1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
27 #include <linux/inetdevice.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/inet_dscp.h>
42 #define DRV_NAME "vrf"
43 #define DRV_VERSION "1.1"
45 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
48 #define HASH_INITVAL ((u32)0xcafef00d)
51 DECLARE_HASHTABLE(ht
, HT_MAP_BITS
);
55 * count how many distinct tables do not comply with the strict mode
57 * shared_tables value must be 0 in order to enable the strict mode.
59 * example of the evolution of shared_tables:
61 * add vrf0 --> table 100 shared_tables = 0 | t0
62 * add vrf1 --> table 101 shared_tables = 0 | t1
63 * add vrf2 --> table 100 shared_tables = 1 | t2
64 * add vrf3 --> table 100 shared_tables = 1 | t3
65 * add vrf4 --> table 101 shared_tables = 2 v t4
67 * shared_tables is a "step function" (or "staircase function")
68 * and it is increased by one when the second vrf is associated to a
71 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
73 * at t3, another dev (vrf3) is bound to the same table 100 but the
74 * value of shared_tables is still 1.
75 * This means that no matter how many new vrfs will register on the
76 * table 100, the shared_tables will not increase (considering only
79 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
81 * Looking at the value of shared_tables we can immediately know if
82 * the strict_mode can or cannot be enforced. Indeed, strict_mode
83 * can be enforced iff shared_tables = 0.
85 * Conversely, shared_tables is decreased when a vrf is de-associated
86 * from a table with exactly two associated vrfs.
94 struct hlist_node hnode
;
95 struct list_head vrf_list
; /* VRFs registered to this table */
102 static unsigned int vrf_net_id
;
104 /* per netns vrf data */
106 /* protected by rtnl lock */
110 struct ctl_table_header
*ctl_hdr
;
114 struct rtable __rcu
*rth
;
115 struct rt6_info __rcu
*rt6
;
116 #if IS_ENABLED(CONFIG_IPV6)
117 struct fib6_table
*fib6_table
;
121 struct list_head me_list
; /* entry in vrf_map_elem */
125 static void vrf_rx_stats(struct net_device
*dev
, int len
)
127 struct pcpu_dstats
*dstats
= this_cpu_ptr(dev
->dstats
);
129 u64_stats_update_begin(&dstats
->syncp
);
130 u64_stats_inc(&dstats
->rx_packets
);
131 u64_stats_add(&dstats
->rx_bytes
, len
);
132 u64_stats_update_end(&dstats
->syncp
);
135 static void vrf_tx_error(struct net_device
*vrf_dev
, struct sk_buff
*skb
)
137 vrf_dev
->stats
.tx_errors
++;
141 static struct vrf_map
*netns_vrf_map(struct net
*net
)
143 struct netns_vrf
*nn_vrf
= net_generic(net
, vrf_net_id
);
145 return &nn_vrf
->vmap
;
148 static struct vrf_map
*netns_vrf_map_by_dev(struct net_device
*dev
)
150 return netns_vrf_map(dev_net(dev
));
153 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem
*me
)
155 struct list_head
*me_head
= &me
->vrf_list
;
158 if (list_empty(me_head
))
161 vrf
= list_first_entry(me_head
, struct net_vrf
, me_list
);
166 static struct vrf_map_elem
*vrf_map_elem_alloc(gfp_t flags
)
168 struct vrf_map_elem
*me
;
170 me
= kmalloc(sizeof(*me
), flags
);
177 static void vrf_map_elem_free(struct vrf_map_elem
*me
)
182 static void vrf_map_elem_init(struct vrf_map_elem
*me
, int table_id
,
183 int ifindex
, int users
)
185 me
->table_id
= table_id
;
186 me
->ifindex
= ifindex
;
188 INIT_LIST_HEAD(&me
->vrf_list
);
191 static struct vrf_map_elem
*vrf_map_lookup_elem(struct vrf_map
*vmap
,
194 struct vrf_map_elem
*me
;
197 key
= jhash_1word(table_id
, HASH_INITVAL
);
198 hash_for_each_possible(vmap
->ht
, me
, hnode
, key
) {
199 if (me
->table_id
== table_id
)
206 static void vrf_map_add_elem(struct vrf_map
*vmap
, struct vrf_map_elem
*me
)
208 u32 table_id
= me
->table_id
;
211 key
= jhash_1word(table_id
, HASH_INITVAL
);
212 hash_add(vmap
->ht
, &me
->hnode
, key
);
215 static void vrf_map_del_elem(struct vrf_map_elem
*me
)
217 hash_del(&me
->hnode
);
220 static void vrf_map_lock(struct vrf_map
*vmap
) __acquires(&vmap
->vmap_lock
)
222 spin_lock(&vmap
->vmap_lock
);
225 static void vrf_map_unlock(struct vrf_map
*vmap
) __releases(&vmap
->vmap_lock
)
227 spin_unlock(&vmap
->vmap_lock
);
230 /* called with rtnl lock held */
232 vrf_map_register_dev(struct net_device
*dev
, struct netlink_ext_ack
*extack
)
234 struct vrf_map
*vmap
= netns_vrf_map_by_dev(dev
);
235 struct net_vrf
*vrf
= netdev_priv(dev
);
236 struct vrf_map_elem
*new_me
, *me
;
237 u32 table_id
= vrf
->tb_id
;
238 bool free_new_me
= false;
242 /* we pre-allocate elements used in the spin-locked section (so that we
243 * keep the spinlock as short as possible).
245 new_me
= vrf_map_elem_alloc(GFP_KERNEL
);
249 vrf_map_elem_init(new_me
, table_id
, dev
->ifindex
, 0);
253 me
= vrf_map_lookup_elem(vmap
, table_id
);
256 vrf_map_add_elem(vmap
, me
);
260 /* we already have an entry in the vrf_map, so it means there is (at
261 * least) a vrf registered on the specific table.
264 if (vmap
->strict_mode
) {
265 /* vrfs cannot share the same table */
266 NL_SET_ERR_MSG(extack
, "Table is used by another VRF");
274 ++vmap
->shared_tables
;
276 list_add(&vrf
->me_list
, &me
->vrf_list
);
281 vrf_map_unlock(vmap
);
283 /* clean-up, if needed */
285 vrf_map_elem_free(new_me
);
290 /* called with rtnl lock held */
291 static void vrf_map_unregister_dev(struct net_device
*dev
)
293 struct vrf_map
*vmap
= netns_vrf_map_by_dev(dev
);
294 struct net_vrf
*vrf
= netdev_priv(dev
);
295 u32 table_id
= vrf
->tb_id
;
296 struct vrf_map_elem
*me
;
301 me
= vrf_map_lookup_elem(vmap
, table_id
);
305 list_del(&vrf
->me_list
);
309 --vmap
->shared_tables
;
310 } else if (users
== 0) {
311 vrf_map_del_elem(me
);
313 /* no one will refer to this element anymore */
314 vrf_map_elem_free(me
);
318 vrf_map_unlock(vmap
);
321 /* return the vrf device index associated with the table_id */
322 static int vrf_ifindex_lookup_by_table_id(struct net
*net
, u32 table_id
)
324 struct vrf_map
*vmap
= netns_vrf_map(net
);
325 struct vrf_map_elem
*me
;
330 if (!vmap
->strict_mode
) {
335 me
= vrf_map_lookup_elem(vmap
, table_id
);
341 ifindex
= vrf_map_elem_get_vrf_ifindex(me
);
344 vrf_map_unlock(vmap
);
349 /* by default VRF devices do not have a qdisc and are expected
350 * to be created with only a single queue.
