Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / net / ethernet / microchip / sparx5 / sparx5_fdma.c
blob0027144a2af241bde79364dbf088b7028383baf6
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Microchip Sparx5 Switch driver
4 * Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries.
6 * The Sparx5 Chip Register Model can be browsed at this location:
7 * https://github.com/microchip-ung/sparx-5_reginfo
8 */
10 #include <linux/types.h>
11 #include <linux/skbuff.h>
12 #include <linux/netdevice.h>
13 #include <linux/interrupt.h>
14 #include <linux/ip.h>
15 #include <linux/dma-mapping.h>
17 #include "sparx5_main_regs.h"
18 #include "sparx5_main.h"
19 #include "sparx5_port.h"
21 #define FDMA_XTR_CHANNEL 6
22 #define FDMA_INJ_CHANNEL 0
24 #define FDMA_XTR_BUFFER_SIZE 2048
25 #define FDMA_WEIGHT 4
27 static int sparx5_fdma_tx_dataptr_cb(struct fdma *fdma, int dcb, int db,
28 u64 *dataptr)
30 *dataptr = fdma->dma + (sizeof(struct fdma_dcb) * fdma->n_dcbs) +
31 ((dcb * fdma->n_dbs + db) * fdma->db_size);
33 return 0;
36 static int sparx5_fdma_rx_dataptr_cb(struct fdma *fdma, int dcb, int db,
37 u64 *dataptr)
39 struct sparx5 *sparx5 = fdma->priv;
40 struct sparx5_rx *rx = &sparx5->rx;
41 struct sk_buff *skb;
43 skb = __netdev_alloc_skb(rx->ndev, fdma->db_size, GFP_ATOMIC);
44 if (unlikely(!skb))
45 return -ENOMEM;
47 *dataptr = virt_to_phys(skb->data);
49 rx->skb[dcb][db] = skb;
51 return 0;
54 static void sparx5_fdma_rx_activate(struct sparx5 *sparx5, struct sparx5_rx *rx)
56 struct fdma *fdma = &rx->fdma;
58 /* Write the buffer address in the LLP and LLP1 regs */
59 spx5_wr(((u64)fdma->dma) & GENMASK(31, 0), sparx5,
60 FDMA_DCB_LLP(fdma->channel_id));
61 spx5_wr(((u64)fdma->dma) >> 32, sparx5,
62 FDMA_DCB_LLP1(fdma->channel_id));
64 /* Set the number of RX DBs to be used, and DB end-of-frame interrupt */
65 spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(fdma->n_dbs) |
66 FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
67 FDMA_CH_CFG_CH_INJ_PORT_SET(XTR_QUEUE),
68 sparx5, FDMA_CH_CFG(fdma->channel_id));
70 /* Set the RX Watermark to max */
71 spx5_rmw(FDMA_XTR_CFG_XTR_FIFO_WM_SET(31), FDMA_XTR_CFG_XTR_FIFO_WM,
72 sparx5,
73 FDMA_XTR_CFG);
75 /* Start RX fdma */
76 spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP,
77 sparx5, FDMA_PORT_CTRL(0));
79 /* Enable RX channel DB interrupt */
80 spx5_rmw(BIT(fdma->channel_id),
81 BIT(fdma->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
82 sparx5, FDMA_INTR_DB_ENA);
84 /* Activate the RX channel */
