Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / net / ethernet / sfc / siena / siena_sriov.c
blob8353c15dc233362ca64b36206059e628deb8eba0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2010-2012 Solarflare Communications Inc.
5 */
6 #include <linux/pci.h>
7 #include <linux/module.h>
8 #include "net_driver.h"
9 #include "efx.h"
10 #include "efx_channels.h"
11 #include "nic.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "filter.h"
15 #include "mcdi_pcol.h"
16 #include "farch_regs.h"
17 #include "siena_sriov.h"
18 #include "vfdi.h"
20 /* Number of longs required to track all the VIs in a VF */
21 #define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)
23 /* Maximum number of RX queues supported */
24 #define VF_MAX_RX_QUEUES 63
26 /**
27 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
28 * @VF_TX_FILTER_OFF: Disabled
29 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
30 * 2 TX queues allowed per VF.
31 * @VF_TX_FILTER_ON: Enabled
33 enum efx_vf_tx_filter_mode {
34 VF_TX_FILTER_OFF,
35 VF_TX_FILTER_AUTO,
36 VF_TX_FILTER_ON,
39 /**
40 * struct siena_vf - Back-end resource and protocol state for a PCI VF
41 * @efx: The Efx NIC owning this VF
42 * @pci_rid: The PCI requester ID for this VF
43 * @pci_name: The PCI name (formatted address) of this VF
44 * @index: Index of VF within its port and PF.
45 * @req: VFDI incoming request work item. Incoming USR_EV events are received
46 * by the NAPI handler, but must be handled by executing MCDI requests
47 * inside a work item.
48 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
49 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
50 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
51 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
52 * @status_lock
53 * @busy: VFDI request queued to be processed or being processed. Receiving
54 * a VFDI request when @busy is set is an error condition.
55 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
56 * @buftbl_base: Buffer table entries for this VF start at this index.
57 * @rx_filtering: Receive filtering has been requested by the VF driver.
58 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
59 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
60 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
61 * @tx_filter_mode: Transmit MAC filtering mode.
62 * @tx_filter_id: Transmit MAC filter ID.
63 * @addr: The MAC address and outer vlan tag of the VF.
64 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
65 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
66 * @peer_page_addrs and @peer_page_count from simultaneous
67 * updates by the VM and consumption by
68 * efx_siena_sriov_update_vf_addr()
69 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
70 * @peer_page_count: Number of entries in @peer_page_count.
71 * @evq0_addrs: Array of guest pages backing evq0.
72 * @evq0_count: Number of entries in @evq0_addrs.
73 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
74 * to wait for flush completions.
75 * @txq_lock: Mutex for TX queue allocation.
76 * @txq_mask: Mask of initialized transmit queues.
77 * @txq_count: Number of initialized transmit queues.
78 * @rxq_mask: Mask of initialized receive queues.
79 * @rxq_count: Number of initialized receive queues.
80 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
81 * due to flush failure.
82 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
83 * @reset_work: Work item to schedule a VF reset.
85 struct siena_vf {
86 struct efx_nic *efx;
87 unsigned int pci_rid;
88 char pci_name[13]; /* dddd:bb:dd.f */
89 unsigned int index;
90 struct work_struct req;
91 u64 req_addr;
92 int req_type;
93 unsigned req_seqno;
94 unsigned msg_seqno;
95 bool busy;
96 struct efx_buffer buf;
97 unsigned buftbl_base;
98 bool rx_filtering;
99 enum efx_filter_flags rx_filter_flags;
100 unsigned rx_filter_qid;
101 int rx_filter_id;
102 enum efx_vf_tx_filter_mode tx_filter_mode;
103 int tx_filter_id;
104 struct vfdi_endpoint addr;
105 u64 status_addr;
106 struct mutex status_lock;
107 u64 *peer_page_addrs;
108 unsigned peer_page_count;
109 u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
110 EFX_BUF_SIZE];
111 unsigned evq0_count;
112 wait_queue_head_t flush_waitq;
113 struct mutex txq_lock;
114 unsigned long txq_mask[VI_MASK_LENGTH];
115 unsigned txq_count;
116 unsigned long rxq_mask[VI_MASK_LENGTH];
117 unsigned rxq_count;
118 unsigned long rxq_retry_mask[VI_MASK_LENGTH];
119 atomic_t rxq_retry_count;
120 struct work_struct reset_work;
123 struct efx_memcpy_req {
124 unsigned int from_rid;
125 void *from_buf;
126 u64 from_addr;
127 unsigned int to_rid;
128 u64 to_addr;
129 unsigned length;
133 * struct efx_local_addr - A MAC address on the vswitch without a VF.
135 * Siena does not have a switch, so VFs can't transmit data to each
136 * other. Instead the VFs must be made aware of the local addresses
137 * on the vswitch, so that they can arrange for an alternative
138 * software datapath to be used.
140 * @link: List head for insertion into efx->local_addr_list.
141 * @addr: Ethernet address
143 struct efx_local_addr {
144 struct list_head link;
145 u8 addr[ETH_ALEN];
149 * struct efx_endpoint_page - Page of vfdi_endpoint structures
151 * @link: List head for insertion into efx->local_page_list.
152 * @ptr: Pointer to page.
153 * @addr: DMA address of page.
155 struct efx_endpoint_page {
156 struct list_head link;
157 void *ptr;
158 dma_addr_t addr;
161 /* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
162 #define EFX_BUFTBL_TXQ_BASE(_vf, _qid) \
163 ((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
164 #define EFX_BUFTBL_RXQ_BASE(_vf, _qid) \
165 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
166 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
167 #define EFX_BUFTBL_EVQ_BASE(_vf, _qid) \
168 (EFX_BUFTBL_TXQ_BASE(_vf, _qid) + \
169 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
171 #define EFX_FIELD_MASK(_field) \
172 ((1 << _field ## _WIDTH) - 1)
174 /* VFs can only use this many transmit channels */
175 static unsigned int vf_max_tx_channels = 2;
176 module_param(vf_max_tx_channels, uint, 0444);
177 MODULE_PARM_DESC(vf_max_tx_channels,
178 "Limit the number of TX channels VFs can use");
180 static int max_vfs = -1;
181 module_param(max_vfs, int, 0444);
182 MODULE_PARM_DESC(max_vfs,
183 "Reduce the number of VFs initialized by the driver");
185 /* Workqueue used by VFDI communication. We can't use the global
186 * workqueue because it may be running the VF driver's probe()
187 * routine, which will be blocked there waiting for a VFDI response.
