Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / net / ethernet / sfc / siena / mcdi.c
blob3f7899daa86a0572b180d0ca1373be3b2f101892
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
5 */
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
11 #include "nic.h"
12 #include "io.h"
13 #include "farch_regs.h"
14 #include "mcdi_pcol.h"
16 /**************************************************************************
18 * Management-Controller-to-Driver Interface
20 **************************************************************************
23 #define MCDI_RPC_TIMEOUT (10 * HZ)
25 /* A reboot/assertion causes the MCDI status word to be set after the
26 * command word is set or a REBOOT event is sent. If we notice a reboot
27 * via these mechanisms then wait 250ms for the status word to be set.
29 #define MCDI_STATUS_DELAY_US 100
30 #define MCDI_STATUS_DELAY_COUNT 2500
31 #define MCDI_STATUS_SLEEP_MS \
32 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
34 #define SEQ_MASK \
35 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
37 struct efx_mcdi_async_param {
38 struct list_head list;
39 unsigned int cmd;
40 size_t inlen;
41 size_t outlen;
42 bool quiet;
43 efx_mcdi_async_completer *complete;
44 unsigned long cookie;
45 /* followed by request/response buffer */
48 static void efx_mcdi_timeout_async(struct timer_list *t);
49 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
50 bool *was_attached_out);
51 static bool efx_mcdi_poll_once(struct efx_nic *efx);
52 static void efx_mcdi_abandon(struct efx_nic *efx);
54 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
55 static bool efx_siena_mcdi_logging_default;
56 module_param_named(mcdi_logging_default, efx_siena_mcdi_logging_default,
57 bool, 0644);
58 MODULE_PARM_DESC(mcdi_logging_default,
59 "Enable MCDI logging on newly-probed functions");
60 #endif
62 int efx_siena_mcdi_init(struct efx_nic *efx)
64 struct efx_mcdi_iface *mcdi;
65 bool already_attached;
66 int rc = -ENOMEM;
68 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
69 if (!efx->mcdi)
70 goto fail;
72 mcdi = efx_mcdi(efx);
73 mcdi->efx = efx;
74 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
75 /* consuming code assumes buffer is page-sized */
76 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
77 if (!mcdi->logging_buffer)
78 goto fail1;
79 mcdi->logging_enabled = efx_siena_mcdi_logging_default;
80 #endif
81 init_waitqueue_head(&mcdi->wq);
82 init_waitqueue_head(&mcdi->proxy_rx_wq);
83 spin_lock_init(&mcdi->iface_lock);
84 mcdi->state = MCDI_STATE_QUIESCENT;
85 mcdi->mode = MCDI_MODE_POLL;
86 spin_lock_init(&mcdi->async_lock);
87 INIT_LIST_HEAD(&mcdi->async_list);
88 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
90 (void)efx_siena_mcdi_poll_reboot(efx);
91 mcdi->new_epoch = true;
93 /* Recover from a failed assertion before probing */
94 rc = efx_siena_mcdi_handle_assertion(efx);
95 if (rc)
96 goto fail2;
98 /* Let the MC (and BMC, if this is a LOM) know that the driver
99 * is loaded. We should do this before we reset the NIC.
101 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
102 if (rc) {
103 netif_err(efx, probe, efx->net_dev,
104 "Unable to register driver with MCPU\n");
105 goto fail2;
107 if (already_attached)
108 /* Not a fatal error */
109 netif_err(efx, probe, efx->net_dev,
110 "Host already registered with MCPU\n");
112 if (efx->mcdi->fn_flags &
113 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
114 efx->primary = efx;
116 return 0;
117 fail2:
118 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
119 free_page((unsigned long)mcdi->logging_buffer);
120 fail1:
121 #endif
122 kfree(efx->mcdi);
123 efx->mcdi = NULL;
124 fail:
125 return rc;
128 void efx_siena_mcdi_detach(struct efx_nic *efx)
130 if (!efx->mcdi)
131 return;
133 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
135 /* Relinquish the device (back to the BMC, if this is a LOM) */
136 efx_mcdi_drv_attach(efx, false, NULL);
139 void efx_siena_mcdi_fini(struct efx_nic *efx)
141 if (!efx->mcdi)
142 return;
144 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
145 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
146 #endif
148 kfree(efx->mcdi);
151 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
152 const efx_dword_t *inbuf, size_t inlen)
154 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
155 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
156 char *buf = mcdi->logging_buffer; /* page-sized */
157 #endif
158 efx_dword_t hdr[2];
159 size_t hdr_len;
160 u32 xflags, seqno;
162 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
164 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
165 spin_lock_bh(&mcdi->iface_lock);
166 ++mcdi->seqno;
167 seqno = mcdi->seqno & SEQ_MASK;
168 spin_unlock_bh(&mcdi->iface_lock);
170 xflags = 0;
171 if (mcdi->mode == MCDI_MODE_EVENTS)
172 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
174 if (efx->type->mcdi_max_ver == 1) {
175 /* MCDI v1 */
176 EFX_POPULATE_DWORD_7(hdr[0],
177 MCDI_HEADER_RESPONSE, 0,
178 MCDI_HEADER_RESYNC, 1,
179 MCDI_HEADER_CODE, cmd,
180 MCDI_HEADER_DATALEN, inlen,
181 MCDI_HEADER_SEQ, seqno,
182 MCDI_HEADER_XFLAGS, xflags,
183 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
184 hdr_len = 4;
185 } else {
186 /* MCDI v2 */
187 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
188 EFX_POPULATE_DWORD_7(hdr[0],
189 MCDI_HEADER_RESPONSE, 0,
190 MCDI_HEADER_RESYNC, 1,
191 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
192 MCDI_HEADER_DATALEN, 0,
193 MCDI_HEADER_SEQ, seqno,
194 MCDI_HEADER_XFLAGS, xflags,
195 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
196 EFX_POPULATE_DWORD_2(hdr[1],
197 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
198 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
199 hdr_len = 8;
202 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
203 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
204 int bytes = 0;
205 int i;
206 /* Lengths should always be a whole number of dwords, so scream
207 * if they're not.
209 WARN_ON_ONCE(hdr_len % 4);
210 WARN_ON_ONCE(inlen % 4);
212 /* We own the logging buffer, as only one MCDI can be in
213 * progress on a NIC at any one time. So no need for locking.