85 spx5_wr(BIT(fdma->channel_id), sparx5, FDMA_CH_ACTIVATE);
88 static void sparx5_fdma_rx_deactivate(struct sparx5 *sparx5, struct sparx5_rx *rx)
90 struct fdma *fdma = &rx->fdma;
92 /* Deactivate the RX channel */
93 spx5_rmw(0, BIT(fdma->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
94 sparx5, FDMA_CH_ACTIVATE);
96 /* Disable RX channel DB interrupt */
97 spx5_rmw(0, BIT(fdma->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
98 sparx5, FDMA_INTR_DB_ENA);
100 /* Stop RX fdma */
101 spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(1), FDMA_PORT_CTRL_XTR_STOP,
102 sparx5, FDMA_PORT_CTRL(0));
105 static void sparx5_fdma_tx_activate(struct sparx5 *sparx5, struct sparx5_tx *tx)
107 struct fdma *fdma = &tx->fdma;
109 /* Write the buffer address in the LLP and LLP1 regs */
110 spx5_wr(((u64)fdma->dma) & GENMASK(31, 0), sparx5,
111 FDMA_DCB_LLP(fdma->channel_id));
112 spx5_wr(((u64)fdma->dma) >> 32, sparx5,
113 FDMA_DCB_LLP1(fdma->channel_id));
115 /* Set the number of TX DBs to be used, and DB end-of-frame interrupt */
116 spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(fdma->n_dbs) |
117 FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) |
118 FDMA_CH_CFG_CH_INJ_PORT_SET(INJ_QUEUE),
119 sparx5, FDMA_CH_CFG(fdma->channel_id));
121 /* Start TX fdma */
122 spx5_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP,
123 sparx5, FDMA_PORT_CTRL(0));
125 /* Activate the channel */
126 spx5_wr(BIT(fdma->channel_id), sparx5, FDMA_CH_ACTIVATE);
129 static void sparx5_fdma_tx_deactivate(struct sparx5 *sparx5, struct sparx5_tx *tx)
131 /* Disable the channel */
132 spx5_rmw(0, BIT(tx->fdma.channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE,
133 sparx5, FDMA_CH_ACTIVATE);
136 static void sparx5_fdma_reload(struct sparx5 *sparx5, struct fdma *fdma)
138 /* Reload the RX channel */
139 spx5_wr(BIT(fdma->channel_id), sparx5, FDMA_CH_RELOAD);
142 static bool sparx5_fdma_rx_get_frame(struct sparx5 *sparx5, struct sparx5_rx *rx)
144 struct fdma *fdma = &rx->fdma;
145 struct sparx5_port *port;
146 struct fdma_db *db_hw;
147 struct frame_info fi;
148 struct sk_buff *skb;
150 /* Check if the DCB is done */
151 db_hw = fdma_db_next_get(fdma);
152 if (unlikely(!fdma_db_is_done(db_hw)))
153 return false;
154 skb = rx->skb[fdma->dcb_index][fdma->db_index];
155 skb_put(skb, fdma_db_len_get(db_hw));
156 /* Now do the normal processing of the skb */
157 sparx5_ifh_parse(sparx5, (u32 *)skb->data, &fi);
158 /* Map to port netdev */
159 port = fi.src_port < sparx5->data->consts->n_ports ?
