1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include "net_driver.h"
12 #include <linux/filter.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
16 #include "efx_common.h"
17 #include "efx_channels.h"
21 #include "rx_common.h"
22 #include "tx_common.h"
24 #include "mcdi_port_common.h"
26 #include "mcdi_pcol.h"
28 static unsigned int debug
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
29 NETIF_MSG_LINK
| NETIF_MSG_IFDOWN
|
30 NETIF_MSG_IFUP
| NETIF_MSG_RX_ERR
|
31 NETIF_MSG_TX_ERR
| NETIF_MSG_HW
);
32 module_param(debug
, uint
, 0);
33 MODULE_PARM_DESC(debug
, "Bitmapped debugging message enable value");
35 /* This is the time (in jiffies) between invocations of the hardware
37 * On Falcon-based NICs, this will:
38 * - Check the on-board hardware monitor;
39 * - Poll the link state and reconfigure the hardware as necessary.
40 * On Siena-based NICs for power systems with EEH support, this will give EEH a
43 static unsigned int efx_monitor_interval
= 1 * HZ
;
45 /* How often and how many times to poll for a reset while waiting for a
46 * BIST that another function started to complete.
48 #define BIST_WAIT_DELAY_MS 100
49 #define BIST_WAIT_DELAY_COUNT 100
51 /* Default stats update time */
52 #define STATS_PERIOD_MS_DEFAULT 1000
54 static const unsigned int efx_reset_type_max
= RESET_TYPE_MAX
;
55 static const char *const efx_reset_type_names
[] = {
56 [RESET_TYPE_INVISIBLE
] = "INVISIBLE",
57 [RESET_TYPE_ALL
] = "ALL",
58 [RESET_TYPE_RECOVER_OR_ALL
] = "RECOVER_OR_ALL",
59 [RESET_TYPE_WORLD
] = "WORLD",
60 [RESET_TYPE_RECOVER_OR_DISABLE
] = "RECOVER_OR_DISABLE",
61 [RESET_TYPE_DATAPATH
] = "DATAPATH",
62 [RESET_TYPE_MC_BIST
] = "MC_BIST",
63 [RESET_TYPE_DISABLE
] = "DISABLE",
64 [RESET_TYPE_TX_WATCHDOG
] = "TX_WATCHDOG",
65 [RESET_TYPE_INT_ERROR
] = "INT_ERROR",
66 [RESET_TYPE_DMA_ERROR
] = "DMA_ERROR",
67 [RESET_TYPE_TX_SKIP
] = "TX_SKIP",
68 [RESET_TYPE_MC_FAILURE
] = "MC_FAILURE",
69 [RESET_TYPE_MCDI_TIMEOUT
] = "MCDI_TIMEOUT (FLR)",
72 #define RESET_TYPE(type) \
73 STRING_TABLE_LOOKUP(type, efx_reset_type)
75 /* Loopback mode names (see LOOPBACK_MODE()) */
76 const unsigned int efx_siena_loopback_mode_max
= LOOPBACK_MAX
;
77 const char *const efx_siena_loopback_mode_names
[] = {
78 [LOOPBACK_NONE
] = "NONE",
79 [LOOPBACK_DATA
] = "DATAPATH",
80 [LOOPBACK_GMAC
] = "GMAC",
81 [LOOPBACK_XGMII
] = "XGMII",
82 [LOOPBACK_XGXS
] = "XGXS",
83 [LOOPBACK_XAUI
] = "XAUI",
84 [LOOPBACK_GMII
] = "GMII",
85 [LOOPBACK_SGMII
] = "SGMII",
86 [LOOPBACK_XGBR
] = "XGBR",
87 [LOOPBACK_XFI
] = "XFI",
88 [LOOPBACK_XAUI_FAR
] = "XAUI_FAR",
89 [LOOPBACK_GMII_FAR
] = "GMII_FAR",
90 [LOOPBACK_SGMII_FAR
] = "SGMII_FAR",
91 [LOOPBACK_XFI_FAR
] = "XFI_FAR",
92 [LOOPBACK_GPHY
] = "GPHY",
93 [LOOPBACK_PHYXS
] = "PHYXS",
94 [LOOPBACK_PCS
] = "PCS",
95 [LOOPBACK_PMAPMD
] = "PMA/PMD",
96 [LOOPBACK_XPORT
] = "XPORT",
97 [LOOPBACK_XGMII_WS
] = "XGMII_WS",
98 [LOOPBACK_XAUI_WS
] = "XAUI_WS",
99 [LOOPBACK_XAUI_WS_FAR
] = "XAUI_WS_FAR",
100 [LOOPBACK_XAUI_WS_NEAR
] = "XAUI_WS_NEAR",
101 [LOOPBACK_GMII_WS
] = "GMII_WS",
102 [LOOPBACK_XFI_WS
] = "XFI_WS",
103 [LOOPBACK_XFI_WS_FAR
] = "XFI_WS_FAR",
104 [LOOPBACK_PHYXS_WS
] = "PHYXS_WS",
107 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
108 * queued onto this work queue. This is not a per-nic work queue, because
109 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
111 static struct workqueue_struct
*reset_workqueue
;
113 int efx_siena_create_reset_workqueue(void)
115 reset_workqueue
= create_singlethread_workqueue("sfc_siena_reset");
116 if (!reset_workqueue
) {
117 printk(KERN_ERR
"Failed to create reset workqueue\n");
124 void efx_siena_queue_reset_work(struct efx_nic
*efx
)
126 queue_work(reset_workqueue
, &efx
->reset_work
);
129 void efx_siena_flush_reset_workqueue(struct efx_nic
*efx
)
131 cancel_work_sync(&efx
->reset_work
);
134 void efx_siena_destroy_reset_workqueue(void)
136 if (reset_workqueue
) {
137 destroy_workqueue(reset_workqueue
);
138 reset_workqueue
= NULL
;
142 /* We assume that efx->type->reconfigure_mac will always try to sync RX
143 * filters and therefore needs to read-lock the filter table against freeing
145 void efx_siena_mac_reconfigure(struct efx_nic
*efx
, bool mtu_only
)
147 if (efx
->type
->reconfigure_mac
) {
148 down_read(&efx
->filter_sem
);
149 efx
->type
->reconfigure_mac(efx
, mtu_only
);
150 up_read(&efx
->filter_sem
);
154 /* Asynchronous work item for changing MAC promiscuity and multicast
155 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
158 static void efx_mac_work(struct work_struct
*data
)
160 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
162 mutex_lock(&efx
->mac_lock
);
163 if (efx
->port_enabled
)
164 efx_siena_mac_reconfigure(efx
