Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / net / ethernet / sfc / rx_common.c
blobab358fe13e1df037e02f9076a10c70cdb2363686
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include "net_driver.h"
12 #include <linux/module.h>
13 #include <linux/iommu.h>
14 #include <net/rps.h>
15 #include "efx.h"
16 #include "nic.h"
17 #include "rx_common.h"
19 /* This is the percentage fill level below which new RX descriptors
20 * will be added to the RX descriptor ring.
22 static unsigned int rx_refill_threshold;
23 module_param(rx_refill_threshold, uint, 0444);
24 MODULE_PARM_DESC(rx_refill_threshold,
25 "RX descriptor ring refill threshold (%)");
27 /* RX maximum head room required.
29 * This must be at least 1 to prevent overflow, plus one packet-worth
30 * to allow pipelined receives.
32 #define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
34 /* Check the RX page recycle ring for a page that can be reused. */
35 static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
37 struct efx_nic *efx = rx_queue->efx;
38 struct efx_rx_page_state *state;
39 unsigned int index;
40 struct page *page;
42 if (unlikely(!rx_queue->page_ring))
43 return NULL;
44 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
45 page = rx_queue->page_ring[index];
46 if (page == NULL)
47 return NULL;
49 rx_queue->page_ring[index] = NULL;
50 /* page_remove cannot exceed page_add. */
51 if (rx_queue->page_remove != rx_queue->page_add)
52 ++rx_queue->page_remove;
54 /* If page_count is 1 then we hold the only reference to this page. */
55 if (page_count(page) == 1) {
56 ++rx_queue->page_recycle_count;
57 return page;
58 } else {
59 state = page_address(page);
60 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
61 PAGE_SIZE << efx->rx_buffer_order,
62 DMA_FROM_DEVICE);
63 put_page(page);
64 ++rx_queue->page_recycle_failed;
67 return NULL;
70 /* Attempt to recycle the page if there is an RX recycle ring; the page can
71 * only be added if this is the final RX buffer, to prevent pages being used in
72 * the descriptor ring and appearing in the recycle ring simultaneously.
74 static void efx_recycle_rx_page(struct efx_channel *channel,
75 struct efx_rx_buffer *rx_buf)
77 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
78 struct efx_nic *efx = rx_queue->efx;
79 struct page *page = rx_buf->page;
80 unsigned int index;
82 /* Only recycle the page after processing the final buffer. */
83 if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
84 return;
86 index = rx_queue->page_add & rx_queue->page_ptr_mask;
87 if (rx_queue->page_ring[index] == NULL) {
88 unsigned int read_index = rx_queue->page_remove &
89 rx_queue->page_ptr_mask;
91 /* The next slot in the recycle ring is available, but
92 * increment page_remove if the read pointer currently
93 * points here.
95 if (read_index == index)
96 ++rx_queue->page_remove;
97 rx_queue->page_ring[index] = page;
98 ++rx_queue->page_add;
99 return;
101 ++rx_queue->page_recycle_full;
102 efx_unmap_rx_buffer(efx, rx_buf);
103 put_page(rx_buf->page);
106 /* Recycle the pages that are used by buffers that have just been received. */
107 void efx_recycle_rx_pages(struct efx_channel *channel,
108 struct efx_rx_buffer *rx_buf,
109 unsigned int n_frags)
111 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
113 if (unlikely(!rx_queue->page_ring))
114 return;
116 do {
117 efx_recycle_rx_page(channel, rx_buf);
118 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
119 } while (--n_frags);
122 void efx_discard_rx_packet(struct efx_channel *channel,
123 struct efx_rx_buffer *rx_buf,
124 unsigned int n_frags)
126 struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
128 efx_recycle_rx_pages(channel, rx_buf, n_frags);
130 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
133 static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
135 unsigned int bufs_in_recycle_ring, page_ring_size;
136 struct efx_nic *efx = rx_queue->efx;
138 bufs_in_recycle_ring = efx_rx_recycle_ring_size(efx);
139 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
140 efx->rx_bufs_per_page);
141 rx_queue->page_ring = kcalloc(page_ring_size,
142 sizeof(*rx_queue->page_ring), GFP_KERNEL);
143 if (!rx_queue->page_ring)
144 rx_queue->page_ptr_mask = 0;
145 else
146 rx_queue->page_ptr_mask = page_ring_size - 1;
149 static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
151 struct efx_nic *efx = rx_queue->efx;
152 int i;
154 if (unlikely(!rx_queue->page_ring))
155 return;
157 /* Unmap and release the pages in the recycle ring. Remove the ring. */
