Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / net / vrf.c
blob67d25f4f94efffdf22b11dcf2ebad77893436820
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
9 * Based on dummy, team and ipvlan drivers
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/inet_dscp.h>
42 #define DRV_NAME "vrf"
43 #define DRV_VERSION "1.1"
45 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
47 #define HT_MAP_BITS 4
48 #define HASH_INITVAL ((u32)0xcafef00d)
50 struct vrf_map {
51 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
52 spinlock_t vmap_lock;
54 /* shared_tables:
55 * count how many distinct tables do not comply with the strict mode
56 * requirement.
57 * shared_tables value must be 0 in order to enable the strict mode.
59 * example of the evolution of shared_tables:
60 * | time
61 * add vrf0 --> table 100 shared_tables = 0 | t0
62 * add vrf1 --> table 101 shared_tables = 0 | t1
63 * add vrf2 --> table 100 shared_tables = 1 | t2
64 * add vrf3 --> table 100 shared_tables = 1 | t3
65 * add vrf4 --> table 101 shared_tables = 2 v t4
67 * shared_tables is a "step function" (or "staircase function")
68 * and it is increased by one when the second vrf is associated to a
69 * table.
71 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
73 * at t3, another dev (vrf3) is bound to the same table 100 but the
74 * value of shared_tables is still 1.
75 * This means that no matter how many new vrfs will register on the
76 * table 100, the shared_tables will not increase (considering only
77 * table 100).
79 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
81 * Looking at the value of shared_tables we can immediately know if
82 * the strict_mode can or cannot be enforced. Indeed, strict_mode
83 * can be enforced iff shared_tables = 0.
85 * Conversely, shared_tables is decreased when a vrf is de-associated
86 * from a table with exactly two associated vrfs.
88 u32 shared_tables;
90 bool strict_mode;
93 struct vrf_map_elem {
94 struct hlist_node hnode;
95 struct list_head vrf_list; /* VRFs registered to this table */
97 u32 table_id;
98 int users;
99 int ifindex;
102 static unsigned int vrf_net_id;
104 /* per netns vrf data */
105 struct netns_vrf {
106 /* protected by rtnl lock */
107 bool add_fib_rules;
109 struct vrf_map vmap;
110 struct ctl_table_header *ctl_hdr;
113 struct net_vrf {
114 struct rtable __rcu *rth;
115 struct rt6_info __rcu *rt6;
116 #if IS_ENABLED(CONFIG_IPV6)
117 struct fib6_table *fib6_table;
118 #endif
119 u32 tb_id;
121 struct list_head me_list; /* entry in vrf_map_elem */
122 int ifindex;
125 static void vrf_rx_stats(struct net_device *dev, int len)
127 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
129 u64_stats_update_begin(&dstats->syncp);
130 u64_stats_inc(&dstats->rx_packets);
131 u64_stats_add(&dstats->rx_bytes, len);
132 u64_stats_update_end(&dstats->syncp);
135 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
137 vrf_dev->stats.tx_errors++;
138 kfree_skb(skb);
141 static struct vrf_map *netns_vrf_map(struct net *net)
143 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
145 return &nn_vrf->vmap;
148 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
150 return netns_vrf_map(dev_net(dev));
153 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
155 struct list_head *me_head = &me->vrf_list;
156 struct net_vrf *vrf;
158 if (list_empty(me_head))
159 return -ENODEV;
161 vrf = list_first_entry(me_head, struct net_vrf, me_list);
163 return vrf->ifindex;
166 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
168 struct vrf_map_elem *me;
170 me = kmalloc(sizeof(*me), flags);
171 if (!me)
172 return NULL;
174 return me;
177 static void vrf_map_elem_free(struct vrf_map_elem *me)
179 kfree(me);
182 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
183 int ifindex, int users)
185 me->table_id = table_id;
186 me->ifindex = ifindex;
187 me->users = users;
188 INIT_LIST_HEAD(&me->vrf_list);
191 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
192 u32 table_id)
194 struct vrf_map_elem *me;
195 u32 key;
197 key = jhash_1word(table_id, HASH_INITVAL);
198 hash_for_each_possible(vmap->ht, me, hnode, key) {
199 if (me->table_id == table_id)
200 return me;
203 return NULL;
206 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
208 u32 table_id = me->table_id;
209 u32 key;
211 key = jhash_1word(table_id, HASH_INITVAL);
212 hash_add(vmap->ht, &me->hnode, key);
215 static void vrf_map_del_elem(struct vrf_map_elem *me)
217 hash_del(&me->hnode);
220 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
222 spin_lock(&vmap->vmap_lock);
225 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
227 spin_unlock(&vmap->vmap_lock);
230 /* called with rtnl lock held */
231 static int
232 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
234 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
235 struct net_vrf *vrf = netdev_priv(dev);
236 struct vrf_map_elem *new_me, *me;
237 u32 table_id = vrf->tb_id;
238 bool free_new_me = false;
239 int users;
240 int res;
242 /* we pre-allocate elements used in the spin-locked section (so that we
243 * keep the spinlock as short as possible).
245 new_me = vrf_map_elem_alloc(GFP_KERNEL);
246 if (!new_me)
247 return -ENOMEM;
249 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
251 vrf_map_lock(vmap);
253 me = vrf_map_lookup_elem(vmap, table_id);
254 if (!me) {
255 me = new_me;
256 vrf_map_add_elem(vmap, me);
257 goto link_vrf;
260 /* we already have an entry in the vrf_map, so it means there is (at
261 * least) a vrf registered on the specific table.
