Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
blob99df00c30b8c6cc3b297571d5fb059bd86712e1c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3 * Copyright (c) 2015-2017 QLogic Corporation
4 * Copyright (c) 2019-2020 Marvell International Ltd.
5 */
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include "qede.h"
39 #include "qede_ptp.h"
41 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
42 MODULE_LICENSE("GPL");
44 static uint debug;
45 module_param(debug, uint, 0);
46 MODULE_PARM_DESC(debug, " Default debug msglevel");
48 static const struct qed_eth_ops *qed_ops;
50 #define CHIP_NUM_57980S_40 0x1634
51 #define CHIP_NUM_57980S_10 0x1666
52 #define CHIP_NUM_57980S_MF 0x1636
53 #define CHIP_NUM_57980S_100 0x1644
54 #define CHIP_NUM_57980S_50 0x1654
55 #define CHIP_NUM_57980S_25 0x1656
56 #define CHIP_NUM_57980S_IOV 0x1664
57 #define CHIP_NUM_AH 0x8070
58 #define CHIP_NUM_AH_IOV 0x8090
60 #ifndef PCI_DEVICE_ID_NX2_57980E
61 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
62 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
63 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
64 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
65 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
66 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
67 #define PCI_DEVICE_ID_57980S_IOV CHIP_NUM_57980S_IOV
68 #define PCI_DEVICE_ID_AH CHIP_NUM_AH
69 #define PCI_DEVICE_ID_AH_IOV CHIP_NUM_AH_IOV
71 #endif
73 enum qede_pci_private {
74 QEDE_PRIVATE_PF,
75 QEDE_PRIVATE_VF
78 static const struct pci_device_id qede_pci_tbl[] = {
79 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
80 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
81 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
82 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
83 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
84 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
85 #ifdef CONFIG_QED_SRIOV
86 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
87 #endif
88 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
89 #ifdef CONFIG_QED_SRIOV
90 {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
91 #endif
92 { 0 }
95 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
98 static pci_ers_result_t
99 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
101 #define TX_TIMEOUT (5 * HZ)
103 /* Utilize last protocol index for XDP */
104 #define XDP_PI 11
106 static void qede_remove(struct pci_dev *pdev);
107 static void qede_shutdown(struct pci_dev *pdev);
108 static void qede_link_update(void *dev, struct qed_link_output *link);
109 static void qede_schedule_recovery_handler(void *dev);
110 static void qede_recovery_handler(struct qede_dev *edev);
111 static void qede_schedule_hw_err_handler(void *dev,
112 enum qed_hw_err_type err_type);
113 static void qede_get_eth_tlv_data(void *edev, void *data);
114 static void qede_get_generic_tlv_data(void *edev,
115 struct qed_generic_tlvs *data);
116 static void qede_generic_hw_err_handler(struct qede_dev *edev);
117 #ifdef CONFIG_QED_SRIOV
118 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
119 __be16 vlan_proto)
121 struct qede_dev *edev = netdev_priv(ndev);
123 if (vlan > 4095) {
124 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
125 return -EINVAL;
128 if (vlan_proto != htons(ETH_P_8021Q))
129 return -EPROTONOSUPPORT;
131 DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
132 vlan, vf);
134 return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
137 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
139 struct qede_dev *edev = netdev_priv(ndev);
141 DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
143 if (!is_valid_ether_addr(mac)) {
144 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
145 return -EINVAL;
148 return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
151 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
153 struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
154 struct qed_dev_info *qed_info = &edev->dev_info.common;
155 struct qed_update_vport_params *vport_params;
156 int rc;
158 vport_params = vzalloc(sizeof(*vport_params));
159 if (!vport_params)
160 return -ENOMEM;
161 DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
163 rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
165 /* Enable/Disable Tx switching for PF */
166 if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
167 !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
168 vport_params->vport_id = 0;
169 vport_params->update_tx_switching_flg = 1;
170 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
171 edev->ops->vport_update(edev->cdev, vport_params);
174 vfree(vport_params);
175 return rc;
177 #endif
179 static int __maybe_unused qede_suspend(struct device *dev)
181 dev_info(dev, "Device does not support suspend operation\n");
183 return -EOPNOTSUPP;
186 static DEFINE_SIMPLE_DEV_PM_OPS(qede_pm_ops, qede_suspend, NULL);
188 static const struct pci_error_handlers qede_err_handler = {
189 .error_detected = qede_io_error_detected,
192 static struct pci_driver qede_pci_driver = {
193 .name = "qede",
194 .id_table = qede_pci_tbl,
195 .probe = qede_probe,
196 .remove = qede_remove,
197 .shutdown = qede_shutdown,
198 #ifdef CONFIG_QED_SRIOV
199 .sriov_configure = qede_sriov_configure,
200 #endif
201 .err_handler = &qede_err_handler,
202 .driver.pm = &qede_pm_ops,
205 static struct qed_eth_cb_ops qede_ll_ops = {
207 #ifdef CONFIG_RFS_ACCEL
208 .arfs_filter_op = qede_arfs_filter_op,
209 #endif
210 .link_update = qede_link_update,
211 .schedule_recovery_handler = qede_schedule_recovery_handler,
212 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
213 .get_generic_tlv_data = qede_get_generic_tlv_data,
214 .get_protocol_tlv_data = qede_get_eth_tlv_data,
216 .force_mac = qede_force_mac,
217 .ports_update = qede_udp_ports_update,
220 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
221 void *ptr)
223 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
224 struct ethtool_drvinfo drvinfo;
225 struct qede_dev *edev;
227 if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
228 goto done;
230 /* Check whether this is a qede device */
231 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
232 goto done;
234 memset(&drvinfo, 0, sizeof(drvinfo));
235 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
236 if (strcmp(drvinfo.driver, "qede"))
237 goto done;
238 edev = netdev_priv(ndev);
240 switch (event) {
241 case NETDEV_CHANGENAME:
242 /* Notify qed of the name change */
243 if (!edev->ops || !edev->ops->common)
244 goto done;
245 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
246 break;
247 case NETDEV_CHANGEADDR:
248 edev = netdev_priv(ndev);
249 qede_rdma_event_changeaddr(edev);
250 break;
253 done:
254 return NOTIFY_DONE;
257 static struct notifier_block qede_netdev_notifier = {
258 .notifier_call = qede_netdev_event,
261 static
262 int __init qede_init(void)
264 int ret;
266 pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
268 qede_forced_speed_maps_init();
270 qed_ops = qed_get_eth_ops();
271 if (!qed_ops) {
272 pr_notice("Failed to get qed ethtool operations\n");
273 return -EINVAL;
276 /* Must register notifier before pci ops, since we might miss
277 * interface rename after pci probe and netdev registration.
279 ret = register_netdevice_notifier(&qede_netdev_notifier);
280 if (ret) {
281 pr_notice("Failed to register netdevice_notifier\n");
282 qed_put_eth_ops();
283 return -EINVAL;
286 ret = pci_register_driver(&qede_pci_driver);
287 if (ret) {
288 pr_notice("Failed to register driver\n");
289 unregister_netdevice_notifier(&qede_netdev_notifier);
290 qed_put_eth_ops();
291 return -EINVAL;
294 return 0;
297 static void __exit qede_cleanup(void)
299 if (debug & QED_LOG_INFO_MASK)
300 pr_info("qede_cleanup called\n");
302 unregister_netdevice_notifier(&qede_netdev_notifier);
303 pci_unregister_driver(&qede_pci_driver);
304 qed_put_eth_ops();
307 module_init(qede_init);
308 module_exit(qede_cleanup);
310 static int qede_open(struct net_device *ndev);
311 static int qede_close(struct net_device *ndev);
313 void qede_fill_by_demand_stats(struct qede_dev *edev)
315 struct qede_stats_common *p_common = &edev->stats.common;
316 struct qed_eth_stats stats;
318 edev->ops->get_vport_stats(edev->cdev, &stats);
320 spin_lock(&edev->stats_lock);
322 p_common->no_buff_discards = stats.common.no_buff_discards;
323 p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
324 p_common->ttl0_discard = stats.common.ttl0_discard;
325 p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
326 p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
327 p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
328 p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
329 p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
330 p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
331 p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
332 p_common->mac_filter_discards = stats.common.mac_filter_discards;
333 p_common->gft_filter_drop = stats.common.gft_filter_drop;
335 p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
336 p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
337 p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
338 p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
339 p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
340 p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
341 p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
342 p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
343 p_common->coalesced_events = stats.common.tpa_coalesced_events;
344 p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
345 p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
346 p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
348 p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
349 p_common->rx_65_to_127_byte_packets =
350 stats.common.rx_65_to_127_byte_packets;
351 p_common->rx_128_to_255_byte_packets =
352 stats.common.rx_128_to_255_byte_packets;
353 p_common->rx_256_to_511_byte_packets =
354 stats.common.rx_256_to_511_byte_packets;
355 p_common->rx_512_to_1023_byte_packets =
356 stats.common.rx_512_to_1023_byte_packets;
357 p_common->rx_1024_to_1518_byte_packets =
358 stats.common.rx_1024_to_1518_byte_packets;