158 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
159 struct page *page = rx_queue->page_ring[i];
160 struct efx_rx_page_state *state;
162 if (page == NULL)
163 continue;
165 state = page_address(page);
166 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
167 PAGE_SIZE << efx->rx_buffer_order,
168 DMA_FROM_DEVICE);
169 put_page(page);
171 kfree(rx_queue->page_ring);
172 rx_queue->page_ring = NULL;
175 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
176 struct efx_rx_buffer *rx_buf)
178 /* Release the page reference we hold for the buffer. */
179 if (rx_buf->page)
180 put_page(rx_buf->page);
182 /* If this is the last buffer in a page, unmap and free it. */
183 if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
184 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
185 efx_free_rx_buffers(rx_queue, rx_buf, 1);
187 rx_buf->page = NULL;
190 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
192 struct efx_nic *efx = rx_queue->efx;
193 unsigned int entries;
194 int rc;
196 /* Create the smallest power-of-two aligned ring */
197 entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
198 EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
199 rx_queue->ptr_mask = entries - 1;
201 netif_dbg(efx, probe, efx->net_dev,
202 "creating RX queue %d size %#x mask %#x\n",
203 efx_rx_queue_index(rx_queue), efx->rxq_entries,
204 rx_queue->ptr_mask);
206 /* Allocate RX buffers */
207 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
208 GFP_KERNEL);
209 if (!rx_queue->buffer)
210 return -ENOMEM;
212 rc = efx_nic_probe_rx(rx_queue);
213 if (rc) {
214 kfree(rx_queue->buffer);
215 rx_queue->buffer = NULL;
218 return rc;
221 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
223 unsigned int max_fill, trigger, max_trigger;
224 struct efx_nic *efx = rx_queue->efx;
225 int rc = 0;
227 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
228 "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
230 /* Initialise ptr fields */
231 rx_queue->added_count = 0;
232 rx_queue->notified_count = 0;
233 rx_queue->granted_count = 0;
234 rx_queue->removed_count = 0;
235 rx_queue->min_fill = -1U;
236 efx_init_rx_recycle_ring(rx_queue);
238 rx_queue->page_remove = 0;
239 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
240 rx_queue->page_recycle_count = 0;
241 rx_queue->page_recycle_failed = 0;
242 rx_queue->page_recycle_full = 0;
244 rx_queue->old_rx_packets = rx_queue->rx_packets;
245 rx_queue->old_rx_bytes = rx_queue->rx_bytes;
247 /* Initialise limit fields */
248 max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
249 max_trigger =
250 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
251 if (rx_refill_threshold != 0) {
252 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
253 if (trigger > max_trigger)
254 trigger = max_trigger;
255 } else {
256 trigger = max_trigger;
259 rx_queue->max_fill = max_fill;
260 rx_queue->fast_fill_trigger = trigger;
261 rx_queue->refill_enabled = true;
263 /* Initialise XDP queue information */
264 rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
265 rx_queue->core_index, 0);
267 if (rc) {
268 netif_err(efx, rx_err, efx->net_dev,
269 "Failure to initialise XDP queue information rc=%d\n",
270 rc);
271 efx->xdp_rxq_info_failed = true;
272 } else {
273 rx_queue->xdp_rxq_info_valid = true;
276 /* Set up RX descriptor ring */
277 efx_nic_init_rx(rx_queue);
280 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
282 struct efx_rx_buffer *rx_buf;
283 int i;
285 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
286 "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
288 del_timer_sync(&rx_queue->slow_fill);
289 if (rx_queue->grant_credits)
290 flush_work(&rx_queue->grant_work);
292 /* Release RX buffers from the current read ptr to the write ptr */
293 if (rx_queue->buffer) {
294 for (i = rx_queue->removed_count; i < rx_queue->added_count;
295 i++) {
296 unsigned int index = i & rx_queue->ptr_mask;
298 rx_buf = efx_rx_buffer(rx_queue, index);
299 efx_fini_rx_buffer(rx_queue, rx_buf);
303 efx_fini_rx_recycle_ring(rx_queue);
305 if (rx_queue->xdp_rxq_info_valid)
306 xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
308 rx_queue->xdp_rxq_info_valid = false;
311 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
313 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
314 "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
316 efx_nic_remove_rx(rx_queue);
318 kfree(rx_queue->buffer);
319 rx_queue->buffer = NULL;
322 /* Unmap a DMA-mapped page. This function is only called for the final RX
323 * buffer in a page.