263 free_new_me = true;
264 if (vmap->strict_mode) {
265 /* vrfs cannot share the same table */
266 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
267 res = -EBUSY;
268 goto unlock;
271 link_vrf:
272 users = ++me->users;
273 if (users == 2)
274 ++vmap->shared_tables;
276 list_add(&vrf->me_list, &me->vrf_list);
278 res = 0;
280 unlock:
281 vrf_map_unlock(vmap);
283 /* clean-up, if needed */
284 if (free_new_me)
285 vrf_map_elem_free(new_me);
287 return res;
290 /* called with rtnl lock held */
291 static void vrf_map_unregister_dev(struct net_device *dev)
293 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
294 struct net_vrf *vrf = netdev_priv(dev);
295 u32 table_id = vrf->tb_id;
296 struct vrf_map_elem *me;
297 int users;
299 vrf_map_lock(vmap);
301 me = vrf_map_lookup_elem(vmap, table_id);
302 if (!me)
303 goto unlock;
305 list_del(&vrf->me_list);
307 users = --me->users;
308 if (users == 1) {
309 --vmap->shared_tables;
310 } else if (users == 0) {
311 vrf_map_del_elem(me);
313 /* no one will refer to this element anymore */
314 vrf_map_elem_free(me);
317 unlock:
318 vrf_map_unlock(vmap);
321 /* return the vrf device index associated with the table_id */
322 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
324 struct vrf_map *vmap = netns_vrf_map(net);
325 struct vrf_map_elem *me;
326 int ifindex;
328 vrf_map_lock(vmap);
330 if (!vmap->strict_mode) {
331 ifindex = -EPERM;
332 goto unlock;
335 me = vrf_map_lookup_elem(vmap, table_id);
336 if (!me) {
337 ifindex = -ENODEV;
338 goto unlock;
341 ifindex = vrf_map_elem_get_vrf_ifindex(me);
343 unlock:
344 vrf_map_unlock(vmap);
346 return ifindex;
349 /* by default VRF devices do not have a qdisc and are expected
350 * to be created with only a single queue.
352 static bool qdisc_tx_is_default(const struct net_device *dev)
354 struct netdev_queue *txq;
355 struct Qdisc *qdisc;
357 if (dev->num_tx_queues > 1)
358 return false;
360 txq = netdev_get_tx_queue(dev, 0);
361 qdisc = rcu_access_pointer(txq->qdisc);
363 return !qdisc->enqueue;
366 /* Local traffic destined to local address. Reinsert the packet to rx
367 * path, similar to loopback handling.
369 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
370 struct dst_entry *dst)
372 int len = skb->len;
374 skb_orphan(skb);
376 skb_dst_set(skb, dst);
378 /* set pkt_type to avoid skb hitting packet taps twice -
379 * once on Tx and again in Rx processing
381 skb->pkt_type = PACKET_LOOPBACK;
383 skb->protocol = eth_type_trans(skb, dev);
385 if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) {
386 vrf_rx_stats(dev, len);
387 } else {
388 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
390 u64_stats_update_begin(&dstats->syncp);
391 u64_stats_inc(&dstats->rx_drops);
392 u64_stats_update_end(&dstats->syncp);
395 return NETDEV_TX_OK;
398 static void vrf_nf_set_untracked(struct sk_buff *skb)
400 if (skb_get_nfct(skb) == 0)
401 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
404 static void vrf_nf_reset_ct(struct sk_buff *skb)
406 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
407 nf_reset_ct(skb);
410 #if IS_ENABLED(CONFIG_IPV6)
411 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
412 struct sk_buff *skb)
414 int err;
416 vrf_nf_reset_ct(skb);
418 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
419 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
421 if (likely(err == 1))
422 err = dst_output(net, sk, skb);
424 return err;
427 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
428 struct net_device *dev)
430 const struct ipv6hdr *iph;
431 struct net *net = dev_net(skb->dev);
432 struct flowi6 fl6;
433 int ret = NET_XMIT_DROP;
434 struct dst_entry *dst;
435 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
437 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
438 goto err;
440 iph = ipv6_hdr(skb);
442 memset(&fl6, 0, sizeof(fl6));
443 /* needed to match OIF rule */
444 fl6.flowi6_l3mdev = dev->ifindex;
445 fl6.flowi6_iif = LOOPBACK_IFINDEX;
446 fl6.daddr = iph->daddr;
447 fl6.saddr = iph->saddr;
448 fl6.flowlabel = ip6_flowinfo(iph);
449 fl6.flowi6_mark = skb->mark;
450 fl6.flowi6_proto = iph->nexthdr;
452 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
453 if (IS_ERR(dst) || dst == dst_null)
454 goto err;
456 skb_dst_drop(skb);
458 /* if dst.dev is the VRF device again this is locally originated traffic
459 * destined to a local address. Short circuit to Rx path.
461 if (dst->dev == dev)
462 return vrf_local_xmit(skb, dev, dst);
464 skb_dst_set(skb, dst);
466 /* strip the ethernet header added for pass through VRF device */
467 __skb_pull(skb, skb_network_offset(skb));
469 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
470 ret = vrf_ip6_local_out(net, skb->sk, skb);
471 if (unlikely(net_xmit_eval(ret)))
472 dev->stats.tx_errors++;
473 else
474 ret = NET_XMIT_SUCCESS;
476 return ret;
477 err:
478 vrf_tx_error(dev, skb);
479 return NET_XMIT_DROP;
481 #else
482 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
483 struct net_device *dev)
485 vrf_tx_error(dev, skb);
486 return NET_XMIT_DROP;
488 #endif
490 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
491 static int vrf_ip_local_out(struct net *net, struct sock *sk,
492 struct sk_buff *skb)
494 int err;
496 vrf_nf_reset_ct(skb);
498 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
499 skb, NULL, skb_dst(skb)->dev, dst_output);
500 if (likely(err == 1))
501 err = dst_output(net, sk, skb);
503 return err;
506 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
507 struct net_device *vrf_dev)
509 struct iphdr *ip4h;
510 int ret = NET_XMIT_DROP;
511 struct flowi4 fl4;
512 struct net *net = dev_net(vrf_dev);
513 struct rtable *rt;
515 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
516 goto err;
518 ip4h = ip_hdr(skb);
520 memset(&fl4, 0, sizeof(fl4));
521 /* needed to match OIF rule */
522 fl4.flowi4_l3mdev = vrf_dev->ifindex;
523 fl4.flowi4_iif = LOOPBACK_IFINDEX;
524 fl4.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h));
525 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
526 fl4.flowi4_proto = ip4h->protocol;
527 fl4.daddr = ip4h->daddr;
528 fl4.saddr = ip4h->saddr;
530 rt = ip_route_output_flow(net, &fl4, NULL);
531 if (IS_ERR(rt))
532 goto err;
534 skb_dst_drop(skb);
536 /* if dst.dev is the VRF device again this is locally originated traffic
537 * destined to a local address. Short circuit to Rx path.
