2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
4 * Copyright 2004 IDT Inc. (rischelp@idt.com)
5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6 * Copyright 2008 Florian Fainelli <florian@openwrt.org>
7 * Copyright 2017 Roman Yeryomin <roman@advem.lv>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
14 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
15 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
17 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
20 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 * You should have received a copy of the GNU General Public License along
26 * with this program; if not, write to the Free Software Foundation, Inc.,
27 * 675 Mass Ave, Cambridge, MA 02139, USA.
29 * Writing to a DMA status register:
31 * When writing to the status register, you should mask the bit you have
32 * been testing the status register with. Both Tx and Rx DMA registers
33 * should stick to this procedure.
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>
40 #include <linux/ctype.h>
41 #include <linux/types.h>
42 #include <linux/interrupt.h>
43 #include <linux/ioport.h>
44 #include <linux/iopoll.h>
47 #include <linux/of_net.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/delay.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/skbuff.h>
54 #include <linux/errno.h>
55 #include <linux/platform_device.h>
56 #include <linux/mii.h>
57 #include <linux/ethtool.h>
58 #include <linux/crc32.h>
59 #include <linux/pgtable.h>
60 #include <linux/clk.h>
62 #define DRV_NAME "korina"
63 #define DRV_VERSION "0.20"
64 #define DRV_RELDATE "15Sep2017"
72 u32 ethu0
[4]; /* Reserved. */
75 u32 eth_u1
[10]; /* Reserved. */
77 u32 eth_u2
[42]; /* Reserved. */
92 u32 eth_u9
[50]; /* Reserved. */
99 u32 eth_u10
; /* Reserved. */
107 u32 eth_u11
; /* Reserved. */
108 u32 eth_u12
; /* Reserved. */
114 /* Ethernet interrupt registers */
115 #define ETH_INT_FC_EN BIT(0)
116 #define ETH_INT_FC_ITS BIT(1)
117 #define ETH_INT_FC_RIP BIT(2)
118 #define ETH_INT_FC_JAM BIT(3)
119 #define ETH_INT_FC_OVR BIT(4)
120 #define ETH_INT_FC_UND BIT(5)
121 #define ETH_INT_FC_IOC 0x000000c0
123 /* Ethernet FIFO registers */
124 #define ETH_FIFI_TT_TTH_BIT 0
125 #define ETH_FIFO_TT_TTH 0x0000007f
127 /* Ethernet ARC/multicast registers */
128 #define ETH_ARC_PRO BIT(0)
129 #define ETH_ARC_AM BIT(1)
130 #define ETH_ARC_AFM BIT(2)
131 #define ETH_ARC_AB BIT(3)
133 /* Ethernet SAL registers */
134 #define ETH_SAL_BYTE_5 0x000000ff
135 #define ETH_SAL_BYTE_4 0x0000ff00
136 #define ETH_SAL_BYTE_3 0x00ff0000
137 #define ETH_SAL_BYTE_2 0xff000000
139 /* Ethernet SAH registers */
140 #define ETH_SAH_BYTE1 0x000000ff
141 #define ETH_SAH_BYTE0 0x0000ff00
143 /* Ethernet GPF register */
144 #define ETH_GPF_PTV 0x0000ffff
146 /* Ethernet PFG register */
147 #define ETH_PFS_PFD BIT(0)
149 /* Ethernet CFSA[0-3] registers */
150 #define ETH_CFSA0_CFSA4 0x000000ff
151 #define ETH_CFSA0_CFSA5 0x0000ff00
152 #define ETH_CFSA1_CFSA2 0x000000ff
153 #define ETH_CFSA1_CFSA3 0x0000ff00
154 #define ETH_CFSA1_CFSA0 0x000000ff
155 #define ETH_CFSA1_CFSA1 0x0000ff00
157 /* Ethernet MAC1 registers */
158 #define ETH_MAC1_RE BIT(0)
159 #define ETH_MAC1_PAF BIT(1)
160 #define ETH_MAC1_RFC BIT(2)
161 #define ETH_MAC1_TFC BIT(3)
162 #define ETH_MAC1_LB BIT(4)
163 #define ETH_MAC1_MR BIT(31)
165 /* Ethernet MAC2 registers */
166 #define ETH_MAC2_FD BIT(0)
167 #define ETH_MAC2_FLC BIT(1)
168 #define ETH_MAC2_HFE BIT(2)
169 #define ETH_MAC2_DC BIT(3)
170 #define ETH_MAC2_CEN BIT(4)
171 #define ETH_MAC2_PE BIT(5)
172 #define ETH_MAC2_VPE BIT(6)
173 #define ETH_MAC2_APE BIT(7)
174 #define ETH_MAC2_PPE BIT(8)
175 #define ETH_MAC2_LPE BIT(9)
176 #define ETH_MAC2_NB BIT(12)
177 #define ETH_MAC2_BP BIT(13)
178 #define ETH_MAC2_ED BIT(14)
180 /* Ethernet IPGT register */
181 #define ETH_IPGT 0x0000007f
183 /* Ethernet IPGR registers */
184 #define ETH_IPGR_IPGR2 0x0000007f
185 #define ETH_IPGR_IPGR1 0x00007f00
187 /* Ethernet CLRT registers */
188 #define ETH_CLRT_MAX_RET 0x0000000f
189 #define ETH_CLRT_COL_WIN 0x00003f00
191 /* Ethernet MAXF register */
192 #define ETH_MAXF 0x0000ffff
194 /* Ethernet test registers */
195 #define ETH_TEST_REG BIT(2)
196 #define ETH_MCP_DIV 0x000000ff
199 #define ETH_MII_CFG_RSVD 0x0000000c