325 void efx_unmap_rx_buffer(struct efx_nic *efx,
326 struct efx_rx_buffer *rx_buf)
328 struct page *page = rx_buf->page;
330 if (page) {
331 struct efx_rx_page_state *state = page_address(page);
333 dma_unmap_page(&efx->pci_dev->dev,
334 state->dma_addr,
335 PAGE_SIZE << efx->rx_buffer_order,
336 DMA_FROM_DEVICE);
340 void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
341 struct efx_rx_buffer *rx_buf,
342 unsigned int num_bufs)
344 do {
345 if (rx_buf->page) {
346 put_page(rx_buf->page);
347 rx_buf->page = NULL;
349 rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
350 } while (--num_bufs);
353 void efx_rx_slow_fill(struct timer_list *t)
355 struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
357 /* Post an event to cause NAPI to run and refill the queue */
358 efx_nic_generate_fill_event(rx_queue);
359 ++rx_queue->slow_fill_count;
362 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
364 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
367 /* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
369 * @rx_queue: Efx RX queue
371 * This allocates a batch of pages, maps them for DMA, and populates
372 * struct efx_rx_buffers for each one. Return a negative error code or
373 * 0 on success. If a single page can be used for multiple buffers,
374 * then the page will either be inserted fully, or not at all.
376 static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
378 unsigned int page_offset, index, count;
379 struct efx_nic *efx = rx_queue->efx;
380 struct efx_rx_page_state *state;
381 struct efx_rx_buffer *rx_buf;
382 dma_addr_t dma_addr;
383 struct page *page;
385 count = 0;
386 do {
387 page = efx_reuse_page(rx_queue);
388 if (page == NULL) {
389 page = alloc_pages(__GFP_COMP |
390 (atomic ? GFP_ATOMIC : GFP_KERNEL),
391 efx->rx_buffer_order);
392 if (unlikely(page == NULL))
393 return -ENOMEM;
394 dma_addr =
395 dma_map_page(&efx->pci_dev->dev, page, 0,
396 PAGE_SIZE << efx->rx_buffer_order,
397 DMA_FROM_DEVICE);
398 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
399 dma_addr))) {
400 __free_pages(page, efx->rx_buffer_order);
401 return -EIO;
403 state = page_address(page);
404 state->dma_addr = dma_addr;
405 } else {
406 state = page_address(page);
407 dma_addr = state->dma_addr;
410 dma_addr += sizeof(struct efx_rx_page_state);
411 page_offset = sizeof(struct efx_rx_page_state);
413 do {
414 index = rx_queue->added_count & rx_queue->ptr_mask;
415 rx_buf = efx_rx_buffer(rx_queue, index);
416 rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
417 EFX_XDP_HEADROOM;
418 rx_buf->page = page;
419 rx_buf->page_offset = page_offset + efx->rx_ip_align +
420 EFX_XDP_HEADROOM;
421 rx_buf->len = efx->rx_dma_len;
422 rx_buf->flags = 0;
423 ++rx_queue->added_count;
424 get_page(page);
425 dma_addr += efx->rx_page_buf_step;
426 page_offset += efx->rx_page_buf_step;
427 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
429 rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
430 } while (++count < efx->rx_pages_per_batch);
432 return 0;
435 void efx_rx_config_page_split(struct efx_nic *efx)
437 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
438 EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
439 EFX_RX_BUF_ALIGNMENT);
440 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
441 ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
442 efx->rx_page_buf_step);
443 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
444 efx->rx_bufs_per_page;
445 efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
446 efx->rx_bufs_per_page);
449 /* efx_fast_push_rx_descriptors - push new RX descriptors quickly
450 * @rx_queue: RX descriptor queue
452 * This will aim to fill the RX descriptor queue up to
453 * @rx_queue->@max_fill. If there is insufficient atomic
454 * memory to do so, a slow fill will be scheduled.
456 * The caller must provide serialisation (none is used here). In practise,
457 * this means this function must run from the NAPI handler, or be called
458 * when NAPI is disabled.
