5 * Copyright Information:
6 * Copyright Digital Equipment Corporation 1996.
8 * This software may be used and distributed according to the terms of
9 * the GNU General Public License, incorporated herein by reference.
12 * A Linux device driver supporting the Digital Equipment Corporation
13 * FDDI TURBOchannel, EISA and PCI controller families. Supported
16 * DEC FDDIcontroller/TURBOchannel (DEFTA)
17 * DEC FDDIcontroller/EISA (DEFEA)
18 * DEC FDDIcontroller/PCI (DEFPA)
20 * The original author:
21 * LVS Lawrence V. Stefani <lstefani@yahoo.com>
24 * macro Maciej W. Rozycki <macro@orcam.me.uk>
27 * I'd like to thank Patricia Cross for helping me get started with
28 * Linux, David Davies for a lot of help upgrading and configuring
29 * my development system and for answering many OS and driver
30 * development questions, and Alan Cox for recommendations and
31 * integration help on getting FDDI support into Linux. LVS
33 * Driver Architecture:
34 * The driver architecture is largely based on previous driver work
35 * for other operating systems. The upper edge interface and
36 * functions were largely taken from existing Linux device drivers
37 * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
41 * The driver scans for supported EISA adapters by reading the
42 * SLOT ID register for each EISA slot and making a match
43 * against the expected value.
45 * Bus-Specific Initialization -
46 * This driver currently supports both EISA and PCI controller
47 * families. While the custom DMA chip and FDDI logic is similar
48 * or identical, the bus logic is very different. After
49 * initialization, the only bus-specific differences is in how the
50 * driver enables and disables interrupts. Other than that, the
51 * run-time critical code behaves the same on both families.
52 * It's important to note that both adapter families are configured
53 * to I/O map, rather than memory map, the adapter registers.
56 * In the driver open routine, the driver ISR (interrupt service
57 * routine) is registered and the adapter is brought to an
58 * operational state. In the driver close routine, the opposite
59 * occurs; the driver ISR is deregistered and the adapter is
60 * brought to a safe, but closed state. Users may use consecutive
61 * commands to bring the adapter up and down as in the following
68 * Apparently, there is no shutdown or halt routine support under
69 * Linux. This routine would be called during "reboot" or
70 * "shutdown" to allow the driver to place the adapter in a safe
71 * state before a warm reboot occurs. To be really safe, the user
72 * should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 * to ensure that the adapter DMA engine is taken off-line. However,
74 * the current driver code anticipates this problem and always issues
75 * a soft reset of the adapter at the beginning of driver initialization.
76 * A future driver enhancement in this area may occur in 2.1.X where
77 * Alan indicated that a shutdown handler may be implemented.
79 * Interrupt Service Routine -
80 * The driver supports shared interrupts, so the ISR is registered for
81 * each board with the appropriate flag and the pointer to that board's
82 * device structure. This provides the context during interrupt
83 * processing to support shared interrupts and multiple boards.
85 * Interrupt enabling/disabling can occur at many levels. At the host
86 * end, you can disable system interrupts, or disable interrupts at the
87 * PIC (on Intel systems). Across the bus, both EISA and PCI adapters
88 * have a bus-logic chip interrupt enable/disable as well as a DMA
89 * controller interrupt enable/disable.
91 * The driver currently enables and disables adapter interrupts at the
92 * bus-logic chip and assumes that Linux will take care of clearing or
93 * acknowledging any host-based interrupt chips.
96 * Control functions are those used to support functions such as adding
97 * or deleting multicast addresses, enabling or disabling packet
98 * reception filters, or other custom/proprietary commands. Presently,
99 * the driver supports the "get statistics", "set multicast list", and
100 * "set mac address" functions defined by Linux. A list of possible
101 * enhancements include:
103 * - Custom ioctl interface for executing port interface commands
104 * - Custom ioctl interface for adding unicast addresses to
105 * adapter CAM (to support bridge functions).
106 * - Custom ioctl interface for supporting firmware upgrades.
108 * Hardware (port interface) Support Routines -
109 * The driver function names that start with "dfx_hw_" represent
110 * low-level port interface routines that are called frequently. They
111 * include issuing a DMA or port control command to the adapter,
112 * resetting the adapter, or reading the adapter state. Since the
113 * driver initialization and run-time code must make calls into the
114 * port interface, these routines were written to be as generic and
115 * usable as possible.
118 * The adapter DMA engine supports a 256 entry receive descriptor block
119 * of which up to 255 entries can be used at any given time. The
120 * architecture is a standard producer, consumer, completion model in
121 * which the driver "produces" receive buffers to the adapter, the
122 * adapter "consumes" the receive buffers by DMAing incoming packet data,
123 * and the driver "completes" the receive buffers by servicing the
124 * incoming packet, then "produces" a new buffer and starts the cycle
125 * again. Receive buffers can be fragmented in up to 16 fragments
126 * (descriptor entries). For simplicity, this driver posts
127 * single-fragment receive buffers of 4608 bytes, then allocates a
128 * sk_buff, copies the data, then reposts the buffer. To reduce CPU
129 * utilization, a better approach would be to pass up the receive
130 * buffer (no extra copy) then allocate and post a replacement buffer.
131 * This is a performance enhancement that should be looked into at
135 * Like the receive path, the adapter DMA engine supports a 256 entry
136 * transmit descriptor block of which up to 255 entries can be used at
137 * any given time. Transmit buffers can be fragmented in up to 255
138 * fragments (descriptor entries). This driver always posts one
139 * fragment per transmit packet request.
141 * The fragment contains the entire packet from FC to end of data.
142 * Before posting the buffer to the adapter, the driver sets a three-byte
143 * packet request header (PRH) which is required by the Motorola MAC chip
144 * used on the adapters. The PRH tells the MAC the type of token to
145 * receive/send, whether or not to generate and append the CRC, whether
146 * synchronous or asynchronous framing is used, etc. Since the PRH
147 * definition is not necessarily consistent across all FDDI chipsets,
148 * the driver, rather than the common FDDI packet handler routines,
151 * To reduce the amount of descriptor fetches needed per transmit request,
152 * the driver takes advantage of the fact that there are at least three
153 * bytes available before the skb->data field on the outgoing transmit
154 * request. This is guaranteed by having fddi_setup() in net_init.c set
155 * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest
156 * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad"
157 * bytes which we'll use to store the PRH.
159 * There's a subtle advantage to adding these pad bytes to the
160 * hard_header_len, it ensures that the data portion of the packet for
161 * an 802.2 SNAP frame is longword aligned. Other FDDI driver
162 * implementations may not need the extra padding and can start copying
163 * or DMAing directly from the FC byte which starts at skb->data. Should
164 * another driver implementation need ADDITIONAL padding, the net_init.c
165 * module should be updated and dev->hard_header_len should be increased.
166 * NOTE: To maintain the alignment on the data portion of the packet,
167 * dev->hard_header_len should always be evenly divisible by 4 and at
168 * least 24 bytes in size.
170 * Modification History:
171 * Date Name Description
172 * 16-Aug-96 LVS Created.
173 * 20-Aug-96 LVS Updated dfx_probe so that version information
174 * string is only displayed if 1 or more cards are
175 * found. Changed dfx_rcv_queue_process to copy
176 * 3 NULL bytes before FC to ensure that data is
177 * longword aligned in receive buffer.
178 * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable
179 * LLC group promiscuous mode if multicast list
180 * is too large. LLC individual/group promiscuous
181 * mode is now disabled if IFF_PROMISC flag not set.
182 * dfx_xmt_queue_pkt no longer checks for NULL skb
183 * on Alan Cox recommendation. Added node address
185 * 12-Sep-96 LVS Reset current address to factory address during
186 * device open. Updated transmit path to post a
187 * single fragment which includes PRH->end of data.
188 * Mar 2000 AC Did various cleanups for 2.3.x
189 * Jun 2000 jgarzik PCI and resource alloc cleanups
190 * Jul 2000 tjeerd Much cleanup and some bug fixes
191 * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup
192 * Feb 2001 Skb allocation fixes
193 * Feb 2001 davej PCI enable cleanups.
194 * 04 Aug 2003 macro Converted to the DMA API.
195 * 14 Aug 2004 macro Fix device names reported.
196 * 14 Jun 2005 macro Use irqreturn_t.
197 * 23 Oct 2006 macro Big-endian host support.
198 * 14 Dec 2006 macro TURBOchannel support.
199 * 01 Jul 2014 macro Fixes for DMA on 64-bit hosts.
200 * 10 Mar 2021 macro Dynamic MMIO vs port I/O.
204 #include <linux/bitops.h>
205 #include <linux/compiler.h>
206 #include <linux/delay.h>
207 #include <linux/dma-mapping.h>
208 #include <linux/eisa.h>
209 #include <linux/errno.h>
210 #include <linux/fddidevice.h>
211 #include <linux/interrupt.h>
212 #include <linux/ioport.h>
213 #include <linux/kernel.h>
214 #include <linux/module.h>
215 #include <linux/netdevice.h>
216 #include <linux/pci.h>
217 #include <linux/skbuff.h>
218 #include <linux/slab.h>
219 #include <linux/string.h>
220 #include <linux/tc.h>
222 #include <asm/byteorder.h>
227 /* Version information string should be updated prior to each new release! */
228 #define DRV_NAME "defxx"
229 #define DRV_VERSION "v1.12"
230 #define DRV_RELDATE "2021/03/10"
232 static const char version
[] =
233 DRV_NAME
": " DRV_VERSION
" " DRV_RELDATE
234 " Lawrence V. Stefani and others\n";
236 #define DYNAMIC_BUFFERS 1
238 #define SKBUFF_RX_COPYBREAK 200
240 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
241 * alignment for compatibility with old EISA boards.
243 #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
246 #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
248 #define DFX_BUS_EISA(dev) 0
252 #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
254 #define DFX_BUS_TC(dev) 0
257 #ifdef CONFIG_HAS_IOPORT
258 #define dfx_use_mmio bp->mmio
260 #define dfx_use_mmio true
263 /* Define module-wide (static) routines */
265 static void dfx_bus_init(struct net_device
*dev
);
266 static void dfx_bus_uninit(struct net_device
*dev
);
267 static void dfx_bus_config_check(DFX_board_t
*bp
);
269 static int dfx_driver_init(struct net_device
*dev
,
270 const char *print_name
,
271 resource_size_t bar_start
);
272 static int dfx_adap_init(DFX_board_t
*bp
, int get_buffers
);
274 static int dfx_open(struct net_device
*dev
);
275 static int dfx_close(struct net_device
*dev
);
277 static void dfx_int_pr_halt_id(DFX_board_t
*bp
);
278 static void dfx_int_type_0_process(DFX_board_t
*bp
);
279 static void dfx_int_common(struct net_device
*dev
);
280 static irqreturn_t
dfx_interrupt(int irq
, void *dev_id
);
282 static struct net_device_stats
*dfx_ctl_get_stats(struct net_device
*dev
);
283 static void dfx_ctl_set_multicast_list(struct net_device
*dev
);
284 static int dfx_ctl_set_mac_address(struct net_device
*dev
, void *addr
);
285 static int dfx_ctl_update_cam(DFX_board_t
*bp
);
286 static int dfx_ctl_update_filters(DFX_board_t
*bp
);
288 static int dfx_hw_dma_cmd_req(DFX_board_t
*bp
);
289 static int dfx_hw_port_ctrl_req(DFX_board_t
*bp
, PI_UINT32 command
, PI_UINT32 data_a
, PI_UINT32 data_b
, PI_UINT32
*host_data
);
290 static void dfx_hw_adap_reset(DFX_board_t
*bp
, PI_UINT32 type
);
291 static int dfx_hw_adap_state_rd(DFX_board_t
*bp
);
292 static int dfx_hw_dma_uninit(DFX_board_t
*bp
, PI_UINT32 type
);
294 static int dfx_rcv_init(DFX_board_t
*bp
, int get_buffers
);
295 static void dfx_rcv_queue_process(DFX_board_t
*bp
);
296 #ifdef DYNAMIC_BUFFERS
297 static void dfx_rcv_flush(DFX_board_t
*bp
);
299 static inline void dfx_rcv_flush(DFX_board_t
*bp
) {}
302 static netdev_tx_t
dfx_xmt_queue_pkt(struct sk_buff
*skb
,
303 struct net_device
*dev
);
304 static int dfx_xmt_done(DFX_board_t
*bp
);
305 static void dfx_xmt_flush(DFX_board_t
*bp
);
307 /* Define module-wide (static) variables */
309 static struct pci_driver dfx_pci_driver
;
310 static struct eisa_driver dfx_eisa_driver
;
311 static struct tc_driver dfx_tc_driver
;
315 * =======================
316 * = dfx_port_write_long =
317 * = dfx_port_read_long =
318 * =======================
321 * Routines for reading and writing values from/to adapter
327 * bp - pointer to board information
328 * offset - register offset from base I/O address
329 * data - for dfx_port_write_long, this is a value to write;
330 * for dfx_port_read_long, this is a pointer to store
333 * Functional Description:
334 * These routines perform the correct operation to read or write
335 * the adapter register.
337 * EISA port block base addresses are based on the slot number in which the
338 * controller is installed. For example, if the EISA controller is installed
339 * in slot 4, the port block base address is 0x4000. If the controller is
340 * installed in slot 2, the port block base address is 0x2000, and so on.
341 * This port block can be used to access PDQ, ESIC, and DEFEA on-board
342 * registers using the register offsets defined in DEFXX.H.
344 * PCI port block base addresses are assigned by the PCI BIOS or system
345 * firmware. There is one 128 byte port block which can be accessed. It
346 * allows for I/O mapping of both PDQ and PFI registers using the register
347 * offsets defined in DEFXX.H.
353 * bp->base is a valid base I/O address for this adapter.
354 * offset is a valid register offset for this adapter.
357 * Rather than produce macros for these functions, these routines
358 * are defined using "inline" to ensure that the compiler will
359 * generate inline code and not waste a procedure call and return.
360 * This provides all the benefits of macros, but with the
361 * advantage of strict data type checking.
364 static inline void dfx_writel(DFX_board_t
*bp
, int offset
, u32 data
)
366 writel(data
, bp
->base
.mem
+ offset
);
370 static inline void dfx_outl(DFX_board_t
*bp
, int offset
, u32 data
)
372 outl(data
, bp
->base
.port
+ offset
);
375 static void dfx_port_write_long(DFX_board_t
*bp
, int offset
, u32 data
)
377 struct device __maybe_unused
*bdev
= bp
->bus_dev
;
380 dfx_writel(bp
, offset
, data
);
382 dfx_outl(bp
, offset
, data
);
386 static inline void dfx_readl(DFX_board_t
*bp
, int offset
, u32
*data
)
389 *data
= readl(bp
->base
.mem
+ offset
);
392 static inline void dfx_inl(DFX_board_t
*bp
, int offset
, u32
*data
)
394 *data
= inl(bp
->base
.port
+ offset
);
397 static void dfx_port_read_long(DFX_board_t
*bp
, int offset
, u32
*data
)
399 struct device __maybe_unused
*bdev
= bp
->bus_dev
;
402 dfx_readl(bp
, offset
, data
);
404 dfx_inl(bp
, offset
, data
);
414 * Retrieves the address ranges used to access control and status
421 * bp - pointer to board information
422 * bar_start - pointer to store the start addresses
423 * bar_len - pointer to store the lengths of the areas
426 * I am sure there are some.