189 static struct workqueue_struct *vfdi_workqueue;
191 static unsigned abs_index(struct siena_vf *vf, unsigned index)
193 return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
196 static int efx_siena_sriov_cmd(struct efx_nic *efx, bool enable,
197 unsigned *vi_scale_out, unsigned *vf_total_out)
199 MCDI_DECLARE_BUF(inbuf, MC_CMD_SRIOV_IN_LEN);
200 MCDI_DECLARE_BUF(outbuf, MC_CMD_SRIOV_OUT_LEN);
201 unsigned vi_scale, vf_total;
202 size_t outlen;
203 int rc;
205 MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
206 MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
207 MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);
209 rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_SRIOV, inbuf,
210 MC_CMD_SRIOV_IN_LEN, outbuf,
211 MC_CMD_SRIOV_OUT_LEN, &outlen);
212 if (rc)
213 return rc;
214 if (outlen < MC_CMD_SRIOV_OUT_LEN)
215 return -EIO;
217 vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
218 vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
219 if (vi_scale > EFX_VI_SCALE_MAX)
220 return -EOPNOTSUPP;
222 if (vi_scale_out)
223 *vi_scale_out = vi_scale;
224 if (vf_total_out)
225 *vf_total_out = vf_total;
227 return 0;
230 static void efx_siena_sriov_usrev(struct efx_nic *efx, bool enabled)
232 struct siena_nic_data *nic_data = efx->nic_data;
233 efx_oword_t reg;
235 EFX_POPULATE_OWORD_2(reg,
236 FRF_CZ_USREV_DIS, enabled ? 0 : 1,
237 FRF_CZ_DFLT_EVQ, nic_data->vfdi_channel->channel);
238 efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
241 static int efx_siena_sriov_memcpy(struct efx_nic *efx,
242 struct efx_memcpy_req *req,
243 unsigned int count)
245 MCDI_DECLARE_BUF(inbuf, MCDI_CTL_SDU_LEN_MAX_V1);
246 MCDI_DECLARE_STRUCT_PTR(record);
247 unsigned int index, used;
248 u64 from_addr;
249 u32 from_rid;
250 int rc;
252 mb(); /* Finish writing source/reading dest before DMA starts */
254 if (WARN_ON(count > MC_CMD_MEMCPY_IN_RECORD_MAXNUM))
255 return -ENOBUFS;
256 used = MC_CMD_MEMCPY_IN_LEN(count);
258 for (index = 0; index < count; index++) {
259 record = MCDI_ARRAY_STRUCT_PTR(inbuf, MEMCPY_IN_RECORD, index);
260 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_NUM_RECORDS,
261 count);
262 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
263 req->to_rid);
264 MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR,
265 req->to_addr);
266 if (req->from_buf == NULL) {
267 from_rid = req->from_rid;
268 from_addr = req->from_addr;
269 } else {
270 if (WARN_ON(used + req->length >
271 MCDI_CTL_SDU_LEN_MAX_V1)) {
272 rc = -ENOBUFS;
273 goto out;
276 from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
277 from_addr = used;
278 memcpy(_MCDI_PTR(inbuf, used), req->from_buf,
279 req->length);
280 used += req->length;
283 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
284 MCDI_SET_QWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR,
285 from_addr);
286 MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
287 req->length);
289 ++req;
292 rc = efx_siena_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
293 out:
294 mb(); /* Don't write source/read dest before DMA is complete */
296 return rc;
299 /* The TX filter is entirely controlled by this driver, and is modified
300 * underneath the feet of the VF
302 static void efx_siena_sriov_reset_tx_filter(struct siena_vf *vf)
304 struct efx_nic *efx = vf->efx;
305 struct efx_filter_spec filter;
306 u16 vlan;
307 int rc;
309 if (vf->tx_filter_id != -1) {
310 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
311 vf->tx_filter_id);
312 netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
313 vf->pci_name, vf->tx_filter_id);
314 vf->tx_filter_id = -1;
317 if (is_zero_ether_addr(vf->addr.mac_addr))
318 return;
320 /* Turn on TX filtering automatically if not explicitly
321 * enabled or disabled.
323 if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
324 vf->tx_filter_mode = VF_TX_FILTER_ON;
326 vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
327 efx_filter_init_tx(&filter, abs_index(vf, 0));
328 rc = efx_filter_set_eth_local(&filter,
329 vlan ? vlan : EFX_FILTER_VID_UNSPEC,
330 vf->addr.mac_addr);
331 BUG_ON(rc);
333 rc = efx_filter_insert_filter(efx, &filter, true);
334 if (rc < 0) {
335 netif_warn(efx, hw, efx->net_dev,
336 "Unable to migrate tx filter for vf %s\n",
337 vf->pci_name);
338 } else {
339 netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
340 vf->pci_name, rc);
341 vf->tx_filter_id = rc;
345 /* The RX filter is managed here on behalf of the VF driver */
346 static void efx_siena_sriov_reset_rx_filter(struct siena_vf *vf)
348 struct efx_nic *efx = vf->efx;
349 struct efx_filter_spec filter;
350 u16 vlan;
351 int rc;
353 if (vf->rx_filter_id != -1) {
354 efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
355 vf->rx_filter_id);
356 netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
357 vf->pci_name, vf->rx_filter_id);
358 vf->rx_filter_id = -1;
361 if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
362 return;
364 vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
365 efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
366 vf->rx_filter_flags,
367 abs_index(vf, vf->rx_filter_qid));
368 rc = efx_filter_set_eth_local(&filter,
369 vlan ? vlan : EFX_FILTER_VID_UNSPEC,
370 vf->addr.mac_addr);
371 BUG_ON(rc);
373 rc = efx_filter_insert_filter(efx, &filter, true);
374 if (rc < 0) {
375 netif_warn(efx, hw, efx->net_dev,
376 "Unable to insert rx filter for vf %s\n",
377 vf->pci_name);
378 } else {
379 netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
380 vf->pci_name, rc);
381 vf->rx_filter_id = rc;
385 static void __efx_siena_sriov_update_vf_addr(struct siena_vf *vf)
387 struct efx_nic *efx = vf->efx;
388 struct siena_nic_data *nic_data = efx->nic_data;
390 efx_siena_sriov_reset_tx_filter(vf);
391 efx_siena_sriov_reset_rx_filter(vf);
392 queue_work(vfdi_workqueue, &nic_data->peer_work);
395 /* Push the peer list to this VF. The caller must hold status_lock to interlock
396 * with VFDI requests, and they must be serialised against manipulation of
397 * local_page_list, either by acquiring local_lock or by running from
398 * efx_siena_sriov_peer_work()
400 static void __efx_siena_sriov_push_vf_status(struct siena_vf *vf)
402 struct efx_nic *efx = vf->efx;
403 struct siena_nic_data *nic_data = efx->nic_data;
404 struct vfdi_status *status = nic_data->vfdi_status.addr;
405 struct efx_memcpy_req copy[4];
406 struct efx_endpoint_page *epp;
407 unsigned int pos, count;
408 unsigned data_offset;
409 efx_qword_t event;
411 WARN_ON(!mutex_is_locked(&vf->status_lock));
412 WARN_ON(!vf->status_addr);
414 status->local = vf->addr;
415 status->generation_end = ++status->generation_start;
417 memset(copy, '\0', sizeof(copy));
418 /* Write generation_start */
419 copy[0].from_buf = &status->generation_start;
420 copy[0].to_rid = vf->pci_rid;
421 copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
422 generation_start);
423 copy[0].length = sizeof(status->generation_start);
424 /* DMA the rest of the structure (excluding the generations). This
425 * assumes that the non-generation portion of vfdi_status is in
426 * one chunk starting at the version member.