215 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
216 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
217 " %08x",
218 le32_to_cpu(hdr[i].u32[0]));
220 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
221 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
222 " %08x",
223 le32_to_cpu(inbuf[i].u32[0]));
225 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
227 #endif
229 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
231 mcdi->new_epoch = false;
234 static int efx_mcdi_errno(unsigned int mcdi_err)
236 switch (mcdi_err) {
237 case 0:
238 return 0;
239 #define TRANSLATE_ERROR(name) \
240 case MC_CMD_ERR_ ## name: \
241 return -name;
242 TRANSLATE_ERROR(EPERM);
243 TRANSLATE_ERROR(ENOENT);
244 TRANSLATE_ERROR(EINTR);
245 TRANSLATE_ERROR(EAGAIN);
246 TRANSLATE_ERROR(EACCES);
247 TRANSLATE_ERROR(EBUSY);
248 TRANSLATE_ERROR(EINVAL);
249 TRANSLATE_ERROR(EDEADLK);
250 TRANSLATE_ERROR(ENOSYS);
251 TRANSLATE_ERROR(ETIME);
252 TRANSLATE_ERROR(EALREADY);
253 TRANSLATE_ERROR(ENOSPC);
254 #undef TRANSLATE_ERROR
255 case MC_CMD_ERR_ENOTSUP:
256 return -EOPNOTSUPP;
257 case MC_CMD_ERR_ALLOC_FAIL:
258 return -ENOBUFS;
259 case MC_CMD_ERR_MAC_EXIST:
260 return -EADDRINUSE;
261 default:
262 return -EPROTO;
266 static void efx_mcdi_read_response_header(struct efx_nic *efx)
268 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
269 unsigned int respseq, respcmd, error;
270 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
271 char *buf = mcdi->logging_buffer; /* page-sized */
272 #endif
273 efx_dword_t hdr;
275 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
276 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
277 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
278 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
280 if (respcmd != MC_CMD_V2_EXTN) {
281 mcdi->resp_hdr_len = 4;
282 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
283 } else {
284 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
285 mcdi->resp_hdr_len = 8;
286 mcdi->resp_data_len =
287 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
290 #ifdef CONFIG_SFC_SIENA_MCDI_LOGGING
291 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
292 size_t hdr_len, data_len;
293 int bytes = 0;
294 int i;
296 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
297 hdr_len = mcdi->resp_hdr_len / 4;
298 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
299 * to dword size, and the MCDI buffer is always dword size
301 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
303 /* We own the logging buffer, as only one MCDI can be in
304 * progress on a NIC at any one time. So no need for locking.
306 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
307 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
308 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
309 " %08x", le32_to_cpu(hdr.u32[0]));
312 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
313 efx->type->mcdi_read_response(efx, &hdr,
314 mcdi->resp_hdr_len + (i * 4), 4);
315 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
316 " %08x", le32_to_cpu(hdr.u32[0]));
319 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
321 #endif
323 mcdi->resprc_raw = 0;
324 if (error && mcdi->resp_data_len == 0) {
325 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
326 mcdi->resprc = -EIO;
327 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
328 netif_err(efx, hw, efx->net_dev,
329 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
330 respseq, mcdi->seqno);
331 mcdi->resprc = -EIO;
332 } else if (error) {
333 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
334 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
335 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
336 } else {
337 mcdi->resprc = 0;
341 static bool efx_mcdi_poll_once(struct efx_nic *efx)
343 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
345 rmb();
346 if (!efx->type->mcdi_poll_response(efx))
347 return false;
349 spin_lock_bh(&mcdi->iface_lock);
350 efx_mcdi_read_response_header(efx);
351 spin_unlock_bh(&mcdi->iface_lock);
353 return true;
356 static int efx_mcdi_poll(struct efx_nic *efx)
358 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
359 unsigned long time, finish;
360 unsigned int spins;
361 int rc;
363 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
364 rc = efx_siena_mcdi_poll_reboot(efx);
365 if (rc) {
366 spin_lock_bh(&mcdi->iface_lock);
367 mcdi->resprc = rc;
368 mcdi->resp_hdr_len = 0;
369 mcdi->resp_data_len = 0;
370 spin_unlock_bh(&mcdi->iface_lock);
371 return 0;
374 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
375 * because generally mcdi responses are fast. After that, back off
376 * and poll once a jiffy (approximately)
378 spins = USER_TICK_USEC;
379 finish = jiffies + MCDI_RPC_TIMEOUT;
381 while (1) {
382 if (spins != 0) {
383 --spins;
384 udelay(1);
385 } else {
386 schedule_timeout_uninterruptible(1);
389 time = jiffies;
391 if (efx_mcdi_poll_once(efx))
392 break;
394 if (time_after(time, finish))
395 return -ETIMEDOUT;
398 /* Return rc=0 like wait_event_timeout() */
399 return 0;
402 /* Test and clear MC-rebooted flag for this port/function; reset
403 * software state as necessary.
405 int efx_siena_mcdi_poll_reboot(struct efx_nic *efx)
407 if (!efx->mcdi)
408 return 0;
410 return efx->type->mcdi_poll_reboot(efx);
413 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
415 return cmpxchg(&mcdi->state,
416 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
417 MCDI_STATE_QUIESCENT;
420 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
422 /* Wait until the interface becomes QUIESCENT and we win the race
423 * to mark it RUNNING_SYNC.
425 wait_event(mcdi->wq,
426 cmpxchg(&mcdi->state,
427 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
428 MCDI_STATE_QUIESCENT);
431 static int efx_mcdi_await_completion(struct efx_nic *efx)
433 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
435 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
436 MCDI_RPC_TIMEOUT) == 0)
437 return -ETIMEDOUT;
439 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
440 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
441 * completed the request first, then we'll just end up completing the
442 * request again, which is safe.
444 * We need an smp_rmb() to synchronise with efx_siena_mcdi_mode_poll(), which
445 * wait_event_timeout() implicitly provides.
447 if (mcdi->mode == MCDI_MODE_POLL)
448 return efx_mcdi_poll(efx);
450 return 0;
453 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
454 * requester. Return whether this was done. Does not take any locks.
456 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
458 if (cmpxchg(&mcdi->state,
459 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
460 MCDI_STATE_RUNNING_SYNC) {
461 wake_up(&mcdi->wq);
462 return true;
465 return false;
468 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
470 if (mcdi->mode == MCDI_MODE_EVENTS) {
471 struct efx_mcdi_async_param *async;
472 struct efx_nic *efx = mcdi->efx;
474 /* Process the asynchronous request queue */
475 spin_lock_bh(&mcdi->async_lock);
476 async = list_first_entry_or_null(
477 &mcdi->async_list, struct efx_mcdi_async_param, list);
478 if (async) {
479 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
480 efx_mcdi_send_request(efx, async->cmd,
481 (const efx_dword_t *)(async + 1),
482 async->inlen);
483 mod_timer(&mcdi->async_timer,
484 jiffies + MCDI_RPC_TIMEOUT);
486 spin_unlock_bh(&mcdi->async_lock);
488 if (async)
489 return;
492 mcdi->state = MCDI_STATE_QUIESCENT;
493 wake_up(&mcdi->wq);
496 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
497 * asynchronous completion function, and release the interface.
498 * Return whether this was done. Must be called in bh-disabled
499 * context. Will take iface_lock and async_lock.
501 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
503 struct efx_nic *efx = mcdi->efx;
504 struct efx_mcdi_async_param *async;
505 size_t hdr_len, data_len, err_len;
506 efx_dword_t *outbuf;
507 MCDI_DECLARE_BUF_ERR(errbuf);
508 int rc;
510 if (cmpxchg(&mcdi->state,
511 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
512 MCDI_STATE_RUNNING_ASYNC)
513 return false;
515 spin_lock(&mcdi->iface_lock);
516 if (timeout) {
517 /* Ensure that if the completion event arrives later,
518 * the seqno check in efx_mcdi_ev_cpl() will fail
520 ++mcdi->seqno;
521 ++mcdi->credits;
522 rc = -ETIMEDOUT;
523 hdr_len = 0;
524 data_len = 0;
525 } else {
526 rc = mcdi->resprc;
527 hdr_len = mcdi->resp_hdr_len;
528 data_len = mcdi->resp_data_len;
530 spin_unlock(&mcdi->iface_lock);
532 /* Stop the timer. In case the timer function is running, we
533 * must wait for it to return so that there is no possibility
534 * of it aborting the next request.