460 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
462 struct efx_nic *efx = rx_queue->efx;
463 unsigned int fill_level, batch_size;
464 int space, rc = 0;
466 if (!rx_queue->refill_enabled)
467 return;
469 /* Calculate current fill level, and exit if we don't need to fill */
470 fill_level = (rx_queue->added_count - rx_queue->removed_count);
471 EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
472 if (fill_level >= rx_queue->fast_fill_trigger)
473 goto out;
475 /* Record minimum fill level */
476 if (unlikely(fill_level < rx_queue->min_fill)) {
477 if (fill_level)
478 rx_queue->min_fill = fill_level;
481 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
482 space = rx_queue->max_fill - fill_level;
483 EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
485 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
486 "RX queue %d fast-filling descriptor ring from"
487 " level %d to level %d\n",
488 efx_rx_queue_index(rx_queue), fill_level,
489 rx_queue->max_fill);
491 do {
492 rc = efx_init_rx_buffers(rx_queue, atomic);
493 if (unlikely(rc)) {
494 /* Ensure that we don't leave the rx queue empty */
495 efx_schedule_slow_fill(rx_queue);
496 goto out;
498 } while ((space -= batch_size) >= batch_size);
500 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
501 "RX queue %d fast-filled descriptor ring "
502 "to level %d\n", efx_rx_queue_index(rx_queue),
503 rx_queue->added_count - rx_queue->removed_count);
505 out:
506 if (rx_queue->notified_count != rx_queue->added_count)
507 efx_nic_notify_rx_desc(rx_queue);
510 /* Pass a received packet up through GRO. GRO can handle pages
511 * regardless of checksum state and skbs with a good checksum.
513 void
514 efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
515 unsigned int n_frags, u8 *eh, __wsum csum)
517 struct napi_struct *napi = &channel->napi_str;
518 struct efx_nic *efx = channel->efx;
519 struct sk_buff *skb;
521 skb = napi_get_frags(napi);
522 if (unlikely(!skb)) {
523 struct efx_rx_queue *rx_queue;
525 rx_queue = efx_channel_get_rx_queue(channel);
526 efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
527 return;
530 if (efx->net_dev->features & NETIF_F_RXHASH &&
531 efx_rx_buf_hash_valid(efx, eh))
532 skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
533 PKT_HASH_TYPE_L3);
534 if (csum) {
535 skb->csum = csum;
536 skb->ip_summed = CHECKSUM_COMPLETE;
537 } else {
538 skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
539 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
541 skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
543 for (;;) {
544 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
545 rx_buf->page, rx_buf->page_offset,
546 rx_buf->len);
547 rx_buf->page = NULL;
548 skb->len += rx_buf->len;
549 if (skb_shinfo(skb)->nr_frags == n_frags)
550 break;
552 rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
555 skb->data_len = skb->len;
556 skb->truesize += n_frags * efx->rx_buffer_truesize;
558 skb_record_rx_queue(skb, channel->rx_queue.core_index);
560 napi_gro_frags(napi);
563 struct efx_rss_context_priv *efx_find_rss_context_entry(struct efx_nic *efx,
564 u32 id)
566 struct ethtool_rxfh_context *ctx;
568 WARN_ON(!mutex_is_locked(&efx->net_dev->ethtool->rss_lock));
570 ctx = xa_load(&efx->net_dev->ethtool->rss_ctx, id);
571 if (!ctx)
572 return NULL;
573 return ethtool_rxfh_context_priv(ctx);
576 void efx_set_default_rx_indir_table(struct efx_nic *efx, u32 *indir)
578 size_t i;
580 for (i = 0; i < ARRAY_SIZE(efx->rss_context.rx_indir_table); i++)
581 indir[i] = ethtool_rxfh_indir_default(i, efx->rss_spread);
585 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
586 * @spec: Specification to test
588 * Return: %true if the specification is a non-drop RX filter that
589 * matches a local MAC address I/G bit value of 1 or matches a local
590 * IPv4 or IPv6 address value in the respective multicast address
591 * range. Otherwise %false.
