1 // SPDX-License-Identifier: GPL-2.0
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2024 Linaro Ltd.
8 #include <linux/firmware.h>
10 #include <linux/module.h>
12 #include <linux/of_address.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/types.h>
17 #include <linux/firmware/qcom/qcom_scm.h>
18 #include <linux/soc/qcom/mdt_loader.h>
23 #include "ipa_endpoint.h"
24 #include "ipa_interrupt.h"
26 #include "ipa_modem.h"
27 #include "ipa_power.h"
29 #include "ipa_resource.h"
30 #include "ipa_smp2p.h"
31 #include "ipa_sysfs.h"
32 #include "ipa_table.h"
34 #include "ipa_version.h"
37 * DOC: The IP Accelerator
39 * This driver supports the Qualcomm IP Accelerator (IPA), which is a
40 * networking component found in many Qualcomm SoCs. The IPA is connected
41 * to the application processor (AP), but is also connected (and partially
42 * controlled by) other "execution environments" (EEs), such as a modem.
44 * The IPA is the conduit between the AP and the modem that carries network
45 * traffic. This driver presents a network interface representing the
46 * connection of the modem to external (e.g. LTE) networks.
48 * The IPA provides protocol checksum calculation, offloading this work
49 * from the AP. The IPA offers additional functionality, including routing,
50 * filtering, and NAT support, but that more advanced functionality is not
51 * currently supported. Despite that, some resources--including routing
52 * tables and filter tables--are defined in this driver because they must
53 * be initialized even when the advanced hardware features are not used.
55 * There are two distinct layers that implement the IPA hardware, and this
56 * is reflected in the organization of the driver. The generic software
57 * interface (GSI) is an integral component of the IPA, providing a
58 * well-defined communication layer between the AP subsystem and the IPA
59 * core. The GSI implements a set of "channels" used for communication
60 * between the AP and the IPA.
62 * The IPA layer uses GSI channels to implement its "endpoints". And while
63 * a GSI channel carries data between the AP and the IPA, a pair of IPA
64 * endpoints is used to carry traffic between two EEs. Specifically, the main
65 * modem network interface is implemented by two pairs of endpoints: a TX
66 * endpoint on the AP coupled with an RX endpoint on the modem; and another
67 * RX endpoint on the AP receiving data from a TX endpoint on the modem.
70 /* The name of the GSI firmware file relative to /lib/firmware */
71 #define IPA_FW_PATH_DEFAULT "ipa_fws.mdt"
74 /* Shift of 19.2 MHz timestamp to achieve lower resolution timestamps */
75 /* IPA v5.5+ does not specify Qtime timestamp config for DPL */
76 #define DPL_TIMESTAMP_SHIFT 14 /* ~1.172 kHz, ~853 usec per tick */
77 #define TAG_TIMESTAMP_SHIFT 14
78 #define NAT_TIMESTAMP_SHIFT 24 /* ~1.144 Hz, ~874 msec per tick */
80 /* Divider for 19.2 MHz crystal oscillator clock to get common timer clock */
81 #define IPA_XO_CLOCK_DIVIDER 192 /* 1 is subtracted where used */
84 * enum ipa_firmware_loader: How GSI firmware gets loaded
86 * @IPA_LOADER_DEFER: System not ready; try again later
87 * @IPA_LOADER_SELF: AP loads GSI firmware
88 * @IPA_LOADER_MODEM: Modem loads GSI firmware, signals when done
89 * @IPA_LOADER_SKIP: Neither AP nor modem need to load GSI firmware
90 * @IPA_LOADER_INVALID: GSI firmware loader specification is invalid
92 enum ipa_firmware_loader
{
101 * ipa_setup() - Set up IPA hardware
104 * Perform initialization that requires issuing immediate commands on
105 * the command TX endpoint. If the modem is doing GSI firmware load
106 * and initialization, this function will be called when an SMP2P
107 * interrupt has been signaled by the modem. Otherwise it will be
108 * called from ipa_probe() after GSI firmware has been successfully
109 * loaded, authenticated, and started by Trust Zone.
111 int ipa_setup(struct ipa
*ipa
)
113 struct ipa_endpoint
*exception_endpoint
;
114 struct ipa_endpoint
*command_endpoint
;
115 struct device
*dev
= ipa
->dev
;
118 ret
= gsi_setup(&ipa
->gsi
);
122 ipa_endpoint_setup(ipa
);
124 /* We need to use the AP command TX endpoint to perform other
125 * initialization, so we enable first.
