1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* FarSync WAN driver for Linux (2.6.x kernel version)
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
9 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
10 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/version.h>
18 #include <linux/pci.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/ioport.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
26 #include <linux/hdlc.h>
28 #include <linux/uaccess.h>
34 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
35 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
36 MODULE_LICENSE("GPL");
38 /* Driver configuration and global parameters
39 * ==========================================
42 /* Number of ports (per card) and cards supported
44 #define FST_MAX_PORTS 4
45 #define FST_MAX_CARDS 32
47 /* Default parameters for the link
49 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
52 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
53 * of frames on the way down to the card
54 * so that we can keep the card busy
55 * and maximise throughput
57 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
60 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
61 * control from network layer
63 #define FST_MAX_MTU 8000 /* Huge but possible */
64 #define FST_DEF_MTU 1500 /* Common sane value */
66 #define FST_TX_TIMEOUT (2 * HZ)
69 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
71 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
74 /* Modules parameters and associated variables
76 static int fst_txq_low
= FST_LOW_WATER_MARK
;
77 static int fst_txq_high
= FST_HIGH_WATER_MARK
;
78 static int fst_max_reads
= 7;
79 static int fst_excluded_cards
;
80 static int fst_excluded_list
[FST_MAX_CARDS
];
82 module_param(fst_txq_low
, int, 0);
83 module_param(fst_txq_high
, int, 0);
84 module_param(fst_max_reads
, int, 0);
85 module_param(fst_excluded_cards
, int, 0);
86 module_param_array(fst_excluded_list
, int, NULL
, 0);
88 /* Card shared memory layout
89 * =========================
93 /* This information is derived in part from the FarSite FarSync Smc.h
94 * file. Unfortunately various name clashes and the non-portability of the
95 * bit field declarations in that file have meant that I have chosen to
96 * recreate the information here.
98 * The SMC (Shared Memory Configuration) has a version number that is
99 * incremented every time there is a significant change. This number can
100 * be used to check that we have not got out of step with the firmware
101 * contained in the .CDE files.
103 #define SMC_VERSION 24
105 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
107 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
108 * configuration structure
110 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
114 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
115 #define LEN_RX_BUFFER 8192
117 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
118 #define LEN_SMALL_RX_BUFFER 256
120 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
121 #define NUM_RX_BUFFER 8
123 /* Interrupt retry time in milliseconds */
124 #define INT_RETRY_TIME 2
126 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
127 * of buffer descriptors. The structure is almost identical to that used
128 * in the LANCE Ethernet controllers. Details available as PDF from the
129 * AMD web site: https://www.amd.com/products/epd/processors/\
130 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
132 struct txdesc
{ /* Transmit descriptor */
133 volatile u16 ladr
; /* Low order address of packet. This is a
134 * linear address in the Am186 memory space
136 volatile u8 hadr
; /* High order address. Low 4 bits only, high 4
139 volatile u8 bits
; /* Status and config */
140 volatile u16 bcnt
; /* 2s complement of packet size in low 15 bits.
141 * Transmit terminal count interrupt enable in
144 u16 unused
; /* Not used in Tx */
147 struct rxdesc
{ /* Receive descriptor */
148 volatile u16 ladr
; /* Low order address of packet */
149 volatile u8 hadr
; /* High order address */
150 volatile u8 bits
; /* Status and config */
151 volatile u16 bcnt
; /* 2s complement of buffer size in low 15 bits.
152 * Receive terminal count interrupt enable in
155 volatile u16 mcnt
; /* Message byte count (15 bits) */
158 /* Convert a length into the 15 bit 2's complement */
159 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
160 /* Since we need to set the high bit to enable the completion interrupt this
161 * can be made a lot simpler
163 #define cnv_bcnt(len) (-(len))
165 /* Status and config bits for the above */
166 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
167 #define TX_STP 0x02 /* Tx: start of packet */
168 #define TX_ENP 0x01 /* Tx: end of packet */
169 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
170 #define RX_FRAM 0x20 /* Rx: framing error */
171 #define RX_OFLO 0x10 /* Rx: overflow error */
172 #define RX_CRC 0x08 /* Rx: CRC error */
173 #define RX_HBUF 0x04 /* Rx: buffer error */
174 #define RX_STP 0x02 /* Rx: start of packet */
175 #define RX_ENP 0x01 /* Rx: end of packet */
177 /* Interrupts from the card are caused by various events which are presented
178 * in a circular buffer as several events may be processed on one physical int
180 #define MAX_CIRBUFF 32
183 u8 rdindex
; /* read, then increment and wrap */
184 u8 wrindex
; /* write, then increment and wrap */
185 u8 evntbuff
[MAX_CIRBUFF
];
188 /* Interrupt event codes.
189 * Where appropriate the two low order bits indicate the port number
191 #define CTLA_CHG 0x18 /* Control signal changed */
192 #define CTLB_CHG 0x19
193 #define CTLC_CHG 0x1A
194 #define CTLD_CHG 0x1B
196 #define INIT_CPLT 0x20 /* Initialisation complete */
197 #define INIT_FAIL 0x21 /* Initialisation failed */
199 #define ABTA_SENT 0x24 /* Abort sent */
200 #define ABTB_SENT 0x25
201 #define ABTC_SENT 0x26
202 #define ABTD_SENT 0x27
204 #define TXA_UNDF 0x28 /* Transmission underflow */
205 #define TXB_UNDF 0x29
206 #define TXC_UNDF 0x2A
207 #define TXD_UNDF 0x2B
212 #define TE1_ALMA 0x30
214 /* Port physical configuration. See farsync.h for field values */
216 u16 lineInterface
; /* Physical interface type */
217 u8 x25op
; /* Unused at present */
218 u8 internalClock
; /* 1 => internal clock, 0 => external */
219 u8 transparentMode
; /* 1 => on, 0 => off */
220 u8 invertClock
; /* 0 => normal, 1 => inverted */
221 u8 padBytes
[6]; /* Padding */
222 u32 lineSpeed
; /* Speed in bps */
225 /* TE1 port physical configuration */
249 u32 receiveBufferDelay
;
250 u32 framingErrorCount
;
251 u32 codeViolationCount
;
256 u8 receiveRemoteAlarm
;
257 u8 alarmIndicationSignal
;
261 /* Finally sling all the above together into the shared memory structure.
262 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
263 * evolving under NT for some time so I guess we're stuck with it.
264 * The structure starts at offset SMC_BASE.
265 * See farsync.h for some field values.
268 /* DMA descriptor rings */
269 struct rxdesc rxDescrRing
[FST_MAX_PORTS
][NUM_RX_BUFFER
];
270 struct txdesc txDescrRing
[FST_MAX_PORTS
][NUM_TX_BUFFER
];
272 /* Obsolete small buffers */
273 u8 smallRxBuffer
[FST_MAX_PORTS
][NUM_RX_BUFFER
][LEN_SMALL_RX_BUFFER
];
274 u8 smallTxBuffer
[FST_MAX_PORTS
][NUM_TX_BUFFER
][LEN_SMALL_TX_BUFFER
];
276 u8 taskStatus
; /* 0x00 => initialising, 0x01 => running,
280 u8 interruptHandshake
; /* Set to 0x01 by adapter to signal interrupt,
281 * set to 0xEE by host to acknowledge interrupt
284 u16 smcVersion
; /* Must match SMC_VERSION */
286 u32 smcFirmwareVersion
; /* 0xIIVVRRBB where II = product ID, VV = major
287 * version, RR = revision and BB = build
290 u16 txa_done
; /* Obsolete completion flags */
299 u16 mailbox
[4]; /* Diagnostics mailbox. Not used */
301 struct cirbuff interruptEvent
; /* interrupt causes */
303 u32 v24IpSts
[FST_MAX_PORTS
]; /* V.24 control input status */
304 u32 v24OpSts
[FST_MAX_PORTS
]; /* V.24 control output status */
306 struct port_cfg portConfig
[FST_MAX_PORTS
];
308 u16 clockStatus
[FST_MAX_PORTS
]; /* lsb: 0=> present, 1=> absent */
310 u16 cableStatus
; /* lsb: 0=> present, 1=> absent */
312 u16 txDescrIndex
[FST_MAX_PORTS
]; /* transmit descriptor ring index */
313 u16 rxDescrIndex
[FST_MAX_PORTS
]; /* receive descriptor ring index */
315 u16 portMailbox
[FST_MAX_PORTS
][2]; /* command, modifier */
316 u16 cardMailbox
[4]; /* Not used */
318 /* Number of times the card thinks the host has
319 * missed an interrupt by not acknowledging
320 * within 2mS (I guess NT has problems)
322 u32 interruptRetryCount
;
324 /* Driver private data used as an ID. We'll not
325 * use this as I'd rather keep such things
326 * in main memory rather than on the PCI bus
328 u32 portHandle
[FST_MAX_PORTS
];
330 /* Count of Tx underflows for stats */
331 u32 transmitBufferUnderflow
[FST_MAX_PORTS
];
333 /* Debounced V.24 control input status */
334 u32 v24DebouncedSts
[FST_MAX_PORTS
];
336 /* Adapter debounce timers. Don't touch */
337 u32 ctsTimer
[FST_MAX_PORTS
];
338 u32 ctsTimerRun
[FST_MAX_PORTS
];
339 u32 dcdTimer
[FST_MAX_PORTS
];
340 u32 dcdTimerRun
[FST_MAX_PORTS
];
342 u32 numberOfPorts
; /* Number of ports detected at startup */
346 u16 cardMode
; /* Bit-mask to enable features:
347 * Bit 0: 1 enables LED identify mode
350 u16 portScheduleOffset