200 #define ETH_MII_CMD_RD BIT(0)
201 #define ETH_MII_CMD_SCN BIT(1)
202 #define ETH_MII_REG_ADDR 0x0000001f
203 #define ETH_MII_PHY_ADDR 0x00001f00
204 #define ETH_MII_WTD_DATA 0x0000ffff
205 #define ETH_MII_RDD_DATA 0x0000ffff
206 #define ETH_MII_IND_BSY BIT(0)
207 #define ETH_MII_IND_SCN BIT(1)
208 #define ETH_MII_IND_NV BIT(2)
210 /* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
211 #define ETH_RX_FD BIT(0)
212 #define ETH_RX_LD BIT(1)
213 #define ETH_RX_ROK BIT(2)
214 #define ETH_RX_FM BIT(3)
215 #define ETH_RX_MP BIT(4)
216 #define ETH_RX_BP BIT(5)
217 #define ETH_RX_VLT BIT(6)
218 #define ETH_RX_CF BIT(7)
219 #define ETH_RX_OVR BIT(8)
220 #define ETH_RX_CRC BIT(9)
221 #define ETH_RX_CV BIT(10)
222 #define ETH_RX_DB BIT(11)
223 #define ETH_RX_LE BIT(12)
224 #define ETH_RX_LOR BIT(13)
225 #define ETH_RX_CES BIT(14)
226 #define ETH_RX_LEN_BIT 16
227 #define ETH_RX_LEN 0xffff0000
229 #define ETH_TX_FD BIT(0)
230 #define ETH_TX_LD BIT(1)
231 #define ETH_TX_OEN BIT(2)
232 #define ETH_TX_PEN BIT(3)
233 #define ETH_TX_CEN BIT(4)
234 #define ETH_TX_HEN BIT(5)
235 #define ETH_TX_TOK BIT(6)
236 #define ETH_TX_MP BIT(7)
237 #define ETH_TX_BP BIT(8)
238 #define ETH_TX_UND BIT(9)
239 #define ETH_TX_OF BIT(10)
240 #define ETH_TX_ED BIT(11)
241 #define ETH_TX_EC BIT(12)
242 #define ETH_TX_LC BIT(13)
243 #define ETH_TX_TD BIT(14)
244 #define ETH_TX_CRC BIT(15)
245 #define ETH_TX_LE BIT(16)
246 #define ETH_TX_CC 0x001E0000
248 /* DMA descriptor (in physical memory). */
250 u32 control
; /* Control. use DMAD_* */
251 u32 ca
; /* Current Address. */
252 u32 devcs
; /* Device control and status. */
253 u32 link
; /* Next descriptor in chain. */
256 #define DMA_DESC_COUNT_BIT 0
257 #define DMA_DESC_COUNT_MSK 0x0003ffff
258 #define DMA_DESC_DS_BIT 20
259 #define DMA_DESC_DS_MSK 0x00300000
261 #define DMA_DESC_DEV_CMD_BIT 22
262 #define DMA_DESC_DEV_CMD_MSK 0x01c00000
264 /* DMA descriptors interrupts */
265 #define DMA_DESC_COF BIT(25) /* Chain on finished */
266 #define DMA_DESC_COD BIT(26) /* Chain on done */
267 #define DMA_DESC_IOF BIT(27) /* Interrupt on finished */
268 #define DMA_DESC_IOD BIT(28) /* Interrupt on done */
269 #define DMA_DESC_TERM BIT(29) /* Terminated */
270 #define DMA_DESC_DONE BIT(30) /* Done */
271 #define DMA_DESC_FINI BIT(31) /* Finished */
273 /* DMA register (within Internal Register Map). */
275 u32 dmac
; /* Control. */
276 u32 dmas
; /* Status. */
277 u32 dmasm
; /* Mask. */
278 u32 dmadptr
; /* Descriptor pointer. */
279 u32 dmandptr
; /* Next descriptor pointer. */
282 /* DMA channels specific registers */
283 #define DMA_CHAN_RUN_BIT BIT(0)
284 #define DMA_CHAN_DONE_BIT BIT(1)
285 #define DMA_CHAN_MODE_BIT BIT(2)
286 #define DMA_CHAN_MODE_MSK 0x0000000c
287 #define DMA_CHAN_MODE_AUTO 0
288 #define DMA_CHAN_MODE_BURST 1
289 #define DMA_CHAN_MODE_XFRT 2
290 #define DMA_CHAN_MODE_RSVD 3
291 #define DMA_CHAN_ACT_BIT BIT(4)
293 /* DMA status registers */
294 #define DMA_STAT_FINI BIT(0)
295 #define DMA_STAT_DONE BIT(1)
296 #define DMA_STAT_CHAIN BIT(2)
297 #define DMA_STAT_ERR BIT(3)
298 #define DMA_STAT_HALT BIT(4)
300 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
301 ((dev)->dev_addr[1]))
302 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
303 ((dev)->dev_addr[3] << 16) | \
304 ((dev)->dev_addr[4] << 8) | \
305 ((dev)->dev_addr[5]))
307 #define MII_CLOCK 1250000 /* no more than 2.5MHz */
309 /* the following must be powers of two */
310 #define KORINA_NUM_RDS 64 /* number of receive descriptors */
311 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
313 /* KORINA_RBSIZE is the hardware's default maximum receive
314 * frame size in bytes. Having this hardcoded means that there
315 * is no support for MTU sizes greater than 1500. */
316 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
317 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
318 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
319 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
320 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
322 #define TX_TIMEOUT (6000 * HZ / 1000)
329 #define DMA_COUNT(count) ((count) & DMA_DESC_COUNT_MSK)
330 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
331 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
332 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