127 command_endpoint
= ipa
->name_map
[IPA_ENDPOINT_AP_COMMAND_TX
];
128 ret
= ipa_endpoint_enable_one(command_endpoint
);
130 goto err_endpoint_teardown
;
132 ret
= ipa_mem_setup(ipa
); /* No matching teardown required */
134 goto err_command_disable
;
136 ret
= ipa_table_setup(ipa
); /* No matching teardown required */
138 goto err_command_disable
;
140 /* Enable the exception handling endpoint, and tell the hardware
141 * to use it by default.
143 exception_endpoint
= ipa
->name_map
[IPA_ENDPOINT_AP_LAN_RX
];
144 ret
= ipa_endpoint_enable_one(exception_endpoint
);
146 goto err_command_disable
;
148 ipa_endpoint_default_route_set(ipa
, exception_endpoint
->endpoint_id
);
150 /* We're all set. Now prepare for communication with the modem */
151 ret
= ipa_qmi_setup(ipa
);
153 goto err_default_route_clear
;
155 ipa
->setup_complete
= true;
157 dev_info(dev
, "IPA driver setup completed successfully\n");
161 err_default_route_clear
:
162 ipa_endpoint_default_route_clear(ipa
);
163 ipa_endpoint_disable_one(exception_endpoint
);
165 ipa_endpoint_disable_one(command_endpoint
);
166 err_endpoint_teardown
:
167 ipa_endpoint_teardown(ipa
);
168 gsi_teardown(&ipa
->gsi
);
174 * ipa_teardown() - Inverse of ipa_setup()
177 static void ipa_teardown(struct ipa
*ipa
)
179 struct ipa_endpoint
*exception_endpoint
;
180 struct ipa_endpoint
*command_endpoint
;
182 /* We're going to tear everything down, as if setup never completed */
183 ipa
->setup_complete
= false;
185 ipa_qmi_teardown(ipa
);
186 ipa_endpoint_default_route_clear(ipa
);
187 exception_endpoint
= ipa
->name_map
[IPA_ENDPOINT_AP_LAN_RX
];
188 ipa_endpoint_disable_one(exception_endpoint
);
189 command_endpoint
= ipa
->name_map
[IPA_ENDPOINT_AP_COMMAND_TX
];
190 ipa_endpoint_disable_one(command_endpoint
);
191 ipa_endpoint_teardown(ipa
);
192 gsi_teardown(&ipa
->gsi
);
196 ipa_hardware_config_bcr(struct ipa
*ipa
, const struct ipa_data
*data
)
198 const struct reg
*reg
;
201 /* IPA v4.5+ has no backward compatibility register */
202 if (ipa
->version
>= IPA_VERSION_4_5
)
205 reg
= ipa_reg(ipa
, IPA_BCR
);
206 val
= data
->backward_compat
;
207 iowrite32(val
, ipa
->reg_virt
+ reg_offset(reg
));
210 static void ipa_hardware_config_tx(struct ipa
*ipa
)
212 enum ipa_version version
= ipa
->version
;
213 const struct reg
*reg
;
217 if (version
<= IPA_VERSION_4_0
|| version
>= IPA_VERSION_4_5
)
220 /* Disable PA mask to allow HOLB drop */
221 reg
= ipa_reg(ipa
, IPA_TX_CFG
);
222 offset
= reg_offset(reg
);
224 val
= ioread32(ipa
->reg_virt
+ offset
);
226 val
&= ~reg_bit(reg
, PA_MASK_EN
);
228 iowrite32(val
, ipa
->reg_virt
+ offset
);
231 static void ipa_hardware_config_clkon(struct ipa
*ipa
)
233 enum ipa_version version
= ipa
->version
;
234 const struct reg
*reg
;
237 if (version
>= IPA_VERSION_4_5
)
240 if (version
< IPA_VERSION_4_0
&& version
!= IPA_VERSION_3_1
)
243 /* Implement some hardware workarounds */
244 reg
= ipa_reg(ipa
, CLKON_CFG
);
245 if (version
== IPA_VERSION_3_1
) {
246 /* Disable MISC clock gating */