;
352 struct su_config suConfig
; /* TE1 Bits */
353 struct su_status suStatus
;
355 u32 endOfSmcSignature
; /* endOfSmcSignature MUST be the last member of
356 * the structure and marks the end of shared
357 * memory. Adapter code initializes it as
362 /* endOfSmcSignature value */
363 #define END_SIG 0x12345678
365 /* Mailbox values. (portMailbox) */
366 #define NOP 0 /* No operation */
367 #define ACK 1 /* Positive acknowledgement to PC driver */
368 #define NAK 2 /* Negative acknowledgement to PC driver */
369 #define STARTPORT 3 /* Start an HDLC port */
370 #define STOPPORT 4 /* Stop an HDLC port */
371 #define ABORTTX 5 /* Abort the transmitter for a port */
372 #define SETV24O 6 /* Set V24 outputs */
374 /* PLX Chip Register Offsets */
375 #define CNTRL_9052 0x50 /* Control Register */
376 #define CNTRL_9054 0x6c /* Control Register */
378 #define INTCSR_9052 0x4c /* Interrupt control/status register */
379 #define INTCSR_9054 0x68 /* Interrupt control/status register */
381 /* 9054 DMA Registers */
382 /* Note that we will be using DMA Channel 0 for copying rx data
383 * and Channel 1 for copying tx data
385 #define DMAMODE0 0x80
386 #define DMAPADR0 0x84
387 #define DMALADR0 0x88
390 #define DMAMODE1 0x94
391 #define DMAPADR1 0x98
392 #define DMALADR1 0x9c
401 #define DMAMARBR 0xac
403 #define FST_MIN_DMA_LEN 64
404 #define FST_RX_DMA_INT 0x01
405 #define FST_TX_DMA_INT 0x02
406 #define FST_CARD_INT 0x04
408 /* Larger buffers are positioned in memory at offset BFM_BASE */
410 u8 txBuffer
[FST_MAX_PORTS
][NUM_TX_BUFFER
][LEN_TX_BUFFER
];
411 u8 rxBuffer
[FST_MAX_PORTS
][NUM_RX_BUFFER
][LEN_RX_BUFFER
];
414 /* Calculate offset of a buffer object within the shared memory window */
415 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
419 /* Device driver private information
420 * =================================
422 /* Per port (line or channel) information
424 struct fst_port_info
{
425 struct net_device
*dev
; /* Device struct - must be first */
426 struct fst_card_info
*card
; /* Card we're associated with */
427 int index
; /* Port index on the card */
428 int hwif
; /* Line hardware (lineInterface copy) */
429 int run
; /* Port is running */
430 int mode
; /* Normal or FarSync raw */
431 int rxpos
; /* Next Rx buffer to use */
432 int txpos
; /* Next Tx buffer to use */
433 int txipos
; /* Next Tx buffer to check for free */
434 int start
; /* Indication of start/stop to network */
435 /* A sixteen entry transmit queue
437 int txqs
; /* index to get next buffer to tx */
438 int txqe
; /* index to queue next packet */
439 struct sk_buff
*txq
[FST_TXQ_DEPTH
]; /* The queue */
443 /* Per card information
445 struct fst_card_info
{
446 char __iomem
*mem
; /* Card memory mapped to kernel space */
447 char __iomem
*ctlmem
; /* Control memory for PCI cards */
448 unsigned int phys_mem
; /* Physical memory window address */
449 unsigned int phys_ctlmem
; /* Physical control memory address */
450 unsigned int irq
; /* Interrupt request line number */
451 unsigned int nports
; /* Number of serial ports */
452 unsigned int type
; /* Type index of card */
453 unsigned int state
; /* State of card */
454 spinlock_t card_lock
; /* Lock for SMP access */
455 unsigned short pci_conf
; /* PCI card config in I/O space */
457 struct fst_port_info ports
[FST_MAX_PORTS
];
458 struct pci_dev
*device
; /* Information about the pci device */
459 int card_no
; /* Inst of the card on the system */
460 int family
; /* TxP or TxU */
461 int dmarx_in_progress
;
462 int dmatx_in_progress
;
463 unsigned long int_count
;
464 unsigned long int_time_ave
;
465 void *rx_dma_handle_host
;
466 dma_addr_t rx_dma_handle_card
;
467 void *tx_dma_handle_host
;
468 dma_addr_t tx_dma_handle_card
;
469 struct sk_buff
*dma_skb_rx
;
470 struct fst_port_info
*dma_port_rx
;
471 struct fst_port_info
*dma_port_tx
;
478 /* Convert an HDLC device pointer into a port info pointer and similar */
479 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
480 #define port_to_dev(P) ((P)->dev)
482 /* Shared memory window access macros
484 * We have a nice memory based structure above, which could be directly
485 * mapped on i386 but might not work on other architectures unless we use
486 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
487 * physical offsets so we have to convert. The only saving grace is that
488 * this should all collapse back to a simple indirection eventually.
490 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
492 #define FST_RDB(C, E) (readb((C)->mem + WIN_OFFSET(E)))
493 #define FST_RDW(C, E) (readw((C)->mem + WIN_OFFSET(E)))
494 #define FST_RDL(C, E) (readl((C)->mem + WIN_OFFSET(E)))
496 #define FST_WRB(C, E, B) (writeb((B), (C)->mem + WIN_OFFSET(E)))
497 #define FST_WRW(C, E, W) (writew((W), (C)->mem + WIN_OFFSET(E)))
498 #define FST_WRL(C, E, L) (writel((L), (C)->mem + WIN_OFFSET(E)))
504 static int fst_debug_mask
= { FST_DEBUG
};
506 /* Most common debug activity is to print something if the corresponding bit
507 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
508 * support variable numbers of macro parameters. The inverted if prevents us
509 * eating someone else's else clause.
511 #define dbg(F, fmt, args...) \
513 if (fst_debug_mask & (F)) \
514 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
517 #define dbg(F, fmt, args...) \
520 printk(KERN_DEBUG pr_fmt(fmt), ##args); \
524 /* PCI ID lookup table
526 static const struct pci_device_id fst_pci_dev_id
[] = {
527 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T2P
, PCI_ANY_ID
,
528 PCI_ANY_ID
, 0, 0, FST_TYPE_T2P
},
530 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T4P
, PCI_ANY_ID
,
531 PCI_ANY_ID
, 0, 0, FST_TYPE_T4P
},
533 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T1U
, PCI_ANY_ID
,
534 PCI_ANY_ID
, 0, 0, FST_TYPE_T1U
},
536 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T2U
, PCI_ANY_ID
,
537 PCI_ANY_ID
, 0, 0, FST_TYPE_T2U
},
539 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T4U
, PCI_ANY_ID
,
540 PCI_ANY_ID
, 0, 0, FST_TYPE_T4U
},
542 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_TE1
, PCI_ANY_ID
,
543 PCI_ANY_ID
, 0, 0, FST_TYPE_TE1
},
545 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_TE1C
, PCI_ANY_ID
,
546 PCI_ANY_ID
, 0, 0, FST_TYPE_TE1
},
550 MODULE_DEVICE_TABLE(pci
, fst_pci_dev_id
);
552 /* Device Driver Work Queues
554 * So that we don't spend too much time processing events in the
555 * Interrupt Service routine, we will declare a work queue per Card
556 * and make the ISR schedule a task in the queue for later execution.
557 * In the 2.4 Kernel we used to use the immediate queue for BH's
558 * Now that they are gone, tasklets seem to be much better than work
562 static void do_bottom_half_tx(struct fst_card_info
*card
);
563 static void do_bottom_half_rx(struct fst_card_info
*card
);
564 static void fst_process_tx_work_q(struct tasklet_struct
*unused
);
565 static void fst_process_int_work_q(struct tasklet_struct
*unused
);
567 static DECLARE_TASKLET(fst_tx_task
, fst_process_tx_work_q
);
568 static DECLARE_TASKLET(fst_int_task
, fst_process_int_work_q
);
570 static struct fst_card_info
*fst_card_array
[FST_MAX_CARDS
];
571 static DEFINE_SPINLOCK(fst_work_q_lock
);
572 static u64 fst_work_txq
;
573 static u64 fst_work_intq
;
576 fst_q_work_item(u64
*queue
, int card_index
)
581 /* Grab the queue exclusively
583 spin_lock_irqsave(&fst_work_q_lock
, flags
);
585 /* Making an entry in the queue is simply a matter of setting
586 * a bit for the card indicating that there is work to do in the
587 * bottom half for the card. Note the limitation of 64 cards.
588 * That ought to be enough
590 mask
= (u64
)1 << card_index
;
592 spin_unlock_irqrestore(&fst_work_q_lock
, flags
);
596 fst_process_tx_work_q(struct tasklet_struct
*unused
)
602 /* Grab the queue exclusively
604 dbg(DBG_TX
, "fst_process_tx_work_q\n");
605 spin_lock_irqsave(&fst_work_q_lock
, flags
);
606 work_txq
= fst_work_txq
;
608 spin_unlock_irqrestore(&fst_work_q_lock
, flags
);
610 /* Call the bottom half for each card with work waiting
612 for (i
= 0; i
< FST_MAX_CARDS
; i
++) {
613 if (work_txq
& 0x01) {
614 if (fst_card_array
[i
]) {
615 dbg(DBG_TX
, "Calling tx bh for card %d\n", i
);
616 do_bottom_half_tx(fst_card_array
[i
]);
619 work_txq
= work_txq
>> 1;
624 fst_process_int_work_q(struct tasklet_struct
*unused
)
630 /* Grab the queue exclusively
632 dbg(DBG_INTR
, "fst_process_int_work_q\n");
633 spin_lock_irqsave(&fst_work_q_lock
, flags
);
634 work_intq
= fst_work_intq
;
636 spin_unlock_irqrestore(&fst_work_q_lock
, flags
);
638 /* Call the bottom half for each card with work waiting
640 for (i
= 0; i
< FST_MAX_CARDS
; i
++) {
641 if (work_intq
& 0x01) {
642 if (fst_card_array
[i
]) {
644 "Calling rx & tx bh for card %d\n", i
);
645 do_bottom_half_rx(fst_card_array
[i
]);
646 do_bottom_half_tx(fst_card_array
[i
]);
649 work_intq
= work_intq
>> 1;
653 /* Card control functions
654 * ======================
656 /* Place the processor in reset state
658 * Used to be a simple write to card control space but a glitch in the latest
659 * AMD Am186CH processor means that we now have to do it by asserting and de-
660 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
661 * at offset 9052_CNTRL. Note the updates for the TXU.
