1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2006-2013 Solarflare Communications Inc.
12 #include <linux/spinlock.h>
14 /**************************************************************************
18 **************************************************************************
20 * Notes on locking strategy for the Falcon architecture:
22 * Many CSRs are very wide and cannot be read or written atomically.
23 * Writes from the host are buffered by the Bus Interface Unit (BIU)
24 * up to 128 bits. Whenever the host writes part of such a register,
25 * the BIU collects the written value and does not write to the
26 * underlying register until all 4 dwords have been written. A
27 * similar buffering scheme applies to host access to the NIC's 64-bit
30 * Writes to different CSRs and 64-bit SRAM words must be serialised,
31 * since interleaved access can result in lost writes. We use
32 * efx_nic::biu_lock for this.
34 * We also serialise reads from 128-bit CSRs and SRAM with the same
35 * spinlock. This may not be necessary, but it doesn't really matter
36 * as there are no such reads on the fast path.
38 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
39 * 128-bit but are special-cased in the BIU to avoid the need for
40 * locking in the host:
42 * - They are write-only.
43 * - The semantics of writing to these registers are such that
44 * replacing the low 96 bits with zero does not affect functionality.
45 * - If the host writes to the last dword address of such a register
46 * (i.e. the high 32 bits) the underlying register will always be
47 * written. If the collector and the current write together do not
48 * provide values for all 128 bits of the register, the low 96 bits
49 * will be written as zero.
50 * - If the host writes to the address of any other part of such a
51 * register while the collector already holds values for some other
52 * register, the write is discarded and the collector maintains its
55 * The EF10 architecture exposes very few registers to the host and
56 * most of them are only 32 bits wide. The only exceptions are the MC
57 * doorbell register pair, which has its own latching, and
58 * TX_DESC_UPD, which works in a similar way to the Falcon
62 #if BITS_PER_LONG == 64
63 #define EFX_USE_QWORD_IO 1
66 /* Hardware issue requires that only 64-bit naturally aligned writes
67 * are seen by hardware. Its not strictly necessary to restrict to
68 * x86_64 arch, but done for safety since unusual write combining behaviour
72 /* PIO is a win only if write-combining is possible */
78 static inline u32
efx_reg(struct efx_nic
*efx
, unsigned int reg
)
80 return efx
->reg_base
+ reg
;
83 #ifdef EFX_USE_QWORD_IO
84 static inline void _efx_writeq(struct efx_nic
*efx
, __le64 value
,
87 __raw_writeq((__force u64
)value
, efx
->membase
+ reg
);
89 static inline __le64
_efx_readq(struct efx_nic
*efx
, unsigned int reg
)
91 return (__force __le64
)__raw_readq(efx
->membase
+ reg
);
95 static inline void _efx_writed(struct efx_nic
*efx
, __le32 value
,
98 __raw_writel((__force u32
)value
, efx
->membase
+ reg
);
100 static inline __le32
_efx_readd(struct efx_nic
*efx
, unsigned int reg
)
102 return (__force __le32
)__raw_readl(efx
->membase
+ reg
);
105 /* Write a normal 128-bit CSR, locking as appropriate. */
106 static inline void efx_writeo(struct efx_nic
*efx
, const efx_oword_t
*value
,
109 unsigned long flags
__attribute__ ((unused
));
111 netif_vdbg(efx
, hw
, efx
->net_dev
,
112 "writing register %x with " EFX_OWORD_FMT
"\n", reg
,
113 EFX_OWORD_VAL(*value
));
115 spin_lock_irqsave(&efx
->biu_lock
, flags
);
116 #ifdef EFX_USE_QWORD_IO
117 _efx_writeq(efx
, value
->u64
[0], reg
+ 0);
118 _efx_writeq(efx
, value
->u64
[1], reg
+ 8);
120 _efx_writed(efx
, value
->u32
[0], reg
+ 0);
121 _efx_writed(efx
, value
->u32
[1], reg
+ 4);
122 _efx_writed(efx
, value
->u32
[2], reg
+ 8);
123 _efx_writed(efx
, value
->u32
[3], reg
+ 12);
125 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
128 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
129 static inline void efx_sram_writeq(struct efx_nic
*efx
, void __iomem
*membase
,
130 const efx_qword_t
*value
, unsigned int index
)
132 unsigned int addr
= index
* sizeof(*value
);
133 unsigned long flags
__attribute__ ((unused
));
135 netif_vdbg(efx
, hw
, efx
->net_dev
,
136 "writing SRAM address %x with " EFX_QWORD_FMT
"\n",
137 addr
, EFX_QWORD_VAL(*value
));
139 spin_lock_irqsave(&efx
->biu_lock
, flags
);
140 #ifdef EFX_USE_QWORD_IO
141 __raw_writeq((__force u64
)value
->u64
[0], membase
+ addr
);
143 __raw_writel((__force u32
)value
->u32
[0], membase
+ addr
);
144 __raw_writel((__force u32
)value
->u32
[1], membase
+ addr
+ 4);
146 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