247 val
= reg_bit(reg
, CLKON_MISC
);
248 } else { /* IPA v4.0+ */
249 /* Enable open global clocks in the CLKON configuration */
250 val
= reg_bit(reg
, CLKON_GLOBAL
);
251 val
|= reg_bit(reg
, GLOBAL_2X_CLK
);
254 iowrite32(val
, ipa
->reg_virt
+ reg_offset(reg
));
257 /* Configure bus access behavior for IPA components */
258 static void ipa_hardware_config_comp(struct ipa
*ipa
)
260 const struct reg
*reg
;
264 /* Nothing to configure prior to IPA v4.0 */
265 if (ipa
->version
< IPA_VERSION_4_0
)
268 reg
= ipa_reg(ipa
, COMP_CFG
);
269 offset
= reg_offset(reg
);
271 val
= ioread32(ipa
->reg_virt
+ offset
);
273 if (ipa
->version
== IPA_VERSION_4_0
) {
274 val
&= ~reg_bit(reg
, IPA_QMB_SELECT_CONS_EN
);
275 val
&= ~reg_bit(reg
, IPA_QMB_SELECT_PROD_EN
);
276 val
&= ~reg_bit(reg
, IPA_QMB_SELECT_GLOBAL_EN
);
277 } else if (ipa
->version
< IPA_VERSION_4_5
) {
278 val
|= reg_bit(reg
, GSI_MULTI_AXI_MASTERS_DIS
);
280 /* For IPA v4.5+ FULL_FLUSH_WAIT_RS_CLOSURE_EN is 0 */
283 val
|= reg_bit(reg
, GSI_MULTI_INORDER_RD_DIS
);
284 val
|= reg_bit(reg
, GSI_MULTI_INORDER_WR_DIS
);
286 iowrite32(val
, ipa
->reg_virt
+ offset
);
289 /* Configure DDR and (possibly) PCIe max read/write QSB values */
291 ipa_hardware_config_qsb(struct ipa
*ipa
, const struct ipa_data
*data
)
293 const struct ipa_qsb_data
*data0
;
294 const struct ipa_qsb_data
*data1
;
295 const struct reg
*reg
;
298 /* QMB 0 represents DDR; QMB 1 (if present) represents PCIe */
299 data0
= &data
->qsb_data
[IPA_QSB_MASTER_DDR
];
300 if (data
->qsb_count
> 1)
301 data1
= &data
->qsb_data
[IPA_QSB_MASTER_PCIE
];
303 /* Max outstanding write accesses for QSB masters */
304 reg
= ipa_reg(ipa
, QSB_MAX_WRITES
);
306 val
= reg_encode(reg
, GEN_QMB_0_MAX_WRITES
, data0
->max_writes
);
307 if (data
->qsb_count
> 1)
308 val
|= reg_encode(reg
, GEN_QMB_1_MAX_WRITES
, data1
->max_writes
);
310 iowrite32(val
, ipa
->reg_virt
+ reg_offset(reg
));
312 /* Max outstanding read accesses for QSB masters */
313 reg
= ipa_reg(ipa
, QSB_MAX_READS
);
315 val
= reg_encode(reg
, GEN_QMB_0_MAX_READS
, data0
->max_reads
);
316 if (ipa
->version
>= IPA_VERSION_4_0
)
317 val
|= reg_encode(reg
, GEN_QMB_0_MAX_READS_BEATS
,
318 data0
->max_reads_beats
);
319 if (data
->qsb_count
> 1) {
320 val
= reg_encode(reg
, GEN_QMB_1_MAX_READS
, data1
->max_reads
);
321 if (ipa
->version
>= IPA_VERSION_4_0
)
322 val
|= reg_encode(reg
, GEN_QMB_1_MAX_READS_BEATS
,
323 data1
->max_reads_beats
);
326 iowrite32(val
, ipa
->reg_virt
+ reg_offset(reg
));
329 /* The internal inactivity timer clock is used for the aggregation timer */
330 #define TIMER_FREQUENCY 32000 /* 32 KHz inactivity timer clock */
332 /* Compute the value to use in the COUNTER_CFG register AGGR_GRANULARITY
333 * field to represent the given number of microseconds. The value is one
334 * less than the number of timer ticks in the requested period. 0 is not
335 * a valid granularity value (so for example @usec must be at least 16 for
336 * a TIMER_FREQUENCY of 32000).
