Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / net / ethernet / intel / igbvf / netdev.c
blob02044aa2181b9774b810d9c9b15493fe28b647f6
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/bitfield.h>
7 #include <linux/delay.h>
8 #include <linux/ethtool.h>
9 #include <linux/if_vlan.h>
10 #include <linux/init.h>
11 #include <linux/ipv6.h>
12 #include <linux/mii.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/prefetch.h>
18 #include <linux/sctp.h>
19 #include <linux/slab.h>
20 #include <linux/tcp.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include "igbvf.h"
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
43 static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
50 static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
62 /**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
66 static int igbvf_desc_unused(struct igbvf_ring *ring)
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
74 /**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
88 u16 vid;
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
106 skb_checksum_none_assert(skb);
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
125 adapter->hw_csum_good++;
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
217 no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
269 buffer_info = &rx_ring->buffer_info[i];
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
276 hlen = le16_get_bits(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info,
277 E1000_RXDADV_HDRBUFLEN_MASK);
278 if (hlen > adapter->rx_ps_hdr_size)
279 hlen = adapter->rx_ps_hdr_size;
281 length = le16_to_cpu(rx_desc->wb.upper.length);
282 cleaned = true;
283 cleaned_count++;
285 skb = buffer_info->skb;
286 prefetch(skb->data - NET_IP_ALIGN);
287 buffer_info->skb = NULL;
288 if (!adapter->rx_ps_hdr_size) {
289 dma_unmap_single(&pdev->dev, buffer_info->dma,
290 adapter->rx_buffer_len,
291 DMA_FROM_DEVICE);
292 buffer_info->dma = 0;
293 skb_put(skb, length);
294 goto send_up;
297 if (!skb_shinfo(skb)->nr_frags) {
298 dma_unmap_single(&pdev->dev, buffer_info->dma,
299 adapter->rx_ps_hdr_size,
300 DMA_FROM_DEVICE);
301 buffer_info->dma = 0;
302 skb_put(skb, hlen);
305 if (length) {
306 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
307 PAGE_SIZE / 2,
308 DMA_FROM_DEVICE);
309 buffer_info->page_dma = 0;
311 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
312 buffer_info->page,
313 buffer_info->page_offset,
314 length);
316 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
317 (page_count(buffer_info->page) != 1))
318 buffer_info->page = NULL;
319 else
320 get_page(buffer_info->page);
322 skb->len += length;
323 skb->data_len += length;
324 skb->truesize += PAGE_SIZE / 2;
326 send_up:
327 i++;
328 if (i == rx_ring->count)
329 i = 0;
330 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
331 prefetch(next_rxd);
332 next_buffer = &rx_ring->buffer_info[i];
334 if (!(staterr & E1000_RXD_STAT_EOP)) {
335 buffer_info->skb = next_buffer->skb;
336 buffer_info->dma = next_buffer->dma;
337 next_buffer->skb = skb;
338 next_buffer->dma = 0;
339 goto next_desc;
342 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
343 dev_kfree_skb_irq(skb);
344 goto next_desc;
347 total_bytes += skb->len;
348 total_packets++;
350 igbvf_rx_checksum_adv(adapter, staterr, skb);
352 skb->protocol = eth_type_trans(skb, netdev);
354 igbvf_receive_skb(adapter, netdev, skb, staterr,
355 rx_desc->wb.upper.vlan);
357 next_desc:
358 rx_desc->wb.upper.status_error = 0;
360 /* return some buffers to hardware, one at a time is too slow */
361 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
362 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
363 cleaned_count = 0;
366 /* use prefetched values */
367 rx_desc = next_rxd;
368 buffer_info = next_buffer;
370 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
373 rx_ring->next_to_clean = i;
374 cleaned_count = igbvf_desc_unused(rx_ring);
376 if (cleaned_count)
377 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379 adapter->total_rx_packets += total_packets;
380 adapter->total_rx_bytes += total_bytes;
381 netdev->stats.rx_bytes += total_bytes;
382 netdev->stats.rx_packets += total_packets;
383 return cleaned;
386 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
387 struct igbvf_buffer *buffer_info)
389 if (buffer_info->dma) {
390 if (buffer_info->mapped_as_page)
391 dma_unmap_page(&adapter->pdev->dev,
392 buffer_info->dma,
393 buffer_info->length,
394 DMA_TO_DEVICE);
395 else
396 dma_unmap_single(&adapter->pdev->dev,
397 buffer_info->dma,
398 buffer_info->length,
399 DMA_TO_DEVICE);
400 buffer_info->dma = 0;
402 if (buffer_info->skb) {
403 dev_kfree_skb_any(buffer_info->skb);
404 buffer_info->skb = NULL;
406 buffer_info->time_stamp = 0;
410 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
411 * @adapter: board private structure
412 * @tx_ring: ring being initialized
414 * Return 0 on success, negative on failure
416 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
417 struct igbvf_ring *tx_ring)
419 struct pci_dev *pdev = adapter->pdev;
420 int size;
422 size = sizeof(struct igbvf_buffer) * tx_ring->count;
423 tx_ring->buffer_info = vzalloc(size);
424 if (!tx_ring->buffer_info)
425 goto err;
427 /* round up to nearest 4K */
428 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
429 tx_ring->size = ALIGN(tx_ring->size, 4096);
431 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
432 &tx_ring->dma, GFP_KERNEL);
433 if (!tx_ring->desc)
434 goto err;
436 tx_ring->adapter = adapter;
437 tx_ring->next_to_use = 0;
438 tx_ring->next_to_clean = 0;
440 return 0;
441 err:
442 vfree(tx_ring->buffer_info);
443 dev_err(&adapter->pdev->dev,
444 "Unable to allocate memory for the transmit descriptor ring\n");
445 return -ENOMEM;
449 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
450 * @adapter: board private structure
451 * @rx_ring: ring being initialized
453 * Returns 0 on success, negative on failure
455 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
456 struct igbvf_ring *rx_ring)
458 struct pci_dev *pdev = adapter->pdev;
459 int size, desc_len;
461 size = sizeof(struct igbvf_buffer) * rx_ring->count;
462 rx_ring->buffer_info = vzalloc(size);
463 if (!rx_ring->buffer_info)
464 goto err;
466 desc_len = sizeof(union e1000_adv_rx_desc);
468 /* Round up to nearest 4K */
469 rx_ring->size = rx_ring->count * desc_len;
470 rx_ring->size = ALIGN(rx_ring->size, 4096);
472 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
473 &rx_ring->dma, GFP_KERNEL);
474 if (!rx_ring->desc)
475 goto err;
477 rx_ring->next_to_clean = 0;
478 rx_ring->next_to_use = 0;
480 rx_ring->adapter = adapter;
482 return 0;
484 err:
485 vfree(rx_ring->buffer_info);
486 rx_ring->buffer_info = NULL;
487 dev_err(&adapter->pdev->dev,
488 "Unable to allocate memory for the receive descriptor ring\n");
489 return -ENOMEM;
493 * igbvf_clean_tx_ring - Free Tx Buffers
494 * @tx_ring: ring to be cleaned
496 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498 struct igbvf_adapter *adapter = tx_ring->adapter;
499 struct igbvf_buffer *buffer_info;
500 unsigned long size;
501 unsigned int i;
503 if (!tx_ring->buffer_info)
504 return;
506 /* Free all the Tx ring sk_buffs */
507 for (i = 0; i < tx_ring->count; i++) {
508 buffer_info = &tx_ring->buffer_info[i];
509 igbvf_put_txbuf(adapter, buffer_info);
512 size = sizeof(struct igbvf_buffer) * tx_ring->count;
513 memset(tx_ring->buffer_info, 0, size);
515 /* Zero out the descriptor ring */
516 memset(tx_ring->desc, 0, tx_ring->size);
518 tx_ring->next_to_use = 0;
519 tx_ring->next_to_clean = 0;
521 writel(0, adapter->hw.hw_addr + tx_ring->head);
522 writel(0, adapter->hw.hw_addr + tx_ring->tail);
526 * igbvf_free_tx_resources - Free Tx Resources per Queue
527 * @tx_ring: ring to free resources from
529 * Free all transmit software resources
531 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533 struct pci_dev *pdev = tx_ring->adapter->pdev;
535 igbvf_clean_tx_ring(tx_ring);
537 vfree(tx_ring->buffer_info);
538 tx_ring->buffer_info = NULL;
540 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
541 tx_ring->dma);
543 tx_ring->desc = NULL;
547 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
548 * @rx_ring: ring structure pointer to free buffers from
550 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552 struct igbvf_adapter *adapter = rx_ring->adapter;
553 struct igbvf_buffer *buffer_info;
554 struct pci_dev *pdev = adapter->pdev;
555 unsigned long size;
556 unsigned int i;
558 if (!rx_ring->buffer_info)
559 return;
561 /* Free all the Rx ring sk_buffs */
562 for (i = 0; i < rx_ring->count; i++) {
563 buffer_info = &rx_ring->buffer_info[i];
564 if (buffer_info->dma) {
565 if (adapter->rx_ps_hdr_size) {
566 dma_unmap_single(&pdev->dev, buffer_info->dma,
567 adapter->rx_ps_hdr_size,
568 DMA_FROM_DEVICE);
569 } else {
570 dma_unmap_single(&pdev->dev, buffer_info->dma,
571 adapter->rx_buffer_len,
572 DMA_FROM_DEVICE);
574 buffer_info->dma = 0;
577 if (buffer_info->skb) {
578 dev_kfree_skb(buffer_info->skb);
579 buffer_info->skb = NULL;
582 if (buffer_info->page) {
583 if (buffer_info->page_dma)
584 dma_unmap_page(&pdev->dev,
585 buffer_info->page_dma,
586 PAGE_SIZE / 2,
587 DMA_FROM_DEVICE);
588 put_page(buffer_info->page);
589 buffer_info->page = NULL;
590 buffer_info->page_dma = 0;
591 buffer_info->page_offset = 0;
595 size = sizeof(struct igbvf_buffer) * rx_ring->count;
596 memset(rx_ring->buffer_info, 0, size);
598 /* Zero out the descriptor ring */
599 memset(rx_ring->desc, 0, rx_ring->size);
601 rx_ring->next_to_clean = 0;
602 rx_ring->next_to_use = 0;
604 writel(0, adapter->hw.hw_addr + rx_ring->head);
605 writel(0, adapter->hw.hw_addr + rx_ring->tail);
609 * igbvf_free_rx_resources - Free Rx Resources
610 * @rx_ring: ring to clean the resources from
612 * Free all receive software resources
615 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617 struct pci_dev *pdev = rx_ring->adapter->pdev;
619 igbvf_clean_rx_ring(rx_ring);
621 vfree(rx_ring->buffer_info);
622 rx_ring->buffer_info = NULL;
624 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
625 rx_ring->dma);
626 rx_ring->desc = NULL;
630 * igbvf_update_itr - update the dynamic ITR value based on statistics
631 * @adapter: pointer to adapter
632 * @itr_setting: current adapter->itr
633 * @packets: the number of packets during this measurement interval
634 * @bytes: the number of bytes during this measurement interval
636 * Stores a new ITR value based on packets and byte counts during the last
637 * interrupt. The advantage of per interrupt computation is faster updates
638 * and more accurate ITR for the current traffic pattern. Constants in this
639 * function were computed based on theoretical maximum wire speed and thresholds
640 * were set based on testing data as well as attempting to minimize response
641 * time while increasing bulk throughput.