, false);
165 mutex_unlock(&efx
->mac_lock
);
168 int efx_siena_set_mac_address(struct net_device
*net_dev
, void *data
)
170 struct efx_nic
*efx
= netdev_priv(net_dev
);
171 struct sockaddr
*addr
= data
;
172 u8
*new_addr
= addr
->sa_data
;
176 if (!is_valid_ether_addr(new_addr
)) {
177 netif_err(efx
, drv
, efx
->net_dev
,
178 "invalid ethernet MAC address requested: %pM\n",
180 return -EADDRNOTAVAIL
;
183 /* save old address */
184 ether_addr_copy(old_addr
, net_dev
->dev_addr
);
185 eth_hw_addr_set(net_dev
, new_addr
);
186 if (efx
->type
->set_mac_address
) {
187 rc
= efx
->type
->set_mac_address(efx
);
189 eth_hw_addr_set(net_dev
, old_addr
);
194 /* Reconfigure the MAC */
195 mutex_lock(&efx
->mac_lock
);
196 efx_siena_mac_reconfigure(efx
, false);
197 mutex_unlock(&efx
->mac_lock
);
202 /* Context: netif_addr_lock held, BHs disabled. */
203 void efx_siena_set_rx_mode(struct net_device
*net_dev
)
205 struct efx_nic
*efx
= netdev_priv(net_dev
);
207 if (efx
->port_enabled
)
208 queue_work(efx
->workqueue
, &efx
->mac_work
);
209 /* Otherwise efx_start_port() will do this */
212 int efx_siena_set_features(struct net_device
*net_dev
, netdev_features_t data
)
214 struct efx_nic
*efx
= netdev_priv(net_dev
);
217 /* If disabling RX n-tuple filtering, clear existing filters */
218 if (net_dev
->features
& ~data
& NETIF_F_NTUPLE
) {
219 rc
= efx
->type
->filter_clear_rx(efx
, EFX_FILTER_PRI_MANUAL
);
224 /* If Rx VLAN filter is changed, update filters via mac_reconfigure.
225 * If rx-fcs is changed, mac_reconfigure updates that too.
227 if ((net_dev
->features
^ data
) & (NETIF_F_HW_VLAN_CTAG_FILTER
|
229 /* efx_siena_set_rx_mode() will schedule MAC work to update filters
230 * when a new features are finally set in net_dev.
232 efx_siena_set_rx_mode(net_dev
);
238 /* This ensures that the kernel is kept informed (via
239 * netif_carrier_on/off) of the link status, and also maintains the
240 * link status's stop on the port's TX queue.
242 void efx_siena_link_status_changed(struct efx_nic
*efx
)
244 struct efx_link_state
*link_state
= &efx
->link_state
;
246 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
247 * that no events are triggered between unregister_netdev() and the
248 * driver unloading. A more general condition is that NETDEV_CHANGE
249 * can only be generated between NETDEV_UP and NETDEV_DOWN
251 if (!netif_running(efx
->net_dev
))
254 if (link_state
->up
!= netif_carrier_ok(efx
->net_dev
)) {
255 efx
->n_link_state_changes
++;
258 netif_carrier_on(efx
->net_dev
);
260 netif_carrier_off(efx
->net_dev
);
263 /* Status message for kernel log */
265 netif_info(efx
, link
, efx
->net_dev
,
266 "link up at %uMbps %s-duplex (MTU %d)\n",
267 link_state
->speed
, link_state
->fd
? "full" : "half",
270 netif_info(efx
, link
, efx
->net_dev
, "link down\n");
273 unsigned int efx_siena_xdp_max_mtu(struct efx_nic
*efx
)
275 /* The maximum MTU that we can fit in a single page, allowing for
276 * framing, overhead and XDP headroom + tailroom.
278 int overhead
= EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state
) +
279 efx
->rx_prefix_size
+ efx
->type
->rx_buffer_padding
+
280 efx
->rx_ip_align
+ EFX_XDP_HEADROOM
+ EFX_XDP_TAILROOM
;
282 return PAGE_SIZE
- overhead
;
285 /* Context: process, rtnl_lock() held. */
286 int efx_siena_change_mtu(struct net_device
*net_dev
, int new_mtu
)
288 struct efx_nic
*efx
= netdev_priv(net_dev
);
291 rc
= efx_check_disabled(efx
);
295 if (rtnl_dereference(efx
->xdp_prog
) &&
296 new_mtu
> efx_siena_xdp_max_mtu(efx
)) {
297 netif_err(efx
, drv
, efx
->net_dev
,
298 "Requested MTU of %d too big for XDP (max: %d)\n",
299 new_mtu
, efx_siena_xdp_max_mtu(efx
));
303 netif_dbg(efx
, drv
, efx
->net_dev
, "changing MTU to %d\n", new_mtu
);
305 efx_device_detach_sync(efx
);
306 efx_siena_stop_all(efx
);
308 mutex_lock(&efx
->mac_lock
);
309 WRITE_ONCE(net_dev
->mtu
, new_mtu
);
310 efx_siena_mac_reconfigure(efx
, true);
311 mutex_unlock(&efx
->mac_lock
);
313 efx_siena_start_all(efx
);
314 efx_device_attach_if_not_resetting(efx
);
318 /**************************************************************************
322 **************************************************************************/
324 /* Run periodically off the general workqueue */
325 static void efx_monitor(struct work_struct
*data
)
327 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
330 netif_vdbg(efx
, timer
, efx
->net_dev
,
331 "hardware monitor executing on CPU %d\n",
332 raw_smp_processor_id());
333 BUG_ON(efx
->type
->monitor
== NULL
);
335 /* If the mac_lock is already held then it is likely a port
336 * reconfiguration is already in place, which will likely do
337 * most of the work of monitor() anyway.