428 data_offset = offsetof(struct vfdi_status, version);
429 copy[1].from_rid = efx->pci_dev->devfn;
430 copy[1].from_addr = nic_data->vfdi_status.dma_addr + data_offset;
431 copy[1].to_rid = vf->pci_rid;
432 copy[1].to_addr = vf->status_addr + data_offset;
433 copy[1].length = status->length - data_offset;
435 /* Copy the peer pages */
436 pos = 2;
437 count = 0;
438 list_for_each_entry(epp, &nic_data->local_page_list, link) {
439 if (count == vf->peer_page_count) {
440 /* The VF driver will know they need to provide more
441 * pages because peer_addr_count is too large.
443 break;
445 copy[pos].from_buf = NULL;
446 copy[pos].from_rid = efx->pci_dev->devfn;
447 copy[pos].from_addr = epp->addr;
448 copy[pos].to_rid = vf->pci_rid;
449 copy[pos].to_addr = vf->peer_page_addrs[count];
450 copy[pos].length = EFX_PAGE_SIZE;
452 if (++pos == ARRAY_SIZE(copy)) {
453 efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
454 pos = 0;
456 ++count;
459 /* Write generation_end */
460 copy[pos].from_buf = &status->generation_end;
461 copy[pos].to_rid = vf->pci_rid;
462 copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
463 generation_end);
464 copy[pos].length = sizeof(status->generation_end);
465 efx_siena_sriov_memcpy(efx, copy, pos + 1);
467 /* Notify the guest */
468 EFX_POPULATE_QWORD_3(event,
469 FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
470 VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
471 VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
472 ++vf->msg_seqno;
473 efx_farch_generate_event(efx,
474 EFX_VI_BASE + vf->index * efx_vf_size(efx),
475 &event);
478 static void efx_siena_sriov_bufs(struct efx_nic *efx, unsigned offset,
479 u64 *addr, unsigned count)
481 efx_qword_t buf;
482 unsigned pos;
484 for (pos = 0; pos < count; ++pos) {
485 EFX_POPULATE_QWORD_3(buf,
486 FRF_AZ_BUF_ADR_REGION, 0,
487 FRF_AZ_BUF_ADR_FBUF,
488 addr ? addr[pos] >> 12 : 0,
489 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
490 efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
491 &buf, offset + pos);
495 static bool bad_vf_index(struct efx_nic *efx, unsigned index)
497 return index >= efx_vf_size(efx);
500 static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
502 unsigned max_buf_count = max_entry_count *
503 sizeof(efx_qword_t) / EFX_BUF_SIZE;
505 return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
508 /* Check that VI specified by per-port index belongs to a VF.
509 * Optionally set VF index and VI index within the VF.
511 static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
512 struct siena_vf **vf_out, unsigned *rel_index_out)
514 struct siena_nic_data *nic_data = efx->nic_data;
515 unsigned vf_i;
517 if (abs_index < EFX_VI_BASE)
518 return true;
519 vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
520 if (vf_i >= efx->vf_init_count)
521 return true;
523 if (vf_out)
524 *vf_out = nic_data->vf + vf_i;
525 if (rel_index_out)
526 *rel_index_out = abs_index % efx_vf_size(efx);
527 return false;
530 static int efx_vfdi_init_evq(struct siena_vf *vf)
532 struct efx_nic *efx = vf->efx;
533 struct vfdi_req *req = vf->buf.addr;
534 unsigned vf_evq = req->u.init_evq.index;
535 unsigned buf_count = req->u.init_evq.buf_count;
536 unsigned abs_evq = abs_index(vf, vf_evq);
537 unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
538 efx_oword_t reg;
540 if (bad_vf_index(efx, vf_evq) ||
541 bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
542 if (net_ratelimit())
543 netif_err(efx, hw, efx->net_dev,
544 "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
545 vf->pci_name, vf_evq, buf_count);
546 return VFDI_RC_EINVAL;
549 efx_siena_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);
551 EFX_POPULATE_OWORD_3(reg,
552 FRF_CZ_TIMER_Q_EN, 1,
553 FRF_CZ_HOST_NOTIFY_MODE, 0,
554 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
555 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
556 EFX_POPULATE_OWORD_3(reg,
557 FRF_AZ_EVQ_EN, 1,
558 FRF_AZ_EVQ_SIZE, __ffs(buf_count),
559 FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
560 efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
562 if (vf_evq == 0) {
563 memcpy(vf->evq0_addrs, req->u.init_evq.addr,
564 buf_count * sizeof(u64));
565 vf->evq0_count = buf_count;
568 return VFDI_RC_SUCCESS;
571 static int efx_vfdi_init_rxq(struct siena_vf *vf)
573 struct efx_nic *efx = vf->efx;
574 struct vfdi_req *req = vf->buf.addr;
575 unsigned vf_rxq = req->u.init_rxq.index;
576 unsigned vf_evq = req->u.init_rxq.evq;
577 unsigned buf_count = req->u.init_rxq.buf_count;
578 unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
579 unsigned label;
580 efx_oword_t reg;
582 if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
583 vf_rxq >= VF_MAX_RX_QUEUES ||
584 bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
585 if (net_ratelimit())
586 netif_err(efx, hw, efx->net_dev,
587 "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
588 "buf_count %d\n", vf->pci_name, vf_rxq,
589 vf_evq, buf_count);
590 return VFDI_RC_EINVAL;
592 if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
593 ++vf->rxq_count;
594 efx_siena_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);
596 label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
597 EFX_POPULATE_OWORD_6(reg,
598 FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
599 FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
600 FRF_AZ_RX_DESCQ_LABEL, label,
601 FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
602 FRF_AZ_RX_DESCQ_JUMBO,
603 !!(req->u.init_rxq.flags &
604 VFDI_RXQ_FLAG_SCATTER_EN),
605 FRF_AZ_RX_DESCQ_EN, 1);
606 efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
607 abs_index(vf, vf_rxq));
609 return VFDI_RC_SUCCESS;
612 static int efx_vfdi_init_txq(struct siena_vf *vf)
614 struct efx_nic *efx = vf->efx;
615 struct vfdi_req *req = vf->buf.addr;
616 unsigned vf_txq = req->u.init_txq.index;
617 unsigned vf_evq = req->u.init_txq.evq;
618 unsigned buf_count = req->u.init_txq.buf_count;
619 unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
620 unsigned label, eth_filt_en;
621 efx_oword_t reg;
623 if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
624 vf_txq >= vf_max_tx_channels ||
625 bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
626 if (net_ratelimit())
627 netif_err(efx, hw, efx->net_dev,
628 "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
629 "buf_count %d\n", vf->pci_name, vf_txq,
630 vf_evq, buf_count);
631 return VFDI_RC_EINVAL;
634 mutex_lock(&vf->txq_lock);
635 if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
636 ++vf->txq_count;
637 mutex_unlock(&vf->txq_lock);
638 efx_siena_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);
640 eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;
