1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2011-2013 Solarflare Communications Inc.
7 /* Theory of operation:
9 * PTP support is assisted by firmware running on the MC, which provides
10 * the hardware timestamping capabilities. Both transmitted and received
11 * PTP event packets are queued onto internal queues for subsequent processing;
12 * this is because the MC operations are relatively long and would block
13 * block NAPI/interrupt operation.
15 * Receive event processing:
16 * The event contains the packet's UUID and sequence number, together
17 * with the hardware timestamp. The PTP receive packet queue is searched
18 * for this UUID/sequence number and, if found, put on a pending queue.
19 * Packets not matching are delivered without timestamps (MCDI events will
20 * always arrive after the actual packet).
21 * It is important for the operation of the PTP protocol that the ordering
22 * of packets between the event and general port is maintained.
24 * Work queue processing:
25 * If work waiting, synchronise host/hardware time
27 * Transmit: send packet through MC, which returns the transmission time
28 * that is converted to an appropriate timestamp.
30 * Receive: the packet's reception time is converted to an appropriate
34 #include <linux/udp.h>
35 #include <linux/time.h>
36 #include <linux/errno.h>
37 #include <linux/ktime.h>
38 #include <linux/module.h>
39 #include <linux/pps_kernel.h>
40 #include <linux/ptp_clock_kernel.h>
41 #include "net_driver.h"
44 #include "mcdi_pcol.h"
47 #include "nic.h" /* indirectly includes ptp.h */
48 #include "efx_channels.h"
50 /* Maximum number of events expected to make up a PTP event */
51 #define MAX_EVENT_FRAGS 3
53 /* Maximum delay, ms, to begin synchronisation */
54 #define MAX_SYNCHRONISE_WAIT_MS 2
56 /* How long, at most, to spend synchronising */
57 #define SYNCHRONISE_PERIOD_NS 250000
59 /* How often to update the shared memory time */
60 #define SYNCHRONISATION_GRANULARITY_NS 200
62 /* Minimum permitted length of a (corrected) synchronisation time */
63 #define DEFAULT_MIN_SYNCHRONISATION_NS 120
65 /* Maximum permitted length of a (corrected) synchronisation time */
66 #define MAX_SYNCHRONISATION_NS 1000
68 /* How many (MC) receive events that can be queued */
69 #define MAX_RECEIVE_EVENTS 8
71 /* Length of (modified) moving average. */
72 #define AVERAGE_LENGTH 16
74 /* How long an unmatched event or packet can be held */
75 #define PKT_EVENT_LIFETIME_MS 10
77 /* How long unused unicast filters can be held */
78 #define UCAST_FILTER_EXPIRY_JIFFIES msecs_to_jiffies(30000)
80 /* Offsets into PTP packet for identification. These offsets are from the
81 * start of the IP header, not the MAC header. Note that neither PTP V1 nor
82 * PTP V2 permit the use of IPV4 options.
84 #define PTP_DPORT_OFFSET 22
86 #define PTP_V1_VERSION_LENGTH 2
87 #define PTP_V1_VERSION_OFFSET 28
89 #define PTP_V1_SEQUENCE_LENGTH 2
90 #define PTP_V1_SEQUENCE_OFFSET 58
92 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
95 #define PTP_V1_MIN_LENGTH 64
97 #define PTP_V2_VERSION_LENGTH 1
98 #define PTP_V2_VERSION_OFFSET 29
100 #define PTP_V2_SEQUENCE_LENGTH 2
101 #define PTP_V2_SEQUENCE_OFFSET 58
103 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
104 * includes IP header.
106 #define PTP_V2_MIN_LENGTH 63
108 #define PTP_MIN_LENGTH 63
110 #define PTP_ADDR_IPV4 0xe0000181 /* 224.0.1.129 */
113 static const struct in6_addr ptp_addr_ipv6
= { { {
114 0xff, 0x0e, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01, 0x81 } } };
116 /* 01-1B-19-00-00-00 */
117 static const u8 ptp_addr_ether
[ETH_ALEN
] __aligned(2) = {
118 0x01, 0x1b, 0x19, 0x00, 0x00, 0x00 };
120 #define PTP_EVENT_PORT 319
121 #define PTP_GENERAL_PORT 320
123 /* Annoyingly the format of the version numbers are different between
124 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
126 #define PTP_VERSION_V1 1
128 #define PTP_VERSION_V2 2
129 #define PTP_VERSION_V2_MASK 0x0f
131 enum ptp_packet_state
{
132 PTP_PACKET_STATE_UNMATCHED
= 0,
133 PTP_PACKET_STATE_MATCHED
,
134 PTP_PACKET_STATE_TIMED_OUT
,
135 PTP_PACKET_STATE_MATCH_UNWANTED
138 /* NIC synchronised with single word of time only comprising
139 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
141 #define MC_NANOSECOND_BITS 30
142 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1)
143 #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
145 /* Maximum parts-per-billion adjustment that is acceptable */
146 #define MAX_PPB 1000000
148 /* Precalculate scale word to avoid long long division at runtime */
149 /* This is equivalent to 2^66 / 10^9. */
150 #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL)
152 /* How much to shift down after scaling to convert to FP40 */
153 #define PPB_SHIFT_FP40 26
155 #define PPB_SHIFT_FP44 22
157 #define PTP_SYNC_ATTEMPTS 4
160 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
161 * @expiry: Time after which the packet should be delivered irrespective of
163 * @state: The state of the packet - whether it is ready for processing or
164 * whether that is of no interest.
166 struct efx_ptp_match
{
167 unsigned long expiry
;
168 enum ptp_packet_state state
;
172 * struct efx_ptp_event_rx - A PTP receive event (from MC)
173 * @link: list of events
174 * @seq0: First part of (PTP) UUID
175 * @seq1: Second part of (PTP) UUID and sequence number
176 * @hwtimestamp: Event timestamp
177 * @expiry: Time which the packet arrived
179 struct efx_ptp_event_rx
{
180 struct list_head link
;
184 unsigned long expiry
;
188 * struct efx_ptp_timeset - Synchronisation between host and MC
189 * @host_start: Host time immediately before hardware timestamp taken
190 * @major: Hardware timestamp, major
191 * @minor: Hardware timestamp, minor
192 * @host_end: Host time immediately after hardware timestamp taken
193 * @wait: Number of NIC clock ticks between hardware timestamp being read and
194 * host end time being seen
195 * @window: Difference of host_end and host_start
196 * @valid: Whether this timeset is valid
198 struct efx_ptp_timeset
{
204 u32 window
; /* Derived: end - start, allowing for wrap */
208 * struct efx_ptp_rxfilter - Filter for PTP packets
209 * @list: Node of the list where the filter is added
210 * @ether_type: Network protocol of the filter (ETHER_P_IP / ETHER_P_IPV6)
211 * @loc_port: UDP port of the filter (PTP_EVENT_PORT / PTP_GENERAL_PORT)
212 * @loc_host: IPv4/v6 address of the filter
213 * @expiry: time when the filter expires, in jiffies
214 * @handle: Handle ID for the MCDI filters table
216 struct efx_ptp_rxfilter
{
217 struct list_head list
;
221 unsigned long expiry
;
226 * struct efx_ptp_data - Precision Time Protocol (PTP) state
227 * @efx: The NIC context
228 * @channel: The PTP channel (for Medford and Medford2)
229 * @rxq: Receive SKB queue (awaiting timestamps)
230 * @txq: Transmit SKB queue
231 * @workwq: Work queue for processing pending PTP operations
233 * @cleanup_work: Work task for periodic cleanup
234 * @reset_required: A serious error has occurred and the PTP task needs to be
235 * reset (disable, enable).
236 * @rxfilters_mcast: Receive filters for multicast PTP packets
237 * @rxfilters_ucast: Receive filters for unicast PTP packets
238 * @config: Current timestamp configuration
239 * @enabled: PTP operation enabled
240 * @mode: Mode in which PTP operating (PTP version)
241 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
242 * @nic_to_kernel_time: Function to convert from NIC to kernel time
243 * @nic_time: contains time details
244 * @nic_time.minor_max: Wrap point for NIC minor times
245 * @nic_time.sync_event_diff_min: Minimum acceptable difference between time
246 * in packet prefix and last MCDI time sync event i.e. how much earlier than
247 * the last sync event time a packet timestamp can be.
248 * @nic_time.sync_event_diff_max: Maximum acceptable difference between time
249 * in packet prefix and last MCDI time sync event i.e. how much later than
250 * the last sync event time a packet timestamp can be.
251 * @nic_time.sync_event_minor_shift: Shift required to make minor time from
252 * field in MCDI time sync event.
253 * @min_synchronisation_ns: Minimum acceptable corrected sync window
254 * @capabilities: Capabilities flags from the NIC
255 * @ts_corrections: contains corrections details
256 * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit
258 * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive
260 * @ts_corrections.pps_out: PPS output error (information only)
261 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
262 * @ts_corrections.general_tx: Required driver correction of general packet
263 * transmit timestamps
264 * @ts_corrections.general_rx: Required driver correction of general packet
266 * @evt_frags: Partly assembled PTP events
267 * @evt_frag_idx: Current fragment number
268 * @evt_code: Last event code
269 * @start: Address at which MC indicates ready for synchronisation
270 * @host_time_pps: Host time at last PPS
271 * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion
272 * frequency adjustment into a fixed point fractional nanosecond format.
273 * @current_adjfreq: Current ppb adjustment.
274 * @phc_clock: Pointer to registered phc device (if primary function)
275 * @phc_clock_info: Registration structure for phc device
276 * @pps_work: pps work task for handling pps events
277 * @pps_workwq: pps work queue
278 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
279 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
280 * allocations in main data path).
281 * @good_syncs: Number of successful synchronisations.
282 * @fast_syncs: Number of synchronisations requiring short delay
283 * @bad_syncs: Number of failed synchronisations.