339 if (mutex_trylock(&efx
->mac_lock
)) {
340 if (efx
->port_enabled
&& efx
->type
->monitor
)
341 efx
->type
->monitor(efx
);
342 mutex_unlock(&efx
->mac_lock
);
345 efx_siena_start_monitor(efx
);
348 void efx_siena_start_monitor(struct efx_nic
*efx
)
350 if (efx
->type
->monitor
)
351 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
352 efx_monitor_interval
);
355 /**************************************************************************
357 * Event queue processing
359 *************************************************************************/
361 /* Channels are shutdown and reinitialised whilst the NIC is running
362 * to propagate configuration changes (mtu, checksum offload), or
363 * to clear hardware error conditions
365 static void efx_start_datapath(struct efx_nic
*efx
)
367 netdev_features_t old_features
= efx
->net_dev
->features
;
368 bool old_rx_scatter
= efx
->rx_scatter
;
371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
375 efx
->rx_dma_len
= (efx
->rx_prefix_size
+
376 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
377 efx
->type
->rx_buffer_padding
);
378 rx_buf_len
= (sizeof(struct efx_rx_page_state
) + EFX_XDP_HEADROOM
+
379 efx
->rx_ip_align
+ efx
->rx_dma_len
+ EFX_XDP_TAILROOM
);
381 if (rx_buf_len
<= PAGE_SIZE
) {
382 efx
->rx_scatter
= efx
->type
->always_rx_scatter
;
383 efx
->rx_buffer_order
= 0;
384 } else if (efx
->type
->can_rx_scatter
) {
385 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE
% L1_CACHE_BYTES
);
386 BUILD_BUG_ON(sizeof(struct efx_rx_page_state
) +
387 2 * ALIGN(NET_IP_ALIGN
+ EFX_RX_USR_BUF_SIZE
,
388 EFX_RX_BUF_ALIGNMENT
) >
390 efx
->rx_scatter
= true;
391 efx
->rx_dma_len
= EFX_RX_USR_BUF_SIZE
;
392 efx
->rx_buffer_order
= 0;
394 efx
->rx_scatter
= false;
395 efx
->rx_buffer_order
= get_order(rx_buf_len
);
398 efx_siena_rx_config_page_split(efx
);
399 if (efx
->rx_buffer_order
)
400 netif_dbg(efx
, drv
, efx
->net_dev
,
401 "RX buf len=%u; page order=%u batch=%u\n",
402 efx
->rx_dma_len
, efx
->rx_buffer_order
,
403 efx
->rx_pages_per_batch
);
405 netif_dbg(efx
, drv
, efx
->net_dev
,
406 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
407 efx
->rx_dma_len
, efx
->rx_page_buf_step
,
408 efx
->rx_bufs_per_page
, efx
->rx_pages_per_batch
);
410 /* Restore previously fixed features in hw_features and remove
411 * features which are fixed now
413 efx
->net_dev
->hw_features
|= efx
->net_dev
->features
;
414 efx
->net_dev
->hw_features
&= ~efx
->fixed_features
;
415 efx
->net_dev
->features
|= efx
->fixed_features
;
416 if (efx
->net_dev
->features
!= old_features
)
417 netdev_features_change(efx
->net_dev
);
419 /* RX filters may also have scatter-enabled flags */
420 if ((efx
->rx_scatter
!= old_rx_scatter
) &&
421 efx
->type
->filter_update_rx_scatter
)
422 efx
->type
->filter_update_rx_scatter(efx
);
424 /* We must keep at least one descriptor in a TX ring empty.
425 * We could avoid this when the queue size does not exactly
426 * match the hardware ring size, but it's not that important.
427 * Therefore we stop the queue when one more skb might fill
428 * the ring completely. We wake it when half way back to
431 efx
->txq_stop_thresh
= efx
->txq_entries
- efx_siena_tx_max_skb_descs(efx
);
432 efx
->txq_wake_thresh
= efx
->txq_stop_thresh
/ 2;
434 /* Initialise the channels */
435 efx_siena_start_channels(efx
);
437 efx_siena_ptp_start_datapath(efx
);
439 if (netif_device_present(efx
->net_dev
))
440 netif_tx_wake_all_queues(efx
->net_dev
);
443 static void efx_stop_datapath(struct efx_nic
*efx
)
445 EFX_ASSERT_RESET_SERIALISED(efx
);
446 BUG_ON(efx
->port_enabled
);
448 efx_siena_ptp_stop_datapath(efx
);
450 efx_siena_stop_channels(efx
);
453 /**************************************************************************
457 **************************************************************************/
459 /* Equivalent to efx_siena_link_set_advertising with all-zeroes, except does not
460 * force the Autoneg bit on.
462 void efx_siena_link_clear_advertising(struct efx_nic
*efx
)
464 bitmap_zero(efx
->link_advertising
, __ETHTOOL_LINK_MODE_MASK_NBITS
);
465 efx
->wanted_fc
&= ~(EFX_FC_TX
| EFX_FC_RX
);
468 void efx_siena_link_set_wanted_fc(struct efx_nic
*efx
, u8 wanted_fc
)
470 efx
->wanted_fc
= wanted_fc
;
471 if (efx
->link_advertising
[0]) {
472 if (wanted_fc
& EFX_FC_RX
)
473 efx
->link_advertising
[0] |= (ADVERTISED_Pause
|
474 ADVERTISED_Asym_Pause
);
476 efx
->link_advertising
[0] &= ~(ADVERTISED_Pause
|
477 ADVERTISED_Asym_Pause
);
478 if (wanted_fc
& EFX_FC_TX
)
479 efx
->link_advertising
[0] ^= ADVERTISED_Asym_Pause
;
483 static void efx_start_port(struct efx_nic
*efx
)
485 netif_dbg(efx
, ifup
, efx
->net_dev
, "start port\n");
486 BUG_ON(efx
->port_enabled
);
488 mutex_lock(&efx
->mac_lock
);
489 efx
->port_enabled
= true;
491 /* Ensure MAC ingress/egress is enabled */
492 efx_siena_mac_reconfigure(efx
, false);
494 mutex_unlock(&efx
->mac_lock
);
497 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
498 * and the async self-test, wait for them to finish and prevent them
499 * being scheduled again. This doesn't cover online resets, which
500 * should only be cancelled when removing the device.