359 p_common->rx_crc_errors = stats.common.rx_crc_errors;
360 p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
361 p_common->rx_pause_frames = stats.common.rx_pause_frames;
362 p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
363 p_common->rx_align_errors = stats.common.rx_align_errors;
364 p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
365 p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
366 p_common->rx_jabbers = stats.common.rx_jabbers;
367 p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
368 p_common->rx_fragments = stats.common.rx_fragments;
369 p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
370 p_common->tx_65_to_127_byte_packets =
371 stats.common.tx_65_to_127_byte_packets;
372 p_common->tx_128_to_255_byte_packets =
373 stats.common.tx_128_to_255_byte_packets;
374 p_common->tx_256_to_511_byte_packets =
375 stats.common.tx_256_to_511_byte_packets;
376 p_common->tx_512_to_1023_byte_packets =
377 stats.common.tx_512_to_1023_byte_packets;
378 p_common->tx_1024_to_1518_byte_packets =
379 stats.common.tx_1024_to_1518_byte_packets;
380 p_common->tx_pause_frames = stats.common.tx_pause_frames;
381 p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
382 p_common->brb_truncates = stats.common.brb_truncates;
383 p_common->brb_discards = stats.common.brb_discards;
384 p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
385 p_common->link_change_count = stats.common.link_change_count;
386 p_common->ptp_skip_txts = edev->ptp_skip_txts;
388 if (QEDE_IS_BB(edev)) {
389 struct qede_stats_bb *p_bb = &edev->stats.bb;
391 p_bb->rx_1519_to_1522_byte_packets =
392 stats.bb.rx_1519_to_1522_byte_packets;
393 p_bb->rx_1519_to_2047_byte_packets =
394 stats.bb.rx_1519_to_2047_byte_packets;
395 p_bb->rx_2048_to_4095_byte_packets =
396 stats.bb.rx_2048_to_4095_byte_packets;
397 p_bb->rx_4096_to_9216_byte_packets =
398 stats.bb.rx_4096_to_9216_byte_packets;
399 p_bb->rx_9217_to_16383_byte_packets =
400 stats.bb.rx_9217_to_16383_byte_packets;
401 p_bb->tx_1519_to_2047_byte_packets =
402 stats.bb.tx_1519_to_2047_byte_packets;
403 p_bb->tx_2048_to_4095_byte_packets =
404 stats.bb.tx_2048_to_4095_byte_packets;
405 p_bb->tx_4096_to_9216_byte_packets =
406 stats.bb.tx_4096_to_9216_byte_packets;
407 p_bb->tx_9217_to_16383_byte_packets =
408 stats.bb.tx_9217_to_16383_byte_packets;
409 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
410 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
411 } else {
412 struct qede_stats_ah *p_ah = &edev->stats.ah;
414 p_ah->rx_1519_to_max_byte_packets =
415 stats.ah.rx_1519_to_max_byte_packets;
416 p_ah->tx_1519_to_max_byte_packets =
417 stats.ah.tx_1519_to_max_byte_packets;
420 spin_unlock(&edev->stats_lock);
423 static void qede_get_stats64(struct net_device *dev,
424 struct rtnl_link_stats64 *stats)
426 struct qede_dev *edev = netdev_priv(dev);
427 struct qede_stats_common *p_common;
429 p_common = &edev->stats.common;
431 spin_lock(&edev->stats_lock);
433 stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
434 p_common->rx_bcast_pkts;
435 stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
436 p_common->tx_bcast_pkts;
438 stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
439 p_common->rx_bcast_bytes;
440 stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
441 p_common->tx_bcast_bytes;
443 stats->tx_errors = p_common->tx_err_drop_pkts;
444 stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
446 stats->rx_fifo_errors = p_common->no_buff_discards;
448 if (QEDE_IS_BB(edev))
449 stats->collisions = edev->stats.bb.tx_total_collisions;
450 stats->rx_crc_errors = p_common->rx_crc_errors;
451 stats->rx_frame_errors = p_common->rx_align_errors;
453 spin_unlock(&edev->stats_lock);
456 #ifdef CONFIG_QED_SRIOV
457 static int qede_get_vf_config(struct net_device *dev, int vfidx,
458 struct ifla_vf_info *ivi)
460 struct qede_dev *edev = netdev_priv(dev);
462 if (!edev->ops)
463 return -EINVAL;
465 return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
468 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
469 int min_tx_rate, int max_tx_rate)
471 struct qede_dev *edev = netdev_priv(dev);
473 return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
474 max_tx_rate);
477 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
479 struct qede_dev *edev = netdev_priv(dev);
481 if (!edev->ops)
482 return -EINVAL;
484 return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
487 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
488 int link_state)
490 struct qede_dev *edev = netdev_priv(dev);
492 if (!edev->ops)
493 return -EINVAL;
495 return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
498 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
500 struct qede_dev *edev = netdev_priv(dev);
502 if (!edev->ops)
503 return -EINVAL;
505 return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
507 #endif
509 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
511 struct qede_dev *edev = netdev_priv(dev);
513 if (!netif_running(dev))
514 return -EAGAIN;
516 switch (cmd) {
517 case SIOCSHWTSTAMP:
518 return qede_ptp_hw_ts(edev, ifr);
519 default:
520 DP_VERBOSE(edev, QED_MSG_DEBUG,
521 "default IOCTL cmd 0x%x\n", cmd);
522 return -EOPNOTSUPP;
525 return 0;
528 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
530 char *p_sb = (char *)fp->sb_info->sb_virt;
531 u32 sb_size, i;
533 sb_size = sizeof(struct status_block);
535 for (i = 0; i < sb_size; i += 8)
536 DP_NOTICE(edev,
537 "%02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX %02hhX\n",
538 p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
539 p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
542 static void
543 qede_txq_fp_log_metadata(struct qede_dev *edev,
544 struct qede_fastpath *fp, struct qede_tx_queue *txq)
546 struct qed_chain *p_chain = &txq->tx_pbl;
548 /* Dump txq/fp/sb ids etc. other metadata */
549 DP_NOTICE(edev,
550 "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
551 fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
552 p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
554 /* Dump all the relevant prod/cons indexes */
555 DP_NOTICE(edev,
556 "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
557 le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
558 qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
561 static void
562 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
564 struct qed_sb_info_dbg sb_dbg;
565 int rc;
567 /* sb info */
568 qede_fp_sb_dump(edev, fp);
570 memset(&sb_dbg, 0, sizeof(sb_dbg));
571 rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
573 DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
574 sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
576 /* report to mfw */
577 edev->ops->common->mfw_report(edev->cdev,
578 "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
579 txq->index, le16_to_cpu(*txq->hw_cons_ptr),
580 qed_chain_get_cons_idx(&txq->tx_pbl),
581 qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
582 if (!rc)
583 edev->ops->common->mfw_report(edev->cdev,
584 "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
585 txq->index, fp->sb_info->igu_sb_id,
586 sb_dbg.igu_prod, sb_dbg.igu_cons,
587 sb_dbg.pi[TX_PI(txq->cos)]);
590 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
592 struct qede_dev *edev = netdev_priv(dev);
593 int i;
595 netif_carrier_off(dev);
596 DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
598 for_each_queue(i) {
599 struct qede_tx_queue *txq;
600 struct qede_fastpath *fp;
601 int cos;
603 fp = &edev->fp_array[i];
604 if (!(fp->type & QEDE_FASTPATH_TX))
605 continue;
607 for_each_cos_in_txq(edev, cos) {
608 txq = &fp->txq[cos];
610 /* Dump basic metadata for all queues */
611 qede_txq_fp_log_metadata(edev, fp, txq);
613 if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
614 qed_chain_get_prod_idx(&txq->tx_pbl))
615 qede_tx_log_print(edev, fp, txq);
619 if (IS_VF(edev))
620 return;
622 if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
623 edev->state == QEDE_STATE_RECOVERY) {
624 DP_INFO(edev,
625 "Avoid handling a Tx timeout while another HW error is being handled\n");
626 return;
629 set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
630 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
631 schedule_delayed_work(&edev->sp_task, 0);
634 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
636 struct qede_dev *edev = netdev_priv(ndev);
637 int cos, count, offset;
639 if (num_tc > edev->dev_info.num_tc)
640 return -EINVAL;
642 netdev_reset_tc(ndev);
643 netdev_set_num_tc(ndev, num_tc);
645 for_each_cos_in_txq(edev, cos) {
646 count = QEDE_TSS_COUNT(edev);
647 offset = cos * QEDE_TSS_COUNT(edev);
648 netdev_set_tc_queue(ndev, cos, count, offset);
651 return 0;
654 static int
655 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
656 __be16 proto)
658 switch (f->command) {
659 case FLOW_CLS_REPLACE:
660 return qede_add_tc_flower_fltr(edev, proto, f);
661 case FLOW_CLS_DESTROY:
662 return qede_delete_flow_filter(edev, f->cookie);
663 default:
664 return -EOPNOTSUPP;
668 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
669 void *cb_priv)
671 struct flow_cls_offload *f;
672 struct qede_dev *edev = cb_priv;
674 if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
675 return -EOPNOTSUPP;
677 switch (type) {
678 case TC_SETUP_CLSFLOWER:
679 f = type_data;
680 return qede_set_flower(edev, f, f->common.protocol);
681 default:
682 return -EOPNOTSUPP;
686 static LIST_HEAD(qede_block_cb_list);
688 static int
689 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
690 void *type_data)
692 struct qede_dev *edev = netdev_priv(dev);
693 struct tc_mqprio_qopt *mqprio;
695 switch (type) {
696 case TC_SETUP_BLOCK:
697 return flow_block_cb_setup_simple(type_data,
698 &qede_block_cb_list,
699 qede_setup_tc_block_cb,
700 edev, edev, true);
701 case TC_SETUP_QDISC_MQPRIO:
702 mqprio = type_data;
704 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
705 return qede_setup_tc(dev, mqprio->num_tc);
706 default:
707 return -EOPNOTSUPP;
711 static const struct net_device_ops qede_netdev_ops = {
712 .ndo_open = qede_open,
713 .ndo_stop = qede_close,
714 .ndo_start_xmit = qede_start_xmit,
715 .ndo_select_queue = qede_select_queue,
716 .ndo_set_rx_mode = qede_set_rx_mode,
717 .ndo_set_mac_address = qede_set_mac_addr,