284 * @sync_timeouts: Number of synchronisation timeouts
285 * @no_time_syncs: Number of synchronisations with no good times.
286 * @invalid_sync_windows: Number of sync windows with bad durations.
287 * @undersize_sync_windows: Number of corrected sync windows that are too small
288 * @oversize_sync_windows: Number of corrected sync windows that are too large
289 * @rx_no_timestamp: Number of packets received without a timestamp.
290 * @timeset: Last set of synchronisation statistics.
291 * @xmit_skb: Transmit SKB function.
293 struct efx_ptp_data
{
295 struct efx_channel
*channel
;
296 struct sk_buff_head rxq
;
297 struct sk_buff_head txq
;
298 struct workqueue_struct
*workwq
;
299 struct work_struct work
;
300 struct delayed_work cleanup_work
;
302 struct list_head rxfilters_mcast
;
303 struct list_head rxfilters_ucast
;
304 struct kernel_hwtstamp_config config
;
307 void (*ns_to_nic_time
)(s64 ns
, u32
*nic_major
, u32
*nic_minor
);
308 ktime_t (*nic_to_kernel_time
)(u32 nic_major
, u32 nic_minor
,
312 u32 sync_event_diff_min
;
313 u32 sync_event_diff_max
;
314 unsigned int sync_event_minor_shift
;
316 unsigned int min_synchronisation_ns
;
317 unsigned int capabilities
;
326 efx_qword_t evt_frags
[MAX_EVENT_FRAGS
];
329 struct efx_buffer start
;
330 struct pps_event_time host_time_pps
;
331 unsigned int adjfreq_ppb_shift
;
333 struct ptp_clock
*phc_clock
;
334 struct ptp_clock_info phc_clock_info
;
335 struct work_struct pps_work
;
336 struct workqueue_struct
*pps_workwq
;
338 efx_dword_t txbuf
[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX
)];
340 unsigned int good_syncs
;
341 unsigned int fast_syncs
;
342 unsigned int bad_syncs
;
343 unsigned int sync_timeouts
;
344 unsigned int no_time_syncs
;
345 unsigned int invalid_sync_windows
;
346 unsigned int undersize_sync_windows
;
347 unsigned int oversize_sync_windows
;
348 unsigned int rx_no_timestamp
;
349 struct efx_ptp_timeset
350 timeset
[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM
];
351 void (*xmit_skb
)(struct efx_nic
*efx
, struct sk_buff
*skb
);
354 static int efx_phc_adjfine(struct ptp_clock_info
*ptp
, long scaled_ppm
);
355 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
);
356 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
);
357 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
358 const struct timespec64
*e_ts
);
359 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
360 struct ptp_clock_request
*request
, int on
);
361 static int efx_ptp_insert_unicast_filter(struct efx_nic
*efx
,
362 struct sk_buff
*skb
);
364 bool efx_ptp_use_mac_tx_timestamps(struct efx_nic
*efx
)
366 return efx_has_cap(efx
, TX_MAC_TIMESTAMPING
);
369 /* PTP 'extra' channel is still a traffic channel, but we only create TX queues
370 * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit.
372 static bool efx_ptp_want_txqs(struct efx_channel
*channel
)
374 return efx_ptp_use_mac_tx_timestamps(channel
->efx
);
377 #define PTP_SW_STAT(ext_name, field_name) \
378 { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
379 #define PTP_MC_STAT(ext_name, mcdi_name) \
380 { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
381 static const struct efx_hw_stat_desc efx_ptp_stat_desc
[] = {
382 PTP_SW_STAT(ptp_good_syncs
, good_syncs
),
383 PTP_SW_STAT(ptp_fast_syncs
, fast_syncs
),
384 PTP_SW_STAT(ptp_bad_syncs
, bad_syncs
),
385 PTP_SW_STAT(ptp_sync_timeouts
, sync_timeouts
),
386 PTP_SW_STAT(ptp_no_time_syncs
, no_time_syncs
),
387 PTP_SW_STAT(ptp_invalid_sync_windows
, invalid_sync_windows
),
388 PTP_SW_STAT(ptp_undersize_sync_windows
, undersize_sync_windows
),
389 PTP_SW_STAT(ptp_oversize_sync_windows
, oversize_sync_windows
),
390 PTP_SW_STAT(ptp_rx_no_timestamp
, rx_no_timestamp
),
391 PTP_MC_STAT(ptp_tx_timestamp_packets
, TX
),
392 PTP_MC_STAT(ptp_rx_timestamp_packets
, RX
),
393 PTP_MC_STAT(ptp_timestamp_packets
, TS
),
394 PTP_MC_STAT(ptp_filter_matches
, FM
),
395 PTP_MC_STAT(ptp_non_filter_matches
, NFM
),
397 #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
398 static const unsigned long efx_ptp_stat_mask
[] = {
399 [0 ... BITS_TO_LONGS(PTP_STAT_COUNT
) - 1] = ~0UL,
402 size_t efx_ptp_describe_stats(struct efx_nic
*efx
, u8
**strings
)
407 return efx_nic_describe_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
408 efx_ptp_stat_mask
, strings
);
411 size_t efx_ptp_update_stats(struct efx_nic
*efx
, u64
*stats
)
413 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_STATUS_LEN
);
414 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_STATUS_LEN
);
421 /* Copy software statistics */
422 for (i
= 0; i
< PTP_STAT_COUNT
; i
++) {
423 if (efx_ptp_stat_desc
[i
].dma_width
)
425 stats
[i
] = *(unsigned int *)((char *)efx
->ptp_data
+
426 efx_ptp_stat_desc
[i
].offset
);
429 /* Fetch MC statistics. We *must* fill in all statistics or
430 * risk leaking kernel memory to userland, so if the MCDI
431 * request fails we pretend we got zeroes.
433 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_STATUS
);
434 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
435 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
436 outbuf
, sizeof(outbuf
), NULL
);
438 memset(outbuf
, 0, sizeof(outbuf
));
439 efx_nic_update_stats(efx_ptp_stat_desc
, PTP_STAT_COUNT
,
441 stats
, _MCDI_PTR(outbuf
, 0), false);
443 return PTP_STAT_COUNT
;
446 /* To convert from s27 format to ns we multiply then divide by a power of 2.
447 * For the conversion from ns to s27, the operation is also converted to a
448 * multiply and shift.
450 #define S27_TO_NS_SHIFT (27)
451 #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
452 #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
453 #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT)
455 /* For Huntington platforms NIC time is in seconds and fractions of a second
456 * where the minor register only uses 27 bits in units of 2^-27s.
458 static void efx_ptp_ns_to_s27(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
460 struct timespec64 ts
= ns_to_timespec64(ns
);
461 u32 maj
= (u32
)ts
.tv_sec
;
462 u32 min
= (u32
)(((u64
)ts
.tv_nsec
* NS_TO_S27_MULT
+
463 (1ULL << (NS_TO_S27_SHIFT
- 1))) >> NS_TO_S27_SHIFT
);
465 /* The conversion can result in the minor value exceeding the maximum.
466 * In this case, round up to the next second.
468 if (min
>= S27_MINOR_MAX
) {
469 min
-= S27_MINOR_MAX
;
477 static inline ktime_t
efx_ptp_s27_to_ktime(u32 nic_major
, u32 nic_minor
)
479 u32 ns
= (u32
)(((u64
)nic_minor
* NSEC_PER_SEC
+
480 (1ULL << (S27_TO_NS_SHIFT
- 1))) >> S27_TO_NS_SHIFT
);
481 return ktime_set(nic_major
, ns
);
484 static ktime_t
efx_ptp_s27_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
487 /* Apply the correction and deal with carry */
488 nic_minor
+= correction
;
489 if ((s32
)nic_minor
< 0) {
490 nic_minor
+= S27_MINOR_MAX
;
492 } else if (nic_minor
>= S27_MINOR_MAX
) {
493 nic_minor
-= S27_MINOR_MAX
;
497 return efx_ptp_s27_to_ktime(nic_major
, nic_minor
);
500 /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */
501 static void efx_ptp_ns_to_s_qns(s64 ns
, u32
*nic_major
, u32
*nic_minor
)
503 struct timespec64 ts
= ns_to_timespec64(ns
);
505 *nic_major
= (u32
)ts
.tv_sec
;
506 *nic_minor
= ts
.tv_nsec
* 4;
509 static ktime_t
efx_ptp_s_qns_to_ktime_correction(u32 nic_major
, u32 nic_minor
,
514 nic_minor
= DIV_ROUND_CLOSEST(nic_minor
, 4);
515 correction
= DIV_ROUND_CLOSEST(correction
, 4);
517 kt
= ktime_set(nic_major
, nic_minor
);
520 kt
= ktime_add_ns(kt
, (u64
)correction
);
522 kt
= ktime_sub_ns(kt
, (u64
)-correction
);
526 struct efx_channel
*efx_ptp_channel(struct efx_nic
*efx
)
528 return efx
->ptp_data
? efx
->ptp_data
->channel
: NULL
;
531 void efx_ptp_update_channel(struct efx_nic
*efx
, struct efx_channel
*channel
)
534 efx
->ptp_data
->channel
= channel
;
537 static u32
last_sync_timestamp_major(struct efx_nic
*efx
)
539 struct efx_channel
*channel
= efx_ptp_channel(efx
);
543 major
= channel
->sync_timestamp_major
;
547 /* The 8000 series and later can provide the time from the MAC, which is only
548 * 48 bits long and provides meta-information in the top 2 bits.
551 efx_ptp_mac_nic_to_ktime_correction(struct efx_nic
*efx
,
552 struct efx_ptp_data
*ptp
,
553 u32 nic_major
, u32 nic_minor
,
560 if (!(nic_major
& 0x80000000)) {
561 WARN_ON_ONCE(nic_major
>> 16);
563 /* Medford provides 48 bits of timestamp, so we must get the top
564 * 16 bits from the timesync event state.