502 static void efx_stop_port(struct efx_nic
*efx
)
504 netif_dbg(efx
, ifdown
, efx
->net_dev
, "stop port\n");
506 EFX_ASSERT_RESET_SERIALISED(efx
);
508 mutex_lock(&efx
->mac_lock
);
509 efx
->port_enabled
= false;
510 mutex_unlock(&efx
->mac_lock
);
512 /* Serialise against efx_set_multicast_list() */
513 netif_addr_lock_bh(efx
->net_dev
);
514 netif_addr_unlock_bh(efx
->net_dev
);
516 cancel_delayed_work_sync(&efx
->monitor_work
);
517 efx_siena_selftest_async_cancel(efx
);
518 cancel_work_sync(&efx
->mac_work
);
521 /* If the interface is supposed to be running but is not, start
522 * the hardware and software data path, regular activity for the port
523 * (MAC statistics, link polling, etc.) and schedule the port to be
524 * reconfigured. Interrupts must already be enabled. This function
525 * is safe to call multiple times, so long as the NIC is not disabled.
526 * Requires the RTNL lock.
528 void efx_siena_start_all(struct efx_nic
*efx
)
530 EFX_ASSERT_RESET_SERIALISED(efx
);
531 BUG_ON(efx
->state
== STATE_DISABLED
);
533 /* Check that it is appropriate to restart the interface. All
534 * of these flags are safe to read under just the rtnl lock
536 if (efx
->port_enabled
|| !netif_running(efx
->net_dev
) ||
541 efx_start_datapath(efx
);
543 /* Start the hardware monitor if there is one */
544 efx_siena_start_monitor(efx
);
546 /* Link state detection is normally event-driven; we have
547 * to poll now because we could have missed a change
549 mutex_lock(&efx
->mac_lock
);
550 if (efx_siena_mcdi_phy_poll(efx
))
551 efx_siena_link_status_changed(efx
);
552 mutex_unlock(&efx
->mac_lock
);
554 if (efx
->type
->start_stats
) {
555 efx
->type
->start_stats(efx
);
556 efx
->type
->pull_stats(efx
);
557 spin_lock_bh(&efx
->stats_lock
);
558 efx
->type
->update_stats(efx
, NULL
, NULL
);
559 spin_unlock_bh(&efx
->stats_lock
);
563 /* Quiesce the hardware and software data path, and regular activity
564 * for the port without bringing the link down. Safe to call multiple
565 * times with the NIC in almost any state, but interrupts should be
566 * enabled. Requires the RTNL lock.
568 void efx_siena_stop_all(struct efx_nic
*efx
)
570 EFX_ASSERT_RESET_SERIALISED(efx
);
572 /* port_enabled can be read safely under the rtnl lock */
573 if (!efx
->port_enabled
)
576 if (efx
->type
->update_stats
) {
577 /* update stats before we go down so we can accurately count
580 efx
->type
->pull_stats(efx
);
581 spin_lock_bh(&efx
->stats_lock
);
582 efx
->type
->update_stats(efx
, NULL
, NULL
);
583 spin_unlock_bh(&efx
->stats_lock
);
584 efx
->type
->stop_stats(efx
);
589 /* Stop the kernel transmit interface. This is only valid if
590 * the device is stopped or detached; otherwise the watchdog
591 * may fire immediately.
593 WARN_ON(netif_running(efx
->net_dev
) &&
594 netif_device_present(efx
->net_dev
));
595 netif_tx_disable(efx
->net_dev
);
597 efx_stop_datapath(efx
);
600 static size_t efx_siena_update_stats_atomic(struct efx_nic
*efx
, u64
*full_stats
,
601 struct rtnl_link_stats64
*core_stats
)
603 if (efx
->type
->update_stats_atomic
)
604 return efx
->type
->update_stats_atomic(efx
, full_stats
, core_stats
);
605 return efx
->type
->update_stats(efx
, full_stats
, core_stats
);
608 /* Context: process, rcu_read_lock or RTNL held, non-blocking. */
609 void efx_siena_net_stats(struct net_device
*net_dev
,
610 struct rtnl_link_stats64
*stats
)
612 struct efx_nic
*efx
= netdev_priv(net_dev
);
614 spin_lock_bh(&efx
->stats_lock
);
615 efx_siena_update_stats_atomic(efx
, NULL
, stats
);
616 spin_unlock_bh(&efx
->stats_lock
);
619 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
620 * the MAC appropriately. All other PHY configuration changes are pushed
621 * through phy_op->set_settings(), and pushed asynchronously to the MAC
622 * through efx_monitor().