536 if (!timeout)
537 del_timer_sync(&mcdi->async_timer);
539 spin_lock(&mcdi->async_lock);
540 async = list_first_entry(&mcdi->async_list,
541 struct efx_mcdi_async_param, list);
542 list_del(&async->list);
543 spin_unlock(&mcdi->async_lock);
545 outbuf = (efx_dword_t *)(async + 1);
546 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
547 min(async->outlen, data_len));
548 if (!timeout && rc && !async->quiet) {
549 err_len = min(sizeof(errbuf), data_len);
550 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
551 sizeof(errbuf));
552 efx_siena_mcdi_display_error(efx, async->cmd, async->inlen,
553 errbuf, err_len, rc);
556 if (async->complete)
557 async->complete(efx, async->cookie, rc, outbuf,
558 min(async->outlen, data_len));
559 kfree(async);
561 efx_mcdi_release(mcdi);
563 return true;
566 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
567 unsigned int datalen, unsigned int mcdi_err)
569 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
570 bool wake = false;
572 spin_lock(&mcdi->iface_lock);
574 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
575 if (mcdi->credits)
576 /* The request has been cancelled */
577 --mcdi->credits;
578 else
579 netif_err(efx, hw, efx->net_dev,
580 "MC response mismatch tx seq 0x%x rx "
581 "seq 0x%x\n", seqno, mcdi->seqno);
582 } else {
583 if (efx->type->mcdi_max_ver >= 2) {
584 /* MCDI v2 responses don't fit in an event */
585 efx_mcdi_read_response_header(efx);
586 } else {
587 mcdi->resprc = efx_mcdi_errno(mcdi_err);
588 mcdi->resp_hdr_len = 4;
589 mcdi->resp_data_len = datalen;
592 wake = true;
595 spin_unlock(&mcdi->iface_lock);
597 if (wake) {
598 if (!efx_mcdi_complete_async(mcdi, false))
599 (void) efx_mcdi_complete_sync(mcdi);
601 /* If the interface isn't RUNNING_ASYNC or
602 * RUNNING_SYNC then we've received a duplicate
603 * completion after we've already transitioned back to
604 * QUIESCENT. [A subsequent invocation would increment
605 * seqno, so would have failed the seqno check].
610 static void efx_mcdi_timeout_async(struct timer_list *t)
612 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
614 efx_mcdi_complete_async(mcdi, true);
617 static int
618 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
620 if (efx->type->mcdi_max_ver < 0 ||
621 (efx->type->mcdi_max_ver < 2 &&
622 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
623 return -EINVAL;
625 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
626 (efx->type->mcdi_max_ver < 2 &&
627 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
628 return -EMSGSIZE;
630 return 0;
633 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
634 size_t hdr_len, size_t data_len,
635 u32 *proxy_handle)
637 MCDI_DECLARE_BUF_ERR(testbuf);
638 const size_t buflen = sizeof(testbuf);
640 if (!proxy_handle || data_len < buflen)
641 return false;
643 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
644 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
645 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
646 return true;
649 return false;
652 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
653 size_t inlen,
654 efx_dword_t *outbuf, size_t outlen,
655 size_t *outlen_actual, bool quiet,
656 u32 *proxy_handle, int *raw_rc)
658 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
659 MCDI_DECLARE_BUF_ERR(errbuf);
660 int rc;
662 if (mcdi->mode == MCDI_MODE_POLL)
663 rc = efx_mcdi_poll(efx);
664 else
665 rc = efx_mcdi_await_completion(efx);
667 if (rc != 0) {
668 netif_err(efx, hw, efx->net_dev,
669 "MC command 0x%x inlen %d mode %d timed out\n",
670 cmd, (int)inlen, mcdi->mode);
672 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
673 netif_err(efx, hw, efx->net_dev,
674 "MCDI request was completed without an event\n");
675 rc = 0;
678 efx_mcdi_abandon(efx);
680 /* Close the race with efx_mcdi_ev_cpl() executing just too late
681 * and completing a request we've just cancelled, by ensuring
682 * that the seqno check therein fails.
684 spin_lock_bh(&mcdi->iface_lock);
685 ++mcdi->seqno;
686 ++mcdi->credits;
687 spin_unlock_bh(&mcdi->iface_lock);
690 if (proxy_handle)
691 *proxy_handle = 0;
693 if (rc != 0) {
694 if (outlen_actual)
695 *outlen_actual = 0;
696 } else {
697 size_t hdr_len, data_len, err_len;
699 /* At the very least we need a memory barrier here to ensure
700 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
701 * a spurious efx_mcdi_ev_cpl() running concurrently by
702 * acquiring the iface_lock. */
703 spin_lock_bh(&mcdi->iface_lock);
704 rc = mcdi->resprc;
705 if (raw_rc)
706 *raw_rc = mcdi->resprc_raw;
707 hdr_len = mcdi->resp_hdr_len;
708 data_len = mcdi->resp_data_len;
709 err_len = min(sizeof(errbuf), data_len);
710 spin_unlock_bh(&mcdi->iface_lock);
712 BUG_ON(rc > 0);
714 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
715 min(outlen, data_len));
716 if (outlen_actual)
717 *outlen_actual = data_len;
719 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
721 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
722 /* Don't reset if MC_CMD_REBOOT returns EIO */
723 } else if (rc == -EIO || rc == -EINTR) {
724 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
725 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
726 cmd, -rc);
727 if (efx->type->mcdi_reboot_detected)
728 efx->type->mcdi_reboot_detected(efx);
729 efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
730 } else if (proxy_handle && (rc == -EPROTO) &&
731 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
732 proxy_handle)) {
733 mcdi->proxy_rx_status = 0;
734 mcdi->proxy_rx_handle = 0;
735 mcdi->state = MCDI_STATE_PROXY_WAIT;
736 } else if (rc && !quiet) {
737 efx_siena_mcdi_display_error(efx, cmd, inlen, errbuf,
738 err_len, rc);
741 if (rc == -EIO || rc == -EINTR) {
742 msleep(MCDI_STATUS_SLEEP_MS);
743 efx_siena_mcdi_poll_reboot(efx);
744 mcdi->new_epoch = true;
748 if (!proxy_handle || !*proxy_handle)
749 efx_mcdi_release(mcdi);
750 return rc;
753 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
755 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
756 /* Interrupt the proxy wait. */
757 mcdi->proxy_rx_status = -EINTR;
758 wake_up(&mcdi->proxy_rx_wq);
762 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
763 u32 handle, int status)
765 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
767 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
769 mcdi->proxy_rx_status = efx_mcdi_errno(status);
770 /* Ensure the status is written before we update the handle, since the
771 * latter is used to check if we've finished.
