");
2832 else if (is_zero_ether_addr(adapter
->hw
.mac
.addr
))
2833 dev_info(&pdev
->dev
,
2834 "MAC address not assigned by administrator.\n");
2835 eth_hw_addr_set(netdev
, adapter
->hw
.mac
.addr
);
2838 spin_unlock_bh(&hw
->mbx_lock
);
2840 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
2841 dev_info(&pdev
->dev
, "Assigning random MAC address.\n");
2842 eth_hw_addr_random(netdev
);
2843 memcpy(adapter
->hw
.mac
.addr
, netdev
->dev_addr
,
2847 timer_setup(&adapter
->watchdog_timer
, igbvf_watchdog
, 0);
2849 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2850 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2852 /* ring size defaults */
2853 adapter
->rx_ring
->count
= 1024;
2854 adapter
->tx_ring
->count
= 1024;
2856 /* reset the hardware with the new settings */
2857 igbvf_reset(adapter
);
2859 /* set hardware-specific flags */
2860 if (adapter
->hw
.mac
.type
== e1000_vfadapt_i350
)
2861 adapter
->flags
|= IGBVF_FLAG_RX_LB_VLAN_BSWAP
;
2863 strcpy(netdev
->name
, "eth%d");
2864 err
= register_netdev(netdev
);
2868 /* tell the stack to leave us alone until igbvf_open() is called */
2869 netif_carrier_off(netdev
);
2870 netif_stop_queue(netdev
);
2872 igbvf_print_device_info(adapter
);
2874 igbvf_initialize_last_counter_stats(adapter
);
2879 netif_napi_del(&adapter
->rx_ring
->napi
);
2880 kfree(adapter
->tx_ring
);
2881 kfree(adapter
->rx_ring
);
2883 igbvf_reset_interrupt_capability(adapter
);
2885 iounmap(adapter
->hw
.hw_addr
);
2887 free_netdev(netdev
);
2889 pci_release_regions(pdev
);
2892 pci_disable_device(pdev
);
2897 * igbvf_remove - Device Removal Routine
2898 * @pdev: PCI device information struct
2900 * igbvf_remove is called by the PCI subsystem to alert the driver
2901 * that it should release a PCI device. The could be caused by a
2902 * Hot-Plug event, or because the driver is going to be removed from
2905 static void igbvf_remove(struct pci_dev
*pdev
)
2907 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2908 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2909 struct e1000_hw
*hw
= &adapter
->hw
;
2911 /* The watchdog timer may be rescheduled, so explicitly
2912 * disable it from being rescheduled.
2914 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2915 del_timer_sync(&adapter
->watchdog_timer
);
2917 cancel_work_sync(&adapter
->reset_task
);
2918 cancel_work_sync(&adapter
->watchdog_task
);
2920 unregister_netdev(netdev
);
2922 igbvf_reset_interrupt_capability(adapter
);
2924 /* it is important to delete the NAPI struct prior to freeing the
2925 * Rx ring so that you do not end up with null pointer refs
2927 netif_napi_del(&adapter
->rx_ring
->napi
);
2928 kfree(adapter
->tx_ring
);
2929 kfree(adapter
->rx_ring
);
2931 iounmap(hw
->hw_addr
);
2932 if (hw
->flash_address
)
2933 iounmap(hw
->flash_address
);
2934 pci_release_regions(pdev
);
2936 free_netdev(netdev
);
2938 pci_disable_device(pdev
);
2941 /* PCI Error Recovery (ERS) */
2942 static const struct pci_error_handlers igbvf_err_handler
= {
2943 .error_detected
= igbvf_io_error_detected
,
2944 .slot_reset
= igbvf_io_slot_reset
,
2945 .resume
= igbvf_io_resume
,
2946 .reset_prepare
= igbvf_io_prepare
,
2947 .reset_done
= igbvf_io_reset_done
,
2950 static const struct pci_device_id igbvf_pci_tbl
[] = {
2951 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2952 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_VF
), board_i350_vf
},
2953 { } /* terminate list */
2955 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2957 static DEFINE_SIMPLE_DEV_PM_OPS(igbvf_pm_ops
, igbvf_suspend
, igbvf_resume
);
2959 /* PCI Device API Driver */
2960 static struct pci_driver igbvf_driver
= {
2961 .name
= igbvf_driver_name
,
2962 .id_table
= igbvf_pci_tbl
,
2963 .probe
= igbvf_probe
,
2964 .remove
= igbvf_remove
,
2965 .driver
.pm
= pm_sleep_ptr(&igbvf_pm_ops
),
2966 .shutdown
= igbvf_shutdown
,
2967 .err_handler
= &igbvf_err_handler
2971 * igbvf_init_module - Driver Registration Routine
2973 * igbvf_init_module is the first routine called when the driver is
2974 * loaded. All it does is register with the PCI subsystem.
2976 static int __init
igbvf_init_module(void)
2980 pr_info("%s\n", igbvf_driver_string
);
2981 pr_info("%s\n", igbvf_copyright
);
2983 ret
= pci_register_driver(&igbvf_driver
);
2987 module_init(igbvf_init_module
);
2990 * igbvf_exit_module - Driver Exit Cleanup Routine
2992 * igbvf_exit_module is called just before the driver is removed
2995 static void __exit
igbvf_exit_module(void)
2997 pci_unregister_driver(&igbvf_driver
);
2999 module_exit(igbvf_exit_module
);
3001 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3002 MODULE_LICENSE("GPL v2");