539 if (rt->dst.dev == vrf_dev)
540 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
542 skb_dst_set(skb, &rt->dst);
544 /* strip the ethernet header added for pass through VRF device */
545 __skb_pull(skb, skb_network_offset(skb));
547 if (!ip4h->saddr) {
548 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
549 RT_SCOPE_LINK);
552 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
553 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
554 if (unlikely(net_xmit_eval(ret)))
555 vrf_dev->stats.tx_errors++;
556 else
557 ret = NET_XMIT_SUCCESS;
559 out:
560 return ret;
561 err:
562 vrf_tx_error(vrf_dev, skb);
563 goto out;
566 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
568 switch (skb->protocol) {
569 case htons(ETH_P_IP):
570 return vrf_process_v4_outbound(skb, dev);
571 case htons(ETH_P_IPV6):
572 return vrf_process_v6_outbound(skb, dev);
573 default:
574 vrf_tx_error(dev, skb);
575 return NET_XMIT_DROP;
579 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
581 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
583 int len = skb->len;
584 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
586 u64_stats_update_begin(&dstats->syncp);
587 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
589 u64_stats_inc(&dstats->tx_packets);
590 u64_stats_add(&dstats->tx_bytes, len);
591 } else {
592 u64_stats_inc(&dstats->tx_drops);
594 u64_stats_update_end(&dstats->syncp);
596 return ret;
599 static void vrf_finish_direct(struct sk_buff *skb)
601 struct net_device *vrf_dev = skb->dev;
603 if (!list_empty(&vrf_dev->ptype_all) &&
604 likely(skb_headroom(skb) >= ETH_HLEN)) {
605 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
607 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
608 eth_zero_addr(eth->h_dest);
609 eth->h_proto = skb->protocol;
611 rcu_read_lock_bh();
612 dev_queue_xmit_nit(skb, vrf_dev);
613 rcu_read_unlock_bh();
615 skb_pull(skb, ETH_HLEN);
618 vrf_nf_reset_ct(skb);
621 #if IS_ENABLED(CONFIG_IPV6)
622 /* modelled after ip6_finish_output2 */
623 static int vrf_finish_output6(struct net *net, struct sock *sk,
624 struct sk_buff *skb)
626 struct dst_entry *dst = skb_dst(skb);
627 struct net_device *dev = dst->dev;
628 const struct in6_addr *nexthop;
629 struct neighbour *neigh;
630 int ret;
632 vrf_nf_reset_ct(skb);
634 skb->protocol = htons(ETH_P_IPV6);
635 skb->dev = dev;
637 rcu_read_lock();
638 nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
639 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
640 if (unlikely(!neigh))
641 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
642 if (!IS_ERR(neigh)) {
643 sock_confirm_neigh(skb, neigh);
644 ret = neigh_output(neigh, skb, false);
645 rcu_read_unlock();
646 return ret;
648 rcu_read_unlock();
650 IP6_INC_STATS(dev_net(dst->dev),
651 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
652 kfree_skb(skb);
653 return -EINVAL;
656 /* modelled after ip6_output */
657 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
659 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
660 net, sk, skb, NULL, skb_dst(skb)->dev,
661 vrf_finish_output6,
662 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
665 /* set dst on skb to send packet to us via dev_xmit path. Allows
666 * packet to go through device based features such as qdisc, netfilter
667 * hooks and packet sockets with skb->dev set to vrf device.
669 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
670 struct sk_buff *skb)
672 struct net_vrf *vrf = netdev_priv(vrf_dev);
673 struct dst_entry *dst = NULL;
674 struct rt6_info *rt6;
676 rcu_read_lock();
678 rt6 = rcu_dereference(vrf->rt6);
679 if (likely(rt6)) {
680 dst = &rt6->dst;
681 dst_hold(dst);
684 rcu_read_unlock();
686 if (unlikely(!dst)) {
687 vrf_tx_error(vrf_dev, skb);
688 return NULL;
691 skb_dst_drop(skb);
692 skb_dst_set(skb, dst);
694 return skb;
697 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
698 struct sk_buff *skb)
700 vrf_finish_direct(skb);
702 return vrf_ip6_local_out(net, sk, skb);
705 static int vrf_output6_direct(struct net *net, struct sock *sk,
706 struct sk_buff *skb)
708 int err = 1;
710 skb->protocol = htons(ETH_P_IPV6);
712 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
713 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
714 NULL, skb->dev, vrf_output6_direct_finish);
716 if (likely(err == 1))
717 vrf_finish_direct(skb);
719 return err;
722 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
723 struct sk_buff *skb)
725 int err;
727 err = vrf_output6_direct(net, sk, skb);
728 if (likely(err == 1))
729 err = vrf_ip6_local_out(net, sk, skb);
731 return err;
734 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
735 struct sock *sk,
736 struct sk_buff *skb)
738 struct net *net = dev_net(vrf_dev);
739 int err;
741 skb->dev = vrf_dev;
743 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
744 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
746 if (likely(err == 1))
747 err = vrf_output6_direct(net, sk, skb);
749 if (likely(err == 1))
750 return skb;
752 return NULL;
755 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
756 struct sock *sk,
757 struct sk_buff *skb)
759 /* don't divert link scope packets */
760 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
761 return skb;
763 vrf_nf_set_untracked(skb);
765 if (qdisc_tx_is_default(vrf_dev) ||
766 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
767 return vrf_ip6_out_direct(vrf_dev, sk, skb);
769 return vrf_ip6_out_redirect(vrf_dev, skb);
772 /* holding rtnl */
773 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
775 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
776 struct net *net = dev_net(dev);
777 struct dst_entry *dst;
779 RCU_INIT_POINTER(vrf->rt6, NULL);
780 synchronize_rcu();
782 /* move dev in dst's to loopback so this VRF device can be deleted
783 * - based on dst_ifdown
785 if (rt6) {
786 dst = &rt6->dst;
787 netdev_ref_replace(dst->dev, net->loopback_dev,
788 &dst->dev_tracker, GFP_KERNEL);
789 dst->dev = net->loopback_dev;
790 dst_release(dst);
794 static int vrf_rt6_create(struct net_device *dev)
796 int flags = DST_NOPOLICY | DST_NOXFRM;
797 struct net_vrf *vrf = netdev_priv(dev);
798 struct net *net = dev_net(dev);
799 struct rt6_info *rt6;
800 int rc = -ENOMEM;
802 /* IPv6 can be CONFIG enabled and then disabled runtime */
803 if (!ipv6_mod_enabled())
804 return 0;