566 * We only have the lower 16 bits of the time now, but we do
567 * have a full resolution timestamp at some point in past. As
568 * long as the difference between the (real) now and the sync
569 * is less than 2^15, then we can reconstruct the difference
570 * between those two numbers using only the lower 16 bits of
575 * a - b = ((a mod k) - b) mod k
577 * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know
578 * (a mod k) and b, so can calculate the delta, a - b.
581 sync_timestamp
= last_sync_timestamp_major(efx
);
583 /* Because delta is s16 this does an implicit mask down to
584 * 16 bits which is what we need, assuming
585 * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that
586 * we can deal with the (unlikely) case of sync timestamps
587 * arriving from the future.
589 delta
= nic_major
- sync_timestamp
;
591 /* Recover the fully specified time now, by applying the offset
592 * to the (fully specified) sync time.
594 nic_major
= sync_timestamp
+ delta
;
596 kt
= ptp
->nic_to_kernel_time(nic_major
, nic_minor
,
602 ktime_t
efx_ptp_nic_to_kernel_time(struct efx_tx_queue
*tx_queue
)
604 struct efx_nic
*efx
= tx_queue
->efx
;
605 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
608 if (efx_ptp_use_mac_tx_timestamps(efx
))
609 kt
= efx_ptp_mac_nic_to_ktime_correction(efx
, ptp
,
610 tx_queue
->completed_timestamp_major
,
611 tx_queue
->completed_timestamp_minor
,
612 ptp
->ts_corrections
.general_tx
);
614 kt
= ptp
->nic_to_kernel_time(
615 tx_queue
->completed_timestamp_major
,
616 tx_queue
->completed_timestamp_minor
,
617 ptp
->ts_corrections
.general_tx
);
621 /* Get PTP attributes and set up time conversions */
622 static int efx_ptp_get_attributes(struct efx_nic
*efx
)
624 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN
);
625 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
);
626 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
631 /* Get the PTP attributes. If the NIC doesn't support the operation we
632 * use the default format for compatibility with older NICs i.e.
633 * seconds and nanoseconds.
635 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_GET_ATTRIBUTES
);
636 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
637 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
638 outbuf
, sizeof(outbuf
), &out_len
);
640 fmt
= MCDI_DWORD(outbuf
, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT
);
641 } else if (rc
== -EINVAL
) {
642 fmt
= MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS
;
643 } else if (rc
== -EPERM
) {
644 pci_info(efx
->pci_dev
, "no PTP support\n");
647 efx_mcdi_display_error(efx
, MC_CMD_PTP
, sizeof(inbuf
),
648 outbuf
, sizeof(outbuf
), rc
);
653 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION
:
654 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s27
;
655 ptp
->nic_to_kernel_time
= efx_ptp_s27_to_ktime_correction
;
656 ptp
->nic_time
.minor_max
= 1 << 27;
657 ptp
->nic_time
.sync_event_minor_shift
= 19;
659 case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS
:
660 ptp
->ns_to_nic_time
= efx_ptp_ns_to_s_qns
;
661 ptp
->nic_to_kernel_time
= efx_ptp_s_qns_to_ktime_correction
;
662 ptp
->nic_time
.minor_max
= 4000000000UL;
663 ptp
->nic_time
.sync_event_minor_shift
= 24;
669 /* Precalculate acceptable difference between the minor time in the
670 * packet prefix and the last MCDI time sync event. We expect the
671 * packet prefix timestamp to be after of sync event by up to one
672 * sync event interval (0.25s) but we allow it to exceed this by a
673 * fuzz factor of (0.1s)
675 ptp
->nic_time
.sync_event_diff_min
= ptp
->nic_time
.minor_max
676 - (ptp
->nic_time
.minor_max
/ 10);
677 ptp
->nic_time
.sync_event_diff_max
= (ptp
->nic_time
.minor_max
/ 4)
678 + (ptp
->nic_time
.minor_max
/ 10);
680 /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older
681 * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return
682 * a value to use for the minimum acceptable corrected synchronization
683 * window and may return further capabilities.
684 * If we have the extra information store it. For older firmware that
685 * does not implement the extended command use the default value.
688 out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST
)
689 ptp
->min_synchronisation_ns
=
691 PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN
);
693 ptp
->min_synchronisation_ns
= DEFAULT_MIN_SYNCHRONISATION_NS
;
696 out_len
>= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN
)
697 ptp
->capabilities
= MCDI_DWORD(outbuf
,
698 PTP_OUT_GET_ATTRIBUTES_CAPABILITIES
);
700 ptp
->capabilities
= 0;
702 /* Set up the shift for conversion between frequency
703 * adjustments in parts-per-billion and the fixed-point
704 * fractional ns format that the adapter uses.
706 if (ptp
->capabilities
& (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN
))
707 ptp
->adjfreq_ppb_shift
= PPB_SHIFT_FP44
;
709 ptp
->adjfreq_ppb_shift
= PPB_SHIFT_FP40
;
714 /* Get PTP timestamp corrections */
715 static int efx_ptp_get_timestamp_corrections(struct efx_nic
*efx
)
717 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN
);
718 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN
);
722 /* Get the timestamp corrections from the NIC. If this operation is
723 * not supported (older NICs) then no correction is required.
725 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
,
726 MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS
);
727 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
729 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
730 outbuf
, sizeof(outbuf
), &out_len
);
732 efx
->ptp_data
->ts_corrections
.ptp_tx
= MCDI_DWORD(outbuf
,
733 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT
);
734 efx
->ptp_data
->ts_corrections
.ptp_rx
= MCDI_DWORD(outbuf
,
735 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE
);
736 efx
->ptp_data
->ts_corrections
.pps_out
= MCDI_DWORD(outbuf
,
737 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT
);
738 efx
->ptp_data
->ts_corrections
.pps_in
= MCDI_DWORD(outbuf
,
739 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN
);
741 if (out_len
>= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN
) {
742 efx
->ptp_data
->ts_corrections
.general_tx
= MCDI_DWORD(
744 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX
);
745 efx
->ptp_data
->ts_corrections
.general_rx
= MCDI_DWORD(
747 PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX
);
749 efx
->ptp_data
->ts_corrections
.general_tx
=
750 efx
->ptp_data
->ts_corrections
.ptp_tx
;
751 efx
->ptp_data
->ts_corrections
.general_rx
=
752 efx
->ptp_data
->ts_corrections
.ptp_rx
;
754 } else if (rc
== -EINVAL
) {
755 efx
->ptp_data
->ts_corrections
.ptp_tx
= 0;
756 efx
->ptp_data
->ts_corrections
.ptp_rx
= 0;
757 efx
->ptp_data
->ts_corrections
.pps_out
= 0;
758 efx
->ptp_data
->ts_corrections
.pps_in
= 0;
759 efx
->ptp_data
->ts_corrections
.general_tx
= 0;
760 efx
->ptp_data
->ts_corrections
.general_rx
= 0;
762 efx_mcdi_display_error(efx
, MC_CMD_PTP
, sizeof(inbuf
), outbuf
,
770 /* Enable MCDI PTP support. */
771 static int efx_ptp_enable(struct efx_nic
*efx
)
773 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ENABLE_LEN
);
774 MCDI_DECLARE_BUF_ERR(outbuf
);
777 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ENABLE
);
778 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
779 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_QUEUE
,
780 efx
->ptp_data
->channel
?
781 efx
->ptp_data
->channel
->channel
: 0);
782 MCDI_SET_DWORD(inbuf
, PTP_IN_ENABLE_MODE
, efx
->ptp_data
->mode
);
784 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
785 outbuf
, sizeof(outbuf
), NULL
);
786 rc
= (rc
== -EALREADY
) ? 0 : rc
;
788 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
789 MC_CMD_PTP_IN_ENABLE_LEN
,
790 outbuf
, sizeof(outbuf
), rc
);
794 /* Disable MCDI PTP support.
796 * Note that this function should never rely on the presence of ptp_data -
797 * may be called before that exists.
799 static int efx_ptp_disable(struct efx_nic
*efx
)
801 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_DISABLE_LEN
);
802 MCDI_DECLARE_BUF_ERR(outbuf
);
805 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_DISABLE
);
806 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
807 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
808 outbuf
, sizeof(outbuf
), NULL
);
809 rc
= (rc
== -EALREADY
) ? 0 : rc
;
810 /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
811 * should only have been called during probe.