431 static void dfx_get_bars(DFX_board_t
*bp
,
432 resource_size_t
*bar_start
, resource_size_t
*bar_len
)
434 struct device
*bdev
= bp
->bus_dev
;
435 int dfx_bus_pci
= dev_is_pci(bdev
);
436 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
437 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
440 int num
= dfx_use_mmio
? 0 : 1;
442 bar_start
[0] = pci_resource_start(to_pci_dev(bdev
), num
);
443 bar_len
[0] = pci_resource_len(to_pci_dev(bdev
), num
);
444 bar_start
[2] = bar_start
[1] = 0;
445 bar_len
[2] = bar_len
[1] = 0;
448 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
449 resource_size_t bar_lo
;
450 resource_size_t bar_hi
;
453 bar_lo
= inb(base_addr
+ PI_ESIC_K_MEM_ADD_LO_CMP_2
);
455 bar_lo
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_LO_CMP_1
);
457 bar_lo
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_LO_CMP_0
);
459 bar_start
[0] = bar_lo
;
460 bar_hi
= inb(base_addr
+ PI_ESIC_K_MEM_ADD_HI_CMP_2
);
462 bar_hi
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_HI_CMP_1
);
464 bar_hi
|= inb(base_addr
+ PI_ESIC_K_MEM_ADD_HI_CMP_0
);
466 bar_len
[0] = ((bar_hi
- bar_lo
) | PI_MEM_ADD_MASK_M
) +
469 bar_start
[0] = base_addr
;
470 bar_len
[0] = PI_ESIC_K_CSR_IO_LEN
;
472 bar_start
[1] = base_addr
+ PI_DEFEA_K_BURST_HOLDOFF
;
473 bar_len
[1] = PI_ESIC_K_BURST_HOLDOFF_LEN
;
474 bar_start
[2] = base_addr
+ PI_ESIC_K_ESIC_CSR
;
475 bar_len
[2] = PI_ESIC_K_ESIC_CSR_LEN
;
478 bar_start
[0] = to_tc_dev(bdev
)->resource
.start
+
480 bar_len
[0] = PI_TC_K_CSR_LEN
;
481 bar_start
[2] = bar_start
[1] = 0;
482 bar_len
[2] = bar_len
[1] = 0;
486 static const struct net_device_ops dfx_netdev_ops
= {
487 .ndo_open
= dfx_open
,
488 .ndo_stop
= dfx_close
,
489 .ndo_start_xmit
= dfx_xmt_queue_pkt
,
490 .ndo_get_stats
= dfx_ctl_get_stats
,
491 .ndo_set_rx_mode
= dfx_ctl_set_multicast_list
,
492 .ndo_set_mac_address
= dfx_ctl_set_mac_address
,
495 static void dfx_register_res_err(const char *print_name
, bool mmio
,
496 unsigned long start
, unsigned long len
)
498 pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, aborting\n",
499 print_name
, mmio
? "MMIO" : "I/O", len
, start
);
508 * Initializes a supported FDDI controller
514 * bdev - pointer to device information
516 * Functional Description:
519 * 0 - This device (fddi0, fddi1, etc) configured successfully
520 * -EBUSY - Failed to get resources, or dfx_driver_init failed.
523 * It compiles so it should work :-( (PCI cards do :-)
526 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
527 * initialized and the board resources are read and stored in
528 * the device structure.
530 static int dfx_register(struct device
*bdev
)
532 static int version_disp
;
533 int dfx_bus_pci
= dev_is_pci(bdev
);
534 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
535 const char *print_name
= dev_name(bdev
);
536 struct net_device
*dev
;
537 DFX_board_t
*bp
; /* board pointer */
538 resource_size_t bar_start
[3] = {0}; /* pointers to ports */
539 resource_size_t bar_len
[3] = {0}; /* resource length */
540 int alloc_size
; /* total buffer size used */
541 struct resource
*region
;
544 if (!version_disp
) { /* display version info if adapter is found */
545 version_disp
= 1; /* set display flag to TRUE so that */
546 printk(version
); /* we only display this string ONCE */
549 dev
= alloc_fddidev(sizeof(*bp
));
551 printk(KERN_ERR
"%s: Unable to allocate fddidev, aborting\n",
556 /* Enable PCI device. */
558 err
= pci_enable_device(to_pci_dev(bdev
));
560 pr_err("%s: Cannot enable PCI device, aborting\n",
566 SET_NETDEV_DEV(dev
, bdev
);
568 bp
= netdev_priv(dev
);
570 dev_set_drvdata(bdev
, dev
);
574 dfx_get_bars(bp
, bar_start
, bar_len
);
575 if (bar_len
[0] == 0 ||
576 (dfx_bus_eisa
&& dfx_use_mmio
&& bar_start
[0] == 0)) {
578 dfx_get_bars(bp
, bar_start
, bar_len
);
582 region
= request_mem_region(bar_start
[0], bar_len
[0],
584 if (!region
&& (dfx_bus_eisa
|| dfx_bus_pci
)) {
586 dfx_get_bars(bp
, bar_start
, bar_len
);
590 region
= request_region(bar_start
[0], bar_len
[0],
593 dfx_register_res_err(print_name
, dfx_use_mmio
,
594 bar_start
[0], bar_len
[0]);
596 goto err_out_disable
;
598 if (bar_start
[1] != 0) {
599 region
= request_region(bar_start
[1], bar_len
[1],
602 dfx_register_res_err(print_name
, 0,
603 bar_start
[1], bar_len
[1]);
605 goto err_out_csr_region
;
608 if (bar_start
[2] != 0) {
609 region
= request_region(bar_start
[2], bar_len
[2],
612 dfx_register_res_err(print_name
, 0,
613 bar_start
[2], bar_len
[2]);
615 goto err_out_bh_region
;
619 /* Set up I/O base address. */
621 bp
->base
.mem
= ioremap(bar_start
[0], bar_len
[0]);
623 printk(KERN_ERR
"%s: Cannot map MMIO\n", print_name
);
625 goto err_out_esic_region
;
628 bp
->base
.port
= bar_start
[0];
629 dev
->base_addr
= bar_start
[0];
632 /* Initialize new device structure */
633 dev
->netdev_ops
= &dfx_netdev_ops
;
636 pci_set_master(to_pci_dev(bdev
));
638 if (dfx_driver_init(dev
, print_name
, bar_start
[0]) != DFX_K_SUCCESS
) {
643 err
= register_netdev(dev
);
647 printk("%s: registered as %s\n", print_name
, dev
->name
);
651 alloc_size
= sizeof(PI_DESCR_BLOCK
) +
652 PI_CMD_REQ_K_SIZE_MAX
+ PI_CMD_RSP_K_SIZE_MAX
+
653 #ifndef DYNAMIC_BUFFERS
654 (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
) +
656 sizeof(PI_CONSUMER_BLOCK
) +
657 (PI_ALIGN_K_DESC_BLK
- 1);
659 dma_free_coherent(bdev
, alloc_size
,
660 bp
->kmalloced
, bp
->kmalloced_dma
);
664 iounmap(bp
->base
.mem
);
667 if (bar_start
[2] != 0)
668 release_region(bar_start
[2], bar_len
[2]);
671 if (bar_start
[1] != 0)
672 release_region(bar_start
[1], bar_len
[1]);
676 release_mem_region(bar_start
[0], bar_len
[0]);
678 release_region(bar_start
[0], bar_len
[0]);
682 pci_disable_device(to_pci_dev(bdev
));
696 * Initializes the bus-specific controller logic.
702 * dev - pointer to device information
704 * Functional Description:
705 * Determine and save adapter IRQ in device table,
706 * then perform bus-specific logic initialization.
712 * bp->base has already been set with the proper
713 * base I/O address for this device.
716 * Interrupts are enabled at the adapter bus-specific logic.
717 * Note: Interrupts at the DMA engine (PDQ chip) are not
721 static void dfx_bus_init(struct net_device
*dev
)
723 DFX_board_t
*bp
= netdev_priv(dev
);
724 struct device
*bdev
= bp
->bus_dev
;
725 int dfx_bus_pci
= dev_is_pci(bdev
);
726 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
727 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
730 DBG_printk("In dfx_bus_init...\n");
732 /* Initialize a pointer back to the net_device struct */
735 /* Initialize adapter based on bus type */
738 dev
->irq
= to_tc_dev(bdev
)->interrupt
;
740 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
742 /* Disable the board before fiddling with the decoders. */
743 outb(0, base_addr
+ PI_ESIC_K_SLOT_CNTRL
);
745 /* Get the interrupt level from the ESIC chip. */
746 val
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
747 val
&= PI_CONFIG_STAT_0_M_IRQ
;
748 val
>>= PI_CONFIG_STAT_0_V_IRQ
;
751 case PI_CONFIG_STAT_0_IRQ_K_9
:
755 case PI_CONFIG_STAT_0_IRQ_K_10
:
759 case PI_CONFIG_STAT_0_IRQ_K_11
:
763 case PI_CONFIG_STAT_0_IRQ_K_15
:
769 * Enable memory decoding (MEMCS1) and/or port decoding
770 * (IOCS1/IOCS0) as appropriate in Function Control
771 * Register. MEMCS1 or IOCS0 is used for PDQ registers,
772 * taking 16 32-bit words, while IOCS1 is used for the
773 * Burst Holdoff register, taking a single 32-bit word
774 * only. We use the slot-specific I/O range as per the
775 * ESIC spec, that is set bits 15:12 in the mask registers
779 /* Set the decode range of the board. */
781 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_CMP_0_1
);
782 val
= PI_DEFEA_K_CSR_IO
;
783 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_CMP_0_0
);
785 val
= PI_IO_CMP_M_SLOT
;
786 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_MASK_0_1
);
787 val
= (PI_ESIC_K_CSR_IO_LEN
- 1) & ~3;
788 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_MASK_0_0
);
791 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_CMP_1_1
);
792 val
= PI_DEFEA_K_BURST_HOLDOFF
;
793 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_CMP_1_0
);
795 val
= PI_IO_CMP_M_SLOT
;
796 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_MASK_1_1
);
797 val
= (PI_ESIC_K_BURST_HOLDOFF_LEN
- 1) & ~3;
798 outb(val
, base_addr
+ PI_ESIC_K_IO_ADD_MASK_1_0
);
800 /* Enable the decoders. */
801 val
= PI_FUNCTION_CNTRL_M_IOCS1
;
803 val
|= PI_FUNCTION_CNTRL_M_MEMCS1
;
805 val
|= PI_FUNCTION_CNTRL_M_IOCS0
;
806 outb(val
, base_addr
+ PI_ESIC_K_FUNCTION_CNTRL
);
809 * Enable access to the rest of the module
810 * (including PDQ and packet memory).
812 val
= PI_SLOT_CNTRL_M_ENB
;
813 outb(val
, base_addr
+ PI_ESIC_K_SLOT_CNTRL
);
816 * Map PDQ registers into memory or port space. This is
817 * done with a bit in the Burst Holdoff register.
819 val
= inb(base_addr
+ PI_DEFEA_K_BURST_HOLDOFF
);
821 val
|= PI_BURST_HOLDOFF_M_MEM_MAP
;
823 val
&= ~PI_BURST_HOLDOFF_M_MEM_MAP
;
824 outb(val
, base_addr
+ PI_DEFEA_K_BURST_HOLDOFF
);
826 /* Enable interrupts at EISA bus interface chip (ESIC) */
827 val
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
828 val
|= PI_CONFIG_STAT_0_M_INT_ENB
;
829 outb(val
, base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
832 struct pci_dev
*pdev
= to_pci_dev(bdev
);
834 /* Get the interrupt level from the PCI Configuration Table */
836 dev
->irq
= pdev
->irq
;
838 /* Check Latency Timer and set if less than minimal */
840 pci_read_config_byte(pdev
, PCI_LATENCY_TIMER
, &val
);
841 if (val
< PFI_K_LAT_TIMER_MIN
) {
842 val
= PFI_K_LAT_TIMER_DEF
;
843 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, val
);
846 /* Enable interrupts at PCI bus interface chip (PFI) */
847 val
= PFI_MODE_M_PDQ_INT_ENB
| PFI_MODE_M_DMA_ENB
;
848 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
, val
);
858 * Uninitializes the bus-specific controller logic.
864 * dev - pointer to device information
866 * Functional Description:
867 * Perform bus-specific logic uninitialization.
873 * bp->base has already been set with the proper
874 * base I/O address for this device.
877 * Interrupts are disabled at the adapter bus-specific logic.
880 static void dfx_bus_uninit(struct net_device
*dev
)
882 DFX_board_t
*bp
= netdev_priv(dev
);
883 struct device
*bdev
= bp
->bus_dev
;
884 int dfx_bus_pci
= dev_is_pci(bdev
);
885 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
888 DBG_printk("In dfx_bus_uninit...\n");
890 /* Uninitialize adapter based on bus type */
893 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
895 /* Disable interrupts at EISA bus interface chip (ESIC) */
896 val
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
897 val
&= ~PI_CONFIG_STAT_0_M_INT_ENB
;
898 outb(val
, base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
900 /* Disable the board. */
901 outb(0, base_addr
+ PI_ESIC_K_SLOT_CNTRL
);
903 /* Disable memory and port decoders. */
904 outb(0, base_addr
+ PI_ESIC_K_FUNCTION_CNTRL
);
907 /* Disable interrupts at PCI bus interface chip (PFI) */
908 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
, 0);
914 * ========================
915 * = dfx_bus_config_check =
916 * ========================
919 * Checks the configuration (burst size, full-duplex, etc.) If any parameters
920 * are illegal, then this routine will set new defaults.
926 * bp - pointer to board information
928 * Functional Description:
929 * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
930 * PDQ, and all FDDI PCI controllers, all values are legal.
936 * dfx_adap_init has NOT been called yet so burst size and other items have
943 static void dfx_bus_config_check(DFX_board_t
*bp
)
945 struct device __maybe_unused
*bdev
= bp
->bus_dev
;
946 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
947 int status
; /* return code from adapter port control call */
948 u32 host_data
; /* LW data returned from port control call */
950 DBG_printk("In dfx_bus_config_check...\n");
952 /* Configuration check only valid for EISA adapter */
956 * First check if revision 2 EISA controller. Rev. 1 cards used
957 * PDQ revision B, so no workaround needed in this case. Rev. 3
958 * cards used PDQ revision E, so no workaround needed in this
959 * case, either. Only Rev. 2 cards used either Rev. D or E
960 * chips, so we must verify the chip revision on Rev. 2 cards.
962 if (to_eisa_device(bdev
)->id
.driver_data
== DEFEA_PROD_ID_2
) {
964 * Revision 2 FDDI EISA controller found,
965 * so let's check PDQ revision of adapter.
967 status
= dfx_hw_port_ctrl_req(bp
,
969 PI_SUB_CMD_K_PDQ_REV_GET
,
972 if ((status
!= DFX_K_SUCCESS
) || (host_data
== 2))
975 * Either we couldn't determine the PDQ revision, or
976 * we determined that it is at revision D. In either case,
977 * we need to implement the workaround.
980 /* Ensure that the burst size is set to 8 longwords or less */
982 switch (bp
->burst_size
)
984 case PI_PDATA_B_DMA_BURST_SIZE_32
:
985 case PI_PDATA_B_DMA_BURST_SIZE_16
:
986 bp
->burst_size
= PI_PDATA_B_DMA_BURST_SIZE_8
;
993 /* Ensure that full-duplex mode is not enabled */
995 bp
->full_duplex_enb
= PI_SNMP_K_FALSE
;
1003 * ===================
1004 * = dfx_driver_init =
1005 * ===================
1008 * Initializes remaining adapter board structure information
1009 * and makes sure adapter is in a safe state prior to dfx_open().
1015 * dev - pointer to device information
1016 * print_name - printable device name
1018 * Functional Description:
1019 * This function allocates additional resources such as the host memory
1020 * blocks needed by the adapter (eg. descriptor and consumer blocks).
1021 * Remaining bus initialization steps are also completed. The adapter
1022 * is also reset so that it is in the DMA_UNAVAILABLE state. The OS
1023 * must call dfx_open() to open the adapter and bring it on-line.