806 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
807 if (!vrf->fib6_table)
808 goto out;
810 /* create a dst for routing packets out a VRF device */
811 rt6 = ip6_dst_alloc(net, dev, flags);
812 if (!rt6)
813 goto out;
815 rt6->dst.output = vrf_output6;
817 rcu_assign_pointer(vrf->rt6, rt6);
819 rc = 0;
820 out:
821 return rc;
823 #else
824 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
825 struct sock *sk,
826 struct sk_buff *skb)
828 return skb;
831 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
835 static int vrf_rt6_create(struct net_device *dev)
837 return 0;
839 #endif
841 /* modelled after ip_finish_output2 */
842 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
844 struct dst_entry *dst = skb_dst(skb);
845 struct rtable *rt = dst_rtable(dst);
846 struct net_device *dev = dst->dev;
847 unsigned int hh_len = LL_RESERVED_SPACE(dev);
848 struct neighbour *neigh;
849 bool is_v6gw = false;
851 vrf_nf_reset_ct(skb);
853 /* Be paranoid, rather than too clever. */
854 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
855 skb = skb_expand_head(skb, hh_len);
856 if (!skb) {
857 dev->stats.tx_errors++;
858 return -ENOMEM;
862 rcu_read_lock();
864 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
865 if (!IS_ERR(neigh)) {
866 int ret;
868 sock_confirm_neigh(skb, neigh);
869 /* if crossing protocols, can not use the cached header */
870 ret = neigh_output(neigh, skb, is_v6gw);
871 rcu_read_unlock();
872 return ret;
875 rcu_read_unlock();
876 vrf_tx_error(skb->dev, skb);
877 return -EINVAL;
880 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
882 struct net_device *dev = skb_dst(skb)->dev;
884 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
886 skb->dev = dev;
887 skb->protocol = htons(ETH_P_IP);
889 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
890 net, sk, skb, NULL, dev,
891 vrf_finish_output,
892 !(IPCB(skb)->flags & IPSKB_REROUTED));
895 /* set dst on skb to send packet to us via dev_xmit path. Allows
896 * packet to go through device based features such as qdisc, netfilter
897 * hooks and packet sockets with skb->dev set to vrf device.
899 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
900 struct sk_buff *skb)
902 struct net_vrf *vrf = netdev_priv(vrf_dev);
903 struct dst_entry *dst = NULL;
904 struct rtable *rth;
906 rcu_read_lock();
908 rth = rcu_dereference(vrf->rth);
909 if (likely(rth)) {
910 dst = &rth->dst;
911 dst_hold(dst);
914 rcu_read_unlock();
916 if (unlikely(!dst)) {
917 vrf_tx_error(vrf_dev, skb);
918 return NULL;
921 skb_dst_drop(skb);
922 skb_dst_set(skb, dst);
924 return skb;
927 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
928 struct sk_buff *skb)
930 vrf_finish_direct(skb);
932 return vrf_ip_local_out(net, sk, skb);
935 static int vrf_output_direct(struct net *net, struct sock *sk,
936 struct sk_buff *skb)
938 int err = 1;
940 skb->protocol = htons(ETH_P_IP);
942 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
943 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
944 NULL, skb->dev, vrf_output_direct_finish);
946 if (likely(err == 1))
947 vrf_finish_direct(skb);
949 return err;
952 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
953 struct sk_buff *skb)
955 int err;
957 err = vrf_output_direct(net, sk, skb);
958 if (likely(err == 1))
959 err = vrf_ip_local_out(net, sk, skb);
961 return err;
964 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
965 struct sock *sk,
966 struct sk_buff *skb)
968 struct net *net = dev_net(vrf_dev);
969 int err;
971 skb->dev = vrf_dev;
973 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
974 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
976 if (likely(err == 1))
977 err = vrf_output_direct(net, sk, skb);
979 if (likely(err == 1))
980 return skb;
982 return NULL;
985 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
986 struct sock *sk,
987 struct sk_buff *skb)
989 /* don't divert multicast or local broadcast */
990 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
991 ipv4_is_lbcast(ip_hdr(skb)->daddr))
992 return skb;
994 vrf_nf_set_untracked(skb);
996 if (qdisc_tx_is_default(vrf_dev) ||
997 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
998 return vrf_ip_out_direct(vrf_dev, sk, skb);
1000 return vrf_ip_out_redirect(vrf_dev, skb);
1003 /* called with rcu lock held */
1004 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1005 struct sock *sk,
1006 struct sk_buff *skb,
1007 u16 proto)
1009 switch (proto) {
1010 case AF_INET:
1011 return vrf_ip_out(vrf_dev, sk, skb);
1012 case AF_INET6:
1013 return vrf_ip6_out(vrf_dev, sk, skb);
1016 return skb;
1019 /* holding rtnl */
1020 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1022 struct rtable *rth = rtnl_dereference(vrf->rth);
1023 struct net *net = dev_net(dev);
1024 struct dst_entry *dst;
1026 RCU_INIT_POINTER(vrf->rth, NULL);
1027 synchronize_rcu();
1029 /* move dev in dst's to loopback so this VRF device can be deleted
1030 * - based on dst_ifdown
1032 if (rth) {
1033 dst = &rth->dst;
1034 netdev_ref_replace(dst->dev, net->loopback_dev,
1035 &dst->dev_tracker, GFP_KERNEL);
1036 dst->dev = net->loopback_dev;
1037 dst_release(dst);
1041 static int vrf_rtable_create(struct net_device *dev)
1043 struct net_vrf *vrf = netdev_priv(dev);
1044 struct rtable *rth;
1046 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1047 return -ENOMEM;
1049 /* create a dst for routing packets out through a VRF device */
1050 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1051 if (!rth)
1052 return -ENOMEM;
1054 rth->dst.output = vrf_output;
1056 rcu_assign_pointer(vrf->rth, rth);
1058 return 0;
1061 /**************************** device handling ********************/
1063 /* cycle interface to flush neighbor cache and move routes across tables */
1064 static void cycle_netdev(struct net_device *dev,
1065 struct netlink_ext_ack *extack)
1067 unsigned int flags = dev->flags;
1068 int ret;
1070 if (!netif_running(dev))
1071 return;
1073 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1074 if (ret >= 0)
1075 ret = dev_change_flags(dev, flags, extack);
1077 if (ret < 0) {
1078 netdev_err(dev,
1079 "Failed to cycle device %s; route tables might be wrong!\n",
1080 dev->name);
1084 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1085 struct netlink_ext_ack *extack)
1087 int ret;
1089 /* do not allow loopback device to be enslaved to a VRF.