773 wmb();
774 mcdi->proxy_rx_handle = handle;
775 wake_up(&mcdi->proxy_rx_wq);
778 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
780 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
781 int rc;
783 /* Wait for a proxy event, or timeout. */
784 rc = wait_event_timeout(mcdi->proxy_rx_wq,
785 mcdi->proxy_rx_handle != 0 ||
786 mcdi->proxy_rx_status == -EINTR,
787 MCDI_RPC_TIMEOUT);
789 if (rc <= 0) {
790 netif_dbg(efx, hw, efx->net_dev,
791 "MCDI proxy timeout %d\n", handle);
792 return -ETIMEDOUT;
793 } else if (mcdi->proxy_rx_handle != handle) {
794 netif_warn(efx, hw, efx->net_dev,
795 "MCDI proxy unexpected handle %d (expected %d)\n",
796 mcdi->proxy_rx_handle, handle);
797 return -EINVAL;
800 return mcdi->proxy_rx_status;
803 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
804 const efx_dword_t *inbuf, size_t inlen,
805 efx_dword_t *outbuf, size_t outlen,
806 size_t *outlen_actual, bool quiet, int *raw_rc)
808 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
809 int rc;
811 if (inbuf && inlen && (inbuf == outbuf)) {
812 /* The input buffer can't be aliased with the output. */
813 WARN_ON(1);
814 return -EINVAL;
817 rc = efx_siena_mcdi_rpc_start(efx, cmd, inbuf, inlen);
818 if (rc)
819 return rc;
821 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
822 outlen_actual, quiet, &proxy_handle, raw_rc);
824 if (proxy_handle) {
825 /* Handle proxy authorisation. This allows approval of MCDI
826 * operations to be delegated to the admin function, allowing
827 * fine control over (eg) multicast subscriptions.
829 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
831 netif_dbg(efx, hw, efx->net_dev,
832 "MCDI waiting for proxy auth %d\n",
833 proxy_handle);
834 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
836 if (rc == 0) {
837 netif_dbg(efx, hw, efx->net_dev,
838 "MCDI proxy retry %d\n", proxy_handle);
840 /* We now retry the original request. */
841 mcdi->state = MCDI_STATE_RUNNING_SYNC;
842 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
844 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
845 outbuf, outlen, outlen_actual,
846 quiet, NULL, raw_rc);
847 } else {
848 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
849 "MC command 0x%x failed after proxy auth rc=%d\n",
850 cmd, rc);
852 if (rc == -EINTR || rc == -EIO)
853 efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
854 efx_mcdi_release(mcdi);
858 return rc;
861 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
862 const efx_dword_t *inbuf, size_t inlen,
863 efx_dword_t *outbuf, size_t outlen,
864 size_t *outlen_actual, bool quiet)
866 int raw_rc = 0;
867 int rc;
869 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
870 outbuf, outlen, outlen_actual, true, &raw_rc);
872 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
873 efx->type->is_vf) {
874 /* If the EVB port isn't available within a VF this may
875 * mean the PF is still bringing the switch up. We should
876 * retry our request shortly.
878 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
879 unsigned int delay_us = 10000;
881 netif_dbg(efx, hw, efx->net_dev,
882 "%s: NO_EVB_PORT; will retry request\n",
883 __func__);
885 do {
886 usleep_range(delay_us, delay_us + 10000);
887 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
888 outbuf, outlen, outlen_actual,
889 true, &raw_rc);
890 if (delay_us < 100000)
891 delay_us <<= 1;
892 } while ((rc == -EPROTO) &&
893 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
894 time_before(jiffies, abort_time));
897 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
898 efx_siena_mcdi_display_error(efx, cmd, inlen,
899 outbuf, outlen, rc);
901 return rc;
905 * efx_siena_mcdi_rpc - Issue an MCDI command and wait for completion
906 * @efx: NIC through which to issue the command
907 * @cmd: Command type number
908 * @inbuf: Command parameters
909 * @inlen: Length of command parameters, in bytes. Must be a multiple
910 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
911 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
912 * @outlen: Length of response buffer, in bytes. If the actual
913 * response is longer than @outlen & ~3, it will be truncated
914 * to that length.
915 * @outlen_actual: Pointer through which to return the actual response
916 * length. May be %NULL if this is not needed.
918 * This function may sleep and therefore must be called in an appropriate
919 * context.
921 * Return: A negative error code, or zero if successful. The error
922 * code may come from the MCDI response or may indicate a failure
923 * to communicate with the MC. In the former case, the response
924 * will still be copied to @outbuf and *@outlen_actual will be
925 * set accordingly. In the latter case, *@outlen_actual will be
926 * set to zero.
928 int efx_siena_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
929 const efx_dword_t *inbuf, size_t inlen,
930 efx_dword_t *outbuf, size_t outlen,
931 size_t *outlen_actual)
933 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
934 outlen_actual, false);
937 /* Normally, on receiving an error code in the MCDI response,
938 * efx_siena_mcdi_rpc will log an error message containing (among other
939 * things) the raw error code, by means of efx_siena_mcdi_display_error.
940 * This _quiet version suppresses that; if the caller wishes to log
941 * the error conditionally on the return code, it should call this
942 * function and is then responsible for calling efx_siena_mcdi_display_error
943 * as needed.
945 int efx_siena_mcdi_rpc_quiet(struct efx_nic *efx, unsigned int cmd,
946 const efx_dword_t *inbuf, size_t inlen,
947 efx_dword_t *outbuf, size_t outlen,
948 size_t *outlen_actual)
950 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
951 outlen_actual, true);
954 int efx_siena_mcdi_rpc_start(struct efx_nic *efx, unsigned int cmd,
955 const efx_dword_t *inbuf, size_t inlen)
957 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
958 int rc;
960 rc = efx_mcdi_check_supported(efx, cmd, inlen);
961 if (rc)
962 return rc;
964 if (efx->mc_bist_for_other_fn)
965 return -ENETDOWN;
967 if (mcdi->mode == MCDI_MODE_FAIL)
968 return -ENETDOWN;
970 efx_mcdi_acquire_sync(mcdi);
971 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
972 return 0;
975 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
976 const efx_dword_t *inbuf, size_t inlen,
977 size_t outlen,
978 efx_mcdi_async_completer *complete,
979 unsigned long cookie, bool quiet)
981 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
982 struct efx_mcdi_async_param *async;
983 int rc;
985 rc = efx_mcdi_check_supported(efx, cmd, inlen);
986 if (rc)
987 return rc;
989 if (efx->mc_bist_for_other_fn)
990 return -ENETDOWN;
992 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
993 GFP_ATOMIC);
994 if (!async)
995 return -ENOMEM;
997 async->cmd = cmd;
998 async->inlen = inlen;
999 async->outlen = outlen;
1000 async->quiet = quiet;
1001 async->complete = complete;
1002 async->cookie = cookie;
1003 memcpy(async + 1, inbuf, inlen);
1005 spin_lock_bh(&mcdi->async_lock);
1007 if (mcdi->mode == MCDI_MODE_EVENTS) {
1008 list_add_tail(&async->list, &mcdi->async_list);
1010 /* If this is at the front of the queue, try to start it
1011 * immediately
1013 if (mcdi->async_list.next == &async->list &&
1014 efx_mcdi_acquire_async(mcdi)) {
1015 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1016 mod_timer(&mcdi->async_timer,
1017 jiffies + MCDI_RPC_TIMEOUT);
1019 } else {
1020 kfree(async);
1021 rc = -ENETDOWN;
1024 spin_unlock_bh(&mcdi->async_lock);
1026 return rc;
1030 * efx_siena_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1031 * @efx: NIC through which to issue the command
1032 * @cmd: Command type number
1033 * @inbuf: Command parameters
1034 * @inlen: Length of command parameters, in bytes
1035 * @outlen: Length to allocate for response buffer, in bytes
1036 * @complete: Function to be called on completion or cancellation.