1026 * DFX_K_SUCCESS - initialization succeeded
1027 * DFX_K_FAILURE - initialization failed - could not allocate memory
1028 * or read adapter MAC address
1031 * Memory allocated from dma_alloc_coherent() call is physically
1032 * contiguous, locked memory.
1035 * Adapter is reset and should be in DMA_UNAVAILABLE state before
1036 * returning from this routine.
1039 static int dfx_driver_init(struct net_device
*dev
, const char *print_name
,
1040 resource_size_t bar_start
)
1042 DFX_board_t
*bp
= netdev_priv(dev
);
1043 struct device
*bdev
= bp
->bus_dev
;
1044 int dfx_bus_pci
= dev_is_pci(bdev
);
1045 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
1046 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
1047 int alloc_size
; /* total buffer size needed */
1048 char *top_v
, *curr_v
; /* virtual addrs into memory block */
1049 dma_addr_t top_p
, curr_p
; /* physical addrs into memory block */
1050 u32 data
; /* host data register value */
1052 char *board_name
= NULL
;
1054 DBG_printk("In dfx_driver_init...\n");
1056 /* Initialize bus-specific hardware registers */
1061 * Initialize default values for configurable parameters
1063 * Note: All of these parameters are ones that a user may
1064 * want to customize. It'd be nice to break these
1065 * out into Space.c or someplace else that's more
1066 * accessible/understandable than this file.
1069 bp
->full_duplex_enb
= PI_SNMP_K_FALSE
;
1070 bp
->req_ttrt
= 8 * 12500; /* 8ms in 80 nanosec units */
1071 bp
->burst_size
= PI_PDATA_B_DMA_BURST_SIZE_DEF
;
1072 bp
->rcv_bufs_to_post
= RCV_BUFS_DEF
;
1075 * Ensure that HW configuration is OK
1077 * Note: Depending on the hardware revision, we may need to modify
1078 * some of the configurable parameters to workaround hardware
1079 * limitations. We'll perform this configuration check AFTER
1080 * setting the parameters to their default values.
1083 dfx_bus_config_check(bp
);
1085 /* Disable PDQ interrupts first */
1087 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1089 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1091 (void) dfx_hw_dma_uninit(bp
, PI_PDATA_A_RESET_M_SKIP_ST
);
1093 /* Read the factory MAC address from the adapter then save it */
1095 if (dfx_hw_port_ctrl_req(bp
, PI_PCTRL_M_MLA
, PI_PDATA_A_MLA_K_LO
, 0,
1096 &data
) != DFX_K_SUCCESS
) {
1097 printk("%s: Could not read adapter factory MAC address!\n",
1099 return DFX_K_FAILURE
;
1101 le32
= cpu_to_le32(data
);
1102 memcpy(&bp
->factory_mac_addr
[0], &le32
, sizeof(u32
));
1104 if (dfx_hw_port_ctrl_req(bp
, PI_PCTRL_M_MLA
, PI_PDATA_A_MLA_K_HI
, 0,
1105 &data
) != DFX_K_SUCCESS
) {
1106 printk("%s: Could not read adapter factory MAC address!\n",
1108 return DFX_K_FAILURE
;
1110 le32
= cpu_to_le32(data
);
1111 memcpy(&bp
->factory_mac_addr
[4], &le32
, sizeof(u16
));
1114 * Set current address to factory address
1116 * Note: Node address override support is handled through
1117 * dfx_ctl_set_mac_address.
1120 dev_addr_set(dev
, bp
->factory_mac_addr
);
1122 board_name
= "DEFTA";
1124 board_name
= "DEFEA";
1126 board_name
= "DEFPA";
1127 pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1128 print_name
, board_name
, dfx_use_mmio
? "MMIO" : "I/O",
1129 (long long)bar_start
, dev
->irq
, dev
->dev_addr
);
1132 * Get memory for descriptor block, consumer block, and other buffers
1133 * that need to be DMA read or written to by the adapter.
1136 alloc_size
= sizeof(PI_DESCR_BLOCK
) +
1137 PI_CMD_REQ_K_SIZE_MAX
+
1138 PI_CMD_RSP_K_SIZE_MAX
+
1139 #ifndef DYNAMIC_BUFFERS
1140 (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
) +
1142 sizeof(PI_CONSUMER_BLOCK
) +
1143 (PI_ALIGN_K_DESC_BLK
- 1);
1144 bp
->kmalloced
= top_v
= dma_alloc_coherent(bp
->bus_dev
, alloc_size
,
1148 return DFX_K_FAILURE
;
1150 top_p
= bp
->kmalloced_dma
; /* get physical address of buffer */
1153 * To guarantee the 8K alignment required for the descriptor block, 8K - 1
1154 * plus the amount of memory needed was allocated. The physical address
1155 * is now 8K aligned. By carving up the memory in a specific order,
1156 * we'll guarantee the alignment requirements for all other structures.
1158 * Note: If the assumptions change regarding the non-paged, non-cached,
1159 * physically contiguous nature of the memory block or the address
1160 * alignments, then we'll need to implement a different algorithm
1161 * for allocating the needed memory.
1164 curr_p
= ALIGN(top_p
, PI_ALIGN_K_DESC_BLK
);
1165 curr_v
= top_v
+ (curr_p
- top_p
);
1167 /* Reserve space for descriptor block */
1169 bp
->descr_block_virt
= (PI_DESCR_BLOCK
*) curr_v
;
1170 bp
->descr_block_phys
= curr_p
;
1171 curr_v
+= sizeof(PI_DESCR_BLOCK
);
1172 curr_p
+= sizeof(PI_DESCR_BLOCK
);
1174 /* Reserve space for command request buffer */
1176 bp
->cmd_req_virt
= (PI_DMA_CMD_REQ
*) curr_v
;
1177 bp
->cmd_req_phys
= curr_p
;
1178 curr_v
+= PI_CMD_REQ_K_SIZE_MAX
;
1179 curr_p
+= PI_CMD_REQ_K_SIZE_MAX
;
1181 /* Reserve space for command response buffer */
1183 bp
->cmd_rsp_virt
= (PI_DMA_CMD_RSP
*) curr_v
;
1184 bp
->cmd_rsp_phys
= curr_p
;
1185 curr_v
+= PI_CMD_RSP_K_SIZE_MAX
;
1186 curr_p
+= PI_CMD_RSP_K_SIZE_MAX
;
1188 /* Reserve space for the LLC host receive queue buffers */
1190 bp
->rcv_block_virt
= curr_v
;
1191 bp
->rcv_block_phys
= curr_p
;
1193 #ifndef DYNAMIC_BUFFERS
1194 curr_v
+= (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
);
1195 curr_p
+= (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
);
1198 /* Reserve space for the consumer block */
1200 bp
->cons_block_virt
= (PI_CONSUMER_BLOCK
*) curr_v
;
1201 bp
->cons_block_phys
= curr_p
;
1203 /* Display virtual and physical addresses if debug driver */
1205 DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1206 print_name
, bp
->descr_block_virt
, &bp
->descr_block_phys
);
1207 DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1208 print_name
, bp
->cmd_req_virt
, &bp
->cmd_req_phys
);
1209 DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1210 print_name
, bp
->cmd_rsp_virt
, &bp
->cmd_rsp_phys
);
1211 DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1212 print_name
, bp
->rcv_block_virt
, &bp
->rcv_block_phys
);
1213 DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1214 print_name
, bp
->cons_block_virt
, &bp
->cons_block_phys
);
1216 return DFX_K_SUCCESS
;
1226 * Brings the adapter to the link avail/link unavailable state.
1232 * bp - pointer to board information
1233 * get_buffers - non-zero if buffers to be allocated
1235 * Functional Description:
1236 * Issues the low-level firmware/hardware calls necessary to bring
1237 * the adapter up, or to properly reset and restore adapter during
1241 * DFX_K_SUCCESS - Adapter brought up successfully
1242 * DFX_K_FAILURE - Adapter initialization failed
1245 * bp->reset_type should be set to a valid reset type value before
1246 * calling this routine.
1249 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1250 * upon a successful return of this routine.
1253 static int dfx_adap_init(DFX_board_t
*bp
, int get_buffers
)
1255 DBG_printk("In dfx_adap_init...\n");
1257 /* Disable PDQ interrupts first */
1259 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1261 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1263 if (dfx_hw_dma_uninit(bp
, bp
->reset_type
) != DFX_K_SUCCESS
)
1265 printk("%s: Could not uninitialize/reset adapter!\n", bp
->dev
->name
);
1266 return DFX_K_FAILURE
;
1270 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1271 * so we'll acknowledge all Type 0 interrupts now before continuing.
1274 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_0_STATUS
, PI_HOST_INT_K_ACK_ALL_TYPE_0
);
1277 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1279 * Note: We only need to clear host copies of these registers. The PDQ reset
1280 * takes care of the on-board register values.
1283 bp
->cmd_req_reg
.lword
= 0;
1284 bp
->cmd_rsp_reg
.lword
= 0;
1285 bp
->rcv_xmt_reg
.lword
= 0;
1287 /* Clear consumer block before going to DMA_AVAILABLE state */
1289 memset(bp
->cons_block_virt
, 0, sizeof(PI_CONSUMER_BLOCK
));
1291 /* Initialize the DMA Burst Size */
1293 if (dfx_hw_port_ctrl_req(bp
,
1295 PI_SUB_CMD_K_BURST_SIZE_SET
,
1297 NULL
) != DFX_K_SUCCESS
)
1299 printk("%s: Could not set adapter burst size!\n", bp
->dev
->name
);
1300 return DFX_K_FAILURE
;
1304 * Set base address of Consumer Block
1306 * Assumption: 32-bit physical address of consumer block is 64 byte
1307 * aligned. That is, bits 0-5 of the address must be zero.
1310 if (dfx_hw_port_ctrl_req(bp
,
1311 PI_PCTRL_M_CONS_BLOCK
,
1312 bp
->cons_block_phys
,
1314 NULL
) != DFX_K_SUCCESS
)
1316 printk("%s: Could not set consumer block address!\n", bp
->dev
->name
);
1317 return DFX_K_FAILURE
;
1321 * Set the base address of Descriptor Block and bring adapter
1322 * to DMA_AVAILABLE state.
1324 * Note: We also set the literal and data swapping requirements
1327 * Assumption: 32-bit physical address of descriptor block
1328 * is 8Kbyte aligned.
1330 if (dfx_hw_port_ctrl_req(bp
, PI_PCTRL_M_INIT
,
1331 (u32
)(bp
->descr_block_phys
|
1332 PI_PDATA_A_INIT_M_BSWAP_INIT
),
1333 0, NULL
) != DFX_K_SUCCESS
) {
1334 printk("%s: Could not set descriptor block address!\n",
1336 return DFX_K_FAILURE
;
1339 /* Set transmit flush timeout value */
1341 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_CHARS_SET
;
1342 bp
->cmd_req_virt
->char_set
.item
[0].item_code
= PI_ITEM_K_FLUSH_TIME
;
1343 bp
->cmd_req_virt
->char_set
.item
[0].value
= 3; /* 3 seconds */
1344 bp
->cmd_req_virt
->char_set
.item
[0].item_index
= 0;
1345 bp
->cmd_req_virt
->char_set
.item
[1].item_code
= PI_ITEM_K_EOL
;
1346 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
1348 printk("%s: DMA command request failed!\n", bp
->dev
->name
);
1349 return DFX_K_FAILURE
;
1352 /* Set the initial values for eFDXEnable and MACTReq MIB objects */
1354 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_SNMP_SET
;
1355 bp
->cmd_req_virt
->snmp_set
.item
[0].item_code
= PI_ITEM_K_FDX_ENB_DIS
;
1356 bp
->cmd_req_virt
->snmp_set
.item
[0].value
= bp
->full_duplex_enb
;
1357 bp
->cmd_req_virt
->snmp_set
.item
[0].item_index
= 0;
1358 bp
->cmd_req_virt
->snmp_set
.item
[1].item_code
= PI_ITEM_K_MAC_T_REQ
;
1359 bp
->cmd_req_virt
->snmp_set
.item
[1].value
= bp
->req_ttrt
;
1360 bp
->cmd_req_virt
->snmp_set
.item
[1].item_index
= 0;
1361 bp
->cmd_req_virt
->snmp_set
.item
[2].item_code
= PI_ITEM_K_EOL
;
1362 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
1364 printk("%s: DMA command request failed!\n", bp
->dev
->name
);
1365 return DFX_K_FAILURE
;
1368 /* Initialize adapter CAM */
1370 if (dfx_ctl_update_cam(bp
) != DFX_K_SUCCESS
)
1372 printk("%s: Adapter CAM update failed!\n", bp
->dev
->name
);
1373 return DFX_K_FAILURE
;
1376 /* Initialize adapter filters */
1378 if (dfx_ctl_update_filters(bp
) != DFX_K_SUCCESS
)
1380 printk("%s: Adapter filters update failed!\n", bp
->dev
->name
);
1381 return DFX_K_FAILURE
;
1385 * Remove any existing dynamic buffers (i.e. if the adapter is being
1392 /* Initialize receive descriptor block and produce buffers */
1394 if (dfx_rcv_init(bp
, get_buffers
))
1396 printk("%s: Receive buffer allocation failed\n", bp
->dev
->name
);
1399 return DFX_K_FAILURE
;
1402 /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1404 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_START
;
1405 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
1407 printk("%s: Start command failed\n", bp
->dev
->name
);
1410 return DFX_K_FAILURE
;
1413 /* Initialization succeeded, reenable PDQ interrupts */
1415 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_ENABLE_DEF_INTS
);
1416 return DFX_K_SUCCESS
;
1432 * dev - pointer to device information
1434 * Functional Description:
1435 * This function brings the adapter to an operational state.
1438 * 0 - Adapter was successfully opened
1439 * -EAGAIN - Could not register IRQ or adapter initialization failed
1442 * This routine should only be called for a device that was
1443 * initialized successfully.
1446 * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1447 * if the open is successful.
1450 static int dfx_open(struct net_device
*dev
)
1452 DFX_board_t
*bp
= netdev_priv(dev
);
1455 DBG_printk("In dfx_open...\n");
1457 /* Register IRQ - support shared interrupts by passing device ptr */
1459 ret
= request_irq(dev
->irq
, dfx_interrupt
, IRQF_SHARED
, dev
->name
,
1462 printk(KERN_ERR
"%s: Requested IRQ %d is busy\n", dev
->name
, dev
->irq
);
1467 * Set current address to factory MAC address
1469 * Note: We've already done this step in dfx_driver_init.
1470 * However, it's possible that a user has set a node
1471 * address override, then closed and reopened the
1472 * adapter. Unless we reset the device address field
1473 * now, we'll continue to use the existing modified
1477 dev_addr_set(dev
, bp
->factory_mac_addr
);
1479 /* Clear local unicast/multicast address tables and counts */
1481 memset(bp
->uc_table
, 0, sizeof(bp
->uc_table
));
1482 memset(bp
->mc_table
, 0, sizeof(bp
->mc_table
));
1486 /* Disable promiscuous filter settings */
1488 bp
->ind_group_prom
= PI_FSTATE_K_BLOCK
;
1489 bp
->group_prom
= PI_FSTATE_K_BLOCK
;
1491 spin_lock_init(&bp
->lock
);
1493 /* Reset and initialize adapter */
1495 bp
->reset_type
= PI_PDATA_A_RESET_M_SKIP_ST
; /* skip self-test */
1496 if (dfx_adap_init(bp
, 1) != DFX_K_SUCCESS
)
1498 printk(KERN_ERR
"%s: Adapter open failed!\n", dev
->name
);
1499 free_irq(dev
->irq
, dev
);
1503 /* Set device structure info */
1504 netif_start_queue(dev
);
1515 * Closes the device/module.