1090 * The vrf device acts as the loopback for the vrf.
1092 if (port_dev == dev_net(dev)->loopback_dev) {
1093 NL_SET_ERR_MSG(extack,
1094 "Can not enslave loopback device to a VRF");
1095 return -EOPNOTSUPP;
1098 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1099 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1100 if (ret < 0)
1101 goto err;
1103 cycle_netdev(port_dev, extack);
1105 return 0;
1107 err:
1108 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1109 return ret;
1112 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1113 struct netlink_ext_ack *extack)
1115 if (netif_is_l3_master(port_dev)) {
1116 NL_SET_ERR_MSG(extack,
1117 "Can not enslave an L3 master device to a VRF");
1118 return -EINVAL;
1121 if (netif_is_l3_slave(port_dev))
1122 return -EINVAL;
1124 return do_vrf_add_slave(dev, port_dev, extack);
1127 /* inverse of do_vrf_add_slave */
1128 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1130 netdev_upper_dev_unlink(port_dev, dev);
1131 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1133 cycle_netdev(port_dev, NULL);
1135 return 0;
1138 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1140 return do_vrf_del_slave(dev, port_dev);
1143 static void vrf_dev_uninit(struct net_device *dev)
1145 struct net_vrf *vrf = netdev_priv(dev);
1147 vrf_rtable_release(dev, vrf);
1148 vrf_rt6_release(dev, vrf);
1151 static int vrf_dev_init(struct net_device *dev)
1153 struct net_vrf *vrf = netdev_priv(dev);
1155 /* create the default dst which points back to us */
1156 if (vrf_rtable_create(dev) != 0)
1157 goto out_nomem;
1159 if (vrf_rt6_create(dev) != 0)
1160 goto out_rth;
1162 dev->flags = IFF_MASTER | IFF_NOARP;
1164 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1165 dev->operstate = IF_OPER_UP;
1166 netdev_lockdep_set_classes(dev);
1167 return 0;
1169 out_rth:
1170 vrf_rtable_release(dev, vrf);
1171 out_nomem:
1172 return -ENOMEM;
1175 static const struct net_device_ops vrf_netdev_ops = {
1176 .ndo_init = vrf_dev_init,
1177 .ndo_uninit = vrf_dev_uninit,
1178 .ndo_start_xmit = vrf_xmit,
1179 .ndo_set_mac_address = eth_mac_addr,
1180 .ndo_add_slave = vrf_add_slave,
1181 .ndo_del_slave = vrf_del_slave,
1184 static u32 vrf_fib_table(const struct net_device *dev)
1186 struct net_vrf *vrf = netdev_priv(dev);
1188 return vrf->tb_id;
1191 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1193 kfree_skb(skb);
1194 return 0;
1197 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1198 struct sk_buff *skb,
1199 struct net_device *dev)
1201 struct net *net = dev_net(dev);
1203 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1204 skb = NULL; /* kfree_skb(skb) handled by nf code */
1206 return skb;
1209 static int vrf_prepare_mac_header(struct sk_buff *skb,
1210 struct net_device *vrf_dev, u16 proto)
1212 struct ethhdr *eth;
1213 int err;
1215 /* in general, we do not know if there is enough space in the head of
1216 * the packet for hosting the mac header.
1218 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1219 if (unlikely(err))
1220 /* no space in the skb head */
1221 return -ENOBUFS;
1223 __skb_push(skb, ETH_HLEN);
1224 eth = (struct ethhdr *)skb->data;
1226 skb_reset_mac_header(skb);
1227 skb_reset_mac_len(skb);
1229 /* we set the ethernet destination and the source addresses to the
1230 * address of the VRF device.
1232 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1233 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1234 eth->h_proto = htons(proto);
1236 /* the destination address of the Ethernet frame corresponds to the
1237 * address set on the VRF interface; therefore, the packet is intended
1238 * to be processed locally.
1240 skb->protocol = eth->h_proto;
1241 skb->pkt_type = PACKET_HOST;
1243 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1245 skb_pull_inline(skb, ETH_HLEN);
1247 return 0;
1250 /* prepare and add the mac header to the packet if it was not set previously.
1251 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1252 * If the mac header was already set, the original mac header is left
1253 * untouched and the function returns immediately.
1255 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1256 struct net_device *vrf_dev,
1257 u16 proto, struct net_device *orig_dev)
1259 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1260 return 0;
1262 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1265 #if IS_ENABLED(CONFIG_IPV6)
1266 /* neighbor handling is done with actual device; do not want
1267 * to flip skb->dev for those ndisc packets. This really fails
1268 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1269 * a start.