352 static bool qdisc_tx_is_default(const struct net_device
*dev
)
354 struct netdev_queue
*txq
;
357 if (dev
->num_tx_queues
> 1)
360 txq
= netdev_get_tx_queue(dev
, 0);
361 qdisc
= rcu_access_pointer(txq
->qdisc
);
363 return !qdisc
->enqueue
;
366 /* Local traffic destined to local address. Reinsert the packet to rx
367 * path, similar to loopback handling.
369 static int vrf_local_xmit(struct sk_buff
*skb
, struct net_device
*dev
,
370 struct dst_entry
*dst
)
376 skb_dst_set(skb
, dst
);
378 /* set pkt_type to avoid skb hitting packet taps twice -
379 * once on Tx and again in Rx processing
381 skb
->pkt_type
= PACKET_LOOPBACK
;
383 skb
->protocol
= eth_type_trans(skb
, dev
);
385 if (likely(__netif_rx(skb
) == NET_RX_SUCCESS
)) {
386 vrf_rx_stats(dev
, len
);
388 struct pcpu_dstats
*dstats
= this_cpu_ptr(dev
->dstats
);
390 u64_stats_update_begin(&dstats
->syncp
);
391 u64_stats_inc(&dstats
->rx_drops
);
392 u64_stats_update_end(&dstats
->syncp
);
398 static void vrf_nf_set_untracked(struct sk_buff
*skb
)
400 if (skb_get_nfct(skb
) == 0)
401 nf_ct_set(skb
, NULL
, IP_CT_UNTRACKED
);
404 static void vrf_nf_reset_ct(struct sk_buff
*skb
)
406 if (skb_get_nfct(skb
) == IP_CT_UNTRACKED
)
410 #if IS_ENABLED(CONFIG_IPV6)
411 static int vrf_ip6_local_out(struct net
*net
, struct sock
*sk
,
416 vrf_nf_reset_ct(skb
);
418 err
= nf_hook(NFPROTO_IPV6
, NF_INET_LOCAL_OUT
, net
,
419 sk
, skb
, NULL
, skb_dst(skb
)->dev
, dst_output
);
421 if (likely(err
== 1))
422 err
= dst_output(net
, sk
, skb
);
427 static netdev_tx_t
vrf_process_v6_outbound(struct sk_buff
*skb
,
428 struct net_device
*dev
)
430 const struct ipv6hdr
*iph
;
431 struct net
*net
= dev_net(skb
->dev
);
433 int ret
= NET_XMIT_DROP
;
434 struct dst_entry
*dst
;
435 struct dst_entry
*dst_null
= &net
->ipv6
.ip6_null_entry
->dst
;
437 if (!pskb_may_pull(skb
, ETH_HLEN
+ sizeof(struct ipv6hdr
)))
442 memset(&fl6
, 0, sizeof(fl6
));
443 /* needed to match OIF rule */
444 fl6
.flowi6_l3mdev
= dev
->ifindex
;
445 fl6
.flowi6_iif
= LOOPBACK_IFINDEX
;
446 fl6
.daddr
= iph
->daddr
;
447 fl6
.saddr
= iph
->saddr
;
448 fl6
.flowlabel
= ip6_flowinfo(iph
);
449 fl6
.flowi6_mark
= skb
->mark
;
450 fl6
.flowi6_proto
= iph
->nexthdr
;
452 dst
= ip6_dst_lookup_flow(net
, NULL
, &fl6
, NULL
);
453 if (IS_ERR(dst
) || dst
== dst_null
)
458 /* if dst.dev is the VRF device again this is locally originated traffic
459 * destined to a local address. Short circuit to Rx path.
462 return vrf_local_xmit(skb
, dev
, dst
);
464 skb_dst_set(skb
, dst
);
466 /* strip the ethernet header added for pass through VRF device */
467 __skb_pull(skb
, skb_network_offset(skb
));
469 memset(IP6CB(skb
), 0, sizeof(*IP6CB(skb
)));
470 ret
= vrf_ip6_local_out(net
, skb
->sk
, skb
);
471 if (unlikely(net_xmit_eval(ret
)))
472 dev
->stats
.tx_errors
++;
474 ret
= NET_XMIT_SUCCESS
;
478 vrf_tx_error(dev
, skb
);
479 return NET_XMIT_DROP
;
482 static netdev_tx_t
vrf_process_v6_outbound(struct sk_buff
*skb
,
483 struct net_device
*dev
)
485 vrf_tx_error(dev
, skb
);
486 return NET_XMIT_DROP
;
490 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
491 static int vrf_ip_local_out(struct net
*net
, struct sock
*sk
,
496 vrf_nf_reset_ct(skb
);
498 err
= nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
, net
, sk
,
499 skb
, NULL
, skb_dst(skb
)->dev
, dst_output
);
500 if (likely(err
== 1))
501 err
= dst_output(net
, sk
, skb
);
506 static netdev_tx_t
vrf_process_v4_outbound(struct sk_buff
*skb
,
507 struct net_device
*vrf_dev
)
510 int ret
= NET_XMIT_DROP
;
512 struct net
*net
= dev_net(vrf_dev
);
515 if (!pskb_may_pull(skb
, ETH_HLEN
+ sizeof(struct iphdr
)))
520 memset(&fl4
, 0, sizeof(fl4
));
521 /* needed to match OIF rule */
522 fl4
.flowi4_l3mdev
= vrf_dev
->ifindex
;
523 fl4
.flowi4_iif
= LOOPBACK_IFINDEX
;
524 fl4
.flowi4_tos
= inet_dscp_to_dsfield(ip4h_dscp(ip4h
));
525 fl4
.flowi4_flags
= FLOWI_FLAG_ANYSRC
;
526 fl4
.flowi4_proto
= ip4h
->protocol
;
527 fl4
.daddr
= ip4h
->daddr
;
528 fl4
.saddr
= ip4h
->saddr
;
530 rt
= ip_route_output_flow(net
, &fl4
, NULL
);
536 /* if dst.dev is the VRF device again this is locally originated traffic
537 * destined to a local address. Short circuit to Rx path.