813 if (rc
== -ENOSYS
|| rc
== -EPERM
)
814 pci_info(efx
->pci_dev
, "no PTP support\n");
816 efx_mcdi_display_error(efx
, MC_CMD_PTP
,
817 MC_CMD_PTP_IN_DISABLE_LEN
,
818 outbuf
, sizeof(outbuf
), rc
);
822 static void efx_ptp_deliver_rx_queue(struct sk_buff_head
*q
)
826 while ((skb
= skb_dequeue(q
))) {
828 netif_receive_skb(skb
);
833 static void efx_ptp_handle_no_channel(struct efx_nic
*efx
)
835 netif_err(efx
, drv
, efx
->net_dev
,
836 "ERROR: PTP requires MSI-X and 1 additional interrupt"
837 "vector. PTP disabled\n");
840 /* Repeatedly send the host time to the MC which will capture the hardware
843 static void efx_ptp_send_times(struct efx_nic
*efx
,
844 struct pps_event_time
*last_time
)
846 struct pps_event_time now
;
847 struct timespec64 limit
;
848 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
849 int *mc_running
= ptp
->start
.addr
;
853 timespec64_add_ns(&limit
, SYNCHRONISE_PERIOD_NS
);
855 /* Write host time for specified period or until MC is done */
856 while ((timespec64_compare(&now
.ts_real
, &limit
) < 0) &&
857 READ_ONCE(*mc_running
)) {
858 struct timespec64 update_time
;
859 unsigned int host_time
;
861 /* Don't update continuously to avoid saturating the PCIe bus */
862 update_time
= now
.ts_real
;
863 timespec64_add_ns(&update_time
, SYNCHRONISATION_GRANULARITY_NS
);
866 } while ((timespec64_compare(&now
.ts_real
, &update_time
) < 0) &&
867 READ_ONCE(*mc_running
));
869 /* Synchronise NIC with single word of time only */
870 host_time
= (now
.ts_real
.tv_sec
<< MC_NANOSECOND_BITS
|
871 now
.ts_real
.tv_nsec
);
872 /* Update host time in NIC memory */
873 efx
->type
->ptp_write_host_time(efx
, host_time
);
878 /* Read a timeset from the MC's results and partial process. */
879 static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data
),
880 struct efx_ptp_timeset
*timeset
)
882 unsigned start_ns
, end_ns
;
884 timeset
->host_start
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTSTART
);
885 timeset
->major
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MAJOR
);
886 timeset
->minor
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_MINOR
);
887 timeset
->host_end
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_HOSTEND
);
888 timeset
->wait
= MCDI_DWORD(data
, PTP_OUT_SYNCHRONIZE_WAITNS
);
891 start_ns
= timeset
->host_start
& MC_NANOSECOND_MASK
;
892 end_ns
= timeset
->host_end
& MC_NANOSECOND_MASK
;
893 /* Allow for rollover */
894 if (end_ns
< start_ns
)
895 end_ns
+= NSEC_PER_SEC
;
896 /* Determine duration of operation */
897 timeset
->window
= end_ns
- start_ns
;
900 /* Process times received from MC.
902 * Extract times from returned results, and establish the minimum value
903 * seen. The minimum value represents the "best" possible time and events
904 * too much greater than this are rejected - the machine is, perhaps, too
905 * busy. A number of readings are taken so that, hopefully, at least one good
906 * synchronisation will be seen in the results.
909 efx_ptp_process_times(struct efx_nic
*efx
, MCDI_DECLARE_STRUCT_PTR(synch_buf
),
910 size_t response_length
,
911 const struct pps_event_time
*last_time
)
913 unsigned number_readings
=
914 MCDI_VAR_ARRAY_LEN(response_length
,
915 PTP_OUT_SYNCHRONIZE_TIMESET
);
918 unsigned last_good
= 0;
919 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
922 struct timespec64 delta
;
925 if (number_readings
== 0)
928 /* Read the set of results and find the last good host-MC
929 * synchronization result. The MC times when it finishes reading the
930 * host time so the corrected window time should be fairly constant
931 * for a given platform. Increment stats for any results that appear
934 for (i
= 0; i
< number_readings
; i
++) {
935 s32 window
, corrected
;
936 struct timespec64 wait
;
938 efx_ptp_read_timeset(
939 MCDI_ARRAY_STRUCT_PTR(synch_buf
,
940 PTP_OUT_SYNCHRONIZE_TIMESET
, i
),
943 wait
= ktime_to_timespec64(
944 ptp
->nic_to_kernel_time(0, ptp
->timeset
[i
].wait
, 0));
945 window
= ptp
->timeset
[i
].window
;
946 corrected
= window
- wait
.tv_nsec
;
948 /* We expect the uncorrected synchronization window to be at
949 * least as large as the interval between host start and end
950 * times. If it is smaller than this then this is mostly likely
951 * to be a consequence of the host's time being adjusted.
952 * Check that the corrected sync window is in a reasonable
953 * range. If it is out of range it is likely to be because an
954 * interrupt or other delay occurred between reading the system
955 * time and writing it to MC memory.
957 if (window
< SYNCHRONISATION_GRANULARITY_NS
) {
958 ++ptp
->invalid_sync_windows
;
959 } else if (corrected
>= MAX_SYNCHRONISATION_NS
) {
960 ++ptp
->oversize_sync_windows
;
961 } else if (corrected
< ptp
->min_synchronisation_ns
) {
962 ++ptp
->undersize_sync_windows
;
970 netif_warn(efx
, drv
, efx
->net_dev
,
971 "PTP no suitable synchronisations\n");
975 /* Calculate delay from last good sync (host time) to last_time.
976 * It is possible that the seconds rolled over between taking
977 * the start reading and the last value written by the host. The
978 * timescales are such that a gap of more than one second is never
979 * expected. delta is *not* normalised.
981 start_sec
= ptp
->timeset
[last_good
].host_start
>> MC_NANOSECOND_BITS
;
982 last_sec
= last_time
->ts_real
.tv_sec
& MC_SECOND_MASK
;
983 if (start_sec
!= last_sec
&&
984 ((start_sec
+ 1) & MC_SECOND_MASK
) != last_sec
) {
985 netif_warn(efx
, hw
, efx
->net_dev
,
986 "PTP bad synchronisation seconds\n");
989 delta
.tv_sec
= (last_sec
- start_sec
) & 1;
991 last_time
->ts_real
.tv_nsec
-
992 (ptp
->timeset
[last_good
].host_start
& MC_NANOSECOND_MASK
);
994 /* Convert the NIC time at last good sync into kernel time.
995 * No correction is required - this time is the output of a
998 mc_time
= ptp
->nic_to_kernel_time(ptp
->timeset
[last_good
].major
,
999 ptp
->timeset
[last_good
].minor
, 0);
1001 /* Calculate delay from NIC top of second to last_time */
1002 delta
.tv_nsec
+= ktime_to_timespec64(mc_time
).tv_nsec
;
1004 /* Set PPS timestamp to match NIC top of second */
1005 ptp
->host_time_pps
= *last_time
;
1006 pps_sub_ts(&ptp
->host_time_pps
, delta
);
1011 /* Synchronize times between the host and the MC */
1012 static int efx_ptp_synchronize(struct efx_nic
*efx
, unsigned int num_readings
)
1014 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1015 MCDI_DECLARE_BUF(synch_buf
, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX
);
1016 size_t response_length
;
1018 unsigned long timeout
;
1019 struct pps_event_time last_time
= {};
1020 unsigned int loops
= 0;
1021 int *start
= ptp
->start
.addr
;
1023 MCDI_SET_DWORD(synch_buf
, PTP_IN_OP
, MC_CMD_PTP_OP_SYNCHRONIZE
);
1024 MCDI_SET_DWORD(synch_buf
, PTP_IN_PERIPH_ID
, 0);
1025 MCDI_SET_DWORD(synch_buf
, PTP_IN_SYNCHRONIZE_NUMTIMESETS
,
1027 MCDI_SET_QWORD(synch_buf
, PTP_IN_SYNCHRONIZE_START_ADDR
,
1028 ptp
->start
.dma_addr
);
1030 /* Clear flag that signals MC ready */
1031 WRITE_ONCE(*start
, 0);
1032 rc
= efx_mcdi_rpc_start(efx
, MC_CMD_PTP
, synch_buf
,
1033 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
);
1034 EFX_WARN_ON_ONCE_PARANOID(rc
);
1036 /* Wait for start from MCDI (or timeout) */
1037 timeout
= jiffies
+ msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS
);
1038 while (!READ_ONCE(*start
) && (time_before(jiffies
, timeout
))) {
1039 udelay(20); /* Usually start MCDI execution quickly */
1045 if (!time_before(jiffies
, timeout
))
1046 ++ptp
->sync_timeouts
;
1048 if (READ_ONCE(*start
))
1049 efx_ptp_send_times(efx
, &last_time
);
1051 /* Collect results */
1052 rc
= efx_mcdi_rpc_finish(efx
, MC_CMD_PTP
,
1053 MC_CMD_PTP_IN_SYNCHRONIZE_LEN
,
1054 synch_buf
, sizeof(synch_buf
),
1057 rc
= efx_ptp_process_times(efx
, synch_buf
, response_length
,
1062 ++ptp
->no_time_syncs
;
1065 /* Increment the bad syncs counter if the synchronize fails, whatever
1074 /* Transmit a PTP packet via the dedicated hardware timestamped queue. */
1075 static void efx_ptp_xmit_skb_queue(struct efx_nic
*efx
, struct sk_buff
*skb
)
1077 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
1078 u8 type
= efx_tx_csum_type_skb(skb
);
1079 struct efx_tx_queue
*tx_queue
;
1081 tx_queue
= efx_channel_get_tx_queue(ptp_data
->channel
, type
);
1082 if (tx_queue
&& tx_queue
->timestamping
) {
1085 /* This code invokes normal driver TX code which is always
1086 * protected from softirqs when called from generic TX code,
1087 * which in turn disables preemption. Look at __dev_queue_xmit
1088 * which uses rcu_read_lock_bh disabling preemption for RCU
1089 * plus disabling softirqs. We do not need RCU reader
1092 * Although it is theoretically safe for current PTP TX/RX code
1093 * running without disabling softirqs, there are three good
1094 * reasond for doing so:
1096 * 1) The code invoked is mainly implemented for non-PTP
1097 * packets and it is always executed with softirqs
1099 * 2) This being a single PTP packet, better to not
1100 * interrupt its processing by softirqs which can lead
1101 * to high latencies.
1102 * 3) netdev_xmit_more checks preemption is disabled and
1103 * triggers a BUG_ON if not.
1106 efx_enqueue_skb(tx_queue
, skb
);
1109 /* We need to add the filters after enqueuing the packet.