718 .ndo_validate_addr = eth_validate_addr,
719 .ndo_change_mtu = qede_change_mtu,
720 .ndo_eth_ioctl = qede_ioctl,
721 .ndo_tx_timeout = qede_tx_timeout,
722 #ifdef CONFIG_QED_SRIOV
723 .ndo_set_vf_mac = qede_set_vf_mac,
724 .ndo_set_vf_vlan = qede_set_vf_vlan,
725 .ndo_set_vf_trust = qede_set_vf_trust,
726 #endif
727 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
728 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
729 .ndo_fix_features = qede_fix_features,
730 .ndo_set_features = qede_set_features,
731 .ndo_get_stats64 = qede_get_stats64,
732 #ifdef CONFIG_QED_SRIOV
733 .ndo_set_vf_link_state = qede_set_vf_link_state,
734 .ndo_set_vf_spoofchk = qede_set_vf_spoofchk,
735 .ndo_get_vf_config = qede_get_vf_config,
736 .ndo_set_vf_rate = qede_set_vf_rate,
737 #endif
738 .ndo_features_check = qede_features_check,
739 .ndo_bpf = qede_xdp,
740 #ifdef CONFIG_RFS_ACCEL
741 .ndo_rx_flow_steer = qede_rx_flow_steer,
742 #endif
743 .ndo_xdp_xmit = qede_xdp_transmit,
744 .ndo_setup_tc = qede_setup_tc_offload,
747 static const struct net_device_ops qede_netdev_vf_ops = {
748 .ndo_open = qede_open,
749 .ndo_stop = qede_close,
750 .ndo_start_xmit = qede_start_xmit,
751 .ndo_select_queue = qede_select_queue,
752 .ndo_set_rx_mode = qede_set_rx_mode,
753 .ndo_set_mac_address = qede_set_mac_addr,
754 .ndo_validate_addr = eth_validate_addr,
755 .ndo_change_mtu = qede_change_mtu,
756 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
757 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
758 .ndo_fix_features = qede_fix_features,
759 .ndo_set_features = qede_set_features,
760 .ndo_get_stats64 = qede_get_stats64,
761 .ndo_features_check = qede_features_check,
764 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
765 .ndo_open = qede_open,
766 .ndo_stop = qede_close,
767 .ndo_start_xmit = qede_start_xmit,
768 .ndo_select_queue = qede_select_queue,
769 .ndo_set_rx_mode = qede_set_rx_mode,
770 .ndo_set_mac_address = qede_set_mac_addr,
771 .ndo_validate_addr = eth_validate_addr,
772 .ndo_change_mtu = qede_change_mtu,
773 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
774 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
775 .ndo_fix_features = qede_fix_features,
776 .ndo_set_features = qede_set_features,
777 .ndo_get_stats64 = qede_get_stats64,
778 .ndo_features_check = qede_features_check,
779 .ndo_bpf = qede_xdp,
780 .ndo_xdp_xmit = qede_xdp_transmit,
783 /* -------------------------------------------------------------------------
784 * START OF PROBE / REMOVE
785 * -------------------------------------------------------------------------
788 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
789 struct pci_dev *pdev,
790 struct qed_dev_eth_info *info,
791 u32 dp_module, u8 dp_level)
793 struct net_device *ndev;
794 struct qede_dev *edev;
796 ndev = alloc_etherdev_mqs(sizeof(*edev),
797 info->num_queues * info->num_tc,
798 info->num_queues);
799 if (!ndev) {
800 pr_err("etherdev allocation failed\n");
801 return NULL;
804 edev = netdev_priv(ndev);
805 edev->ndev = ndev;
806 edev->cdev = cdev;
807 edev->pdev = pdev;
808 edev->dp_module = dp_module;
809 edev->dp_level = dp_level;
810 edev->ops = qed_ops;
812 if (is_kdump_kernel()) {
813 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
814 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
815 } else {
816 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
817 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
820 DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
821 info->num_queues, info->num_queues);
823 SET_NETDEV_DEV(ndev, &pdev->dev);
825 memset(&edev->stats, 0, sizeof(edev->stats));
826 memcpy(&edev->dev_info, info, sizeof(*info));
828 /* As ethtool doesn't have the ability to show WoL behavior as
829 * 'default', if device supports it declare it's enabled.
831 if (edev->dev_info.common.wol_support)
832 edev->wol_enabled = true;
834 INIT_LIST_HEAD(&edev->vlan_list);
836 return edev;
839 static void qede_init_ndev(struct qede_dev *edev)
841 struct net_device *ndev = edev->ndev;
842 struct pci_dev *pdev = edev->pdev;
843 bool udp_tunnel_enable = false;
844 netdev_features_t hw_features;
846 pci_set_drvdata(pdev, ndev);
848 ndev->mem_start = edev->dev_info.common.pci_mem_start;
849 ndev->base_addr = ndev->mem_start;
850 ndev->mem_end = edev->dev_info.common.pci_mem_end;
851 ndev->irq = edev->dev_info.common.pci_irq;
853 ndev->watchdog_timeo = TX_TIMEOUT;
855 if (IS_VF(edev)) {
856 if (edev->dev_info.xdp_supported)
857 ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
858 else
859 ndev->netdev_ops = &qede_netdev_vf_ops;
860 } else {
861 ndev->netdev_ops = &qede_netdev_ops;
864 qede_set_ethtool_ops(ndev);
866 ndev->priv_flags |= IFF_UNICAST_FLT;
868 /* user-changeble features */
869 hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
870 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
871 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
873 if (edev->dev_info.common.b_arfs_capable)
874 hw_features |= NETIF_F_NTUPLE;
876 if (edev->dev_info.common.vxlan_enable ||
877 edev->dev_info.common.geneve_enable)
878 udp_tunnel_enable = true;
880 if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
881 hw_features |= NETIF_F_TSO_ECN;
882 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
883 NETIF_F_SG | NETIF_F_TSO |
884 NETIF_F_TSO_ECN | NETIF_F_TSO6 |
885 NETIF_F_RXCSUM;
888 if (udp_tunnel_enable) {
889 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
890 NETIF_F_GSO_UDP_TUNNEL_CSUM);
891 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
892 NETIF_F_GSO_UDP_TUNNEL_CSUM);
894 qede_set_udp_tunnels(edev);
897 if (edev->dev_info.common.gre_enable) {
898 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
899 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
900 NETIF_F_GSO_GRE_CSUM);
903 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
904 NETIF_F_HIGHDMA;
905 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
906 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
907 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
909 ndev->hw_features = hw_features;
911 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
912 NETDEV_XDP_ACT_NDO_XMIT;
914 /* MTU range: 46 - 9600 */
915 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
916 ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
918 /* Set network device HW mac */
919 eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
921 ndev->mtu = edev->dev_info.common.mtu;
924 /* This function converts from 32b param to two params of level and module
925 * Input 32b decoding:
926 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
927 * 'happy' flow, e.g. memory allocation failed.
928 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
929 * and provide important parameters.
930 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
931 * module. VERBOSE prints are for tracking the specific flow in low level.
933 * Notice that the level should be that of the lowest required logs.
935 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
937 *p_dp_level = QED_LEVEL_NOTICE;
938 *p_dp_module = 0;
940 if (debug & QED_LOG_VERBOSE_MASK) {
941 *p_dp_level = QED_LEVEL_VERBOSE;
942 *p_dp_module = (debug & 0x3FFFFFFF);
943 } else if (debug & QED_LOG_INFO_MASK) {
944 *p_dp_level = QED_LEVEL_INFO;
945 } else if (debug & QED_LOG_NOTICE_MASK) {
946 *p_dp_level = QED_LEVEL_NOTICE;
950 static void qede_free_fp_array(struct qede_dev *edev)
952 if (edev->fp_array) {
953 struct qede_fastpath *fp;
954 int i;
956 for_each_queue(i) {
957 fp = &edev->fp_array[i];
959 kfree(fp->sb_info);
960 /* Handle mem alloc failure case where qede_init_fp
961 * didn't register xdp_rxq_info yet.
962 * Implicit only (fp->type & QEDE_FASTPATH_RX)
964 if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
965 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
966 kfree(fp->rxq);
967 kfree(fp->xdp_tx);
968 kfree(fp->txq);
970 kfree(edev->fp_array);
973 edev->num_queues = 0;
974 edev->fp_num_tx = 0;
975 edev->fp_num_rx = 0;
978 static int qede_alloc_fp_array(struct qede_dev *edev)
980 u8 fp_combined, fp_rx = edev->fp_num_rx;
981 struct qede_fastpath *fp;
982 int i;
984 edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
985 sizeof(*edev->fp_array), GFP_KERNEL);
986 if (!edev->fp_array) {
987 DP_NOTICE(edev, "fp array allocation failed\n");
988 goto err;
991 if (!edev->coal_entry) {
992 edev->coal_entry = kcalloc(QEDE_MAX_RSS_CNT(edev),
993 sizeof(*edev->coal_entry),
994 GFP_KERNEL);
995 if (!edev->coal_entry) {
996 DP_ERR(edev, "coalesce entry allocation failed\n");
997 goto err;
1001 fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
1003 /* Allocate the FP elements for Rx queues followed by combined and then
1004 * the Tx. This ordering should be maintained so that the respective
1005 * queues (Rx or Tx) will be together in the fastpath array and the
1006 * associated ids will be sequential.
1008 for_each_queue(i) {
1009 fp = &edev->fp_array[i];
1011 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
1012 if (!fp->sb_info) {
1013 DP_NOTICE(edev, "sb info struct allocation failed\n");
1014 goto err;
1017 if (fp_rx) {
1018 fp->type = QEDE_FASTPATH_RX;
1019 fp_rx--;
1020 } else if (fp_combined) {
1021 fp->type = QEDE_FASTPATH_COMBINED;
1022 fp_combined--;
1023 } else {
1024 fp->type = QEDE_FASTPATH_TX;
1027 if (fp->type & QEDE_FASTPATH_TX) {
1028 fp->txq = kcalloc(edev->dev_info.num_tc,
1029 sizeof(*fp->txq), GFP_KERNEL);
1030 if (!fp->txq)
1031 goto err;
1034 if (fp->type & QEDE_FASTPATH_RX) {
1035 fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1036 if (!fp->rxq)
1037 goto err;
1039 if (edev->xdp_prog) {
1040 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1041 GFP_KERNEL);
1042 if (!fp->xdp_tx)
1043 goto err;
1044 fp->type |= QEDE_FASTPATH_XDP;
1049 return 0;
1050 err:
1051 qede_free_fp_array(edev);
1052 return -ENOMEM;
1055 /* The qede lock is used to protect driver state change and driver flows that
1056 * are not reentrant.
1058 void __qede_lock(struct qede_dev *edev)
1060 mutex_lock(&edev->qede_lock);
1063 void __qede_unlock(struct qede_dev *edev)
1065 mutex_unlock(&edev->qede_lock);
1068 /* This version of the lock should be used when acquiring the RTNL lock is also
1069 * needed in addition to the internal qede lock.