624 * Callers must hold the mac_lock
626 int __efx_siena_reconfigure_port(struct efx_nic
*efx
)
628 enum efx_phy_mode phy_mode
;
631 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
633 /* Disable PHY transmit in mac level loopbacks */
634 phy_mode
= efx
->phy_mode
;
635 if (LOOPBACK_INTERNAL(efx
))
636 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
638 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
640 if (efx
->type
->reconfigure_port
)
641 rc
= efx
->type
->reconfigure_port(efx
);
644 efx
->phy_mode
= phy_mode
;
649 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
652 int efx_siena_reconfigure_port(struct efx_nic
*efx
)
656 EFX_ASSERT_RESET_SERIALISED(efx
);
658 mutex_lock(&efx
->mac_lock
);
659 rc
= __efx_siena_reconfigure_port(efx
);
660 mutex_unlock(&efx
->mac_lock
);
665 /**************************************************************************
667 * Device reset and suspend
669 **************************************************************************/
671 static void efx_wait_for_bist_end(struct efx_nic
*efx
)
675 for (i
= 0; i
< BIST_WAIT_DELAY_COUNT
; ++i
) {
676 if (efx_siena_mcdi_poll_reboot(efx
))
678 msleep(BIST_WAIT_DELAY_MS
);
681 netif_err(efx
, drv
, efx
->net_dev
, "Warning: No MC reboot after BIST mode\n");
683 /* Either way unset the BIST flag. If we found no reboot we probably
684 * won't recover, but we should try.
686 efx
->mc_bist_for_other_fn
= false;
689 /* Try recovery mechanisms.
690 * For now only EEH is supported.
691 * Returns 0 if the recovery mechanisms are unsuccessful.
692 * Returns a non-zero value otherwise.
694 int efx_siena_try_recovery(struct efx_nic
*efx
)
697 /* A PCI error can occur and not be seen by EEH because nothing
698 * happens on the PCI bus. In this case the driver may fail and
699 * schedule a 'recover or reset', leading to this recovery handler.
700 * Manually call the eeh failure check function.
702 struct eeh_dev
*eehdev
= pci_dev_to_eeh_dev(efx
->pci_dev
);
703 if (eeh_dev_check_failure(eehdev
)) {
704 /* The EEH mechanisms will handle the error and reset the
705 * device if necessary.
713 /* Tears down the entire software state and most of the hardware state
716 void efx_siena_reset_down(struct efx_nic
*efx
, enum reset_type method
)
718 EFX_ASSERT_RESET_SERIALISED(efx
);
720 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
721 efx
->type
->prepare_flr(efx
);
723 efx_siena_stop_all(efx
);
724 efx_siena_disable_interrupts(efx
);
726 mutex_lock(&efx
->mac_lock
);
727 down_write(&efx
->filter_sem
);
728 efx
->type
->fini(efx
);
731 /* Context: netif_tx_lock held, BHs disabled. */
732 void efx_siena_watchdog(struct net_device
*net_dev
, unsigned int txqueue
)
734 struct efx_nic
*efx
= netdev_priv(net_dev
);
736 netif_err(efx
, tx_err
, efx
->net_dev
,
737 "TX stuck with port_enabled=%d: resetting channels\n",
740 efx_siena_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
743 /* This function will always ensure that the locks acquired in
744 * efx_siena_reset_down() are released. A failure return code indicates
745 * that we were unable to reinitialise the hardware, and the
746 * driver should be disabled. If ok is false, then the rx and tx
747 * engines are not restarted, pending a RESET_DISABLE.
749 int efx_siena_reset_up(struct efx_nic
*efx
, enum reset_type method
, bool ok
)
753 EFX_ASSERT_RESET_SERIALISED(efx
);
755 if (method
== RESET_TYPE_MCDI_TIMEOUT
)
756 efx
->type
->finish_flr(efx
);
758 /* Ensure that SRAM is initialised even if we're disabling the device */
759 rc
= efx
->type
->init(efx
);
761 netif_err(efx
, drv
, efx
->net_dev
, "failed to initialise NIC\n");
768 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
&&
769 method
!= RESET_TYPE_DATAPATH
) {
770 rc
= efx_siena_mcdi_port_reconfigure(efx
);
771 if (rc
&& rc
!= -EPERM
)
772 netif_err(efx
, drv
, efx
->net_dev
,
773 "could not restore PHY settings\n");
776 rc
= efx_siena_enable_interrupts(efx
);
780 #ifdef CONFIG_SFC_SIENA_SRIOV
781 rc
= efx
->type
->vswitching_restore(efx
);
782 if (rc
) /* not fatal; the PF will still work fine */
783 netif_warn(efx
, probe
, efx
->net_dev
,
784 "failed to restore vswitching rc=%d;"
785 " VFs may not function\n", rc
);
788 efx
->type
->filter_table_restore(efx
);
789 up_write(&efx
->filter_sem
);
790 if (efx
->type
->sriov_reset
)
791 efx
->type
->sriov_reset(efx
);
793 mutex_unlock(&efx
->mac_lock
);
795 efx_siena_start_all(efx
);
797 if (efx
->type
->udp_tnl_push_ports
)
798 efx
->type
->udp_tnl_push_ports(efx
);
803 efx
->port_initialized
= false;
805 up_write(&efx
->filter_sem
);
806 mutex_unlock(&efx
->mac_lock
);
811 /* Reset the NIC using the specified method. Note that the reset may
812 * fail, in which case the card will be left in an unusable state.
814 * Caller must hold the rtnl_lock.
816 int efx_siena_reset(struct efx_nic
*efx
, enum reset_type method
)
821 netif_info(efx
, drv
, efx
->net_dev
, "resetting (%s)\n",
824 efx_device_detach_sync(efx
);
825 /* efx_siena_reset_down() grabs locks that prevent recovery on EF100.
826 * EF100 reset is handled in the efx_nic_type callback below.
828 if (efx_nic_rev(efx
) != EFX_REV_EF100
)
829 efx_siena_reset_down(efx
, method
);
831 rc
= efx
->type
->reset(efx
, method
);
833 netif_err(efx
, drv
, efx
->net_dev
, "failed to reset hardware\n");
837 /* Clear flags for the scopes we covered. We assume the NIC and
838 * driver are now quiescent so that there is no race here.
840 if (method
< RESET_TYPE_MAX_METHOD
)
841 efx
->reset_pending
&= -(1 << (method
+ 1));
842 else /* it doesn't fit into the well-ordered scope hierarchy */
843 __clear_bit(method
, &efx
->reset_pending
);
845 /* Reinitialise bus-mastering, which may have been turned off before
846 * the reset was scheduled. This is still appropriate, even in the
847 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
848 * can respond to requests.