643 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
644 enum latency_range itr_setting,
645 int packets, int bytes)
647 enum latency_range retval = itr_setting;
649 if (packets == 0)
650 goto update_itr_done;
652 switch (itr_setting) {
653 case lowest_latency:
654 /* handle TSO and jumbo frames */
655 if (bytes/packets > 8000)
656 retval = bulk_latency;
657 else if ((packets < 5) && (bytes > 512))
658 retval = low_latency;
659 break;
660 case low_latency: /* 50 usec aka 20000 ints/s */
661 if (bytes > 10000) {
662 /* this if handles the TSO accounting */
663 if (bytes/packets > 8000)
664 retval = bulk_latency;
665 else if ((packets < 10) || ((bytes/packets) > 1200))
666 retval = bulk_latency;
667 else if ((packets > 35))
668 retval = lowest_latency;
669 } else if (bytes/packets > 2000) {
670 retval = bulk_latency;
671 } else if (packets <= 2 && bytes < 512) {
672 retval = lowest_latency;
674 break;
675 case bulk_latency: /* 250 usec aka 4000 ints/s */
676 if (bytes > 25000) {
677 if (packets > 35)
678 retval = low_latency;
679 } else if (bytes < 6000) {
680 retval = low_latency;
682 break;
683 default:
684 break;
687 update_itr_done:
688 return retval;
691 static int igbvf_range_to_itr(enum latency_range current_range)
693 int new_itr;
695 switch (current_range) {
696 /* counts and packets in update_itr are dependent on these numbers */
697 case lowest_latency:
698 new_itr = IGBVF_70K_ITR;
699 break;
700 case low_latency:
701 new_itr = IGBVF_20K_ITR;
702 break;
703 case bulk_latency:
704 new_itr = IGBVF_4K_ITR;
705 break;
706 default:
707 new_itr = IGBVF_START_ITR;
708 break;
710 return new_itr;
713 static void igbvf_set_itr(struct igbvf_adapter *adapter)
715 u32 new_itr;
717 adapter->tx_ring->itr_range =
718 igbvf_update_itr(adapter,
719 adapter->tx_ring->itr_val,
720 adapter->total_tx_packets,
721 adapter->total_tx_bytes);
723 /* conservative mode (itr 3) eliminates the lowest_latency setting */
724 if (adapter->requested_itr == 3 &&
725 adapter->tx_ring->itr_range == lowest_latency)
726 adapter->tx_ring->itr_range = low_latency;
728 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730 if (new_itr != adapter->tx_ring->itr_val) {
731 u32 current_itr = adapter->tx_ring->itr_val;
732 /* this attempts to bias the interrupt rate towards Bulk
733 * by adding intermediate steps when interrupt rate is
734 * increasing
736 new_itr = new_itr > current_itr ?
737 min(current_itr + (new_itr >> 2), new_itr) :
738 new_itr;
739 adapter->tx_ring->itr_val = new_itr;
741 adapter->tx_ring->set_itr = 1;
744 adapter->rx_ring->itr_range =
745 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
746 adapter->total_rx_packets,
747 adapter->total_rx_bytes);
748 if (adapter->requested_itr == 3 &&
749 adapter->rx_ring->itr_range == lowest_latency)
750 adapter->rx_ring->itr_range = low_latency;
752 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754 if (new_itr != adapter->rx_ring->itr_val) {
755 u32 current_itr = adapter->rx_ring->itr_val;
757 new_itr = new_itr > current_itr ?
758 min(current_itr + (new_itr >> 2), new_itr) :
759 new_itr;
760 adapter->rx_ring->itr_val = new_itr;
762 adapter->rx_ring->set_itr = 1;
767 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768 * @tx_ring: ring structure to clean descriptors from
770 * returns true if ring is completely cleaned
772 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774 struct igbvf_adapter *adapter = tx_ring->adapter;
775 struct net_device *netdev = adapter->netdev;
776 struct igbvf_buffer *buffer_info;
777 struct sk_buff *skb;
778 union e1000_adv_tx_desc *tx_desc, *eop_desc;
779 unsigned int total_bytes = 0, total_packets = 0;
780 unsigned int i, count = 0;
781 bool cleaned = false;
783 i = tx_ring->next_to_clean;
784 buffer_info = &tx_ring->buffer_info[i];
785 eop_desc = buffer_info->next_to_watch;
787 do {
788 /* if next_to_watch is not set then there is no work pending */
789 if (!eop_desc)
790 break;
792 /* prevent any other reads prior to eop_desc */
793 smp_rmb();
795 /* if DD is not set pending work has not been completed */
796 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
797 break;
799 /* clear next_to_watch to prevent false hangs */
800 buffer_info->next_to_watch = NULL;
802 for (cleaned = false; !cleaned; count++) {
803 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
804 cleaned = (tx_desc == eop_desc);
805 skb = buffer_info->skb;
807 if (skb) {
808 unsigned int segs, bytecount;
810 /* gso_segs is currently only valid for tcp */
811 segs = skb_shinfo(skb)->gso_segs ?: 1;
812 /* multiply data chunks by size of headers */
813 bytecount = ((segs - 1) * skb_headlen(skb)) +
814 skb->len;
815 total_packets += segs;
816 total_bytes += bytecount;
819 igbvf_put_txbuf(adapter, buffer_info);
820 tx_desc->wb.status = 0;
822 i++;
823 if (i == tx_ring->count)
824 i = 0;
826 buffer_info = &tx_ring->buffer_info[i];
829 eop_desc = buffer_info->next_to_watch;
830 } while (count < tx_ring->count);
832 tx_ring->next_to_clean = i;
834 if (unlikely(count && netif_carrier_ok(netdev) &&
835 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
836 /* Make sure that anybody stopping the queue after this
837 * sees the new next_to_clean.
839 smp_mb();
840 if (netif_queue_stopped(netdev) &&
841 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
842 netif_wake_queue(netdev);
843 ++adapter->restart_queue;
847 netdev->stats.tx_bytes += total_bytes;
848 netdev->stats.tx_packets += total_packets;
849 return count < tx_ring->count;
852 static irqreturn_t igbvf_msix_other(int irq, void *data)
854 struct net_device *netdev = data;
855 struct igbvf_adapter *adapter = netdev_priv(netdev);
856 struct e1000_hw *hw = &adapter->hw;
858 adapter->int_counter1++;
860 hw->mac.get_link_status = 1;
861 if (!test_bit(__IGBVF_DOWN, &adapter->state))
862 mod_timer(&adapter->watchdog_timer, jiffies + 1);
864 ew32(EIMS, adapter->eims_other);
866 return IRQ_HANDLED;
869 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871 struct net_device *netdev = data;
872 struct igbvf_adapter *adapter = netdev_priv(netdev);
873 struct e1000_hw *hw = &adapter->hw;
874 struct igbvf_ring *tx_ring = adapter->tx_ring;
876 if (tx_ring->set_itr) {
877 writel(tx_ring->itr_val,
878 adapter->hw.hw_addr + tx_ring->itr_register);
879 adapter->tx_ring->set_itr = 0;
882 adapter->total_tx_bytes = 0;
883 adapter->total_tx_packets = 0;
885 /* auto mask will automatically re-enable the interrupt when we write
886 * EICS
888 if (!igbvf_clean_tx_irq(tx_ring))
889 /* Ring was not completely cleaned, so fire another interrupt */
890 ew32(EICS, tx_ring->eims_value);
891 else
892 ew32(EIMS, tx_ring->eims_value);
894 return IRQ_HANDLED;
897 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899 struct net_device *netdev = data;
900 struct igbvf_adapter *adapter = netdev_priv(netdev);
902 adapter->int_counter0++;
904 /* Write the ITR value calculated at the end of the
905 * previous interrupt.