1521 * dev - pointer to device information
1523 * Functional Description:
1524 * This routine closes the adapter and brings it to a safe state.
1525 * The interrupt service routine is deregistered with the OS.
1526 * The adapter can be opened again with another call to dfx_open().
1532 * No further requests for this adapter are made after this routine is
1533 * called. dfx_open() can be called to reset and reinitialize the
1537 * Adapter should be in DMA_UNAVAILABLE state upon completion of this
1541 static int dfx_close(struct net_device
*dev
)
1543 DFX_board_t
*bp
= netdev_priv(dev
);
1545 DBG_printk("In dfx_close...\n");
1547 /* Disable PDQ interrupts first */
1549 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1551 /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1553 (void) dfx_hw_dma_uninit(bp
, PI_PDATA_A_RESET_M_SKIP_ST
);
1556 * Flush any pending transmit buffers
1558 * Note: It's important that we flush the transmit buffers
1559 * BEFORE we clear our copy of the Type 2 register.
1560 * Otherwise, we'll have no idea how many buffers
1567 * Clear Type 1 and Type 2 registers after adapter reset
1569 * Note: Even though we're closing the adapter, it's
1570 * possible that an interrupt will occur after
1571 * dfx_close is called. Without some assurance to
1572 * the contrary we want to make sure that we don't
1573 * process receive and transmit LLC frames and update
1574 * the Type 2 register with bad information.
1577 bp
->cmd_req_reg
.lword
= 0;
1578 bp
->cmd_rsp_reg
.lword
= 0;
1579 bp
->rcv_xmt_reg
.lword
= 0;
1581 /* Clear consumer block for the same reason given above */
1583 memset(bp
->cons_block_virt
, 0, sizeof(PI_CONSUMER_BLOCK
));
1585 /* Release all dynamically allocate skb in the receive ring. */
1589 /* Clear device structure flags */
1591 netif_stop_queue(dev
);
1593 /* Deregister (free) IRQ */
1595 free_irq(dev
->irq
, dev
);
1602 * ======================
1603 * = dfx_int_pr_halt_id =
1604 * ======================
1607 * Displays halt id's in string form.
1613 * bp - pointer to board information
1615 * Functional Description:
1616 * Determine current halt id and display appropriate string.
1628 static void dfx_int_pr_halt_id(DFX_board_t
*bp
)
1630 PI_UINT32 port_status
; /* PDQ port status register value */
1631 PI_UINT32 halt_id
; /* PDQ port status halt ID */
1633 /* Read the latest port status */
1635 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &port_status
);
1637 /* Display halt state transition information */
1639 halt_id
= (port_status
& PI_PSTATUS_M_HALT_ID
) >> PI_PSTATUS_V_HALT_ID
;
1642 case PI_HALT_ID_K_SELFTEST_TIMEOUT
:
1643 printk("%s: Halt ID: Selftest Timeout\n", bp
->dev
->name
);
1646 case PI_HALT_ID_K_PARITY_ERROR
:
1647 printk("%s: Halt ID: Host Bus Parity Error\n", bp
->dev
->name
);
1650 case PI_HALT_ID_K_HOST_DIR_HALT
:
1651 printk("%s: Halt ID: Host-Directed Halt\n", bp
->dev
->name
);
1654 case PI_HALT_ID_K_SW_FAULT
:
1655 printk("%s: Halt ID: Adapter Software Fault\n", bp
->dev
->name
);
1658 case PI_HALT_ID_K_HW_FAULT
:
1659 printk("%s: Halt ID: Adapter Hardware Fault\n", bp
->dev
->name
);
1662 case PI_HALT_ID_K_PC_TRACE
:
1663 printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp
->dev
->name
);
1666 case PI_HALT_ID_K_DMA_ERROR
:
1667 printk("%s: Halt ID: Adapter DMA Error\n", bp
->dev
->name
);
1670 case PI_HALT_ID_K_IMAGE_CRC_ERROR
:
1671 printk("%s: Halt ID: Firmware Image CRC Error\n", bp
->dev
->name
);
1674 case PI_HALT_ID_K_BUS_EXCEPTION
:
1675 printk("%s: Halt ID: 68000 Bus Exception\n", bp
->dev
->name
);
1679 printk("%s: Halt ID: Unknown (code = %X)\n", bp
->dev
->name
, halt_id
);
1686 * ==========================
1687 * = dfx_int_type_0_process =
1688 * ==========================
1691 * Processes Type 0 interrupts.
1697 * bp - pointer to board information
1699 * Functional Description:
1700 * Processes all enabled Type 0 interrupts. If the reason for the interrupt
1701 * is a serious fault on the adapter, then an error message is displayed
1702 * and the adapter is reset.
1704 * One tricky potential timing window is the rapid succession of "link avail"
1705 * "link unavail" state change interrupts. The acknowledgement of the Type 0
1706 * interrupt must be done before reading the state from the Port Status
1707 * register. This is true because a state change could occur after reading
1708 * the data, but before acknowledging the interrupt. If this state change
1709 * does happen, it would be lost because the driver is using the old state,
1710 * and it will never know about the new state because it subsequently
1711 * acknowledges the state change interrupt.
1714 * read type 0 int reasons read type 0 int reasons
1715 * read adapter state ack type 0 interrupts
1716 * ack type 0 interrupts read adapter state
1717 * ... process interrupt ... ... process interrupt ...
1726 * An adapter reset may occur if the adapter has any Type 0 error interrupts
1727 * or if the port status indicates that the adapter is halted. The driver
1728 * is responsible for reinitializing the adapter with the current CAM
1729 * contents and adapter filter settings.
1732 static void dfx_int_type_0_process(DFX_board_t
*bp
)
1735 PI_UINT32 type_0_status
; /* Host Interrupt Type 0 register */
1736 PI_UINT32 state
; /* current adap state (from port status) */
1739 * Read host interrupt Type 0 register to determine which Type 0
1740 * interrupts are pending. Immediately write it back out to clear
1744 dfx_port_read_long(bp
, PI_PDQ_K_REG_TYPE_0_STATUS
, &type_0_status
);
1745 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_0_STATUS
, type_0_status
);
1747 /* Check for Type 0 error interrupts */
1749 if (type_0_status
& (PI_TYPE_0_STAT_M_NXM
|
1750 PI_TYPE_0_STAT_M_PM_PAR_ERR
|
1751 PI_TYPE_0_STAT_M_BUS_PAR_ERR
))
1753 /* Check for Non-Existent Memory error */
1755 if (type_0_status
& PI_TYPE_0_STAT_M_NXM
)
1756 printk("%s: Non-Existent Memory Access Error\n", bp
->dev
->name
);
1758 /* Check for Packet Memory Parity error */
1760 if (type_0_status
& PI_TYPE_0_STAT_M_PM_PAR_ERR
)
1761 printk("%s: Packet Memory Parity Error\n", bp
->dev
->name
);
1763 /* Check for Host Bus Parity error */
1765 if (type_0_status
& PI_TYPE_0_STAT_M_BUS_PAR_ERR
)
1766 printk("%s: Host Bus Parity Error\n", bp
->dev
->name
);
1768 /* Reset adapter and bring it back on-line */
1770 bp
->link_available
= PI_K_FALSE
; /* link is no longer available */
1771 bp
->reset_type
= 0; /* rerun on-board diagnostics */
1772 printk("%s: Resetting adapter...\n", bp
->dev
->name
);
1773 if (dfx_adap_init(bp
, 0) != DFX_K_SUCCESS
)
1775 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp
->dev
->name
);
1776 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1779 printk("%s: Adapter reset successful!\n", bp
->dev
->name
);
1783 /* Check for transmit flush interrupt */
1785 if (type_0_status
& PI_TYPE_0_STAT_M_XMT_FLUSH
)
1787 /* Flush any pending xmt's and acknowledge the flush interrupt */
1789 bp
->link_available
= PI_K_FALSE
; /* link is no longer available */
1790 dfx_xmt_flush(bp
); /* flush any outstanding packets */
1791 (void) dfx_hw_port_ctrl_req(bp
,
1792 PI_PCTRL_M_XMT_DATA_FLUSH_DONE
,
1798 /* Check for adapter state change */
1800 if (type_0_status
& PI_TYPE_0_STAT_M_STATE_CHANGE
)
1802 /* Get latest adapter state */
1804 state
= dfx_hw_adap_state_rd(bp
); /* get adapter state */
1805 if (state
== PI_STATE_K_HALTED
)
1808 * Adapter has transitioned to HALTED state, try to reset
1809 * adapter to bring it back on-line. If reset fails,
1810 * leave the adapter in the broken state.
1813 printk("%s: Controller has transitioned to HALTED state!\n", bp
->dev
->name
);
1814 dfx_int_pr_halt_id(bp
); /* display halt id as string */
1816 /* Reset adapter and bring it back on-line */
1818 bp
->link_available
= PI_K_FALSE
; /* link is no longer available */
1819 bp
->reset_type
= 0; /* rerun on-board diagnostics */
1820 printk("%s: Resetting adapter...\n", bp
->dev
->name
);
1821 if (dfx_adap_init(bp
, 0) != DFX_K_SUCCESS
)
1823 printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp
->dev
->name
);
1824 dfx_port_write_long(bp
, PI_PDQ_K_REG_HOST_INT_ENB
, PI_HOST_INT_K_DISABLE_ALL_INTS
);
1827 printk("%s: Adapter reset successful!\n", bp
->dev
->name
);
1829 else if (state
== PI_STATE_K_LINK_AVAIL
)
1831 bp
->link_available
= PI_K_TRUE
; /* set link available flag */
1838 * ==================
1839 * = dfx_int_common =
1840 * ==================
1843 * Interrupt service routine (ISR)
1849 * bp - pointer to board information
1851 * Functional Description:
1852 * This is the ISR which processes incoming adapter interrupts.
1858 * This routine assumes PDQ interrupts have not been disabled.
1859 * When interrupts are disabled at the PDQ, the Port Status register
1860 * is automatically cleared. This routine uses the Port Status
1861 * register value to determine whether a Type 0 interrupt occurred,
1862 * so it's important that adapter interrupts are not normally
1863 * enabled/disabled at the PDQ.
1865 * It's vital that this routine is NOT reentered for the
1866 * same board and that the OS is not in another section of
1867 * code (eg. dfx_xmt_queue_pkt) for the same board on a
1871 * Pending interrupts are serviced. Depending on the type of
1872 * interrupt, acknowledging and clearing the interrupt at the
1873 * PDQ involves writing a register to clear the interrupt bit
1874 * or updating completion indices.
1877 static void dfx_int_common(struct net_device
*dev
)
1879 DFX_board_t
*bp
= netdev_priv(dev
);
1880 PI_UINT32 port_status
; /* Port Status register */
1882 /* Process xmt interrupts - frequent case, so always call this routine */
1884 if(dfx_xmt_done(bp
)) /* free consumed xmt packets */
1885 netif_wake_queue(dev
);
1887 /* Process rcv interrupts - frequent case, so always call this routine */
1889 dfx_rcv_queue_process(bp
); /* service received LLC frames */
1892 * Transmit and receive producer and completion indices are updated on the
1893 * adapter by writing to the Type 2 Producer register. Since the frequent
1894 * case is that we'll be processing either LLC transmit or receive buffers,
1895 * we'll optimize I/O writes by doing a single register write here.
1898 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_2_PROD
, bp
->rcv_xmt_reg
.lword
);
1900 /* Read PDQ Port Status register to find out which interrupts need processing */
1902 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &port_status
);
1904 /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1906 if (port_status
& PI_PSTATUS_M_TYPE_0_PENDING
)
1907 dfx_int_type_0_process(bp
); /* process Type 0 interrupts */
1917 * Interrupt processing routine
1920 * Whether a valid interrupt was seen.
1923 * irq - interrupt vector
1924 * dev_id - pointer to device information
1926 * Functional Description:
1927 * This routine calls the interrupt processing routine for this adapter. It
1928 * disables and reenables adapter interrupts, as appropriate. We can support
1929 * shared interrupts since the incoming dev_id pointer provides our device
1930 * structure context.
1933 * IRQ_HANDLED - an IRQ was handled.
1934 * IRQ_NONE - no IRQ was handled.
1937 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1938 * on Intel-based systems) is done by the operating system outside this
1941 * System interrupts are enabled through this call.
1944 * Interrupts are disabled, then reenabled at the adapter.
1947 static irqreturn_t
dfx_interrupt(int irq
, void *dev_id
)
1949 struct net_device
*dev
= dev_id
;
1950 DFX_board_t
*bp
= netdev_priv(dev
);
1951 struct device
*bdev
= bp
->bus_dev
;
1952 int dfx_bus_pci
= dev_is_pci(bdev
);
1953 int dfx_bus_eisa
= DFX_BUS_EISA(bdev
);
1954 int dfx_bus_tc
= DFX_BUS_TC(bdev
);
1956 /* Service adapter interrupts */
1961 dfx_port_read_long(bp
, PFI_K_REG_STATUS
, &status
);
1962 if (!(status
& PFI_STATUS_M_PDQ_INT
))
1965 spin_lock(&bp
->lock
);
1967 /* Disable PDQ-PFI interrupts at PFI */
1968 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
,
1969 PFI_MODE_M_DMA_ENB
);
1971 /* Call interrupt service routine for this adapter */
1972 dfx_int_common(dev
);
1974 /* Clear PDQ interrupt status bit and reenable interrupts */
1975 dfx_port_write_long(bp
, PFI_K_REG_STATUS
,
1976 PFI_STATUS_M_PDQ_INT
);
1977 dfx_port_write_long(bp
, PFI_K_REG_MODE_CTRL
,
1978 (PFI_MODE_M_PDQ_INT_ENB
|
1979 PFI_MODE_M_DMA_ENB
));
1981 spin_unlock(&bp
->lock
);
1984 unsigned long base_addr
= to_eisa_device(bdev
)->base_addr
;
1987 status
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
1988 if (!(status
& PI_CONFIG_STAT_0_M_PEND
))
1991 spin_lock(&bp
->lock
);
1993 /* Disable interrupts at the ESIC */
1994 status
&= ~PI_CONFIG_STAT_0_M_INT_ENB
;
1995 outb(status
, base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
1997 /* Call interrupt service routine for this adapter */
1998 dfx_int_common(dev
);
2000 /* Reenable interrupts at the ESIC */
2001 status
= inb(base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
2002 status
|= PI_CONFIG_STAT_0_M_INT_ENB
;
2003 outb(status
, base_addr
+ PI_ESIC_K_IO_CONFIG_STAT_0
);
2005 spin_unlock(&bp
->lock
);
2010 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &status
);
2011 if (!(status
& (PI_PSTATUS_M_RCV_DATA_PENDING
|
2012 PI_PSTATUS_M_XMT_DATA_PENDING
|
2013 PI_PSTATUS_M_SMT_HOST_PENDING
|
2014 PI_PSTATUS_M_UNSOL_PENDING
|
2015 PI_PSTATUS_M_CMD_RSP_PENDING
|
2016 PI_PSTATUS_M_CMD_REQ_PENDING
|
2017 PI_PSTATUS_M_TYPE_0_PENDING
)))
2020 spin_lock(&bp
->lock
);
2022 /* Call interrupt service routine for this adapter */
2023 dfx_int_common(dev
);
2025 spin_unlock(&bp
->lock
);
2033 * =====================
2034 * = dfx_ctl_get_stats =
2035 * =====================
2038 * Get statistics for FDDI adapter
2041 * Pointer to FDDI statistics structure
2044 * dev - pointer to device information
2046 * Functional Description:
2047 * Gets current MIB objects from adapter, then
2048 * returns FDDI statistics structure as defined
2051 * Note: Since the FDDI statistics structure is
2052 * still new and the device structure doesn't
2053 * have an FDDI-specific get statistics handler,
2054 * we'll return the FDDI statistics structure as
2055 * a pointer to an Ethernet statistics structure.