850 pci_set_master(efx
->pci_dev
);
853 /* Leave device stopped if necessary */
855 method
== RESET_TYPE_DISABLE
||
856 method
== RESET_TYPE_RECOVER_OR_DISABLE
;
857 if (efx_nic_rev(efx
) != EFX_REV_EF100
)
858 rc2
= efx_siena_reset_up(efx
, method
, !disabled
);
866 dev_close(efx
->net_dev
);
867 netif_err(efx
, drv
, efx
->net_dev
, "has been disabled\n");
868 efx
->state
= STATE_DISABLED
;
870 netif_dbg(efx
, drv
, efx
->net_dev
, "reset complete\n");
871 efx_device_attach_if_not_resetting(efx
);
876 /* The worker thread exists so that code that cannot sleep can
877 * schedule a reset for later.
879 static void efx_reset_work(struct work_struct
*data
)
881 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, reset_work
);
882 unsigned long pending
;
883 enum reset_type method
;
885 pending
= READ_ONCE(efx
->reset_pending
);
886 method
= fls(pending
) - 1;
888 if (method
== RESET_TYPE_MC_BIST
)
889 efx_wait_for_bist_end(efx
);
891 if ((method
== RESET_TYPE_RECOVER_OR_DISABLE
||
892 method
== RESET_TYPE_RECOVER_OR_ALL
) &&
893 efx_siena_try_recovery(efx
))
901 /* We checked the state in efx_siena_schedule_reset() but it may
902 * have changed by now. Now that we have the RTNL lock,
903 * it cannot change again.
905 if (efx
->state
== STATE_READY
)
906 (void)efx_siena_reset(efx
, method
);
911 void efx_siena_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
913 enum reset_type method
;
915 if (efx
->state
== STATE_RECOVERY
) {
916 netif_dbg(efx
, drv
, efx
->net_dev
,
917 "recovering: skip scheduling %s reset\n",
923 case RESET_TYPE_INVISIBLE
:
925 case RESET_TYPE_RECOVER_OR_ALL
:
926 case RESET_TYPE_WORLD
:
927 case RESET_TYPE_DISABLE
:
928 case RESET_TYPE_RECOVER_OR_DISABLE
:
929 case RESET_TYPE_DATAPATH
:
930 case RESET_TYPE_MC_BIST
:
931 case RESET_TYPE_MCDI_TIMEOUT
:
933 netif_dbg(efx
, drv
, efx
->net_dev
, "scheduling %s reset\n",
937 method
= efx
->type
->map_reset_reason(type
);
938 netif_dbg(efx
, drv
, efx
->net_dev
,
939 "scheduling %s reset for %s\n",
940 RESET_TYPE(method
), RESET_TYPE(type
));
944 set_bit(method
, &efx
->reset_pending
);
945 smp_mb(); /* ensure we change reset_pending before checking state */
947 /* If we're not READY then just leave the flags set as the cue
948 * to abort probing or reschedule the reset later.
950 if (READ_ONCE(efx
->state
) != STATE_READY
)
953 /* efx_process_channel() will no longer read events once a
954 * reset is scheduled. So switch back to poll'd MCDI completions.
956 efx_siena_mcdi_mode_poll(efx
);
958 efx_siena_queue_reset_work(efx
);
961 /**************************************************************************
963 * Dummy NIC operations
965 * Can be used for some unimplemented operations
966 * Needed so all function pointers are valid and do not have to be tested
969 **************************************************************************/
970 int efx_siena_port_dummy_op_int(struct efx_nic
*efx
)
975 void efx_siena_port_dummy_op_void(struct efx_nic
*efx
) {}
977 /**************************************************************************
981 **************************************************************************/
983 /* This zeroes out and then fills in the invariants in a struct
984 * efx_nic (including all sub-structures).
986 int efx_siena_init_struct(struct efx_nic
*efx
,
987 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
991 /* Initialise common structures */
992 INIT_LIST_HEAD(&efx
->node
);
993 INIT_LIST_HEAD(&efx
->secondary_list
);
994 spin_lock_init(&efx
->biu_lock
);
995 #ifdef CONFIG_SFC_SIENA_MTD
996 INIT_LIST_HEAD(&efx
->mtd_list
);
998 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
999 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
1000 efx_siena_selftest_async_init(efx
);
1001 efx
->pci_dev
= pci_dev
;
1002 efx
->msg_enable
= debug
;
1003 efx
->state
= STATE_UNINIT
;
1004 strscpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
1006 efx
->net_dev
= net_dev
;
1007 efx
->rx_prefix_size
= efx
->type
->rx_prefix_size
;
1009 NET_IP_ALIGN
? (efx
->rx_prefix_size
+ NET_IP_ALIGN
) % 4 : 0;
1010 efx
->rx_packet_hash_offset
=
1011 efx
->type
->rx_hash_offset
- efx
->type
->rx_prefix_size
;
1012 efx
->rx_packet_ts_offset
=
1013 efx
->type
->rx_ts_offset
- efx
->type
->rx_prefix_size
;
1014 efx
->rss_context
.context_id
= EFX_MCDI_RSS_CONTEXT_INVALID
;
1015 efx
->vport_id
= EVB_PORT_ID_ASSIGNED
;
1016 spin_lock_init(&efx
->stats_lock
);
1017 efx
->vi_stride
= EFX_DEFAULT_VI_STRIDE
;
1018 efx
->num_mac_stats
= MC_CMD_MAC_NSTATS
;
1019 BUILD_BUG_ON(MC_CMD_MAC_NSTATS
- 1 != MC_CMD_MAC_GENERATION_END
);