642 label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
643 EFX_POPULATE_OWORD_8(reg,
644 FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
645 FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
646 FRF_AZ_TX_DESCQ_EN, 1,
647 FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
648 FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
649 FRF_AZ_TX_DESCQ_LABEL, label,
650 FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
651 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
652 efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
653 abs_index(vf, vf_txq));
655 return VFDI_RC_SUCCESS;
658 /* Returns true when efx_vfdi_fini_all_queues should wake */
659 static bool efx_vfdi_flush_wake(struct siena_vf *vf)
661 /* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
662 smp_mb();
664 return (!vf->txq_count && !vf->rxq_count) ||
665 atomic_read(&vf->rxq_retry_count);
668 static void efx_vfdi_flush_clear(struct siena_vf *vf)
670 memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
671 vf->txq_count = 0;
672 memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
673 vf->rxq_count = 0;
674 memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
675 atomic_set(&vf->rxq_retry_count, 0);
678 static int efx_vfdi_fini_all_queues(struct siena_vf *vf)
680 struct efx_nic *efx = vf->efx;
681 efx_oword_t reg;
682 unsigned count = efx_vf_size(efx);
683 unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
684 unsigned timeout = HZ;
685 unsigned index, rxqs_count;
686 MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LENMAX);
687 int rc;
689 BUILD_BUG_ON(VF_MAX_RX_QUEUES >
690 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
692 rtnl_lock();
693 efx_siena_prepare_flush(efx);
694 rtnl_unlock();
696 /* Flush all the initialized queues */
697 rxqs_count = 0;
698 for (index = 0; index < count; ++index) {
699 if (test_bit(index, vf->txq_mask)) {
700 EFX_POPULATE_OWORD_2(reg,
701 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
702 FRF_AZ_TX_FLUSH_DESCQ,
703 vf_offset + index);
704 efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
706 if (test_bit(index, vf->rxq_mask)) {
707 MCDI_SET_ARRAY_DWORD(
708 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
709 rxqs_count, vf_offset + index);
710 rxqs_count++;
714 atomic_set(&vf->rxq_retry_count, 0);
715 while (timeout && (vf->rxq_count || vf->txq_count)) {
716 rc = efx_siena_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
717 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(rxqs_count),
718 NULL, 0, NULL);
719 WARN_ON(rc < 0);
721 timeout = wait_event_timeout(vf->flush_waitq,
722 efx_vfdi_flush_wake(vf),
723 timeout);
724 rxqs_count = 0;
725 for (index = 0; index < count; ++index) {
726 if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
727 atomic_dec(&vf->rxq_retry_count);
728 MCDI_SET_ARRAY_DWORD(
729 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
730 rxqs_count, vf_offset + index);
731 rxqs_count++;
736 rtnl_lock();
737 siena_finish_flush(efx);
738 rtnl_unlock();
740 /* Irrespective of success/failure, fini the queues */
741 EFX_ZERO_OWORD(reg);
742 for (index = 0; index < count; ++index) {
743 efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
744 vf_offset + index);
745 efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
746 vf_offset + index);
747 efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
748 vf_offset + index);
749 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
750 vf_offset + index);
752 efx_siena_sriov_bufs(efx, vf->buftbl_base, NULL,
753 EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
754 efx_vfdi_flush_clear(vf);
756 vf->evq0_count = 0;
758 return timeout ? 0 : VFDI_RC_ETIMEDOUT;
761 static int efx_vfdi_insert_filter(struct siena_vf *vf)
763 struct efx_nic *efx = vf->efx;
764 struct siena_nic_data *nic_data = efx->nic_data;
765 struct vfdi_req *req = vf->buf.addr;
766 unsigned vf_rxq = req->u.mac_filter.rxq;
767 unsigned flags;
769 if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
770 if (net_ratelimit())
771 netif_err(efx, hw, efx->net_dev,
772 "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
773 "flags 0x%x\n", vf->pci_name, vf_rxq,
774 req->u.mac_filter.flags);
775 return VFDI_RC_EINVAL;
778 flags = 0;
779 if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
780 flags |= EFX_FILTER_FLAG_RX_RSS;
781 if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
782 flags |= EFX_FILTER_FLAG_RX_SCATTER;
783 vf->rx_filter_flags = flags;
784 vf->rx_filter_qid = vf_rxq;
785 vf->rx_filtering = true;
787 efx_siena_sriov_reset_rx_filter(vf);
788 queue_work(vfdi_workqueue, &nic_data->peer_work);
790 return VFDI_RC_SUCCESS;
793 static int efx_vfdi_remove_all_filters(struct siena_vf *vf)
795 struct efx_nic *efx = vf->efx;
796 struct siena_nic_data *nic_data = efx->nic_data;
798 vf->rx_filtering = false;
799 efx_siena_sriov_reset_rx_filter(vf);
800 queue_work(vfdi_workqueue, &nic_data->peer_work);
802 return VFDI_RC_SUCCESS;
805 static int efx_vfdi_set_status_page(struct siena_vf *vf)
807 struct efx_nic *efx = vf->efx;
808 struct siena_nic_data *nic_data = efx->nic_data;
809 struct vfdi_req *req = vf->buf.addr;
810 u64 page_count = req->u.set_status_page.peer_page_count;
811 u64 max_page_count =
812 (EFX_PAGE_SIZE -
813 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
814 / sizeof(req->u.set_status_page.peer_page_addr[0]);
816 if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
817 if (net_ratelimit())
818 netif_err(efx, hw, efx->net_dev,
819 "ERROR: Invalid SET_STATUS_PAGE from %s\n",
820 vf->pci_name);
821 return VFDI_RC_EINVAL;
824 mutex_lock(&nic_data->local_lock);
825 mutex_lock(&vf->status_lock);
826 vf->status_addr = req->u.set_status_page.dma_addr;
828 kfree(vf->peer_page_addrs);
829 vf->peer_page_addrs = NULL;
830 vf->peer_page_count = 0;
832 if (page_count) {
833 vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
834 GFP_KERNEL);
835 if (vf->peer_page_addrs) {
836 memcpy(vf->peer_page_addrs,
837 req->u.set_status_page.peer_page_addr,
838 page_count * sizeof(u64));
839 vf->peer_page_count = page_count;
843 __efx_siena_sriov_push_vf_status(vf);
844 mutex_unlock(&vf->status_lock);
845 mutex_unlock(&nic_data->local_lock);
847 return VFDI_RC_SUCCESS;
850 static int efx_vfdi_clear_status_page(struct siena_vf *vf)
852 mutex_lock(&vf->status_lock);
853 vf->status_addr = 0;
854 mutex_unlock(&vf->status_lock);
856 return VFDI_RC_SUCCESS;
859 typedef int (*efx_vfdi_op_t)(struct siena_vf *vf);
861 static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
862 [VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
863 [VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