1271 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1273 const struct ipv6hdr *iph = ipv6_hdr(skb);
1274 bool rc = false;
1276 if (iph->nexthdr == NEXTHDR_ICMP) {
1277 const struct icmp6hdr *icmph;
1278 struct icmp6hdr _icmph;
1280 icmph = skb_header_pointer(skb, sizeof(*iph),
1281 sizeof(_icmph), &_icmph);
1282 if (!icmph)
1283 goto out;
1285 switch (icmph->icmp6_type) {
1286 case NDISC_ROUTER_SOLICITATION:
1287 case NDISC_ROUTER_ADVERTISEMENT:
1288 case NDISC_NEIGHBOUR_SOLICITATION:
1289 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1290 case NDISC_REDIRECT:
1291 rc = true;
1292 break;
1296 out:
1297 return rc;
1300 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1301 const struct net_device *dev,
1302 struct flowi6 *fl6,
1303 int ifindex,
1304 const struct sk_buff *skb,
1305 int flags)
1307 struct net_vrf *vrf = netdev_priv(dev);
1309 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1312 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1313 int ifindex)
1315 const struct ipv6hdr *iph = ipv6_hdr(skb);
1316 struct flowi6 fl6 = {
1317 .flowi6_iif = ifindex,
1318 .flowi6_mark = skb->mark,
1319 .flowi6_proto = iph->nexthdr,
1320 .daddr = iph->daddr,
1321 .saddr = iph->saddr,
1322 .flowlabel = ip6_flowinfo(iph),
1324 struct net *net = dev_net(vrf_dev);
1325 struct rt6_info *rt6;
1327 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1328 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1329 if (unlikely(!rt6))
1330 return;
1332 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1333 return;
1335 skb_dst_set(skb, &rt6->dst);
1338 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1339 struct sk_buff *skb)
1341 int orig_iif = skb->skb_iif;
1342 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1343 bool is_ndisc = ipv6_ndisc_frame(skb);
1345 /* loopback, multicast & non-ND link-local traffic; do not push through
1346 * packet taps again. Reset pkt_type for upper layers to process skb.
1347 * For non-loopback strict packets, determine the dst using the original
1348 * ifindex.
1350 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1351 skb->dev = vrf_dev;
1352 skb->skb_iif = vrf_dev->ifindex;
1353 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1355 if (skb->pkt_type == PACKET_LOOPBACK)
1356 skb->pkt_type = PACKET_HOST;
1357 else
1358 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1360 goto out;
1363 /* if packet is NDISC then keep the ingress interface */
1364 if (!is_ndisc) {
1365 struct net_device *orig_dev = skb->dev;
1367 vrf_rx_stats(vrf_dev, skb->len);
1368 skb->dev = vrf_dev;
1369 skb->skb_iif = vrf_dev->ifindex;
1371 if (!list_empty(&vrf_dev->ptype_all)) {
1372 int err;
1374 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1375 ETH_P_IPV6,
1376 orig_dev);
1377 if (likely(!err)) {
1378 skb_push(skb, skb->mac_len);
1379 dev_queue_xmit_nit(skb, vrf_dev);
1380 skb_pull(skb, skb->mac_len);
1384 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1387 if (need_strict)
1388 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1390 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1391 out:
1392 return skb;
1395 #else
1396 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1397 struct sk_buff *skb)
1399 return skb;
1401 #endif
1403 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1404 struct sk_buff *skb)
1406 struct net_device *orig_dev = skb->dev;
1408 skb->dev = vrf_dev;
1409 skb->skb_iif = vrf_dev->ifindex;
1410 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1412 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1413 goto out;
1415 /* loopback traffic; do not push through packet taps again.
1416 * Reset pkt_type for upper layers to process skb
1418 if (skb->pkt_type == PACKET_LOOPBACK) {
1419 skb->pkt_type = PACKET_HOST;
1420 goto out;
1423 vrf_rx_stats(vrf_dev, skb->len);
1425 if (!list_empty(&vrf_dev->ptype_all)) {
1426 int err;
1428 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1429 orig_dev);
1430 if (likely(!err)) {
1431 skb_push(skb, skb->mac_len);
1432 dev_queue_xmit_nit(skb, vrf_dev);
1433 skb_pull(skb, skb->mac_len);
1437 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1438 out:
1439 return skb;
1442 /* called with rcu lock held */
1443 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1444 struct sk_buff *skb,
1445 u16 proto)
1447 switch (proto) {
1448 case AF_INET:
1449 return vrf_ip_rcv(vrf_dev, skb);
1450 case AF_INET6:
1451 return vrf_ip6_rcv(vrf_dev, skb);
1454 return skb;
1457 #if IS_ENABLED(CONFIG_IPV6)
1458 /* send to link-local or multicast address via interface enslaved to
1459 * VRF device. Force lookup to VRF table without changing flow struct
1460 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1461 * is taken on the dst by this function.
1463 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1464 struct flowi6 *fl6)
1466 struct net *net = dev_net(dev);
1467 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1468 struct dst_entry *dst = NULL;
1469 struct rt6_info *rt;
1471 /* VRF device does not have a link-local address and
1472 * sending packets to link-local or mcast addresses over
1473 * a VRF device does not make sense
1475 if (fl6->flowi6_oif == dev->ifindex) {
1476 dst = &net->ipv6.ip6_null_entry->dst;
1477 return dst;
1480 if (!ipv6_addr_any(&fl6->saddr))
1481 flags |= RT6_LOOKUP_F_HAS_SADDR;
1483 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1484 if (rt)
1485 dst = &rt->dst;
1487 return dst;
1489 #endif
1491 static const struct l3mdev_ops vrf_l3mdev_ops = {
1492 .l3mdev_fib_table = vrf_fib_table,
1493 .l3mdev_l3_rcv = vrf_l3_rcv,
1494 .l3mdev_l3_out = vrf_l3_out,
1495 #if IS_ENABLED(CONFIG_IPV6)
1496 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1497 #endif
1500 static void vrf_get_drvinfo(struct net_device *dev,
1501 struct ethtool_drvinfo *info)