1037 * @cookie: Arbitrary value to be passed to @complete.
1039 * This function does not sleep and therefore may be called in atomic
1040 * context. It will fail if event queues are disabled or if MCDI
1041 * event completions have been disabled due to an error.
1043 * If it succeeds, the @complete function will be called exactly once
1044 * in atomic context, when one of the following occurs:
1045 * (a) the completion event is received (in NAPI context)
1046 * (b) event queues are disabled (in the process that disables them)
1047 * (c) the request times-out (in timer context)
1050 efx_siena_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1051 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1052 efx_mcdi_async_completer *complete,
1053 unsigned long cookie)
1055 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1056 cookie, false);
1059 int efx_siena_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1060 const efx_dword_t *inbuf, size_t inlen,
1061 size_t outlen,
1062 efx_mcdi_async_completer *complete,
1063 unsigned long cookie)
1065 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1066 cookie, true);
1069 int efx_siena_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
1070 size_t inlen, efx_dword_t *outbuf, size_t outlen,
1071 size_t *outlen_actual)
1073 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1074 outlen_actual, false, NULL, NULL);
1077 int efx_siena_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned int cmd,
1078 size_t inlen, efx_dword_t *outbuf,
1079 size_t outlen, size_t *outlen_actual)
1081 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1082 outlen_actual, true, NULL, NULL);
1085 void efx_siena_mcdi_display_error(struct efx_nic *efx, unsigned int cmd,
1086 size_t inlen, efx_dword_t *outbuf,
1087 size_t outlen, int rc)
1089 int code = 0, err_arg = 0;
1091 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1092 code = MCDI_DWORD(outbuf, ERR_CODE);
1093 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1094 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1095 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1096 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1097 cmd, inlen, rc, code, err_arg);
1100 /* Switch to polled MCDI completions. This can be called in various
1101 * error conditions with various locks held, so it must be lockless.
1102 * Caller is responsible for flushing asynchronous requests later.
1104 void efx_siena_mcdi_mode_poll(struct efx_nic *efx)
1106 struct efx_mcdi_iface *mcdi;
1108 if (!efx->mcdi)
1109 return;
1111 mcdi = efx_mcdi(efx);
1112 /* If already in polling mode, nothing to do.
1113 * If in fail-fast state, don't switch to polled completion.
1114 * FLR recovery will do that later.
1116 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1117 return;
1119 /* We can switch from event completion to polled completion, because
1120 * mcdi requests are always completed in shared memory. We do this by
1121 * switching the mode to POLL'd then completing the request.
1122 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1124 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1125 * which efx_mcdi_complete_sync() provides for us.
1127 mcdi->mode = MCDI_MODE_POLL;
1129 efx_mcdi_complete_sync(mcdi);
1132 /* Flush any running or queued asynchronous requests, after event processing
1133 * is stopped
1135 void efx_siena_mcdi_flush_async(struct efx_nic *efx)
1137 struct efx_mcdi_async_param *async, *next;
1138 struct efx_mcdi_iface *mcdi;
1140 if (!efx->mcdi)
1141 return;
1143 mcdi = efx_mcdi(efx);
1145 /* We must be in poll or fail mode so no more requests can be queued */
1146 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1148 del_timer_sync(&mcdi->async_timer);
1150 /* If a request is still running, make sure we give the MC
1151 * time to complete it so that the response won't overwrite our
1152 * next request.
1154 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1155 efx_mcdi_poll(efx);
1156 mcdi->state = MCDI_STATE_QUIESCENT;
1159 /* Nothing else will access the async list now, so it is safe
1160 * to walk it without holding async_lock. If we hold it while
1161 * calling a completer then lockdep may warn that we have
1162 * acquired locks in the wrong order.
1164 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1165 if (async->complete)
1166 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1167 list_del(&async->list);
1168 kfree(async);
1172 void efx_siena_mcdi_mode_event(struct efx_nic *efx)
1174 struct efx_mcdi_iface *mcdi;
1176 if (!efx->mcdi)
1177 return;
1179 mcdi = efx_mcdi(efx);
1180 /* If already in event completion mode, nothing to do.
1181 * If in fail-fast state, don't switch to event completion. FLR
1182 * recovery will do that later.
1184 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1185 return;
1187 /* We can't switch from polled to event completion in the middle of a
1188 * request, because the completion method is specified in the request.
1189 * So acquire the interface to serialise the requestors. We don't need
1190 * to acquire the iface_lock to change the mode here, but we do need a
1191 * write memory barrier ensure that efx_siena_mcdi_rpc() sees it, which
1192 * efx_mcdi_acquire() provides.
1194 efx_mcdi_acquire_sync(mcdi);
1195 mcdi->mode = MCDI_MODE_EVENTS;
1196 efx_mcdi_release(mcdi);
1199 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1201 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1203 /* If there is an outstanding MCDI request, it has been terminated
1204 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1205 * in polled mode, then do nothing because the MC reboot handler will
1206 * set the header correctly. However, if the mcdi interface is waiting
1207 * for a CMDDONE event it won't receive it [and since all MCDI events
1208 * are sent to the same queue, we can't be racing with
1209 * efx_mcdi_ev_cpl()]
1211 * If there is an outstanding asynchronous request, we can't
1212 * complete it now (efx_mcdi_complete() would deadlock). The
1213 * reset process will take care of this.
1215 * There's a race here with efx_mcdi_send_request(), because
1216 * we might receive a REBOOT event *before* the request has
1217 * been copied out. In polled mode (during startup) this is
1218 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1219 * event mode, this condition is just an edge-case of
1220 * receiving a REBOOT event after posting the MCDI
1221 * request. Did the mc reboot before or after the copyout? The
1222 * best we can do always is just return failure.
1224 * If there is an outstanding proxy response expected it is not going
1225 * to arrive. We should thus abort it.
1227 spin_lock(&mcdi->iface_lock);
1228 efx_mcdi_proxy_abort(mcdi);
1230 if (efx_mcdi_complete_sync(mcdi)) {
1231 if (mcdi->mode == MCDI_MODE_EVENTS) {
1232 mcdi->resprc = rc;
1233 mcdi->resp_hdr_len = 0;
1234 mcdi->resp_data_len = 0;
1235 ++mcdi->credits;
1237 } else {
1238 int count;
1240 /* Consume the status word since efx_siena_mcdi_rpc_finish() won't */
1241 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1242 rc = efx_siena_mcdi_poll_reboot(efx);
1243 if (rc)
1244 break;
1245 udelay(MCDI_STATUS_DELAY_US);
1248 /* On EF10, a CODE_MC_REBOOT event can be received without the
1249 * reboot detection in efx_siena_mcdi_poll_reboot() being triggered.
1250 * If zero was returned from the final call to
1251 * efx_siena_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1252 * MC has definitely rebooted so prepare for the reset.