160 sparx5->ports[fi.src_port] :
161 NULL;
162 if (!port || !port->ndev) {
163 dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port);
164 sparx5_xtr_flush(sparx5, XTR_QUEUE);
165 return false;
167 skb->dev = port->ndev;
168 skb_pull(skb, IFH_LEN * sizeof(u32));
169 if (likely(!(skb->dev->features & NETIF_F_RXFCS)))
170 skb_trim(skb, skb->len - ETH_FCS_LEN);
172 sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp);
173 skb->protocol = eth_type_trans(skb, skb->dev);
174 /* Everything we see on an interface that is in the HW bridge
175 * has already been forwarded
177 if (test_bit(port->portno, sparx5->bridge_mask))
178 skb->offload_fwd_mark = 1;
179 skb->dev->stats.rx_bytes += skb->len;
180 skb->dev->stats.rx_packets++;
181 rx->packets++;
182 netif_receive_skb(skb);
183 return true;
186 static int sparx5_fdma_napi_callback(struct napi_struct *napi, int weight)
188 struct sparx5_rx *rx = container_of(napi, struct sparx5_rx, napi);
189 struct sparx5 *sparx5 = container_of(rx, struct sparx5, rx);
190 struct fdma *fdma = &rx->fdma;
191 int counter = 0;
193 while (counter < weight && sparx5_fdma_rx_get_frame(sparx5, rx)) {
194 fdma_db_advance(fdma);
195 counter++;
196 /* Check if the DCB can be reused */
197 if (fdma_dcb_is_reusable(fdma))
198 continue;
199 fdma_dcb_add(fdma, fdma->dcb_index,
200 FDMA_DCB_INFO_DATAL(fdma->db_size),
201 FDMA_DCB_STATUS_INTR);
202 fdma_db_reset(fdma);
203 fdma_dcb_advance(fdma);
205 if (counter < weight) {
206 napi_complete_done(&rx->napi, counter);
207 spx5_rmw(BIT(fdma->channel_id),
208 BIT(fdma->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA,
209 sparx5, FDMA_INTR_DB_ENA);
211 if (counter)
212 sparx5_fdma_reload(sparx5, fdma);
213 return counter;
216 int sparx5_fdma_xmit(struct sparx5 *sparx5, u32 *ifh, struct sk_buff *skb)
218 struct sparx5_tx *tx = &sparx5->tx;
219 struct fdma *fdma = &tx->fdma;
220 static bool first_time = true;
221 void *virt_addr;
223 fdma_dcb_advance(fdma);
224 if (!fdma_db_is_done(fdma_db_get(fdma, fdma->dcb_index, 0)))
225 return -EINVAL;
227 /* Get the virtual address of the dataptr for the next DB */
228 virt_addr = ((u8 *)fdma->dcbs +
229 (sizeof(struct fdma_dcb) * fdma->n_dcbs) +
230 ((fdma->dcb_index * fdma->n_dbs) * fdma->db_size));
232 memcpy(virt_addr, ifh, IFH_LEN * 4);
233 memcpy(virt_addr + IFH_LEN * 4, skb->data, skb->len);
235 fdma_dcb_add(fdma, fdma->dcb_index, 0,
236 FDMA_DCB_STATUS_SOF |
237 FDMA_DCB_STATUS_EOF |
238 FDMA_DCB_STATUS_BLOCKO(0) |
239 FDMA_DCB_STATUS_BLOCKL(skb->len + IFH_LEN * 4 + 4));
241 if (first_time) {
242 sparx5_fdma_tx_activate(sparx5, tx);
243 first_time = false;
244 } else {
245 sparx5_fdma_reload(sparx5, fdma);
247 return NETDEV_TX_OK;
250 static int sparx5_fdma_rx_alloc(struct sparx5 *sparx5)
252 struct sparx5_rx *rx = &sparx5->rx;
253 struct fdma *fdma = &rx->fdma;
254 int err;
256 err = fdma_alloc_phys(fdma);
257 if (err)
258 return err;
260 fdma_dcbs_init(fdma, FDMA_DCB_INFO_DATAL(fdma->db_size),
261 FDMA_DCB_STATUS_INTR);
263 netif_napi_add_weight(rx->ndev, &rx->napi, sparx5_fdma_napi_callback,