1110 * Otherwise, there's high latency in sending back the
1111 * timestamp, causing ptp4l timeouts
1113 efx_ptp_insert_unicast_filter(efx
, skb
);
1114 dev_consume_skb_any(skb
);
1116 WARN_ONCE(1, "PTP channel has no timestamped tx queue\n");
1117 dev_kfree_skb_any(skb
);
1121 /* Transmit a PTP packet, via the MCDI interface, to the wire. */
1122 static void efx_ptp_xmit_skb_mc(struct efx_nic
*efx
, struct sk_buff
*skb
)
1124 MCDI_DECLARE_BUF(txtime
, MC_CMD_PTP_OUT_TRANSMIT_LEN
);
1125 struct efx_ptp_data
*ptp_data
= efx
->ptp_data
;
1126 struct skb_shared_hwtstamps timestamps
;
1130 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_TRANSMIT
);
1131 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_PERIPH_ID
, 0);
1132 MCDI_SET_DWORD(ptp_data
->txbuf
, PTP_IN_TRANSMIT_LENGTH
, skb
->len
);
1133 if (skb_shinfo(skb
)->nr_frags
!= 0) {
1134 rc
= skb_linearize(skb
);
1139 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1140 rc
= skb_checksum_help(skb
);
1144 skb_copy_from_linear_data(skb
,
1145 MCDI_PTR(ptp_data
->txbuf
,
1146 PTP_IN_TRANSMIT_PACKET
),
1148 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
,
1149 ptp_data
->txbuf
, MC_CMD_PTP_IN_TRANSMIT_LEN(skb
->len
),
1150 txtime
, sizeof(txtime
), &len
);
1154 memset(×tamps
, 0, sizeof(timestamps
));
1155 timestamps
.hwtstamp
= ptp_data
->nic_to_kernel_time(
1156 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MAJOR
),
1157 MCDI_DWORD(txtime
, PTP_OUT_TRANSMIT_MINOR
),
1158 ptp_data
->ts_corrections
.ptp_tx
);
1160 skb_tstamp_tx(skb
, ×tamps
);
1162 /* Add the filters after sending back the timestamp to avoid delaying it
1163 * or ptp4l may timeout.
1165 efx_ptp_insert_unicast_filter(efx
, skb
);
1168 dev_kfree_skb_any(skb
);
1173 /* Process any queued receive events and corresponding packets
1175 * q is returned with all the packets that are ready for delivery.
1177 static void efx_ptp_process_events(struct efx_nic
*efx
, struct sk_buff_head
*q
)
1179 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1180 struct sk_buff
*skb
;
1182 while ((skb
= skb_dequeue(&ptp
->rxq
))) {
1183 struct efx_ptp_match
*match
;
1185 match
= (struct efx_ptp_match
*)skb
->cb
;
1186 if (match
->state
== PTP_PACKET_STATE_MATCH_UNWANTED
) {
1187 __skb_queue_tail(q
, skb
);
1188 } else if (time_after(jiffies
, match
->expiry
)) {
1189 match
->state
= PTP_PACKET_STATE_TIMED_OUT
;
1190 ++ptp
->rx_no_timestamp
;
1191 __skb_queue_tail(q
, skb
);
1193 /* Replace unprocessed entry and stop */
1194 skb_queue_head(&ptp
->rxq
, skb
);
1200 /* Complete processing of a received packet */
1201 static inline void efx_ptp_process_rx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1204 netif_receive_skb(skb
);
1208 static struct efx_ptp_rxfilter
*
1209 efx_ptp_find_filter(struct list_head
*filter_list
, struct efx_filter_spec
*spec
)
1211 struct efx_ptp_rxfilter
*rxfilter
;
1213 list_for_each_entry(rxfilter
, filter_list
, list
) {
1214 if (rxfilter
->ether_type
== spec
->ether_type
&&
1215 rxfilter
->loc_port
== spec
->loc_port
&&
1216 !memcmp(rxfilter
->loc_host
, spec
->loc_host
, sizeof(spec
->loc_host
)))
1223 static void efx_ptp_remove_one_filter(struct efx_nic
*efx
,
1224 struct efx_ptp_rxfilter
*rxfilter
)
1226 efx_filter_remove_id_safe(efx
, EFX_FILTER_PRI_REQUIRED
,
1228 list_del(&rxfilter
->list
);
1232 static void efx_ptp_remove_filters(struct efx_nic
*efx
,
1233 struct list_head
*filter_list
)
1235 struct efx_ptp_rxfilter
*rxfilter
, *tmp
;
1237 list_for_each_entry_safe(rxfilter
, tmp
, filter_list
, list
)
1238 efx_ptp_remove_one_filter(efx
, rxfilter
);
1241 static void efx_ptp_init_filter(struct efx_nic
*efx
,
1242 struct efx_filter_spec
*rxfilter
)
1244 struct efx_channel
*channel
= efx
->ptp_data
->channel
;
1245 struct efx_rx_queue
*queue
= efx_channel_get_rx_queue(channel
);
1247 efx_filter_init_rx(rxfilter
, EFX_FILTER_PRI_REQUIRED
, 0,
1248 efx_rx_queue_index(queue
));
1251 static int efx_ptp_insert_filter(struct efx_nic
*efx
,
1252 struct list_head
*filter_list
,
1253 struct efx_filter_spec
*spec
,
1254 unsigned long expiry
)
1256 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1257 struct efx_ptp_rxfilter
*rxfilter
;
1260 rxfilter
= efx_ptp_find_filter(filter_list
, spec
);
1262 rxfilter
->expiry
= expiry
;
1266 rxfilter
= kzalloc(sizeof(*rxfilter
), GFP_KERNEL
);
1270 rc
= efx_filter_insert_filter(efx
, spec
, true);
1274 rxfilter
->handle
= rc
;
1275 rxfilter
->ether_type
= spec
->ether_type
;
1276 rxfilter
->loc_port
= spec
->loc_port
;
1277 memcpy(rxfilter
->loc_host
, spec
->loc_host
, sizeof(spec
->loc_host
));
1278 rxfilter
->expiry
= expiry
;
1279 list_add(&rxfilter
->list
, filter_list
);
1281 queue_delayed_work(ptp
->workwq
, &ptp
->cleanup_work
,
1282 UCAST_FILTER_EXPIRY_JIFFIES
+ 1);
1291 static int efx_ptp_insert_ipv4_filter(struct efx_nic
*efx
,
1292 struct list_head
*filter_list
,
1293 __be32 addr
, u16 port
,
1294 unsigned long expiry
)
1296 struct efx_filter_spec spec
;
1298 efx_ptp_init_filter(efx
, &spec
);
1299 efx_filter_set_ipv4_local(&spec
, IPPROTO_UDP
, addr
, htons(port
));
1300 return efx_ptp_insert_filter(efx
, filter_list
, &spec
, expiry
);
1303 static int efx_ptp_insert_ipv6_filter(struct efx_nic
*efx
,
1304 struct list_head
*filter_list
,
1305 const struct in6_addr
*addr
, u16 port
,
1306 unsigned long expiry
)
1308 struct efx_filter_spec spec
;
1310 efx_ptp_init_filter(efx
, &spec
);
1311 efx_filter_set_ipv6_local(&spec
, IPPROTO_UDP
, addr
, htons(port
));
1312 return efx_ptp_insert_filter(efx
, filter_list
, &spec
, expiry
);
1315 static int efx_ptp_insert_eth_multicast_filter(struct efx_nic
*efx
)
1317 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1318 struct efx_filter_spec spec
;
1320 efx_ptp_init_filter(efx
, &spec
);
1321 efx_filter_set_eth_local(&spec
, EFX_FILTER_VID_UNSPEC
, ptp_addr_ether
);
1322 spec
.match_flags
|= EFX_FILTER_MATCH_ETHER_TYPE
;
1323 spec
.ether_type
= htons(ETH_P_1588
);
1324 return efx_ptp_insert_filter(efx
, &ptp
->rxfilters_mcast
, &spec
, 0);
1327 static int efx_ptp_insert_multicast_filters(struct efx_nic
*efx
)
1329 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1332 if (!ptp
->channel
|| !list_empty(&ptp
->rxfilters_mcast
))
1335 /* Must filter on both event and general ports to ensure
1336 * that there is no packet re-ordering.