1071 static void qede_lock(struct qede_dev *edev)
1073 rtnl_lock();
1074 __qede_lock(edev);
1077 static void qede_unlock(struct qede_dev *edev)
1079 __qede_unlock(edev);
1080 rtnl_unlock();
1083 static void qede_periodic_task(struct work_struct *work)
1085 struct qede_dev *edev = container_of(work, struct qede_dev,
1086 periodic_task.work);
1088 qede_fill_by_demand_stats(edev);
1089 schedule_delayed_work(&edev->periodic_task, edev->stats_coal_ticks);
1092 static void qede_init_periodic_task(struct qede_dev *edev)
1094 INIT_DELAYED_WORK(&edev->periodic_task, qede_periodic_task);
1095 spin_lock_init(&edev->stats_lock);
1096 edev->stats_coal_usecs = USEC_PER_SEC;
1097 edev->stats_coal_ticks = usecs_to_jiffies(USEC_PER_SEC);
1100 static void qede_sp_task(struct work_struct *work)
1102 struct qede_dev *edev = container_of(work, struct qede_dev,
1103 sp_task.work);
1105 /* Disable execution of this deferred work once
1106 * qede removal is in progress, this stop any future
1107 * scheduling of sp_task.
1109 if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1110 return;
1112 /* The locking scheme depends on the specific flag:
1113 * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1114 * ensure that ongoing flows are ended and new ones are not started.
1115 * In other cases - only the internal qede lock should be acquired.
1118 if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1119 cancel_delayed_work_sync(&edev->periodic_task);
1120 #ifdef CONFIG_QED_SRIOV
1121 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1122 * The recovery of the active VFs is currently not supported.
1124 if (pci_num_vf(edev->pdev))
1125 qede_sriov_configure(edev->pdev, 0);
1126 #endif
1127 qede_lock(edev);
1128 qede_recovery_handler(edev);
1129 qede_unlock(edev);
1132 __qede_lock(edev);
1134 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1135 if (edev->state == QEDE_STATE_OPEN)
1136 qede_config_rx_mode(edev->ndev);
1138 #ifdef CONFIG_RFS_ACCEL
1139 if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1140 if (edev->state == QEDE_STATE_OPEN)
1141 qede_process_arfs_filters(edev, false);
1143 #endif
1144 if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1145 qede_generic_hw_err_handler(edev);
1146 __qede_unlock(edev);
1148 if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1149 #ifdef CONFIG_QED_SRIOV
1150 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1151 * The recovery of the active VFs is currently not supported.
1153 if (pci_num_vf(edev->pdev))
1154 qede_sriov_configure(edev->pdev, 0);
1155 #endif
1156 edev->ops->common->recovery_process(edev->cdev);
1160 static void qede_update_pf_params(struct qed_dev *cdev)
1162 struct qed_pf_params pf_params;
1163 u16 num_cons;
1165 /* 64 rx + 64 tx + 64 XDP */
1166 memset(&pf_params, 0, sizeof(struct qed_pf_params));
1168 /* 1 rx + 1 xdp + max tx cos */
1169 num_cons = QED_MIN_L2_CONS;
1171 pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1173 /* Same for VFs - make sure they'll have sufficient connections
1174 * to support XDP Tx queues.
1176 pf_params.eth_pf_params.num_vf_cons = 48;
1178 pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1179 qed_ops->common->update_pf_params(cdev, &pf_params);
1182 #define QEDE_FW_VER_STR_SIZE 80
1184 static void qede_log_probe(struct qede_dev *edev)
1186 struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1187 u8 buf[QEDE_FW_VER_STR_SIZE];
1188 size_t left_size;
1190 snprintf(buf, QEDE_FW_VER_STR_SIZE,
1191 "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1192 p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1193 p_dev_info->fw_eng,
1194 (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1195 QED_MFW_VERSION_3_OFFSET,
1196 (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1197 QED_MFW_VERSION_2_OFFSET,
1198 (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1199 QED_MFW_VERSION_1_OFFSET,
1200 (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1201 QED_MFW_VERSION_0_OFFSET);
1203 left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1204 if (p_dev_info->mbi_version && left_size)
1205 snprintf(buf + strlen(buf), left_size,
1206 " [MBI %d.%d.%d]",
1207 (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1208 QED_MBI_VERSION_2_OFFSET,
1209 (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1210 QED_MBI_VERSION_1_OFFSET,
1211 (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1212 QED_MBI_VERSION_0_OFFSET);
1214 pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1215 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1216 buf, edev->ndev->name);
1219 enum qede_probe_mode {
1220 QEDE_PROBE_NORMAL,
1221 QEDE_PROBE_RECOVERY,
1224 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1225 bool is_vf, enum qede_probe_mode mode)
1227 struct qed_probe_params probe_params;
1228 struct qed_slowpath_params sp_params;
1229 struct qed_dev_eth_info dev_info;
1230 struct qede_dev *edev;
1231 struct qed_dev *cdev;
1232 int rc;
1234 if (unlikely(dp_level & QED_LEVEL_INFO))
1235 pr_notice("Starting qede probe\n");
1237 memset(&probe_params, 0, sizeof(probe_params));
1238 probe_params.protocol = QED_PROTOCOL_ETH;
1239 probe_params.dp_module = dp_module;
1240 probe_params.dp_level = dp_level;
1241 probe_params.is_vf = is_vf;
1242 probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1243 cdev = qed_ops->common->probe(pdev, &probe_params);
1244 if (!cdev) {
1245 rc = -ENODEV;
1246 goto err0;
1249 qede_update_pf_params(cdev);
1251 /* Start the Slowpath-process */
1252 memset(&sp_params, 0, sizeof(sp_params));
1253 sp_params.int_mode = QED_INT_MODE_MSIX;
1254 strscpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1255 rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1256 if (rc) {
1257 pr_notice("Cannot start slowpath\n");
1258 goto err1;
1261 /* Learn information crucial for qede to progress */
1262 rc = qed_ops->fill_dev_info(cdev, &dev_info);
1263 if (rc)
1264 goto err2;
1266 if (mode != QEDE_PROBE_RECOVERY) {
1267 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1268 dp_level);
1269 if (!edev) {
1270 rc = -ENOMEM;
1271 goto err2;
1274 edev->devlink = qed_ops->common->devlink_register(cdev);
1275 if (IS_ERR(edev->devlink)) {
1276 DP_NOTICE(edev, "Cannot register devlink\n");
1277 rc = PTR_ERR(edev->devlink);
1278 edev->devlink = NULL;
1279 goto err3;
1281 } else {
1282 struct net_device *ndev = pci_get_drvdata(pdev);
1283 struct qed_devlink *qdl;
1285 edev = netdev_priv(ndev);
1286 qdl = devlink_priv(edev->devlink);
1287 qdl->cdev = cdev;
1288 edev->cdev = cdev;
1289 memset(&edev->stats, 0, sizeof(edev->stats));
1290 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1293 if (is_vf)
1294 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1296 qede_init_ndev(edev);
1298 rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1299 if (rc)
1300 goto err3;
1302 if (mode != QEDE_PROBE_RECOVERY) {
1303 /* Prepare the lock prior to the registration of the netdev,
1304 * as once it's registered we might reach flows requiring it
1305 * [it's even possible to reach a flow needing it directly
1306 * from there, although it's unlikely].
1308 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1309 mutex_init(&edev->qede_lock);
1310 qede_init_periodic_task(edev);
1312 rc = register_netdev(edev->ndev);
1313 if (rc) {
1314 DP_NOTICE(edev, "Cannot register net-device\n");
1315 goto err4;
1319 edev->ops->common->set_name(cdev, edev->ndev->name);
1321 /* PTP not supported on VFs */
1322 if (!is_vf)
1323 qede_ptp_enable(edev);
1325 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1327 #ifdef CONFIG_DCB
1328 if (!IS_VF(edev))
1329 qede_set_dcbnl_ops(edev->ndev);
1330 #endif
1332 edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1334 qede_log_probe(edev);
1336 /* retain user config (for example - after recovery) */
1337 if (edev->stats_coal_usecs)
1338 schedule_delayed_work(&edev->periodic_task, 0);
1340 return 0;
1342 err4:
1343 qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1344 err3:
1345 if (mode != QEDE_PROBE_RECOVERY)
1346 free_netdev(edev->ndev);
1347 else
1348 edev->cdev = NULL;
1349 err2:
1350 qed_ops->common->slowpath_stop(cdev);
1351 err1:
1352 qed_ops->common->remove(cdev);
1353 err0:
1354 return rc;
1357 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1359 bool is_vf = false;
1360 u32 dp_module = 0;
1361 u8 dp_level = 0;
1363 switch ((enum qede_pci_private)id->driver_data) {
1364 case QEDE_PRIVATE_VF:
1365 if (debug & QED_LOG_VERBOSE_MASK)
1366 dev_err(&pdev->dev, "Probing a VF\n");
1367 is_vf = true;
1368 break;
1369 default:
1370 if (debug & QED_LOG_VERBOSE_MASK)
1371 dev_err(&pdev->dev, "Probing a PF\n");
1374 qede_config_debug(debug, &dp_module, &dp_level);
1376 return __qede_probe(pdev, dp_module, dp_level, is_vf,
1377 QEDE_PROBE_NORMAL);
1380 enum qede_remove_mode {
1381 QEDE_REMOVE_NORMAL,
1382 QEDE_REMOVE_RECOVERY,
1385 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1387 struct net_device *ndev = pci_get_drvdata(pdev);
1388 struct qede_dev *edev;
1389 struct qed_dev *cdev;
1391 if (!ndev) {
1392 dev_info(&pdev->dev, "Device has already been removed\n");
1393 return;
1396 edev = netdev_priv(ndev);
1397 cdev = edev->cdev;
1399 DP_INFO(edev, "Starting qede_remove\n");
1401 qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1403 if (mode != QEDE_REMOVE_RECOVERY) {
1404 set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1405 unregister_netdev(ndev);
1407 cancel_delayed_work_sync(&edev->sp_task);
1408 cancel_delayed_work_sync(&edev->periodic_task);
1410 edev->ops->common->set_power_state(cdev, PCI_D0);
1412 pci_set_drvdata(pdev, NULL);
1415 qede_ptp_disable(edev);
1417 /* Use global ops since we've freed edev */
1418 qed_ops->common->slowpath_stop(cdev);
1419 if (system_state == SYSTEM_POWER_OFF)
1420 return;
1422 if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1423 qed_ops->common->devlink_unregister(edev->devlink);
1424 edev->devlink = NULL;
1426 qed_ops->common->remove(cdev);
1427 edev->cdev = NULL;
1429 /* Since this can happen out-of-sync with other flows,
1430 * don't release the netdevice until after slowpath stop
1431 * has been called to guarantee various other contexts
1432 * [e.g., QED register callbacks] won't break anything when
1433 * accessing the netdevice.