907 if (adapter->rx_ring->set_itr) {
908 writel(adapter->rx_ring->itr_val,
909 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
910 adapter->rx_ring->set_itr = 0;
913 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
914 adapter->total_rx_bytes = 0;
915 adapter->total_rx_packets = 0;
916 __napi_schedule(&adapter->rx_ring->napi);
919 return IRQ_HANDLED;
922 #define IGBVF_NO_QUEUE -1
924 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
925 int tx_queue, int msix_vector)
927 struct e1000_hw *hw = &adapter->hw;
928 u32 ivar, index;
930 /* 82576 uses a table-based method for assigning vectors.
931 * Each queue has a single entry in the table to which we write
932 * a vector number along with a "valid" bit. Sadly, the layout
933 * of the table is somewhat counterintuitive.
935 if (rx_queue > IGBVF_NO_QUEUE) {
936 index = (rx_queue >> 1);
937 ivar = array_er32(IVAR0, index);
938 if (rx_queue & 0x1) {
939 /* vector goes into third byte of register */
940 ivar = ivar & 0xFF00FFFF;
941 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
942 } else {
943 /* vector goes into low byte of register */
944 ivar = ivar & 0xFFFFFF00;
945 ivar |= msix_vector | E1000_IVAR_VALID;
947 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
948 array_ew32(IVAR0, index, ivar);
950 if (tx_queue > IGBVF_NO_QUEUE) {
951 index = (tx_queue >> 1);
952 ivar = array_er32(IVAR0, index);
953 if (tx_queue & 0x1) {
954 /* vector goes into high byte of register */
955 ivar = ivar & 0x00FFFFFF;
956 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
957 } else {
958 /* vector goes into second byte of register */
959 ivar = ivar & 0xFFFF00FF;
960 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
963 array_ew32(IVAR0, index, ivar);
968 * igbvf_configure_msix - Configure MSI-X hardware
969 * @adapter: board private structure
971 * igbvf_configure_msix sets up the hardware to properly
972 * generate MSI-X interrupts.
974 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976 u32 tmp;
977 struct e1000_hw *hw = &adapter->hw;
978 struct igbvf_ring *tx_ring = adapter->tx_ring;
979 struct igbvf_ring *rx_ring = adapter->rx_ring;
980 int vector = 0;
982 adapter->eims_enable_mask = 0;
984 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
985 adapter->eims_enable_mask |= tx_ring->eims_value;
986 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
987 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
988 adapter->eims_enable_mask |= rx_ring->eims_value;
989 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991 /* set vector for other causes, i.e. link changes */
993 tmp = (vector++ | E1000_IVAR_VALID);
995 ew32(IVAR_MISC, tmp);
997 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
998 adapter->eims_other = BIT(vector - 1);
999 e1e_flush();
1002 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004 if (adapter->msix_entries) {
1005 pci_disable_msix(adapter->pdev);
1006 kfree(adapter->msix_entries);
1007 adapter->msix_entries = NULL;
1012 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1013 * @adapter: board private structure
1015 * Attempt to configure interrupts using the best available
1016 * capabilities of the hardware and kernel.
1018 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020 int err = -ENOMEM;
1021 int i;
1023 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1024 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1025 GFP_KERNEL);
1026 if (adapter->msix_entries) {
1027 for (i = 0; i < 3; i++)
1028 adapter->msix_entries[i].entry = i;
1030 err = pci_enable_msix_range(adapter->pdev,
1031 adapter->msix_entries, 3, 3);
1034 if (err < 0) {
1035 /* MSI-X failed */
1036 dev_err(&adapter->pdev->dev,
1037 "Failed to initialize MSI-X interrupts.\n");
1038 igbvf_reset_interrupt_capability(adapter);
1043 * igbvf_request_msix - Initialize MSI-X interrupts
1044 * @adapter: board private structure
1046 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1047 * kernel.
1049 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051 struct net_device *netdev = adapter->netdev;
1052 int err = 0, vector = 0;
1054 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1055 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1056 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1057 } else {
1058 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1059 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1062 err = request_irq(adapter->msix_entries[vector].vector,
1063 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1064 netdev);
1065 if (err)
1066 goto out;
1068 adapter->tx_ring->itr_register = E1000_EITR(vector);
1069 adapter->tx_ring->itr_val = adapter->current_itr;
1070 vector++;
1072 err = request_irq(adapter->msix_entries[vector].vector,
1073 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1074 netdev);
1075 if (err)
1076 goto free_irq_tx;
1078 adapter->rx_ring->itr_register = E1000_EITR(vector);
1079 adapter->rx_ring->itr_val = adapter->current_itr;
1080 vector++;
1082 err = request_irq(adapter->msix_entries[vector].vector,
1083 igbvf_msix_other, 0, netdev->name, netdev);
1084 if (err)
1085 goto free_irq_rx;
1087 igbvf_configure_msix(adapter);
1088 return 0;
1089 free_irq_rx:
1090 free_irq(adapter->msix_entries[--vector].vector, netdev);
1091 free_irq_tx:
1092 free_irq(adapter->msix_entries[--vector].vector, netdev);
1093 out:
1094 return err;
1098 * igbvf_alloc_queues - Allocate memory for all rings
1099 * @adapter: board private structure to initialize
1101 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1103 struct net_device *netdev = adapter->netdev;
1105 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106 if (!adapter->tx_ring)
1107 return -ENOMEM;
1109 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110 if (!adapter->rx_ring) {
1111 kfree(adapter->tx_ring);
1112 return -ENOMEM;
1115 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll);
1117 return 0;
1121 * igbvf_request_irq - initialize interrupts
1122 * @adapter: board private structure
1124 * Attempts to configure interrupts using the best available
1125 * capabilities of the hardware and kernel.
1127 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1129 int err = -1;
1131 /* igbvf supports msi-x only */
1132 if (adapter->msix_entries)
1133 err = igbvf_request_msix(adapter);
1135 if (!err)
1136 return err;
1138 dev_err(&adapter->pdev->dev,
1139 "Unable to allocate interrupt, Error: %d\n", err);
1141 return err;
1144 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1146 struct net_device *netdev = adapter->netdev;
1147 int vector;
1149 if (adapter->msix_entries) {
1150 for (vector = 0; vector < 3; vector++)
1151 free_irq(adapter->msix_entries[vector].vector, netdev);
1156 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1157 * @adapter: board private structure
1159 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1161 struct e1000_hw *hw = &adapter->hw;
1163 ew32(EIMC, ~0);
1165 if (adapter->msix_entries)
1166 ew32(EIAC, 0);
1170 * igbvf_irq_enable - Enable default interrupt generation settings
1171 * @adapter: board private structure
1173 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1175 struct e1000_hw *hw = &adapter->hw;
1177 ew32(EIAC, adapter->eims_enable_mask);
1178 ew32(EIAM, adapter->eims_enable_mask);
1179 ew32(EIMS, adapter->eims_enable_mask);
1183 * igbvf_poll - NAPI Rx polling callback
1184 * @napi: struct associated with this polling callback
1185 * @budget: amount of packets driver is allowed to process this poll
1187 static int igbvf_poll(struct napi_struct *napi, int budget)
1189 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1190 struct igbvf_adapter *adapter = rx_ring->adapter;
1191 struct e1000_hw *hw = &adapter->hw;
1192 int work_done = 0;
1194 igbvf_clean_rx_irq(adapter, &work_done, budget);
1196 if (work_done == budget)
1197 return budget;
1199 /* Exit the polling mode, but don't re-enable interrupts if stack might
1200 * poll us due to busy-polling
1202 if (likely(napi_complete_done(napi, work_done))) {
1203 if (adapter->requested_itr & 3)
1204 igbvf_set_itr(adapter);
1206 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1207 ew32(EIMS, adapter->rx_ring->eims_value);
1210 return work_done;
1214 * igbvf_set_rlpml - set receive large packet maximum length
1215 * @adapter: board private structure
1217 * Configure the maximum size of packets that will be received
1219 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1221 int max_frame_size;
1222 struct e1000_hw *hw = &adapter->hw;
1224 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1226 spin_lock_bh(&hw->mbx_lock);
1228 e1000_rlpml_set_vf(hw, max_frame_size);
1230 spin_unlock_bh(&hw->mbx_lock);
1233 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234 __be16 proto, u16 vid)
1236 struct igbvf_adapter *adapter = netdev_priv(netdev);
1237 struct e1000_hw *hw = &adapter->hw;
1239 spin_lock_bh(&hw->mbx_lock);
1241 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1242 dev_warn(&adapter->pdev->dev, "Vlan id %d\n is not added", vid);
1243 spin_unlock_bh(&hw->mbx_lock);
1244 return -EINVAL;
1247 spin_unlock_bh(&hw->mbx_lock);
1249 set_bit(vid, adapter->active_vlans);
1250 return 0;
1253 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1254 __be16 proto, u16 vid)
1256 struct igbvf_adapter *adapter = netdev_priv(netdev);
1257 struct e1000_hw *hw = &adapter->hw;
1259 spin_lock_bh(&hw->mbx_lock);
1261 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262 dev_err(&adapter->pdev->dev,
1263 "Failed to remove vlan id %d\n", vid);
1264 spin_unlock_bh(&hw->mbx_lock);
1265 return -EINVAL;
1268 spin_unlock_bh(&hw->mbx_lock);
1270 clear_bit(vid, adapter->active_vlans);
1271 return 0;
1274 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1276 u16 vid;
1278 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1279 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1283 * igbvf_configure_tx - Configure Transmit Unit after Reset
1284 * @adapter: board private structure
1286 * Configure the Tx unit of the MAC after a reset.