334 /* Information that need to be kept for each board. */
335 struct korina_private
{
336 struct eth_regs __iomem
*eth_regs
;
337 struct dma_reg __iomem
*rx_dma_regs
;
338 struct dma_reg __iomem
*tx_dma_regs
;
339 struct dma_desc
*td_ring
; /* transmit descriptor ring */
340 struct dma_desc
*rd_ring
; /* receive descriptor ring */
344 struct sk_buff
*tx_skb
[KORINA_NUM_TDS
];
345 struct sk_buff
*rx_skb
[KORINA_NUM_RDS
];
347 dma_addr_t rx_skb_dma
[KORINA_NUM_RDS
];
348 dma_addr_t tx_skb_dma
[KORINA_NUM_TDS
];
353 enum chain_status rx_chain_status
;
358 enum chain_status tx_chain_status
;
365 spinlock_t lock
; /* NIC xmit lock */
369 struct napi_struct napi
;
370 struct timer_list media_check_timer
;
371 struct mii_if_info mii_if
;
372 struct work_struct restart_task
;
373 struct net_device
*dev
;
374 struct device
*dmadev
;
378 static dma_addr_t
korina_tx_dma(struct korina_private
*lp
, int idx
)
380 return lp
->td_dma
+ (idx
* sizeof(struct dma_desc
));
383 static dma_addr_t
korina_rx_dma(struct korina_private
*lp
, int idx
)
385 return lp
->rd_dma
+ (idx
* sizeof(struct dma_desc
));
388 static inline void korina_abort_dma(struct net_device
*dev
,
391 if (readl(&ch
->dmac
) & DMA_CHAN_RUN_BIT
) {
392 writel(0x10, &ch
->dmac
);
394 while (!(readl(&ch
->dmas
) & DMA_STAT_HALT
))
395 netif_trans_update(dev
);
397 writel(0, &ch
->dmas
);
400 writel(0, &ch
->dmadptr
);
401 writel(0, &ch
->dmandptr
);
404 static void korina_abort_tx(struct net_device
*dev
)
406 struct korina_private
*lp
= netdev_priv(dev
);
408 korina_abort_dma(dev
, lp
->tx_dma_regs
);
411 static void korina_abort_rx(struct net_device
*dev
)
413 struct korina_private
*lp
= netdev_priv(dev
);
415 korina_abort_dma(dev
, lp
->rx_dma_regs
);
418 /* transmit packet */
419 static netdev_tx_t
korina_send_packet(struct sk_buff
*skb
,
420 struct net_device
*dev
)
422 struct korina_private
*lp
= netdev_priv(dev
);
423 u32 chain_prev
, chain_next
;
430 spin_lock_irqsave(&lp
->lock
, flags
);
432 idx
= lp
->tx_chain_tail
;
433 td
= &lp
->td_ring
[idx
];
435 /* stop queue when full, drop pkts if queue already full */
436 if (lp
->tx_count
>= (KORINA_NUM_TDS
- 2)) {
439 if (lp
->tx_count
== (KORINA_NUM_TDS
- 2))
440 netif_stop_queue(dev
);
447 lp
->tx_skb
[idx
] = skb
;
451 /* Setup the transmit descriptor. */
452 ca
= dma_map_single(lp
->dmadev
, skb
->data
, length
, DMA_TO_DEVICE
);
453 if (dma_mapping_error(lp
->dmadev
, ca
))
456 lp
->tx_skb_dma
[idx
] = ca
;
459 chain_prev
= (idx
- 1) & KORINA_TDS_MASK
;
460 chain_next
= (idx
+ 1) & KORINA_TDS_MASK
;
462 if (readl(&(lp
->tx_dma_regs
->dmandptr
)) == 0) {
463 if (lp
->tx_chain_status
== desc_is_empty
) {
465 td
->control
= DMA_COUNT(length
) |
466 DMA_DESC_COF
| DMA_DESC_IOF
;
468 lp
->tx_chain_tail
= chain_next
;
470 writel(korina_tx_dma(lp
, lp
->tx_chain_head
),
471 &lp
->tx_dma_regs
->dmandptr
);
472 /* Move head to tail */
473 lp
->tx_chain_head
= lp
->tx_chain_tail
;
476 td
->control
= DMA_COUNT(length
) |
477 DMA_DESC_COF
| DMA_DESC_IOF
;
479 lp
->td_ring
[chain_prev
].control
&=
482 lp
->td_ring
[chain_prev
].link
= korina_tx_dma(lp
, idx
);
484 lp
->tx_chain_tail
= chain_next
;
486 writel(korina_tx_dma(lp
, lp
->tx_chain_head
),
487 &lp
->tx_dma_regs
->dmandptr
);
488 /* Move head to tail */
489 lp
->tx_chain_head
= lp
->tx_chain_tail
;
490 lp
->tx_chain_status
= desc_is_empty
;
493 if (lp
->tx_chain_status
== desc_is_empty
) {
495 td
->control
= DMA_COUNT(length
) |
496 DMA_DESC_COF
| DMA_DESC_IOF
;
498 lp
->tx_chain_tail
= chain_next
;
499 lp
->tx_chain_status
= desc_filled
;
502 td
->control
= DMA_COUNT(length
) |
503 DMA_DESC_COF
| DMA_DESC_IOF
;
504 lp
->td_ring
[chain_prev
].control
&=
506 lp
->td_ring
[chain_prev
].link
= korina_tx_dma(lp
, idx
);
507 lp
->tx_chain_tail
= chain_next
;
511 netif_trans_update(dev
);
512 spin_unlock_irqrestore(&lp
->lock
, flags
);
517 dev
->stats
.tx_dropped
++;
518 dev_kfree_skb_any(skb
);
519 spin_unlock_irqrestore(&lp
->lock
, flags
);
524 static int korina_mdio_wait(struct korina_private
*lp
)
528 return readl_poll_timeout_atomic(&lp
->eth_regs
->miimind
,
529 value
, value
& ETH_MII_IND_BSY
,
533 static int korina_mdio_read(struct net_device
*dev
, int phy
, int reg
)
535 struct korina_private
*lp
= netdev_priv(dev
);
538 ret
= korina_mdio_wait(lp