1435 if (mode != QEDE_REMOVE_RECOVERY) {
1436 kfree(edev->coal_entry);
1437 free_netdev(ndev);
1440 dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1443 static void qede_remove(struct pci_dev *pdev)
1445 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1448 static void qede_shutdown(struct pci_dev *pdev)
1450 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1453 /* -------------------------------------------------------------------------
1454 * START OF LOAD / UNLOAD
1455 * -------------------------------------------------------------------------
1458 static int qede_set_num_queues(struct qede_dev *edev)
1460 int rc;
1461 u16 rss_num;
1463 /* Setup queues according to possible resources*/
1464 if (edev->req_queues)
1465 rss_num = edev->req_queues;
1466 else
1467 rss_num = netif_get_num_default_rss_queues() *
1468 edev->dev_info.common.num_hwfns;
1470 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1472 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1473 if (rc > 0) {
1474 /* Managed to request interrupts for our queues */
1475 edev->num_queues = rc;
1476 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1477 QEDE_QUEUE_CNT(edev), rss_num);
1478 rc = 0;
1481 edev->fp_num_tx = edev->req_num_tx;
1482 edev->fp_num_rx = edev->req_num_rx;
1484 return rc;
1487 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1488 u16 sb_id)
1490 if (sb_info->sb_virt) {
1491 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1492 QED_SB_TYPE_L2_QUEUE);
1493 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1494 (void *)sb_info->sb_virt, sb_info->sb_phys);
1495 memset(sb_info, 0, sizeof(*sb_info));
1499 /* This function allocates fast-path status block memory */
1500 static int qede_alloc_mem_sb(struct qede_dev *edev,
1501 struct qed_sb_info *sb_info, u16 sb_id)
1503 struct status_block *sb_virt;
1504 dma_addr_t sb_phys;
1505 int rc;
1507 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1508 sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1509 if (!sb_virt) {
1510 DP_ERR(edev, "Status block allocation failed\n");
1511 return -ENOMEM;
1514 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1515 sb_virt, sb_phys, sb_id,
1516 QED_SB_TYPE_L2_QUEUE);
1517 if (rc) {
1518 DP_ERR(edev, "Status block initialization failed\n");
1519 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1520 sb_virt, sb_phys);
1521 return rc;
1524 return 0;
1527 static void qede_free_rx_buffers(struct qede_dev *edev,
1528 struct qede_rx_queue *rxq)
1530 u16 i;
1532 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1533 struct sw_rx_data *rx_buf;
1534 struct page *data;
1536 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1537 data = rx_buf->data;
1539 dma_unmap_page(&edev->pdev->dev,
1540 rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1542 rx_buf->data = NULL;
1543 __free_page(data);
1547 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1549 /* Free rx buffers */
1550 qede_free_rx_buffers(edev, rxq);
1552 /* Free the parallel SW ring */
1553 kfree(rxq->sw_rx_ring);
1555 /* Free the real RQ ring used by FW */
1556 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1557 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1560 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1562 int i;
1564 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1565 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1567 tpa_info->state = QEDE_AGG_STATE_NONE;
1571 /* This function allocates all memory needed per Rx queue */
1572 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1574 struct qed_chain_init_params params = {
1575 .cnt_type = QED_CHAIN_CNT_TYPE_U16,
1576 .num_elems = RX_RING_SIZE,
1578 struct qed_dev *cdev = edev->cdev;
1579 int i, rc, size;
1581 rxq->num_rx_buffers = edev->q_num_rx_buffers;
1583 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1585 rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1586 size = rxq->rx_headroom +
1587 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1589 /* Make sure that the headroom and payload fit in a single page */
1590 if (rxq->rx_buf_size + size > PAGE_SIZE)
1591 rxq->rx_buf_size = PAGE_SIZE - size;
1593 /* Segment size to split a page in multiple equal parts,
1594 * unless XDP is used in which case we'd use the entire page.
1596 if (!edev->xdp_prog) {
1597 size = size + rxq->rx_buf_size;
1598 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1599 } else {
1600 rxq->rx_buf_seg_size = PAGE_SIZE;
1601 edev->ndev->features &= ~NETIF_F_GRO_HW;
1604 /* Allocate the parallel driver ring for Rx buffers */
1605 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1606 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1607 if (!rxq->sw_rx_ring) {
1608 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1609 rc = -ENOMEM;
1610 goto err;
1613 /* Allocate FW Rx ring */
1614 params.mode = QED_CHAIN_MODE_NEXT_PTR;
1615 params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1616 params.elem_size = sizeof(struct eth_rx_bd);
1618 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1619 if (rc)
1620 goto err;
1622 /* Allocate FW completion ring */
1623 params.mode = QED_CHAIN_MODE_PBL;
1624 params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1625 params.elem_size = sizeof(union eth_rx_cqe);
1627 rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1628 if (rc)
1629 goto err;
1631 /* Allocate buffers for the Rx ring */
1632 rxq->filled_buffers = 0;
1633 for (i = 0; i < rxq->num_rx_buffers; i++) {
1634 rc = qede_alloc_rx_buffer(rxq, false);
1635 if (rc) {
1636 DP_ERR(edev,
1637 "Rx buffers allocation failed at index %d\n", i);
1638 goto err;
1642 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1643 if (!edev->gro_disable)
1644 qede_set_tpa_param(rxq);
1645 err:
1646 return rc;
1649 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1651 /* Free the parallel SW ring */
1652 if (txq->is_xdp)
1653 kfree(txq->sw_tx_ring.xdp);
1654 else
1655 kfree(txq->sw_tx_ring.skbs);
1657 /* Free the real RQ ring used by FW */
1658 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1661 /* This function allocates all memory needed per Tx queue */
1662 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1664 struct qed_chain_init_params params = {
1665 .mode = QED_CHAIN_MODE_PBL,
1666 .intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1667 .cnt_type = QED_CHAIN_CNT_TYPE_U16,
1668 .num_elems = edev->q_num_tx_buffers,
1669 .elem_size = sizeof(union eth_tx_bd_types),
1671 int size, rc;
1673 txq->num_tx_buffers = edev->q_num_tx_buffers;
1675 /* Allocate the parallel driver ring for Tx buffers */
1676 if (txq->is_xdp) {
1677 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1678 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1679 if (!txq->sw_tx_ring.xdp)
1680 goto err;
1681 } else {
1682 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1683 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1684 if (!txq->sw_tx_ring.skbs)
1685 goto err;
1688 rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1689 if (rc)
1690 goto err;
1692 return 0;
1694 err:
1695 qede_free_mem_txq(edev, txq);
1696 return -ENOMEM;
1699 /* This function frees all memory of a single fp */
1700 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1702 qede_free_mem_sb(edev, fp->sb_info, fp->id);
1704 if (fp->type & QEDE_FASTPATH_RX)
1705 qede_free_mem_rxq(edev, fp->rxq);
1707 if (fp->type & QEDE_FASTPATH_XDP)
1708 qede_free_mem_txq(edev, fp->xdp_tx);
1710 if (fp->type & QEDE_FASTPATH_TX) {
1711 int cos;
1713 for_each_cos_in_txq(edev, cos)
1714 qede_free_mem_txq(edev, &fp->txq[cos]);
1718 /* This function allocates all memory needed for a single fp (i.e. an entity
1719 * which contains status block, one rx queue and/or multiple per-TC tx queues.