539 if (rt
->dst
.dev
== vrf_dev
)
540 return vrf_local_xmit(skb
, vrf_dev
, &rt
->dst
);
542 skb_dst_set(skb
, &rt
->dst
);
544 /* strip the ethernet header added for pass through VRF device */
545 __skb_pull(skb
, skb_network_offset(skb
));
548 ip4h
->saddr
= inet_select_addr(skb_dst(skb
)->dev
, 0,
552 memset(IPCB(skb
), 0, sizeof(*IPCB(skb
)));
553 ret
= vrf_ip_local_out(dev_net(skb_dst(skb
)->dev
), skb
->sk
, skb
);
554 if (unlikely(net_xmit_eval(ret
)))
555 vrf_dev
->stats
.tx_errors
++;
557 ret
= NET_XMIT_SUCCESS
;
562 vrf_tx_error(vrf_dev
, skb
);
566 static netdev_tx_t
is_ip_tx_frame(struct sk_buff
*skb
, struct net_device
*dev
)
568 switch (skb
->protocol
) {
569 case htons(ETH_P_IP
):
570 return vrf_process_v4_outbound(skb
, dev
);
571 case htons(ETH_P_IPV6
):
572 return vrf_process_v6_outbound(skb
, dev
);
574 vrf_tx_error(dev
, skb
);
575 return NET_XMIT_DROP
;
579 static netdev_tx_t
vrf_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
581 struct pcpu_dstats
*dstats
= this_cpu_ptr(dev
->dstats
);
584 netdev_tx_t ret
= is_ip_tx_frame(skb
, dev
);
586 u64_stats_update_begin(&dstats
->syncp
);
587 if (likely(ret
== NET_XMIT_SUCCESS
|| ret
== NET_XMIT_CN
)) {
589 u64_stats_inc(&dstats
->tx_packets
);
590 u64_stats_add(&dstats
->tx_bytes
, len
);
592 u64_stats_inc(&dstats
->tx_drops
);
594 u64_stats_update_end(&dstats
->syncp
);
599 static void vrf_finish_direct(struct sk_buff
*skb
)
601 struct net_device
*vrf_dev
= skb
->dev
;
603 if (!list_empty(&vrf_dev
->ptype_all
) &&
604 likely(skb_headroom(skb
) >= ETH_HLEN
)) {
605 struct ethhdr
*eth
= skb_push(skb
, ETH_HLEN
);
607 ether_addr_copy(eth
->h_source
, vrf_dev
->dev_addr
);
608 eth_zero_addr(eth
->h_dest
);
609 eth
->h_proto
= skb
->protocol
;
612 dev_queue_xmit_nit(skb
, vrf_dev
);
613 rcu_read_unlock_bh();
615 skb_pull(skb
, ETH_HLEN
);
618 vrf_nf_reset_ct(skb
);
621 #if IS_ENABLED(CONFIG_IPV6)
622 /* modelled after ip6_finish_output2 */
623 static int vrf_finish_output6(struct net
*net
, struct sock
*sk
,
626 struct dst_entry
*dst
= skb_dst(skb
);
627 struct net_device
*dev
= dst
->dev
;
628 const struct in6_addr
*nexthop
;
629 struct neighbour
*neigh
;
632 vrf_nf_reset_ct(skb
);
634 skb
->protocol
= htons(ETH_P_IPV6
);
638 nexthop
= rt6_nexthop(dst_rt6_info(dst
), &ipv6_hdr(skb
)->daddr
);
639 neigh
= __ipv6_neigh_lookup_noref(dst
->dev
, nexthop
);
640 if (unlikely(!neigh
))
641 neigh
= __neigh_create(&nd_tbl
, nexthop
, dst
->dev
, false);
642 if (!IS_ERR(neigh
)) {
643 sock_confirm_neigh(skb
, neigh
);
644 ret
= neigh_output(neigh
, skb
, false);
650 IP6_INC_STATS(dev_net(dst
->dev
),
651 ip6_dst_idev(dst
), IPSTATS_MIB_OUTNOROUTES
);
656 /* modelled after ip6_output */
657 static int vrf_output6(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
659 return NF_HOOK_COND(NFPROTO_IPV6
, NF_INET_POST_ROUTING
,
660 net
, sk
, skb
, NULL
, skb_dst(skb
)->dev
,
662 !(IP6CB(skb
)->flags
& IP6SKB_REROUTED
));
665 /* set dst on skb to send packet to us via dev_xmit path. Allows
666 * packet to go through device based features such as qdisc, netfilter
667 * hooks and packet sockets with skb->dev set to vrf device.
669 static struct sk_buff
*vrf_ip6_out_redirect(struct net_device
*vrf_dev
,
672 struct net_vrf
*vrf
= netdev_priv(vrf_dev
);
673 struct dst_entry
*dst
= NULL
;
674 struct rt6_info
*rt6
;
678 rt6
= rcu_dereference(vrf
->rt6
);
686 if (unlikely(!dst
)) {
687 vrf_tx_error(vrf_dev
, skb
);
692 skb_dst_set(skb
, dst
);
697 static int vrf_output6_direct_finish(struct net
*net
, struct sock
*sk
,
700 vrf_finish_direct(skb
);
702 return vrf_ip6_local_out(net
, sk
, skb
);
705 static int vrf_output6_direct(struct net
*net
, struct sock
*sk
,
710 skb
->protocol
= htons(ETH_P_IPV6
);
712 if (!(IPCB(skb
)->flags
& IPSKB_REROUTED
))
713 err
= nf_hook(NFPROTO_IPV6
, NF_INET_POST_ROUTING
, net
, sk
, skb
,
714 NULL
, skb
->dev
, vrf_output6_direct_finish
);
716 if (likely(err
== 1))
717 vrf_finish_direct(skb
);
722 static int vrf_ip6_out_direct_finish(struct net
*net
, struct sock
*sk
,
727 err
= vrf_output6_direct(net
, sk
, skb
);
728 if (likely(err
== 1))
729 err
= vrf_ip6_local_out(net
, sk
, skb
);
734 static struct sk_buff
*vrf_ip6_out_direct(struct net_device
*vrf_dev
,
738 struct net
*net
= dev_net(vrf_dev
);
743 err
= nf_hook(NFPROTO_IPV6
, NF_INET_LOCAL_OUT
, net
, sk
,
744 skb
, NULL
, vrf_dev
, vrf_ip6_out_direct_finish
);
746 if (likely(err
== 1))
747 err
= vrf_output6_direct(net
, sk
, skb
);
749 if (likely(err
== 1))
755 static struct sk_buff
*vrf_ip6_out(struct net_device
*vrf_dev
,
759 /* don't divert link scope packets */
760 if (rt6_need_strict(&ipv6_hdr(skb
)->daddr
))
763 vrf_nf_set_untracked(skb
);
765 if (qdisc_tx_is_default(vrf_dev
) ||
766 IP6CB(skb
)->flags
& IP6SKB_XFRM_TRANSFORMED
)
767 return vrf_ip6_out_direct(vrf_dev
, sk
, skb
);
769 return vrf_ip6_out_redirect(vrf_dev
, skb
);
773 static void vrf_rt6_release(struct net_device
*dev
, struct net_vrf
*vrf
)
775 struct rt6_info
*rt6
= rtnl_dereference(vrf
->rt6
);
776 struct net
*net
= dev_net(dev
);
777 struct dst_entry
*dst
;
779 RCU_INIT_POINTER(vrf
->rt6
, NULL
);
782 /* move dev in dst's to loopback so this VRF device can be deleted
783 * - based on dst_ifdown
787 netdev_ref_replace(dst
->dev
, net
->loopback_dev
,
788 &dst
->dev_tracker
, GFP_KERNEL
);
789 dst
->dev
= net
->loopback_dev
;
794 static int vrf_rt6_create(struct net_device
*dev
)
796 int flags
= DST_NOPOLICY
| DST_NOXFRM
;
797 struct net_vrf
*vrf
= netdev_priv(dev
);
798 struct net
*net
= dev_net(dev
);
799 struct rt6_info
*rt6