2056 * That way, at least the first part of the statistics
2057 * structure can be decoded properly, and it allows
2058 * "smart" applications to perform a second cast to
2059 * decode the FDDI-specific statistics.
2061 * We'll have to pay attention to this routine as the
2062 * device structure becomes more mature and LAN media
2075 static struct net_device_stats
*dfx_ctl_get_stats(struct net_device
*dev
)
2077 DFX_board_t
*bp
= netdev_priv(dev
);
2079 /* Fill the bp->stats structure with driver-maintained counters */
2081 bp
->stats
.gen
.rx_packets
= bp
->rcv_total_frames
;
2082 bp
->stats
.gen
.tx_packets
= bp
->xmt_total_frames
;
2083 bp
->stats
.gen
.rx_bytes
= bp
->rcv_total_bytes
;
2084 bp
->stats
.gen
.tx_bytes
= bp
->xmt_total_bytes
;
2085 bp
->stats
.gen
.rx_errors
= bp
->rcv_crc_errors
+
2086 bp
->rcv_frame_status_errors
+
2087 bp
->rcv_length_errors
;
2088 bp
->stats
.gen
.tx_errors
= bp
->xmt_length_errors
;
2089 bp
->stats
.gen
.rx_dropped
= bp
->rcv_discards
;
2090 bp
->stats
.gen
.tx_dropped
= bp
->xmt_discards
;
2091 bp
->stats
.gen
.multicast
= bp
->rcv_multicast_frames
;
2092 bp
->stats
.gen
.collisions
= 0; /* always zero (0) for FDDI */
2094 /* Get FDDI SMT MIB objects */
2096 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_SMT_MIB_GET
;
2097 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2098 return (struct net_device_stats
*)&bp
->stats
;
2100 /* Fill the bp->stats structure with the SMT MIB object values */
2102 memcpy(bp
->stats
.smt_station_id
, &bp
->cmd_rsp_virt
->smt_mib_get
.smt_station_id
, sizeof(bp
->cmd_rsp_virt
->smt_mib_get
.smt_station_id
));
2103 bp
->stats
.smt_op_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_op_version_id
;
2104 bp
->stats
.smt_hi_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_hi_version_id
;
2105 bp
->stats
.smt_lo_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_lo_version_id
;
2106 memcpy(bp
->stats
.smt_user_data
, &bp
->cmd_rsp_virt
->smt_mib_get
.smt_user_data
, sizeof(bp
->cmd_rsp_virt
->smt_mib_get
.smt_user_data
));
2107 bp
->stats
.smt_mib_version_id
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_mib_version_id
;
2108 bp
->stats
.smt_mac_cts
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_mac_ct
;
2109 bp
->stats
.smt_non_master_cts
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_non_master_ct
;
2110 bp
->stats
.smt_master_cts
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_master_ct
;
2111 bp
->stats
.smt_available_paths
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_available_paths
;
2112 bp
->stats
.smt_config_capabilities
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_config_capabilities
;
2113 bp
->stats
.smt_config_policy
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_config_policy
;
2114 bp
->stats
.smt_connection_policy
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_connection_policy
;
2115 bp
->stats
.smt_t_notify
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_t_notify
;
2116 bp
->stats
.smt_stat_rpt_policy
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_stat_rpt_policy
;
2117 bp
->stats
.smt_trace_max_expiration
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_trace_max_expiration
;
2118 bp
->stats
.smt_bypass_present
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_bypass_present
;
2119 bp
->stats
.smt_ecm_state
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_ecm_state
;
2120 bp
->stats
.smt_cf_state
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_cf_state
;
2121 bp
->stats
.smt_remote_disconnect_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_remote_disconnect_flag
;
2122 bp
->stats
.smt_station_status
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_station_status
;
2123 bp
->stats
.smt_peer_wrap_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_peer_wrap_flag
;
2124 bp
->stats
.smt_time_stamp
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_msg_time_stamp
.ls
;
2125 bp
->stats
.smt_transition_time_stamp
= bp
->cmd_rsp_virt
->smt_mib_get
.smt_transition_time_stamp
.ls
;
2126 bp
->stats
.mac_frame_status_functions
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_status_functions
;
2127 bp
->stats
.mac_t_max_capability
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_max_capability
;
2128 bp
->stats
.mac_tvx_capability
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_tvx_capability
;
2129 bp
->stats
.mac_available_paths
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_available_paths
;
2130 bp
->stats
.mac_current_path
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_current_path
;
2131 memcpy(bp
->stats
.mac_upstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_upstream_nbr
, FDDI_K_ALEN
);
2132 memcpy(bp
->stats
.mac_downstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_downstream_nbr
, FDDI_K_ALEN
);
2133 memcpy(bp
->stats
.mac_old_upstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_old_upstream_nbr
, FDDI_K_ALEN
);
2134 memcpy(bp
->stats
.mac_old_downstream_nbr
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_old_downstream_nbr
, FDDI_K_ALEN
);
2135 bp
->stats
.mac_dup_address_test
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_dup_address_test
;
2136 bp
->stats
.mac_requested_paths
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_requested_paths
;
2137 bp
->stats
.mac_downstream_port_type
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_downstream_port_type
;
2138 memcpy(bp
->stats
.mac_smt_address
, &bp
->cmd_rsp_virt
->smt_mib_get
.mac_smt_address
, FDDI_K_ALEN
);
2139 bp
->stats
.mac_t_req
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_req
;
2140 bp
->stats
.mac_t_neg
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_neg
;
2141 bp
->stats
.mac_t_max
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_t_max
;
2142 bp
->stats
.mac_tvx_value
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_tvx_value
;
2143 bp
->stats
.mac_frame_error_threshold
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_error_threshold
;
2144 bp
->stats
.mac_frame_error_ratio
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_error_ratio
;
2145 bp
->stats
.mac_rmt_state
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_rmt_state
;
2146 bp
->stats
.mac_da_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_da_flag
;
2147 bp
->stats
.mac_una_da_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_unda_flag
;
2148 bp
->stats
.mac_frame_error_flag
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_frame_error_flag
;
2149 bp
->stats
.mac_ma_unitdata_available
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_ma_unitdata_available
;
2150 bp
->stats
.mac_hardware_present
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_hardware_present
;
2151 bp
->stats
.mac_ma_unitdata_enable
= bp
->cmd_rsp_virt
->smt_mib_get
.mac_ma_unitdata_enable
;
2152 bp
->stats
.path_tvx_lower_bound
= bp
->cmd_rsp_virt
->smt_mib_get
.path_tvx_lower_bound
;
2153 bp
->stats
.path_t_max_lower_bound
= bp
->cmd_rsp_virt
->smt_mib_get
.path_t_max_lower_bound
;
2154 bp
->stats
.path_max_t_req
= bp
->cmd_rsp_virt
->smt_mib_get
.path_max_t_req
;
2155 memcpy(bp
->stats
.path_configuration
, &bp
->cmd_rsp_virt
->smt_mib_get
.path_configuration
, sizeof(bp
->cmd_rsp_virt
->smt_mib_get
.path_configuration
));
2156 bp
->stats
.port_my_type
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_my_type
[0];
2157 bp
->stats
.port_my_type
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_my_type
[1];
2158 bp
->stats
.port_neighbor_type
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_neighbor_type
[0];
2159 bp
->stats
.port_neighbor_type
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_neighbor_type
[1];
2160 bp
->stats
.port_connection_policies
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_policies
[0];
2161 bp
->stats
.port_connection_policies
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_policies
[1];
2162 bp
->stats
.port_mac_indicated
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_indicated
[0];
2163 bp
->stats
.port_mac_indicated
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_indicated
[1];
2164 bp
->stats
.port_current_path
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_current_path
[0];
2165 bp
->stats
.port_current_path
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_current_path
[1];
2166 memcpy(&bp
->stats
.port_requested_paths
[0*3], &bp
->cmd_rsp_virt
->smt_mib_get
.port_requested_paths
[0], 3);
2167 memcpy(&bp
->stats
.port_requested_paths
[1*3], &bp
->cmd_rsp_virt
->smt_mib_get
.port_requested_paths
[1], 3);
2168 bp
->stats
.port_mac_placement
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_placement
[0];
2169 bp
->stats
.port_mac_placement
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_mac_placement
[1];
2170 bp
->stats
.port_available_paths
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_available_paths
[0];
2171 bp
->stats
.port_available_paths
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_available_paths
[1];
2172 bp
->stats
.port_pmd_class
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pmd_class
[0];
2173 bp
->stats
.port_pmd_class
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pmd_class
[1];
2174 bp
->stats
.port_connection_capabilities
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_capabilities
[0];
2175 bp
->stats
.port_connection_capabilities
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connection_capabilities
[1];
2176 bp
->stats
.port_bs_flag
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_bs_flag
[0];
2177 bp
->stats
.port_bs_flag
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_bs_flag
[1];
2178 bp
->stats
.port_ler_estimate
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_estimate
[0];
2179 bp
->stats
.port_ler_estimate
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_estimate
[1];
2180 bp
->stats
.port_ler_cutoff
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_cutoff
[0];
2181 bp
->stats
.port_ler_cutoff
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_cutoff
[1];
2182 bp
->stats
.port_ler_alarm
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_alarm
[0];
2183 bp
->stats
.port_ler_alarm
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_alarm
[1];
2184 bp
->stats
.port_connect_state
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connect_state
[0];
2185 bp
->stats
.port_connect_state
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_connect_state
[1];
2186 bp
->stats
.port_pcm_state
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pcm_state
[0];
2187 bp
->stats
.port_pcm_state
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pcm_state
[1];
2188 bp
->stats
.port_pc_withhold
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pc_withhold
[0];
2189 bp
->stats
.port_pc_withhold
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_pc_withhold
[1];
2190 bp
->stats
.port_ler_flag
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_flag
[0];
2191 bp
->stats
.port_ler_flag
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_ler_flag
[1];
2192 bp
->stats
.port_hardware_present
[0] = bp
->cmd_rsp_virt
->smt_mib_get
.port_hardware_present
[0];
2193 bp
->stats
.port_hardware_present
[1] = bp
->cmd_rsp_virt
->smt_mib_get
.port_hardware_present
[1];
2195 /* Get FDDI counters */
2197 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_CNTRS_GET
;
2198 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2199 return (struct net_device_stats
*)&bp
->stats
;
2201 /* Fill the bp->stats structure with the FDDI counter values */
2203 bp
->stats
.mac_frame_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.frame_cnt
.ls
;
2204 bp
->stats
.mac_copied_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.copied_cnt
.ls
;
2205 bp
->stats
.mac_transmit_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.transmit_cnt
.ls
;
2206 bp
->stats
.mac_error_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.error_cnt
.ls
;
2207 bp
->stats
.mac_lost_cts
= bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lost_cnt
.ls
;
2208 bp
->stats
.port_lct_fail_cts
[0] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lct_rejects
[0].ls
;
2209 bp
->stats
.port_lct_fail_cts
[1] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lct_rejects
[1].ls
;
2210 bp
->stats
.port_lem_reject_cts
[0] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lem_rejects
[0].ls
;
2211 bp
->stats
.port_lem_reject_cts
[1] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.lem_rejects
[1].ls
;
2212 bp
->stats
.port_lem_cts
[0] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.link_errors
[0].ls
;
2213 bp
->stats
.port_lem_cts
[1] = bp
->cmd_rsp_virt
->cntrs_get
.cntrs
.link_errors
[1].ls
;
2215 return (struct net_device_stats
*)&bp
->stats
;
2220 * ==============================
2221 * = dfx_ctl_set_multicast_list =
2222 * ==============================
2225 * Enable/Disable LLC frame promiscuous mode reception
2226 * on the adapter and/or update multicast address table.
2232 * dev - pointer to device information
2234 * Functional Description:
2235 * This routine follows a fairly simple algorithm for setting the
2236 * adapter filters and CAM:
2238 * if IFF_PROMISC flag is set
2239 * enable LLC individual/group promiscuous mode
2241 * disable LLC individual/group promiscuous mode
2242 * if number of incoming multicast addresses >
2243 * (CAM max size - number of unicast addresses in CAM)
2244 * enable LLC group promiscuous mode
2245 * set driver-maintained multicast address count to zero
2247 * disable LLC group promiscuous mode
2248 * set driver-maintained multicast address count to incoming count
2249 * update adapter CAM
2250 * update adapter filters
2256 * Multicast addresses are presented in canonical (LSB) format.
2259 * On-board adapter CAM and filters are updated.
2262 static void dfx_ctl_set_multicast_list(struct net_device
*dev
)
2264 DFX_board_t
*bp
= netdev_priv(dev
);
2265 int i
; /* used as index in for loop */
2266 struct netdev_hw_addr
*ha
;
2268 /* Enable LLC frame promiscuous mode, if necessary */
2270 if (dev
->flags
& IFF_PROMISC
)
2271 bp
->ind_group_prom
= PI_FSTATE_K_PASS
; /* Enable LLC ind/group prom mode */
2273 /* Else, update multicast address table */
2277 bp
->ind_group_prom
= PI_FSTATE_K_BLOCK
; /* Disable LLC ind/group prom mode */
2279 * Check whether incoming multicast address count exceeds table size
2281 * Note: The adapters utilize an on-board 64 entry CAM for
2282 * supporting perfect filtering of multicast packets
2283 * and bridge functions when adding unicast addresses.
2284 * There is no hash function available. To support
2285 * additional multicast addresses, the all multicast
2286 * filter (LLC group promiscuous mode) must be enabled.
2288 * The firmware reserves two CAM entries for SMT-related
2289 * multicast addresses, which leaves 62 entries available.
2290 * The following code ensures that we're not being asked
2291 * to add more than 62 addresses to the CAM. If we are,
2292 * the driver will enable the all multicast filter.
2293 * Should the number of multicast addresses drop below
2294 * the high water mark, the filter will be disabled and
2295 * perfect filtering will be used.
2298 if (netdev_mc_count(dev
) > (PI_CMD_ADDR_FILTER_K_SIZE
- bp
->uc_count
))
2300 bp
->group_prom
= PI_FSTATE_K_PASS
; /* Enable LLC group prom mode */
2301 bp
->mc_count
= 0; /* Don't add mc addrs to CAM */
2305 bp
->group_prom
= PI_FSTATE_K_BLOCK
; /* Disable LLC group prom mode */
2306 bp
->mc_count
= netdev_mc_count(dev
); /* Add mc addrs to CAM */
2309 /* Copy addresses to multicast address table, then update adapter CAM */
2312 netdev_for_each_mc_addr(ha
, dev
)
2313 memcpy(&bp
->mc_table
[i
++ * FDDI_K_ALEN
],
2314 ha
->addr
, FDDI_K_ALEN
);
2316 if (dfx_ctl_update_cam(bp
) != DFX_K_SUCCESS
)
2318 DBG_printk("%s: Could not update multicast address table!\n", dev
->name
);
2322 DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev
->name
, bp
->mc_count
);
2326 /* Update adapter filters */
2328 if (dfx_ctl_update_filters(bp
) != DFX_K_SUCCESS
)
2330 DBG_printk("%s: Could not update adapter filters!\n", dev
->name
);
2334 DBG_printk("%s: Adapter filters updated!\n", dev
->name
);
2340 * ===========================
2341 * = dfx_ctl_set_mac_address =
2342 * ===========================
2345 * Add node address override (unicast address) to adapter
2346 * CAM and update dev_addr field in device table.