1020 mutex_init(&efx
->mac_lock
);
1021 init_rwsem(&efx
->filter_sem
);
1022 #ifdef CONFIG_RFS_ACCEL
1023 mutex_init(&efx
->rps_mutex
);
1024 spin_lock_init(&efx
->rps_hash_lock
);
1025 /* Failure to allocate is not fatal, but may degrade ARFS performance */
1026 efx
->rps_hash_table
= kcalloc(EFX_ARFS_HASH_TABLE_SIZE
,
1027 sizeof(*efx
->rps_hash_table
), GFP_KERNEL
);
1029 efx
->mdio
.dev
= net_dev
;
1030 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
1031 init_waitqueue_head(&efx
->flush_wq
);
1033 efx
->tx_queues_per_channel
= 1;
1034 efx
->rxq_entries
= EFX_DEFAULT_DMAQ_SIZE
;
1035 efx
->txq_entries
= EFX_DEFAULT_DMAQ_SIZE
;
1037 efx
->mem_bar
= UINT_MAX
;
1039 rc
= efx_siena_init_channels(efx
);
1043 /* Would be good to use the net_dev name, but we're too early */
1044 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
1046 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
1047 if (!efx
->workqueue
) {
1055 efx_siena_fini_struct(efx
);
1059 void efx_siena_fini_struct(struct efx_nic
*efx
)
1061 #ifdef CONFIG_RFS_ACCEL
1062 kfree(efx
->rps_hash_table
);
1065 efx_siena_fini_channels(efx
);
1069 if (efx
->workqueue
) {
1070 destroy_workqueue(efx
->workqueue
);
1071 efx
->workqueue
= NULL
;
1075 /* This configures the PCI device to enable I/O and DMA. */
1076 int efx_siena_init_io(struct efx_nic
*efx
, int bar
, dma_addr_t dma_mask
,
1077 unsigned int mem_map_size
)
1079 struct pci_dev
*pci_dev
= efx
->pci_dev
;
1082 efx
->mem_bar
= UINT_MAX
;
1084 netif_dbg(efx
, probe
, efx
->net_dev
, "initialising I/O bar=%d\n", bar
);
1086 rc
= pci_enable_device(pci_dev
);
1088 netif_err(efx
, probe
, efx
->net_dev
,
1089 "failed to enable PCI device\n");
1093 pci_set_master(pci_dev
);
1095 rc
= dma_set_mask_and_coherent(&pci_dev
->dev
, dma_mask
);
1097 netif_err(efx
, probe
, efx
->net_dev
,
1098 "could not find a suitable DMA mask\n");
1101 netif_dbg(efx
, probe
, efx
->net_dev
,
1102 "using DMA mask %llx\n", (unsigned long long)dma_mask
);
1104 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, bar
);
1105 if (!efx
->membase_phys
) {
1106 netif_err(efx
, probe
, efx
->net_dev
,
1107 "ERROR: No BAR%d mapping from the BIOS. "
1108 "Try pci=realloc on the kernel command line\n", bar
);
1113 rc
= pci_request_region(pci_dev
, bar
, "sfc");
1115 netif_err(efx
, probe
, efx
->net_dev
,
1116 "request for memory BAR[%d] failed\n", bar
);
1121 efx
->membase
= ioremap(efx
->membase_phys
, mem_map_size
);
1122 if (!efx
->membase
) {
1123 netif_err(efx
, probe
, efx
->net_dev
,
1124 "could not map memory BAR[%d] at %llx+%x\n", bar
,
1125 (unsigned long long)efx
->membase_phys
, mem_map_size
);
1129 netif_dbg(efx
, probe
, efx
->net_dev
,
1130 "memory BAR[%d] at %llx+%x (virtual %p)\n", bar
,
1131 (unsigned long long)efx
->membase_phys
, mem_map_size
,
1137 pci_release_region(efx
->pci_dev
, bar
);
1139 efx
->membase_phys
= 0;
1141 pci_disable_device(efx
->pci_dev
);
1146 void efx_siena_fini_io(struct efx_nic
*efx
)
1148 netif_dbg(efx
, drv
, efx
->net_dev
, "shutting down I/O\n");
1151 iounmap(efx
->membase
);
1152 efx
->membase
= NULL
;
1155 if (efx
->membase_phys
) {
1156 pci_release_region(efx
->pci_dev
, efx
->mem_bar
);
1157 efx
->membase_phys
= 0;
1158 efx
->mem_bar
= UINT_MAX
;
1161 /* Don't disable bus-mastering if VFs are assigned */
1162 if (!pci_vfs_assigned(efx
->pci_dev
))
1163 pci_disable_device(efx
->pci_dev
);
1166 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
1167 static ssize_t
mcdi_logging_show(struct device
*dev
,
1168 struct device_attribute
*attr
,
1171 struct efx_nic
*efx
= dev_get_drvdata(dev
);
1172 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1174 return sysfs_emit(buf
, "%d\n", mcdi
->logging_enabled
);
1177 static ssize_t
mcdi_logging_store(struct device
*dev
,
1178 struct device_attribute
*attr
,
1179 const char *buf
, size_t count
)
1181 struct efx_nic
*efx
= dev_get_drvdata(dev
);
1182 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1183 bool enable
= count
> 0 && *buf
!= '0';
1185 mcdi
->logging_enabled
= enable
;
1189 static DEVICE_ATTR_RW(mcdi_logging
);
1191 void efx_siena_init_mcdi_logging(struct efx_nic
*efx
)
1193 int rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);
1196 netif_warn(efx
, drv
, efx
->net_dev
,
1197 "failed to init net dev attributes\n");
1201 void efx_siena_fini_mcdi_logging(struct efx_nic
*efx
)
1203 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_mcdi_logging
);
1207 /* A PCI error affecting this device was detected.
1208 * At this point MMIO and DMA may be disabled.
1209 * Stop the software path and request a slot reset.