864 [VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
865 [VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
866 [VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
867 [VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
868 [VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
869 [VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
872 static void efx_siena_sriov_vfdi(struct work_struct *work)
874 struct siena_vf *vf = container_of(work, struct siena_vf, req);
875 struct efx_nic *efx = vf->efx;
876 struct vfdi_req *req = vf->buf.addr;
877 struct efx_memcpy_req copy[2];
878 int rc;
880 /* Copy this page into the local address space */
881 memset(copy, '\0', sizeof(copy));
882 copy[0].from_rid = vf->pci_rid;
883 copy[0].from_addr = vf->req_addr;
884 copy[0].to_rid = efx->pci_dev->devfn;
885 copy[0].to_addr = vf->buf.dma_addr;
886 copy[0].length = EFX_PAGE_SIZE;
887 rc = efx_siena_sriov_memcpy(efx, copy, 1);
888 if (rc) {
889 /* If we can't get the request, we can't reply to the caller */
890 if (net_ratelimit())
891 netif_err(efx, hw, efx->net_dev,
892 "ERROR: Unable to fetch VFDI request from %s rc %d\n",
893 vf->pci_name, -rc);
894 vf->busy = false;
895 return;
898 if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
899 rc = vfdi_ops[req->op](vf);
900 if (rc == 0) {
901 netif_dbg(efx, hw, efx->net_dev,
902 "vfdi request %d from %s ok\n",
903 req->op, vf->pci_name);
905 } else {
906 netif_dbg(efx, hw, efx->net_dev,
907 "ERROR: Unrecognised request %d from VF %s addr "
908 "%llx\n", req->op, vf->pci_name,
909 (unsigned long long)vf->req_addr);
910 rc = VFDI_RC_EOPNOTSUPP;
913 /* Allow subsequent VF requests */
914 vf->busy = false;
915 smp_wmb();
917 /* Respond to the request */
918 req->rc = rc;
919 req->op = VFDI_OP_RESPONSE;
921 memset(copy, '\0', sizeof(copy));
922 copy[0].from_buf = &req->rc;
923 copy[0].to_rid = vf->pci_rid;
924 copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
925 copy[0].length = sizeof(req->rc);
926 copy[1].from_buf = &req->op;
927 copy[1].to_rid = vf->pci_rid;
928 copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
929 copy[1].length = sizeof(req->op);
931 (void)efx_siena_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
936 /* After a reset the event queues inside the guests no longer exist. Fill the
937 * event ring in guest memory with VFDI reset events, then (re-initialise) the
938 * event queue to raise an interrupt. The guest driver will then recover.
941 static void efx_siena_sriov_reset_vf(struct siena_vf *vf,
942 struct efx_buffer *buffer)
944 struct efx_nic *efx = vf->efx;
945 struct efx_memcpy_req copy_req[4];
946 efx_qword_t event;
947 unsigned int pos, count, k, buftbl, abs_evq;
948 efx_oword_t reg;
949 efx_dword_t ptr;
950 int rc;
952 BUG_ON(buffer->len != EFX_PAGE_SIZE);
954 if (!vf->evq0_count)
955 return;
956 BUG_ON(vf->evq0_count & (vf->evq0_count - 1));
958 mutex_lock(&vf->status_lock);
959 EFX_POPULATE_QWORD_3(event,
960 FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
961 VFDI_EV_SEQ, vf->msg_seqno,
962 VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
963 vf->msg_seqno++;
964 for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
965 memcpy(buffer->addr + pos, &event, sizeof(event));
967 for (pos = 0; pos < vf->evq0_count; pos += count) {
968 count = min_t(unsigned, vf->evq0_count - pos,
969 ARRAY_SIZE(copy_req));
970 for (k = 0; k < count; k++) {
971 copy_req[k].from_buf = NULL;
972 copy_req[k].from_rid = efx->pci_dev->devfn;
973 copy_req[k].from_addr = buffer->dma_addr;
974 copy_req[k].to_rid = vf->pci_rid;
975 copy_req[k].to_addr = vf->evq0_addrs[pos + k];
976 copy_req[k].length = EFX_PAGE_SIZE;
978 rc = efx_siena_sriov_memcpy(efx, copy_req, count);
979 if (rc) {
980 if (net_ratelimit())
981 netif_err(efx, hw, efx->net_dev,
982 "ERROR: Unable to notify %s of reset"
983 ": %d\n", vf->pci_name, -rc);
984 break;
988 /* Reinitialise, arm and trigger evq0 */
989 abs_evq = abs_index(vf, 0);
990 buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
991 efx_siena_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);
993 EFX_POPULATE_OWORD_3(reg,
994 FRF_CZ_TIMER_Q_EN, 1,
995 FRF_CZ_HOST_NOTIFY_MODE, 0,
996 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
997 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
998 EFX_POPULATE_OWORD_3(reg,
999 FRF_AZ_EVQ_EN, 1,
1000 FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
1001 FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
1002 efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
1003 EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
1004 efx_writed(efx, &ptr, FR_BZ_EVQ_RPTR + FR_BZ_EVQ_RPTR_STEP * abs_evq);
1006 mutex_unlock(&vf->status_lock);
1009 static void efx_siena_sriov_reset_vf_work(struct work_struct *work)
1011 struct siena_vf *vf = container_of(work, struct siena_vf, req);
1012 struct efx_nic *efx = vf->efx;
1013 struct efx_buffer buf;
1015 if (!efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO)) {
1016 efx_siena_sriov_reset_vf(vf, &buf);
1017 efx_siena_free_buffer(efx, &buf);
1021 static void efx_siena_sriov_handle_no_channel(struct efx_nic *efx)
1023 netif_err(efx, drv, efx->net_dev,
1024 "ERROR: IOV requires MSI-X and 1 additional interrupt"
1025 "vector. IOV disabled\n");
1026 efx->vf_count = 0;
1029 static int efx_siena_sriov_probe_channel(struct efx_channel *channel)
1031 struct siena_nic_data *nic_data = channel->efx->nic_data;
1032 nic_data->vfdi_channel = channel;
1034 return 0;
1037 static void
1038 efx_siena_sriov_get_channel_name(struct efx_channel *channel,
1039 char *buf, size_t len)
1041 snprintf(buf, len, "%s-iov", channel->efx->name);
1044 static const struct efx_channel_type efx_siena_sriov_channel_type = {
1045 .handle_no_channel = efx_siena_sriov_handle_no_channel,
1046 .pre_probe = efx_siena_sriov_probe_channel,
1047 .post_remove = efx_siena_channel_dummy_op_void,
1048 .get_name = efx_siena_sriov_get_channel_name,
1049 /* no copy operation; channel must not be reallocated */
1050 .keep_eventq = true,
1053 void efx_siena_sriov_probe(struct efx_nic *efx)
1055 unsigned count;
1057 if (!max_vfs)
1058 return;
1060 if (efx_siena_sriov_cmd(efx, false, &efx->vi_scale, &count)) {
1061 pci_info(efx->pci_dev, "no SR-IOV VFs probed\n");
1062 return;
1064 if (count > 0 && count > max_vfs)
1065 count = max_vfs;
1067 /* efx_nic_dimension_resources() will reduce vf_count as appopriate */
1068 efx->vf_count = count;
1070 efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_siena_sriov_channel_type;
1073 /* Copy the list of individual addresses into the vfdi_status.peers
1074 * array and auxiliary pages, protected by %local_lock. Drop that lock
1075 * and then broadcast the address list to every VF.