2352 * dev - pointer to device information
2353 * addr - pointer to sockaddr structure containing unicast address to add
2355 * Functional Description:
2356 * The adapter supports node address overrides by adding one or more
2357 * unicast addresses to the adapter CAM. This is similar to adding
2358 * multicast addresses. In this routine we'll update the driver and
2359 * device structures with the new address, then update the adapter CAM
2360 * to ensure that the adapter will copy and strip frames destined and
2361 * sourced by that address.
2364 * Always returns zero.
2367 * The address pointed to by addr->sa_data is a valid unicast
2368 * address and is presented in canonical (LSB) format.
2371 * On-board adapter CAM is updated. On-board adapter filters
2375 static int dfx_ctl_set_mac_address(struct net_device
*dev
, void *addr
)
2377 struct sockaddr
*p_sockaddr
= (struct sockaddr
*)addr
;
2378 DFX_board_t
*bp
= netdev_priv(dev
);
2380 /* Copy unicast address to driver-maintained structs and update count */
2382 dev_addr_set(dev
, p_sockaddr
->sa_data
); /* update device struct */
2383 memcpy(&bp
->uc_table
[0], p_sockaddr
->sa_data
, FDDI_K_ALEN
); /* update driver struct */
2387 * Verify we're not exceeding the CAM size by adding unicast address
2389 * Note: It's possible that before entering this routine we've
2390 * already filled the CAM with 62 multicast addresses.
2391 * Since we need to place the node address override into
2392 * the CAM, we have to check to see that we're not
2393 * exceeding the CAM size. If we are, we have to enable
2394 * the LLC group (multicast) promiscuous mode filter as
2395 * in dfx_ctl_set_multicast_list.
2398 if ((bp
->uc_count
+ bp
->mc_count
) > PI_CMD_ADDR_FILTER_K_SIZE
)
2400 bp
->group_prom
= PI_FSTATE_K_PASS
; /* Enable LLC group prom mode */
2401 bp
->mc_count
= 0; /* Don't add mc addrs to CAM */
2403 /* Update adapter filters */
2405 if (dfx_ctl_update_filters(bp
) != DFX_K_SUCCESS
)
2407 DBG_printk("%s: Could not update adapter filters!\n", dev
->name
);
2411 DBG_printk("%s: Adapter filters updated!\n", dev
->name
);
2415 /* Update adapter CAM with new unicast address */
2417 if (dfx_ctl_update_cam(bp
) != DFX_K_SUCCESS
)
2419 DBG_printk("%s: Could not set new MAC address!\n", dev
->name
);
2423 DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev
->name
);
2425 return 0; /* always return zero */
2430 * ======================
2431 * = dfx_ctl_update_cam =
2432 * ======================
2435 * Procedure to update adapter CAM (Content Addressable Memory)
2436 * with desired unicast and multicast address entries.
2442 * bp - pointer to board information
2444 * Functional Description:
2445 * Updates adapter CAM with current contents of board structure
2446 * unicast and multicast address tables. Since there are only 62
2447 * free entries in CAM, this routine ensures that the command
2448 * request buffer is not overrun.
2451 * DFX_K_SUCCESS - Request succeeded
2452 * DFX_K_FAILURE - Request failed
2455 * All addresses being added (unicast and multicast) are in canonical
2459 * On-board adapter CAM is updated.
2462 static int dfx_ctl_update_cam(DFX_board_t
*bp
)
2464 int i
; /* used as index */
2465 PI_LAN_ADDR
*p_addr
; /* pointer to CAM entry */
2468 * Fill in command request information
2470 * Note: Even though both the unicast and multicast address
2471 * table entries are stored as contiguous 6 byte entries,
2472 * the firmware address filter set command expects each
2473 * entry to be two longwords (8 bytes total). We must be
2474 * careful to only copy the six bytes of each unicast and
2475 * multicast table entry into each command entry. This
2476 * is also why we must first clear the entire command
2480 memset(bp
->cmd_req_virt
, 0, PI_CMD_REQ_K_SIZE_MAX
); /* first clear buffer */
2481 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_ADDR_FILTER_SET
;
2482 p_addr
= &bp
->cmd_req_virt
->addr_filter_set
.entry
[0];
2484 /* Now add unicast addresses to command request buffer, if any */
2486 for (i
=0; i
< (int)bp
->uc_count
; i
++)
2488 if (i
< PI_CMD_ADDR_FILTER_K_SIZE
)
2490 memcpy(p_addr
, &bp
->uc_table
[i
*FDDI_K_ALEN
], FDDI_K_ALEN
);
2491 p_addr
++; /* point to next command entry */
2495 /* Now add multicast addresses to command request buffer, if any */
2497 for (i
=0; i
< (int)bp
->mc_count
; i
++)
2499 if ((i
+ bp
->uc_count
) < PI_CMD_ADDR_FILTER_K_SIZE
)
2501 memcpy(p_addr
, &bp
->mc_table
[i
*FDDI_K_ALEN
], FDDI_K_ALEN
);
2502 p_addr
++; /* point to next command entry */
2506 /* Issue command to update adapter CAM, then return */
2508 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2509 return DFX_K_FAILURE
;
2510 return DFX_K_SUCCESS
;
2515 * ==========================
2516 * = dfx_ctl_update_filters =
2517 * ==========================
2520 * Procedure to update adapter filters with desired
2527 * bp - pointer to board information
2529 * Functional Description:
2530 * Enables or disables filter using current filter settings.
2533 * DFX_K_SUCCESS - Request succeeded.
2534 * DFX_K_FAILURE - Request failed.
2537 * We must always pass up packets destined to the broadcast
2538 * address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2539 * broadcast filter enabled.
2542 * On-board adapter filters are updated.
2545 static int dfx_ctl_update_filters(DFX_board_t
*bp
)
2547 int i
= 0; /* used as index */
2549 /* Fill in command request information */
2551 bp
->cmd_req_virt
->cmd_type
= PI_CMD_K_FILTERS_SET
;
2553 /* Initialize Broadcast filter - * ALWAYS ENABLED * */
2555 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_BROADCAST
;
2556 bp
->cmd_req_virt
->filter_set
.item
[i
++].value
= PI_FSTATE_K_PASS
;
2558 /* Initialize LLC Individual/Group Promiscuous filter */
2560 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_IND_GROUP_PROM
;
2561 bp
->cmd_req_virt
->filter_set
.item
[i
++].value
= bp
->ind_group_prom
;
2563 /* Initialize LLC Group Promiscuous filter */
2565 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_GROUP_PROM
;
2566 bp
->cmd_req_virt
->filter_set
.item
[i
++].value
= bp
->group_prom
;
2568 /* Terminate the item code list */
2570 bp
->cmd_req_virt
->filter_set
.item
[i
].item_code
= PI_ITEM_K_EOL
;
2572 /* Issue command to update adapter filters, then return */
2574 if (dfx_hw_dma_cmd_req(bp
) != DFX_K_SUCCESS
)
2575 return DFX_K_FAILURE
;
2576 return DFX_K_SUCCESS
;
2581 * ======================
2582 * = dfx_hw_dma_cmd_req =
2583 * ======================
2586 * Sends PDQ DMA command to adapter firmware
2592 * bp - pointer to board information
2594 * Functional Description:
2595 * The command request and response buffers are posted to the adapter in the manner
2596 * described in the PDQ Port Specification:
2598 * 1. Command Response Buffer is posted to adapter.
2599 * 2. Command Request Buffer is posted to adapter.
2600 * 3. Command Request consumer index is polled until it indicates that request
2601 * buffer has been DMA'd to adapter.
2602 * 4. Command Response consumer index is polled until it indicates that response
2603 * buffer has been DMA'd from adapter.
2605 * This ordering ensures that a response buffer is already available for the firmware
2606 * to use once it's done processing the request buffer.
2609 * DFX_K_SUCCESS - DMA command succeeded
2610 * DFX_K_OUTSTATE - Adapter is NOT in proper state
2611 * DFX_K_HW_TIMEOUT - DMA command timed out
2614 * Command request buffer has already been filled with desired DMA command.
2620 static int dfx_hw_dma_cmd_req(DFX_board_t
*bp
)
2622 int status
; /* adapter status */
2623 int timeout_cnt
; /* used in for loops */
2625 /* Make sure the adapter is in a state that we can issue the DMA command in */
2627 status
= dfx_hw_adap_state_rd(bp
);
2628 if ((status
== PI_STATE_K_RESET
) ||
2629 (status
== PI_STATE_K_HALTED
) ||
2630 (status
== PI_STATE_K_DMA_UNAVAIL
) ||
2631 (status
== PI_STATE_K_UPGRADE
))
2632 return DFX_K_OUTSTATE
;
2634 /* Put response buffer on the command response queue */
2636 bp
->descr_block_virt
->cmd_rsp
[bp
->cmd_rsp_reg
.index
.prod
].long_0
= (u32
) (PI_RCV_DESCR_M_SOP
|
2637 ((PI_CMD_RSP_K_SIZE_MAX
/ PI_ALIGN_K_CMD_RSP_BUFF
) << PI_RCV_DESCR_V_SEG_LEN
));
2638 bp
->descr_block_virt
->cmd_rsp
[bp
->cmd_rsp_reg
.index
.prod
].long_1
= bp
->cmd_rsp_phys
;
2640 /* Bump (and wrap) the producer index and write out to register */
2642 bp
->cmd_rsp_reg
.index
.prod
+= 1;
2643 bp
->cmd_rsp_reg
.index
.prod
&= PI_CMD_RSP_K_NUM_ENTRIES
-1;
2644 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_RSP_PROD
, bp
->cmd_rsp_reg
.lword
);
2646 /* Put request buffer on the command request queue */
2648 bp
->descr_block_virt
->cmd_req
[bp
->cmd_req_reg
.index
.prod
].long_0
= (u32
) (PI_XMT_DESCR_M_SOP
|
2649 PI_XMT_DESCR_M_EOP
| (PI_CMD_REQ_K_SIZE_MAX
<< PI_XMT_DESCR_V_SEG_LEN
));
2650 bp
->descr_block_virt
->cmd_req
[bp
->cmd_req_reg
.index
.prod
].long_1
= bp
->cmd_req_phys
;
2652 /* Bump (and wrap) the producer index and write out to register */
2654 bp
->cmd_req_reg
.index
.prod
+= 1;
2655 bp
->cmd_req_reg
.index
.prod
&= PI_CMD_REQ_K_NUM_ENTRIES
-1;
2656 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_REQ_PROD
, bp
->cmd_req_reg
.lword
);
2659 * Here we wait for the command request consumer index to be equal
2660 * to the producer, indicating that the adapter has DMAed the request.
2663 for (timeout_cnt
= 20000; timeout_cnt
> 0; timeout_cnt
--)
2665 if (bp
->cmd_req_reg
.index
.prod
== (u8
)(bp
->cons_block_virt
->cmd_req
))
2667 udelay(100); /* wait for 100 microseconds */
2669 if (timeout_cnt
== 0)
2670 return DFX_K_HW_TIMEOUT
;
2672 /* Bump (and wrap) the completion index and write out to register */
2674 bp
->cmd_req_reg
.index
.comp
+= 1;
2675 bp
->cmd_req_reg
.index
.comp
&= PI_CMD_REQ_K_NUM_ENTRIES
-1;
2676 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_REQ_PROD
, bp
->cmd_req_reg
.lword
);
2679 * Here we wait for the command response consumer index to be equal
2680 * to the producer, indicating that the adapter has DMAed the response.
2683 for (timeout_cnt
= 20000; timeout_cnt
> 0; timeout_cnt
--)
2685 if (bp
->cmd_rsp_reg
.index
.prod
== (u8
)(bp
->cons_block_virt
->cmd_rsp
))
2687 udelay(100); /* wait for 100 microseconds */
2689 if (timeout_cnt
== 0)
2690 return DFX_K_HW_TIMEOUT
;
2692 /* Bump (and wrap) the completion index and write out to register */
2694 bp
->cmd_rsp_reg
.index
.comp
+= 1;
2695 bp
->cmd_rsp_reg
.index
.comp
&= PI_CMD_RSP_K_NUM_ENTRIES
-1;
2696 dfx_port_write_long(bp
, PI_PDQ_K_REG_CMD_RSP_PROD
, bp
->cmd_rsp_reg
.lword
);
2697 return DFX_K_SUCCESS
;
2702 * ========================
2703 * = dfx_hw_port_ctrl_req =
2704 * ========================
2707 * Sends PDQ port control command to adapter firmware
2710 * Host data register value in host_data if ptr is not NULL
2713 * bp - pointer to board information
2714 * command - port control command
2715 * data_a - port data A register value
2716 * data_b - port data B register value
2717 * host_data - ptr to host data register value
2719 * Functional Description:
2720 * Send generic port control command to adapter by writing
2721 * to various PDQ port registers, then polling for completion.
2724 * DFX_K_SUCCESS - port control command succeeded
2725 * DFX_K_HW_TIMEOUT - port control command timed out
2734 static int dfx_hw_port_ctrl_req(
2739 PI_UINT32
*host_data
2743 PI_UINT32 port_cmd
; /* Port Control command register value */
2744 int timeout_cnt
; /* used in for loops */
2746 /* Set Command Error bit in command longword */
2748 port_cmd
= (PI_UINT32
) (command
| PI_PCTRL_M_CMD_ERROR
);
2750 /* Issue port command to the adapter */
2752 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_DATA_A
, data_a
);
2753 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_DATA_B
, data_b
);
2754 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_CTRL
, port_cmd
);
2756 /* Now wait for command to complete */
2758 if (command
== PI_PCTRL_M_BLAST_FLASH
)
2759 timeout_cnt
= 600000; /* set command timeout count to 60 seconds */
2761 timeout_cnt
= 20000; /* set command timeout count to 2 seconds */
2763 for (; timeout_cnt
> 0; timeout_cnt
--)
2765 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_CTRL
, &port_cmd
);
2766 if (!(port_cmd
& PI_PCTRL_M_CMD_ERROR
))
2768 udelay(100); /* wait for 100 microseconds */
2770 if (timeout_cnt
== 0)
2771 return DFX_K_HW_TIMEOUT
;
2774 * If the address of host_data is non-zero, assume caller has supplied a
2775 * non NULL pointer, and return the contents of the HOST_DATA register in
2779 if (host_data
!= NULL
)
2780 dfx_port_read_long(bp
, PI_PDQ_K_REG_HOST_DATA
, host_data
);
2781 return DFX_K_SUCCESS
;
2786 * =====================
2787 * = dfx_hw_adap_reset =
2788 * =====================
2797 * bp - pointer to board information
2798 * type - type of reset to perform
2800 * Functional Description:
2801 * Issue soft reset to adapter by writing to PDQ Port Reset
2802 * register. Use incoming reset type to tell adapter what
2803 * kind of reset operation to perform.
2809 * This routine merely issues a soft reset to the adapter.
2810 * It is expected that after this routine returns, the caller
2811 * will appropriately poll the Port Status register for the
2812 * adapter to enter the proper state.
2815 * Internal adapter registers are cleared.
2818 static void dfx_hw_adap_reset(
2824 /* Set Reset type and assert reset */
2826 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_DATA_A
, type
); /* tell adapter type of reset */
2827 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_RESET
, PI_RESET_M_ASSERT_RESET
);
2829 /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2833 /* Deassert reset */
2835 dfx_port_write_long(bp
, PI_PDQ_K_REG_PORT_RESET
, 0);
2840 * ========================
2841 * = dfx_hw_adap_state_rd =
2842 * ========================
2845 * Returns current adapter state
2848 * Adapter state per PDQ Port Specification
2851 * bp - pointer to board information
2853 * Functional Description:
2854 * Reads PDQ Port Status register and returns adapter state.