1211 static pci_ers_result_t
efx_io_error_detected(struct pci_dev
*pdev
,
1212 pci_channel_state_t state
)
1214 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
1215 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
1217 if (state
== pci_channel_io_perm_failure
)
1218 return PCI_ERS_RESULT_DISCONNECT
;
1222 if (efx
->state
!= STATE_DISABLED
) {
1223 efx
->state
= STATE_RECOVERY
;
1224 efx
->reset_pending
= 0;
1226 efx_device_detach_sync(efx
);
1228 efx_siena_stop_all(efx
);
1229 efx_siena_disable_interrupts(efx
);
1231 status
= PCI_ERS_RESULT_NEED_RESET
;
1233 /* If the interface is disabled we don't want to do anything
1236 status
= PCI_ERS_RESULT_RECOVERED
;
1241 pci_disable_device(pdev
);
1246 /* Fake a successful reset, which will be performed later in efx_io_resume. */
1247 static pci_ers_result_t
efx_io_slot_reset(struct pci_dev
*pdev
)
1249 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
1250 pci_ers_result_t status
= PCI_ERS_RESULT_RECOVERED
;
1252 if (pci_enable_device(pdev
)) {
1253 netif_err(efx
, hw
, efx
->net_dev
,
1254 "Cannot re-enable PCI device after reset.\n");
1255 status
= PCI_ERS_RESULT_DISCONNECT
;
1261 /* Perform the actual reset and resume I/O operations. */
1262 static void efx_io_resume(struct pci_dev
*pdev
)
1264 struct efx_nic
*efx
= pci_get_drvdata(pdev
);
1269 if (efx
->state
== STATE_DISABLED
)
1272 rc
= efx_siena_reset(efx
, RESET_TYPE_ALL
);
1274 netif_err(efx
, hw
, efx
->net_dev
,
1275 "efx_siena_reset failed after PCI error (%d)\n", rc
);
1277 efx
->state
= STATE_READY
;
1278 netif_dbg(efx
, hw
, efx
->net_dev
,
1279 "Done resetting and resuming IO after PCI error.\n");
1286 /* For simplicity and reliability, we always require a slot reset and try to
1287 * reset the hardware when a pci error affecting the device is detected.
1288 * We leave both the link_reset and mmio_enabled callback unimplemented:
1289 * with our request for slot reset the mmio_enabled callback will never be
1290 * called, and the link_reset callback is not used by AER or EEH mechanisms.
1292 const struct pci_error_handlers efx_siena_err_handlers
= {
1293 .error_detected
= efx_io_error_detected
,
1294 .slot_reset
= efx_io_slot_reset
,
1295 .resume
= efx_io_resume
,
1298 /* Determine whether the NIC will be able to handle TX offloads for a given
1299 * encapsulated packet.
1301 static bool efx_can_encap_offloads(struct efx_nic
*efx
, struct sk_buff
*skb
)
1303 struct gre_base_hdr
*greh
;
1307 /* Does the NIC support encap offloads?
1308 * If not, we should never get here, because we shouldn't have
1309 * advertised encap offload feature flags in the first place.
1311 if (WARN_ON_ONCE(!efx
->type
->udp_tnl_has_port
))
1314 /* Determine encapsulation protocol in use */
1315 switch (skb
->protocol
) {
1316 case htons(ETH_P_IP
):
1317 ipproto
= ip_hdr(skb
)->protocol
;
1319 case htons(ETH_P_IPV6
):
1320 /* If there are extension headers, this will cause us to
1321 * think we can't offload something that we maybe could have.
1323 ipproto
= ipv6_hdr(skb
)->nexthdr
;
1326 /* Not IP, so can't offload it */
1331 /* We support NVGRE but not IP over GRE or random gretaps.
1332 * Specifically, the NIC will accept GRE as encapsulated if
1333 * the inner protocol is Ethernet, but only handle it
1334 * correctly if the GRE header is 8 bytes long. Moreover,
1335 * it will not update the Checksum or Sequence Number fields
1336 * if they are present. (The Routing Present flag,
1337 * GRE_ROUTING, cannot be set else the header would be more
1338 * than 8 bytes long; so we don't have to worry about it.)
1340 if (skb
->inner_protocol_type
!= ENCAP_TYPE_ETHER
)
1342 if (ntohs(skb
->inner_protocol
) != ETH_P_TEB
)
1344 if (skb_inner_mac_header(skb
) - skb_transport_header(skb
) != 8)
1346 greh
= (struct gre_base_hdr
*)skb_transport_header(skb
);
1347 return !(greh
->flags
& (GRE_CSUM
| GRE_SEQ
));
1349 /* If the port is registered for a UDP tunnel, we assume the
1350 * packet is for that tunnel, and the NIC will handle it as
1351 * such. If not, the NIC won't know what to do with it.
1353 dst_port
= udp_hdr(skb
)->dest
;
1354 return efx
->type
->udp_tnl_has_port(efx
, dst_port
);
1360 netdev_features_t
efx_siena_features_check(struct sk_buff
*skb
,
1361 struct net_device
*dev
,
1362 netdev_features_t features
)
1364 struct efx_nic
*efx
= netdev_priv(dev
);
1366 if (skb
->encapsulation
) {
1367 if (features
& NETIF_F_GSO_MASK
)
1368 /* Hardware can only do TSO with at most 208 bytes
1371 if (skb_inner_transport_offset(skb
) >
1372 EFX_TSO2_MAX_HDRLEN
)
1373 features
&= ~(NETIF_F_GSO_MASK
);
1374 if (features
& (NETIF_F_GSO_MASK
| NETIF_F_CSUM_MASK
))
1375 if (!efx_can_encap_offloads(efx
, skb
))
1376 features
&= ~(NETIF_F_GSO_MASK
|
1382 int efx_siena_get_phys_port_id(struct net_device
*net_dev
,
1383 struct netdev_phys_item_id
*ppid
)
1385 struct efx_nic
*efx
= netdev_priv(net_dev
);
1387 if (efx
->type
->get_phys_port_id
)
1388 return efx
->type
->get_phys_port_id(efx
, ppid
);
1393 int efx_siena_get_phys_port_name(struct net_device
*net_dev
,
1394 char *name
, size_t len
)
1396 struct efx_nic
*efx
= netdev_priv(net_dev
);
1398 if (snprintf(name
, len
, "p%u", efx
->port_num
) >= len
)