1288 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1290 struct e1000_hw *hw = &adapter->hw;
1291 struct igbvf_ring *tx_ring = adapter->tx_ring;
1292 u64 tdba;
1293 u32 txdctl, dca_txctrl;
1295 /* disable transmits */
1296 txdctl = er32(TXDCTL(0));
1297 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1298 e1e_flush();
1299 msleep(10);
1301 /* Setup the HW Tx Head and Tail descriptor pointers */
1302 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1303 tdba = tx_ring->dma;
1304 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1305 ew32(TDBAH(0), (tdba >> 32));
1306 ew32(TDH(0), 0);
1307 ew32(TDT(0), 0);
1308 tx_ring->head = E1000_TDH(0);
1309 tx_ring->tail = E1000_TDT(0);
1311 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1312 * MUST be delivered in order or it will completely screw up
1313 * our bookkeeping.
1315 dca_txctrl = er32(DCA_TXCTRL(0));
1316 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1317 ew32(DCA_TXCTRL(0), dca_txctrl);
1319 /* enable transmits */
1320 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1321 ew32(TXDCTL(0), txdctl);
1323 /* Setup Transmit Descriptor Settings for eop descriptor */
1324 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1326 /* enable Report Status bit */
1327 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1331 * igbvf_setup_srrctl - configure the receive control registers
1332 * @adapter: Board private structure
1334 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1336 struct e1000_hw *hw = &adapter->hw;
1337 u32 srrctl = 0;
1339 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1340 E1000_SRRCTL_BSIZEHDR_MASK |
1341 E1000_SRRCTL_BSIZEPKT_MASK);
1343 /* Enable queue drop to avoid head of line blocking */
1344 srrctl |= E1000_SRRCTL_DROP_EN;
1346 /* Setup buffer sizes */
1347 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1348 E1000_SRRCTL_BSIZEPKT_SHIFT;
1350 if (adapter->rx_buffer_len < 2048) {
1351 adapter->rx_ps_hdr_size = 0;
1352 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1353 } else {
1354 adapter->rx_ps_hdr_size = 128;
1355 srrctl |= adapter->rx_ps_hdr_size <<
1356 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1357 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1360 ew32(SRRCTL(0), srrctl);
1364 * igbvf_configure_rx - Configure Receive Unit after Reset
1365 * @adapter: board private structure
1367 * Configure the Rx unit of the MAC after a reset.
1369 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1371 struct e1000_hw *hw = &adapter->hw;
1372 struct igbvf_ring *rx_ring = adapter->rx_ring;
1373 u64 rdba;
1374 u32 rxdctl;
1376 /* disable receives */
1377 rxdctl = er32(RXDCTL(0));
1378 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1379 e1e_flush();
1380 msleep(10);
1382 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1383 * the Base and Length of the Rx Descriptor Ring
1385 rdba = rx_ring->dma;
1386 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1387 ew32(RDBAH(0), (rdba >> 32));
1388 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1389 rx_ring->head = E1000_RDH(0);
1390 rx_ring->tail = E1000_RDT(0);
1391 ew32(RDH(0), 0);
1392 ew32(RDT(0), 0);
1394 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1395 rxdctl &= 0xFFF00000;
1396 rxdctl |= IGBVF_RX_PTHRESH;
1397 rxdctl |= IGBVF_RX_HTHRESH << 8;
1398 rxdctl |= IGBVF_RX_WTHRESH << 16;
1400 igbvf_set_rlpml(adapter);
1402 /* enable receives */
1403 ew32(RXDCTL(0), rxdctl);
1407 * igbvf_set_multi - Multicast and Promiscuous mode set
1408 * @netdev: network interface device structure
1410 * The set_multi entry point is called whenever the multicast address
1411 * list or the network interface flags are updated. This routine is
1412 * responsible for configuring the hardware for proper multicast,
1413 * promiscuous mode, and all-multi behavior.
1415 static void igbvf_set_multi(struct net_device *netdev)
1417 struct igbvf_adapter *adapter = netdev_priv(netdev);
1418 struct e1000_hw *hw = &adapter->hw;
1419 struct netdev_hw_addr *ha;
1420 u8 *mta_list = NULL;
1421 int i;
1423 if (!netdev_mc_empty(netdev)) {
1424 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1425 GFP_ATOMIC);
1426 if (!mta_list)
1427 return;
1430 /* prepare a packed array of only addresses. */
1431 i = 0;
1432 netdev_for_each_mc_addr(ha, netdev)
1433 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1435 spin_lock_bh(&hw->mbx_lock);
1437 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1439 spin_unlock_bh(&hw->mbx_lock);
1440 kfree(mta_list);
1444 * igbvf_set_uni - Configure unicast MAC filters
1445 * @netdev: network interface device structure
1447 * This routine is responsible for configuring the hardware for proper
1448 * unicast filters.
1450 static int igbvf_set_uni(struct net_device *netdev)
1452 struct igbvf_adapter *adapter = netdev_priv(netdev);
1453 struct e1000_hw *hw = &adapter->hw;
1455 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1456 pr_err("Too many unicast filters - No Space\n");
1457 return -ENOSPC;
1460 spin_lock_bh(&hw->mbx_lock);
1462 /* Clear all unicast MAC filters */
1463 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1465 spin_unlock_bh(&hw->mbx_lock);
1467 if (!netdev_uc_empty(netdev)) {
1468 struct netdev_hw_addr *ha;
1470 /* Add MAC filters one by one */
1471 netdev_for_each_uc_addr(ha, netdev) {
1472 spin_lock_bh(&hw->mbx_lock);
1474 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1475 ha->addr);
1477 spin_unlock_bh(&hw->mbx_lock);
1478 udelay(200);
1482 return 0;
1485 static void igbvf_set_rx_mode(struct net_device *netdev)
1487 igbvf_set_multi(netdev);
1488 igbvf_set_uni(netdev);
1492 * igbvf_configure - configure the hardware for Rx and Tx
1493 * @adapter: private board structure
1495 static void igbvf_configure(struct igbvf_adapter *adapter)
1497 igbvf_set_rx_mode(adapter->netdev);
1499 igbvf_restore_vlan(adapter);
1501 igbvf_configure_tx(adapter);
1502 igbvf_setup_srrctl(adapter);
1503 igbvf_configure_rx(adapter);
1504 igbvf_alloc_rx_buffers(adapter->rx_ring,
1505 igbvf_desc_unused(adapter->rx_ring));
1508 /* igbvf_reset - bring the hardware into a known good state
1509 * @adapter: private board structure
1511 * This function boots the hardware and enables some settings that
1512 * require a configuration cycle of the hardware - those cannot be
1513 * set/changed during runtime. After reset the device needs to be
1514 * properly configured for Rx, Tx etc.
1516 static void igbvf_reset(struct igbvf_adapter *adapter)
1518 struct e1000_mac_info *mac = &adapter->hw.mac;
1519 struct net_device *netdev = adapter->netdev;
1520 struct e1000_hw *hw = &adapter->hw;
1522 spin_lock_bh(&hw->mbx_lock);
1524 /* Allow time for pending master requests to run */
1525 if (mac->ops.reset_hw(hw))
1526 dev_info(&adapter->pdev->dev, "PF still resetting\n");
1528 mac->ops.init_hw(hw);
1530 spin_unlock_bh(&hw->mbx_lock);
1532 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1533 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
1534 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1535 netdev->addr_len);
1538 adapter->last_reset = jiffies;
1541 int igbvf_up(struct igbvf_adapter *adapter)
1543 struct e1000_hw *hw = &adapter->hw;
1545 /* hardware has been reset, we need to reload some things */
1546 igbvf_configure(adapter);
1548 clear_bit(__IGBVF_DOWN, &adapter->state);
1550 napi_enable(&adapter->rx_ring->napi);
1551 if (adapter->msix_entries)
1552 igbvf_configure_msix(adapter);
1554 /* Clear any pending interrupts. */
1555 er32(EICR);
1556 igbvf_irq_enable(adapter);
1558 /* start the watchdog */
1559 hw->mac.get_link_status = 1;
1560 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1562 return 0;
1565 void igbvf_down(struct igbvf_adapter *adapter)
1567 struct net_device *netdev = adapter->netdev;
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 rxdctl, txdctl;
1571 /* signal that we're down so the interrupt handler does not
1572 * reschedule our watchdog timer
1574 set_bit(__IGBVF_DOWN, &adapter->state);
1576 /* disable receives in the hardware */
1577 rxdctl = er32(RXDCTL(0));
1578 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1580 netif_carrier_off(netdev);
1581 netif_stop_queue(netdev);
1583 /* disable transmits in the hardware */
1584 txdctl = er32(TXDCTL(0));
1585 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1587 /* flush both disables and wait for them to finish */
1588 e1e_flush();
1589 msleep(10);
1591 napi_disable(&adapter->rx_ring->napi);
1593 igbvf_irq_disable(adapter);
1595 del_timer_sync(&adapter->watchdog_timer);
1597 /* record the stats before reset*/
1598 igbvf_update_stats(adapter);
1600 adapter->link_speed = 0;
1601 adapter->link_duplex = 0;
1603 igbvf_reset(adapter);
1604 igbvf_clean_tx_ring(adapter->tx_ring);
1605 igbvf_clean_rx_ring(adapter->rx_ring);
1608 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1610 might_sleep();
1611 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1612 usleep_range(1000, 2000);
1613 igbvf_down(adapter);
1614 igbvf_up(adapter);
1615 clear_bit(__IGBVF_RESETTING, &adapter->state);
1619 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1620 * @adapter: board private structure to initialize
1622 * igbvf_sw_init initializes the Adapter private data structure.
1623 * Fields are initialized based on PCI device information and
1624 * OS network device settings (MTU size).