;
802 /* IPv6 can be CONFIG enabled and then disabled runtime */
803 if (!ipv6_mod_enabled())
806 vrf
->fib6_table
= fib6_new_table(net
, vrf
->tb_id
);
807 if (!vrf
->fib6_table
)
810 /* create a dst for routing packets out a VRF device */
811 rt6
= ip6_dst_alloc(net
, dev
, flags
);
815 rt6
->dst
.output
= vrf_output6
;
817 rcu_assign_pointer(vrf
->rt6
, rt6
);
824 static struct sk_buff
*vrf_ip6_out(struct net_device
*vrf_dev
,
831 static void vrf_rt6_release(struct net_device
*dev
, struct net_vrf
*vrf
)
835 static int vrf_rt6_create(struct net_device
*dev
)
841 /* modelled after ip_finish_output2 */
842 static int vrf_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
844 struct dst_entry
*dst
= skb_dst(skb
);
845 struct rtable
*rt
= dst_rtable(dst
);
846 struct net_device
*dev
= dst
->dev
;
847 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
848 struct neighbour
*neigh
;
849 bool is_v6gw
= false;
851 vrf_nf_reset_ct(skb
);
853 /* Be paranoid, rather than too clever. */
854 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
855 skb
= skb_expand_head(skb
, hh_len
);
857 dev
->stats
.tx_errors
++;
864 neigh
= ip_neigh_for_gw(rt
, skb
, &is_v6gw
);
865 if (!IS_ERR(neigh
)) {
868 sock_confirm_neigh(skb
, neigh
);
869 /* if crossing protocols, can not use the cached header */
870 ret
= neigh_output(neigh
, skb
, is_v6gw
);
876 vrf_tx_error(skb
->dev
, skb
);
880 static int vrf_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
882 struct net_device
*dev
= skb_dst(skb
)->dev
;
884 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
887 skb
->protocol
= htons(ETH_P_IP
);
889 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
890 net
, sk
, skb
, NULL
, dev
,
892 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
895 /* set dst on skb to send packet to us via dev_xmit path. Allows
896 * packet to go through device based features such as qdisc, netfilter
897 * hooks and packet sockets with skb->dev set to vrf device.
899 static struct sk_buff
*vrf_ip_out_redirect(struct net_device
*vrf_dev
,
902 struct net_vrf
*vrf
= netdev_priv(vrf_dev
);
903 struct dst_entry
*dst
= NULL
;
908 rth
= rcu_dereference(vrf
->rth
);
916 if (unlikely(!dst
)) {
917 vrf_tx_error(vrf_dev
, skb
);
922 skb_dst_set(skb
, dst
);
927 static int vrf_output_direct_finish(struct net
*net
, struct sock
*sk
,
930 vrf_finish_direct(skb
);
932 return vrf_ip_local_out(net
, sk
, skb
);
935 static int vrf_output_direct(struct net
*net
, struct sock
*sk
,
940 skb
->protocol
= htons(ETH_P_IP
);
942 if (!(IPCB(skb
)->flags
& IPSKB_REROUTED
))
943 err
= nf_hook(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, net
, sk
, skb
,
944 NULL
, skb
->dev
, vrf_output_direct_finish
);
946 if (likely(err
== 1))
947 vrf_finish_direct(skb
);
952 static int vrf_ip_out_direct_finish(struct net
*net
, struct sock
*sk
,
957 err
= vrf_output_direct(net
, sk
, skb
);
958 if (likely(err
== 1))
959 err
= vrf_ip_local_out(net
, sk
, skb
);
964 static struct sk_buff
*vrf_ip_out_direct(struct net_device
*vrf_dev
,
968 struct net
*net
= dev_net(vrf_dev
);
973 err
= nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
, net
, sk
,
974 skb
, NULL
, vrf_dev
, vrf_ip_out_direct_finish
);
976 if (likely(err
== 1))
977 err
= vrf_output_direct(net
, sk
, skb
);
979 if (likely(err
== 1))
985 static struct sk_buff
*vrf_ip_out(struct net_device
*vrf_dev
,
989 /* don't divert multicast or local broadcast */
990 if (ipv4_is_multicast(ip_hdr(skb
)->daddr
) ||
991 ipv4_is_lbcast(ip_hdr(skb
)->daddr
))
994 vrf_nf_set_untracked(skb
);
996 if (qdisc_tx_is_default(vrf_dev
) ||
997 IPCB(skb
)->flags
& IPSKB_XFRM_TRANSFORMED
)
998 return vrf_ip_out_direct(vrf_dev
, sk
, skb
);
1000 return vrf_ip_out_redirect(vrf_dev
, skb
);
1003 /* called with rcu lock held */
1004 static struct sk_buff
*vrf_l3_out(struct net_device
*vrf_dev
,
1006 struct sk_buff
*skb
,
1011 return vrf_ip_out(vrf_dev
, sk
, skb
);
1013 return vrf_ip6_out(vrf_dev
, sk
, skb
);
1020 static void vrf_rtable_release(struct net_device
*dev
, struct net_vrf
*vrf
)
1022 struct rtable
*rth
= rtnl_dereference(vrf
->rth
);
1023 struct net
*net
= dev_net(dev
);
1024 struct dst_entry
*dst
;
1026 RCU_INIT_POINTER(vrf
->rth
, NULL
);
1029 /* move dev in dst's to loopback so this VRF device can be deleted
1030 * - based on dst_ifdown
1034 netdev_ref_replace(dst
->dev
, net
->loopback_dev
,
1035 &dst
->dev_tracker
, GFP_KERNEL
);
1036 dst
->dev
= net
->loopback_dev
;
1041 static int vrf_rtable_create(struct net_device
*dev
)
1043 struct net_vrf
*vrf
= netdev_priv(dev
);
1046 if (!fib_new_table(dev_net(dev
), vrf
->tb_id
))
1049 /* create a dst for routing packets out through a VRF device */
1050 rth
= rt_dst_alloc(dev
, 0, RTN_UNICAST
, 1);
1054 rth
->dst
.output
= vrf_output
;
1056 rcu_assign_pointer(vrf
->rth
, rth
);
1061 /**************************** device handling ********************/
1063 /* cycle interface to flush neighbor cache and move routes across tables */
1064 static void cycle_netdev(struct net_device
*dev
,
1065 struct netlink_ext_ack
*extack
)
1067 unsigned int flags
= dev
->flags
;
1070 if (!netif_running(dev
))
1073 ret
= dev_change_flags(dev
, flags
& ~IFF_UP
, extack
);
1075 ret
= dev_change_flags(dev
, flags
, extack
);
1079 "Failed to cycle device %s; route tables might be wrong!\n",
1084 static int do_vrf_add_slave(struct net_device
*dev
, struct net_device
*port_dev
,
1085 struct netlink_ext_ack
*extack
)
1089 /* do not allow loopback device to be enslaved to a VRF.
1090 * The vrf device acts as the loopback for the vrf.