264 FDMA_WEIGHT);
265 napi_enable(&rx->napi);
266 sparx5_fdma_rx_activate(sparx5, rx);
267 return 0;
270 static int sparx5_fdma_tx_alloc(struct sparx5 *sparx5)
272 struct sparx5_tx *tx = &sparx5->tx;
273 struct fdma *fdma = &tx->fdma;
274 int err;
276 err = fdma_alloc_phys(fdma);
277 if (err)
278 return err;
280 fdma_dcbs_init(fdma, FDMA_DCB_INFO_DATAL(fdma->db_size),
281 FDMA_DCB_STATUS_DONE);
283 return 0;
286 static void sparx5_fdma_rx_init(struct sparx5 *sparx5,
287 struct sparx5_rx *rx, int channel)
289 struct fdma *fdma = &rx->fdma;
290 int idx;
292 fdma->channel_id = channel;
293 fdma->n_dcbs = FDMA_DCB_MAX;
294 fdma->n_dbs = FDMA_RX_DCB_MAX_DBS;
295 fdma->priv = sparx5;
296 fdma->db_size = ALIGN(FDMA_XTR_BUFFER_SIZE, PAGE_SIZE);
297 fdma->size = fdma_get_size(&sparx5->rx.fdma);
298 fdma->ops.dataptr_cb = &sparx5_fdma_rx_dataptr_cb;
299 fdma->ops.nextptr_cb = &fdma_nextptr_cb;
300 /* Fetch a netdev for SKB and NAPI use, any will do */
301 for (idx = 0; idx < sparx5->data->consts->n_ports; ++idx) {
302 struct sparx5_port *port = sparx5->ports[idx];
304 if (port && port->ndev) {
305 rx->ndev = port->ndev;
306 break;
311 static void sparx5_fdma_tx_init(struct sparx5 *sparx5,
312 struct sparx5_tx *tx, int channel)
314 struct fdma *fdma = &tx->fdma;
316 fdma->channel_id = channel;
317 fdma->n_dcbs = FDMA_DCB_MAX;
318 fdma->n_dbs = FDMA_TX_DCB_MAX_DBS;
319 fdma->priv = sparx5;
320 fdma->db_size = ALIGN(FDMA_XTR_BUFFER_SIZE, PAGE_SIZE);
321 fdma->size = fdma_get_size_contiguous(&sparx5->tx.fdma);
322 fdma->ops.dataptr_cb = &sparx5_fdma_tx_dataptr_cb;
323 fdma->ops.nextptr_cb = &fdma_nextptr_cb;
326 irqreturn_t sparx5_fdma_handler(int irq, void *args)
328 struct sparx5 *sparx5 = args;
329 u32 db = 0, err = 0;
331 db = spx5_rd(sparx5, FDMA_INTR_DB);
332 err = spx5_rd(sparx5, FDMA_INTR_ERR);
333 /* Clear interrupt */
334 if (db) {
335 spx5_wr(0, sparx5, FDMA_INTR_DB_ENA);
336 spx5_wr(db, sparx5, FDMA_INTR_DB);
337 napi_schedule(&sparx5->rx.napi);
339 if (err) {
340 u32 err_type = spx5_rd(sparx5, FDMA_ERRORS);
342 dev_err_ratelimited(sparx5->dev,
343 "ERR: int: %#x, type: %#x\n",
344 err, err_type);
345 spx5_wr(err, sparx5, FDMA_INTR_ERR);
346 spx5_wr(err_type, sparx5, FDMA_ERRORS);
348 return IRQ_HANDLED;
351 static void sparx5_fdma_injection_mode(struct sparx5 *sparx5)
353 const int byte_swap = 1;
354 int portno;
355 int urgency;
357 /* Change mode to fdma extraction and injection */
358 spx5_wr(QS_XTR_GRP_CFG_MODE_SET(2) |
359 QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) |
360 QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap),
361 sparx5, QS_XTR_GRP_CFG(XTR_QUEUE));
362 spx5_wr(QS_INJ_GRP_CFG_MODE_SET(2) |
363 QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap),
364 sparx5, QS_INJ_GRP_CFG(INJ_QUEUE));
366 /* CPU ports capture setup */
367 for (portno = sparx5_get_internal_port(sparx5, SPX5_PORT_CPU_0);
368 portno <= sparx5_get_internal_port(sparx5, SPX5_PORT_CPU_1);
369 portno++) {
370 /* ASM CPU port: No preamble, IFH, enable padding */