338 static __always_inline u32
ipa_aggr_granularity_val(u32 usec
)
340 return DIV_ROUND_CLOSEST(usec
* TIMER_FREQUENCY
, USEC_PER_SEC
) - 1;
343 /* IPA uses unified Qtime starting at IPA v4.5, implementing various
344 * timestamps and timers independent of the IPA core clock rate. The
345 * Qtimer is based on a 56-bit timestamp incremented at each tick of
346 * a 19.2 MHz SoC crystal oscillator (XO clock).
348 * For IPA timestamps (tag, NAT, data path logging) a lower resolution
349 * timestamp is achieved by shifting the Qtimer timestamp value right
350 * some number of bits to produce the low-order bits of the coarser
351 * granularity timestamp.
353 * For timers, a common timer clock is derived from the XO clock using
354 * a divider (we use 192, to produce a 100kHz timer clock). From
355 * this common clock, three "pulse generators" are used to produce
356 * timer ticks at a configurable frequency. IPA timers (such as
357 * those used for aggregation or head-of-line block handling) now
358 * define their period based on one of these pulse generators.
360 static void ipa_qtime_config(struct ipa
*ipa
)
362 const struct reg
*reg
;
366 /* Timer clock divider must be disabled when we change the rate */
367 reg
= ipa_reg(ipa
, TIMERS_XO_CLK_DIV_CFG
);
368 iowrite32(0, ipa
->reg_virt
+ reg_offset(reg
));
370 reg
= ipa_reg(ipa
, QTIME_TIMESTAMP_CFG
);
371 if (ipa
->version
< IPA_VERSION_5_5
) {
372 /* Set DPL time stamp resolution to use Qtime (not 1 msec) */
373 val
= reg_encode(reg
, DPL_TIMESTAMP_LSB
, DPL_TIMESTAMP_SHIFT
);
374 val
|= reg_bit(reg
, DPL_TIMESTAMP_SEL
);
376 /* Configure tag and NAT Qtime timestamp resolution as well */
377 val
= reg_encode(reg
, TAG_TIMESTAMP_LSB
, TAG_TIMESTAMP_SHIFT
);
378 val
= reg_encode(reg
, NAT_TIMESTAMP_LSB
, NAT_TIMESTAMP_SHIFT
);
380 iowrite32(val
, ipa
->reg_virt
+ reg_offset(reg
));
382 /* Set granularity of pulse generators used for other timers */
383 reg
= ipa_reg(ipa
, TIMERS_PULSE_GRAN_CFG
);
384 val
= reg_encode(reg
, PULSE_GRAN_0
, IPA_GRAN_100_US
);
385 val
|= reg_encode(reg
, PULSE_GRAN_1
, IPA_GRAN_1_MS
);
386 if (ipa
->version
>= IPA_VERSION_5_0
) {
387 val
|= reg_encode(reg
, PULSE_GRAN_2
, IPA_GRAN_10_MS
);
388 val
|= reg_encode(reg
, PULSE_GRAN_3
, IPA_GRAN_10_MS
);
390 val
|= reg_encode(reg
, PULSE_GRAN_2
, IPA_GRAN_1_MS
);
393 iowrite32(val
, ipa
->reg_virt
+ reg_offset(reg
));
395 /* Actual divider is 1 more than value supplied here */
396 reg
= ipa_reg(ipa
, TIMERS_XO_CLK_DIV_CFG
);
397 offset
= reg_offset(reg
);
399 val
= reg_encode(reg
, DIV_VALUE
, IPA_XO_CLOCK_DIVIDER
- 1);
401 iowrite32(val
, ipa
->reg_virt
+ offset
);
403 /* Divider value is set; re-enable the common timer clock divider */
404 val
|= reg_bit(reg
, DIV_ENABLE
);
406 iowrite32(val
, ipa
->reg_virt
+ offset
);
409 /* Before IPA v4.5 timing is controlled by a counter register */
410 static void ipa_hardware_config_counter(struct ipa
*ipa
)
412 u32 granularity
= ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY
);
413 const struct reg
*reg
;
416 reg
= ipa_reg(ipa
, COUNTER_CFG
);
417 /* If defined, EOT_COAL_GRANULARITY is 0 */
418 val
= reg_encode(reg
, AGGR_GRANULARITY
, granularity
);
419 iowrite32(val
, ipa
->reg_virt
+ reg_offset(reg
));
422 static void ipa_hardware_config_timing(struct ipa
*ipa
)
424 if (ipa
->version
< IPA_VERSION_4_5
)
425 ipa_hardware_config_counter(ipa
);
427 ipa_qtime_config(ipa
);
430 static void ipa_hardware_config_hashing(struct ipa
*ipa
)
432 const struct reg
*reg
;
434 /* Other than IPA v4.2, all versions enable "hashing". Starting
435 * with IPA v5.0, the filter and router tables are implemented
436 * differently, but the default configuration enables this feature
437 * (now referred to as "cacheing"), so there's nothing to do here.