1721 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1723 int rc = 0;
1725 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1726 if (rc)
1727 goto out;
1729 if (fp->type & QEDE_FASTPATH_RX) {
1730 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1731 if (rc)
1732 goto out;
1735 if (fp->type & QEDE_FASTPATH_XDP) {
1736 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1737 if (rc)
1738 goto out;
1741 if (fp->type & QEDE_FASTPATH_TX) {
1742 int cos;
1744 for_each_cos_in_txq(edev, cos) {
1745 rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1746 if (rc)
1747 goto out;
1751 out:
1752 return rc;
1755 static void qede_free_mem_load(struct qede_dev *edev)
1757 int i;
1759 for_each_queue(i) {
1760 struct qede_fastpath *fp = &edev->fp_array[i];
1762 qede_free_mem_fp(edev, fp);
1766 /* This function allocates all qede memory at NIC load. */
1767 static int qede_alloc_mem_load(struct qede_dev *edev)
1769 int rc = 0, queue_id;
1771 for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1772 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1774 rc = qede_alloc_mem_fp(edev, fp);
1775 if (rc) {
1776 DP_ERR(edev,
1777 "Failed to allocate memory for fastpath - rss id = %d\n",
1778 queue_id);
1779 qede_free_mem_load(edev);
1780 return rc;
1784 return 0;
1787 static void qede_empty_tx_queue(struct qede_dev *edev,
1788 struct qede_tx_queue *txq)
1790 unsigned int pkts_compl = 0, bytes_compl = 0;
1791 struct netdev_queue *netdev_txq;
1792 int rc, len = 0;
1794 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1796 while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1797 qed_chain_get_prod_idx(&txq->tx_pbl)) {
1798 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1799 "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1800 txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1801 qed_chain_get_prod_idx(&txq->tx_pbl));
1803 rc = qede_free_tx_pkt(edev, txq, &len);
1804 if (rc) {
1805 DP_NOTICE(edev,
1806 "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1807 txq->index,
1808 qed_chain_get_cons_idx(&txq->tx_pbl),
1809 qed_chain_get_prod_idx(&txq->tx_pbl));
1810 break;
1813 bytes_compl += len;
1814 pkts_compl++;
1815 txq->sw_tx_cons++;
1818 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1821 static void qede_empty_tx_queues(struct qede_dev *edev)
1823 int i;
1825 for_each_queue(i)
1826 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1827 int cos;
1829 for_each_cos_in_txq(edev, cos) {
1830 struct qede_fastpath *fp;
1832 fp = &edev->fp_array[i];
1833 qede_empty_tx_queue(edev,
1834 &fp->txq[cos]);
1839 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1840 static void qede_init_fp(struct qede_dev *edev)
1842 int queue_id, rxq_index = 0, txq_index = 0;
1843 struct qede_fastpath *fp;
1844 bool init_xdp = false;
1846 for_each_queue(queue_id) {
1847 fp = &edev->fp_array[queue_id];
1849 fp->edev = edev;
1850 fp->id = queue_id;
1852 if (fp->type & QEDE_FASTPATH_XDP) {
1853 fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1854 rxq_index);
1855 fp->xdp_tx->is_xdp = 1;
1857 spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1858 init_xdp = true;
1861 if (fp->type & QEDE_FASTPATH_RX) {
1862 fp->rxq->rxq_id = rxq_index++;
1864 /* Determine how to map buffers for this queue */
1865 if (fp->type & QEDE_FASTPATH_XDP)
1866 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1867 else
1868 fp->rxq->data_direction = DMA_FROM_DEVICE;
1869 fp->rxq->dev = &edev->pdev->dev;
1871 /* Driver have no error path from here */
1872 WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1873 fp->rxq->rxq_id, 0) < 0);
1875 if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1876 MEM_TYPE_PAGE_ORDER0,
1877 NULL)) {
1878 DP_NOTICE(edev,
1879 "Failed to register XDP memory model\n");
1883 if (fp->type & QEDE_FASTPATH_TX) {
1884 int cos;
1886 for_each_cos_in_txq(edev, cos) {
1887 struct qede_tx_queue *txq = &fp->txq[cos];
1888 u16 ndev_tx_id;
1890 txq->cos = cos;
1891 txq->index = txq_index;
1892 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1893 txq->ndev_txq_id = ndev_tx_id;
1895 if (edev->dev_info.is_legacy)
1896 txq->is_legacy = true;
1897 txq->dev = &edev->pdev->dev;
1900 txq_index++;
1903 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1904 edev->ndev->name, queue_id);
1907 if (init_xdp) {
1908 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1909 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1913 static int qede_set_real_num_queues(struct qede_dev *edev)
1915 int rc = 0;
1917 rc = netif_set_real_num_tx_queues(edev->ndev,
1918 QEDE_TSS_COUNT(edev) *
1919 edev->dev_info.num_tc);
1920 if (rc) {
1921 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1922 return rc;
1925 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1926 if (rc) {
1927 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1928 return rc;
1931 return 0;
1934 static void qede_napi_disable_remove(struct qede_dev *edev)
1936 int i;
1938 for_each_queue(i) {
1939 napi_disable(&edev->fp_array[i].napi);
1941 netif_napi_del(&edev->fp_array[i].napi);
1945 static void qede_napi_add_enable(struct qede_dev *edev)
1947 int i;
1949 /* Add NAPI objects */
1950 for_each_queue(i) {
1951 netif_napi_add(edev->ndev, &edev->fp_array[i].napi, qede_poll);
1952 napi_enable(&edev->fp_array[i].napi);
1956 static void qede_sync_free_irqs(struct qede_dev *edev)
1958 int i;
1960 for (i = 0; i < edev->int_info.used_cnt; i++) {
1961 if (edev->int_info.msix_cnt) {
1962 free_irq(edev->int_info.msix[i].vector,
1963 &edev->fp_array[i]);
1964 } else {
1965 edev->ops->common->simd_handler_clean(edev->cdev, i);
1969 edev->int_info.used_cnt = 0;
1970 edev->int_info.msix_cnt = 0;
1973 static int qede_req_msix_irqs(struct qede_dev *edev)
1975 int i, rc;
1977 /* Sanitize number of interrupts == number of prepared RSS queues */
1978 if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1979 DP_ERR(edev,
1980 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1981 QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1982 return -EINVAL;
1985 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1986 #ifdef CONFIG_RFS_ACCEL
1987 struct qede_fastpath *fp = &edev->fp_array[i];
1989 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1990 rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1991 edev->int_info.msix[i].vector);
1992 if (rc) {
1993 DP_ERR(edev, "Failed to add CPU rmap\n");
1994 qede_free_arfs(edev);
1997 #endif
1998 rc = request_irq(edev->int_info.msix[i].vector,
1999 qede_msix_fp_int, 0, edev->fp_array[i].name,
2000 &edev->fp_array[i]);
2001 if (rc) {
2002 DP_ERR(edev, "Request fp %d irq failed\n", i);
2003 #ifdef CONFIG_RFS_ACCEL
2004 if (edev->ndev->rx_cpu_rmap)
2005 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2007 edev->ndev->rx_cpu_rmap = NULL;
2008 #endif
2009 qede_sync_free_irqs(edev);
2010 return rc;
2012 DP_VERBOSE(edev, NETIF_MSG_INTR,
2013 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2014 edev->fp_array[i].name, i,
2015 &edev->fp_array[i]);
2016 edev->int_info.used_cnt++;
2019 return 0;
2022 static void qede_simd_fp_handler(void *cookie)
2024 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2026 napi_schedule_irqoff(&fp->napi);
2029 static int qede_setup_irqs(struct qede_dev *edev)
2031 int i, rc = 0;
2033 /* Learn Interrupt configuration */
2034 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2035 if (rc)
2036 return rc;
2038 if (edev->int_info.msix_cnt) {
2039 rc = qede_req_msix_irqs(edev);
2040 if (rc)
2041 return rc;
2042 edev->ndev->irq = edev->int_info.msix[0].vector;
2043 } else {
2044 const struct qed_common_ops *ops;
2046 /* qed should learn receive the RSS ids and callbacks */
2047 ops = edev->ops->common;
2048 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2049 ops->simd_handler_config(edev->cdev,
2050 &edev->fp_array[i], i,
2051 qede_simd_fp_handler);
2052 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2054 return 0;
2057 static int qede_drain_txq(struct qede_dev *edev,
2058 struct qede_tx_queue *txq, bool allow_drain)
2060 int rc, cnt = 1000;
2062 while (txq->sw_tx_cons != txq->sw_tx_prod) {
2063 if (!cnt) {
2064 if (allow_drain) {
2065 DP_NOTICE(edev,
2066 "Tx queue[%d] is stuck, requesting MCP to drain\n",
2067 txq->index);
2068 rc = edev->ops->common->drain(edev->cdev);
2069 if (rc)
2070 return rc;
2071 return qede_drain_txq(edev, txq, false);
2073 DP_NOTICE(edev,
2074 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2075 txq->index, txq->sw_tx_prod,
2076 txq->sw_tx_cons);
2077 return -ENODEV;
2079 cnt--;
2080 usleep_range(1000, 2000);
2081 barrier();
2084 /* FW finished processing, wait for HW to transmit all tx packets */
2085 usleep_range(1000, 2000);
2087 return 0;
2090 static int qede_stop_txq(struct qede_dev *edev,
2091 struct qede_tx_queue *txq, int rss_id)
2093 /* delete doorbell from doorbell recovery mechanism */
2094 edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2095 &txq->tx_db);
2097 return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2100 static int qede_stop_queues(struct qede_dev *edev)
2102 struct qed_update_vport_params *vport_update_params;
2103 struct qed_dev *cdev = edev->cdev;
2104 struct qede_fastpath *fp;
2105 int rc, i;
2107 /* Disable the vport */
2108 vport_update_params = vzalloc(sizeof(*vport_update_params));
2109 if (!vport_update_params)
2110 return -ENOMEM;
2112 vport_update_params->vport_id = 0;
2113 vport_update_params->update_vport_active_flg = 1;
2114 vport_update_params->vport_active_flg = 0;
2115 vport_update_params->update_rss_flg = 0;
2117 rc = edev->ops->vport_update(cdev, vport_update_params);
2118 vfree(vport_update_params);
2120 if (rc) {
2121 DP_ERR(edev, "Failed to update vport\n");
2122 return rc;
2125 /* Flush Tx queues. If needed, request drain from MCP */
2126 for_each_queue(i) {
2127 fp = &edev->fp_array[i];
2129 if (fp->type & QEDE_FASTPATH_TX) {
2130 int cos;
2132 for_each_cos_in_txq(edev, cos) {
2133 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2134 if (rc)
2135 return rc;
2139 if (fp->type & QEDE_FASTPATH_XDP) {
2140 rc = qede_drain_txq(edev, fp->xdp_tx, true);
2141 if (rc)
2142 return rc;
2146 /* Stop all Queues in reverse order */
2147 for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2148 fp = &edev->fp_array[i];
2150 /* Stop the Tx Queue(s) */
2151 if (fp->type & QEDE_FASTPATH_TX) {
2152 int cos;
2154 for_each_cos_in_txq(edev, cos) {
2155 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2156 if (rc)
2157 return rc;
2161 /* Stop the Rx Queue */
2162 if (fp->type & QEDE_FASTPATH_RX) {
2163 rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2164 if (rc) {
2165 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2166 return rc;
2170 /* Stop the XDP forwarding queue */
2171 if (fp->type & QEDE_FASTPATH_XDP) {
2172 rc = qede_stop_txq(edev, fp->xdp_tx, i);
2173 if (rc)
2174 return rc;
2176 bpf_prog_put(fp->rxq->xdp_prog);
2180 /* Stop the vport */
2181 rc = edev->ops->vport_stop(cdev, 0);
2182 if (rc)
2183 DP_ERR(edev, "Failed to stop VPORT\n");
2185 return rc;
2188 static int qede_start_txq(struct qede_dev *edev,
2189 struct qede_fastpath *fp,
2190 struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2192 dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2193 u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2194 struct qed_queue_start_common_params params;
2195 struct qed_txq_start_ret_params ret_params;
2196 int rc;
2198 memset(&params, 0, sizeof(params));
2199 memset(&ret_params, 0, sizeof(ret_params));
2201 /* Let the XDP queue share the queue-zone with one of the regular txq.
2202 * We don't really care about its coalescing.