371 spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) |
372 ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) |
373 ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1), /* 1 = IFH */
374 sparx5, ASM_PORT_CFG(portno));
376 /* Reset WM cnt to unclog queued frames */
377 spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1),
378 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR,
379 sparx5,
380 DSM_DEV_TX_STOP_WM_CFG(portno));
382 /* Set Disassembler Stop Watermark level */
383 spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(100),
384 DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM,
385 sparx5,
386 DSM_DEV_TX_STOP_WM_CFG(portno));
388 /* Enable port in queue system */
389 urgency = sparx5_port_fwd_urg(sparx5, SPEED_2500);
390 spx5_rmw(QFWD_SWITCH_PORT_MODE_PORT_ENA_SET(1) |
391 QFWD_SWITCH_PORT_MODE_FWD_URGENCY_SET(urgency),
392 QFWD_SWITCH_PORT_MODE_PORT_ENA |
393 QFWD_SWITCH_PORT_MODE_FWD_URGENCY,
394 sparx5,
395 QFWD_SWITCH_PORT_MODE(portno));
397 /* Disable Disassembler buffer underrun watchdog
398 * to avoid truncated packets in XTR
400 spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(1),
401 DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS,
402 sparx5,
403 DSM_BUF_CFG(portno));
405 /* Disabling frame aging */
406 spx5_rmw(HSCH_PORT_MODE_AGE_DIS_SET(1),
407 HSCH_PORT_MODE_AGE_DIS,
408 sparx5,
409 HSCH_PORT_MODE(portno));
413 int sparx5_fdma_start(struct sparx5 *sparx5)
415 int err;
417 /* Reset FDMA state */
418 spx5_wr(FDMA_CTRL_NRESET_SET(0), sparx5, FDMA_CTRL);
419 spx5_wr(FDMA_CTRL_NRESET_SET(1), sparx5, FDMA_CTRL);
421 /* Force ACP caching but disable read/write allocation */
422 spx5_rmw(CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA_SET(1) |
423 CPU_PROC_CTRL_ACP_AWCACHE_SET(0) |
424 CPU_PROC_CTRL_ACP_ARCACHE_SET(0),
425 CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA |
426 CPU_PROC_CTRL_ACP_AWCACHE |
427 CPU_PROC_CTRL_ACP_ARCACHE,
428 sparx5, CPU_PROC_CTRL);
430 sparx5_fdma_injection_mode(sparx5);
431 sparx5_fdma_rx_init(sparx5, &sparx5->rx, FDMA_XTR_CHANNEL);
432 sparx5_fdma_tx_init(sparx5, &sparx5->tx, FDMA_INJ_CHANNEL);
433 err = sparx5_fdma_rx_alloc(sparx5);
434 if (err) {
435 dev_err(sparx5->dev, "Could not allocate RX buffers: %d\n", err);
436 return err;
438 err = sparx5_fdma_tx_alloc(sparx5);
439 if (err) {
440 dev_err(sparx5->dev, "Could not allocate TX buffers: %d\n", err);
441 return err;
443 return err;
446 static u32 sparx5_fdma_port_ctrl(struct sparx5 *sparx5)
448 return spx5_rd(sparx5, FDMA_PORT_CTRL(0));
451 int sparx5_fdma_stop(struct sparx5 *sparx5)
453 u32 val;
455 napi_disable(&sparx5->rx.napi);
456 /* Stop the fdma and channel interrupts */
457 sparx5_fdma_rx_deactivate(sparx5, &sparx5->rx);
458 sparx5_fdma_tx_deactivate(sparx5, &sparx5->tx);
459 /* Wait for the RX channel to stop */
460 read_poll_timeout(sparx5_fdma_port_ctrl, val,
461 FDMA_PORT_CTRL_XTR_BUF_IS_EMPTY_GET(val) == 0,
462 500, 10000, 0, sparx5);
463 fdma_free_phys(&sparx5->rx.fdma);
464 fdma_free_phys(&sparx5->tx.fdma);
465 return 0;