439 if (ipa
->version
!= IPA_VERSION_4_2
)
442 /* IPA v4.2 does not support hashed tables, so disable them */
443 reg
= ipa_reg(ipa
, FILT_ROUT_HASH_EN
);
445 /* IPV6_ROUTER_HASH, IPV6_FILTER_HASH, IPV4_ROUTER_HASH,
446 * IPV4_FILTER_HASH are all zero.
448 iowrite32(0, ipa
->reg_virt
+ reg_offset(reg
));
451 static void ipa_idle_indication_cfg(struct ipa
*ipa
,
452 u32 enter_idle_debounce_thresh
,
453 bool const_non_idle_enable
)
455 const struct reg
*reg
;
458 if (ipa
->version
< IPA_VERSION_3_5_1
)
461 reg
= ipa_reg(ipa
, IDLE_INDICATION_CFG
);
462 val
= reg_encode(reg
, ENTER_IDLE_DEBOUNCE_THRESH
,
463 enter_idle_debounce_thresh
);
464 if (const_non_idle_enable
)
465 val
|= reg_bit(reg
, CONST_NON_IDLE_ENABLE
);
467 iowrite32(val
, ipa
->reg_virt
+ reg_offset(reg
));
471 * ipa_hardware_dcd_config() - Enable dynamic clock division on IPA
474 * Configures when the IPA signals it is idle to the global clock
475 * controller, which can respond by scaling down the clock to save
478 static void ipa_hardware_dcd_config(struct ipa
*ipa
)
480 /* Recommended values for IPA 3.5 and later according to IPA HPG */
481 ipa_idle_indication_cfg(ipa
, 256, false);
484 static void ipa_hardware_dcd_deconfig(struct ipa
*ipa
)
486 /* Power-on reset values */
487 ipa_idle_indication_cfg(ipa
, 0, true);
491 * ipa_hardware_config() - Primitive hardware initialization
493 * @data: IPA configuration data
495 static void ipa_hardware_config(struct ipa
*ipa
, const struct ipa_data
*data
)
497 ipa_hardware_config_bcr(ipa
, data
);
498 ipa_hardware_config_tx(ipa
);
499 ipa_hardware_config_clkon(ipa
);
500 ipa_hardware_config_comp(ipa
);
501 ipa_hardware_config_qsb(ipa
, data
);
502 ipa_hardware_config_timing(ipa
);
503 ipa_hardware_config_hashing(ipa
);
504 ipa_hardware_dcd_config(ipa
);
508 * ipa_hardware_deconfig() - Inverse of ipa_hardware_config()
511 * This restores the power-on reset values (even if they aren't different)
513 static void ipa_hardware_deconfig(struct ipa
*ipa
)
515 /* Mostly we just leave things as we set them. */
516 ipa_hardware_dcd_deconfig(ipa
);
520 * ipa_config() - Configure IPA hardware
522 * @data: IPA configuration data
524 * Perform initialization requiring IPA power to be enabled.