1503 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1504 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1507 static const struct ethtool_ops vrf_ethtool_ops = {
1508 .get_drvinfo = vrf_get_drvinfo,
1511 static inline size_t vrf_fib_rule_nl_size(void)
1513 size_t sz;
1515 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1516 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1517 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1518 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1520 return sz;
1523 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1525 struct fib_rule_hdr *frh;
1526 struct nlmsghdr *nlh;
1527 struct sk_buff *skb;
1528 int err;
1530 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1531 !ipv6_mod_enabled())
1532 return 0;
1534 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1535 if (!skb)
1536 return -ENOMEM;
1538 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1539 if (!nlh)
1540 goto nla_put_failure;
1542 /* rule only needs to appear once */
1543 nlh->nlmsg_flags |= NLM_F_EXCL;
1545 frh = nlmsg_data(nlh);
1546 memset(frh, 0, sizeof(*frh));
1547 frh->family = family;
1548 frh->action = FR_ACT_TO_TBL;
1550 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1551 goto nla_put_failure;
1553 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1554 goto nla_put_failure;
1556 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1557 goto nla_put_failure;
1559 nlmsg_end(skb, nlh);
1561 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1562 skb->sk = dev_net(dev)->rtnl;
1563 if (add_it) {
1564 err = fib_nl_newrule(skb, nlh, NULL);
1565 if (err == -EEXIST)
1566 err = 0;
1567 } else {
1568 err = fib_nl_delrule(skb, nlh, NULL);
1569 if (err == -ENOENT)
1570 err = 0;
1572 nlmsg_free(skb);
1574 return err;
1576 nla_put_failure:
1577 nlmsg_free(skb);
1579 return -EMSGSIZE;
1582 static int vrf_add_fib_rules(const struct net_device *dev)
1584 int err;
1586 err = vrf_fib_rule(dev, AF_INET, true);
1587 if (err < 0)
1588 goto out_err;
1590 err = vrf_fib_rule(dev, AF_INET6, true);
1591 if (err < 0)
1592 goto ipv6_err;
1594 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1595 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1596 if (err < 0)
1597 goto ipmr_err;
1598 #endif
1600 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1601 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1602 if (err < 0)
1603 goto ip6mr_err;
1604 #endif
1606 return 0;
1608 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1609 ip6mr_err:
1610 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1611 #endif
1613 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1614 ipmr_err:
1615 vrf_fib_rule(dev, AF_INET6, false);
1616 #endif
1618 ipv6_err:
1619 vrf_fib_rule(dev, AF_INET, false);
1621 out_err:
1622 netdev_err(dev, "Failed to add FIB rules.\n");
1623 return err;
1626 static void vrf_setup(struct net_device *dev)
1628 ether_setup(dev);
1630 /* Initialize the device structure. */
1631 dev->netdev_ops = &vrf_netdev_ops;
1632 dev->l3mdev_ops = &vrf_l3mdev_ops;
1633 dev->ethtool_ops = &vrf_ethtool_ops;
1634 dev->needs_free_netdev = true;
1636 /* Fill in device structure with ethernet-generic values. */
1637 eth_hw_addr_random(dev);
1639 /* don't acquire vrf device's netif_tx_lock when transmitting */
1640 dev->lltx = true;
1642 /* don't allow vrf devices to change network namespaces. */
1643 dev->netns_local = true;
1645 /* does not make sense for a VLAN to be added to a vrf device */
1646 dev->features |= NETIF_F_VLAN_CHALLENGED;
1648 /* enable offload features */
1649 dev->features |= NETIF_F_GSO_SOFTWARE;
1650 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1651 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1653 dev->hw_features = dev->features;
1654 dev->hw_enc_features = dev->features;
1656 /* default to no qdisc; user can add if desired */
1657 dev->priv_flags |= IFF_NO_QUEUE;
1658 dev->priv_flags |= IFF_NO_RX_HANDLER;
1659 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1661 /* VRF devices do not care about MTU, but if the MTU is set
1662 * too low then the ipv4 and ipv6 protocols are disabled
1663 * which breaks networking.
1665 dev->min_mtu = IPV6_MIN_MTU;
1666 dev->max_mtu = IP6_MAX_MTU;
1667 dev->mtu = dev->max_mtu;
1669 dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1672 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1673 struct netlink_ext_ack *extack)
1675 if (tb[IFLA_ADDRESS]) {
1676 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1677 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1678 return -EINVAL;
1680 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1681 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1682 return -EADDRNOTAVAIL;
1685 return 0;
1688 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1690 struct net_device *port_dev;
1691 struct list_head *iter;
1693 netdev_for_each_lower_dev(dev, port_dev, iter)
1694 vrf_del_slave(dev, port_dev);
1696 vrf_map_unregister_dev(dev);
1698 unregister_netdevice_queue(dev, head);
1701 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1702 struct nlattr *tb[], struct nlattr *data[],
1703 struct netlink_ext_ack *extack)
1705 struct net_vrf *vrf = netdev_priv(dev);
1706 struct netns_vrf *nn_vrf;
1707 bool *add_fib_rules;
1708 struct net *net;
1709 int err;
1711 if (!data || !data[IFLA_VRF_TABLE]) {
1712 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1713 return -EINVAL;
1716 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1717 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1718 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1719 "Invalid VRF table id");
1720 return -EINVAL;
1723 dev->priv_flags |= IFF_L3MDEV_MASTER;
1725 err = register_netdevice(dev);
1726 if (err)
1727 goto out;
1729 /* mapping between table_id and vrf;
1730 * note: such binding could not be done in the dev init function
1731 * because dev->ifindex id is not available yet.