1338 rc
= efx_ptp_insert_ipv4_filter(efx
, &ptp
->rxfilters_mcast
,
1339 htonl(PTP_ADDR_IPV4
), PTP_EVENT_PORT
,
1344 rc
= efx_ptp_insert_ipv4_filter(efx
, &ptp
->rxfilters_mcast
,
1345 htonl(PTP_ADDR_IPV4
), PTP_GENERAL_PORT
,
1350 /* if the NIC supports hw timestamps by the MAC, we can support
1351 * PTP over IPv6 and Ethernet
1353 if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1354 rc
= efx_ptp_insert_ipv6_filter(efx
, &ptp
->rxfilters_mcast
,
1355 &ptp_addr_ipv6
, PTP_EVENT_PORT
, 0);
1359 rc
= efx_ptp_insert_ipv6_filter(efx
, &ptp
->rxfilters_mcast
,
1360 &ptp_addr_ipv6
, PTP_GENERAL_PORT
, 0);
1364 rc
= efx_ptp_insert_eth_multicast_filter(efx
);
1366 /* Not all firmware variants support this filter */
1367 if (rc
< 0 && rc
!= -EPROTONOSUPPORT
)
1374 efx_ptp_remove_filters(efx
, &ptp
->rxfilters_mcast
);
1378 static bool efx_ptp_valid_unicast_event_pkt(struct sk_buff
*skb
)
1380 if (skb
->protocol
== htons(ETH_P_IP
)) {
1381 return ip_hdr(skb
)->daddr
!= htonl(PTP_ADDR_IPV4
) &&
1382 ip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
1383 udp_hdr(skb
)->source
== htons(PTP_EVENT_PORT
);
1384 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
1385 return !ipv6_addr_equal(&ipv6_hdr(skb
)->daddr
, &ptp_addr_ipv6
) &&
1386 ipv6_hdr(skb
)->nexthdr
== IPPROTO_UDP
&&
1387 udp_hdr(skb
)->source
== htons(PTP_EVENT_PORT
);
1392 static int efx_ptp_insert_unicast_filter(struct efx_nic
*efx
,
1393 struct sk_buff
*skb
)
1395 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1396 unsigned long expiry
;
1399 if (!efx_ptp_valid_unicast_event_pkt(skb
))
1402 expiry
= jiffies
+ UCAST_FILTER_EXPIRY_JIFFIES
;
1404 if (skb
->protocol
== htons(ETH_P_IP
)) {
1405 __be32 addr
= ip_hdr(skb
)->saddr
;
1407 rc
= efx_ptp_insert_ipv4_filter(efx
, &ptp
->rxfilters_ucast
,
1408 addr
, PTP_EVENT_PORT
, expiry
);
1412 rc
= efx_ptp_insert_ipv4_filter(efx
, &ptp
->rxfilters_ucast
,
1413 addr
, PTP_GENERAL_PORT
, expiry
);
1414 } else if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1415 /* IPv6 PTP only supported by devices with MAC hw timestamp */
1416 struct in6_addr
*addr
= &ipv6_hdr(skb
)->saddr
;
1418 rc
= efx_ptp_insert_ipv6_filter(efx
, &ptp
->rxfilters_ucast
,
1419 addr
, PTP_EVENT_PORT
, expiry
);
1423 rc
= efx_ptp_insert_ipv6_filter(efx
, &ptp
->rxfilters_ucast
,
1424 addr
, PTP_GENERAL_PORT
, expiry
);
1433 static int efx_ptp_start(struct efx_nic
*efx
)
1435 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1438 ptp
->reset_required
= false;
1440 rc
= efx_ptp_insert_multicast_filters(efx
);
1444 rc
= efx_ptp_enable(efx
);
1448 ptp
->evt_frag_idx
= 0;
1449 ptp
->current_adjfreq
= 0;
1454 efx_ptp_remove_filters(efx
, &ptp
->rxfilters_mcast
);
1458 static int efx_ptp_stop(struct efx_nic
*efx
)
1460 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1466 rc
= efx_ptp_disable(efx
);
1468 efx_ptp_remove_filters(efx
, &ptp
->rxfilters_mcast
);
1469 efx_ptp_remove_filters(efx
, &ptp
->rxfilters_ucast
);
1471 /* Make sure RX packets are really delivered */
1472 efx_ptp_deliver_rx_queue(&efx
->ptp_data
->rxq
);
1473 skb_queue_purge(&efx
->ptp_data
->txq
);
1478 static int efx_ptp_restart(struct efx_nic
*efx
)
1480 if (efx
->ptp_data
&& efx
->ptp_data
->enabled
)
1481 return efx_ptp_start(efx
);
1485 static void efx_ptp_pps_worker(struct work_struct
*work
)
1487 struct efx_ptp_data
*ptp
=
1488 container_of(work
, struct efx_ptp_data
, pps_work
);
1489 struct efx_nic
*efx
= ptp
->efx
;
1490 struct ptp_clock_event ptp_evt
;
1492 if (efx_ptp_synchronize(efx
, PTP_SYNC_ATTEMPTS
))
1495 ptp_evt
.type
= PTP_CLOCK_PPSUSR
;
1496 ptp_evt
.pps_times
= ptp
->host_time_pps
;
1497 ptp_clock_event(ptp
->phc_clock
, &ptp_evt
);
1500 static void efx_ptp_worker(struct work_struct
*work
)
1502 struct efx_ptp_data
*ptp_data
=
1503 container_of(work
, struct efx_ptp_data
, work
);
1504 struct efx_nic
*efx
= ptp_data
->efx
;
1505 struct sk_buff
*skb
;
1506 struct sk_buff_head tempq
;
1508 if (ptp_data
->reset_required
) {
1514 __skb_queue_head_init(&tempq
);
1515 efx_ptp_process_events(efx
, &tempq
);
1517 while ((skb
= skb_dequeue(&ptp_data
->txq
)))
1518 ptp_data
->xmit_skb(efx
, skb
);
1520 while ((skb
= __skb_dequeue(&tempq
)))
1521 efx_ptp_process_rx(efx
, skb
);
1524 static void efx_ptp_cleanup_worker(struct work_struct
*work
)
1526 struct efx_ptp_data
*ptp
=
1527 container_of(work
, struct efx_ptp_data
, cleanup_work
.work
);
1528 struct efx_ptp_rxfilter
*rxfilter
, *tmp
;
1530 list_for_each_entry_safe(rxfilter
, tmp
, &ptp
->rxfilters_ucast
, list
) {
1531 if (time_is_before_jiffies(rxfilter
->expiry
))
1532 efx_ptp_remove_one_filter(ptp
->efx
, rxfilter
);
1535 if (!list_empty(&ptp
->rxfilters_ucast
)) {
1536 queue_delayed_work(ptp
->workwq
, &ptp
->cleanup_work
,
1537 UCAST_FILTER_EXPIRY_JIFFIES
+ 1);
1541 static const struct ptp_clock_info efx_phc_clock_info
= {
1542 .owner
= THIS_MODULE
,
1550 .adjfine
= efx_phc_adjfine
,
1551 .adjtime
= efx_phc_adjtime
,
1552 .gettime64
= efx_phc_gettime
,
1553 .settime64
= efx_phc_settime
,
1554 .enable
= efx_phc_enable
,
1557 /* Initialise PTP state. */
1558 int efx_ptp_probe(struct efx_nic
*efx
, struct efx_channel
*channel
)
1560 struct efx_ptp_data
*ptp
;
1563 if (efx
->ptp_data
) {
1564 efx
->ptp_data
->channel
= channel
;
1568 ptp
= kzalloc(sizeof(struct efx_ptp_data
), GFP_KERNEL
);
1569 efx
->ptp_data
= ptp
;
1574 ptp
->channel
= channel
;
1576 rc
= efx_nic_alloc_buffer(efx
, &ptp
->start
, sizeof(int), GFP_KERNEL
);
1580 skb_queue_head_init(&ptp
->rxq
);
1581 skb_queue_head_init(&ptp
->txq
);
1582 ptp
->workwq
= create_singlethread_workqueue("sfc_ptp");
1588 if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1589 ptp
->xmit_skb
= efx_ptp_xmit_skb_queue
;
1590 /* Request sync events on this channel. */
1591 channel
->sync_events_state
= SYNC_EVENTS_QUIESCENT
;
1593 ptp
->xmit_skb
= efx_ptp_xmit_skb_mc
;
1596 INIT_WORK(&ptp
->work
, efx_ptp_worker
);
1597 INIT_DELAYED_WORK(&ptp
->cleanup_work
, efx_ptp_cleanup_worker
);
1598 ptp
->config
.flags
= 0;
1599 ptp
->config
.tx_type
= HWTSTAMP_TX_OFF
;
1600 ptp
->config
.rx_filter
= HWTSTAMP_FILTER_NONE
;
1601 INIT_LIST_HEAD(&ptp
->rxfilters_mcast
);
1602 INIT_LIST_HEAD(&ptp
->rxfilters_ucast
);
1604 /* Get the NIC PTP attributes and set up time conversions */
1605 rc
= efx_ptp_get_attributes(efx
);
1609 /* Get the timestamp corrections */
1610 rc
= efx_ptp_get_timestamp_corrections(efx
);
1614 if (efx
->mcdi
->fn_flags
&
1615 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
)) {
1616 ptp
->phc_clock_info
= efx_phc_clock_info
;
1617 ptp
->phc_clock
= ptp_clock_register(&ptp
->phc_clock_info
,
1618 &efx
->pci_dev
->dev
);
1619 if (IS_ERR(ptp
->phc_clock
)) {
1620 rc
= PTR_ERR(ptp
->phc_clock
);
1622 } else if (ptp
->phc_clock
) {
1623 INIT_WORK(&ptp
->pps_work
, efx_ptp_pps_worker
);
1624 ptp
->pps_workwq
= create_singlethread_workqueue("sfc_pps");
1625 if (!ptp
->pps_workwq
) {
1631 ptp
->nic_ts_enabled
= false;
1635 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1638 destroy_workqueue(efx
->ptp_data
->workwq
);
1641 efx_nic_free_buffer(efx
, &ptp
->start
);
1644 kfree(efx
->ptp_data
);
1645 efx
->ptp_data
= NULL
;
1650 /* Initialise PTP channel.
1652 * Setting core_index to zero causes the queue to be initialised and doesn't
1653 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1655 static int efx_ptp_probe_channel(struct efx_channel
*channel
)
1657 struct efx_nic
*efx
= channel
->efx
;
1660 channel
->irq_moderation_us
= 0;
1661 channel
->rx_queue
.core_index
= 0;
1663 rc
= efx_ptp_probe(efx
, channel
);
1664 /* Failure to probe PTP is not fatal; this channel will just not be
1665 * used for anything.
1666 * In the case of EPERM, efx_ptp_probe will print its own message (in
1667 * efx_ptp_get_attributes()), so we don't need to.
1669 if (rc
&& rc
!= -EPERM
)
1670 netif_warn(efx
, drv
, efx
->net_dev
,
1671 "Failed to probe PTP, rc=%d\n", rc
);
1675 void efx_ptp_remove(struct efx_nic
*efx
)
1680 (void)efx_ptp_disable(efx
);
1682 cancel_work_sync(&efx
->ptp_data
->work
);
1683 cancel_delayed_work_sync(&efx
->ptp_data
->cleanup_work
);
1684 if (efx
->ptp_data
->pps_workwq
)
1685 cancel_work_sync(&efx
->ptp_data
->pps_work
);
1687 skb_queue_purge(&efx
->ptp_data
->rxq
);
1688 skb_queue_purge(&efx
->ptp_data
->txq
);
1690 if (efx
->ptp_data
->phc_clock
) {
1691 destroy_workqueue(efx
->ptp_data
->pps_workwq
);
1692 ptp_clock_unregister(efx
->ptp_data
->phc_clock
);
1695 destroy_workqueue(efx
->ptp_data
->workwq
);
1697 efx_nic_free_buffer(efx
, &efx
->ptp_data
->start
);
1698 kfree(efx
->ptp_data
);
1699 efx
->ptp_data
= NULL
;
1702 static void efx_ptp_remove_channel(struct efx_channel
*channel
)
1704 efx_ptp_remove(channel
->efx
);
1707 static void efx_ptp_get_channel_name(struct efx_channel
*channel
,
1708 char *buf
, size_t len
)
1710 snprintf(buf
, len
, "%s-ptp", channel
->efx
->name
);
1713 /* Determine whether this packet should be processed by the PTP module
1714 * or transmitted conventionally.