664 fst_cpureset(struct fst_card_info
*card
)
666 unsigned char interrupt_line_register
;
669 if (card
->family
== FST_FAMILY_TXU
) {
670 if (pci_read_config_byte
671 (card
->device
, PCI_INTERRUPT_LINE
, &interrupt_line_register
)) {
673 "Error in reading interrupt line register\n");
675 /* Assert PLX software reset and Am186 hardware reset
676 * and then deassert the PLX software reset but 186 still in reset
678 outw(0x440f, card
->pci_conf
+ CNTRL_9054
+ 2);
679 outw(0x040f, card
->pci_conf
+ CNTRL_9054
+ 2);
680 /* We are delaying here to allow the 9054 to reset itself
682 usleep_range(10, 20);
683 outw(0x240f, card
->pci_conf
+ CNTRL_9054
+ 2);
684 /* We are delaying here to allow the 9054 to reload its eeprom
686 usleep_range(10, 20);
687 outw(0x040f, card
->pci_conf
+ CNTRL_9054
+ 2);
689 if (pci_write_config_byte
690 (card
->device
, PCI_INTERRUPT_LINE
, interrupt_line_register
)) {
692 "Error in writing interrupt line register\n");
696 regval
= inl(card
->pci_conf
+ CNTRL_9052
);
698 outl(regval
| 0x40000000, card
->pci_conf
+ CNTRL_9052
);
699 outl(regval
& ~0x40000000, card
->pci_conf
+ CNTRL_9052
);
703 /* Release the processor from reset
706 fst_cpurelease(struct fst_card_info
*card
)
708 if (card
->family
== FST_FAMILY_TXU
) {
709 /* Force posted writes to complete
711 (void)readb(card
->mem
);
713 /* Release LRESET DO = 1
714 * Then release Local Hold, DO = 1
716 outw(0x040e, card
->pci_conf
+ CNTRL_9054
+ 2);
717 outw(0x040f, card
->pci_conf
+ CNTRL_9054
+ 2);
719 (void)readb(card
->ctlmem
);
723 /* Clear the cards interrupt flag
726 fst_clear_intr(struct fst_card_info
*card
)
728 if (card
->family
== FST_FAMILY_TXU
) {
729 (void)readb(card
->ctlmem
);
731 /* Poke the appropriate PLX chip register (same as enabling interrupts)
733 outw(0x0543, card
->pci_conf
+ INTCSR_9052
);
737 /* Enable card interrupts
740 fst_enable_intr(struct fst_card_info
*card
)
742 if (card
->family
== FST_FAMILY_TXU
)
743 outl(0x0f0c0900, card
->pci_conf
+ INTCSR_9054
);
745 outw(0x0543, card
->pci_conf
+ INTCSR_9052
);
748 /* Disable card interrupts
751 fst_disable_intr(struct fst_card_info
*card
)
753 if (card
->family
== FST_FAMILY_TXU
)
754 outl(0x00000000, card
->pci_conf
+ INTCSR_9054
);
756 outw(0x0000, card
->pci_conf
+ INTCSR_9052
);
759 /* Process the result of trying to pass a received frame up the stack
762 fst_process_rx_status(int rx_status
, char *name
)
767 /* Nothing to do here
773 dbg(DBG_ASS
, "%s: Received packet dropped\n", name
);
779 /* Initilaise DMA for PLX 9054
782 fst_init_dma(struct fst_card_info
*card
)
784 /* This is only required for the PLX 9054
786 if (card
->family
== FST_FAMILY_TXU
) {
787 pci_set_master(card
->device
);
788 outl(0x00020441, card
->pci_conf
+ DMAMODE0
);
789 outl(0x00020441, card
->pci_conf
+ DMAMODE1
);
790 outl(0x0, card
->pci_conf
+ DMATHR
);
794 /* Tx dma complete interrupt
797 fst_tx_dma_complete(struct fst_card_info
*card
, struct fst_port_info
*port
,
800 struct net_device
*dev
= port_to_dev(port
);
802 /* Everything is now set, just tell the card to go
804 dbg(DBG_TX
, "fst_tx_dma_complete\n");
805 FST_WRB(card
, txDescrRing
[port
->index
][txpos
].bits
,
806 DMA_OWN
| TX_STP
| TX_ENP
);
807 dev
->stats
.tx_packets
++;
808 dev
->stats
.tx_bytes
+= len
;
809 netif_trans_update(dev
);
812 /* Mark it for our own raw sockets interface
814 static __be16
farsync_type_trans(struct sk_buff
*skb
, struct net_device
*dev
)
817 skb_reset_mac_header(skb
);
818 skb
->pkt_type
= PACKET_HOST
;
819 return htons(ETH_P_CUST
);
822 /* Rx dma complete interrupt
825 fst_rx_dma_complete(struct fst_card_info
*card
, struct fst_port_info
*port
,
826 int len
, struct sk_buff
*skb
, int rxp
)
828 struct net_device
*dev
= port_to_dev(port
);
832 dbg(DBG_TX
, "fst_rx_dma_complete\n");
834 skb_put_data(skb
, card
->rx_dma_handle_host
, len
);
836 /* Reset buffer descriptor */
837 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
840 dev
->stats
.rx_packets
++;
841 dev
->stats
.rx_bytes
+= len
;
844 dbg(DBG_RX
, "Pushing the frame up the stack\n");
845 if (port
->mode
== FST_RAW
)
846 skb
->protocol
= farsync_type_trans(skb
, dev
);
848 skb
->protocol
= hdlc_type_trans(skb
, dev
);
849 rx_status
= netif_rx(skb
);
850 fst_process_rx_status(rx_status
, port_to_dev(port
)->name
);
851 if (rx_status
== NET_RX_DROP
)
852 dev
->stats
.rx_dropped
++;
855 /* Receive a frame through the DMA
858 fst_rx_dma(struct fst_card_info
*card
, dma_addr_t dma
, u32 mem
, int len
)
860 /* This routine will setup the DMA and start it
863 dbg(DBG_RX
, "In fst_rx_dma %x %x %d\n", (u32
)dma
, mem
, len
);
864 if (card
->dmarx_in_progress
)
865 dbg(DBG_ASS
, "In fst_rx_dma while dma in progress\n");
867 outl(dma
, card
->pci_conf
+ DMAPADR0
); /* Copy to here */
868 outl(mem
, card
->pci_conf
+ DMALADR0
); /* from here */
869 outl(len
, card
->pci_conf
+ DMASIZ0
); /* for this length */
870 outl(0x00000000c, card
->pci_conf
+ DMADPR0
); /* In this direction */
872 /* We use the dmarx_in_progress flag to flag the channel as busy
874 card
->dmarx_in_progress
= 1;
875 outb(0x03, card
->pci_conf
+ DMACSR0
); /* Start the transfer */
878 /* Send a frame through the DMA
881 fst_tx_dma(struct fst_card_info
*card
, dma_addr_t dma
, u32 mem
, int len
)
883 /* This routine will setup the DMA and start it.
886 dbg(DBG_TX
, "In fst_tx_dma %x %x %d\n", (u32
)dma
, mem
, len
);
887 if (card
->dmatx_in_progress
)
888 dbg(DBG_ASS
, "In fst_tx_dma while dma in progress\n");
890 outl(dma
, card
->pci_conf
+ DMAPADR1
); /* Copy from here */
891 outl(mem
, card
->pci_conf
+ DMALADR1
); /* to here */
892 outl(len
, card
->pci_conf
+ DMASIZ1
); /* for this length */
893 outl(0x000000004, card
->pci_conf
+ DMADPR1
); /* In this direction */
895 /* We use the dmatx_in_progress to flag the channel as busy
897 card
->dmatx_in_progress
= 1;
898 outb(0x03, card
->pci_conf
+ DMACSR1
); /* Start the transfer */
901 /* Issue a Mailbox command for a port.
902 * Note we issue them on a fire and forget basis, not expecting to see an
903 * error and not waiting for completion.