2866 static int dfx_hw_adap_state_rd(DFX_board_t
*bp
)
2868 PI_UINT32 port_status
; /* Port Status register value */
2870 dfx_port_read_long(bp
, PI_PDQ_K_REG_PORT_STATUS
, &port_status
);
2871 return (port_status
& PI_PSTATUS_M_STATE
) >> PI_PSTATUS_V_STATE
;
2876 * =====================
2877 * = dfx_hw_dma_uninit =
2878 * =====================
2881 * Brings adapter to DMA_UNAVAILABLE state
2887 * bp - pointer to board information
2888 * type - type of reset to perform
2890 * Functional Description:
2891 * Bring adapter to DMA_UNAVAILABLE state by performing the following:
2892 * 1. Set reset type bit in Port Data A Register then reset adapter.
2893 * 2. Check that adapter is in DMA_UNAVAILABLE state.
2896 * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state
2897 * DFX_K_HW_TIMEOUT - adapter did not reset properly
2903 * Internal adapter registers are cleared.
2906 static int dfx_hw_dma_uninit(DFX_board_t
*bp
, PI_UINT32 type
)
2908 int timeout_cnt
; /* used in for loops */
2910 /* Set reset type bit and reset adapter */
2912 dfx_hw_adap_reset(bp
, type
);
2914 /* Now wait for adapter to enter DMA_UNAVAILABLE state */
2916 for (timeout_cnt
= 100000; timeout_cnt
> 0; timeout_cnt
--)
2918 if (dfx_hw_adap_state_rd(bp
) == PI_STATE_K_DMA_UNAVAIL
)
2920 udelay(100); /* wait for 100 microseconds */
2922 if (timeout_cnt
== 0)
2923 return DFX_K_HW_TIMEOUT
;
2924 return DFX_K_SUCCESS
;
2928 * Align an sk_buff to a boundary power of 2
2931 #ifdef DYNAMIC_BUFFERS
2932 static void my_skb_align(struct sk_buff
*skb
, int n
)
2934 unsigned long x
= (unsigned long)skb
->data
;
2937 v
= ALIGN(x
, n
); /* Where we want to be */
2939 skb_reserve(skb
, v
- x
);
2949 * Produces buffers to adapter LLC Host receive descriptor block
2955 * bp - pointer to board information
2956 * get_buffers - non-zero if buffers to be allocated
2958 * Functional Description:
2959 * This routine can be called during dfx_adap_init() or during an adapter
2960 * reset. It initializes the descriptor block and produces all allocated
2961 * LLC Host queue receive buffers.
2964 * Return 0 on success or -ENOMEM if buffer allocation failed (when using
2965 * dynamic buffer allocation). If the buffer allocation failed, the
2966 * already allocated buffers will not be released and the caller should do
2970 * The PDQ has been reset and the adapter and driver maintained Type 2
2971 * register indices are cleared.
2974 * Receive buffers are posted to the adapter LLC queue and the adapter
2978 static int dfx_rcv_init(DFX_board_t
*bp
, int get_buffers
)
2980 int i
, j
; /* used in for loop */
2983 * Since each receive buffer is a single fragment of same length, initialize
2984 * first longword in each receive descriptor for entire LLC Host descriptor
2985 * block. Also initialize second longword in each receive descriptor with
2986 * physical address of receive buffer. We'll always allocate receive
2987 * buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2988 * block and produce new receive buffers by simply updating the receive
2992 * To support all shipping versions of PDQ, the receive buffer size
2993 * must be mod 128 in length and the physical address must be 128 byte
2994 * aligned. In other words, bits 0-6 of the length and address must
2995 * be zero for the following descriptor field entries to be correct on
2996 * all PDQ-based boards. We guaranteed both requirements during
2997 * driver initialization when we allocated memory for the receive buffers.
3001 #ifdef DYNAMIC_BUFFERS
3002 for (i
= 0; i
< (int)(bp
->rcv_bufs_to_post
); i
++)
3003 for (j
= 0; (i
+ j
) < (int)PI_RCV_DATA_K_NUM_ENTRIES
; j
+= bp
->rcv_bufs_to_post
)
3005 struct sk_buff
*newskb
;
3006 dma_addr_t dma_addr
;
3008 newskb
= __netdev_alloc_skb(bp
->dev
, NEW_SKB_SIZE
,
3013 * align to 128 bytes for compatibility with
3014 * the old EISA boards.
3017 my_skb_align(newskb
, 128);
3018 dma_addr
= dma_map_single(bp
->bus_dev
,
3020 PI_RCV_DATA_K_SIZE_MAX
,
3022 if (dma_mapping_error(bp
->bus_dev
, dma_addr
)) {
3023 dev_kfree_skb(newskb
);
3026 bp
->descr_block_virt
->rcv_data
[i
+ j
].long_0
=
3027 (u32
)(PI_RCV_DESCR_M_SOP
|
3028 ((PI_RCV_DATA_K_SIZE_MAX
/
3029 PI_ALIGN_K_RCV_DATA_BUFF
) <<
3030 PI_RCV_DESCR_V_SEG_LEN
));
3031 bp
->descr_block_virt
->rcv_data
[i
+ j
].long_1
=
3035 * p_rcv_buff_va is only used inside the
3036 * kernel so we put the skb pointer here.
3038 bp
->p_rcv_buff_va
[i
+j
] = (char *) newskb
;
3041 for (i
=0; i
< (int)(bp
->rcv_bufs_to_post
); i
++)
3042 for (j
=0; (i
+ j
) < (int)PI_RCV_DATA_K_NUM_ENTRIES
; j
+= bp
->rcv_bufs_to_post
)
3044 bp
->descr_block_virt
->rcv_data
[i
+j
].long_0
= (u32
) (PI_RCV_DESCR_M_SOP
|
3045 ((PI_RCV_DATA_K_SIZE_MAX
/ PI_ALIGN_K_RCV_DATA_BUFF
) << PI_RCV_DESCR_V_SEG_LEN
));
3046 bp
->descr_block_virt
->rcv_data
[i
+j
].long_1
= (u32
) (bp
->rcv_block_phys
+ (i
* PI_RCV_DATA_K_SIZE_MAX
));
3047 bp
->p_rcv_buff_va
[i
+j
] = (bp
->rcv_block_virt
+ (i
* PI_RCV_DATA_K_SIZE_MAX
));
3052 /* Update receive producer and Type 2 register */
3054 bp
->rcv_xmt_reg
.index
.rcv_prod
= bp
->rcv_bufs_to_post
;
3055 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_2_PROD
, bp
->rcv_xmt_reg
.lword
);
3061 * =========================
3062 * = dfx_rcv_queue_process =
3063 * =========================
3066 * Process received LLC frames.
3072 * bp - pointer to board information
3074 * Functional Description:
3075 * Received LLC frames are processed until there are no more consumed frames.
3076 * Once all frames are processed, the receive buffers are returned to the
3077 * adapter. Note that this algorithm fixes the length of time that can be spent
3078 * in this routine, because there are a fixed number of receive buffers to
3079 * process and buffers are not produced until this routine exits and returns
3092 static void dfx_rcv_queue_process(
3097 PI_TYPE_2_CONSUMER
*p_type_2_cons
; /* ptr to rcv/xmt consumer block register */
3098 char *p_buff
; /* ptr to start of packet receive buffer (FMC descriptor) */
3099 u32 descr
, pkt_len
; /* FMC descriptor field and packet length */
3100 struct sk_buff
*skb
= NULL
; /* pointer to a sk_buff to hold incoming packet data */
3102 /* Service all consumed LLC receive frames */
3104 p_type_2_cons
= (PI_TYPE_2_CONSUMER
*)(&bp
->cons_block_virt
->xmt_rcv_data
);
3105 while (bp
->rcv_xmt_reg
.index
.rcv_comp
!= p_type_2_cons
->index
.rcv_cons
)
3107 /* Process any errors */
3108 dma_addr_t dma_addr
;
3111 entry
= bp
->rcv_xmt_reg
.index
.rcv_comp
;
3112 #ifdef DYNAMIC_BUFFERS
3113 p_buff
= (char *) (((struct sk_buff
*)bp
->p_rcv_buff_va
[entry
])->data
);
3115 p_buff
= bp
->p_rcv_buff_va
[entry
];
3117 dma_addr
= bp
->descr_block_virt
->rcv_data
[entry
].long_1
;
3118 dma_sync_single_for_cpu(bp
->bus_dev
,
3119 dma_addr
+ RCV_BUFF_K_DESCR
,
3122 memcpy(&descr
, p_buff
+ RCV_BUFF_K_DESCR
, sizeof(u32
));
3124 if (descr
& PI_FMC_DESCR_M_RCC_FLUSH
)
3126 if (descr
& PI_FMC_DESCR_M_RCC_CRC
)
3127 bp
->rcv_crc_errors
++;
3129 bp
->rcv_frame_status_errors
++;
3133 int rx_in_place
= 0;
3135 /* The frame was received without errors - verify packet length */
3137 pkt_len
= (u32
)((descr
& PI_FMC_DESCR_M_LEN
) >> PI_FMC_DESCR_V_LEN
);
3138 pkt_len
-= 4; /* subtract 4 byte CRC */
3139 if (!IN_RANGE(pkt_len
, FDDI_K_LLC_ZLEN
, FDDI_K_LLC_LEN
))
3140 bp
->rcv_length_errors
++;
3142 #ifdef DYNAMIC_BUFFERS
3143 struct sk_buff
*newskb
= NULL
;
3145 if (pkt_len
> SKBUFF_RX_COPYBREAK
) {
3146 dma_addr_t new_dma_addr
;
3148 newskb
= netdev_alloc_skb(bp
->dev
,
3151 my_skb_align(newskb
, 128);
3152 new_dma_addr
= dma_map_single(
3155 PI_RCV_DATA_K_SIZE_MAX
,
3157 if (dma_mapping_error(
3160 dev_kfree_skb(newskb
);
3167 skb
= (struct sk_buff
*)bp
->p_rcv_buff_va
[entry
];
3168 dma_unmap_single(bp
->bus_dev
,
3170 PI_RCV_DATA_K_SIZE_MAX
,
3172 skb_reserve(skb
, RCV_BUFF_K_PADDING
);
3173 bp
->p_rcv_buff_va
[entry
] = (char *)newskb
;
3174 bp
->descr_block_virt
->rcv_data
[entry
].long_1
= (u32
)new_dma_addr
;
3179 /* Alloc new buffer to pass up,
3180 * add room for PRH. */
3181 skb
= netdev_alloc_skb(bp
->dev
,
3185 printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp
->dev
->name
);
3191 /* Receive buffer allocated, pass receive packet up */
3192 dma_sync_single_for_cpu(
3199 skb_copy_to_linear_data(skb
,
3200 p_buff
+ RCV_BUFF_K_PADDING
,
3204 skb_reserve(skb
,3); /* adjust data field so that it points to FC byte */
3205 skb_put(skb
, pkt_len
); /* pass up packet length, NOT including CRC */
3206 skb
->protocol
= fddi_type_trans(skb
, bp
->dev
);
3207 bp
->rcv_total_bytes
+= skb
->len
;
3210 /* Update the rcv counters */
3211 bp
->rcv_total_frames
++;
3212 if (*(p_buff
+ RCV_BUFF_K_DA
) & 0x01)
3213 bp
->rcv_multicast_frames
++;
3219 * Advance the producer (for recycling) and advance the completion
3220 * (for servicing received frames). Note that it is okay to
3221 * advance the producer without checking that it passes the
3222 * completion index because they are both advanced at the same
3226 bp
->rcv_xmt_reg
.index
.rcv_prod
+= 1;
3227 bp
->rcv_xmt_reg
.index
.rcv_comp
+= 1;
3233 * =====================
3234 * = dfx_xmt_queue_pkt =
3235 * =====================
3238 * Queues packets for transmission
3244 * skb - pointer to sk_buff to queue for transmission
3245 * dev - pointer to device information
3247 * Functional Description:
3248 * Here we assume that an incoming skb transmit request
3249 * is contained in a single physically contiguous buffer
3250 * in which the virtual address of the start of packet
3251 * (skb->data) can be converted to a physical address
3252 * by using dma_map_single().
3254 * Since the adapter architecture requires a three byte
3255 * packet request header to prepend the start of packet,
3256 * we'll write the three byte field immediately prior to
3257 * the FC byte. This assumption is valid because we've
3258 * ensured that dev->hard_header_len includes three pad
3259 * bytes. By posting a single fragment to the adapter,
3260 * we'll reduce the number of descriptor fetches and
3261 * bus traffic needed to send the request.
3263 * Also, we can't free the skb until after it's been DMA'd
3264 * out by the adapter, so we'll queue it in the driver and
3265 * return it in dfx_xmt_done.
3268 * 0 - driver queued packet, link is unavailable, or skbuff was bad
3269 * 1 - caller should requeue the sk_buff for later transmission
3272 * First and foremost, we assume the incoming skb pointer
3273 * is NOT NULL and is pointing to a valid sk_buff structure.
3275 * The outgoing packet is complete, starting with the
3276 * frame control byte including the last byte of data,
3277 * but NOT including the 4 byte CRC. We'll let the
3278 * adapter hardware generate and append the CRC.
3280 * The entire packet is stored in one physically
3281 * contiguous buffer which is not cached and whose
3282 * 32-bit physical address can be determined.
3284 * It's vital that this routine is NOT reentered for the
3285 * same board and that the OS is not in another section of
3286 * code (eg. dfx_int_common) for the same board on a
3293 static netdev_tx_t
dfx_xmt_queue_pkt(struct sk_buff
*skb
,
3294 struct net_device
*dev
)
3296 DFX_board_t
*bp
= netdev_priv(dev
);
3297 u8 prod
; /* local transmit producer index */
3298 PI_XMT_DESCR
*p_xmt_descr
; /* ptr to transmit descriptor block entry */
3299 XMT_DRIVER_DESCR
*p_xmt_drv_descr
; /* ptr to transmit driver descriptor */
3300 dma_addr_t dma_addr
;
3301 unsigned long flags
;
3303 netif_stop_queue(dev
);
3306 * Verify that incoming transmit request is OK
3308 * Note: The packet size check is consistent with other
3309 * Linux device drivers, although the correct packet
3310 * size should be verified before calling the
3314 if (!IN_RANGE(skb
->len
, FDDI_K_LLC_ZLEN
, FDDI_K_LLC_LEN
))
3316 printk("%s: Invalid packet length - %u bytes\n",
3317 dev
->name
, skb
->len
);
3318 bp
->xmt_length_errors
++; /* bump error counter */
3319 netif_wake_queue(dev
);
3321 return NETDEV_TX_OK
; /* return "success" */
3324 * See if adapter link is available, if not, free buffer
3326 * Note: If the link isn't available, free buffer and return 0
3327 * rather than tell the upper layer to requeue the packet.
3328 * The methodology here is that by the time the link
3329 * becomes available, the packet to be sent will be
3330 * fairly stale. By simply dropping the packet, the
3331 * higher layer protocols will eventually time out
3332 * waiting for response packets which it won't receive.