2204 if (txq->is_xdp)
2205 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2206 else
2207 params.queue_id = txq->index;
2209 params.p_sb = fp->sb_info;
2210 params.sb_idx = sb_idx;
2211 params.tc = txq->cos;
2213 rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2214 page_cnt, &ret_params);
2215 if (rc) {
2216 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2217 return rc;
2220 txq->doorbell_addr = ret_params.p_doorbell;
2221 txq->handle = ret_params.p_handle;
2223 /* Determine the FW consumer address associated */
2224 txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2226 /* Prepare the doorbell parameters */
2227 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2228 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2229 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2230 DQ_XCM_ETH_TX_BD_PROD_CMD);
2231 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2233 /* register doorbell with doorbell recovery mechanism */
2234 rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2235 &txq->tx_db, DB_REC_WIDTH_32B,
2236 DB_REC_KERNEL);
2238 return rc;
2241 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2243 int vlan_removal_en = 1;
2244 struct qed_dev *cdev = edev->cdev;
2245 struct qed_dev_info *qed_info = &edev->dev_info.common;
2246 struct qed_update_vport_params *vport_update_params;
2247 struct qed_queue_start_common_params q_params;
2248 struct qed_start_vport_params start = {0};
2249 int rc, i;
2251 if (!edev->num_queues) {
2252 DP_ERR(edev,
2253 "Cannot update V-VPORT as active as there are no Rx queues\n");
2254 return -EINVAL;
2257 vport_update_params = vzalloc(sizeof(*vport_update_params));
2258 if (!vport_update_params)
2259 return -ENOMEM;
2261 start.handle_ptp_pkts = !!(edev->ptp);
2262 start.gro_enable = !edev->gro_disable;
2263 start.mtu = edev->ndev->mtu;
2264 start.vport_id = 0;
2265 start.drop_ttl0 = true;
2266 start.remove_inner_vlan = vlan_removal_en;
2267 start.clear_stats = clear_stats;
2269 rc = edev->ops->vport_start(cdev, &start);
2271 if (rc) {
2272 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2273 goto out;
2276 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2277 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2278 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2280 for_each_queue(i) {
2281 struct qede_fastpath *fp = &edev->fp_array[i];
2282 dma_addr_t p_phys_table;
2283 u32 page_cnt;
2285 if (fp->type & QEDE_FASTPATH_RX) {
2286 struct qed_rxq_start_ret_params ret_params;
2287 struct qede_rx_queue *rxq = fp->rxq;
2288 __le16 *val;
2290 memset(&ret_params, 0, sizeof(ret_params));
2291 memset(&q_params, 0, sizeof(q_params));
2292 q_params.queue_id = rxq->rxq_id;
2293 q_params.vport_id = 0;
2294 q_params.p_sb = fp->sb_info;
2295 q_params.sb_idx = RX_PI;
2297 p_phys_table =
2298 qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2299 page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2301 rc = edev->ops->q_rx_start(cdev, i, &q_params,
2302 rxq->rx_buf_size,
2303 rxq->rx_bd_ring.p_phys_addr,
2304 p_phys_table,
2305 page_cnt, &ret_params);
2306 if (rc) {
2307 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2308 rc);
2309 goto out;
2312 /* Use the return parameters */
2313 rxq->hw_rxq_prod_addr = ret_params.p_prod;
2314 rxq->handle = ret_params.p_handle;
2316 val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2317 rxq->hw_cons_ptr = val;
2319 qede_update_rx_prod(edev, rxq);
2322 if (fp->type & QEDE_FASTPATH_XDP) {
2323 rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2324 if (rc)
2325 goto out;
2327 bpf_prog_add(edev->xdp_prog, 1);
2328 fp->rxq->xdp_prog = edev->xdp_prog;
2331 if (fp->type & QEDE_FASTPATH_TX) {
2332 int cos;
2334 for_each_cos_in_txq(edev, cos) {
2335 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2336 TX_PI(cos));
2337 if (rc)
2338 goto out;
2343 /* Prepare and send the vport enable */
2344 vport_update_params->vport_id = start.vport_id;
2345 vport_update_params->update_vport_active_flg = 1;
2346 vport_update_params->vport_active_flg = 1;
2348 if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2349 qed_info->tx_switching) {
2350 vport_update_params->update_tx_switching_flg = 1;
2351 vport_update_params->tx_switching_flg = 1;
2354 qede_fill_rss_params(edev, &vport_update_params->rss_params,
2355 &vport_update_params->update_rss_flg);
2357 rc = edev->ops->vport_update(cdev, vport_update_params);
2358 if (rc)
2359 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2361 out:
2362 vfree(vport_update_params);
2363 return rc;
2366 enum qede_unload_mode {
2367 QEDE_UNLOAD_NORMAL,
2368 QEDE_UNLOAD_RECOVERY,
2371 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2372 bool is_locked)
2374 struct qed_link_params link_params;
2375 int rc;
2377 DP_INFO(edev, "Starting qede unload\n");
2379 if (!is_locked)
2380 __qede_lock(edev);
2382 clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2384 if (mode != QEDE_UNLOAD_RECOVERY)
2385 edev->state = QEDE_STATE_CLOSED;
2387 qede_rdma_dev_event_close(edev);
2389 /* Close OS Tx */
2390 netif_tx_disable(edev->ndev);
2391 netif_carrier_off(edev->ndev);
2393 if (mode != QEDE_UNLOAD_RECOVERY) {
2394 /* Reset the link */
2395 memset(&link_params, 0, sizeof(link_params));
2396 link_params.link_up = false;
2397 edev->ops->common->set_link(edev->cdev, &link_params);
2399 rc = qede_stop_queues(edev);
2400 if (rc) {
2401 #ifdef CONFIG_RFS_ACCEL
2402 if (edev->dev_info.common.b_arfs_capable) {
2403 qede_poll_for_freeing_arfs_filters(edev);
2404 if (edev->ndev->rx_cpu_rmap)
2405 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2407 edev->ndev->rx_cpu_rmap = NULL;
2409 #endif
2410 qede_sync_free_irqs(edev);
2411 goto out;
2414 DP_INFO(edev, "Stopped Queues\n");
2417 qede_vlan_mark_nonconfigured(edev);
2418 edev->ops->fastpath_stop(edev->cdev);
2420 if (edev->dev_info.common.b_arfs_capable) {
2421 qede_poll_for_freeing_arfs_filters(edev);
2422 qede_free_arfs(edev);
2425 /* Release the interrupts */
2426 qede_sync_free_irqs(edev);
2427 edev->ops->common->set_fp_int(edev->cdev, 0);
2429 qede_napi_disable_remove(edev);
2431 if (mode == QEDE_UNLOAD_RECOVERY)
2432 qede_empty_tx_queues(edev);
2434 qede_free_mem_load(edev);
2435 qede_free_fp_array(edev);
2437 out:
2438 if (!is_locked)
2439 __qede_unlock(edev);
2441 if (mode != QEDE_UNLOAD_RECOVERY)
2442 DP_NOTICE(edev, "Link is down\n");
2444 edev->ptp_skip_txts = 0;
2446 DP_INFO(edev, "Ending qede unload\n");
2449 enum qede_load_mode {
2450 QEDE_LOAD_NORMAL,
2451 QEDE_LOAD_RELOAD,
2452 QEDE_LOAD_RECOVERY,
2455 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2456 bool is_locked)
2458 struct qed_link_params link_params;
2459 struct ethtool_coalesce coal = {};
2460 u8 num_tc;
2461 int rc, i;
2463 DP_INFO(edev, "Starting qede load\n");
2465 if (!is_locked)
2466 __qede_lock(edev);
2468 rc = qede_set_num_queues(edev);
2469 if (rc)
2470 goto out;
2472 rc = qede_alloc_fp_array(edev);
2473 if (rc)
2474 goto out;
2476 qede_init_fp(edev);
2478 rc = qede_alloc_mem_load(edev);
2479 if (rc)
2480 goto err1;
2481 DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2482 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2484 rc = qede_set_real_num_queues(edev);
2485 if (rc)
2486 goto err2;
2488 if (qede_alloc_arfs(edev)) {
2489 edev->ndev->features &= ~NETIF_F_NTUPLE;
2490 edev->dev_info.common.b_arfs_capable = false;
2493 qede_napi_add_enable(edev);
2494 DP_INFO(edev, "Napi added and enabled\n");
2496 rc = qede_setup_irqs(edev);
2497 if (rc)
2498 goto err3;
2499 DP_INFO(edev, "Setup IRQs succeeded\n");
2501 rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2502 if (rc)
2503 goto err4;
2504 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2506 num_tc = netdev_get_num_tc(edev->ndev);
2507 num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2508 qede_setup_tc(edev->ndev, num_tc);
2510 /* Program un-configured VLANs */
2511 qede_configure_vlan_filters(edev);
2513 set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2515 /* Ask for link-up using current configuration */
2516 memset(&link_params, 0, sizeof(link_params));
2517 link_params.link_up = true;
2518 edev->ops->common->set_link(edev->cdev, &link_params);
2520 edev->state = QEDE_STATE_OPEN;
2522 coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2523 coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2525 for_each_queue(i) {
2526 if (edev->coal_entry[i].isvalid) {
2527 coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2528 coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2530 __qede_unlock(edev);
2531 qede_set_per_coalesce(edev->ndev, i, &coal);
2532 __qede_lock(edev);
2534 DP_INFO(edev, "Ending successfully qede load\n");
2536 goto out;
2537 err4:
2538 qede_sync_free_irqs(edev);
2539 err3:
2540 qede_napi_disable_remove(edev);
2541 err2:
2542 qede_free_mem_load(edev);
2543 err1:
2544 edev->ops->common->set_fp_int(edev->cdev, 0);
2545 qede_free_fp_array(edev);
2546 edev->num_queues = 0;
2547 edev->fp_num_tx = 0;
2548 edev->fp_num_rx = 0;
2549 out:
2550 if (!is_locked)
2551 __qede_unlock(edev);
2553 return rc;
2556 /* 'func' should be able to run between unload and reload assuming interface
2557 * is actually running, or afterwards in case it's currently DOWN.
2559 void qede_reload(struct qede_dev *edev,
2560 struct qede_reload_args *args, bool is_locked)
2562 if (!is_locked)
2563 __qede_lock(edev);
2565 /* Since qede_lock is held, internal state wouldn't change even
2566 * if netdev state would start transitioning. Check whether current
2567 * internal configuration indicates device is up, then reload.