906 fst_issue_cmd(struct fst_port_info
*port
, unsigned short cmd
)
908 struct fst_card_info
*card
;
909 unsigned short mbval
;
914 spin_lock_irqsave(&card
->card_lock
, flags
);
915 mbval
= FST_RDW(card
, portMailbox
[port
->index
][0]);
918 /* Wait for any previous command to complete */
919 while (mbval
> NAK
) {
920 spin_unlock_irqrestore(&card
->card_lock
, flags
);
921 schedule_timeout_uninterruptible(1);
922 spin_lock_irqsave(&card
->card_lock
, flags
);
924 if (++safety
> 2000) {
925 pr_err("Mailbox safety timeout\n");
929 mbval
= FST_RDW(card
, portMailbox
[port
->index
][0]);
932 dbg(DBG_CMD
, "Mailbox clear after %d jiffies\n", safety
);
935 dbg(DBG_CMD
, "issue_cmd: previous command was NAK'd\n");
937 FST_WRW(card
, portMailbox
[port
->index
][0], cmd
);
939 if (cmd
== ABORTTX
|| cmd
== STARTPORT
) {
945 spin_unlock_irqrestore(&card
->card_lock
, flags
);
948 /* Port output signals control
951 fst_op_raise(struct fst_port_info
*port
, unsigned int outputs
)
953 outputs
|= FST_RDL(port
->card
, v24OpSts
[port
->index
]);
954 FST_WRL(port
->card
, v24OpSts
[port
->index
], outputs
);
957 fst_issue_cmd(port
, SETV24O
);
961 fst_op_lower(struct fst_port_info
*port
, unsigned int outputs
)
963 outputs
= ~outputs
& FST_RDL(port
->card
, v24OpSts
[port
->index
]);
964 FST_WRL(port
->card
, v24OpSts
[port
->index
], outputs
);
967 fst_issue_cmd(port
, SETV24O
);
970 /* Setup port Rx buffers
973 fst_rx_config(struct fst_port_info
*port
)
979 struct fst_card_info
*card
;
983 spin_lock_irqsave(&card
->card_lock
, flags
);
984 for (i
= 0; i
< NUM_RX_BUFFER
; i
++) {
985 offset
= BUF_OFFSET(rxBuffer
[pi
][i
][0]);
987 FST_WRW(card
, rxDescrRing
[pi
][i
].ladr
, (u16
)offset
);
988 FST_WRB(card
, rxDescrRing
[pi
][i
].hadr
, (u8
)(offset
>> 16));
989 FST_WRW(card
, rxDescrRing
[pi
][i
].bcnt
, cnv_bcnt(LEN_RX_BUFFER
));
990 FST_WRW(card
, rxDescrRing
[pi
][i
].mcnt
, LEN_RX_BUFFER
);
991 FST_WRB(card
, rxDescrRing
[pi
][i
].bits
, DMA_OWN
);
994 spin_unlock_irqrestore(&card
->card_lock
, flags
);
997 /* Setup port Tx buffers
1000 fst_tx_config(struct fst_port_info
*port
)
1004 unsigned int offset
;
1005 unsigned long flags
;
1006 struct fst_card_info
*card
;
1010 spin_lock_irqsave(&card
->card_lock
, flags
);
1011 for (i
= 0; i
< NUM_TX_BUFFER
; i
++) {
1012 offset
= BUF_OFFSET(txBuffer
[pi
][i
][0]);
1014 FST_WRW(card
, txDescrRing
[pi
][i
].ladr
, (u16
)offset
);
1015 FST_WRB(card
, txDescrRing
[pi
][i
].hadr
, (u8
)(offset
>> 16));
1016 FST_WRW(card
, txDescrRing
[pi
][i
].bcnt
, 0);
1017 FST_WRB(card
, txDescrRing
[pi
][i
].bits
, 0);
1022 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1025 /* TE1 Alarm change interrupt event
1028 fst_intr_te1_alarm(struct fst_card_info
*card
, struct fst_port_info
*port
)
1034 los
= FST_RDB(card
, suStatus
.lossOfSignal
);
1035 rra
= FST_RDB(card
, suStatus
.receiveRemoteAlarm
);
1036 ais
= FST_RDB(card
, suStatus
.alarmIndicationSignal
);
1041 if (netif_carrier_ok(port_to_dev(port
))) {
1042 dbg(DBG_INTR
, "Net carrier off\n");
1043 netif_carrier_off(port_to_dev(port
));
1048 if (!netif_carrier_ok(port_to_dev(port
))) {
1049 dbg(DBG_INTR
, "Net carrier on\n");
1050 netif_carrier_on(port_to_dev(port
));
1055 dbg(DBG_INTR
, "Assert LOS Alarm\n");
1057 dbg(DBG_INTR
, "De-assert LOS Alarm\n");
1059 dbg(DBG_INTR
, "Assert RRA Alarm\n");
1061 dbg(DBG_INTR
, "De-assert RRA Alarm\n");
1064 dbg(DBG_INTR
, "Assert AIS Alarm\n");
1066 dbg(DBG_INTR
, "De-assert AIS Alarm\n");
1069 /* Control signal change interrupt event
1072 fst_intr_ctlchg(struct fst_card_info
*card
, struct fst_port_info
*port
)
1076 signals
= FST_RDL(card
, v24DebouncedSts
[port
->index
]);
1078 if (signals
& ((port
->hwif
== X21
|| port
->hwif
== X21D
)
1079 ? IPSTS_INDICATE
: IPSTS_DCD
)) {
1080 if (!netif_carrier_ok(port_to_dev(port
))) {
1081 dbg(DBG_INTR
, "DCD active\n");
1082 netif_carrier_on(port_to_dev(port
));
1085 if (netif_carrier_ok(port_to_dev(port
))) {
1086 dbg(DBG_INTR
, "DCD lost\n");
1087 netif_carrier_off(port_to_dev(port
));
1095 fst_log_rx_error(struct fst_card_info
*card
, struct fst_port_info
*port
,
1096 unsigned char dmabits
, int rxp
, unsigned short len
)
1098 struct net_device
*dev
= port_to_dev(port
);
1100 /* Increment the appropriate error counter
1102 dev
->stats
.rx_errors
++;
1103 if (dmabits
& RX_OFLO
) {
1104 dev
->stats
.rx_fifo_errors
++;
1105 dbg(DBG_ASS
, "Rx fifo error on card %d port %d buffer %d\n",
1106 card
->card_no
, port
->index
, rxp
);
1108 if (dmabits
& RX_CRC
) {
1109 dev
->stats
.rx_crc_errors
++;
1110 dbg(DBG_ASS
, "Rx crc error on card %d port %d\n",
1111 card
->card_no
, port
->index
);
1113 if (dmabits
& RX_FRAM
) {
1114 dev
->stats
.rx_frame_errors
++;
1115 dbg(DBG_ASS
, "Rx frame error on card %d port %d\n",
1116 card
->card_no
, port
->index
);
1118 if (dmabits
== (RX_STP
| RX_ENP
)) {
1119 dev
->stats
.rx_length_errors
++;
1120 dbg(DBG_ASS
, "Rx length error (%d) on card %d port %d\n",
1121 len
, card
->card_no
, port
->index
);
1125 /* Rx Error Recovery
1128 fst_recover_rx_error(struct fst_card_info
*card
, struct fst_port_info
*port
,
1129 unsigned char dmabits
, int rxp
, unsigned short len
)
1135 /* Discard buffer descriptors until we see the start of the
1136 * next frame. Note that for long frames this could be in
1137 * a subsequent interrupt.
1140 while ((dmabits
& (DMA_OWN
| RX_STP
)) == 0) {
1141 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1142 rxp
= (rxp
+ 1) % NUM_RX_BUFFER
;
1143 if (++i
> NUM_RX_BUFFER
) {
1144 dbg(DBG_ASS
, "intr_rx: Discarding more bufs"
1148 dmabits
= FST_RDB(card
, rxDescrRing
[pi
][rxp
].bits
);
1149 dbg(DBG_ASS
, "DMA Bits of next buffer was %x\n", dmabits
);
1151 dbg(DBG_ASS
, "There were %d subsequent buffers in error\n", i
);
1153 /* Discard the terminal buffer */
1154 if (!(dmabits
& DMA_OWN
)) {
1155 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1156 rxp
= (rxp
+ 1) % NUM_RX_BUFFER
;
1161 /* Rx complete interrupt
1164 fst_intr_rx(struct fst_card_info
*card
, struct fst_port_info
*port
)
1166 unsigned char dmabits
;
1171 struct sk_buff
*skb
;
1172 struct net_device
*dev
= port_to_dev(port
);
1174 /* Check we have a buffer to process */
1177 dmabits
= FST_RDB(card
, rxDescrRing
[pi
][rxp
].bits
);
1178 if (dmabits
& DMA_OWN
) {
1179 dbg(DBG_RX
| DBG_INTR
, "intr_rx: No buffer port %d pos %d\n",
1183 if (card
->dmarx_in_progress
)
1186 /* Get buffer length */
1187 len
= FST_RDW(card
, rxDescrRing
[pi
][rxp
].mcnt
);
1188 /* Discard the CRC */
1191 /* This seems to happen on the TE1 interface sometimes
1192 * so throw the frame away and log the event.
1194 pr_err("Frame received with 0 length. Card %d Port %d\n",
1195 card
->card_no
, port
->index
);
1196 /* Return descriptor to card */
1197 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1199 rxp
= (rxp
+ 1) % NUM_RX_BUFFER
;
1204 /* Check buffer length and for other errors. We insist on one packet
1205 * in one buffer. This simplifies things greatly and since we've
1206 * allocated 8K it shouldn't be a real world limitation
1208 dbg(DBG_RX
, "intr_rx: %d,%d: flags %x len %d\n", pi
, rxp
, dmabits
, len
);
1209 if (dmabits
!= (RX_STP
| RX_ENP
) || len
> LEN_RX_BUFFER
- 2) {
1210 fst_log_rx_error(card
, port
, dmabits
, rxp
, len
);
1211 fst_recover_rx_error(card
, port
, dmabits
, rxp
, len
);
1216 skb
= dev_alloc_skb(len
);
1218 dbg(DBG_RX
, "intr_rx: can't allocate buffer\n");
1220 dev
->stats
.rx_dropped
++;
1222 /* Return descriptor to card */
1223 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1225 rxp
= (rxp
+ 1) % NUM_RX_BUFFER
;
1230 /* We know the length we need to receive, len.