1092 if (port_dev
== dev_net(dev
)->loopback_dev
) {
1093 NL_SET_ERR_MSG(extack
,
1094 "Can not enslave loopback device to a VRF");
1098 port_dev
->priv_flags
|= IFF_L3MDEV_SLAVE
;
1099 ret
= netdev_master_upper_dev_link(port_dev
, dev
, NULL
, NULL
, extack
);
1103 cycle_netdev(port_dev
, extack
);
1108 port_dev
->priv_flags
&= ~IFF_L3MDEV_SLAVE
;
1112 static int vrf_add_slave(struct net_device
*dev
, struct net_device
*port_dev
,
1113 struct netlink_ext_ack
*extack
)
1115 if (netif_is_l3_master(port_dev
)) {
1116 NL_SET_ERR_MSG(extack
,
1117 "Can not enslave an L3 master device to a VRF");
1121 if (netif_is_l3_slave(port_dev
))
1124 return do_vrf_add_slave(dev
, port_dev
, extack
);
1127 /* inverse of do_vrf_add_slave */
1128 static int do_vrf_del_slave(struct net_device
*dev
, struct net_device
*port_dev
)
1130 netdev_upper_dev_unlink(port_dev
, dev
);
1131 port_dev
->priv_flags
&= ~IFF_L3MDEV_SLAVE
;
1133 cycle_netdev(port_dev
, NULL
);
1138 static int vrf_del_slave(struct net_device
*dev
, struct net_device
*port_dev
)
1140 return do_vrf_del_slave(dev
, port_dev
);
1143 static void vrf_dev_uninit(struct net_device
*dev
)
1145 struct net_vrf
*vrf
= netdev_priv(dev
);
1147 vrf_rtable_release(dev
, vrf
);
1148 vrf_rt6_release(dev
, vrf
);
1151 static int vrf_dev_init(struct net_device
*dev
)
1153 struct net_vrf
*vrf
= netdev_priv(dev
);
1155 /* create the default dst which points back to us */
1156 if (vrf_rtable_create(dev
) != 0)
1159 if (vrf_rt6_create(dev
) != 0)
1162 dev
->flags
= IFF_MASTER
| IFF_NOARP
;
1164 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1165 dev
->operstate
= IF_OPER_UP
;
1166 netdev_lockdep_set_classes(dev
);
1170 vrf_rtable_release(dev
, vrf
);
1175 static const struct net_device_ops vrf_netdev_ops
= {
1176 .ndo_init
= vrf_dev_init
,
1177 .ndo_uninit
= vrf_dev_uninit
,
1178 .ndo_start_xmit
= vrf_xmit
,
1179 .ndo_set_mac_address
= eth_mac_addr
,
1180 .ndo_add_slave
= vrf_add_slave
,
1181 .ndo_del_slave
= vrf_del_slave
,
1184 static u32
vrf_fib_table(const struct net_device
*dev
)
1186 struct net_vrf
*vrf
= netdev_priv(dev
);
1191 static int vrf_rcv_finish(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
1197 static struct sk_buff
*vrf_rcv_nfhook(u8 pf
, unsigned int hook
,
1198 struct sk_buff
*skb
,
1199 struct net_device
*dev
)
1201 struct net
*net
= dev_net(dev
);
1203 if (nf_hook(pf
, hook
, net
, NULL
, skb
, dev
, NULL
, vrf_rcv_finish
) != 1)
1204 skb
= NULL
; /* kfree_skb(skb) handled by nf code */
1209 static int vrf_prepare_mac_header(struct sk_buff
*skb
,
1210 struct net_device
*vrf_dev
, u16 proto
)
1215 /* in general, we do not know if there is enough space in the head of
1216 * the packet for hosting the mac header.
1218 err
= skb_cow_head(skb
, LL_RESERVED_SPACE(vrf_dev
));
1220 /* no space in the skb head */
1223 __skb_push(skb
, ETH_HLEN
);
1224 eth
= (struct ethhdr
*)skb
->data
;
1226 skb_reset_mac_header(skb
);
1227 skb_reset_mac_len(skb
);
1229 /* we set the ethernet destination and the source addresses to the
1230 * address of the VRF device.
1232 ether_addr_copy(eth
->h_dest
, vrf_dev
->dev_addr
);
1233 ether_addr_copy(eth
->h_source
, vrf_dev
->dev_addr
);
1234 eth
->h_proto
= htons(proto
);
1236 /* the destination address of the Ethernet frame corresponds to the
1237 * address set on the VRF interface; therefore, the packet is intended
1238 * to be processed locally.
1240 skb
->protocol
= eth
->h_proto
;
1241 skb
->pkt_type
= PACKET_HOST
;
1243 skb_postpush_rcsum(skb
, skb
->data
, ETH_HLEN
);
1245 skb_pull_inline(skb
, ETH_HLEN
);
1250 /* prepare and add the mac header to the packet if it was not set previously.
1251 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1252 * If the mac header was already set, the original mac header is left
1253 * untouched and the function returns immediately.
1255 static int vrf_add_mac_header_if_unset(struct sk_buff
*skb
,
1256 struct net_device
*vrf_dev
,
1257 u16 proto
, struct net_device
*orig_dev
)
1259 if (skb_mac_header_was_set(skb
) && dev_has_header(orig_dev
))
1262 return vrf_prepare_mac_header(skb
, vrf_dev
, proto
);
1265 #if IS_ENABLED(CONFIG_IPV6)
1266 /* neighbor handling is done with actual device; do not want
1267 * to flip skb->dev for those ndisc packets. This really fails
1268 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1271 static bool ipv6_ndisc_frame(const struct sk_buff
*skb
)
1273 const struct ipv6hdr
*iph
= ipv6_hdr(skb
);
1276 if (iph
->nexthdr
== NEXTHDR_ICMP
) {
1277 const struct icmp6hdr
*icmph
;
1278 struct icmp6hdr _icmph
;
1280 icmph
= skb_header_pointer(skb
, sizeof(*iph
),
1281 sizeof(_icmph
), &_icmph
);
1285 switch (icmph
->icmp6_type
) {
1286 case NDISC_ROUTER_SOLICITATION
:
1287 case NDISC_ROUTER_ADVERTISEMENT
:
1288 case NDISC_NEIGHBOUR_SOLICITATION
:
1289 case NDISC_NEIGHBOUR_ADVERTISEMENT
:
1290 case NDISC_REDIRECT
:
1300 static struct rt6_info
*vrf_ip6_route_lookup(struct net
*net
,
1301 const struct net_device
*dev
,
1304 const struct sk_buff
*skb
,
1307 struct net_vrf
*vrf
= netdev_priv(dev
);
1309 return ip6_pol_route(net
, vrf
->fib6_table
, ifindex
, fl6
, skb
, flags
);
1312 static void vrf_ip6_input_dst(struct sk_buff
*skb
, struct net_device
*vrf_dev
,
1315 const struct ipv6hdr
*iph
= ipv6_hdr(skb
);
1316 struct flowi6 fl6
= {
1317 .flowi6_iif
= ifindex
,
1318 .flowi6_mark
= skb
->mark
,
1319 .flowi6_proto
= iph
->nexthdr
,
1320 .daddr
= iph
->daddr
,
1321 .saddr
= iph
->saddr
,
1322 .flowlabel
= ip6_flowinfo(iph
),
1324 struct net
*net
= dev_net(vrf_dev
);
1325 struct rt6_info
*rt6
;
1327 rt6
= vrf_ip6_route_lookup(net
, vrf_dev
, &fl6
, ifindex
, skb
,
1328 RT6_LOOKUP_F_HAS_SADDR
| RT6_LOOKUP_F_IFACE
);
1332 if (unlikely(&rt6
->dst
== &net
->ipv6
.ip6_null_entry
->dst
))
1335 skb_dst_set(skb
, &rt6
->dst
);
1338 static struct sk_buff
*vrf_ip6_rcv(struct net_device
*vrf_dev
,
1339 struct sk_buff
*skb
)
1341 int orig_iif
= skb
->skb_iif
;
1342 bool need_strict
= rt6_need_strict(&ipv6_hdr(skb
)->daddr
);
1343 bool is_ndisc
= ipv6_ndisc_frame(skb
);
1345 /* loopback, multicast & non-ND link-local traffic; do not push through
1346 * packet taps again. Reset pkt_type for upper layers to process skb.