1733 vrf->ifindex = dev->ifindex;
1735 err = vrf_map_register_dev(dev, extack);
1736 if (err) {
1737 unregister_netdevice(dev);
1738 goto out;
1741 net = dev_net(dev);
1742 nn_vrf = net_generic(net, vrf_net_id);
1744 add_fib_rules = &nn_vrf->add_fib_rules;
1745 if (*add_fib_rules) {
1746 err = vrf_add_fib_rules(dev);
1747 if (err) {
1748 vrf_map_unregister_dev(dev);
1749 unregister_netdevice(dev);
1750 goto out;
1752 *add_fib_rules = false;
1755 out:
1756 return err;
1759 static size_t vrf_nl_getsize(const struct net_device *dev)
1761 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1764 static int vrf_fillinfo(struct sk_buff *skb,
1765 const struct net_device *dev)
1767 struct net_vrf *vrf = netdev_priv(dev);
1769 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1772 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1773 const struct net_device *slave_dev)
1775 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1778 static int vrf_fill_slave_info(struct sk_buff *skb,
1779 const struct net_device *vrf_dev,
1780 const struct net_device *slave_dev)
1782 struct net_vrf *vrf = netdev_priv(vrf_dev);
1784 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1785 return -EMSGSIZE;
1787 return 0;
1790 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1791 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1794 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1795 .kind = DRV_NAME,
1796 .priv_size = sizeof(struct net_vrf),
1798 .get_size = vrf_nl_getsize,
1799 .policy = vrf_nl_policy,
1800 .validate = vrf_validate,
1801 .fill_info = vrf_fillinfo,
1803 .get_slave_size = vrf_get_slave_size,
1804 .fill_slave_info = vrf_fill_slave_info,
1806 .newlink = vrf_newlink,
1807 .dellink = vrf_dellink,
1808 .setup = vrf_setup,
1809 .maxtype = IFLA_VRF_MAX,
1812 static int vrf_device_event(struct notifier_block *unused,
1813 unsigned long event, void *ptr)
1815 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1817 /* only care about unregister events to drop slave references */
1818 if (event == NETDEV_UNREGISTER) {
1819 struct net_device *vrf_dev;
1821 if (!netif_is_l3_slave(dev))
1822 goto out;
1824 vrf_dev = netdev_master_upper_dev_get(dev);
1825 vrf_del_slave(vrf_dev, dev);
1827 out:
1828 return NOTIFY_DONE;
1831 static struct notifier_block vrf_notifier_block __read_mostly = {
1832 .notifier_call = vrf_device_event,
1835 static int vrf_map_init(struct vrf_map *vmap)
1837 spin_lock_init(&vmap->vmap_lock);
1838 hash_init(vmap->ht);
1840 vmap->strict_mode = false;
1842 return 0;
1845 #ifdef CONFIG_SYSCTL
1846 static bool vrf_strict_mode(struct vrf_map *vmap)
1848 bool strict_mode;
1850 vrf_map_lock(vmap);
1851 strict_mode = vmap->strict_mode;
1852 vrf_map_unlock(vmap);
1854 return strict_mode;
1857 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1859 bool *cur_mode;
1860 int res = 0;
1862 vrf_map_lock(vmap);
1864 cur_mode = &vmap->strict_mode;
1865 if (*cur_mode == new_mode)
1866 goto unlock;
1868 if (*cur_mode) {
1869 /* disable strict mode */
1870 *cur_mode = false;
1871 } else {
1872 if (vmap->shared_tables) {
1873 /* we cannot allow strict_mode because there are some
1874 * vrfs that share one or more tables.
1876 res = -EBUSY;
1877 goto unlock;
1880 /* no tables are shared among vrfs, so we can go back
1881 * to 1:1 association between a vrf with its table.
1883 *cur_mode = true;
1886 unlock:
1887 vrf_map_unlock(vmap);
1889 return res;
1892 static int vrf_shared_table_handler(const struct ctl_table *table, int write,
1893 void *buffer, size_t *lenp, loff_t *ppos)
1895 struct net *net = (struct net *)table->extra1;
1896 struct vrf_map *vmap = netns_vrf_map(net);
1897 int proc_strict_mode = 0;
1898 struct ctl_table tmp = {
1899 .procname = table->procname,
1900 .data = &proc_strict_mode,
1901 .maxlen = sizeof(int),
1902 .mode = table->mode,
1903 .extra1 = SYSCTL_ZERO,
1904 .extra2 = SYSCTL_ONE,
1906 int ret;
1908 if (!write)
1909 proc_strict_mode = vrf_strict_mode(vmap);
1911 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1913 if (write && ret == 0)
1914 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1916 return ret;
1919 static const struct ctl_table vrf_table[] = {
1921 .procname = "strict_mode",
1922 .data = NULL,
1923 .maxlen = sizeof(int),
1924 .mode = 0644,
1925 .proc_handler = vrf_shared_table_handler,
1926 /* set by the vrf_netns_init */
1927 .extra1 = NULL,
1931 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1933 struct ctl_table *table;
1935 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1936 if (!table)
1937 return -ENOMEM;
1939 /* init the extra1 parameter with the reference to current netns */
1940 table[0].extra1 = net;
1942 nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1943 ARRAY_SIZE(vrf_table));
1944 if (!nn_vrf->ctl_hdr) {
1945 kfree(table);
1946 return -ENOMEM;
1949 return 0;
1952 static void vrf_netns_exit_sysctl(struct net *net)
1954 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1955 const struct ctl_table *table;
1957 table = nn_vrf->ctl_hdr->ctl_table_arg;
1958 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1959 kfree(table);
1961 #else
1962 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1964 return 0;
1967 static void vrf_netns_exit_sysctl(struct net *net)
1970 #endif
1972 /* Initialize per network namespace state */
1973 static int __net_init vrf_netns_init(struct net *net)
1975 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1977 nn_vrf->add_fib_rules = true;
1978 vrf_map_init(&nn_vrf->vmap);
1980 return vrf_netns_init_sysctl(net, nn_vrf);
1983 static void __net_exit vrf_netns_exit(struct net *net)
1985 vrf_netns_exit_sysctl(net);
1988 static struct pernet_operations vrf_net_ops __net_initdata = {
1989 .init = vrf_netns_init,
1990 .exit = vrf_netns_exit,
1991 .id = &vrf_net_id,
1992 .size = sizeof(struct netns_vrf),
1995 static int __init vrf_init_module(void)
1997 int rc;
1999 register_netdevice_notifier(&vrf_notifier_block);
2001 rc = register_pernet_subsys(&vrf_net_ops);
2002 if (rc < 0)
2003 goto error;
2005 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2006 vrf_ifindex_lookup_by_table_id);
2007 if (rc < 0)
2008 goto unreg_pernet;
2010 rc = rtnl_link_register(&vrf_link_ops);
2011 if (rc < 0)
2012 goto table_lookup_unreg;
2014 return 0;
2016 table_lookup_unreg:
2017 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2018 vrf_ifindex_lookup_by_table_id);
2020 unreg_pernet:
2021 unregister_pernet_subsys(&vrf_net_ops);
2023 error:
2024 unregister_netdevice_notifier(&vrf_notifier_block);
2025 return rc;
2028 module_init(vrf_init_module);
2029 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2030 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2031 MODULE_LICENSE("GPL");
2032 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2033 MODULE_VERSION(DRV_VERSION);