1626 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1628 struct net_device *netdev = adapter->netdev;
1629 s32 rc;
1631 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1632 adapter->rx_ps_hdr_size = 0;
1633 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1634 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1636 adapter->tx_int_delay = 8;
1637 adapter->tx_abs_int_delay = 32;
1638 adapter->rx_int_delay = 0;
1639 adapter->rx_abs_int_delay = 8;
1640 adapter->requested_itr = 3;
1641 adapter->current_itr = IGBVF_START_ITR;
1643 /* Set various function pointers */
1644 adapter->ei->init_ops(&adapter->hw);
1646 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1647 if (rc)
1648 return rc;
1650 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1651 if (rc)
1652 return rc;
1654 igbvf_set_interrupt_capability(adapter);
1656 if (igbvf_alloc_queues(adapter))
1657 return -ENOMEM;
1659 /* Explicitly disable IRQ since the NIC can be in any state. */
1660 igbvf_irq_disable(adapter);
1662 spin_lock_init(&adapter->hw.mbx_lock);
1664 set_bit(__IGBVF_DOWN, &adapter->state);
1665 return 0;
1668 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1670 struct e1000_hw *hw = &adapter->hw;
1672 adapter->stats.last_gprc = er32(VFGPRC);
1673 adapter->stats.last_gorc = er32(VFGORC);
1674 adapter->stats.last_gptc = er32(VFGPTC);
1675 adapter->stats.last_gotc = er32(VFGOTC);
1676 adapter->stats.last_mprc = er32(VFMPRC);
1677 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1678 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1679 adapter->stats.last_gorlbc = er32(VFGORLBC);
1680 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1682 adapter->stats.base_gprc = er32(VFGPRC);
1683 adapter->stats.base_gorc = er32(VFGORC);
1684 adapter->stats.base_gptc = er32(VFGPTC);
1685 adapter->stats.base_gotc = er32(VFGOTC);
1686 adapter->stats.base_mprc = er32(VFMPRC);
1687 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1688 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1689 adapter->stats.base_gorlbc = er32(VFGORLBC);
1690 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1694 * igbvf_open - Called when a network interface is made active
1695 * @netdev: network interface device structure
1697 * Returns 0 on success, negative value on failure
1699 * The open entry point is called when a network interface is made
1700 * active by the system (IFF_UP). At this point all resources needed
1701 * for transmit and receive operations are allocated, the interrupt
1702 * handler is registered with the OS, the watchdog timer is started,
1703 * and the stack is notified that the interface is ready.
1705 static int igbvf_open(struct net_device *netdev)
1707 struct igbvf_adapter *adapter = netdev_priv(netdev);
1708 struct e1000_hw *hw = &adapter->hw;
1709 int err;
1711 /* disallow open during test */
1712 if (test_bit(__IGBVF_TESTING, &adapter->state))
1713 return -EBUSY;
1715 /* allocate transmit descriptors */
1716 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1717 if (err)
1718 goto err_setup_tx;
1720 /* allocate receive descriptors */
1721 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1722 if (err)
1723 goto err_setup_rx;
1725 /* before we allocate an interrupt, we must be ready to handle it.
1726 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1727 * as soon as we call pci_request_irq, so we have to setup our
1728 * clean_rx handler before we do so.
1730 igbvf_configure(adapter);
1732 err = igbvf_request_irq(adapter);
1733 if (err)
1734 goto err_req_irq;
1736 /* From here on the code is the same as igbvf_up() */
1737 clear_bit(__IGBVF_DOWN, &adapter->state);
1739 napi_enable(&adapter->rx_ring->napi);
1741 /* clear any pending interrupts */
1742 er32(EICR);
1744 igbvf_irq_enable(adapter);
1746 /* start the watchdog */
1747 hw->mac.get_link_status = 1;
1748 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1750 return 0;
1752 err_req_irq:
1753 igbvf_free_rx_resources(adapter->rx_ring);
1754 err_setup_rx:
1755 igbvf_free_tx_resources(adapter->tx_ring);
1756 err_setup_tx:
1757 igbvf_reset(adapter);
1759 return err;
1763 * igbvf_close - Disables a network interface
1764 * @netdev: network interface device structure
1766 * Returns 0, this is not allowed to fail
1768 * The close entry point is called when an interface is de-activated
1769 * by the OS. The hardware is still under the drivers control, but
1770 * needs to be disabled. A global MAC reset is issued to stop the
1771 * hardware, and all transmit and receive resources are freed.
1773 static int igbvf_close(struct net_device *netdev)
1775 struct igbvf_adapter *adapter = netdev_priv(netdev);
1777 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1778 igbvf_down(adapter);
1780 igbvf_free_irq(adapter);
1782 igbvf_free_tx_resources(adapter->tx_ring);
1783 igbvf_free_rx_resources(adapter->rx_ring);
1785 return 0;
1789 * igbvf_set_mac - Change the Ethernet Address of the NIC
1790 * @netdev: network interface device structure
1791 * @p: pointer to an address structure
1793 * Returns 0 on success, negative on failure
1795 static int igbvf_set_mac(struct net_device *netdev, void *p)
1797 struct igbvf_adapter *adapter = netdev_priv(netdev);
1798 struct e1000_hw *hw = &adapter->hw;
1799 struct sockaddr *addr = p;
1801 if (!is_valid_ether_addr(addr->sa_data))
1802 return -EADDRNOTAVAIL;
1804 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1806 spin_lock_bh(&hw->mbx_lock);
1808 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1810 spin_unlock_bh(&hw->mbx_lock);
1812 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1813 return -EADDRNOTAVAIL;
1815 eth_hw_addr_set(netdev, addr->sa_data);
1817 return 0;
1820 #define UPDATE_VF_COUNTER(reg, name) \
1822 u32 current_counter = er32(reg); \
1823 if (current_counter < adapter->stats.last_##name) \
1824 adapter->stats.name += 0x100000000LL; \
1825 adapter->stats.last_##name = current_counter; \
1826 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1827 adapter->stats.name |= current_counter; \
1831 * igbvf_update_stats - Update the board statistics counters
1832 * @adapter: board private structure
1834 void igbvf_update_stats(struct igbvf_adapter *adapter)
1836 struct e1000_hw *hw = &adapter->hw;
1837 struct pci_dev *pdev = adapter->pdev;
1839 /* Prevent stats update while adapter is being reset, link is down
1840 * or if the pci connection is down.
1842 if (adapter->link_speed == 0)
1843 return;
1845 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1846 return;
1848 if (pci_channel_offline(pdev))
1849 return;
1851 UPDATE_VF_COUNTER(VFGPRC, gprc);
1852 UPDATE_VF_COUNTER(VFGORC, gorc);
1853 UPDATE_VF_COUNTER(VFGPTC, gptc);
1854 UPDATE_VF_COUNTER(VFGOTC, gotc);
1855 UPDATE_VF_COUNTER(VFMPRC, mprc);
1856 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1857 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1858 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1859 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1861 /* Fill out the OS statistics structure */
1862 adapter->netdev->stats.multicast = adapter->stats.mprc;
1865 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1867 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1868 adapter->link_speed,
1869 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1872 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1874 struct e1000_hw *hw = &adapter->hw;
1875 s32 ret_val = E1000_SUCCESS;
1876 bool link_active;
1878 /* If interface is down, stay link down */
1879 if (test_bit(__IGBVF_DOWN, &adapter->state))
1880 return false;
1882 spin_lock_bh(&hw->mbx_lock);
1884 ret_val = hw->mac.ops.check_for_link(hw);
1886 spin_unlock_bh(&hw->mbx_lock);
1888 link_active = !hw->mac.get_link_status;
1890 /* if check for link returns error we will need to reset */
1891 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1892 schedule_work(&adapter->reset_task);
1894 return link_active;
1898 * igbvf_watchdog - Timer Call-back
1899 * @t: timer list pointer containing private struct
1901 static void igbvf_watchdog(struct timer_list *t)
1903 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1905 /* Do the rest outside of interrupt context */
1906 schedule_work(&adapter->watchdog_task);
1909 static void igbvf_watchdog_task(struct work_struct *work)
1911 struct igbvf_adapter *adapter = container_of(work,
1912 struct igbvf_adapter,
1913 watchdog_task);
1914 struct net_device *netdev = adapter->netdev;
1915 struct e1000_mac_info *mac = &adapter->hw.mac;
1916 struct igbvf_ring *tx_ring = adapter->tx_ring;
1917 struct e1000_hw *hw = &adapter->hw;
1918 u32 link;
1919 int tx_pending = 0;
1921 link = igbvf_has_link(adapter);
1923 if (link) {
1924 if (!netif_carrier_ok(netdev)) {
1925 mac->ops.get_link_up_info(&adapter->hw,
1926 &adapter->link_speed,
1927 &adapter->link_duplex);
1928 igbvf_print_link_info(adapter);
1930 netif_carrier_on(netdev);
1931 netif_wake_queue(netdev);
1933 } else {
1934 if (netif_carrier_ok(netdev)) {
1935 adapter->link_speed = 0;
1936 adapter->link_duplex = 0;
1937 dev_info(&adapter->pdev->dev, "Link is Down\n");
1938 netif_carrier_off(netdev);
1939 netif_stop_queue(netdev);
1943 if (netif_carrier_ok(netdev)) {
1944 igbvf_update_stats(adapter);
1945 } else {
1946 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1947 tx_ring->count);
1948 if (tx_pending) {
1949 /* We've lost link, so the controller stops DMA,
1950 * but we've got queued Tx work that's never going
1951 * to get done, so reset controller to flush Tx.
1952 * (Do the reset outside of interrupt context).