1347 * For non-loopback strict packets, determine the dst using the original
1350 if (skb
->pkt_type
== PACKET_LOOPBACK
|| (need_strict
&& !is_ndisc
)) {
1352 skb
->skb_iif
= vrf_dev
->ifindex
;
1353 IP6CB(skb
)->flags
|= IP6SKB_L3SLAVE
;
1355 if (skb
->pkt_type
== PACKET_LOOPBACK
)
1356 skb
->pkt_type
= PACKET_HOST
;
1358 vrf_ip6_input_dst(skb
, vrf_dev
, orig_iif
);
1363 /* if packet is NDISC then keep the ingress interface */
1365 struct net_device
*orig_dev
= skb
->dev
;
1367 vrf_rx_stats(vrf_dev
, skb
->len
);
1369 skb
->skb_iif
= vrf_dev
->ifindex
;
1371 if (!list_empty(&vrf_dev
->ptype_all
)) {
1374 err
= vrf_add_mac_header_if_unset(skb
, vrf_dev
,
1378 skb_push(skb
, skb
->mac_len
);
1379 dev_queue_xmit_nit(skb
, vrf_dev
);
1380 skb_pull(skb
, skb
->mac_len
);
1384 IP6CB(skb
)->flags
|= IP6SKB_L3SLAVE
;
1388 vrf_ip6_input_dst(skb
, vrf_dev
, orig_iif
);
1390 skb
= vrf_rcv_nfhook(NFPROTO_IPV6
, NF_INET_PRE_ROUTING
, skb
, vrf_dev
);
1396 static struct sk_buff
*vrf_ip6_rcv(struct net_device
*vrf_dev
,
1397 struct sk_buff
*skb
)
1403 static struct sk_buff
*vrf_ip_rcv(struct net_device
*vrf_dev
,
1404 struct sk_buff
*skb
)
1406 struct net_device
*orig_dev
= skb
->dev
;
1409 skb
->skb_iif
= vrf_dev
->ifindex
;
1410 IPCB(skb
)->flags
|= IPSKB_L3SLAVE
;
1412 if (ipv4_is_multicast(ip_hdr(skb
)->daddr
))
1415 /* loopback traffic; do not push through packet taps again.
1416 * Reset pkt_type for upper layers to process skb
1418 if (skb
->pkt_type
== PACKET_LOOPBACK
) {
1419 skb
->pkt_type
= PACKET_HOST
;
1423 vrf_rx_stats(vrf_dev
, skb
->len
);
1425 if (!list_empty(&vrf_dev
->ptype_all
)) {
1428 err
= vrf_add_mac_header_if_unset(skb
, vrf_dev
, ETH_P_IP
,
1431 skb_push(skb
, skb
->mac_len
);
1432 dev_queue_xmit_nit(skb
, vrf_dev
);
1433 skb_pull(skb
, skb
->mac_len
);
1437 skb
= vrf_rcv_nfhook(NFPROTO_IPV4
, NF_INET_PRE_ROUTING
, skb
, vrf_dev
);
1442 /* called with rcu lock held */
1443 static struct sk_buff
*vrf_l3_rcv(struct net_device
*vrf_dev
,
1444 struct sk_buff
*skb
,
1449 return vrf_ip_rcv(vrf_dev
, skb
);
1451 return vrf_ip6_rcv(vrf_dev
, skb
);
1457 #if IS_ENABLED(CONFIG_IPV6)
1458 /* send to link-local or multicast address via interface enslaved to
1459 * VRF device. Force lookup to VRF table without changing flow struct
1460 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1461 * is taken on the dst by this function.
1463 static struct dst_entry
*vrf_link_scope_lookup(const struct net_device
*dev
,
1466 struct net
*net
= dev_net(dev
);
1467 int flags
= RT6_LOOKUP_F_IFACE
| RT6_LOOKUP_F_DST_NOREF
;
1468 struct dst_entry
*dst
= NULL
;
1469 struct rt6_info
*rt
;
1471 /* VRF device does not have a link-local address and
1472 * sending packets to link-local or mcast addresses over
1473 * a VRF device does not make sense
1475 if (fl6
->flowi6_oif
== dev
->ifindex
) {
1476 dst
= &net
->ipv6
.ip6_null_entry
->dst
;
1480 if (!ipv6_addr_any(&fl6
->saddr
))
1481 flags
|= RT6_LOOKUP_F_HAS_SADDR
;
1483 rt
= vrf_ip6_route_lookup(net
, dev
, fl6
, fl6
->flowi6_oif
, NULL
, flags
);
1491 static const struct l3mdev_ops vrf_l3mdev_ops
= {
1492 .l3mdev_fib_table
= vrf_fib_table
,
1493 .l3mdev_l3_rcv
= vrf_l3_rcv
,
1494 .l3mdev_l3_out
= vrf_l3_out
,
1495 #if IS_ENABLED(CONFIG_IPV6)
1496 .l3mdev_link_scope_lookup
= vrf_link_scope_lookup
,
1500 static void vrf_get_drvinfo(struct net_device
*dev
,
1501 struct ethtool_drvinfo
*info
)
1503 strscpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
1504 strscpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
1507 static const struct ethtool_ops vrf_ethtool_ops
= {
1508 .get_drvinfo
= vrf_get_drvinfo
,
1511 static inline size_t vrf_fib_rule_nl_size(void)
1515 sz
= NLMSG_ALIGN(sizeof(struct fib_rule_hdr
));
1516 sz
+= nla_total_size(sizeof(u8
)); /* FRA_L3MDEV */
1517 sz
+= nla_total_size(sizeof(u32
)); /* FRA_PRIORITY */
1518 sz
+= nla_total_size(sizeof(u8
)); /* FRA_PROTOCOL */
1523 static int vrf_fib_rule(const struct net_device
*dev
, __u8 family
, bool add_it
)
1525 struct fib_rule_hdr
*frh
;
1526 struct nlmsghdr
*nlh
;
1527 struct sk_buff
*skb
;
1530 if ((family
== AF_INET6
|| family
== RTNL_FAMILY_IP6MR
) &&
1531 !ipv6_mod_enabled())
1534 skb
= nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL
);
1538 nlh
= nlmsg_put(skb
, 0, 0, 0, sizeof(*frh
), 0);
1540 goto nla_put_failure
;
1542 /* rule only needs to appear once */