1716 bool efx_ptp_is_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1718 return efx
->ptp_data
&&
1719 efx
->ptp_data
->enabled
&&
1720 skb
->len
>= PTP_MIN_LENGTH
&&
1721 skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
&&
1722 likely(skb
->protocol
== htons(ETH_P_IP
)) &&
1723 skb_transport_header_was_set(skb
) &&
1724 skb_network_header_len(skb
) >= sizeof(struct iphdr
) &&
1725 ip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
1727 skb_transport_offset(skb
) + sizeof(struct udphdr
) &&
1728 udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
);
1731 /* Receive a PTP packet. Packets are queued until the arrival of
1732 * the receive timestamp from the MC - this will probably occur after the
1733 * packet arrival because of the processing in the MC.
1735 static bool efx_ptp_rx(struct efx_channel
*channel
, struct sk_buff
*skb
)
1737 struct efx_nic
*efx
= channel
->efx
;
1738 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1739 struct efx_ptp_match
*match
= (struct efx_ptp_match
*)skb
->cb
;
1740 unsigned int version
;
1743 match
->expiry
= jiffies
+ msecs_to_jiffies(PKT_EVENT_LIFETIME_MS
);
1745 /* Correct version? */
1746 if (ptp
->mode
== MC_CMD_PTP_MODE_V1
) {
1747 if (!pskb_may_pull(skb
, PTP_V1_MIN_LENGTH
)) {
1751 version
= ntohs(*(__be16
*)&data
[PTP_V1_VERSION_OFFSET
]);
1752 if (version
!= PTP_VERSION_V1
) {
1756 if (!pskb_may_pull(skb
, PTP_V2_MIN_LENGTH
)) {
1760 version
= data
[PTP_V2_VERSION_OFFSET
];
1761 if ((version
& PTP_VERSION_V2_MASK
) != PTP_VERSION_V2
) {
1766 /* Does this packet require timestamping? */
1767 if (ntohs(*(__be16
*)&data
[PTP_DPORT_OFFSET
]) == PTP_EVENT_PORT
) {
1768 match
->state
= PTP_PACKET_STATE_UNMATCHED
;
1770 /* We expect the sequence number to be in the same position in
1771 * the packet for PTP V1 and V2
1773 BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET
!= PTP_V2_SEQUENCE_OFFSET
);
1774 BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH
!= PTP_V2_SEQUENCE_LENGTH
);
1776 match
->state
= PTP_PACKET_STATE_MATCH_UNWANTED
;
1779 skb_queue_tail(&ptp
->rxq
, skb
);
1780 queue_work(ptp
->workwq
, &ptp
->work
);
1785 /* Transmit a PTP packet. This has to be transmitted by the MC
1786 * itself, through an MCDI call. MCDI calls aren't permitted
1787 * in the transmit path so defer the actual transmission to a suitable worker.
1789 int efx_ptp_tx(struct efx_nic
*efx
, struct sk_buff
*skb
)
1791 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1793 skb_queue_tail(&ptp
->txq
, skb
);
1795 if ((udp_hdr(skb
)->dest
== htons(PTP_EVENT_PORT
)) &&
1796 (skb
->len
<= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM
))
1797 efx_xmit_hwtstamp_pending(skb
);
1798 queue_work(ptp
->workwq
, &ptp
->work
);
1800 return NETDEV_TX_OK
;
1803 int efx_ptp_change_mode(struct efx_nic
*efx
, bool enable_wanted
,
1804 unsigned int new_mode
)
1806 if ((enable_wanted
!= efx
->ptp_data
->enabled
) ||
1807 (enable_wanted
&& (efx
->ptp_data
->mode
!= new_mode
))) {
1810 if (enable_wanted
) {
1811 /* Change of mode requires disable */
1812 if (efx
->ptp_data
->enabled
&&
1813 (efx
->ptp_data
->mode
!= new_mode
)) {
1814 efx
->ptp_data
->enabled
= false;
1815 rc
= efx_ptp_stop(efx
);
1820 /* Set new operating mode and establish
1821 * baseline synchronisation, which must
1824 efx
->ptp_data
->mode
= new_mode
;
1825 if (netif_running(efx
->net_dev
))
1826 rc
= efx_ptp_start(efx
);
1828 rc
= efx_ptp_synchronize(efx
,
1829 PTP_SYNC_ATTEMPTS
* 2);
1834 rc
= efx_ptp_stop(efx
);
1840 efx
->ptp_data
->enabled
= enable_wanted
;
1846 static int efx_ptp_ts_init(struct efx_nic
*efx
, struct kernel_hwtstamp_config
*init
)
1850 if ((init
->tx_type
!= HWTSTAMP_TX_OFF
) &&
1851 (init
->tx_type
!= HWTSTAMP_TX_ON
))
1854 rc
= efx
->type
->ptp_set_ts_config(efx
, init
);
1858 efx
->ptp_data
->config
= *init
;
1862 void efx_ptp_get_ts_info(struct efx_nic
*efx
, struct kernel_ethtool_ts_info
*ts_info
)
1864 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1865 struct efx_nic
*primary
= efx
->primary
;
1872 ts_info
->so_timestamping
|= (SOF_TIMESTAMPING_TX_HARDWARE
|
1873 SOF_TIMESTAMPING_RX_HARDWARE
|
1874 SOF_TIMESTAMPING_RAW_HARDWARE
);
1875 /* Check licensed features. If we don't have the license for TX
1876 * timestamps, the NIC will not support them.
1878 if (efx_ptp_use_mac_tx_timestamps(efx
)) {
1879 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1881 if (!(nic_data
->licensed_features
&
1882 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN
)))
1883 ts_info
->so_timestamping
&=
1884 ~SOF_TIMESTAMPING_TX_HARDWARE
;
1886 if (primary
&& primary
->ptp_data
&& primary
->ptp_data
->phc_clock
)
1887 ts_info
->phc_index
=
1888 ptp_clock_index(primary
->ptp_data
->phc_clock
);
1889 ts_info
->tx_types
= 1 << HWTSTAMP_TX_OFF
| 1 << HWTSTAMP_TX_ON
;
1890 ts_info
->rx_filters
= ptp
->efx
->type
->hwtstamp_filters
;
1893 int efx_ptp_set_ts_config(struct efx_nic
*efx
,
1894 struct kernel_hwtstamp_config
*config
,
1895 struct netlink_ext_ack __always_unused
*extack
)
1897 /* Not a PTP enabled port */
1901 return efx_ptp_ts_init(efx
, config
);
1904 int efx_ptp_get_ts_config(struct efx_nic
*efx
,
1905 struct kernel_hwtstamp_config
*config
)
1907 /* Not a PTP enabled port */
1910 *config
= efx
->ptp_data
->config
;
1914 static void ptp_event_failure(struct efx_nic
*efx
, int expected_frag_len
)
1916 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1918 netif_err(efx
, hw
, efx
->net_dev
,
1919 "PTP unexpected event length: got %d expected %d\n",
1920 ptp
->evt_frag_idx
, expected_frag_len
);
1921 ptp
->reset_required
= true;
1922 queue_work(ptp
->workwq
, &ptp
->work
);
1925 static void ptp_event_fault(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1927 int code
= EFX_QWORD_FIELD(ptp
->evt_frags
[0], MCDI_EVENT_DATA
);
1928 if (ptp
->evt_frag_idx
!= 1) {
1929 ptp_event_failure(efx
, 1);
1933 netif_err(efx
, hw
, efx
->net_dev
, "PTP error %d\n", code
);
1936 static void ptp_event_pps(struct efx_nic
*efx
, struct efx_ptp_data
*ptp
)
1938 if (ptp
->nic_ts_enabled
)
1939 queue_work(ptp
->pps_workwq
, &ptp
->pps_work
);
1942 void efx_ptp_event(struct efx_nic
*efx
, efx_qword_t
*ev
)
1944 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1945 int code
= EFX_QWORD_FIELD(*ev
, MCDI_EVENT_CODE
);
1948 if (!efx
->ptp_warned
) {
1949 netif_warn(efx
, drv
, efx
->net_dev
,
1950 "Received PTP event but PTP not set up\n");
1951 efx
->ptp_warned
= true;
1959 if (ptp
->evt_frag_idx
== 0) {
1960 ptp
->evt_code
= code
;
1961 } else if (ptp
->evt_code
!= code
) {
1962 netif_err(efx
, hw
, efx
->net_dev
,
1963 "PTP out of sequence event %d\n", code
);
1964 ptp
->evt_frag_idx
= 0;
1967 ptp
->evt_frags
[ptp
->evt_frag_idx
++] = *ev
;
1968 if (!MCDI_EVENT_FIELD(*ev
, CONT
)) {
1969 /* Process resulting event */
1971 case MCDI_EVENT_CODE_PTP_FAULT
:
1972 ptp_event_fault(efx
, ptp
);
1974 case MCDI_EVENT_CODE_PTP_PPS
:
1975 ptp_event_pps(efx
, ptp
);
1978 netif_err(efx
, hw
, efx
->net_dev
,
1979 "PTP unknown event %d\n", code
);
1982 ptp
->evt_frag_idx
= 0;
1983 } else if (MAX_EVENT_FRAGS
== ptp
->evt_frag_idx
) {
1984 netif_err(efx
, hw
, efx
->net_dev
,
1985 "PTP too many event fragments\n");
1986 ptp
->evt_frag_idx
= 0;
1990 void efx_time_sync_event(struct efx_channel
*channel
, efx_qword_t
*ev
)
1992 struct efx_nic
*efx
= channel
->efx
;
1993 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
1995 /* When extracting the sync timestamp minor value, we should discard
1996 * the least significant two bits. These are not required in order
1997 * to reconstruct full-range timestamps and they are optionally used
1998 * to report status depending on the options supplied when subscribing
2001 channel
->sync_timestamp_major
= MCDI_EVENT_FIELD(*ev
, PTP_TIME_MAJOR
);
2002 channel
->sync_timestamp_minor
=
2003 (MCDI_EVENT_FIELD(*ev
, PTP_TIME_MINOR_MS_8BITS
) & 0xFC)
2004 << ptp
->nic_time
.sync_event_minor_shift
;
2006 /* if sync events have been disabled then we want to silently ignore
2007 * this event, so throw away result.