1077 static void efx_siena_sriov_peer_work(struct work_struct *data)
1079 struct siena_nic_data *nic_data = container_of(data,
1080 struct siena_nic_data,
1081 peer_work);
1082 struct efx_nic *efx = nic_data->efx;
1083 struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1084 struct siena_vf *vf;
1085 struct efx_local_addr *local_addr;
1086 struct vfdi_endpoint *peer;
1087 struct efx_endpoint_page *epp;
1088 struct list_head pages;
1089 unsigned int peer_space;
1090 unsigned int peer_count;
1091 unsigned int pos;
1093 mutex_lock(&nic_data->local_lock);
1095 /* Move the existing peer pages off %local_page_list */
1096 INIT_LIST_HEAD(&pages);
1097 list_splice_tail_init(&nic_data->local_page_list, &pages);
1099 /* Populate the VF addresses starting from entry 1 (entry 0 is
1100 * the PF address)
1102 peer = vfdi_status->peers + 1;
1103 peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
1104 peer_count = 1;
1105 for (pos = 0; pos < efx->vf_count; ++pos) {
1106 vf = nic_data->vf + pos;
1108 mutex_lock(&vf->status_lock);
1109 if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
1110 *peer++ = vf->addr;
1111 ++peer_count;
1112 --peer_space;
1113 BUG_ON(peer_space == 0);
1115 mutex_unlock(&vf->status_lock);
1118 /* Fill the remaining addresses */
1119 list_for_each_entry(local_addr, &nic_data->local_addr_list, link) {
1120 ether_addr_copy(peer->mac_addr, local_addr->addr);
1121 peer->tci = 0;
1122 ++peer;
1123 ++peer_count;
1124 if (--peer_space == 0) {
1125 if (list_empty(&pages)) {
1126 epp = kmalloc(sizeof(*epp), GFP_KERNEL);
1127 if (!epp)
1128 break;
1129 epp->ptr = dma_alloc_coherent(
1130 &efx->pci_dev->dev, EFX_PAGE_SIZE,
1131 &epp->addr, GFP_KERNEL);
1132 if (!epp->ptr) {
1133 kfree(epp);
1134 break;
1136 } else {
1137 epp = list_first_entry(
1138 &pages, struct efx_endpoint_page, link);
1139 list_del(&epp->link);
1142 list_add_tail(&epp->link, &nic_data->local_page_list);
1143 peer = (struct vfdi_endpoint *)epp->ptr;
1144 peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
1147 vfdi_status->peer_count = peer_count;
1148 mutex_unlock(&nic_data->local_lock);
1150 /* Free any now unused endpoint pages */
1151 while (!list_empty(&pages)) {
1152 epp = list_first_entry(
1153 &pages, struct efx_endpoint_page, link);
1154 list_del(&epp->link);
1155 dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1156 epp->ptr, epp->addr);
1157 kfree(epp);
1160 /* Finally, push the pages */
1161 for (pos = 0; pos < efx->vf_count; ++pos) {
1162 vf = nic_data->vf + pos;
1164 mutex_lock(&vf->status_lock);
1165 if (vf->status_addr)
1166 __efx_siena_sriov_push_vf_status(vf);
1167 mutex_unlock(&vf->status_lock);
1171 static void efx_siena_sriov_free_local(struct efx_nic *efx)
1173 struct siena_nic_data *nic_data = efx->nic_data;
1174 struct efx_local_addr *local_addr;
1175 struct efx_endpoint_page *epp;
1177 while (!list_empty(&nic_data->local_addr_list)) {
1178 local_addr = list_first_entry(&nic_data->local_addr_list,
1179 struct efx_local_addr, link);
1180 list_del(&local_addr->link);
1181 kfree(local_addr);
1184 while (!list_empty(&nic_data->local_page_list)) {
1185 epp = list_first_entry(&nic_data->local_page_list,
1186 struct efx_endpoint_page, link);
1187 list_del(&epp->link);
1188 dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
1189 epp->ptr, epp->addr);
1190 kfree(epp);
1194 static int efx_siena_sriov_vf_alloc(struct efx_nic *efx)
1196 unsigned index;
1197 struct siena_vf *vf;
1198 struct siena_nic_data *nic_data = efx->nic_data;
1200 nic_data->vf = kcalloc(efx->vf_count, sizeof(*nic_data->vf),
1201 GFP_KERNEL);
1202 if (!nic_data->vf)
1203 return -ENOMEM;
1205 for (index = 0; index < efx->vf_count; ++index) {
1206 vf = nic_data->vf + index;
1208 vf->efx = efx;
1209 vf->index = index;
1210 vf->rx_filter_id = -1;
1211 vf->tx_filter_mode = VF_TX_FILTER_AUTO;
1212 vf->tx_filter_id = -1;
1213 INIT_WORK(&vf->req, efx_siena_sriov_vfdi);
1214 INIT_WORK(&vf->reset_work, efx_siena_sriov_reset_vf_work);
1215 init_waitqueue_head(&vf->flush_waitq);
1216 mutex_init(&vf->status_lock);
1217 mutex_init(&vf->txq_lock);
1220 return 0;
1223 static void efx_siena_sriov_vfs_fini(struct efx_nic *efx)
1225 struct siena_nic_data *nic_data = efx->nic_data;
1226 struct siena_vf *vf;
1227 unsigned int pos;
1229 for (pos = 0; pos < efx->vf_count; ++pos) {
1230 vf = nic_data->vf + pos;
1232 efx_siena_free_buffer(efx, &vf->buf);
1233 kfree(vf->peer_page_addrs);
1234 vf->peer_page_addrs = NULL;
1235 vf->peer_page_count = 0;
1237 vf->evq0_count = 0;
1241 static int efx_siena_sriov_vfs_init(struct efx_nic *efx)
1243 struct pci_dev *pci_dev = efx->pci_dev;
1244 struct siena_nic_data *nic_data = efx->nic_data;
1245 unsigned index, devfn, sriov, buftbl_base;
1246 u16 offset, stride;
1247 struct siena_vf *vf;
1248 int rc;
1250 sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
1251 if (!sriov)
1252 return -ENOENT;
1254 pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
1255 pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);
1257 buftbl_base = nic_data->vf_buftbl_base;
1258 devfn = pci_dev->devfn + offset;
1259 for (index = 0; index < efx->vf_count; ++index) {
1260 vf = nic_data->vf + index;
1262 /* Reserve buffer entries */
1263 vf->buftbl_base = buftbl_base;
1264 buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);
1266 vf->pci_rid = devfn;
1267 snprintf(vf->pci_name, sizeof(vf->pci_name),
1268 "%04x:%02x:%02x.%d",
1269 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
1270 PCI_SLOT(devfn), PCI_FUNC(devfn));