593 bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
595 if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
596 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
597 return false;
599 if (spec->match_flags &
600 (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
601 is_multicast_ether_addr(spec->loc_mac))
602 return true;
604 if ((spec->match_flags &
605 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
606 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
607 if (spec->ether_type == htons(ETH_P_IP) &&
608 ipv4_is_multicast(spec->loc_host[0]))
609 return true;
610 if (spec->ether_type == htons(ETH_P_IPV6) &&
611 ((const u8 *)spec->loc_host)[0] == 0xff)
612 return true;
615 return false;
618 bool efx_filter_spec_equal(const struct efx_filter_spec *left,
619 const struct efx_filter_spec *right)
621 if ((left->match_flags ^ right->match_flags) |
622 ((left->flags ^ right->flags) &
623 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
624 return false;
626 return memcmp(&left->vport_id, &right->vport_id,
627 sizeof(struct efx_filter_spec) -
628 offsetof(struct efx_filter_spec, vport_id)) == 0;
631 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
633 BUILD_BUG_ON(offsetof(struct efx_filter_spec, vport_id) & 3);
634 return jhash2((const u32 *)&spec->vport_id,
635 (sizeof(struct efx_filter_spec) -
636 offsetof(struct efx_filter_spec, vport_id)) / 4,
640 #ifdef CONFIG_RFS_ACCEL
641 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
642 bool *force)
644 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
645 /* ARFS is currently updating this entry, leave it */
646 return false;
648 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
649 /* ARFS tried and failed to update this, so it's probably out
650 * of date. Remove the filter and the ARFS rule entry.
652 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
653 *force = true;
654 return true;
655 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
656 /* ARFS has moved on, so old filter is not needed. Since we did
657 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
658 * not be removed by efx_rps_hash_del() subsequently.
660 *force = true;
661 return true;
663 /* Remove it iff ARFS wants to. */
664 return true;
667 static
668 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
669 const struct efx_filter_spec *spec)
671 u32 hash = efx_filter_spec_hash(spec);
673 lockdep_assert_held(&efx->rps_hash_lock);
674 if (!efx->rps_hash_table)
675 return NULL;
676 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
679 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
680 const struct efx_filter_spec *spec)
682 struct efx_arfs_rule *rule;
683 struct hlist_head *head;
684 struct hlist_node *node;
686 head = efx_rps_hash_bucket(efx, spec);
687 if (!head)
688 return NULL;
689 hlist_for_each(node, head) {
690 rule = container_of(node, struct efx_arfs_rule, node);
691 if (efx_filter_spec_equal(spec, &rule->spec))
692 return rule;
694 return NULL;
697 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
698 const struct efx_filter_spec *spec,
699 bool *new)
701 struct efx_arfs_rule *rule;
702 struct hlist_head *head;
703 struct hlist_node *node;
705 head = efx_rps_hash_bucket(efx, spec);
706 if (!head)
707 return NULL;
708 hlist_for_each(node, head) {
709 rule = container_of(node, struct efx_arfs_rule, node);
710 if (efx_filter_spec_equal(spec, &rule->spec)) {
711 *new = false;
712 return rule;
715 rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
716 *new = true;
717 if (rule) {
718 memcpy(&rule->spec, spec, sizeof(rule->spec));
719 hlist_add_head(&rule->node, head);
721 return rule;
724 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
726 struct efx_arfs_rule *rule;
727 struct hlist_head *head;
728 struct hlist_node *node;
730 head = efx_rps_hash_bucket(efx, spec);
731 if (WARN_ON(!head))
732 return;
733 hlist_for_each(node, head) {
734 rule = container_of(node, struct efx_arfs_rule, node);
735 if (efx_filter_spec_equal(spec, &rule->spec)) {
736 /* Someone already reused the entry. We know that if
737 * this check doesn't fire (i.e. filter_id == REMOVING)
738 * then the REMOVING mark was put there by our caller,
739 * because caller is holding a lock on filter table and
740 * only holders of that lock set REMOVING.