1954 adapter->tx_timeout_count++;
1955 schedule_work(&adapter->reset_task);
1959 /* Cause software interrupt to ensure Rx ring is cleaned */
1960 ew32(EICS, adapter->rx_ring->eims_value);
1962 /* Reset the timer */
1963 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1964 mod_timer(&adapter->watchdog_timer,
1965 round_jiffies(jiffies + (2 * HZ)));
1968 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1969 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1970 #define IGBVF_TX_FLAGS_TSO 0x00000004
1971 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1972 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1973 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1975 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1976 u32 type_tucmd, u32 mss_l4len_idx)
1978 struct e1000_adv_tx_context_desc *context_desc;
1979 struct igbvf_buffer *buffer_info;
1980 u16 i = tx_ring->next_to_use;
1982 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1983 buffer_info = &tx_ring->buffer_info[i];
1985 i++;
1986 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1988 /* set bits to identify this as an advanced context descriptor */
1989 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1991 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1992 context_desc->seqnum_seed = 0;
1993 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1994 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1996 buffer_info->time_stamp = jiffies;
1997 buffer_info->dma = 0;
2000 static int igbvf_tso(struct igbvf_ring *tx_ring,
2001 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2003 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2004 union {
2005 struct iphdr *v4;
2006 struct ipv6hdr *v6;
2007 unsigned char *hdr;
2008 } ip;
2009 union {
2010 struct tcphdr *tcp;
2011 unsigned char *hdr;
2012 } l4;
2013 u32 paylen, l4_offset;
2014 int err;
2016 if (skb->ip_summed != CHECKSUM_PARTIAL)
2017 return 0;
2019 if (!skb_is_gso(skb))
2020 return 0;
2022 err = skb_cow_head(skb, 0);
2023 if (err < 0)
2024 return err;
2026 ip.hdr = skb_network_header(skb);
2027 l4.hdr = skb_checksum_start(skb);
2029 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2030 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2032 /* initialize outer IP header fields */
2033 if (ip.v4->version == 4) {
2034 unsigned char *csum_start = skb_checksum_start(skb);
2035 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2037 /* IP header will have to cancel out any data that
2038 * is not a part of the outer IP header
2040 ip.v4->check = csum_fold(csum_partial(trans_start,
2041 csum_start - trans_start,
2042 0));
2043 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2045 ip.v4->tot_len = 0;
2046 } else {
2047 ip.v6->payload_len = 0;
2050 /* determine offset of inner transport header */
2051 l4_offset = l4.hdr - skb->data;
2053 /* compute length of segmentation header */
2054 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2056 /* remove payload length from inner checksum */
2057 paylen = skb->len - l4_offset;
2058 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2060 /* MSS L4LEN IDX */
2061 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2062 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2064 /* VLAN MACLEN IPLEN */
2065 vlan_macip_lens = l4.hdr - ip.hdr;
2066 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2067 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2069 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2071 return 1;
2074 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2075 u32 tx_flags, __be16 protocol)
2077 u32 vlan_macip_lens = 0;
2078 u32 type_tucmd = 0;
2080 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2081 csum_failed:
2082 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2083 return false;
2084 goto no_csum;
2087 switch (skb->csum_offset) {
2088 case offsetof(struct tcphdr, check):
2089 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2090 fallthrough;
2091 case offsetof(struct udphdr, check):
2092 break;
2093 case offsetof(struct sctphdr, checksum):
2094 /* validate that this is actually an SCTP request */
2095 if (skb_csum_is_sctp(skb)) {
2096 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2097 break;
2099 fallthrough;
2100 default:
2101 skb_checksum_help(skb);
2102 goto csum_failed;
2105 vlan_macip_lens = skb_checksum_start_offset(skb) -
2106 skb_network_offset(skb);
2107 no_csum:
2108 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2109 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2111 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2112 return true;
2115 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2117 struct igbvf_adapter *adapter = netdev_priv(netdev);
2119 /* there is enough descriptors then we don't need to worry */
2120 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2121 return 0;
2123 netif_stop_queue(netdev);
2125 /* Herbert's original patch had:
2126 * smp_mb__after_netif_stop_queue();
2127 * but since that doesn't exist yet, just open code it.
2129 smp_mb();
2131 /* We need to check again just in case room has been made available */
2132 if (igbvf_desc_unused(adapter->tx_ring) < size)
2133 return -EBUSY;
2135 netif_wake_queue(netdev);
2137 ++adapter->restart_queue;
2138 return 0;
2141 #define IGBVF_MAX_TXD_PWR 16
2142 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2144 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 struct sk_buff *skb)
2148 struct igbvf_buffer *buffer_info;
2149 struct pci_dev *pdev = adapter->pdev;
2150 unsigned int len = skb_headlen(skb);
2151 unsigned int count = 0, i;
2152 unsigned int f;
2154 i = tx_ring->next_to_use;
2156 buffer_info = &tx_ring->buffer_info[i];
2157 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2158 buffer_info->length = len;
2159 /* set time_stamp *before* dma to help avoid a possible race */
2160 buffer_info->time_stamp = jiffies;
2161 buffer_info->mapped_as_page = false;
2162 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2163 DMA_TO_DEVICE);
2164 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2165 goto dma_error;
2167 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2168 const skb_frag_t *frag;
2170 count++;
2171 i++;
2172 if (i == tx_ring->count)
2173 i = 0;
2175 frag = &skb_shinfo(skb)->frags[f];
2176 len = skb_frag_size(frag);
2178 buffer_info = &tx_ring->buffer_info[i];
2179 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2180 buffer_info->length = len;
2181 buffer_info->time_stamp = jiffies;
2182 buffer_info->mapped_as_page = true;
2183 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2184 DMA_TO_DEVICE);
2185 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2186 goto dma_error;
2189 tx_ring->buffer_info[i].skb = skb;
2191 return ++count;
2193 dma_error:
2194 dev_err(&pdev->dev, "TX DMA map failed\n");
2196 /* clear timestamp and dma mappings for failed buffer_info mapping */
2197 buffer_info->dma = 0;
2198 buffer_info->time_stamp = 0;
2199 buffer_info->length = 0;
2200 buffer_info->mapped_as_page = false;
2201 if (count)
2202 count--;
2204 /* clear timestamp and dma mappings for remaining portion of packet */
2205 while (count--) {
2206 if (i == 0)
2207 i += tx_ring->count;
2208 i--;
2209 buffer_info = &tx_ring->buffer_info[i];
2210 igbvf_put_txbuf(adapter, buffer_info);
2213 return 0;
2216 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2217 struct igbvf_ring *tx_ring,
2218 int tx_flags, int count,
2219 unsigned int first, u32 paylen,
2220 u8 hdr_len)
2222 union e1000_adv_tx_desc *tx_desc = NULL;
2223 struct igbvf_buffer *buffer_info;
2224 u32 olinfo_status = 0, cmd_type_len;
2225 unsigned int i;
2227 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2228 E1000_ADVTXD_DCMD_DEXT);
2230 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2231 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2233 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2234 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2236 /* insert tcp checksum */
2237 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2239 /* insert ip checksum */
2240 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2241 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2243 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2244 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2247 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2249 i = tx_ring->next_to_use;
2250 while (count--) {
2251 buffer_info = &tx_ring->buffer_info[i];
2252 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2253 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2254 tx_desc->read.cmd_type_len =
2255 cpu_to_le32(cmd_type_len | buffer_info->length);
2256 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2257 i++;
2258 if (i == tx_ring->count)
2259 i = 0;
2262 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2263 /* Force memory writes to complete before letting h/w
2264 * know there are new descriptors to fetch. (Only
2265 * applicable for weak-ordered memory model archs,
2266 * such as IA-64).
2268 wmb();
2270 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2271 tx_ring->next_to_use = i;
2272 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2275 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2276 struct net_device *netdev,
2277 struct igbvf_ring *tx_ring)
2279 struct igbvf_adapter *adapter = netdev_priv(netdev);
2280 unsigned int first, tx_flags = 0;
2281 u8 hdr_len = 0;
2282 int count = 0;
2283 int tso = 0;
2284 __be16 protocol = vlan_get_protocol(skb);
2286 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2287 dev_kfree_skb_any(skb);
2288 return NETDEV_TX_OK;
2291 if (skb->len <= 0) {
2292 dev_kfree_skb_any(skb);
2293 return NETDEV_TX_OK;
2296 /* need: count + 4 desc gap to keep tail from touching
2297 * + 2 desc gap to keep tail from touching head,
2298 * + 1 desc for skb->data,
2299 * + 1 desc for context descriptor,
2300 * head, otherwise try next time
2302 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2303 /* this is a hard error */
2304 return NETDEV_TX_BUSY;
2307 if (skb_vlan_tag_present(skb)) {
2308 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2309 tx_flags |= (skb_vlan_tag_get(skb) <<
2310 IGBVF_TX_FLAGS_VLAN_SHIFT);
2313 if (protocol == htons(ETH_P_IP))
2314 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2316 first = tx_ring->next_to_use;
2318 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2319 if (unlikely(tso < 0)) {
2320 dev_kfree_skb_any(skb);
2321 return NETDEV_TX_OK;
2324 if (tso)
2325 tx_flags |= IGBVF_TX_FLAGS_TSO;
2326 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2327 (skb->ip_summed == CHECKSUM_PARTIAL))
2328 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2330 /* count reflects descriptors mapped, if 0 then mapping error
2331 * has occurred and we need to rewind the descriptor queue
2333 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2335 if (count) {
2336 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2337 first, skb->len, hdr_len);
2338 /* Make sure there is space in the ring for the next send. */
2339 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2340 } else {
2341 dev_kfree_skb_any(skb);
2342 tx_ring->buffer_info[first].time_stamp = 0;
2343 tx_ring->next_to_use = first;
2346 return NETDEV_TX_OK;
2349 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2350 struct net_device *netdev)
2352 struct igbvf_adapter *adapter = netdev_priv(netdev);
2353 struct igbvf_ring *tx_ring;
2355 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2356 dev_kfree_skb_any(skb);
2357 return NETDEV_TX_OK;
2360 tx_ring = &adapter->tx_ring[0];
2362 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2366 * igbvf_tx_timeout - Respond to a Tx Hang
2367 * @netdev: network interface device structure
2368 * @txqueue: queue timing out (unused)
2370 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2372 struct igbvf_adapter *adapter = netdev_priv(netdev);
2374 /* Do the reset outside of interrupt context */
2375 adapter->tx_timeout_count++;
2376 schedule_work(&adapter->reset_task);
2379 static void igbvf_reset_task(struct work_struct *work)
2381 struct igbvf_adapter *adapter;
2383 adapter = container_of(work, struct igbvf_adapter, reset_task);
2385 igbvf_reinit_locked(adapter);
2389 * igbvf_change_mtu - Change the Maximum Transfer Unit
2390 * @netdev: network interface device structure
2391 * @new_mtu: new value for maximum frame size
2393 * Returns 0 on success, negative on failure
2395 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2397 struct igbvf_adapter *adapter = netdev_priv(netdev);
2398 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2400 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2401 usleep_range(1000, 2000);
2402 /* igbvf_down has a dependency on max_frame_size */
2403 adapter->max_frame_size = max_frame;
2404 if (netif_running(netdev))
2405 igbvf_down(adapter);
2407 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2408 * means we reserve 2 more, this pushes us to allocate from the next
2409 * larger slab size.