3335 if (bp
->link_available
== PI_K_FALSE
)
3337 if (dfx_hw_adap_state_rd(bp
) == PI_STATE_K_LINK_AVAIL
) /* is link really available? */
3338 bp
->link_available
= PI_K_TRUE
; /* if so, set flag and continue */
3341 bp
->xmt_discards
++; /* bump error counter */
3342 dev_kfree_skb(skb
); /* free sk_buff now */
3343 netif_wake_queue(dev
);
3344 return NETDEV_TX_OK
; /* return "success" */
3348 /* Write the three PRH bytes immediately before the FC byte */
3351 skb
->data
[0] = DFX_PRH0_BYTE
; /* these byte values are defined */
3352 skb
->data
[1] = DFX_PRH1_BYTE
; /* in the Motorola FDDI MAC chip */
3353 skb
->data
[2] = DFX_PRH2_BYTE
; /* specification */
3355 dma_addr
= dma_map_single(bp
->bus_dev
, skb
->data
, skb
->len
,
3357 if (dma_mapping_error(bp
->bus_dev
, dma_addr
)) {
3359 return NETDEV_TX_BUSY
;
3362 spin_lock_irqsave(&bp
->lock
, flags
);
3364 /* Get the current producer and the next free xmt data descriptor */
3366 prod
= bp
->rcv_xmt_reg
.index
.xmt_prod
;
3367 p_xmt_descr
= &(bp
->descr_block_virt
->xmt_data
[prod
]);
3370 * Get pointer to auxiliary queue entry to contain information
3373 * Note: The current xmt producer index will become the
3374 * current xmt completion index when we complete this
3375 * packet later on. So, we'll get the pointer to the
3376 * next auxiliary queue entry now before we bump the
3380 p_xmt_drv_descr
= &(bp
->xmt_drv_descr_blk
[prod
++]); /* also bump producer index */
3383 * Write the descriptor with buffer info and bump producer
3385 * Note: Since we need to start DMA from the packet request
3386 * header, we'll add 3 bytes to the DMA buffer length,
3387 * and we'll determine the physical address of the
3388 * buffer from the PRH, not skb->data.
3391 * 1. Packet starts with the frame control (FC) byte
3393 * 2. The 4-byte CRC is not appended to the buffer or
3394 * included in the length.
3395 * 3. Packet length (skb->len) is from FC to end of
3397 * 4. The packet length does not exceed the maximum
3398 * FDDI LLC frame length of 4491 bytes.
3399 * 5. The entire packet is contained in a physically
3400 * contiguous, non-cached, locked memory space
3401 * comprised of a single buffer pointed to by
3403 * 6. The physical address of the start of packet
3404 * can be determined from the virtual address
3405 * by using dma_map_single() and is only 32-bits
3409 p_xmt_descr
->long_0
= (u32
) (PI_XMT_DESCR_M_SOP
| PI_XMT_DESCR_M_EOP
| ((skb
->len
) << PI_XMT_DESCR_V_SEG_LEN
));
3410 p_xmt_descr
->long_1
= (u32
)dma_addr
;
3413 * Verify that descriptor is actually available
3415 * Note: If descriptor isn't available, return 1 which tells
3416 * the upper layer to requeue the packet for later
3419 * We need to ensure that the producer never reaches the
3420 * completion, except to indicate that the queue is empty.
3423 if (prod
== bp
->rcv_xmt_reg
.index
.xmt_comp
)
3426 spin_unlock_irqrestore(&bp
->lock
, flags
);
3427 return NETDEV_TX_BUSY
; /* requeue packet for later */
3431 * Save info for this packet for xmt done indication routine
3433 * Normally, we'd save the producer index in the p_xmt_drv_descr
3434 * structure so that we'd have it handy when we complete this
3435 * packet later (in dfx_xmt_done). However, since the current
3436 * transmit architecture guarantees a single fragment for the
3437 * entire packet, we can simply bump the completion index by
3438 * one (1) for each completed packet.
3440 * Note: If this assumption changes and we're presented with
3441 * an inconsistent number of transmit fragments for packet
3442 * data, we'll need to modify this code to save the current
3443 * transmit producer index.
3446 p_xmt_drv_descr
->p_skb
= skb
;
3448 /* Update Type 2 register */
3450 bp
->rcv_xmt_reg
.index
.xmt_prod
= prod
;
3451 dfx_port_write_long(bp
, PI_PDQ_K_REG_TYPE_2_PROD
, bp
->rcv_xmt_reg
.lword
);
3452 spin_unlock_irqrestore(&bp
->lock
, flags
);
3453 netif_wake_queue(dev
);
3454 return NETDEV_TX_OK
; /* packet queued to adapter */
3464 * Processes all frames that have been transmitted.
3470 * bp - pointer to board information
3472 * Functional Description:
3473 * For all consumed transmit descriptors that have not
3474 * yet been completed, we'll free the skb we were holding
3475 * onto using dev_kfree_skb and bump the appropriate
3482 * The Type 2 register is not updated in this routine. It is
3483 * assumed that it will be updated in the ISR when dfx_xmt_done
3490 static int dfx_xmt_done(DFX_board_t
*bp
)
3492 XMT_DRIVER_DESCR
*p_xmt_drv_descr
; /* ptr to transmit driver descriptor */
3493 PI_TYPE_2_CONSUMER
*p_type_2_cons
; /* ptr to rcv/xmt consumer block register */
3494 u8 comp
; /* local transmit completion index */
3495 int freed
= 0; /* buffers freed */
3497 /* Service all consumed transmit frames */
3499 p_type_2_cons
= (PI_TYPE_2_CONSUMER
*)(&bp
->cons_block_virt
->xmt_rcv_data
);
3500 while (bp
->rcv_xmt_reg
.index
.xmt_comp
!= p_type_2_cons
->index
.xmt_cons
)
3502 /* Get pointer to the transmit driver descriptor block information */
3504 p_xmt_drv_descr
= &(bp
->xmt_drv_descr_blk
[bp
->rcv_xmt_reg
.index
.xmt_comp
]);
3506 /* Increment transmit counters */
3508 bp
->xmt_total_frames
++;
3509 bp
->xmt_total_bytes
+= p_xmt_drv_descr
->p_skb
->len
;
3511 /* Return skb to operating system */
3512 comp
= bp
->rcv_xmt_reg
.index
.xmt_comp
;
3513 dma_unmap_single(bp
->bus_dev
,
3514 bp
->descr_block_virt
->xmt_data
[comp
].long_1
,
3515 p_xmt_drv_descr
->p_skb
->len
,
3517 dev_consume_skb_irq(p_xmt_drv_descr
->p_skb
);
3520 * Move to start of next packet by updating completion index
3522 * Here we assume that a transmit packet request is always
3523 * serviced by posting one fragment. We can therefore
3524 * simplify the completion code by incrementing the
3525 * completion index by one. This code will need to be
3526 * modified if this assumption changes. See comments
3527 * in dfx_xmt_queue_pkt for more details.
3530 bp
->rcv_xmt_reg
.index
.xmt_comp
+= 1;
3543 * Remove all skb's in the receive ring.
3549 * bp - pointer to board information
3551 * Functional Description:
3552 * Free's all the dynamically allocated skb's that are
3553 * currently attached to the device receive ring. This
3554 * function is typically only used when the device is
3555 * initialized or reinitialized.
3563 #ifdef DYNAMIC_BUFFERS
3564 static void dfx_rcv_flush( DFX_board_t
*bp
)
3568 for (i
= 0; i
< (int)(bp
->rcv_bufs_to_post
); i
++)
3569 for (j
= 0; (i
+ j
) < (int)PI_RCV_DATA_K_NUM_ENTRIES
; j
+= bp
->rcv_bufs_to_post
)
3571 struct sk_buff
*skb
;
3572 skb
= (struct sk_buff
*)bp
->p_rcv_buff_va
[i
+j
];
3574 dma_unmap_single(bp
->bus_dev
,
3575 bp
->descr_block_virt
->rcv_data
[i
+j
].long_1
,
3576 PI_RCV_DATA_K_SIZE_MAX
,
3580 bp
->p_rcv_buff_va
[i
+j
] = NULL
;
3584 #endif /* DYNAMIC_BUFFERS */
3592 * Processes all frames whether they've been transmitted
3599 * bp - pointer to board information
3601 * Functional Description:
3602 * For all produced transmit descriptors that have not
3603 * yet been completed, we'll free the skb we were holding
3604 * onto using dev_kfree_skb and bump the appropriate
3605 * counters. Of course, it's possible that some of
3606 * these transmit requests actually did go out, but we
3607 * won't make that distinction here. Finally, we'll
3608 * update the consumer index to match the producer.
3614 * This routine does NOT update the Type 2 register. It
3615 * is assumed that this routine is being called during a
3616 * transmit flush interrupt, or a shutdown or close routine.
3622 static void dfx_xmt_flush( DFX_board_t
*bp
)
3624 u32 prod_cons
; /* rcv/xmt consumer block longword */
3625 XMT_DRIVER_DESCR
*p_xmt_drv_descr
; /* ptr to transmit driver descriptor */
3626 u8 comp
; /* local transmit completion index */
3628 /* Flush all outstanding transmit frames */
3630 while (bp
->rcv_xmt_reg
.index
.xmt_comp
!= bp
->rcv_xmt_reg
.index
.xmt_prod
)
3632 /* Get pointer to the transmit driver descriptor block information */
3634 p_xmt_drv_descr
= &(bp
->xmt_drv_descr_blk
[bp
->rcv_xmt_reg
.index
.xmt_comp
]);
3636 /* Return skb to operating system */
3637 comp
= bp
->rcv_xmt_reg
.index
.xmt_comp
;
3638 dma_unmap_single(bp
->bus_dev
,
3639 bp
->descr_block_virt
->xmt_data
[comp
].long_1
,
3640 p_xmt_drv_descr
->p_skb
->len
,
3642 dev_kfree_skb(p_xmt_drv_descr
->p_skb
);
3644 /* Increment transmit error counter */
3649 * Move to start of next packet by updating completion index
3651 * Here we assume that a transmit packet request is always
3652 * serviced by posting one fragment. We can therefore
3653 * simplify the completion code by incrementing the
3654 * completion index by one. This code will need to be
3655 * modified if this assumption changes. See comments
3656 * in dfx_xmt_queue_pkt for more details.
3659 bp
->rcv_xmt_reg
.index
.xmt_comp
+= 1;
3662 /* Update the transmit consumer index in the consumer block */
3664 prod_cons
= (u32
)(bp
->cons_block_virt
->xmt_rcv_data
& ~PI_CONS_M_XMT_INDEX
);
3665 prod_cons
|= (u32
)(bp
->rcv_xmt_reg
.index
.xmt_prod
<< PI_CONS_V_XMT_INDEX
);
3666 bp
->cons_block_virt
->xmt_rcv_data
= prod_cons
;
3670 * ==================
3671 * = dfx_unregister =
3672 * ==================
3675 * Shuts down an FDDI controller
3681 * bdev - pointer to device information
3683 * Functional Description:
3689 * It compiles so it should work :-( (PCI cards do :-)
3692 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
3695 static void dfx_unregister(struct device
*bdev
)
3697 struct net_device
*dev
= dev_get_drvdata(bdev
);
3698 DFX_board_t
*bp
= netdev_priv(dev
);
3699 int dfx_bus_pci
= dev_is_pci(bdev
);
3700 resource_size_t bar_start
[3] = {0}; /* pointers to ports */
3701 resource_size_t bar_len
[3] = {0}; /* resource lengths */
3702 int alloc_size
; /* total buffer size used */
3704 unregister_netdev(dev
);
3706 alloc_size
= sizeof(PI_DESCR_BLOCK
) +
3707 PI_CMD_REQ_K_SIZE_MAX
+ PI_CMD_RSP_K_SIZE_MAX
+
3708 #ifndef DYNAMIC_BUFFERS
3709 (bp
->rcv_bufs_to_post
* PI_RCV_DATA_K_SIZE_MAX
) +
3711 sizeof(PI_CONSUMER_BLOCK
) +
3712 (PI_ALIGN_K_DESC_BLK
- 1);
3714 dma_free_coherent(bdev
, alloc_size
,
3715 bp
->kmalloced
, bp
->kmalloced_dma
);
3717 dfx_bus_uninit(dev
);
3719 dfx_get_bars(bp
, bar_start
, bar_len
);
3720 if (bar_start
[2] != 0)
3721 release_region(bar_start
[2], bar_len
[2]);
3722 if (bar_start
[1] != 0)
3723 release_region(bar_start
[1], bar_len
[1]);
3725 iounmap(bp
->base
.mem
);
3726 release_mem_region(bar_start
[0], bar_len
[0]);
3728 release_region(bar_start
[0], bar_len
[0]);
3731 pci_disable_device(to_pci_dev(bdev
));
3737 static int __maybe_unused
dfx_dev_register(struct device
*);
3738 static int __maybe_unused
dfx_dev_unregister(struct device
*);
3741 static int dfx_pci_register(struct pci_dev
*, const struct pci_device_id
*);
3742 static void dfx_pci_unregister(struct pci_dev
*);
3744 static const struct pci_device_id dfx_pci_table
[] = {
3745 { PCI_DEVICE(PCI_VENDOR_ID_DEC
, PCI_DEVICE_ID_DEC_FDDI
) },
3748 MODULE_DEVICE_TABLE(pci
, dfx_pci_table
);
3750 static struct pci_driver dfx_pci_driver
= {
3752 .id_table
= dfx_pci_table
,
3753 .probe
= dfx_pci_register
,
3754 .remove
= dfx_pci_unregister
,
3757 static int dfx_pci_register(struct pci_dev
*pdev
,
3758 const struct pci_device_id
*ent
)
3760 return dfx_register(&pdev
->dev
);
3763 static void dfx_pci_unregister(struct pci_dev
*pdev
)
3765 dfx_unregister(&pdev
->dev
);
3767 #endif /* CONFIG_PCI */
3770 static const struct eisa_device_id dfx_eisa_table
[] = {
3771 { "DEC3001", DEFEA_PROD_ID_1
},
3772 { "DEC3002", DEFEA_PROD_ID_2
},
3773 { "DEC3003", DEFEA_PROD_ID_3
},
3774 { "DEC3004", DEFEA_PROD_ID_4
},
3777 MODULE_DEVICE_TABLE(eisa
, dfx_eisa_table
);
3779 static struct eisa_driver dfx_eisa_driver
= {
3780 .id_table
= dfx_eisa_table
,
3783 .bus
= &eisa_bus_type
,
3784 .probe
= dfx_dev_register
,
3785 .remove
= dfx_dev_unregister
,
3788 #endif /* CONFIG_EISA */
3791 static struct tc_device_id
const dfx_tc_table
[] = {
3792 { "DEC ", "PMAF-FA " },
3793 { "DEC ", "PMAF-FD " },
3794 { "DEC ", "PMAF-FS " },
3795 { "DEC ", "PMAF-FU " },
3798 MODULE_DEVICE_TABLE(tc
, dfx_tc_table
);
3800 static struct tc_driver dfx_tc_driver
= {
3801 .id_table
= dfx_tc_table
,
3804 .bus
= &tc_bus_type
,
3805 .probe
= dfx_dev_register
,
3806 .remove
= dfx_dev_unregister
,
3809 #endif /* CONFIG_TC */
3811 static int __maybe_unused
dfx_dev_register(struct device
*dev
)
3815 status
= dfx_register(dev
);
3821 static int __maybe_unused
dfx_dev_unregister(struct device
*dev
)
3824 dfx_unregister(dev
);
3829 static int dfx_init(void)
3833 status
= pci_register_driver(&dfx_pci_driver
);
3835 goto err_pci_register
;
3837 status
= eisa_driver_register(&dfx_eisa_driver
);
3839 goto err_eisa_register
;
3841 status
= tc_register_driver(&dfx_tc_driver
);
3843 goto err_tc_register
;
3848 eisa_driver_unregister(&dfx_eisa_driver
);
3850 pci_unregister_driver(&dfx_pci_driver
);
3855 static void dfx_cleanup(void)
3857 tc_unregister_driver(&dfx_tc_driver
);
3858 eisa_driver_unregister(&dfx_eisa_driver
);
3859 pci_unregister_driver(&dfx_pci_driver
);
3862 module_init(dfx_init
);
3863 module_exit(dfx_cleanup
);
3864 MODULE_AUTHOR("Lawrence V. Stefani");
3865 MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3866 DRV_VERSION
" " DRV_RELDATE
);
3867 MODULE_LICENSE("GPL");