149 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
150 static inline void efx_writed(struct efx_nic
*efx
, const efx_dword_t
*value
,
153 netif_vdbg(efx
, hw
, efx
->net_dev
,
154 "writing register %x with "EFX_DWORD_FMT
"\n",
155 reg
, EFX_DWORD_VAL(*value
));
157 /* No lock required */
158 _efx_writed(efx
, value
->u32
[0], reg
);
161 /* Read a 128-bit CSR, locking as appropriate. */
162 static inline void efx_reado(struct efx_nic
*efx
, efx_oword_t
*value
,
165 unsigned long flags
__attribute__ ((unused
));
167 spin_lock_irqsave(&efx
->biu_lock
, flags
);
168 value
->u32
[0] = _efx_readd(efx
, reg
+ 0);
169 value
->u32
[1] = _efx_readd(efx
, reg
+ 4);
170 value
->u32
[2] = _efx_readd(efx
, reg
+ 8);
171 value
->u32
[3] = _efx_readd(efx
, reg
+ 12);
172 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
174 netif_vdbg(efx
, hw
, efx
->net_dev
,
175 "read from register %x, got " EFX_OWORD_FMT
"\n", reg
,
176 EFX_OWORD_VAL(*value
));
179 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
180 static inline void efx_sram_readq(struct efx_nic
*efx
, void __iomem
*membase
,
181 efx_qword_t
*value
, unsigned int index
)
183 unsigned int addr
= index
* sizeof(*value
);
184 unsigned long flags
__attribute__ ((unused
));
186 spin_lock_irqsave(&efx
->biu_lock
, flags
);
187 #ifdef EFX_USE_QWORD_IO
188 value
->u64
[0] = (__force __le64
)__raw_readq(membase
+ addr
);
190 value
->u32
[0] = (__force __le32
)__raw_readl(membase
+ addr
);
191 value
->u32
[1] = (__force __le32
)__raw_readl(membase
+ addr
+ 4);
193 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
195 netif_vdbg(efx
, hw
, efx
->net_dev
,
196 "read from SRAM address %x, got "EFX_QWORD_FMT
"\n",
197 addr
, EFX_QWORD_VAL(*value
));
200 /* Read a 32-bit CSR or SRAM */
201 static inline void efx_readd(struct efx_nic
*efx
, efx_dword_t
*value
,
204 value
->u32
[0] = _efx_readd(efx
, reg
);
205 netif_vdbg(efx
, hw
, efx
->net_dev
,
206 "read from register %x, got "EFX_DWORD_FMT
"\n",
207 reg
, EFX_DWORD_VAL(*value
));
210 /* Write a 128-bit CSR forming part of a table */
212 efx_writeo_table(struct efx_nic
*efx
, const efx_oword_t
*value
,
213 unsigned int reg
, unsigned int index
)
215 efx_writeo(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
218 /* Read a 128-bit CSR forming part of a table */
219 static inline void efx_reado_table(struct efx_nic
*efx
, efx_oword_t
*value
,
220 unsigned int reg
, unsigned int index
)
222 efx_reado(efx
, value
, reg
+ index
* sizeof(efx_oword_t
));
225 /* default VI stride (step between per-VI registers) is 8K on EF10 and
228 #define EFX_DEFAULT_VI_STRIDE 0x2000
229 #define EF100_DEFAULT_VI_STRIDE 0x10000
231 /* Calculate offset to page-mapped register */
232 static inline unsigned int efx_paged_reg(struct efx_nic
*efx
, unsigned int page
,
235 return page
* efx
->vi_stride
+ reg
;
238 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
239 static inline void _efx_writeo_page(struct efx_nic
*efx
, efx_oword_t
*value
,
240 unsigned int reg
, unsigned int page
)
242 reg
= efx_paged_reg(efx
, page
, reg
);
244 netif_vdbg(efx
, hw
, efx
->net_dev
,
245 "writing register %x with " EFX_OWORD_FMT
"\n", reg
,
246 EFX_OWORD_VAL(*value
));
248 #ifdef EFX_USE_QWORD_IO
249 _efx_writeq(efx
, value
->u64
[0], reg
+ 0);
250 _efx_writeq(efx
, value
->u64
[1], reg
+ 8);
252 _efx_writed(efx
, value
->u32
[0], reg
+ 0);
253 _efx_writed(efx
, value
->u32
[1], reg
+ 4);
254 _efx_writed(efx
, value
->u32
[2], reg
+ 8);
255 _efx_writed(efx
, value
->u32
[3], reg
+ 12);
258 #define efx_writeo_page(efx, value, reg, page) \
259 _efx_writeo_page(efx, value, \
261 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
264 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
265 * high bits of RX_DESC_UPD or TX_DESC_UPD)
268 _efx_writed_page(struct efx_nic
*efx
, const efx_dword_t
*value
,
269 unsigned int reg
, unsigned int page
)
271 efx_writed(efx
, value
, efx_paged_reg(efx
, page
, reg
));
273 #define efx_writed_page(efx, value, reg, page) \
274 _efx_writed_page(efx, value, \
276 BUILD_BUG_ON_ZERO((reg) != 0x180 && \
286 /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
287 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
288 * collector register.
290 static inline void _efx_writed_page_locked(struct efx_nic
*efx
,
291 const efx_dword_t
*value
,
295 unsigned long flags
__attribute__ ((unused
));
298 spin_lock_irqsave(&efx
->biu_lock
, flags
);
299 efx_writed(efx
, value
, efx_paged_reg(efx
, page
, reg
));
300 spin_unlock_irqrestore(&efx
->biu_lock
, flags
);
302 efx_writed(efx
, value
, efx_paged_reg(efx
, page
, reg
));
305 #define efx_writed_page_locked(efx, value, reg, page) \
306 _efx_writed_page_locked(efx, value, \
307 reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
310 #endif /* EFX_IO_H */