);
542 writel(phy
<< 8 | reg
, &lp
->eth_regs
->miimaddr
);
543 writel(1, &lp
->eth_regs
->miimcmd
);
545 ret
= korina_mdio_wait(lp
);
549 if (readl(&lp
->eth_regs
->miimind
) & ETH_MII_IND_NV
)
552 ret
= readl(&lp
->eth_regs
->miimrdd
);
553 writel(0, &lp
->eth_regs
->miimcmd
);
557 static void korina_mdio_write(struct net_device
*dev
, int phy
, int reg
, int val
)
559 struct korina_private
*lp
= netdev_priv(dev
);
561 if (korina_mdio_wait(lp
))
564 writel(0, &lp
->eth_regs
->miimcmd
);
565 writel(phy
<< 8 | reg
, &lp
->eth_regs
->miimaddr
);
566 writel(val
, &lp
->eth_regs
->miimwtd
);
569 /* Ethernet Rx DMA interrupt */
570 static irqreturn_t
korina_rx_dma_interrupt(int irq
, void *dev_id
)
572 struct net_device
*dev
= dev_id
;
573 struct korina_private
*lp
= netdev_priv(dev
);
577 dmas
= readl(&lp
->rx_dma_regs
->dmas
);
578 if (dmas
& (DMA_STAT_DONE
| DMA_STAT_HALT
| DMA_STAT_ERR
)) {
579 dmasm
= readl(&lp
->rx_dma_regs
->dmasm
);
580 writel(dmasm
| (DMA_STAT_DONE
|
581 DMA_STAT_HALT
| DMA_STAT_ERR
),
582 &lp
->rx_dma_regs
->dmasm
);
584 napi_schedule(&lp
->napi
);
586 if (dmas
& DMA_STAT_ERR
)
587 printk(KERN_ERR
"%s: DMA error\n", dev
->name
);
589 retval
= IRQ_HANDLED
;
596 static int korina_rx(struct net_device
*dev
, int limit
)
598 struct korina_private
*lp
= netdev_priv(dev
);
599 struct dma_desc
*rd
= &lp
->rd_ring
[lp
->rx_next_done
];
600 struct sk_buff
*skb
, *skb_new
;
601 u32 devcs
, pkt_len
, dmas
;
605 for (count
= 0; count
< limit
; count
++) {
606 skb
= lp
->rx_skb
[lp
->rx_next_done
];
611 if ((KORINA_RBSIZE
- (u32
)DMA_COUNT(rd
->control
)) == 0)
614 /* check that this is a whole packet
615 * WARNING: DMA_FD bit incorrectly set
616 * in Rc32434 (errata ref #077) */
617 if (!(devcs
& ETH_RX_LD
))
620 if (!(devcs
& ETH_RX_ROK
)) {
621 /* Update statistics counters */
622 dev
->stats
.rx_errors
++;
623 dev
->stats
.rx_dropped
++;
624 if (devcs
& ETH_RX_CRC
)
625 dev
->stats
.rx_crc_errors
++;
626 if (devcs
& ETH_RX_LE
)
627 dev
->stats
.rx_length_errors
++;
628 if (devcs
& ETH_RX_OVR
)
629 dev
->stats
.rx_fifo_errors
++;
630 if (devcs
& ETH_RX_CV
)
631 dev
->stats
.rx_frame_errors
++;
632 if (devcs
& ETH_RX_CES
)
633 dev
->stats
.rx_frame_errors
++;
638 /* Malloc up new buffer. */
639 skb_new
= netdev_alloc_skb_ip_align(dev
, KORINA_RBSIZE
);
643 ca
= dma_map_single(lp
->dmadev
, skb_new
->data
, KORINA_RBSIZE
,
645 if (dma_mapping_error(lp
->dmadev
, ca
)) {
646 dev_kfree_skb_any(skb_new
);
650 pkt_len
= RCVPKT_LENGTH(devcs
);
651 dma_unmap_single(lp
->dmadev
, lp
->rx_skb_dma
[lp
->rx_next_done
],
652 pkt_len
, DMA_FROM_DEVICE
);
654 /* Do not count the CRC */
655 skb_put(skb
, pkt_len
- 4);
656 skb
->protocol
= eth_type_trans(skb
, dev
);
658 /* Pass the packet to upper layers */
659 napi_gro_receive(&lp
->napi
, skb
);
660 dev
->stats
.rx_packets
++;
661 dev
->stats
.rx_bytes
+= pkt_len
;
663 /* Update the mcast stats */
664 if (devcs
& ETH_RX_MP
)
665 dev
->stats
.multicast
++;
667 lp
->rx_skb
[lp
->rx_next_done
] = skb_new
;
668 lp
->rx_skb_dma
[lp
->rx_next_done
] = ca
;
673 /* Restore descriptor's curr_addr */
674 rd
->ca
= lp
->rx_skb_dma
[lp
->rx_next_done
];
676 rd
->control
= DMA_COUNT(KORINA_RBSIZE
) |
677 DMA_DESC_COD
| DMA_DESC_IOD
;
678 lp
->rd_ring
[(lp
->rx_next_done
- 1) &
679 KORINA_RDS_MASK
].control
&=
682 lp
->rx_next_done
= (lp
->rx_next_done
+ 1) & KORINA_RDS_MASK
;
683 rd
= &lp
->rd_ring
[lp
->rx_next_done
];
684 writel((u32
)~DMA_STAT_DONE
, &lp
->rx_dma_regs
->dmas
);
687 dmas
= readl(&lp
->rx_dma_regs
->dmas
);
689 if (dmas
& DMA_STAT_HALT
) {
690 writel((u32
)~(DMA_STAT_HALT
| DMA_STAT_ERR
),
691 &lp
->rx_dma_regs
->dmas
);
695 rd
->ca
= lp
->rx_skb_dma
[lp
->rx_next_done
];
696 writel(korina_rx_dma(lp
, rd
- lp
->rd_ring
),
697 &lp
->rx_dma_regs
->dmandptr
);
703 static int korina_poll(struct napi_struct
*napi
, int budget
)
705 struct korina_private
*lp
=
706 container_of(napi
, struct korina_private
, napi
);
707 struct net_device
*dev
= lp
->dev
;
710 work_done
= korina_rx(dev
, budget
);
711 if (work_done
< budget
) {
712 napi_complete_done(napi
, work_done
);
714 writel(readl(&lp
->rx_dma_regs
->dmasm
) &
715 ~(DMA_STAT_DONE
| DMA_STAT_HALT
| DMA_STAT_ERR
),
716 &lp
->rx_dma_regs
->dmasm
);
722 * Set or clear the multicast filter for this adaptor.