1272 rc = efx_siena_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE,
1273 GFP_KERNEL);
1274 if (rc)
1275 goto fail;
1277 devfn += stride;
1280 return 0;
1282 fail:
1283 efx_siena_sriov_vfs_fini(efx);
1284 return rc;
1287 int efx_siena_sriov_init(struct efx_nic *efx)
1289 struct net_device *net_dev = efx->net_dev;
1290 struct siena_nic_data *nic_data = efx->nic_data;
1291 struct vfdi_status *vfdi_status;
1292 int rc;
1294 /* Ensure there's room for vf_channel */
1295 BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
1296 /* Ensure that VI_BASE is aligned on VI_SCALE */
1297 BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));
1299 if (efx->vf_count == 0)
1300 return 0;
1302 rc = efx_siena_sriov_cmd(efx, true, NULL, NULL);
1303 if (rc)
1304 goto fail_cmd;
1306 rc = efx_siena_alloc_buffer(efx, &nic_data->vfdi_status,
1307 sizeof(*vfdi_status), GFP_KERNEL);
1308 if (rc)
1309 goto fail_status;
1310 vfdi_status = nic_data->vfdi_status.addr;
1311 memset(vfdi_status, 0, sizeof(*vfdi_status));
1312 vfdi_status->version = 1;
1313 vfdi_status->length = sizeof(*vfdi_status);
1314 vfdi_status->max_tx_channels = vf_max_tx_channels;
1315 vfdi_status->vi_scale = efx->vi_scale;
1316 vfdi_status->rss_rxq_count = efx->rss_spread;
1317 vfdi_status->peer_count = 1 + efx->vf_count;
1318 vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;
1320 rc = efx_siena_sriov_vf_alloc(efx);
1321 if (rc)
1322 goto fail_alloc;
1324 mutex_init(&nic_data->local_lock);
1325 INIT_WORK(&nic_data->peer_work, efx_siena_sriov_peer_work);
1326 INIT_LIST_HEAD(&nic_data->local_addr_list);
1327 INIT_LIST_HEAD(&nic_data->local_page_list);
1329 rc = efx_siena_sriov_vfs_init(efx);
1330 if (rc)
1331 goto fail_vfs;
1333 rtnl_lock();
1334 ether_addr_copy(vfdi_status->peers[0].mac_addr, net_dev->dev_addr);
1335 efx->vf_init_count = efx->vf_count;
1336 rtnl_unlock();
1338 efx_siena_sriov_usrev(efx, true);
1340 /* At this point we must be ready to accept VFDI requests */
1342 rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
1343 if (rc)
1344 goto fail_pci;
1346 netif_info(efx, probe, net_dev,
1347 "enabled SR-IOV for %d VFs, %d VI per VF\n",
1348 efx->vf_count, efx_vf_size(efx));
1349 return 0;
1351 fail_pci:
1352 efx_siena_sriov_usrev(efx, false);
1353 rtnl_lock();
1354 efx->vf_init_count = 0;
1355 rtnl_unlock();
1356 efx_siena_sriov_vfs_fini(efx);
1357 fail_vfs:
1358 cancel_work_sync(&nic_data->peer_work);
1359 efx_siena_sriov_free_local(efx);
1360 kfree(nic_data->vf);
1361 fail_alloc:
1362 efx_siena_free_buffer(efx, &nic_data->vfdi_status);
1363 fail_status:
1364 efx_siena_sriov_cmd(efx, false, NULL, NULL);
1365 fail_cmd:
1366 return rc;
1369 void efx_siena_sriov_fini(struct efx_nic *efx)
1371 struct siena_vf *vf;
1372 unsigned int pos;
1373 struct siena_nic_data *nic_data = efx->nic_data;
1375 if (efx->vf_init_count == 0)
1376 return;
1378 /* Disable all interfaces to reconfiguration */
1379 BUG_ON(nic_data->vfdi_channel->enabled);
1380 efx_siena_sriov_usrev(efx, false);
1381 rtnl_lock();
1382 efx->vf_init_count = 0;
1383 rtnl_unlock();
1385 /* Flush all reconfiguration work */
1386 for (pos = 0; pos < efx->vf_count; ++pos) {
1387 vf = nic_data->vf + pos;
1388 cancel_work_sync(&vf->req);
1389 cancel_work_sync(&vf->reset_work);
1391 cancel_work_sync(&nic_data->peer_work);
1393 pci_disable_sriov(efx->pci_dev);
1395 /* Tear down back-end state */
1396 efx_siena_sriov_vfs_fini(efx);
1397 efx_siena_sriov_free_local(efx);
1398 kfree(nic_data->vf);
1399 efx_siena_free_buffer(efx, &nic_data->vfdi_status);
1400 efx_siena_sriov_cmd(efx, false, NULL, NULL);
1403 void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event)
1405 struct efx_nic *efx = channel->efx;
1406 struct siena_vf *vf;
1407 unsigned qid, seq, type, data;
1409 qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);
1411 /* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
1412 BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
1413 seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
1414 type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
1415 data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);
1417 netif_vdbg(efx, hw, efx->net_dev,
1418 "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
1419 qid, seq, type, data);
1421 if (map_vi_index(efx, qid, &vf, NULL))
1422 return;
1423 if (vf->busy)
1424 goto error;
1426 if (type == VFDI_EV_TYPE_REQ_WORD0) {
1427 /* Resynchronise */
1428 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1429 vf->req_seqno = seq + 1;
1430 vf->req_addr = 0;
1431 } else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
1432 goto error;
1434 switch (vf->req_type) {
1435 case VFDI_EV_TYPE_REQ_WORD0:
1436 case VFDI_EV_TYPE_REQ_WORD1:
1437 case VFDI_EV_TYPE_REQ_WORD2:
1438 vf->req_addr |= (u64)data << (vf->req_type << 4);
1439 ++vf->req_type;
1440 return;
1442 case VFDI_EV_TYPE_REQ_WORD3:
1443 vf->req_addr |= (u64)data << 48;
1444 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1445 vf->busy = true;
1446 queue_work(vfdi_workqueue, &vf->req);
1447 return;
1450 error:
1451 if (net_ratelimit())
1452 netif_err(efx, hw, efx->net_dev,
1453 "ERROR: Screaming VFDI request from %s\n",
1454 vf->pci_name);
1455 /* Reset the request and sequence number */
1456 vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
1457 vf->req_seqno = seq + 1;
1460 void efx_siena_sriov_flr(struct efx_nic *efx, unsigned vf_i)
1462 struct siena_nic_data *nic_data = efx->nic_data;
1463 struct siena_vf *vf;