526 static int ipa_config(struct ipa
*ipa
, const struct ipa_data
*data
)
530 ipa_hardware_config(ipa
, data
);
532 ret
= ipa_mem_config(ipa
);
534 goto err_hardware_deconfig
;
536 ret
= ipa_interrupt_config(ipa
);
538 goto err_mem_deconfig
;
542 ret
= ipa_endpoint_config(ipa
);
544 goto err_uc_deconfig
;
546 ipa_table_config(ipa
); /* No deconfig required */
548 /* Assign resource limitation to each group; no deconfig required */
549 ret
= ipa_resource_config(ipa
, data
->resource_data
);
551 goto err_endpoint_deconfig
;
553 ret
= ipa_modem_config(ipa
);
555 goto err_endpoint_deconfig
;
559 err_endpoint_deconfig
:
560 ipa_endpoint_deconfig(ipa
);
562 ipa_uc_deconfig(ipa
);
563 ipa_interrupt_deconfig(ipa
);
565 ipa_mem_deconfig(ipa
);
566 err_hardware_deconfig
:
567 ipa_hardware_deconfig(ipa
);
573 * ipa_deconfig() - Inverse of ipa_config()
576 static void ipa_deconfig(struct ipa
*ipa
)
578 ipa_modem_deconfig(ipa
);
579 ipa_endpoint_deconfig(ipa
);
580 ipa_uc_deconfig(ipa
);
581 ipa_interrupt_deconfig(ipa
);
582 ipa_mem_deconfig(ipa
);
583 ipa_hardware_deconfig(ipa
);
586 static int ipa_firmware_load(struct device
*dev
)
588 const struct firmware
*fw
;
589 struct device_node
*node
;
597 node
= of_parse_phandle(dev
->of_node
, "memory-region", 0);
599 dev_err(dev
, "DT error getting \"memory-region\" property\n");
603 ret
= of_address_to_resource(node
, 0, &res
);
606 dev_err(dev
, "error %d getting \"memory-region\" resource\n",
611 /* Use name from DTB if specified; use default for *any* error */
612 ret
= of_property_read_string(dev
->of_node
, "firmware-name", &path
);
614 dev_dbg(dev
, "error %d getting \"firmware-name\" resource\n",
616 path
= IPA_FW_PATH_DEFAULT
;
619 ret
= request_firmware(&fw
, path
, dev
);
621 dev_err(dev
, "error %d requesting \"%s\"\n", ret
, path
);
626 size
= (size_t)resource_size(&res
);
627 virt
= memremap(phys
, size
, MEMREMAP_WC
);
629 dev_err(dev
, "unable to remap firmware memory\n");
631 goto out_release_firmware
;
634 ret
= qcom_mdt_load(dev
, fw
, path
, IPA_PAS_ID
, virt
, phys
, size
, NULL
);
636 dev_err(dev
, "error %d loading \"%s\"\n", ret
, path
);
637 else if ((ret
= qcom_scm_pas_auth_and_reset(IPA_PAS_ID
)))
638 dev_err(dev
, "error %d authenticating \"%s\"\n", ret
, path
);
641 out_release_firmware
:
642 release_firmware(fw
);
647 static const struct of_device_id ipa_match
[] = {
649 .compatible
= "qcom,msm8998-ipa",
650 .data
= &ipa_data_v3_1
,
653 .compatible
= "qcom,sdm845-ipa",
654 .data
= &ipa_data_v3_5_1
,
657 .compatible
= "qcom,sc7180-ipa",
658 .data
= &ipa_data_v4_2
,
661 .compatible
= "qcom,sdx55-ipa",
662 .data
= &ipa_data_v4_5
,
665 .compatible
= "qcom,sm6350-ipa",
666 .data
= &ipa_data_v4_7
,
669 .compatible
= "qcom,sm8350-ipa",
670 .data
= &ipa_data_v4_9
,
673 .compatible
= "qcom,sc7280-ipa",
674 .data
= &ipa_data_v4_11
,
677 .compatible
= "qcom,sdx65-ipa",
678 .data
= &ipa_data_v5_0
,
681 .compatible
= "qcom,sm8550-ipa",
682 .data
= &ipa_data_v5_5
,
686 MODULE_DEVICE_TABLE(of
, ipa_match
);
688 /* Check things that can be validated at build time. This just
689 * groups these things BUILD_BUG_ON() calls don't clutter the rest
692 static void ipa_validate_build(void)
694 /* At one time we assumed a 64-bit build, allowing some do_div()
695 * calls to be replaced by simple division or modulo operations.
696 * We currently only perform divide and modulo operations on u32,
697 * u16, or size_t objects, and of those only size_t has any chance
698 * of being a 64-bit value. (It should be guaranteed 32 bits wide
699 * on a 32-bit build, but there is no harm in verifying that.)
701 BUILD_BUG_ON(!IS_ENABLED(CONFIG_64BIT
) && sizeof(size_t) != 4);
703 /* Code assumes the EE ID for the AP is 0 (zeroed structure field) */
704 BUILD_BUG_ON(GSI_EE_AP
!= 0);
706 /* There's no point if we have no channels or event rings */
707 BUILD_BUG_ON(!GSI_CHANNEL_COUNT_MAX
);
708 BUILD_BUG_ON(!GSI_EVT_RING_COUNT_MAX
);
710 /* GSI hardware design limits */
711 BUILD_BUG_ON(GSI_CHANNEL_COUNT_MAX
> 32);
712 BUILD_BUG_ON(GSI_EVT_RING_COUNT_MAX
> 31);
714 /* The number of TREs in a transaction is limited by the channel's
715 * TLV FIFO size. A transaction structure uses 8-bit fields
716 * to represents the number of TREs it has allocated and used.