724 static void korina_multicast_list(struct net_device
*dev
)
726 struct korina_private
*lp
= netdev_priv(dev
);
728 struct netdev_hw_addr
*ha
;
729 u32 recognise
= ETH_ARC_AB
; /* always accept broadcasts */
731 /* Set promiscuous mode */
732 if (dev
->flags
& IFF_PROMISC
)
733 recognise
|= ETH_ARC_PRO
;
735 else if ((dev
->flags
& IFF_ALLMULTI
) || (netdev_mc_count(dev
) > 4))
736 /* All multicast and broadcast */
737 recognise
|= ETH_ARC_AM
;
739 /* Build the hash table */
740 if (netdev_mc_count(dev
) > 4) {
741 u16 hash_table
[4] = { 0 };
744 netdev_for_each_mc_addr(ha
, dev
) {
745 crc
= ether_crc_le(6, ha
->addr
);
747 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
749 /* Accept filtered multicast */
750 recognise
|= ETH_ARC_AFM
;
752 /* Fill the MAC hash tables with their values */
753 writel((u32
)(hash_table
[1] << 16 | hash_table
[0]),
754 &lp
->eth_regs
->ethhash0
);
755 writel((u32
)(hash_table
[3] << 16 | hash_table
[2]),
756 &lp
->eth_regs
->ethhash1
);
759 spin_lock_irqsave(&lp
->lock
, flags
);
760 writel(recognise
, &lp
->eth_regs
->etharc
);
761 spin_unlock_irqrestore(&lp
->lock
, flags
);
764 static void korina_tx(struct net_device
*dev
)
766 struct korina_private
*lp
= netdev_priv(dev
);
767 struct dma_desc
*td
= &lp
->td_ring
[lp
->tx_next_done
];
771 spin_lock(&lp
->lock
);
773 /* Process all desc that are done */
774 while (IS_DMA_FINISHED(td
->control
)) {
775 if (lp
->tx_full
== 1) {
776 netif_wake_queue(dev
);
780 devcs
= lp
->td_ring
[lp
->tx_next_done
].devcs
;
781 if ((devcs
& (ETH_TX_FD
| ETH_TX_LD
)) !=
782 (ETH_TX_FD
| ETH_TX_LD
)) {
783 dev
->stats
.tx_errors
++;
784 dev
->stats
.tx_dropped
++;
786 /* Should never happen */
787 printk(KERN_ERR
"%s: split tx ignored\n",
789 } else if (devcs
& ETH_TX_TOK
) {
790 dev
->stats
.tx_packets
++;
791 dev
->stats
.tx_bytes
+=
792 lp
->tx_skb
[lp
->tx_next_done
]->len
;
794 dev
->stats
.tx_errors
++;
795 dev
->stats
.tx_dropped
++;
798 if (devcs
& ETH_TX_UND
)
799 dev
->stats
.tx_fifo_errors
++;
801 /* Oversized frame */
802 if (devcs
& ETH_TX_OF
)
803 dev
->stats
.tx_aborted_errors
++;
805 /* Excessive deferrals */
806 if (devcs
& ETH_TX_ED
)
807 dev
->stats
.tx_carrier_errors
++;
809 /* Collisions: medium busy */
810 if (devcs
& ETH_TX_EC
)
811 dev
->stats
.collisions
++;
814 if (devcs
& ETH_TX_LC
)
815 dev
->stats
.tx_window_errors
++;
818 /* We must always free the original skb */
819 if (lp
->tx_skb
[lp
->tx_next_done
]) {
820 dma_unmap_single(lp
->dmadev
,
821 lp
->tx_skb_dma
[lp
->tx_next_done
],
822 lp
->tx_skb
[lp
->tx_next_done
]->len
,
824 dev_kfree_skb_any(lp
->tx_skb
[lp
->tx_next_done
]);
825 lp
->tx_skb
[lp
->tx_next_done
] = NULL
;
828 lp
->td_ring
[lp
->tx_next_done
].control
= DMA_DESC_IOF
;
829 lp
->td_ring
[lp
->tx_next_done
].devcs
= ETH_TX_FD
| ETH_TX_LD
;
830 lp
->td_ring
[lp
->tx_next_done
].link
= 0;
831 lp
->td_ring
[lp
->tx_next_done
].ca
= 0;
834 /* Go on to next transmission */
835 lp
->tx_next_done
= (lp
->tx_next_done
+ 1) & KORINA_TDS_MASK
;
836 td
= &lp
->td_ring
[lp
->tx_next_done
];
840 /* Clear the DMA status register */
841 dmas
= readl(&lp
->tx_dma_regs
->dmas
);
842 writel(~dmas
, &lp
->tx_dma_regs
->dmas
);
844 writel(readl(&lp
->tx_dma_regs
->dmasm
) &
845 ~(DMA_STAT_FINI
| DMA_STAT_ERR
),
846 &lp
->tx_dma_regs
->dmasm
);
848 spin_unlock(&lp
->lock
);
852 korina_tx_dma_interrupt(int irq
, void *dev_id
)
854 struct net_device
*dev
= dev_id
;
855 struct korina_private
*lp
= netdev_priv(dev
);
859 dmas
= readl(&lp
->tx_dma_regs
->dmas
);
861 if (dmas
& (DMA_STAT_FINI
| DMA_STAT_ERR
)) {
862 dmasm
= readl(&lp
->tx_dma_regs
->dmasm
);
863 writel(dmasm
| (DMA_STAT_FINI
| DMA_STAT_ERR
),
864 &lp
->tx_dma_regs
->dmasm
);
868 if (lp
->tx_chain_status
== desc_filled
&&
869 (readl(&(lp
->tx_dma_regs
->dmandptr
)) == 0)) {
870 writel(korina_tx_dma(lp
, lp
->tx_chain_head
),
871 &lp
->tx_dma_regs
->dmandptr
);
872 lp
->tx_chain_status
= desc_is_empty
;
873 lp
->tx_chain_head
= lp
->tx_chain_tail
;
874 netif_trans_update(dev
);
876 if (dmas
& DMA_STAT_ERR
)
877 printk(KERN_ERR
"%s: DMA error\n", dev
->name
);
879 retval
= IRQ_HANDLED
;
887 static void korina_check_media(struct net_device
*dev
, unsigned int init_media
)
889 struct korina_private
*lp
= netdev_priv(dev
);
891 mii_check_media(&lp
->mii_if
, 1, init_media
);
893 if (lp
->mii_if
.full_duplex
)
894 writel(readl(&lp
->eth_regs
->ethmac2
) | ETH_MAC2_FD
,
895 &lp
->eth_regs
->ethmac2
);
897 writel(readl(&lp
->eth_regs
->ethmac2