1543 nlh
->nlmsg_flags
|= NLM_F_EXCL
;
1545 frh
= nlmsg_data(nlh
);
1546 memset(frh
, 0, sizeof(*frh
));
1547 frh
->family
= family
;
1548 frh
->action
= FR_ACT_TO_TBL
;
1550 if (nla_put_u8(skb
, FRA_PROTOCOL
, RTPROT_KERNEL
))
1551 goto nla_put_failure
;
1553 if (nla_put_u8(skb
, FRA_L3MDEV
, 1))
1554 goto nla_put_failure
;
1556 if (nla_put_u32(skb
, FRA_PRIORITY
, FIB_RULE_PREF
))
1557 goto nla_put_failure
;
1559 nlmsg_end(skb
, nlh
);
1561 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1562 skb
->sk
= dev_net(dev
)->rtnl
;
1564 err
= fib_nl_newrule(skb
, nlh
, NULL
);
1568 err
= fib_nl_delrule(skb
, nlh
, NULL
);
1582 static int vrf_add_fib_rules(const struct net_device
*dev
)
1586 err
= vrf_fib_rule(dev
, AF_INET
, true);
1590 err
= vrf_fib_rule(dev
, AF_INET6
, true);
1594 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1595 err
= vrf_fib_rule(dev
, RTNL_FAMILY_IPMR
, true);
1600 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1601 err
= vrf_fib_rule(dev
, RTNL_FAMILY_IP6MR
, true);
1608 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1610 vrf_fib_rule(dev
, RTNL_FAMILY_IPMR
, false);
1613 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1615 vrf_fib_rule(dev
, AF_INET6
, false);
1619 vrf_fib_rule(dev
, AF_INET
, false);
1622 netdev_err(dev
, "Failed to add FIB rules.\n");
1626 static void vrf_setup(struct net_device
*dev
)
1630 /* Initialize the device structure. */
1631 dev
->netdev_ops
= &vrf_netdev_ops
;
1632 dev
->l3mdev_ops
= &vrf_l3mdev_ops
;
1633 dev
->ethtool_ops
= &vrf_ethtool_ops
;
1634 dev
->needs_free_netdev
= true;
1636 /* Fill in device structure with ethernet-generic values. */
1637 eth_hw_addr_random(dev
);
1639 /* don't acquire vrf device's netif_tx_lock when transmitting */
1642 /* don't allow vrf devices to change network namespaces. */
1643 dev
->netns_local
= true;
1645 /* does not make sense for a VLAN to be added to a vrf device */
1646 dev
->features
|= NETIF_F_VLAN_CHALLENGED
;
1648 /* enable offload features */
1649 dev
->features
|= NETIF_F_GSO_SOFTWARE
;
1650 dev
->features
|= NETIF_F_RXCSUM
| NETIF_F_HW_CSUM
| NETIF_F_SCTP_CRC
;
1651 dev
->features
|= NETIF_F_SG
| NETIF_F_FRAGLIST
| NETIF_F_HIGHDMA
;
1653 dev
->hw_features
= dev
->features
;
1654 dev
->hw_enc_features
= dev
->features
;
1656 /* default to no qdisc; user can add if desired */
1657 dev
->priv_flags
|= IFF_NO_QUEUE
;
1658 dev
->priv_flags
|= IFF_NO_RX_HANDLER
;
1659 dev
->priv_flags
|= IFF_LIVE_ADDR_CHANGE
;
1661 /* VRF devices do not care about MTU, but if the MTU is set
1662 * too low then the ipv4 and ipv6 protocols are disabled
1663 * which breaks networking.
1665 dev
->min_mtu
= IPV6_MIN_MTU
;
1666 dev
->max_mtu
= IP6_MAX_MTU
;
1667 dev
->mtu
= dev
->max_mtu
;
1669 dev
->pcpu_stat_type
= NETDEV_PCPU_STAT_DSTATS
;
1672 static int vrf_validate(struct nlattr
*tb
[], struct nlattr
*data
[],
1673 struct netlink_ext_ack
*extack
)
1675 if (tb
[IFLA_ADDRESS
]) {
1676 if (nla_len(tb
[IFLA_ADDRESS
]) != ETH_ALEN
) {
1677 NL_SET_ERR_MSG(extack
, "Invalid hardware address");
1680 if (!is_valid_ether_addr(nla_data(tb
[IFLA_ADDRESS
]))) {
1681 NL_SET_ERR_MSG(extack
, "Invalid hardware address");
1682 return -EADDRNOTAVAIL
;
1688 static void vrf_dellink(struct net_device
*dev
, struct list_head
*head
)
1690 struct net_device
*port_dev
;
1691 struct list_head
*iter
;
1693 netdev_for_each_lower_dev(dev
, port_dev
, iter
)
1694 vrf_del_slave(dev
, port_dev
);
1696 vrf_map_unregister_dev(dev
);
1698 unregister_netdevice_queue(dev
, head
);
1701 static int vrf_newlink(struct net
*src_net
, struct net_device
*dev
,
1702 struct nlattr
*tb
[], struct nlattr
*data
[],
1703 struct netlink_ext_ack
*extack
)
1705 struct net_vrf
*vrf
= netdev_priv(dev
);
1706 struct netns_vrf
*nn_vrf
;
1707 bool *add_fib_rules
;
1711 if (!data
|| !data
[IFLA_VRF_TABLE
]) {
1712 NL_SET_ERR_MSG(extack
, "VRF table id is missing");
1716 vrf
->tb_id
= nla_get_u32(data
[IFLA_VRF_TABLE
]);
1717 if (vrf
->tb_id
== RT_TABLE_UNSPEC
) {
1718 NL_SET_ERR_MSG_ATTR(extack
, data
[IFLA_VRF_TABLE
],
1719 "Invalid VRF table id");
1723 dev
->priv_flags
|= IFF_L3MDEV_MASTER
;
1725 err
= register_netdevice(dev
);
1729 /* mapping between table_id and vrf;
1730 * note: such binding could not be done in the dev init function
1731 * because dev->ifindex id is not available yet.