718 BUILD_BUG_ON(GSI_TLV_MAX
> U8_MAX
);
720 /* This is used as a divisor */
721 BUILD_BUG_ON(!IPA_AGGR_GRANULARITY
);
723 /* Aggregation granularity value can't be 0, and must fit */
724 BUILD_BUG_ON(!ipa_aggr_granularity_val(IPA_AGGR_GRANULARITY
));
727 static enum ipa_firmware_loader
ipa_firmware_loader(struct device
*dev
)
733 /* Look up the old and new properties by name */
734 modem_init
= of_property_read_bool(dev
->of_node
, "modem-init");
735 ret
= of_property_read_string(dev
->of_node
, "qcom,gsi-loader", &str
);
737 /* If the new property doesn't exist, it's legacy behavior */
738 if (ret
== -EINVAL
) {
740 return IPA_LOADER_MODEM
;
744 /* Any other error on the new property means it's poorly defined */
746 return IPA_LOADER_INVALID
;
748 /* New property value exists; if old one does too, that's invalid */
750 return IPA_LOADER_INVALID
;
752 /* Modem loads GSI firmware for "modem" */
753 if (!strcmp(str
, "modem"))
754 return IPA_LOADER_MODEM
;
756 /* No GSI firmware load is needed for "skip" */
757 if (!strcmp(str
, "skip"))
758 return IPA_LOADER_SKIP
;
760 /* Any value other than "self" is an error */
761 if (strcmp(str
, "self"))
762 return IPA_LOADER_INVALID
;
764 /* We need Trust Zone to load firmware; make sure it's available */
765 if (qcom_scm_is_available())
766 return IPA_LOADER_SELF
;
768 return IPA_LOADER_DEFER
;
772 * ipa_probe() - IPA platform driver probe function
773 * @pdev: Platform device pointer
775 * Return: 0 if successful, or a negative error code (possibly
778 * This is the main entry point for the IPA driver. Initialization proceeds
780 * - The "init" stage involves activities that can be initialized without
781 * access to the IPA hardware.
782 * - The "config" stage requires IPA power to be active so IPA registers
783 * can be accessed, but does not require the use of IPA immediate commands.
784 * - The "setup" stage uses IPA immediate commands, and so requires the GSI
785 * layer to be initialized.
787 * A Boolean Device Tree "modem-init" property determines whether GSI
788 * initialization will be performed by the AP (Trust Zone) or the modem.
789 * If the AP does GSI initialization, the setup phase is entered after
790 * this has completed successfully. Otherwise the modem initializes
791 * the GSI layer and signals it has finished by sending an SMP2P interrupt
792 * to the AP; this triggers the start if IPA setup.
794 static int ipa_probe(struct platform_device
*pdev
)
796 struct device
*dev
= &pdev
->dev
;
797 struct ipa_interrupt
*interrupt
;
798 enum ipa_firmware_loader loader
;
799 const struct ipa_data
*data
;
800 struct ipa_power
*power
;
804 ipa_validate_build();
806 /* Get configuration data early; needed for power initialization */
807 data
= of_device_get_match_data(dev
);
809 dev_err(dev
, "matched hardware not supported\n");
813 if (!data
->modem_route_count
) {
814 dev_err(dev
, "modem_route_count cannot be zero\n");
818 loader
= ipa_firmware_loader(dev
);
819 if (loader
== IPA_LOADER_INVALID
)
821 if (loader
== IPA_LOADER_DEFER
)
822 return -EPROBE_DEFER
;
824 /* The IPA interrupt might not be ready when we're probed, so this
825 * might return -EPROBE_DEFER.
827 interrupt
= ipa_interrupt_init(pdev
);
828 if (IS_ERR(interrupt
))
829 return PTR_ERR(interrupt
);
831 /* The clock and interconnects might not be ready when we're probed,
832 * so this might return -EPROBE_DEFER.