) & ~ETH_MAC2_FD
,
898 &lp
->eth_regs
->ethmac2
);
901 static void korina_poll_media(struct timer_list
*t
)
903 struct korina_private
*lp
= from_timer(lp
, t
, media_check_timer
);
904 struct net_device
*dev
= lp
->dev
;
906 korina_check_media(dev
, 0);
907 mod_timer(&lp
->media_check_timer
, jiffies
+ HZ
);
910 static void korina_set_carrier(struct mii_if_info
*mii
)
912 if (mii
->force_media
) {
913 /* autoneg is off: Link is always assumed to be up */
914 if (!netif_carrier_ok(mii
->dev
))
915 netif_carrier_on(mii
->dev
);
916 } else /* Let MMI library update carrier status */
917 korina_check_media(mii
->dev
, 0);
920 static int korina_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
922 struct korina_private
*lp
= netdev_priv(dev
);
923 struct mii_ioctl_data
*data
= if_mii(rq
);
926 if (!netif_running(dev
))
928 spin_lock_irq(&lp
->lock
);
929 rc
= generic_mii_ioctl(&lp
->mii_if
, data
, cmd
, NULL
);
930 spin_unlock_irq(&lp
->lock
);
931 korina_set_carrier(&lp
->mii_if
);
936 /* ethtool helpers */
937 static void netdev_get_drvinfo(struct net_device
*dev
,
938 struct ethtool_drvinfo
*info
)
940 struct korina_private
*lp
= netdev_priv(dev
);
942 strscpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
943 strscpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
944 strscpy(info
->bus_info
, lp
->dev
->name
, sizeof(info
->bus_info
));
947 static int netdev_get_link_ksettings(struct net_device
*dev
,
948 struct ethtool_link_ksettings
*cmd
)
950 struct korina_private
*lp
= netdev_priv(dev
);
952 spin_lock_irq(&lp
->lock
);
953 mii_ethtool_get_link_ksettings(&lp
->mii_if
, cmd
);
954 spin_unlock_irq(&lp
->lock
);
959 static int netdev_set_link_ksettings(struct net_device
*dev
,
960 const struct ethtool_link_ksettings
*cmd
)
962 struct korina_private
*lp
= netdev_priv(dev
);
965 spin_lock_irq(&lp
->lock
);
966 rc
= mii_ethtool_set_link_ksettings(&lp
->mii_if
, cmd
);
967 spin_unlock_irq(&lp
->lock
);
968 korina_set_carrier(&lp
->mii_if
);
973 static u32
netdev_get_link(struct net_device
*dev
)
975 struct korina_private
*lp
= netdev_priv(dev
);
977 return mii_link_ok(&lp
->mii_if
);
980 static const struct ethtool_ops netdev_ethtool_ops
= {
981 .get_drvinfo
= netdev_get_drvinfo
,
982 .get_link
= netdev_get_link
,
983 .get_link_ksettings
= netdev_get_link_ksettings
,
984 .set_link_ksettings
= netdev_set_link_ksettings
,
987 static int korina_alloc_ring(struct net_device
*dev
)
989 struct korina_private
*lp
= netdev_priv(dev
);
994 /* Initialize the transmit descriptors */
995 for (i
= 0; i
< KORINA_NUM_TDS
; i
++) {
996 lp
->td_ring
[i
].control
= DMA_DESC_IOF
;
997 lp
->td_ring
[i
].devcs
= ETH_TX_FD
| ETH_TX_LD
;
998 lp
->td_ring
[i
].ca
= 0;
999 lp
->td_ring
[i
].link
= 0;
1001 lp
->tx_next_done
= lp
->tx_chain_head
= lp
->tx_chain_tail
=
1002 lp
->tx_full
= lp
->tx_count
= 0;
1003 lp
->tx_chain_status
= desc_is_empty
;
1005 /* Initialize the receive descriptors */
1006 for (i
= 0; i
< KORINA_NUM_RDS
; i
++) {
1007 skb
= netdev_alloc_skb_ip_align(dev
, KORINA_RBSIZE
);
1010 lp
->rx_skb
[i
] = skb
;
1011 lp
->rd_ring
[i
].control
= DMA_DESC_IOD
|
1012 DMA_COUNT(KORINA_RBSIZE
);
1013 lp
->rd_ring
[i
].devcs
= 0;
1014 ca
= dma_map_single(lp
->dmadev
, skb
->data
, KORINA_RBSIZE
,
1016 if (dma_mapping_error(lp
->dmadev
, ca
))
1018 lp
->rd_ring
[i
].ca
= ca
;
1019 lp
->rx_skb_dma
[i
] = ca
;
1020 lp
->rd_ring
[i
].link
= korina_rx_dma(lp
, i
+ 1);
1023 /* loop back receive descriptors, so the last
1024 * descriptor points to the first one */
1025 lp
->rd_ring
[i
- 1].link
= lp
->rd_dma
;
1026 lp
->rd_ring
[i
- 1].control
|= DMA_DESC_COD
;
1028 lp
->rx_next_done
= 0;
1029 lp
->rx_chain_head
= 0;
1030 lp
->rx_chain_tail
= 0;
1031 lp
->rx_chain_status
= desc_is_empty
;
1036 static void korina_free_ring(struct net_device
*dev
)
1038 struct korina_private
*lp
= netdev_priv(dev
);
1041 for (i
= 0; i
< KORINA_NUM_RDS
; i
++) {
1042 lp
->rd_ring
[i
].control
= 0;
1043 if (lp
->rx_skb
[i
]) {
1044 dma_unmap_single(lp
->dmadev
, lp
->rx_skb_dma
[i
],
1045 KORINA_RBSIZE
, DMA_FROM_DEVICE
);
1046 dev_kfree_skb_any(lp
->rx_skb
[i
]);
1047 lp
->rx_skb
[i
] = NULL
;
1051 for (i
= 0; i
< KORINA_NUM_TDS
; i
++) {
1052 lp
->td_ring
[i
].control
= 0;
1053 if (lp
->tx_skb
[i
]) {
1054 dma_unmap_single(lp
->dmadev
, lp
->tx_skb_dma
[i
],
1055 lp
->tx_skb
[i
]->len
, DMA_TO_DEVICE
);
1056 dev_kfree_skb_any(lp
->tx_skb
[i
]);
1057 lp
->tx_skb
[i
] = NULL
;
1063 * Initialize the RC32434 ethernet controller.