1231 * It's not worth using the DMA for reads of less than
1235 if (len
< FST_MIN_DMA_LEN
|| card
->family
== FST_FAMILY_TXP
) {
1236 memcpy_fromio(skb_put(skb
, len
),
1237 card
->mem
+ BUF_OFFSET(rxBuffer
[pi
][rxp
][0]),
1240 /* Reset buffer descriptor */
1241 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1244 dev
->stats
.rx_packets
++;
1245 dev
->stats
.rx_bytes
+= len
;
1248 dbg(DBG_RX
, "Pushing frame up the stack\n");
1249 if (port
->mode
== FST_RAW
)
1250 skb
->protocol
= farsync_type_trans(skb
, dev
);
1252 skb
->protocol
= hdlc_type_trans(skb
, dev
);
1253 rx_status
= netif_rx(skb
);
1254 fst_process_rx_status(rx_status
, port_to_dev(port
)->name
);
1255 if (rx_status
== NET_RX_DROP
)
1256 dev
->stats
.rx_dropped
++;
1258 card
->dma_skb_rx
= skb
;
1259 card
->dma_port_rx
= port
;
1260 card
->dma_len_rx
= len
;
1261 card
->dma_rxpos
= rxp
;
1262 fst_rx_dma(card
, card
->rx_dma_handle_card
,
1263 BUF_OFFSET(rxBuffer
[pi
][rxp
][0]), len
);
1265 if (rxp
!= port
->rxpos
) {
1266 dbg(DBG_ASS
, "About to increment rxpos by more than 1\n");
1267 dbg(DBG_ASS
, "rxp = %d rxpos = %d\n", rxp
, port
->rxpos
);
1269 rxp
= (rxp
+ 1) % NUM_RX_BUFFER
;
1273 /* The bottom half to the ISR
1278 do_bottom_half_tx(struct fst_card_info
*card
)
1280 struct fst_port_info
*port
;
1283 struct sk_buff
*skb
;
1284 unsigned long flags
;
1285 struct net_device
*dev
;
1287 /* Find a free buffer for the transmit
1288 * Step through each port on this card
1291 dbg(DBG_TX
, "do_bottom_half_tx\n");
1292 for (pi
= 0, port
= card
->ports
; pi
< card
->nports
; pi
++, port
++) {
1296 dev
= port_to_dev(port
);
1297 while (!(FST_RDB(card
, txDescrRing
[pi
][port
->txpos
].bits
) &
1299 !(card
->dmatx_in_progress
)) {
1300 /* There doesn't seem to be a txdone event per-se
1301 * We seem to have to deduce it, by checking the DMA_OWN
1302 * bit on the next buffer we think we can use
1304 spin_lock_irqsave(&card
->card_lock
, flags
);
1305 txq_length
= port
->txqe
- port
->txqs
;
1306 if (txq_length
< 0) {
1307 /* This is the case where one has wrapped and the
1308 * maths gives us a negative number
1310 txq_length
= txq_length
+ FST_TXQ_DEPTH
;
1312 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1313 if (txq_length
> 0) {
1314 /* There is something to send
1316 spin_lock_irqsave(&card
->card_lock
, flags
);
1317 skb
= port
->txq
[port
->txqs
];
1319 if (port
->txqs
== FST_TXQ_DEPTH
)
1322 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1323 /* copy the data and set the required indicators on the
1326 FST_WRW(card
, txDescrRing
[pi
][port
->txpos
].bcnt
,
1327 cnv_bcnt(skb
->len
));
1328 if (skb
->len
< FST_MIN_DMA_LEN
||
1329 card
->family
== FST_FAMILY_TXP
) {
1330 /* Enqueue the packet with normal io */
1331 memcpy_toio(card
->mem
+
1332 BUF_OFFSET(txBuffer
[pi
]
1335 skb
->data
, skb
->len
);
1337 txDescrRing
[pi
][port
->txpos
].
1339 DMA_OWN
| TX_STP
| TX_ENP
);
1340 dev
->stats
.tx_packets
++;
1341 dev
->stats
.tx_bytes
+= skb
->len
;
1342 netif_trans_update(dev
);
1344 /* Or do it through dma */
1345 memcpy(card
->tx_dma_handle_host
,
1346 skb
->data
, skb
->len
);
1347 card
->dma_port_tx
= port
;
1348 card
->dma_len_tx
= skb
->len
;
1349 card
->dma_txpos
= port
->txpos
;
1351 card
->tx_dma_handle_card
,
1352 BUF_OFFSET(txBuffer
[pi
]
1356 if (++port
->txpos
>= NUM_TX_BUFFER
)
1358 /* If we have flow control on, can we now release it?
1361 if (txq_length
< fst_txq_low
) {
1362 netif_wake_queue(port_to_dev
1369 /* Nothing to send so break out of the while loop
1378 do_bottom_half_rx(struct fst_card_info
*card
)
1380 struct fst_port_info
*port
;
1384 /* Check for rx completions on all ports on this card */
1385 dbg(DBG_RX
, "do_bottom_half_rx\n");
1386 for (pi
= 0, port
= card
->ports
; pi
< card
->nports
; pi
++, port
++) {
1390 while (!(FST_RDB(card
, rxDescrRing
[pi
][port
->rxpos
].bits
)
1391 & DMA_OWN
) && !(card
->dmarx_in_progress
)) {
1392 if (rx_count
> fst_max_reads
) {
1393 /* Don't spend forever in receive processing
1394 * Schedule another event
1396 fst_q_work_item(&fst_work_intq
, card
->card_no
);
1397 tasklet_schedule(&fst_int_task
);
1398 break; /* Leave the loop */
1400 fst_intr_rx(card
, port
);
1406 /* The interrupt service routine
1407 * Dev_id is our fst_card_info pointer
1410 fst_intr(int dummy
, void *dev_id
)
1412 struct fst_card_info
*card
= dev_id
;
1413 struct fst_port_info
*port
;
1414 int rdidx
; /* Event buffer indices */
1416 int event
; /* Actual event for processing */
1417 unsigned int dma_intcsr
= 0;
1418 unsigned int do_card_interrupt
;
1419 unsigned int int_retry_count
;
1421 /* Check to see if the interrupt was for this card
1423 * Note that the call to clear the interrupt is important
1425 dbg(DBG_INTR
, "intr: %d %p\n", card
->irq
, card
);
1426 if (card
->state
!= FST_RUNNING
) {
1427 pr_err("Interrupt received for card %d in a non running state (%d)\n",
1428 card
->card_no
, card
->state
);
1430 /* It is possible to really be running, i.e. we have re-loaded
1432 * Clear and reprime the interrupt source
1434 fst_clear_intr(card
);
1438 /* Clear and reprime the interrupt source */
1439 fst_clear_intr(card
);
1441 /* Is the interrupt for this card (handshake == 1)
1443 do_card_interrupt
= 0;
1444 if (FST_RDB(card
, interruptHandshake
) == 1) {
1445 do_card_interrupt
+= FST_CARD_INT
;
1446 /* Set the software acknowledge */
1447 FST_WRB(card
, interruptHandshake
, 0xEE);
1449 if (card
->family
== FST_FAMILY_TXU
) {
1450 /* Is it a DMA Interrupt
1452 dma_intcsr
= inl(card
->pci_conf
+ INTCSR_9054
);
1453 if (dma_intcsr
& 0x00200000) {
1454 /* DMA Channel 0 (Rx transfer complete)
1456 dbg(DBG_RX
, "DMA Rx xfer complete\n");
1457 outb(0x8, card
->pci_conf
+ DMACSR0
);
1458 fst_rx_dma_complete(card
, card
->dma_port_rx
,
1459 card
->dma_len_rx
, card
->dma_skb_rx
,
1461 card
->dmarx_in_progress
= 0;
1462 do_card_interrupt
+= FST_RX_DMA_INT
;
1464 if (dma_intcsr
& 0x00400000) {
1465 /* DMA Channel 1 (Tx transfer complete)
1467 dbg(DBG_TX
, "DMA Tx xfer complete\n");
1468 outb(0x8, card
->pci_conf
+ DMACSR1
);
1469 fst_tx_dma_complete(card
, card
->dma_port_tx
,
1470 card
->dma_len_tx
, card
->dma_txpos
);
1471 card
->dmatx_in_progress
= 0;
1472 do_card_interrupt
+= FST_TX_DMA_INT
;
1476 /* Have we been missing Interrupts
1478 int_retry_count
= FST_RDL(card
, interruptRetryCount
);
1479 if (int_retry_count
) {
1480 dbg(DBG_ASS
, "Card %d int_retry_count is %d\n",
1481 card
->card_no
, int_retry_count
);
1482 FST_WRL(card
, interruptRetryCount
, 0);
1485 if (!do_card_interrupt
)
1488 /* Scehdule the bottom half of the ISR */
1489 fst_q_work_item(&fst_work_intq
, card
->card_no
);
1490 tasklet_schedule(&fst_int_task
);
1492 /* Drain the event queue */
1493 rdidx
= FST_RDB(card
, interruptEvent
.rdindex
) & 0x1f;
1494 wridx
= FST_RDB(card
, interruptEvent
.wrindex
) & 0x1f;
1495 while (rdidx
!= wridx
) {
1496 event
= FST_RDB(card
, interruptEvent
.evntbuff
[rdidx
]);
1497 port
= &card
->ports
[event
& 0x03];
1499 dbg(DBG_INTR
, "Processing Interrupt event: %x\n", event
);
1503 dbg(DBG_INTR
, "TE1 Alarm intr\n");
1505 fst_intr_te1_alarm(card
, port
);
1513 fst_intr_ctlchg(card
, port
);
1520 dbg(DBG_TX
, "Abort complete port %d\n", port
->index
);
1527 /* Difficult to see how we'd get this given that we
1528 * always load up the entire packet for DMA.