2569 if (edev->state == QEDE_STATE_OPEN) {
2570 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2571 if (args)
2572 args->func(edev, args);
2573 qede_load(edev, QEDE_LOAD_RELOAD, true);
2575 /* Since no one is going to do it for us, re-configure */
2576 qede_config_rx_mode(edev->ndev);
2577 } else if (args) {
2578 args->func(edev, args);
2581 if (!is_locked)
2582 __qede_unlock(edev);
2585 /* called with rtnl_lock */
2586 static int qede_open(struct net_device *ndev)
2588 struct qede_dev *edev = netdev_priv(ndev);
2589 int rc;
2591 netif_carrier_off(ndev);
2593 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2595 rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2596 if (rc)
2597 return rc;
2599 udp_tunnel_nic_reset_ntf(ndev);
2601 edev->ops->common->update_drv_state(edev->cdev, true);
2603 return 0;
2606 static int qede_close(struct net_device *ndev)
2608 struct qede_dev *edev = netdev_priv(ndev);
2610 qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2612 if (edev->cdev)
2613 edev->ops->common->update_drv_state(edev->cdev, false);
2615 return 0;
2618 static void qede_link_update(void *dev, struct qed_link_output *link)
2620 struct qede_dev *edev = dev;
2622 if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2623 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2624 return;
2627 if (link->link_up) {
2628 if (!netif_carrier_ok(edev->ndev)) {
2629 DP_NOTICE(edev, "Link is up\n");
2630 netif_tx_start_all_queues(edev->ndev);
2631 netif_carrier_on(edev->ndev);
2632 qede_rdma_dev_event_open(edev);
2634 } else {
2635 if (netif_carrier_ok(edev->ndev)) {
2636 DP_NOTICE(edev, "Link is down\n");
2637 netif_tx_disable(edev->ndev);
2638 netif_carrier_off(edev->ndev);
2639 qede_rdma_dev_event_close(edev);
2644 static void qede_schedule_recovery_handler(void *dev)
2646 struct qede_dev *edev = dev;
2648 if (edev->state == QEDE_STATE_RECOVERY) {
2649 DP_NOTICE(edev,
2650 "Avoid scheduling a recovery handling since already in recovery state\n");
2651 return;
2654 set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2655 schedule_delayed_work(&edev->sp_task, 0);
2657 DP_INFO(edev, "Scheduled a recovery handler\n");
2660 static void qede_recovery_failed(struct qede_dev *edev)
2662 netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2664 netif_device_detach(edev->ndev);
2666 if (edev->cdev)
2667 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2670 static void qede_recovery_handler(struct qede_dev *edev)
2672 u32 curr_state = edev->state;
2673 int rc;
2675 DP_NOTICE(edev, "Starting a recovery process\n");
2677 /* No need to acquire first the qede_lock since is done by qede_sp_task
2678 * before calling this function.
2680 edev->state = QEDE_STATE_RECOVERY;
2682 edev->ops->common->recovery_prolog(edev->cdev);
2684 if (curr_state == QEDE_STATE_OPEN)
2685 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2687 __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2689 rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2690 IS_VF(edev), QEDE_PROBE_RECOVERY);
2691 if (rc) {
2692 edev->cdev = NULL;
2693 goto err;
2696 if (curr_state == QEDE_STATE_OPEN) {
2697 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2698 if (rc)
2699 goto err;
2701 qede_config_rx_mode(edev->ndev);
2702 udp_tunnel_nic_reset_ntf(edev->ndev);
2705 edev->state = curr_state;
2707 DP_NOTICE(edev, "Recovery handling is done\n");
2709 return;
2711 err:
2712 qede_recovery_failed(edev);
2715 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2717 struct qed_dev *cdev = edev->cdev;
2719 DP_NOTICE(edev,
2720 "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2721 edev->err_flags);
2723 /* Get a call trace of the flow that led to the error */
2724 WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2726 /* Prevent HW attentions from being reasserted */
2727 if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2728 edev->ops->common->attn_clr_enable(cdev, true);
2730 DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2733 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2735 DP_NOTICE(edev,
2736 "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2737 edev->err_flags);
2739 if (edev->devlink) {
2740 DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2741 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2744 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2746 DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2749 static void qede_set_hw_err_flags(struct qede_dev *edev,
2750 enum qed_hw_err_type err_type)
2752 unsigned long err_flags = 0;
2754 switch (err_type) {
2755 case QED_HW_ERR_DMAE_FAIL:
2756 set_bit(QEDE_ERR_WARN, &err_flags);
2757 fallthrough;
2758 case QED_HW_ERR_MFW_RESP_FAIL:
2759 case QED_HW_ERR_HW_ATTN:
2760 case QED_HW_ERR_RAMROD_FAIL:
2761 case QED_HW_ERR_FW_ASSERT:
2762 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2763 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2764 /* make this error as recoverable and start recovery*/
2765 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2766 break;
2768 default:
2769 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2770 break;
2773 edev->err_flags |= err_flags;
2776 static void qede_schedule_hw_err_handler(void *dev,
2777 enum qed_hw_err_type err_type)
2779 struct qede_dev *edev = dev;
2781 /* Fan failure cannot be masked by handling of another HW error or by a
2782 * concurrent recovery process.
2784 if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2785 edev->state == QEDE_STATE_RECOVERY) &&
2786 err_type != QED_HW_ERR_FAN_FAIL) {
2787 DP_INFO(edev,
2788 "Avoid scheduling an error handling while another HW error is being handled\n");
2789 return;
2792 if (err_type >= QED_HW_ERR_LAST) {
2793 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2794 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2795 return;
2798 edev->last_err_type = err_type;
2799 qede_set_hw_err_flags(edev, err_type);
2800 qede_atomic_hw_err_handler(edev);
2801 set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2802 schedule_delayed_work(&edev->sp_task, 0);
2804 DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2807 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2809 struct netdev_queue *netdev_txq;
2811 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2812 if (netif_xmit_stopped(netdev_txq))
2813 return true;
2815 return false;
2818 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2820 struct qede_dev *edev = dev;
2821 struct netdev_hw_addr *ha;
2822 int i;
2824 if (edev->ndev->features & NETIF_F_IP_CSUM)
2825 data->feat_flags |= QED_TLV_IP_CSUM;
2826 if (edev->ndev->features & NETIF_F_TSO)
2827 data->feat_flags |= QED_TLV_LSO;
2829 ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2830 eth_zero_addr(data->mac[1]);
2831 eth_zero_addr(data->mac[2]);
2832 /* Copy the first two UC macs */
2833 netif_addr_lock_bh(edev->ndev);
2834 i = 1;
2835 netdev_for_each_uc_addr(ha, edev->ndev) {
2836 ether_addr_copy(data->mac[i++], ha->addr);
2837 if (i == QED_TLV_MAC_COUNT)
2838 break;
2841 netif_addr_unlock_bh(edev->ndev);
2844 static void qede_get_eth_tlv_data(void *dev, void *data)
2846 struct qed_mfw_tlv_eth *etlv = data;
2847 struct qede_dev *edev = dev;
2848 struct qede_fastpath *fp;
2849 int i;
2851 etlv->lso_maxoff_size = 0XFFFF;
2852 etlv->lso_maxoff_size_set = true;
2853 etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2854 etlv->lso_minseg_size_set = true;
2855 etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2856 etlv->prom_mode_set = true;
2857 etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2858 etlv->tx_descr_size_set = true;
2859 etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2860 etlv->rx_descr_size_set = true;
2861 etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2862 etlv->iov_offload_set = true;
2864 /* Fill information regarding queues; Should be done under the qede
2865 * lock to guarantee those don't change beneath our feet.
2867 etlv->txqs_empty = true;
2868 etlv->rxqs_empty = true;
2869 etlv->num_txqs_full = 0;
2870 etlv->num_rxqs_full = 0;
2872 __qede_lock(edev);
2873 for_each_queue(i) {
2874 fp = &edev->fp_array[i];
2875 if (fp->type & QEDE_FASTPATH_TX) {
2876 struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2878 if (txq->sw_tx_cons != txq->sw_tx_prod)
2879 etlv->txqs_empty = false;
2880 if (qede_is_txq_full(edev, txq))
2881 etlv->num_txqs_full++;
2883 if (fp->type & QEDE_FASTPATH_RX) {
2884 if (qede_has_rx_work(fp->rxq))
2885 etlv->rxqs_empty = false;
2887 /* This one is a bit tricky; Firmware might stop
2888 * placing packets if ring is not yet full.
2889 * Give an approximation.
2891 if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2892 qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2893 RX_RING_SIZE - 100)
2894 etlv->num_rxqs_full++;
2897 __qede_unlock(edev);
2899 etlv->txqs_empty_set = true;
2900 etlv->rxqs_empty_set = true;
2901 etlv->num_txqs_full_set = true;
2902 etlv->num_rxqs_full_set = true;
2906 * qede_io_error_detected(): Called when PCI error is detected
2908 * @pdev: Pointer to PCI device
2909 * @state: The current pci connection state
2911 *Return: pci_ers_result_t.
2913 * This function is called after a PCI bus error affecting
2914 * this device has been detected.
2916 static pci_ers_result_t
2917 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2919 struct net_device *dev = pci_get_drvdata(pdev);
2920 struct qede_dev *edev = netdev_priv(dev);
2922 if (!edev)
2923 return PCI_ERS_RESULT_NONE;
2925 DP_NOTICE(edev, "IO error detected [%d]\n", state);
2927 __qede_lock(edev);
2928 if (edev->state == QEDE_STATE_RECOVERY) {
2929 DP_NOTICE(edev, "Device already in the recovery state\n");
2930 __qede_unlock(edev);
2931 return PCI_ERS_RESULT_NONE;
2934 /* PF handles the recovery of its VFs */
2935 if (IS_VF(edev)) {
2936 DP_VERBOSE(edev, QED_MSG_IOV,
2937 "VF recovery is handled by its PF\n");
2938 __qede_unlock(edev);
2939 return PCI_ERS_RESULT_RECOVERED;
2942 /* Close OS Tx */
2943 netif_tx_disable(edev->ndev);
2944 netif_carrier_off(edev->ndev);
2946 set_bit(QEDE_SP_AER, &edev->sp_flags);
2947 schedule_delayed_work(&edev->sp_task, 0);
2949 __qede_unlock(edev);
2951 return PCI_ERS_RESULT_CAN_RECOVER;