1733 vrf
->ifindex
= dev
->ifindex
;
1735 err
= vrf_map_register_dev(dev
, extack
);
1737 unregister_netdevice(dev
);
1742 nn_vrf
= net_generic(net
, vrf_net_id
);
1744 add_fib_rules
= &nn_vrf
->add_fib_rules
;
1745 if (*add_fib_rules
) {
1746 err
= vrf_add_fib_rules(dev
);
1748 vrf_map_unregister_dev(dev
);
1749 unregister_netdevice(dev
);
1752 *add_fib_rules
= false;
1759 static size_t vrf_nl_getsize(const struct net_device
*dev
)
1761 return nla_total_size(sizeof(u32
)); /* IFLA_VRF_TABLE */
1764 static int vrf_fillinfo(struct sk_buff
*skb
,
1765 const struct net_device
*dev
)
1767 struct net_vrf
*vrf
= netdev_priv(dev
);
1769 return nla_put_u32(skb
, IFLA_VRF_TABLE
, vrf
->tb_id
);
1772 static size_t vrf_get_slave_size(const struct net_device
*bond_dev
,
1773 const struct net_device
*slave_dev
)
1775 return nla_total_size(sizeof(u32
)); /* IFLA_VRF_PORT_TABLE */
1778 static int vrf_fill_slave_info(struct sk_buff
*skb
,
1779 const struct net_device
*vrf_dev
,
1780 const struct net_device
*slave_dev
)
1782 struct net_vrf
*vrf
= netdev_priv(vrf_dev
);
1784 if (nla_put_u32(skb
, IFLA_VRF_PORT_TABLE
, vrf
->tb_id
))
1790 static const struct nla_policy vrf_nl_policy
[IFLA_VRF_MAX
+ 1] = {
1791 [IFLA_VRF_TABLE
] = { .type
= NLA_U32
},
1794 static struct rtnl_link_ops vrf_link_ops __read_mostly
= {
1796 .priv_size
= sizeof(struct net_vrf
),
1798 .get_size
= vrf_nl_getsize
,
1799 .policy
= vrf_nl_policy
,
1800 .validate
= vrf_validate
,
1801 .fill_info
= vrf_fillinfo
,
1803 .get_slave_size
= vrf_get_slave_size
,
1804 .fill_slave_info
= vrf_fill_slave_info
,
1806 .newlink
= vrf_newlink
,
1807 .dellink
= vrf_dellink
,
1809 .maxtype
= IFLA_VRF_MAX
,
1812 static int vrf_device_event(struct notifier_block
*unused
,
1813 unsigned long event
, void *ptr
)
1815 struct net_device
*dev
= netdev_notifier_info_to_dev(ptr
);
1817 /* only care about unregister events to drop slave references */
1818 if (event
== NETDEV_UNREGISTER
) {
1819 struct net_device
*vrf_dev
;
1821 if (!netif_is_l3_slave(dev
))
1824 vrf_dev
= netdev_master_upper_dev_get(dev
);
1825 vrf_del_slave(vrf_dev
, dev
);
1831 static struct notifier_block vrf_notifier_block __read_mostly
= {
1832 .notifier_call
= vrf_device_event
,
1835 static int vrf_map_init(struct vrf_map
*vmap
)
1837 spin_lock_init(&vmap
->vmap_lock
);
1838 hash_init(vmap
->ht
);
1840 vmap
->strict_mode
= false;
1845 #ifdef CONFIG_SYSCTL
1846 static bool vrf_strict_mode(struct vrf_map
*vmap
)
1851 strict_mode
= vmap
->strict_mode
;
1852 vrf_map_unlock(vmap
);
1857 static int vrf_strict_mode_change(struct vrf_map
*vmap
, bool new_mode
)
1864 cur_mode
= &vmap
->strict_mode
;
1865 if (*cur_mode
== new_mode
)
1869 /* disable strict mode */
1872 if (vmap
->shared_tables
) {
1873 /* we cannot allow strict_mode because there are some
1874 * vrfs that share one or more tables.
1880 /* no tables are shared among vrfs, so we can go back
1881 * to 1:1 association between a vrf with its table.
1887 vrf_map_unlock(vmap
);
1892 static int vrf_shared_table_handler(const struct ctl_table
*table
, int write
,
1893 void *buffer
, size_t *lenp
, loff_t
*ppos
)
1895 struct net
*net
= (struct net
*)table
->extra1
;
1896 struct vrf_map
*vmap
= netns_vrf_map(net
);
1897 int proc_strict_mode
= 0;
1898 struct ctl_table tmp
= {
1899 .procname
= table
->procname
,
1900 .data
= &proc_strict_mode
,
1901 .maxlen
= sizeof(int),
1902 .mode
= table
->mode
,
1903 .extra1
= SYSCTL_ZERO
,
1904 .extra2
= SYSCTL_ONE
,
1909 proc_strict_mode
= vrf_strict_mode(vmap
);
1911 ret
= proc_dointvec_minmax(&tmp
, write
, buffer
, lenp
, ppos
);
1913 if (write
&& ret
== 0)
1914 ret
= vrf_strict_mode_change(vmap
, (bool)proc_strict_mode
);
1919 static const struct ctl_table vrf_table
[] = {
1921 .procname
= "strict_mode",
1923 .maxlen
= sizeof(int),
1925 .proc_handler
= vrf_shared_table_handler
,
1926 /* set by the vrf_netns_init */
1931 static int vrf_netns_init_sysctl(struct net
*net
, struct netns_vrf
*nn_vrf
)
1933 struct ctl_table
*table
;
1935 table
= kmemdup(vrf_table
, sizeof(vrf_table
), GFP_KERNEL
);
1939 /* init the extra1 parameter with the reference to current netns */
1940 table
[0].extra1
= net
;
1942 nn_vrf
->ctl_hdr
= register_net_sysctl_sz(net
, "net/vrf", table
,
1943 ARRAY_SIZE(vrf_table
));
1944 if (!nn_vrf
->ctl_hdr
) {
1952 static void vrf_netns_exit_sysctl(struct net
*net
)
1954 struct netns_vrf
*nn_vrf
= net_generic(net
, vrf_net_id
);
1955 const struct ctl_table
*table
;
1957 table
= nn_vrf
->ctl_hdr
->ctl_table_arg
;
1958 unregister_net_sysctl_table(nn_vrf
->ctl_hdr
);
1962 static int vrf_netns_init_sysctl(struct net
*net
, struct netns_vrf
*nn_vrf
)
1967 static void vrf_netns_exit_sysctl(struct net
*net
)
1972 /* Initialize per network namespace state */
1973 static int __net_init
vrf_netns_init(struct net
*net
)
1975 struct netns_vrf
*nn_vrf
= net_generic(net
, vrf_net_id
);
1977 nn_vrf
->add_fib_rules
= true;
1978 vrf_map_init(&nn_vrf
->vmap
);
1980 return vrf_netns_init_sysctl(net
, nn_vrf
);
1983 static void __net_exit
vrf_netns_exit(struct net
*net
)
1985 vrf_netns_exit_sysctl(net
);
1988 static struct pernet_operations vrf_net_ops __net_initdata
= {
1989 .init
= vrf_netns_init
,
1990 .exit
= vrf_netns_exit
,
1992 .size
= sizeof(struct netns_vrf
),
1995 static int __init
vrf_init_module(void)
1999 register_netdevice_notifier(&vrf_notifier_block
);
2001 rc
= register_pernet_subsys(&vrf_net_ops
);
2005 rc
= l3mdev_table_lookup_register(L3MDEV_TYPE_VRF
,
2006 vrf_ifindex_lookup_by_table_id
);
2010 rc
= rtnl_link_register(&vrf_link_ops
);
2012 goto table_lookup_unreg
;
2017 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF
,
2018 vrf_ifindex_lookup_by_table_id
);
2021 unregister_pernet_subsys(&vrf_net_ops
);
2024 unregister_netdevice_notifier(&vrf_notifier_block
);
2028 module_init(vrf_init_module
);
2029 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2030 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2031 MODULE_LICENSE("GPL");
2032 MODULE_ALIAS_RTNL_LINK(DRV_NAME
);
2033 MODULE_VERSION(DRV_VERSION
);