2410 * i.e. RXBUFFER_2048 --> size-4096 slab
2411 * However with the new *_jumbo_rx* routines, jumbo receives will use
2412 * fragmented skbs
2415 if (max_frame <= 1024)
2416 adapter->rx_buffer_len = 1024;
2417 else if (max_frame <= 2048)
2418 adapter->rx_buffer_len = 2048;
2419 else
2420 #if (PAGE_SIZE / 2) > 16384
2421 adapter->rx_buffer_len = 16384;
2422 #else
2423 adapter->rx_buffer_len = PAGE_SIZE / 2;
2424 #endif
2426 /* adjust allocation if LPE protects us, and we aren't using SBP */
2427 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2428 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2429 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2430 ETH_FCS_LEN;
2432 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2433 netdev->mtu, new_mtu);
2434 WRITE_ONCE(netdev->mtu, new_mtu);
2436 if (netif_running(netdev))
2437 igbvf_up(adapter);
2438 else
2439 igbvf_reset(adapter);
2441 clear_bit(__IGBVF_RESETTING, &adapter->state);
2443 return 0;
2446 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2448 switch (cmd) {
2449 default:
2450 return -EOPNOTSUPP;
2454 static int igbvf_suspend(struct device *dev_d)
2456 struct net_device *netdev = dev_get_drvdata(dev_d);
2457 struct igbvf_adapter *adapter = netdev_priv(netdev);
2459 netif_device_detach(netdev);
2461 if (netif_running(netdev)) {
2462 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2463 igbvf_down(adapter);
2464 igbvf_free_irq(adapter);
2467 return 0;
2470 static int igbvf_resume(struct device *dev_d)
2472 struct pci_dev *pdev = to_pci_dev(dev_d);
2473 struct net_device *netdev = pci_get_drvdata(pdev);
2474 struct igbvf_adapter *adapter = netdev_priv(netdev);
2475 u32 err;
2477 pci_set_master(pdev);
2479 if (netif_running(netdev)) {
2480 err = igbvf_request_irq(adapter);
2481 if (err)
2482 return err;
2485 igbvf_reset(adapter);
2487 if (netif_running(netdev))
2488 igbvf_up(adapter);
2490 netif_device_attach(netdev);
2492 return 0;
2495 static void igbvf_shutdown(struct pci_dev *pdev)
2497 igbvf_suspend(&pdev->dev);
2500 #ifdef CONFIG_NET_POLL_CONTROLLER
2501 /* Polling 'interrupt' - used by things like netconsole to send skbs
2502 * without having to re-enable interrupts. It's not called while
2503 * the interrupt routine is executing.
2505 static void igbvf_netpoll(struct net_device *netdev)
2507 struct igbvf_adapter *adapter = netdev_priv(netdev);
2509 disable_irq(adapter->pdev->irq);
2511 igbvf_clean_tx_irq(adapter->tx_ring);
2513 enable_irq(adapter->pdev->irq);
2515 #endif
2518 * igbvf_io_error_detected - called when PCI error is detected
2519 * @pdev: Pointer to PCI device
2520 * @state: The current pci connection state
2522 * This function is called after a PCI bus error affecting
2523 * this device has been detected.
2525 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2526 pci_channel_state_t state)
2528 struct net_device *netdev = pci_get_drvdata(pdev);
2529 struct igbvf_adapter *adapter = netdev_priv(netdev);
2531 netif_device_detach(netdev);
2533 if (state == pci_channel_io_perm_failure)
2534 return PCI_ERS_RESULT_DISCONNECT;
2536 if (netif_running(netdev))
2537 igbvf_down(adapter);
2538 pci_disable_device(pdev);
2540 /* Request a slot reset. */
2541 return PCI_ERS_RESULT_NEED_RESET;
2545 * igbvf_io_slot_reset - called after the pci bus has been reset.
2546 * @pdev: Pointer to PCI device
2548 * Restart the card from scratch, as if from a cold-boot. Implementation
2549 * resembles the first-half of the igbvf_resume routine.
2551 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2553 struct net_device *netdev = pci_get_drvdata(pdev);
2554 struct igbvf_adapter *adapter = netdev_priv(netdev);
2556 if (pci_enable_device_mem(pdev)) {
2557 dev_err(&pdev->dev,
2558 "Cannot re-enable PCI device after reset.\n");
2559 return PCI_ERS_RESULT_DISCONNECT;
2561 pci_set_master(pdev);
2563 igbvf_reset(adapter);
2565 return PCI_ERS_RESULT_RECOVERED;
2569 * igbvf_io_resume - called when traffic can start flowing again.
2570 * @pdev: Pointer to PCI device
2572 * This callback is called when the error recovery driver tells us that
2573 * its OK to resume normal operation. Implementation resembles the
2574 * second-half of the igbvf_resume routine.
2576 static void igbvf_io_resume(struct pci_dev *pdev)
2578 struct net_device *netdev = pci_get_drvdata(pdev);
2579 struct igbvf_adapter *adapter = netdev_priv(netdev);
2581 if (netif_running(netdev)) {
2582 if (igbvf_up(adapter)) {
2583 dev_err(&pdev->dev,
2584 "can't bring device back up after reset\n");
2585 return;
2589 netif_device_attach(netdev);
2593 * igbvf_io_prepare - prepare device driver for PCI reset
2594 * @pdev: PCI device information struct
2596 static void igbvf_io_prepare(struct pci_dev *pdev)
2598 struct net_device *netdev = pci_get_drvdata(pdev);
2599 struct igbvf_adapter *adapter = netdev_priv(netdev);
2601 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2602 usleep_range(1000, 2000);
2603 igbvf_down(adapter);
2607 * igbvf_io_reset_done - PCI reset done, device driver reset can begin
2608 * @pdev: PCI device information struct
2610 static void igbvf_io_reset_done(struct pci_dev *pdev)
2612 struct net_device *netdev = pci_get_drvdata(pdev);
2613 struct igbvf_adapter *adapter = netdev_priv(netdev);
2615 igbvf_up(adapter);
2616 clear_bit(__IGBVF_RESETTING, &adapter->state);
2619 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2621 struct e1000_hw *hw = &adapter->hw;
2622 struct net_device *netdev = adapter->netdev;
2623 struct pci_dev *pdev = adapter->pdev;
2625 if (hw->mac.type == e1000_vfadapt_i350)
2626 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2627 else
2628 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2629 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2632 static int igbvf_set_features(struct net_device *netdev,
2633 netdev_features_t features)
2635 struct igbvf_adapter *adapter = netdev_priv(netdev);
2637 if (features & NETIF_F_RXCSUM)
2638 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2639 else
2640 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2642 return 0;
2645 #define IGBVF_MAX_MAC_HDR_LEN 127
2646 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2648 static netdev_features_t
2649 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2650 netdev_features_t features)
2652 unsigned int network_hdr_len, mac_hdr_len;
2654 /* Make certain the headers can be described by a context descriptor */
2655 mac_hdr_len = skb_network_offset(skb);
2656 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2657 return features & ~(NETIF_F_HW_CSUM |
2658 NETIF_F_SCTP_CRC |
2659 NETIF_F_HW_VLAN_CTAG_TX |
2660 NETIF_F_TSO |
2661 NETIF_F_TSO6);
2663 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2664 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2665 return features & ~(NETIF_F_HW_CSUM |
2666 NETIF_F_SCTP_CRC |
2667 NETIF_F_TSO |
2668 NETIF_F_TSO6);
2670 /* We can only support IPV4 TSO in tunnels if we can mangle the
2671 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2673 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2674 features &= ~NETIF_F_TSO;
2676 return features;
2679 static const struct net_device_ops igbvf_netdev_ops = {
2680 .ndo_open = igbvf_open,
2681 .ndo_stop = igbvf_close,
2682 .ndo_start_xmit = igbvf_xmit_frame,
2683 .ndo_set_rx_mode = igbvf_set_rx_mode,
2684 .ndo_set_mac_address = igbvf_set_mac,
2685 .ndo_change_mtu = igbvf_change_mtu,
2686 .ndo_eth_ioctl = igbvf_ioctl,
2687 .ndo_tx_timeout = igbvf_tx_timeout,
2688 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2689 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2690 #ifdef CONFIG_NET_POLL_CONTROLLER
2691 .ndo_poll_controller = igbvf_netpoll,
2692 #endif
2693 .ndo_set_features = igbvf_set_features,
2694 .ndo_features_check = igbvf_features_check,
2698 * igbvf_probe - Device Initialization Routine
2699 * @pdev: PCI device information struct
2700 * @ent: entry in igbvf_pci_tbl
2702 * Returns 0 on success, negative on failure
2704 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2705 * The OS initialization, configuring of the adapter private structure,
2706 * and a hardware reset occur.