1254 if (!rc && efx->type->mcdi_reboot_detected)
1255 efx->type->mcdi_reboot_detected(efx);
1257 mcdi->new_epoch = true;
1259 /* Nobody was waiting for an MCDI request, so trigger a reset */
1260 efx_siena_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1263 spin_unlock(&mcdi->iface_lock);
1266 /* The MC is going down in to BIST mode. set the BIST flag to block
1267 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
1268 * (which doesn't actually execute a reset, it waits for the controlling
1269 * function to reset it).
1271 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1273 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1275 spin_lock(&mcdi->iface_lock);
1276 efx->mc_bist_for_other_fn = true;
1277 efx_mcdi_proxy_abort(mcdi);
1279 if (efx_mcdi_complete_sync(mcdi)) {
1280 if (mcdi->mode == MCDI_MODE_EVENTS) {
1281 mcdi->resprc = -EIO;
1282 mcdi->resp_hdr_len = 0;
1283 mcdi->resp_data_len = 0;
1284 ++mcdi->credits;
1287 mcdi->new_epoch = true;
1288 efx_siena_schedule_reset(efx, RESET_TYPE_MC_BIST);
1289 spin_unlock(&mcdi->iface_lock);
1292 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1293 * to recover.
1295 static void efx_mcdi_abandon(struct efx_nic *efx)
1297 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1299 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1300 return; /* it had already been done */
1301 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1302 efx_siena_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1305 static void efx_handle_drain_event(struct efx_nic *efx)
1307 if (atomic_dec_and_test(&efx->active_queues))
1308 wake_up(&efx->flush_wq);
1310 WARN_ON(atomic_read(&efx->active_queues) < 0);
1313 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1314 void efx_siena_mcdi_process_event(struct efx_channel *channel,
1315 efx_qword_t *event)
1317 struct efx_nic *efx = channel->efx;
1318 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1319 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1321 switch (code) {
1322 case MCDI_EVENT_CODE_BADSSERT:
1323 netif_err(efx, hw, efx->net_dev,
1324 "MC watchdog or assertion failure at 0x%x\n", data);
1325 efx_mcdi_ev_death(efx, -EINTR);
1326 break;
1328 case MCDI_EVENT_CODE_PMNOTICE:
1329 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1330 break;
1332 case MCDI_EVENT_CODE_CMDDONE:
1333 efx_mcdi_ev_cpl(efx,
1334 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1335 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1336 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1337 break;
1339 case MCDI_EVENT_CODE_LINKCHANGE:
1340 efx_siena_mcdi_process_link_change(efx, event);
1341 break;
1342 case MCDI_EVENT_CODE_SENSOREVT:
1343 efx_sensor_event(efx, event);
1344 break;
1345 case MCDI_EVENT_CODE_SCHEDERR:
1346 netif_dbg(efx, hw, efx->net_dev,
1347 "MC Scheduler alert (0x%x)\n", data);
1348 break;
1349 case MCDI_EVENT_CODE_REBOOT:
1350 case MCDI_EVENT_CODE_MC_REBOOT:
1351 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1352 efx_mcdi_ev_death(efx, -EIO);
1353 break;
1354 case MCDI_EVENT_CODE_MC_BIST:
1355 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1356 efx_mcdi_ev_bist(efx);
1357 break;
1358 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1359 /* MAC stats are gather lazily. We can ignore this. */
1360 break;
1361 case MCDI_EVENT_CODE_FLR:
1362 if (efx->type->sriov_flr)
1363 efx->type->sriov_flr(efx,
1364 MCDI_EVENT_FIELD(*event, FLR_VF));
1365 break;
1366 case MCDI_EVENT_CODE_PTP_RX:
1367 case MCDI_EVENT_CODE_PTP_FAULT:
1368 case MCDI_EVENT_CODE_PTP_PPS:
1369 efx_siena_ptp_event(efx, event);
1370 break;
1371 case MCDI_EVENT_CODE_PTP_TIME:
1372 efx_siena_time_sync_event(channel, event);
1373 break;
1374 case MCDI_EVENT_CODE_TX_FLUSH:
1375 case MCDI_EVENT_CODE_RX_FLUSH:
1376 /* Two flush events will be sent: one to the same event
1377 * queue as completions, and one to event queue 0.
1378 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1379 * flag will be set, and we should ignore the event
1380 * because we want to wait for all completions.
1382 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1383 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1384 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1385 efx_handle_drain_event(efx);
1386 break;
1387 case MCDI_EVENT_CODE_TX_ERR:
1388 case MCDI_EVENT_CODE_RX_ERR:
1389 netif_err(efx, hw, efx->net_dev,
1390 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1391 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1392 EFX_QWORD_VAL(*event));
1393 efx_siena_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1394 break;
1395 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1396 efx_mcdi_ev_proxy_response(efx,
1397 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1398 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1399 break;
1400 default:
1401 netif_err(efx, hw, efx->net_dev,
1402 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1403 EFX_QWORD_VAL(*event));
1407 /**************************************************************************
1409 * Specific request functions
1411 **************************************************************************
1414 void efx_siena_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1416 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1417 size_t outlength;
1418 const __le16 *ver_words;
1419 size_t offset;
1420 int rc;
1422 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1423 rc = efx_siena_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1424 outbuf, sizeof(outbuf), &outlength);
1425 if (rc)
1426 goto fail;
1427 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1428 rc = -EIO;
1429 goto fail;
1432 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1433 offset = scnprintf(buf, len, "%u.%u.%u.%u",
1434 le16_to_cpu(ver_words[0]),
1435 le16_to_cpu(ver_words[1]),
1436 le16_to_cpu(ver_words[2]),
1437 le16_to_cpu(ver_words[3]));
1439 if (efx->type->print_additional_fwver)
1440 offset += efx->type->print_additional_fwver(efx, buf + offset,
1441 len - offset);
1443 /* It's theoretically possible for the string to exceed 31
1444 * characters, though in practice the first three version
1445 * components are short enough that this doesn't happen.
1447 if (WARN_ON(offset >= len))
1448 buf[0] = 0;
1450 return;
1452 fail:
1453 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1454 buf[0] = 0;
1457 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1458 bool *was_attached)
1460 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1461 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1462 size_t outlen;
1463 int rc;
1465 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1466 driver_operating ? 1 : 0);
1467 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1468 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1470 rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1471 sizeof(inbuf), outbuf, sizeof(outbuf),
1472 &outlen);
1473 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1474 * specified will fail with EPERM, and we have to tell the MC we don't
1475 * care what firmware we get.
1477 if (rc == -EPERM) {
1478 netif_dbg(efx, probe, efx->net_dev,
1479 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1480 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1481 MC_CMD_FW_DONT_CARE);
1482 rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1483 sizeof(inbuf), outbuf,
1484 sizeof(outbuf), &outlen);
1486 if (rc) {
1487 efx_siena_mcdi_display_error(efx, MC_CMD_DRV_ATTACH,
1488 sizeof(inbuf), outbuf, outlen, rc);
1489 goto fail;
1491 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1492 rc = -EIO;
1493 goto fail;
1496 if (driver_operating) {
1497 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1498 efx->mcdi->fn_flags =
1499 MCDI_DWORD(outbuf,
1500 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1501 } else {
1502 /* Synthesise flags for Siena */
1503 efx->mcdi->fn_flags =
1504 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1505 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1506 (efx_port_num(efx) == 0) <<
1507 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1511 /* We currently assume we have control of the external link
1512 * and are completely trusted by firmware. Abort probing
1513 * if that's not true for this function.