742 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
743 return;
744 hlist_del(node);
745 kfree(rule);
746 return;
749 /* We didn't find it. */
750 WARN_ON(1);
752 #endif
754 int efx_probe_filters(struct efx_nic *efx)
756 int rc;
758 mutex_lock(&efx->mac_lock);
759 rc = efx->type->filter_table_probe(efx);
760 if (rc)
761 goto out_unlock;
763 #ifdef CONFIG_RFS_ACCEL
764 if (efx->type->offload_features & NETIF_F_NTUPLE) {
765 struct efx_channel *channel;
766 int i, success = 1;
768 efx_for_each_channel(channel, efx) {
769 channel->rps_flow_id =
770 kcalloc(efx->type->max_rx_ip_filters,
771 sizeof(*channel->rps_flow_id),
772 GFP_KERNEL);
773 if (!channel->rps_flow_id)
774 success = 0;
775 else
776 for (i = 0;
777 i < efx->type->max_rx_ip_filters;
778 ++i)
779 channel->rps_flow_id[i] =
780 RPS_FLOW_ID_INVALID;
781 channel->rfs_expire_index = 0;
782 channel->rfs_filter_count = 0;
785 if (!success) {
786 efx_for_each_channel(channel, efx) {
787 kfree(channel->rps_flow_id);
788 channel->rps_flow_id = NULL;
790 efx->type->filter_table_remove(efx);
791 rc = -ENOMEM;
792 goto out_unlock;
795 #endif
796 out_unlock:
797 mutex_unlock(&efx->mac_lock);
798 return rc;
801 void efx_remove_filters(struct efx_nic *efx)
803 #ifdef CONFIG_RFS_ACCEL
804 struct efx_channel *channel;
806 efx_for_each_channel(channel, efx) {
807 cancel_delayed_work_sync(&channel->filter_work);
808 kfree(channel->rps_flow_id);
809 channel->rps_flow_id = NULL;
811 #endif
812 efx->type->filter_table_remove(efx);
815 #ifdef CONFIG_RFS_ACCEL
817 static void efx_filter_rfs_work(struct work_struct *data)
819 struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
820 work);
821 struct efx_nic *efx = efx_netdev_priv(req->net_dev);
822 struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
823 int slot_idx = req - efx->rps_slot;
824 struct efx_arfs_rule *rule;
825 u16 arfs_id = 0;
826 int rc;
828 rc = efx->type->filter_insert(efx, &req->spec, true);
829 if (rc >= 0)
830 /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
831 rc %= efx->type->max_rx_ip_filters;
832 if (efx->rps_hash_table) {
833 spin_lock_bh(&efx->rps_hash_lock);
834 rule = efx_rps_hash_find(efx, &req->spec);
835 /* The rule might have already gone, if someone else's request
836 * for the same spec was already worked and then expired before
837 * we got around to our work. In that case we have nothing
838 * tying us to an arfs_id, meaning that as soon as the filter
839 * is considered for expiry it will be removed.
841 if (rule) {
842 if (rc < 0)
843 rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
844 else
845 rule->filter_id = rc;
846 arfs_id = rule->arfs_id;
848 spin_unlock_bh(&efx->rps_hash_lock);
850 if (rc >= 0) {
851 /* Remember this so we can check whether to expire the filter
852 * later.
854 mutex_lock(&efx->rps_mutex);
855 if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
856 channel->rfs_filter_count++;
857 channel->rps_flow_id[rc] = req->flow_id;
858 mutex_unlock(&efx->rps_mutex);
860 if (req->spec.ether_type == htons(ETH_P_IP))
861 netif_info(efx, rx_status, efx->net_dev,
862 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
863 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
864 req->spec.rem_host, ntohs(req->spec.rem_port),
865 req->spec.loc_host, ntohs(req->spec.loc_port),
866 req->rxq_index, req->flow_id, rc, arfs_id);
867 else
868 netif_info(efx, rx_status, efx->net_dev,
869 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
870 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
871 req->spec.rem_host, ntohs(req->spec.rem_port),
872 req->spec.loc_host, ntohs(req->spec.loc_port),
873 req->rxq_index, req->flow_id, rc, arfs_id);
874 channel->n_rfs_succeeded++;
875 } else {
876 if (req->spec.ether_type == htons(ETH_P_IP))
877 netif_dbg(efx, rx_status, efx->net_dev,
878 "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
879 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
880 req->spec.rem_host, ntohs(req->spec.rem_port),
881 req->spec.loc_host, ntohs(req->spec.loc_port),
882 req->rxq_index, req->flow_id, rc, arfs_id);
883 else
884 netif_dbg(efx, rx_status, efx->net_dev,
885 "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
886 (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
887 req->spec.rem_host, ntohs(req->spec.rem_port),
888 req->spec.loc_host, ntohs(req->spec.loc_port),
889 req->rxq_index, req->flow_id, rc, arfs_id);
890 channel->n_rfs_failed++;
891 /* We're overloading the NIC's filter tables, so let's do a
892 * chunk of extra expiry work.