1065 static int korina_init(struct net_device
*dev
)
1067 struct korina_private
*lp
= netdev_priv(dev
);
1070 korina_abort_tx(dev
);
1071 korina_abort_rx(dev
);
1073 /* reset ethernet logic */
1074 writel(0, &lp
->eth_regs
->ethintfc
);
1075 while ((readl(&lp
->eth_regs
->ethintfc
) & ETH_INT_FC_RIP
))
1076 netif_trans_update(dev
);
1078 /* Enable Ethernet Interface */
1079 writel(ETH_INT_FC_EN
, &lp
->eth_regs
->ethintfc
);
1081 /* Allocate rings */
1082 if (korina_alloc_ring(dev
)) {
1083 printk(KERN_ERR
"%s: descriptor allocation failed\n", dev
->name
);
1084 korina_free_ring(dev
);
1088 writel(0, &lp
->rx_dma_regs
->dmas
);
1090 writel(0, &lp
->rx_dma_regs
->dmandptr
);
1091 writel(korina_rx_dma(lp
, 0), &lp
->rx_dma_regs
->dmadptr
);
1093 writel(readl(&lp
->tx_dma_regs
->dmasm
) &
1094 ~(DMA_STAT_FINI
| DMA_STAT_ERR
),
1095 &lp
->tx_dma_regs
->dmasm
);
1096 writel(readl(&lp
->rx_dma_regs
->dmasm
) &
1097 ~(DMA_STAT_DONE
| DMA_STAT_HALT
| DMA_STAT_ERR
),
1098 &lp
->rx_dma_regs
->dmasm
);
1100 /* Accept only packets destined for this Ethernet device address */
1101 writel(ETH_ARC_AB
, &lp
->eth_regs
->etharc
);
1103 /* Set all Ether station address registers to their initial values */
1104 writel(STATION_ADDRESS_LOW(dev
), &lp
->eth_regs
->ethsal0
);
1105 writel(STATION_ADDRESS_HIGH(dev
), &lp
->eth_regs
->ethsah0
);
1107 writel(STATION_ADDRESS_LOW(dev
), &lp
->eth_regs
->ethsal1
);
1108 writel(STATION_ADDRESS_HIGH(dev
), &lp
->eth_regs
->ethsah1
);
1110 writel(STATION_ADDRESS_LOW(dev
), &lp
->eth_regs
->ethsal2
);
1111 writel(STATION_ADDRESS_HIGH(dev
), &lp
->eth_regs
->ethsah2
);
1113 writel(STATION_ADDRESS_LOW(dev
), &lp
->eth_regs
->ethsal3
);
1114 writel(STATION_ADDRESS_HIGH(dev
), &lp
->eth_regs
->ethsah3
);
1117 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
1118 writel(ETH_MAC2_PE
| ETH_MAC2_CEN
| ETH_MAC2_FD
,
1119 &lp
->eth_regs
->ethmac2
);
1121 /* Back to back inter-packet-gap */
1122 writel(0x15, &lp
->eth_regs
->ethipgt
);
1123 /* Non - Back to back inter-packet-gap */
1124 writel(0x12, &lp
->eth_regs
->ethipgr
);
1126 /* Management Clock Prescaler Divisor
1127 * Clock independent setting */
1128 writel(((lp
->mii_clock_freq
) / MII_CLOCK
+ 1) & ~1,
1129 &lp
->eth_regs
->ethmcp
);
1130 writel(0, &lp
->eth_regs
->miimcfg
);
1132 /* don't transmit until fifo contains 48b */
1133 writel(48, &lp
->eth_regs
->ethfifott
);
1135 writel(ETH_MAC1_RE
, &lp
->eth_regs
->ethmac1
);
1137 korina_check_media(dev
, 1);
1139 napi_enable(&lp
->napi
);
1140 netif_start_queue(dev
);
1146 * Restart the RC32434 ethernet controller.
1148 static void korina_restart_task(struct work_struct
*work
)
1150 struct korina_private
*lp
= container_of(work
,
1151 struct korina_private
, restart_task
);
1152 struct net_device
*dev
= lp
->dev
;
1155 * Disable interrupts
1157 disable_irq(lp
->rx_irq
);
1158 disable_irq(lp
->tx_irq
);
1160 writel(readl(&lp
->tx_dma_regs
->dmasm
) |
1161 DMA_STAT_FINI
| DMA_STAT_ERR
,
1162 &lp
->tx_dma_regs
->dmasm
);
1163 writel(readl(&lp
->rx_dma_regs
->dmasm
) |
1164 DMA_STAT_DONE
| DMA_STAT_HALT
| DMA_STAT_ERR
,
1165 &lp
->rx_dma_regs
->dmasm
);
1167 napi_disable(&lp
->napi
);
1169 korina_free_ring(dev
);
1171 if (korina_init(dev
) < 0) {
1172 printk(KERN_ERR
"%s: cannot restart device\n", dev
->name
);
1175 korina_multicast_list(dev
);
1177 enable_irq(lp
->tx_irq
);
1178 enable_irq(lp
->rx_irq
);
1181 static void korina_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
1183 struct korina_private
*lp
= netdev_priv(dev
);
1185 schedule_work(&lp
->restart_task
);
1188 #ifdef CONFIG_NET_POLL_CONTROLLER
1189 static void korina_poll_controller(struct net_device
*dev
)
1191 disable_irq(dev
->irq
);
1192 korina_tx_dma_interrupt(dev
->irq
, dev
);
1193 enable_irq(dev
->irq
);
1197 static int korina_open(struct net_device
*dev
)
1199 struct korina_private
*lp
= netdev_priv(dev
);
1203 ret
= korina_init(dev
);
1205 printk(KERN_ERR
"%s: cannot open device\n", dev
->name
);
1209 /* Install the interrupt handler
1210 * that handles the Done Finished */
1211 ret
= request_irq(lp
->rx_irq
, korina_rx_dma_interrupt
,
1212 0, "Korina ethernet Rx", dev
);
1214 printk(KERN_ERR
"%s: unable to get Rx DMA IRQ %d\n",
1215 dev
->name
, lp
->rx_irq
);
1218 ret
= request_irq(lp
->tx_irq
, korina_tx_dma_interrupt
,
1219 0, "Korina ethernet Tx", dev
);
1221 printk(KERN_ERR
"%s: unable to get Tx DMA IRQ %d\n",
1222 dev
->name
, lp
->tx_irq
);
1223 goto err_free_rx_irq
;
1226 mod_timer(&lp
->media_check_timer