1465 if (vf_i > efx->vf_init_count)
1466 return;
1467 vf = nic_data->vf + vf_i;
1468 netif_info(efx, hw, efx->net_dev,
1469 "FLR on VF %s\n", vf->pci_name);
1471 vf->status_addr = 0;
1472 efx_vfdi_remove_all_filters(vf);
1473 efx_vfdi_flush_clear(vf);
1475 vf->evq0_count = 0;
1478 int efx_siena_sriov_mac_address_changed(struct efx_nic *efx)
1480 struct siena_nic_data *nic_data = efx->nic_data;
1481 struct vfdi_status *vfdi_status = nic_data->vfdi_status.addr;
1483 if (!efx->vf_init_count)
1484 return 0;
1485 ether_addr_copy(vfdi_status->peers[0].mac_addr,
1486 efx->net_dev->dev_addr);
1487 queue_work(vfdi_workqueue, &nic_data->peer_work);
1489 return 0;
1492 void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1494 struct siena_vf *vf;
1495 unsigned queue, qid;
1497 queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1498 if (map_vi_index(efx, queue, &vf, &qid))
1499 return;
1500 /* Ignore flush completions triggered by an FLR */
1501 if (!test_bit(qid, vf->txq_mask))
1502 return;
1504 __clear_bit(qid, vf->txq_mask);
1505 --vf->txq_count;
1507 if (efx_vfdi_flush_wake(vf))
1508 wake_up(&vf->flush_waitq);
1511 void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1513 struct siena_vf *vf;
1514 unsigned ev_failed, queue, qid;
1516 queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1517 ev_failed = EFX_QWORD_FIELD(*event,
1518 FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1519 if (map_vi_index(efx, queue, &vf, &qid))
1520 return;
1521 if (!test_bit(qid, vf->rxq_mask))
1522 return;
1524 if (ev_failed) {
1525 set_bit(qid, vf->rxq_retry_mask);
1526 atomic_inc(&vf->rxq_retry_count);
1527 } else {
1528 __clear_bit(qid, vf->rxq_mask);
1529 --vf->rxq_count;
1531 if (efx_vfdi_flush_wake(vf))
1532 wake_up(&vf->flush_waitq);
1535 /* Called from napi. Schedule the reset work item */
1536 void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
1538 struct siena_vf *vf;
1539 unsigned int rel;
1541 if (map_vi_index(efx, dmaq, &vf, &rel))
1542 return;
1544 if (net_ratelimit())
1545 netif_err(efx, hw, efx->net_dev,
1546 "VF %d DMA Q %d reports descriptor fetch error.\n",
1547 vf->index, rel);
1548 queue_work(vfdi_workqueue, &vf->reset_work);
1551 /* Reset all VFs */
1552 void efx_siena_sriov_reset(struct efx_nic *efx)
1554 struct siena_nic_data *nic_data = efx->nic_data;
1555 unsigned int vf_i;
1556 struct efx_buffer buf;
1557 struct siena_vf *vf;
1559 ASSERT_RTNL();
1561 if (efx->vf_init_count == 0)
1562 return;
1564 efx_siena_sriov_usrev(efx, true);
1565 (void)efx_siena_sriov_cmd(efx, true, NULL, NULL);
1567 if (efx_siena_alloc_buffer(efx, &buf, EFX_PAGE_SIZE, GFP_NOIO))
1568 return;
1570 for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
1571 vf = nic_data->vf + vf_i;
1572 efx_siena_sriov_reset_vf(vf, &buf);
1575 efx_siena_free_buffer(efx, &buf);
1578 int efx_init_sriov(void)
1580 /* A single threaded workqueue is sufficient. efx_siena_sriov_vfdi() and
1581 * efx_siena_sriov_peer_work() spend almost all their time sleeping for
1582 * MCDI to complete anyway
1584 vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
1585 if (!vfdi_workqueue)
1586 return -ENOMEM;
1587 return 0;
1590 void efx_fini_sriov(void)
1592 destroy_workqueue(vfdi_workqueue);
1595 int efx_siena_sriov_set_vf_mac(struct efx_nic *efx, int vf_i, const u8 *mac)
1597 struct siena_nic_data *nic_data = efx->nic_data;
1598 struct siena_vf *vf;
1600 if (vf_i >= efx->vf_init_count)
1601 return -EINVAL;
1602 vf = nic_data->vf + vf_i;
1604 mutex_lock(&vf->status_lock);
1605 ether_addr_copy(vf->addr.mac_addr, mac);
1606 __efx_siena_sriov_update_vf_addr(vf);
1607 mutex_unlock(&vf->status_lock);
1609 return 0;
1612 int efx_siena_sriov_set_vf_vlan(struct efx_nic *efx, int vf_i,
1613 u16 vlan, u8 qos)
1615 struct siena_nic_data *nic_data = efx->nic_data;
1616 struct siena_vf *vf;
1617 u16 tci;
1619 if (vf_i >= efx->vf_init_count)
1620 return -EINVAL;
1621 vf = nic_data->vf + vf_i;
1623 mutex_lock(&vf->status_lock);
1624 tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
1625 vf->addr.tci = htons(tci);
1626 __efx_siena_sriov_update_vf_addr(vf);
1627 mutex_unlock(&vf->status_lock);
1629 return 0;
1632 int efx_siena_sriov_set_vf_spoofchk(struct efx_nic *efx, int vf_i,
1633 bool spoofchk)
1635 struct siena_nic_data *nic_data = efx->nic_data;
1636 struct siena_vf *vf;
1637 int rc;
1639 if (vf_i >= efx->vf_init_count)
1640 return -EINVAL;
1641 vf = nic_data->vf + vf_i;
1643 mutex_lock(&vf->txq_lock);
1644 if (vf->txq_count == 0) {
1645 vf->tx_filter_mode =
1646 spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
1647 rc = 0;
1648 } else {
1649 /* This cannot be changed while TX queues are running */
1650 rc = -EBUSY;
1652 mutex_unlock(&vf->txq_lock);
1653 return rc;
1656 int efx_siena_sriov_get_vf_config(struct efx_nic *efx, int vf_i,
1657 struct ifla_vf_info *ivi)
1659 struct siena_nic_data *nic_data = efx->nic_data;
1660 struct siena_vf *vf;
1661 u16 tci;
1663 if (vf_i >= efx->vf_init_count)
1664 return -EINVAL;
1665 vf = nic_data->vf + vf_i;
1667 ivi->vf = vf_i;
1668 ether_addr_copy(ivi->mac, vf->addr.mac_addr);
1669 ivi->max_tx_rate = 0;
1670 ivi->min_tx_rate = 0;
1671 tci = ntohs(vf->addr.tci);
1672 ivi->vlan = tci & VLAN_VID_MASK;
1673 ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
1674 ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;
1676 return 0;
1679 bool efx_siena_sriov_wanted(struct efx_nic *efx)
1681 return efx->vf_count != 0;
1684 int efx_siena_sriov_configure(struct efx_nic *efx, int num_vfs)
1686 return 0;