1516 if (was_attached != NULL)
1517 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1518 return 0;
1520 fail:
1521 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1522 return rc;
1525 int efx_siena_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1526 u16 *fw_subtype_list, u32 *capabilities)
1528 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1529 size_t outlen, i;
1530 int port_num = efx_port_num(efx);
1531 int rc;
1533 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1534 /* we need __aligned(2) for ether_addr_copy */
1535 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1536 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1538 rc = efx_siena_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1539 outbuf, sizeof(outbuf), &outlen);
1540 if (rc)
1541 goto fail;
1543 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1544 rc = -EIO;
1545 goto fail;
1548 if (mac_address)
1549 ether_addr_copy(mac_address,
1550 port_num ?
1551 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1552 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1553 if (fw_subtype_list) {
1554 for (i = 0;
1555 i < MCDI_VAR_ARRAY_LEN(outlen,
1556 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1557 i++)
1558 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1559 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1560 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1561 fw_subtype_list[i] = 0;
1563 if (capabilities) {
1564 if (port_num)
1565 *capabilities = MCDI_DWORD(outbuf,
1566 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1567 else
1568 *capabilities = MCDI_DWORD(outbuf,
1569 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1572 return 0;
1574 fail:
1575 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1576 __func__, rc, (int)outlen);
1578 return rc;
1581 int efx_siena_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart,
1582 u32 dest_evq)
1584 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1585 u32 dest = 0;
1586 int rc;
1588 if (uart)
1589 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1590 if (evq)
1591 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1593 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1594 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1596 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1598 rc = efx_siena_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1599 NULL, 0, NULL);
1600 return rc;
1603 int efx_siena_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1605 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1606 size_t outlen;
1607 int rc;
1609 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1611 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1612 outbuf, sizeof(outbuf), &outlen);
1613 if (rc)
1614 goto fail;
1615 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1616 rc = -EIO;
1617 goto fail;
1620 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1621 return 0;
1623 fail:
1624 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1625 __func__, rc);
1626 return rc;
1629 int efx_siena_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1630 size_t *size_out, size_t *erase_size_out,
1631 bool *protected_out)
1633 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1634 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1635 size_t outlen;
1636 int rc;
1638 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1640 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1641 outbuf, sizeof(outbuf), &outlen);
1642 if (rc)
1643 goto fail;
1644 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1645 rc = -EIO;
1646 goto fail;
1649 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1650 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1651 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1652 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1653 return 0;
1655 fail:
1656 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1657 return rc;
1660 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1662 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1663 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1664 int rc;
1666 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1668 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1669 outbuf, sizeof(outbuf), NULL);
1670 if (rc)
1671 return rc;
1673 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1674 case MC_CMD_NVRAM_TEST_PASS:
1675 case MC_CMD_NVRAM_TEST_NOTSUPP:
1676 return 0;
1677 default:
1678 return -EIO;
1682 int efx_siena_mcdi_nvram_test_all(struct efx_nic *efx)
1684 u32 nvram_types;
1685 unsigned int type;
1686 int rc;
1688 rc = efx_siena_mcdi_nvram_types(efx, &nvram_types);
1689 if (rc)
1690 goto fail1;
1692 type = 0;
1693 while (nvram_types != 0) {
1694 if (nvram_types & 1) {
1695 rc = efx_mcdi_nvram_test(efx, type);
1696 if (rc)
1697 goto fail2;
1699 type++;
1700 nvram_types >>= 1;
1703 return 0;
1705 fail2:
1706 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1707 __func__, type);
1708 fail1:
1709 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1710 return rc;
1713 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1714 * negative on error.
1716 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1718 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1719 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1720 unsigned int flags, index;
1721 const char *reason;
1722 size_t outlen;
1723 int retry;
1724 int rc;
1726 /* Attempt to read any stored assertion state before we reboot
1727 * the mcfw out of the assertion handler. Retry twice, once
1728 * because a boot-time assertion might cause this command to fail
1729 * with EINTR. And once again because GET_ASSERTS can race with
1730 * MC_CMD_REBOOT running on the other port. */
1731 retry = 2;
1732 do {
1733 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1734 rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1735 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1736 outbuf, sizeof(outbuf), &outlen);
1737 if (rc == -EPERM)
1738 return 0;
1739 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1741 if (rc) {
1742 efx_siena_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1743 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1744 outlen, rc);
1745 return rc;
1747 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1748 return -EIO;
1750 /* Print out any recorded assertion state */
1751 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1752 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1753 return 0;
1755 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1756 ? "system-level assertion"
1757 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1758 ? "thread-level assertion"
1759 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1760 ? "watchdog reset"
1761 : "unknown assertion";
1762 netif_err(efx, hw, efx->net_dev,
1763 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1764 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1765 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1767 /* Print out the registers */
1768 for (index = 0;
1769 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1770 index++)
1771 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1772 1 + index,
1773 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1774 index));
1776 return 1;
1779 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1781 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1782 int rc;
1784 /* If the MC is running debug firmware, it might now be
1785 * waiting for a debugger to attach, but we just want it to
1786 * reboot. We set a flag that makes the command a no-op if it
1787 * has already done so.
1788 * The MCDI will thus return either 0 or -EIO.