, jiffies
+ 1);
1231 free_irq(lp
->rx_irq
, dev
);
1233 korina_free_ring(dev
);
1237 static int korina_close(struct net_device
*dev
)
1239 struct korina_private
*lp
= netdev_priv(dev
);
1242 del_timer(&lp
->media_check_timer
);
1244 /* Disable interrupts */
1245 disable_irq(lp
->rx_irq
);
1246 disable_irq(lp
->tx_irq
);
1248 korina_abort_tx(dev
);
1249 tmp
= readl(&lp
->tx_dma_regs
->dmasm
);
1250 tmp
= tmp
| DMA_STAT_FINI
| DMA_STAT_ERR
;
1251 writel(tmp
, &lp
->tx_dma_regs
->dmasm
);
1253 korina_abort_rx(dev
);
1254 tmp
= readl(&lp
->rx_dma_regs
->dmasm
);
1255 tmp
= tmp
| DMA_STAT_DONE
| DMA_STAT_HALT
| DMA_STAT_ERR
;
1256 writel(tmp
, &lp
->rx_dma_regs
->dmasm
);
1258 napi_disable(&lp
->napi
);
1260 cancel_work_sync(&lp
->restart_task
);
1262 korina_free_ring(dev
);
1264 free_irq(lp
->rx_irq
, dev
);
1265 free_irq(lp
->tx_irq
, dev
);
1270 static const struct net_device_ops korina_netdev_ops
= {
1271 .ndo_open
= korina_open
,
1272 .ndo_stop
= korina_close
,
1273 .ndo_start_xmit
= korina_send_packet
,
1274 .ndo_set_rx_mode
= korina_multicast_list
,
1275 .ndo_tx_timeout
= korina_tx_timeout
,
1276 .ndo_eth_ioctl
= korina_ioctl
,
1277 .ndo_validate_addr
= eth_validate_addr
,
1278 .ndo_set_mac_address
= eth_mac_addr
,
1279 #ifdef CONFIG_NET_POLL_CONTROLLER
1280 .ndo_poll_controller
= korina_poll_controller
,
1284 static int korina_probe(struct platform_device
*pdev
)
1286 u8
*mac_addr
= dev_get_platdata(&pdev
->dev
);
1287 struct korina_private
*lp
;
1288 struct net_device
*dev
;
1293 dev
= devm_alloc_etherdev(&pdev
->dev
, sizeof(struct korina_private
));
1297 SET_NETDEV_DEV(dev
, &pdev
->dev
);
1298 lp
= netdev_priv(dev
);
1301 eth_hw_addr_set(dev
, mac_addr
);
1302 else if (of_get_ethdev_address(pdev
->dev
.of_node
, dev
) < 0)
1303 eth_hw_addr_random(dev
);
1305 clk
= devm_clk_get_optional_enabled(&pdev
->dev
, "mdioclk");
1307 return PTR_ERR(clk
);
1309 lp
->mii_clock_freq
= clk_get_rate(clk
);
1311 lp
->mii_clock_freq
= 200000000; /* max possible input clk */
1314 lp
->rx_irq
= platform_get_irq_byname(pdev
, "rx");
1315 lp
->tx_irq
= platform_get_irq_byname(pdev
, "tx");
1317 p
= devm_platform_ioremap_resource_byname(pdev
, "emac");
1319 printk(KERN_ERR DRV_NAME
": cannot remap registers\n");
1324 p
= devm_platform_ioremap_resource_byname(pdev
, "dma_rx");
1326 printk(KERN_ERR DRV_NAME
": cannot remap Rx DMA registers\n");
1329 lp
->rx_dma_regs
= p
;
1331 p
= devm_platform_ioremap_resource_byname(pdev
, "dma_tx");
1333 printk(KERN_ERR DRV_NAME
": cannot remap Tx DMA registers\n");
1336 lp
->tx_dma_regs
= p
;
1338 lp
->td_ring
= dmam_alloc_coherent(&pdev
->dev
, TD_RING_SIZE
,
1339 &lp
->td_dma
, GFP_KERNEL
);
1343 lp
->rd_ring
= dmam_alloc_coherent(&pdev
->dev
, RD_RING_SIZE
,
1344 &lp
->rd_dma
, GFP_KERNEL
);
1348 spin_lock_init(&lp
->lock
);
1349 /* just use the rx dma irq */
1350 dev
->irq
= lp
->rx_irq
;
1352 lp
->dmadev
= &pdev
->dev
;
1354 dev
->netdev_ops
= &korina_netdev_ops
;
1355 dev
->ethtool_ops
= &netdev_ethtool_ops
;
1356 dev
->watchdog_timeo
= TX_TIMEOUT
;
1357 netif_napi_add(dev
, &lp
->napi
, korina_poll
);
1359 lp
->mii_if
.dev
= dev
;
1360 lp
->mii_if
.mdio_read
= korina_mdio_read
;
1361 lp
->mii_if
.mdio_write
= korina_mdio_write
;
1362 lp
->mii_if
.phy_id
= 1;
1363 lp
->mii_if
.phy_id_mask
= 0x1f;
1364 lp
->mii_if
.reg_num_mask
= 0x1f;
1366 platform_set_drvdata(pdev
, dev
);
1368 rc
= register_netdev(dev
);
1370 printk(KERN_ERR DRV_NAME
1371 ": cannot register net device: %d\n", rc
);
1374 timer_setup(&lp
->media_check_timer
, korina_poll_media
, 0);
1376 INIT_WORK(&lp
->restart_task
, korina_restart_task
);
1378 printk(KERN_INFO
"%s: " DRV_NAME
"-" DRV_VERSION
" " DRV_RELDATE
"\n",
1383 static void korina_remove(struct platform_device
*pdev
)
1385 struct net_device
*dev
= platform_get_drvdata(pdev
);
1387 unregister_netdev(dev
);
1391 static const struct of_device_id korina_match
[] = {
1393 .compatible
= "idt,3243x-emac",
1397 MODULE_DEVICE_TABLE(of
, korina_match
);
1400 static struct platform_driver korina_driver
= {
1403 .of_match_table
= of_match_ptr(korina_match
),
1405 .probe
= korina_probe
,
1406 .remove
= korina_remove
,
1409 module_platform_driver(korina_driver
);
1411 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1412 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1413 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1414 MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
1415 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1416 MODULE_LICENSE("GPL");