1530 dbg(DBG_TX
, "Tx underflow port %d\n", port
->index
);
1531 port_to_dev(port
)->stats
.tx_errors
++;
1532 port_to_dev(port
)->stats
.tx_fifo_errors
++;
1533 dbg(DBG_ASS
, "Tx underflow on card %d port %d\n",
1534 card
->card_no
, port
->index
);
1538 dbg(DBG_INIT
, "Card init OK intr\n");
1542 dbg(DBG_INIT
, "Card init FAILED intr\n");
1543 card
->state
= FST_IFAILED
;
1547 pr_err("intr: unknown card event %d. ignored\n", event
);
1551 /* Bump and wrap the index */
1552 if (++rdidx
>= MAX_CIRBUFF
)
1555 FST_WRB(card
, interruptEvent
.rdindex
, rdidx
);
1559 /* Check that the shared memory configuration is one that we can handle
1560 * and that some basic parameters are correct
1563 check_started_ok(struct fst_card_info
*card
)
1567 /* Check structure version and end marker */
1568 if (FST_RDW(card
, smcVersion
) != SMC_VERSION
) {
1569 pr_err("Bad shared memory version %d expected %d\n",
1570 FST_RDW(card
, smcVersion
), SMC_VERSION
);
1571 card
->state
= FST_BADVERSION
;
1574 if (FST_RDL(card
, endOfSmcSignature
) != END_SIG
) {
1575 pr_err("Missing shared memory signature\n");
1576 card
->state
= FST_BADVERSION
;
1579 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1580 i
= FST_RDB(card
, taskStatus
);
1582 card
->state
= FST_RUNNING
;
1583 } else if (i
== 0xFF) {
1584 pr_err("Firmware initialisation failed. Card halted\n");
1585 card
->state
= FST_HALTED
;
1587 } else if (i
!= 0x00) {
1588 pr_err("Unknown firmware status 0x%x\n", i
);
1589 card
->state
= FST_HALTED
;
1593 /* Finally check the number of ports reported by firmware against the
1594 * number we assumed at card detection. Should never happen with
1595 * existing firmware etc so we just report it for the moment.
1597 if (FST_RDL(card
, numberOfPorts
) != card
->nports
) {
1598 pr_warn("Port count mismatch on card %d. Firmware thinks %d we say %d\n",
1600 FST_RDL(card
, numberOfPorts
), card
->nports
);
1605 set_conf_from_info(struct fst_card_info
*card
, struct fst_port_info
*port
,
1606 struct fstioc_info
*info
)
1609 unsigned char my_framing
;
1611 /* Set things according to the user set valid flags
1612 * Several of the old options have been invalidated/replaced by the
1613 * generic hdlc package.
1616 if (info
->valid
& FSTVAL_PROTO
) {
1617 if (info
->proto
== FST_RAW
)
1618 port
->mode
= FST_RAW
;
1620 port
->mode
= FST_GEN_HDLC
;
1623 if (info
->valid
& FSTVAL_CABLE
)
1626 if (info
->valid
& FSTVAL_SPEED
)
1629 if (info
->valid
& FSTVAL_PHASE
)
1630 FST_WRB(card
, portConfig
[port
->index
].invertClock
,
1632 if (info
->valid
& FSTVAL_MODE
)
1633 FST_WRW(card
, cardMode
, info
->cardMode
);
1634 if (info
->valid
& FSTVAL_TE1
) {
1635 FST_WRL(card
, suConfig
.dataRate
, info
->lineSpeed
);
1636 FST_WRB(card
, suConfig
.clocking
, info
->clockSource
);
1637 my_framing
= FRAMING_E1
;
1638 if (info
->framing
== E1
)
1639 my_framing
= FRAMING_E1
;
1640 if (info
->framing
== T1
)
1641 my_framing
= FRAMING_T1
;
1642 if (info
->framing
== J1
)
1643 my_framing
= FRAMING_J1
;
1644 FST_WRB(card
, suConfig
.framing
, my_framing
);
1645 FST_WRB(card
, suConfig
.structure
, info
->structure
);
1646 FST_WRB(card
, suConfig
.interface
, info
->interface
);
1647 FST_WRB(card
, suConfig
.coding
, info
->coding
);
1648 FST_WRB(card
, suConfig
.lineBuildOut
, info
->lineBuildOut
);
1649 FST_WRB(card
, suConfig
.equalizer
, info
->equalizer
);
1650 FST_WRB(card
, suConfig
.transparentMode
, info
->transparentMode
);
1651 FST_WRB(card
, suConfig
.loopMode
, info
->loopMode
);
1652 FST_WRB(card
, suConfig
.range
, info
->range
);
1653 FST_WRB(card
, suConfig
.txBufferMode
, info
->txBufferMode
);
1654 FST_WRB(card
, suConfig
.rxBufferMode
, info
->rxBufferMode
);
1655 FST_WRB(card
, suConfig
.startingSlot
, info
->startingSlot
);
1656 FST_WRB(card
, suConfig
.losThreshold
, info
->losThreshold
);
1658 FST_WRB(card
, suConfig
.enableIdleCode
, 1);
1660 FST_WRB(card
, suConfig
.enableIdleCode
, 0);
1661 FST_WRB(card
, suConfig
.idleCode
, info
->idleCode
);
1663 if (info
->valid
& FSTVAL_TE1
) {
1664 printk("Setting TE1 data\n");
1665 printk("Line Speed = %d\n", info
->lineSpeed
);
1666 printk("Start slot = %d\n", info
->startingSlot
);
1667 printk("Clock source = %d\n", info
->clockSource
);
1668 printk("Framing = %d\n", my_framing
);
1669 printk("Structure = %d\n", info
->structure
);
1670 printk("interface = %d\n", info
->interface
);
1671 printk("Coding = %d\n", info
->coding
);
1672 printk("Line build out = %d\n", info
->lineBuildOut
);
1673 printk("Equaliser = %d\n", info
->equalizer
);
1674 printk("Transparent mode = %d\n",
1675 info
->transparentMode
);
1676 printk("Loop mode = %d\n", info
->loopMode
);
1677 printk("Range = %d\n", info
->range
);
1678 printk("Tx Buffer mode = %d\n", info
->txBufferMode
);
1679 printk("Rx Buffer mode = %d\n", info
->rxBufferMode
);
1680 printk("LOS Threshold = %d\n", info
->losThreshold
);
1681 printk("Idle Code = %d\n", info
->idleCode
);
1686 if (info
->valid
& FSTVAL_DEBUG
)
1687 fst_debug_mask
= info
->debug
;
1694 gather_conf_info(struct fst_card_info
*card
, struct fst_port_info
*port
,
1695 struct fstioc_info
*info
)
1699 memset(info
, 0, sizeof(struct fstioc_info
));
1702 info
->kernelVersion
= LINUX_VERSION_CODE
;
1703 info
->nports
= card
->nports
;
1704 info
->type
= card
->type
;
1705 info
->state
= card
->state
;
1706 info
->proto
= FST_GEN_HDLC
;
1709 info
->debug
= fst_debug_mask
;
1712 /* Only mark information as valid if card is running.