1790 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1791 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1792 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1793 rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf,
1794 MC_CMD_REBOOT_IN_LEN, NULL, 0, NULL);
1795 if (rc == -EIO)
1796 rc = 0;
1797 if (rc)
1798 efx_siena_mcdi_display_error(efx, MC_CMD_REBOOT,
1799 MC_CMD_REBOOT_IN_LEN, NULL, 0, rc);
1800 return rc;
1803 int efx_siena_mcdi_handle_assertion(struct efx_nic *efx)
1805 int rc;
1807 rc = efx_mcdi_read_assertion(efx);
1808 if (rc <= 0)
1809 return rc;
1811 return efx_mcdi_exit_assertion(efx);
1814 int efx_siena_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1816 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1818 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1819 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1820 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1822 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1824 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1826 return efx_siena_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1827 NULL, 0, NULL);
1830 static int efx_mcdi_reset_func(struct efx_nic *efx)
1832 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1833 int rc;
1835 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1836 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1837 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1838 rc = efx_siena_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1839 NULL, 0, NULL);
1840 return rc;
1843 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1845 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1846 int rc;
1848 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1849 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1850 rc = efx_siena_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1851 NULL, 0, NULL);
1852 /* White is black, and up is down */
1853 if (rc == -EIO)
1854 return 0;
1855 if (rc == 0)
1856 rc = -EIO;
1857 return rc;
1860 enum reset_type efx_siena_mcdi_map_reset_reason(enum reset_type reason)
1862 return RESET_TYPE_RECOVER_OR_ALL;
1865 int efx_siena_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1867 int rc;
1869 /* If MCDI is down, we can't handle_assertion */
1870 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1871 rc = pci_reset_function(efx->pci_dev);
1872 if (rc)
1873 return rc;
1874 /* Re-enable polled MCDI completion */
1875 if (efx->mcdi) {
1876 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1877 mcdi->mode = MCDI_MODE_POLL;
1879 return 0;
1882 /* Recover from a failed assertion pre-reset */
1883 rc = efx_siena_mcdi_handle_assertion(efx);
1884 if (rc)
1885 return rc;
1887 if (method == RESET_TYPE_DATAPATH)
1888 return 0;
1889 else if (method == RESET_TYPE_WORLD)
1890 return efx_mcdi_reset_mc(efx);
1891 else
1892 return efx_mcdi_reset_func(efx);
1895 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1896 const u8 *mac, int *id_out)
1898 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1899 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1900 size_t outlen;
1901 int rc;
1903 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1904 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1905 MC_CMD_FILTER_MODE_SIMPLE);
1906 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1908 rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf,
1909 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
1910 if (rc)
1911 goto fail;
1913 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1914 rc = -EIO;
1915 goto fail;
1918 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1920 return 0;
1922 fail:
1923 *id_out = -1;
1924 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1925 return rc;
1930 int efx_siena_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac,
1931 int *id_out)
1933 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1937 int efx_siena_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1939 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1940 size_t outlen;
1941 int rc;
1943 rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1944 outbuf, sizeof(outbuf), &outlen);
1945 if (rc)
1946 goto fail;
1948 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1949 rc = -EIO;
1950 goto fail;
1953 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1955 return 0;
1957 fail:
1958 *id_out = -1;
1959 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1960 return rc;
1964 int efx_siena_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1966 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1967 int rc;
1969 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1971 rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf,
1972 sizeof(inbuf), NULL, 0, NULL);
1973 return rc;
1976 int efx_siena_mcdi_flush_rxqs(struct efx_nic *efx)
1978 struct efx_channel *channel;
1979 struct efx_rx_queue *rx_queue;
1980 MCDI_DECLARE_BUF(inbuf,
1981 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1982 int rc, count;
1984 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1985 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1987 count = 0;
1988 efx_for_each_channel(channel, efx) {
1989 efx_for_each_channel_rx_queue(rx_queue, channel) {
1990 if (rx_queue->flush_pending) {
1991 rx_queue->flush_pending = false;
1992 atomic_dec(&efx->rxq_flush_pending);
1993 MCDI_SET_ARRAY_DWORD(
1994 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1995 count, efx_rx_queue_index(rx_queue));
1996 count++;
2001 rc = efx_siena_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
2002 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count),
2003 NULL, 0, NULL);
2004 WARN_ON(rc < 0);
2006 return rc;
2009 int efx_siena_mcdi_wol_filter_reset(struct efx_nic *efx)
2011 int rc;
2013 rc = efx_siena_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0,
2014 NULL, 0, NULL);
2015 return rc;
2018 #ifdef CONFIG_SFC_SIENA_MTD
2020 #define EFX_MCDI_NVRAM_LEN_MAX 128
2022 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2024 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2025 int rc;
2027 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2028 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2029 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2032 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2034 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf,
2035 sizeof(inbuf), NULL, 0, NULL);
2037 return rc;
2040 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2041 loff_t offset, u8 *buffer, size_t length)
2043 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2044 MCDI_DECLARE_BUF(outbuf,
2045 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2046 size_t outlen;
2047 int rc;
2049 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2050 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2051 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2052 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2053 MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2055 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2056 outbuf, sizeof(outbuf), &outlen);
2057 if (rc)
2058 return rc;
2060 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2061 return 0;
2064 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2065 loff_t offset, const u8 *buffer, size_t length)
2067 MCDI_DECLARE_BUF(inbuf,
2068 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2069 int rc;
2071 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2072 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2073 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2074 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2076 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2078 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2079 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2080 NULL, 0, NULL);
2081 return rc;
2084 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2085 loff_t offset, size_t length)
2087 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2088 int rc;
2090 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2091 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2092 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2094 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2096 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2097 NULL, 0, NULL);
2098 return rc;
2101 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2103 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2104 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2105 size_t outlen;
2106 int rc, rc2;
2108 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2109 /* Always set this flag. Old firmware ignores it */
2110 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2111 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2114 rc = efx_siena_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf,
2115 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
2116 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2117 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2118 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2119 netif_err(efx, drv, efx->net_dev,
2120 "NVRAM update failed verification with code 0x%x\n",
2121 rc2);
2122 switch (rc2) {
2123 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2124 break;
2125 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2126 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2127 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2128 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2129 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2130 rc = -EIO;
2131 break;
2132 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2133 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2134 rc = -EINVAL;
2135 break;
2136 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2137 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2138 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2139 rc = -EPERM;
2140 break;
2141 default:
2142 netif_err(efx, drv, efx->net_dev,
2143 "Unknown response to NVRAM_UPDATE_FINISH\n");
2144 rc = -EIO;
2148 return rc;
2151 int efx_siena_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2152 size_t len, size_t *retlen, u8 *buffer)
2154 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2155 struct efx_nic *efx = mtd->priv;
2156 loff_t offset = start;
2157 loff_t end = min_t(loff_t, start + len, mtd->size);
2158 size_t chunk;
2159 int rc = 0;
2161 while (offset < end) {
2162 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2163 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2164 buffer, chunk);
2165 if (rc)
2166 goto out;
2167 offset += chunk;
2168 buffer += chunk;
2170 out:
2171 *retlen = offset - start;
2172 return rc;
2175 int efx_siena_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2177 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2178 struct efx_nic *efx = mtd->priv;
2179 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2180 loff_t end = min_t(loff_t, start + len, mtd->size);
2181 size_t chunk = part->common.mtd.erasesize;
2182 int rc = 0;
2184 if (!part->updating) {
2185 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2186 if (rc)
2187 goto out;
2188 part->updating = true;
2191 /* The MCDI interface can in fact do multiple erase blocks at once;
2192 * but erasing may be slow, so we make multiple calls here to avoid
2193 * tripping the MCDI RPC timeout. */
2194 while (offset < end) {
2195 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2196 chunk);
2197 if (rc)
2198 goto out;
2199 offset += chunk;
2201 out:
2202 return rc;
2205 int efx_siena_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2206 size_t len, size_t *retlen, const u8 *buffer)
2208 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2209 struct efx_nic *efx = mtd->priv;
2210 loff_t offset = start;
2211 loff_t end = min_t(loff_t, start + len, mtd->size);
2212 size_t chunk;
2213 int rc = 0;
2215 if (!part->updating) {
2216 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2217 if (rc)
2218 goto out;
2219 part->updating = true;
2222 while (offset < end) {
2223 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2224 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2225 buffer, chunk);
2226 if (rc)
2227 goto out;
2228 offset += chunk;
2229 buffer += chunk;
2231 out:
2232 *retlen = offset - start;
2233 return rc;
2236 int efx_siena_mcdi_mtd_sync(struct mtd_info *mtd)
2238 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2239 struct efx_nic *efx = mtd->priv;
2240 int rc = 0;
2242 if (part->updating) {
2243 part->updating = false;
2244 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2247 return rc;
2250 void efx_siena_mcdi_mtd_rename(struct efx_mtd_partition *part)
2252 struct efx_mcdi_mtd_partition *mcdi_part =
2253 container_of(part, struct efx_mcdi_mtd_partition, common);
2254 struct efx_nic *efx = part->mtd.priv;
2256 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2257 efx->name, part->type_name, mcdi_part->fw_subtype);
2260 #endif /* CONFIG_SFC_SIENA_MTD */