894 __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
895 100u));
898 /* Release references */
899 clear_bit(slot_idx, &efx->rps_slot_map);
900 dev_put(req->net_dev);
903 int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
904 u16 rxq_index, u32 flow_id)
906 struct efx_nic *efx = efx_netdev_priv(net_dev);
907 struct efx_async_filter_insertion *req;
908 struct efx_arfs_rule *rule;
909 struct flow_keys fk;
910 int slot_idx;
911 bool new;
912 int rc;
914 /* find a free slot */
915 for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
916 if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
917 break;
918 if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
919 return -EBUSY;
921 if (flow_id == RPS_FLOW_ID_INVALID) {
922 rc = -EINVAL;
923 goto out_clear;
926 if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
927 rc = -EPROTONOSUPPORT;
928 goto out_clear;
931 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
932 rc = -EPROTONOSUPPORT;
933 goto out_clear;
935 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
936 rc = -EPROTONOSUPPORT;
937 goto out_clear;
940 req = efx->rps_slot + slot_idx;
941 efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
942 efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
943 rxq_index);
944 req->spec.match_flags =
945 EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
946 EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
947 EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
948 req->spec.ether_type = fk.basic.n_proto;
949 req->spec.ip_proto = fk.basic.ip_proto;
951 if (fk.basic.n_proto == htons(ETH_P_IP)) {
952 req->spec.rem_host[0] = fk.addrs.v4addrs.src;
953 req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
954 } else {
955 memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
956 sizeof(struct in6_addr));
957 memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
958 sizeof(struct in6_addr));
961 req->spec.rem_port = fk.ports.src;
962 req->spec.loc_port = fk.ports.dst;
964 if (efx->rps_hash_table) {
965 /* Add it to ARFS hash table */
966 spin_lock(&efx->rps_hash_lock);
967 rule = efx_rps_hash_add(efx, &req->spec, &new);
968 if (!rule) {
969 rc = -ENOMEM;
970 goto out_unlock;
972 if (new)
973 rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
974 rc = rule->arfs_id;
975 /* Skip if existing or pending filter already does the right thing */
976 if (!new && rule->rxq_index == rxq_index &&
977 rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
978 goto out_unlock;
979 rule->rxq_index = rxq_index;
980 rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
981 spin_unlock(&efx->rps_hash_lock);
982 } else {
983 /* Without an ARFS hash table, we just use arfs_id 0 for all
984 * filters. This means if multiple flows hash to the same
985 * flow_id, all but the most recently touched will be eligible
986 * for expiry.
988 rc = 0;
991 /* Queue the request */
992 dev_hold(req->net_dev = net_dev);
993 INIT_WORK(&req->work, efx_filter_rfs_work);
994 req->rxq_index = rxq_index;
995 req->flow_id = flow_id;
996 schedule_work(&req->work);
997 return rc;
998 out_unlock:
999 spin_unlock(&efx->rps_hash_lock);
1000 out_clear:
1001 clear_bit(slot_idx, &efx->rps_slot_map);
1002 return rc;
1005 bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1007 bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1008 struct efx_nic *efx = channel->efx;
1009 unsigned int index, size, start;
1010 u32 flow_id;
1012 if (!mutex_trylock(&efx->rps_mutex))
1013 return false;
1014 expire_one = efx->type->filter_rfs_expire_one;
1015 index = channel->rfs_expire_index;
1016 start = index;
1017 size = efx->type->max_rx_ip_filters;
1018 while (quota) {
1019 flow_id = channel->rps_flow_id[index];
1021 if (flow_id != RPS_FLOW_ID_INVALID) {
1022 quota--;
1023 if (expire_one(efx, flow_id, index)) {
1024 netif_info(efx, rx_status, efx->net_dev,
1025 "expired filter %d [channel %u flow %u]\n",
1026 index, channel->channel, flow_id);
1027 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1028 channel->rfs_filter_count--;
1031 if (++index == size)
1032 index = 0;
1033 /* If we were called with a quota that exceeds the total number
1034 * of filters in the table (which shouldn't happen, but could
1035 * if two callers race), ensure that we don't loop forever -
1036 * stop when we've examined every row of the table.
1038 if (index == start)
1039 break;
1042 channel->rfs_expire_index = index;
1043 mutex_unlock(&efx->rps_mutex);
1044 return true;
1047 #endif /* CONFIG_RFS_ACCEL */