2708 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2710 struct net_device *netdev;
2711 struct igbvf_adapter *adapter;
2712 struct e1000_hw *hw;
2713 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2714 static int cards_found;
2715 int err;
2717 err = pci_enable_device_mem(pdev);
2718 if (err)
2719 return err;
2721 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2722 if (err) {
2723 dev_err(&pdev->dev,
2724 "No usable DMA configuration, aborting\n");
2725 goto err_dma;
2728 err = pci_request_regions(pdev, igbvf_driver_name);
2729 if (err)
2730 goto err_pci_reg;
2732 pci_set_master(pdev);
2734 err = -ENOMEM;
2735 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2736 if (!netdev)
2737 goto err_alloc_etherdev;
2739 SET_NETDEV_DEV(netdev, &pdev->dev);
2741 pci_set_drvdata(pdev, netdev);
2742 adapter = netdev_priv(netdev);
2743 hw = &adapter->hw;
2744 adapter->netdev = netdev;
2745 adapter->pdev = pdev;
2746 adapter->ei = ei;
2747 adapter->pba = ei->pba;
2748 adapter->flags = ei->flags;
2749 adapter->hw.back = adapter;
2750 adapter->hw.mac.type = ei->mac;
2751 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2753 /* PCI config space info */
2755 hw->vendor_id = pdev->vendor;
2756 hw->device_id = pdev->device;
2757 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2758 hw->subsystem_device_id = pdev->subsystem_device;
2759 hw->revision_id = pdev->revision;
2761 err = -EIO;
2762 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2763 pci_resource_len(pdev, 0));
2765 if (!adapter->hw.hw_addr)
2766 goto err_ioremap;
2768 if (ei->get_variants) {
2769 err = ei->get_variants(adapter);
2770 if (err)
2771 goto err_get_variants;
2774 /* setup adapter struct */
2775 err = igbvf_sw_init(adapter);
2776 if (err)
2777 goto err_sw_init;
2779 /* construct the net_device struct */
2780 netdev->netdev_ops = &igbvf_netdev_ops;
2782 igbvf_set_ethtool_ops(netdev);
2783 netdev->watchdog_timeo = 5 * HZ;
2784 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2786 adapter->bd_number = cards_found++;
2788 netdev->hw_features = NETIF_F_SG |
2789 NETIF_F_TSO |
2790 NETIF_F_TSO6 |
2791 NETIF_F_RXCSUM |
2792 NETIF_F_HW_CSUM |
2793 NETIF_F_SCTP_CRC;
2795 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2796 NETIF_F_GSO_GRE_CSUM | \
2797 NETIF_F_GSO_IPXIP4 | \
2798 NETIF_F_GSO_IPXIP6 | \
2799 NETIF_F_GSO_UDP_TUNNEL | \
2800 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2802 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2803 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2804 IGBVF_GSO_PARTIAL_FEATURES;
2806 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
2808 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2809 netdev->mpls_features |= NETIF_F_HW_CSUM;
2810 netdev->hw_enc_features |= netdev->vlan_features;
2812 /* set this bit last since it cannot be part of vlan_features */
2813 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2814 NETIF_F_HW_VLAN_CTAG_RX |
2815 NETIF_F_HW_VLAN_CTAG_TX;
2817 /* MTU range: 68 - 9216 */
2818 netdev->min_mtu = ETH_MIN_MTU;
2819 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2821 spin_lock_bh(&hw->mbx_lock);
2823 /*reset the controller to put the device in a known good state */
2824 err = hw->mac.ops.reset_hw(hw);
2825 if (err) {
2826 dev_info(&pdev->dev,
2827 "PF still in reset state. Is the PF interface up?\n");
2828 } else {
2829 err = hw->mac.ops.read_mac_addr(hw);
2830 if (err)
2831 dev_info(&pdev->dev, "Error reading MAC address.\n");
2832 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2833 dev_info(&pdev->dev,
2834 "MAC address not assigned by administrator.\n");
2835 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2838 spin_unlock_bh(&hw->mbx_lock);
2840 if (!is_valid_ether_addr(netdev->dev_addr)) {
2841 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2842 eth_hw_addr_random(netdev);
2843 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2844 netdev->addr_len);
2847 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2849 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2850 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2852 /* ring size defaults */
2853 adapter->rx_ring->count = 1024;
2854 adapter->tx_ring->count = 1024;
2856 /* reset the hardware with the new settings */
2857 igbvf_reset(adapter);
2859 /* set hardware-specific flags */
2860 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2861 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2863 strcpy(netdev->name, "eth%d");
2864 err = register_netdev(netdev);
2865 if (err)
2866 goto err_hw_init;
2868 /* tell the stack to leave us alone until igbvf_open() is called */
2869 netif_carrier_off(netdev);
2870 netif_stop_queue(netdev);
2872 igbvf_print_device_info(adapter);
2874 igbvf_initialize_last_counter_stats(adapter);
2876 return 0;
2878 err_hw_init:
2879 netif_napi_del(&adapter->rx_ring->napi);
2880 kfree(adapter->tx_ring);
2881 kfree(adapter->rx_ring);
2882 err_sw_init:
2883 igbvf_reset_interrupt_capability(adapter);
2884 err_get_variants:
2885 iounmap(adapter->hw.hw_addr);
2886 err_ioremap:
2887 free_netdev(netdev);
2888 err_alloc_etherdev:
2889 pci_release_regions(pdev);
2890 err_pci_reg:
2891 err_dma:
2892 pci_disable_device(pdev);
2893 return err;
2897 * igbvf_remove - Device Removal Routine
2898 * @pdev: PCI device information struct
2900 * igbvf_remove is called by the PCI subsystem to alert the driver
2901 * that it should release a PCI device. The could be caused by a
2902 * Hot-Plug event, or because the driver is going to be removed from
2903 * memory.
2905 static void igbvf_remove(struct pci_dev *pdev)
2907 struct net_device *netdev = pci_get_drvdata(pdev);
2908 struct igbvf_adapter *adapter = netdev_priv(netdev);
2909 struct e1000_hw *hw = &adapter->hw;
2911 /* The watchdog timer may be rescheduled, so explicitly
2912 * disable it from being rescheduled.
2914 set_bit(__IGBVF_DOWN, &adapter->state);
2915 del_timer_sync(&adapter->watchdog_timer);
2917 cancel_work_sync(&adapter->reset_task);
2918 cancel_work_sync(&adapter->watchdog_task);
2920 unregister_netdev(netdev);
2922 igbvf_reset_interrupt_capability(adapter);
2924 /* it is important to delete the NAPI struct prior to freeing the
2925 * Rx ring so that you do not end up with null pointer refs
2927 netif_napi_del(&adapter->rx_ring->napi);
2928 kfree(adapter->tx_ring);
2929 kfree(adapter->rx_ring);
2931 iounmap(hw->hw_addr);
2932 if (hw->flash_address)
2933 iounmap(hw->flash_address);
2934 pci_release_regions(pdev);
2936 free_netdev(netdev);
2938 pci_disable_device(pdev);
2941 /* PCI Error Recovery (ERS) */
2942 static const struct pci_error_handlers igbvf_err_handler = {
2943 .error_detected = igbvf_io_error_detected,
2944 .slot_reset = igbvf_io_slot_reset,
2945 .resume = igbvf_io_resume,
2946 .reset_prepare = igbvf_io_prepare,
2947 .reset_done = igbvf_io_reset_done,
2950 static const struct pci_device_id igbvf_pci_tbl[] = {
2951 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2952 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2953 { } /* terminate list */
2955 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2957 static DEFINE_SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2959 /* PCI Device API Driver */
2960 static struct pci_driver igbvf_driver = {
2961 .name = igbvf_driver_name,
2962 .id_table = igbvf_pci_tbl,
2963 .probe = igbvf_probe,
2964 .remove = igbvf_remove,
2965 .driver.pm = pm_sleep_ptr(&igbvf_pm_ops),
2966 .shutdown = igbvf_shutdown,
2967 .err_handler = &igbvf_err_handler
2971 * igbvf_init_module - Driver Registration Routine
2973 * igbvf_init_module is the first routine called when the driver is
2974 * loaded. All it does is register with the PCI subsystem.
2976 static int __init igbvf_init_module(void)
2978 int ret;
2980 pr_info("%s\n", igbvf_driver_string);
2981 pr_info("%s\n", igbvf_copyright);
2983 ret = pci_register_driver(&igbvf_driver);
2985 return ret;
2987 module_init(igbvf_init_module);
2990 * igbvf_exit_module - Driver Exit Cleanup Routine
2992 * igbvf_exit_module is called just before the driver is removed
2993 * from memory.
2995 static void __exit igbvf_exit_module(void)
2997 pci_unregister_driver(&igbvf_driver);
2999 module_exit(igbvf_exit_module);
3001 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3002 MODULE_LICENSE("GPL v2");
3004 /* netdev.c */