1713 * Copy the data anyway in case it is useful for diagnostics
1715 info
->valid
= ((card
->state
== FST_RUNNING
) ? FSTVAL_ALL
: FSTVAL_CARD
)
1721 info
->lineInterface
= FST_RDW(card
, portConfig
[i
].lineInterface
);
1722 info
->internalClock
= FST_RDB(card
, portConfig
[i
].internalClock
);
1723 info
->lineSpeed
= FST_RDL(card
, portConfig
[i
].lineSpeed
);
1724 info
->invertClock
= FST_RDB(card
, portConfig
[i
].invertClock
);
1725 info
->v24IpSts
= FST_RDL(card
, v24IpSts
[i
]);
1726 info
->v24OpSts
= FST_RDL(card
, v24OpSts
[i
]);
1727 info
->clockStatus
= FST_RDW(card
, clockStatus
[i
]);
1728 info
->cableStatus
= FST_RDW(card
, cableStatus
);
1729 info
->cardMode
= FST_RDW(card
, cardMode
);
1730 info
->smcFirmwareVersion
= FST_RDL(card
, smcFirmwareVersion
);
1732 /* The T2U can report cable presence for both A or B
1733 * in bits 0 and 1 of cableStatus. See which port we are and
1736 if (card
->family
== FST_FAMILY_TXU
) {
1737 if (port
->index
== 0) {
1740 info
->cableStatus
= info
->cableStatus
& 1;
1744 info
->cableStatus
= info
->cableStatus
>> 1;
1745 info
->cableStatus
= info
->cableStatus
& 1;
1748 /* Some additional bits if we are TE1
1750 if (card
->type
== FST_TYPE_TE1
) {
1751 info
->lineSpeed
= FST_RDL(card
, suConfig
.dataRate
);
1752 info
->clockSource
= FST_RDB(card
, suConfig
.clocking
);
1753 info
->framing
= FST_RDB(card
, suConfig
.framing
);
1754 info
->structure
= FST_RDB(card
, suConfig
.structure
);
1755 info
->interface
= FST_RDB(card
, suConfig
.interface
);
1756 info
->coding
= FST_RDB(card
, suConfig
.coding
);
1757 info
->lineBuildOut
= FST_RDB(card
, suConfig
.lineBuildOut
);
1758 info
->equalizer
= FST_RDB(card
, suConfig
.equalizer
);
1759 info
->loopMode
= FST_RDB(card
, suConfig
.loopMode
);
1760 info
->range
= FST_RDB(card
, suConfig
.range
);
1761 info
->txBufferMode
= FST_RDB(card
, suConfig
.txBufferMode
);
1762 info
->rxBufferMode
= FST_RDB(card
, suConfig
.rxBufferMode
);
1763 info
->startingSlot
= FST_RDB(card
, suConfig
.startingSlot
);
1764 info
->losThreshold
= FST_RDB(card
, suConfig
.losThreshold
);
1765 if (FST_RDB(card
, suConfig
.enableIdleCode
))
1766 info
->idleCode
= FST_RDB(card
, suConfig
.idleCode
);
1769 info
->receiveBufferDelay
=
1770 FST_RDL(card
, suStatus
.receiveBufferDelay
);
1771 info
->framingErrorCount
=
1772 FST_RDL(card
, suStatus
.framingErrorCount
);
1773 info
->codeViolationCount
=
1774 FST_RDL(card
, suStatus
.codeViolationCount
);
1775 info
->crcErrorCount
= FST_RDL(card
, suStatus
.crcErrorCount
);
1776 info
->lineAttenuation
= FST_RDL(card
, suStatus
.lineAttenuation
);
1777 info
->lossOfSignal
= FST_RDB(card
, suStatus
.lossOfSignal
);
1778 info
->receiveRemoteAlarm
=
1779 FST_RDB(card
, suStatus
.receiveRemoteAlarm
);
1780 info
->alarmIndicationSignal
=
1781 FST_RDB(card
, suStatus
.alarmIndicationSignal
);
1786 fst_set_iface(struct fst_card_info
*card
, struct fst_port_info
*port
,
1787 struct if_settings
*ifs
)
1789 sync_serial_settings sync
;
1792 if (ifs
->size
!= sizeof(sync
))
1795 if (copy_from_user(&sync
, ifs
->ifs_ifsu
.sync
, sizeof(sync
)))
1803 switch (ifs
->type
) {
1805 FST_WRW(card
, portConfig
[i
].lineInterface
, V35
);
1810 FST_WRW(card
, portConfig
[i
].lineInterface
, V24
);
1815 FST_WRW(card
, portConfig
[i
].lineInterface
, X21
);
1820 FST_WRW(card
, portConfig
[i
].lineInterface
, X21D
);
1825 FST_WRW(card
, portConfig
[i
].lineInterface
, T1
);
1830 FST_WRW(card
, portConfig
[i
].lineInterface
, E1
);
1834 case IF_IFACE_SYNC_SERIAL
:
1841 switch (sync
.clock_type
) {
1843 FST_WRB(card
, portConfig
[i
].internalClock
, EXTCLK
);
1847 FST_WRB(card
, portConfig
[i
].internalClock
, INTCLK
);
1853 FST_WRL(card
, portConfig
[i
].lineSpeed
, sync
.clock_rate
);
1858 fst_get_iface(struct fst_card_info
*card
, struct fst_port_info
*port
,
1859 struct if_settings
*ifs
)
1861 sync_serial_settings sync
;
1864 /* First check what line type is set, we'll default to reporting X.21
1865 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1868 switch (port
->hwif
) {
1870 ifs
->type
= IF_IFACE_E1
;
1873 ifs
->type
= IF_IFACE_T1
;
1876 ifs
->type
= IF_IFACE_V35
;
1879 ifs
->type
= IF_IFACE_V24
;
1882 ifs
->type
= IF_IFACE_X21D
;
1886 ifs
->type
= IF_IFACE_X21
;
1890 return 0; /* only type requested */
1892 if (ifs
->size
< sizeof(sync
))
1896 memset(&sync
, 0, sizeof(sync
));
1897 sync
.clock_rate
= FST_RDL(card
, portConfig
[i
].lineSpeed
);
1898 /* Lucky card and linux use same encoding here */
1899 sync
.clock_type
= FST_RDB(card
, portConfig
[i
].internalClock
) ==
1900 INTCLK
? CLOCK_INT
: CLOCK_EXT
;
1903 if (copy_to_user(ifs
->ifs_ifsu
.sync
, &sync
, sizeof(sync
)))
1906 ifs
->size
= sizeof(sync
);
1911 fst_siocdevprivate(struct net_device
*dev
, struct ifreq
*ifr
, void __user
*data
, int cmd
)
1913 struct fst_card_info
*card
;
1914 struct fst_port_info
*port
;
1915 struct fstioc_write wrthdr
;
1916 struct fstioc_info info
;
1917 unsigned long flags
;
1920 dbg(DBG_IOCTL
, "ioctl: %x, %p\n", cmd
, data
);
1922 port
= dev_to_port(dev
);
1925 if (!capable(CAP_NET_ADMIN
))
1931 card
->state
= FST_RESET
;
1935 fst_cpurelease(card
);
1936 card
->state
= FST_STARTING
;
1939 case FSTWRITE
: /* Code write (download) */
1941 /* First copy in the header with the length and offset of data
1947 if (copy_from_user(&wrthdr
, data
, sizeof(struct fstioc_write
)))
1950 /* Sanity check the parameters. We don't support partial writes
1951 * when going over the top
1953 if (wrthdr
.size
> FST_MEMSIZE
|| wrthdr
.offset
> FST_MEMSIZE
||
1954 wrthdr
.size
+ wrthdr
.offset
> FST_MEMSIZE
)
1957 /* Now copy the data to the card. */
1959 buf
= memdup_user(data
+ sizeof(struct fstioc_write
),
1962 return PTR_ERR(buf
);
1964 memcpy_toio(card
->mem
+ wrthdr
.offset
, buf
, wrthdr
.size
);
1967 /* Writes to the memory of a card in the reset state constitute
1970 if (card
->state
== FST_RESET
)
1971 card
->state
= FST_DOWNLOAD
;
1977 /* If card has just been started check the shared memory config
1978 * version and marker
1980 if (card
->state
== FST_STARTING
) {
1981 check_started_ok(card
);
1983 /* If everything checked out enable card interrupts */
1984 if (card
->state
== FST_RUNNING
) {
1985 spin_lock_irqsave(&card
->card_lock
, flags
);
1986 fst_enable_intr(card
);
1987 FST_WRB(card
, interruptHandshake
, 0xEE);
1988 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1995 gather_conf_info(card
, port
, &info
);
1997 if (copy_to_user(data
, &info
, sizeof(info
)))
2003 /* Most of the settings have been moved to the generic ioctls
2004 * this just covers debug and board ident now
2007 if (card
->state
!= FST_RUNNING
) {
2008 pr_err("Attempt to configure card %d in non-running state (%d)\n",
2009 card
->card_no
, card
->state
);
2012 if (copy_from_user(&info
, data
, sizeof(info
)))
2015 return set_conf_from_info(card
, port
, &info
);
2022 fst_ioctl(struct net_device
*dev
, struct if_settings
*ifs
)
2024 struct fst_card_info
*card
;
2025 struct fst_port_info
*port
;
2027 dbg(DBG_IOCTL
, "SIOCDEVPRIVATE, %x\n", ifs
->type
);
2029 port
= dev_to_port(dev
);
2032 if (!capable(CAP_NET_ADMIN
))
2035 switch (ifs
->type
) {
2037 return fst_get_iface(card
, port
, ifs
);
2039 case IF_IFACE_SYNC_SERIAL
:
2046 return fst_set_iface(card
, port
, ifs
);
2049 port
->mode
= FST_RAW
;
2053 if (port
->mode
== FST_RAW
) {
2054 ifs
->type
= IF_PROTO_RAW
;
2057 return hdlc_ioctl(dev
, ifs
);
2060 port
->mode
= FST_GEN_HDLC
;
2061 dbg(DBG_IOCTL
, "Passing this type to hdlc %x\n",
2063 return hdlc_ioctl(dev
, ifs
);
2068 fst_openport(struct fst_port_info
*port
)
2072 /* Only init things if card is actually running. This allows open to
2073 * succeed for downloads etc.