2009 (void) cmpxchg(&channel
->sync_events_state
, SYNC_EVENTS_REQUESTED
,
2013 static inline u32
efx_rx_buf_timestamp_minor(struct efx_nic
*efx
, const u8
*eh
)
2015 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
2016 return __le32_to_cpup((const __le32
*)(eh
+ efx
->rx_packet_ts_offset
));
2018 const u8
*data
= eh
+ efx
->rx_packet_ts_offset
;
2019 return (u32
)data
[0] |
2021 (u32
)data
[2] << 16 |
2026 void __efx_rx_skb_attach_timestamp(struct efx_channel
*channel
,
2027 struct sk_buff
*skb
)
2029 struct efx_nic
*efx
= channel
->efx
;
2030 struct efx_ptp_data
*ptp
= efx
->ptp_data
;
2031 u32 pkt_timestamp_major
, pkt_timestamp_minor
;
2033 struct skb_shared_hwtstamps
*timestamps
;
2035 if (channel
->sync_events_state
!= SYNC_EVENTS_VALID
)
2038 pkt_timestamp_minor
= efx_rx_buf_timestamp_minor(efx
, skb_mac_header(skb
));
2040 /* get the difference between the packet and sync timestamps,
2043 diff
= pkt_timestamp_minor
- channel
->sync_timestamp_minor
;
2044 if (pkt_timestamp_minor
< channel
->sync_timestamp_minor
)
2045 diff
+= ptp
->nic_time
.minor_max
;
2047 /* do we roll over a second boundary and need to carry the one? */
2048 carry
= (channel
->sync_timestamp_minor
>= ptp
->nic_time
.minor_max
- diff
) ?
2051 if (diff
<= ptp
->nic_time
.sync_event_diff_max
) {
2052 /* packet is ahead of the sync event by a quarter of a second or
2053 * less (allowing for fuzz)
2055 pkt_timestamp_major
= channel
->sync_timestamp_major
+ carry
;
2056 } else if (diff
>= ptp
->nic_time
.sync_event_diff_min
) {
2057 /* packet is behind the sync event but within the fuzz factor.
2058 * This means the RX packet and sync event crossed as they were
2059 * placed on the event queue, which can sometimes happen.
2061 pkt_timestamp_major
= channel
->sync_timestamp_major
- 1 + carry
;
2063 /* it's outside tolerance in both directions. this might be
2064 * indicative of us missing sync events for some reason, so
2065 * we'll call it an error rather than risk giving a bogus
2068 netif_vdbg(efx
, drv
, efx
->net_dev
,
2069 "packet timestamp %x too far from sync event %x:%x\n",
2070 pkt_timestamp_minor
, channel
->sync_timestamp_major
,
2071 channel
->sync_timestamp_minor
);
2075 /* attach the timestamps to the skb */
2076 timestamps
= skb_hwtstamps(skb
);
2077 timestamps
->hwtstamp
=
2078 ptp
->nic_to_kernel_time(pkt_timestamp_major
,
2079 pkt_timestamp_minor
,
2080 ptp
->ts_corrections
.general_rx
);
2083 static int efx_phc_adjfine(struct ptp_clock_info
*ptp
, long scaled_ppm
)
2085 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2086 struct efx_ptp_data
,
2088 s32 delta
= scaled_ppm_to_ppb(scaled_ppm
);
2089 struct efx_nic
*efx
= ptp_data
->efx
;
2090 MCDI_DECLARE_BUF(inadj
, MC_CMD_PTP_IN_ADJUST_LEN
);
2094 if (delta
> MAX_PPB
)
2096 else if (delta
< -MAX_PPB
)
2099 /* Convert ppb to fixed point ns taking care to round correctly. */
2100 adjustment_ns
= ((s64
)delta
* PPB_SCALE_WORD
+
2101 (1 << (ptp_data
->adjfreq_ppb_shift
- 1))) >>
2102 ptp_data
->adjfreq_ppb_shift
;
2104 MCDI_SET_DWORD(inadj
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
2105 MCDI_SET_DWORD(inadj
, PTP_IN_PERIPH_ID
, 0);
2106 MCDI_SET_QWORD(inadj
, PTP_IN_ADJUST_FREQ
, adjustment_ns
);
2107 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_SECONDS
, 0);
2108 MCDI_SET_DWORD(inadj
, PTP_IN_ADJUST_NANOSECONDS
, 0);
2109 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inadj
, sizeof(inadj
),
2114 ptp_data
->current_adjfreq
= adjustment_ns
;
2118 static int efx_phc_adjtime(struct ptp_clock_info
*ptp
, s64 delta
)
2120 u32 nic_major
, nic_minor
;
2121 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2122 struct efx_ptp_data
,
2124 struct efx_nic
*efx
= ptp_data
->efx
;
2125 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_ADJUST_LEN
);
2127 efx
->ptp_data
->ns_to_nic_time(delta
, &nic_major
, &nic_minor
);
2129 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_ADJUST
);
2130 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
2131 MCDI_SET_QWORD(inbuf
, PTP_IN_ADJUST_FREQ
, ptp_data
->current_adjfreq
);
2132 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MAJOR
, nic_major
);
2133 MCDI_SET_DWORD(inbuf
, PTP_IN_ADJUST_MINOR
, nic_minor
);
2134 return efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
2138 static int efx_phc_gettime(struct ptp_clock_info
*ptp
, struct timespec64
*ts
)
2140 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2141 struct efx_ptp_data
,
2143 struct efx_nic
*efx
= ptp_data
->efx
;
2144 MCDI_DECLARE_BUF(inbuf
, MC_CMD_PTP_IN_READ_NIC_TIME_LEN
);
2145 MCDI_DECLARE_BUF(outbuf
, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN
);
2149 MCDI_SET_DWORD(inbuf
, PTP_IN_OP
, MC_CMD_PTP_OP_READ_NIC_TIME
);
2150 MCDI_SET_DWORD(inbuf
, PTP_IN_PERIPH_ID
, 0);
2152 rc
= efx_mcdi_rpc(efx
, MC_CMD_PTP
, inbuf
, sizeof(inbuf
),
2153 outbuf
, sizeof(outbuf
), NULL
);
2157 kt
= ptp_data
->nic_to_kernel_time(
2158 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MAJOR
),
2159 MCDI_DWORD(outbuf
, PTP_OUT_READ_NIC_TIME_MINOR
), 0);
2160 *ts
= ktime_to_timespec64(kt
);
2164 static int efx_phc_settime(struct ptp_clock_info
*ptp
,
2165 const struct timespec64
*e_ts
)
2167 /* Get the current NIC time, efx_phc_gettime.
2168 * Subtract from the desired time to get the offset
2169 * call efx_phc_adjtime with the offset
2172 struct timespec64 time_now
;
2173 struct timespec64 delta
;
2175 rc
= efx_phc_gettime(ptp
, &time_now
);
2179 delta
= timespec64_sub(*e_ts
, time_now
);
2181 rc
= efx_phc_adjtime(ptp
, timespec64_to_ns(&delta
));
2188 static int efx_phc_enable(struct ptp_clock_info
*ptp
,
2189 struct ptp_clock_request
*request
,
2192 struct efx_ptp_data
*ptp_data
= container_of(ptp
,
2193 struct efx_ptp_data
,
2195 if (request
->type
!= PTP_CLK_REQ_PPS
)
2198 ptp_data
->nic_ts_enabled
= !!enable
;
2202 static const struct efx_channel_type efx_ptp_channel_type
= {
2203 .handle_no_channel
= efx_ptp_handle_no_channel
,
2204 .pre_probe
= efx_ptp_probe_channel
,
2205 .post_remove
= efx_ptp_remove_channel
,
2206 .get_name
= efx_ptp_get_channel_name
,
2207 .copy
= efx_copy_channel
,
2208 .receive_skb
= efx_ptp_rx
,
2209 .want_txqs
= efx_ptp_want_txqs
,
2210 .keep_eventq
= false,
2213 void efx_ptp_defer_probe_with_channel(struct efx_nic
*efx
)
2215 /* Check whether PTP is implemented on this NIC. The DISABLE
2216 * operation will succeed if and only if it is implemented.
2218 if (efx_ptp_disable(efx
) == 0)
2219 efx
->extra_channel_type
[EFX_EXTRA_CHANNEL_PTP
] =
2220 &efx_ptp_channel_type
;
2223 void efx_ptp_start_datapath(struct efx_nic
*efx
)
2225 if (efx_ptp_restart(efx
))
2226 netif_err(efx
, drv
, efx
->net_dev
, "Failed to restart PTP.\n");
2227 /* re-enable timestamping if it was previously enabled */
2228 if (efx
->type
->ptp_set_ts_sync_events
)
2229 efx
->type
->ptp_set_ts_sync_events(efx
, true, true);
2232 void efx_ptp_stop_datapath(struct efx_nic
*efx
)
2234 /* temporarily disable timestamping */
2235 if (efx
->type
->ptp_set_ts_sync_events
)
2236 efx
->type
->ptp_set_ts_sync_events(efx
, false, true);