834 power
= ipa_power_init(dev
, data
->power_data
);
836 ret
= PTR_ERR(power
);
837 goto err_interrupt_exit
;
840 /* No more EPROBE_DEFER. Allocate and initialize the IPA structure */
841 ipa
= kzalloc(sizeof(*ipa
), GFP_KERNEL
);
848 dev_set_drvdata(dev
, ipa
);
849 ipa
->interrupt
= interrupt
;
851 ipa
->version
= data
->version
;
852 ipa
->modem_route_count
= data
->modem_route_count
;
853 init_completion(&ipa
->completion
);
855 ret
= ipa_reg_init(ipa
, pdev
);
859 ret
= ipa_mem_init(ipa
, pdev
, data
->mem_data
);
863 ret
= ipa_cmd_init(ipa
);
867 ret
= gsi_init(&ipa
->gsi
, pdev
, ipa
->version
, data
->endpoint_count
,
868 data
->endpoint_data
);
872 /* Result is a non-zero mask of endpoints that support filtering */
873 ret
= ipa_endpoint_init(ipa
, data
->endpoint_count
, data
->endpoint_data
);
877 ret
= ipa_table_init(ipa
);
879 goto err_endpoint_exit
;
881 ret
= ipa_smp2p_init(ipa
, pdev
, loader
== IPA_LOADER_MODEM
);
885 /* Power needs to be active for config and setup */
886 ret
= pm_runtime_get_sync(dev
);
887 if (WARN_ON(ret
< 0))
890 ret
= ipa_config(ipa
, data
);
894 dev_info(dev
, "IPA driver initialized");
896 /* If the modem is loading GSI firmware, it will trigger a call to
897 * ipa_setup() when it has finished. In that case we're done here.
899 if (loader
== IPA_LOADER_MODEM
)
902 if (loader
== IPA_LOADER_SELF
) {
903 /* The AP is loading GSI firmware; do so now */
904 ret
= ipa_firmware_load(dev
);
907 } /* Otherwise loader == IPA_LOADER_SKIP */
909 /* GSI firmware is loaded; proceed to setup */
910 ret
= ipa_setup(ipa
);
914 pm_runtime_mark_last_busy(dev
);
915 (void)pm_runtime_put_autosuspend(dev
);
922 pm_runtime_put_noidle(dev
);
927 ipa_endpoint_exit(ipa
);
937 ipa_power_exit(power
);
939 ipa_interrupt_exit(interrupt
);
944 static void ipa_remove(struct platform_device
*pdev
)
946 struct ipa_interrupt
*interrupt
;
947 struct ipa_power
*power
;
952 ipa
= dev_get_drvdata(&pdev
->dev
);
954 WARN_ON(dev
!= &pdev
->dev
);
957 interrupt
= ipa
->interrupt
;
959 /* Prevent the modem from triggering a call to ipa_setup(). This
960 * also ensures a modem-initiated setup that's underway completes.
962 ipa_smp2p_irq_disable_setup(ipa
);
964 ret
= pm_runtime_get_sync(dev
);
965 if (WARN_ON(ret
< 0))
968 if (ipa
->setup_complete
) {
969 ret
= ipa_modem_stop(ipa
);
970 /* If starting or stopping is in progress, try once more */
972 usleep_range(USEC_PER_MSEC
, 2 * USEC_PER_MSEC
);
973 ret
= ipa_modem_stop(ipa
);
977 * Not cleaning up here properly might also yield a
978 * crash later on. As the device is still unregistered
979 * in this case, this might even yield a crash later on.
981 dev_err(dev
, "Failed to stop modem (%pe), leaking resources\n",
991 pm_runtime_put_noidle(dev
);
994 ipa_endpoint_exit(ipa
);
999 ipa_power_exit(power
);
1000 ipa_interrupt_exit(interrupt
);
1002 dev_info(dev
, "IPA driver removed");
1005 static const struct attribute_group
*ipa_attribute_groups
[] = {
1006 &ipa_attribute_group
,
1007 &ipa_feature_attribute_group
,
1008 &ipa_endpoint_id_attribute_group
,
1009 &ipa_modem_attribute_group
,
1013 static struct platform_driver ipa_driver
= {
1015 .remove
= ipa_remove
,
1016 .shutdown
= ipa_remove
,
1020 .of_match_table
= ipa_match
,
1021 .dev_groups
= ipa_attribute_groups
,
1025 module_platform_driver(ipa_driver
);
1027 MODULE_LICENSE("GPL v2");
1028 MODULE_DESCRIPTION("Qualcomm IP Accelerator device driver");