2075 if (port
->card
->state
== FST_RUNNING
) {
2077 dbg(DBG_OPEN
, "open: found port already running\n");
2079 fst_issue_cmd(port
, STOPPORT
);
2083 fst_rx_config(port
);
2084 fst_tx_config(port
);
2085 fst_op_raise(port
, OPSTS_RTS
| OPSTS_DTR
);
2087 fst_issue_cmd(port
, STARTPORT
);
2090 signals
= FST_RDL(port
->card
, v24DebouncedSts
[port
->index
]);
2091 if (signals
& ((port
->hwif
== X21
|| port
->hwif
== X21D
)
2092 ? IPSTS_INDICATE
: IPSTS_DCD
))
2093 netif_carrier_on(port_to_dev(port
));
2095 netif_carrier_off(port_to_dev(port
));
2103 fst_closeport(struct fst_port_info
*port
)
2105 if (port
->card
->state
== FST_RUNNING
) {
2108 fst_op_lower(port
, OPSTS_RTS
| OPSTS_DTR
);
2110 fst_issue_cmd(port
, STOPPORT
);
2112 dbg(DBG_OPEN
, "close: port not running\n");
2118 fst_open(struct net_device
*dev
)
2121 struct fst_port_info
*port
;
2123 port
= dev_to_port(dev
);
2124 if (!try_module_get(THIS_MODULE
))
2127 if (port
->mode
!= FST_RAW
) {
2128 err
= hdlc_open(dev
);
2130 module_put(THIS_MODULE
);
2136 netif_wake_queue(dev
);
2141 fst_close(struct net_device
*dev
)
2143 struct fst_port_info
*port
;
2144 struct fst_card_info
*card
;
2145 unsigned char tx_dma_done
;
2146 unsigned char rx_dma_done
;
2148 port
= dev_to_port(dev
);
2151 tx_dma_done
= inb(card
->pci_conf
+ DMACSR1
);
2152 rx_dma_done
= inb(card
->pci_conf
+ DMACSR0
);
2154 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2155 card
->dmatx_in_progress
, tx_dma_done
, card
->dmarx_in_progress
,
2158 netif_stop_queue(dev
);
2159 fst_closeport(dev_to_port(dev
));
2160 if (port
->mode
!= FST_RAW
)
2163 module_put(THIS_MODULE
);
2168 fst_attach(struct net_device
*dev
, unsigned short encoding
, unsigned short parity
)
2170 /* Setting currently fixed in FarSync card so we check and forget
2172 if (encoding
!= ENCODING_NRZ
|| parity
!= PARITY_CRC16_PR1_CCITT
)
2178 fst_tx_timeout(struct net_device
*dev
, unsigned int txqueue
)
2180 struct fst_port_info
*port
;
2181 struct fst_card_info
*card
;
2183 port
= dev_to_port(dev
);
2185 dev
->stats
.tx_errors
++;
2186 dev
->stats
.tx_aborted_errors
++;
2187 dbg(DBG_ASS
, "Tx timeout card %d port %d\n",
2188 card
->card_no
, port
->index
);
2189 fst_issue_cmd(port
, ABORTTX
);
2191 netif_trans_update(dev
);
2192 netif_wake_queue(dev
);
2197 fst_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2199 struct fst_card_info
*card
;
2200 struct fst_port_info
*port
;
2201 unsigned long flags
;
2204 port
= dev_to_port(dev
);
2206 dbg(DBG_TX
, "fst_start_xmit: length = %d\n", skb
->len
);
2208 /* Drop packet with error if we don't have carrier */
2209 if (!netif_carrier_ok(dev
)) {
2211 dev
->stats
.tx_errors
++;
2212 dev
->stats
.tx_carrier_errors
++;
2214 "Tried to transmit but no carrier on card %d port %d\n",
2215 card
->card_no
, port
->index
);
2216 return NETDEV_TX_OK
;
2219 /* Drop it if it's too big! MTU failure ? */
2220 if (skb
->len
> LEN_TX_BUFFER
) {
2221 dbg(DBG_ASS
, "Packet too large %d vs %d\n", skb
->len
,
2224 dev
->stats
.tx_errors
++;
2225 return NETDEV_TX_OK
;
2228 /* We are always going to queue the packet
2229 * so that the bottom half is the only place we tx from
2230 * Check there is room in the port txq
2232 spin_lock_irqsave(&card
->card_lock
, flags
);
2233 txq_length
= port
->txqe
- port
->txqs
;
2234 if (txq_length
< 0) {
2235 /* This is the case where the next free has wrapped but the
2238 txq_length
= txq_length
+ FST_TXQ_DEPTH
;
2240 spin_unlock_irqrestore(&card
->card_lock
, flags
);
2241 if (txq_length
> fst_txq_high
) {
2242 /* We have got enough buffers in the pipeline. Ask the network
2243 * layer to stop sending frames down
2245 netif_stop_queue(dev
);
2246 port
->start
= 1; /* I'm using this to signal stop sent up */
2249 if (txq_length
== FST_TXQ_DEPTH
- 1) {
2250 /* This shouldn't have happened but such is life
2253 dev
->stats
.tx_errors
++;
2254 dbg(DBG_ASS
, "Tx queue overflow card %d port %d\n",
2255 card
->card_no
, port
->index
);
2256 return NETDEV_TX_OK
;
2261 spin_lock_irqsave(&card
->card_lock
, flags
);
2262 port
->txq
[port
->txqe
] = skb
;
2264 if (port
->txqe
== FST_TXQ_DEPTH
)
2266 spin_unlock_irqrestore(&card
->card_lock
, flags
);
2268 /* Scehdule the bottom half which now does transmit processing */
2269 fst_q_work_item(&fst_work_txq
, card
->card_no
);
2270 tasklet_schedule(&fst_tx_task
);
2272 return NETDEV_TX_OK
;
2275 /* Card setup having checked hardware resources.
2276 * Should be pretty bizarre if we get an error here (kernel memory
2277 * exhaustion is one possibility). If we do see a problem we report it
2278 * via a printk and leave the corresponding interface and all that follow
2281 static char *type_strings
[] = {
2282 "no hardware", /* Should never be seen */
2292 fst_init_card(struct fst_card_info
*card
)
2297 /* We're working on a number of ports based on the card ID. If the
2298 * firmware detects something different later (should never happen)
2299 * we'll have to revise it in some way then.
2301 for (i
= 0; i
< card
->nports
; i
++) {
2302 err
= register_hdlc_device(card
->ports
[i
].dev
);
2304 pr_err("Cannot register HDLC device for port %d (errno %d)\n",
2307 unregister_hdlc_device(card
->ports
[i
].dev
);
2312 pr_info("%s-%s: %s IRQ%d, %d ports\n",
2313 port_to_dev(&card
->ports
[0])->name
,
2314 port_to_dev(&card
->ports
[card
->nports
- 1])->name
,
2315 type_strings
[card
->type
], card
->irq
, card
->nports
);
2319 static const struct net_device_ops fst_ops
= {
2320 .ndo_open
= fst_open
,
2321 .ndo_stop
= fst_close
,
2322 .ndo_start_xmit
= hdlc_start_xmit
,
2323 .ndo_siocwandev
= fst_ioctl
,
2324 .ndo_siocdevprivate
= fst_siocdevprivate
,
2325 .ndo_tx_timeout
= fst_tx_timeout
,
2328 /* Initialise card when detected.
2329 * Returns 0 to indicate success, or errno otherwise.
2332 fst_add_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2334 static int no_of_cards_added
;
2335 struct fst_card_info
*card
;
2339 printk_once(KERN_INFO
2340 pr_fmt("FarSync WAN driver " FST_USER_VERSION
2341 " (c) 2001-2004 FarSite Communications Ltd.\n"));
2343 dbg(DBG_ASS
, "The value of debug mask is %x\n", fst_debug_mask
);
2345 /* We are going to be clever and allow certain cards not to be
2346 * configured. An exclude list can be provided in /etc/modules.conf
2348 if (fst_excluded_cards
!= 0) {
2349 /* There are cards to exclude
2352 for (i
= 0; i
< fst_excluded_cards
; i
++) {
2353 if (pdev
->devfn
>> 3 == fst_excluded_list
[i
]) {
2354 pr_info("FarSync PCI device %d not assigned\n",
2355 (pdev
->devfn
) >> 3);
2361 /* Allocate driver private data */
2362 card
= kzalloc(sizeof(struct fst_card_info
), GFP_KERNEL
);
2366 /* Try to enable the device */
2367 err
= pci_enable_device(pdev
);
2369 pr_err("Failed to enable card. Err %d\n", -err
);
2373 err
= pci_request_regions(pdev
, "FarSync");
2375 pr_err("Failed to allocate regions. Err %d\n", -err
);
2379 /* Get virtual addresses of memory regions */
2380 card
->pci_conf
= pci_resource_start(pdev
, 1);
2381 card
->phys_mem
= pci_resource_start(pdev
, 2);
2382 card
->phys_ctlmem
= pci_resource_start(pdev
, 3);
2383 card
->mem
= ioremap(card
->phys_mem
, FST_MEMSIZE
);
2385 pr_err("Physical memory remap failed\n");
2387 goto ioremap_physmem_fail
;
2389 card
->ctlmem
= ioremap(card
->phys_ctlmem
, 0x10);
2390 if (!card
->ctlmem
) {
2391 pr_err("Control memory remap failed\n");
2393 goto ioremap_ctlmem_fail
;
2395 dbg(DBG_PCI
, "kernel mem %p, ctlmem %p\n", card
->mem
, card
->ctlmem
);
2397 /* Register the interrupt handler */
2398 if (request_irq(pdev
->irq
, fst_intr
, IRQF_SHARED
, FST_DEV_NAME
, card
)) {
2399 pr_err("Unable to register interrupt %d\n", card
->irq
);
2404 /* Record info we need */
2405 card
->irq
= pdev
->irq
;
2406 card
->type
= ent
->driver_data
;
2407 card
->family
= ((ent
->driver_data
== FST_TYPE_T2P
) ||
2408 (ent
->driver_data
== FST_TYPE_T4P
))
2409 ? FST_FAMILY_TXP
: FST_FAMILY_TXU
;
2410 if (ent
->driver_data
== FST_TYPE_T1U
||
2411 ent
->driver_data
== FST_TYPE_TE1
)
2414 card
->nports
= ((ent
->driver_data
== FST_TYPE_T2P
) ||
2415 (ent
->driver_data
== FST_TYPE_T2U
)) ? 2 : 4;
2417 card
->state
= FST_UNINIT
;
2418 spin_lock_init(&card
->card_lock
);
2420 for (i
= 0; i
< card
->nports
; i
++) {
2421 struct net_device
*dev
= alloc_hdlcdev(&card
->ports
[i
]);
2426 free_netdev(card
->ports
[i
].dev
);
2427 pr_err("FarSync: out of memory\n");
2431 card
->ports
[i
].dev
= dev
;
2432 card
->ports
[i
].card
= card
;
2433 card
->ports
[i
].index
= i
;
2434 card
->ports
[i
].run
= 0;
2436 hdlc
= dev_to_hdlc(dev
);
2438 /* Fill in the net device info */
2439 /* Since this is a PCI setup this is purely
2440 * informational. Give them the buffer addresses
2441 * and basic card I/O.
2443 dev
->mem_start
= card
->phys_mem
2444 + BUF_OFFSET(txBuffer
[i
][0][0]);
2445 dev
->mem_end
= card
->phys_mem
2446 + BUF_OFFSET(txBuffer
[i
][NUM_TX_BUFFER
- 1][LEN_RX_BUFFER
- 1]);
2447 dev
->base_addr
= card
->pci_conf
;
2448 dev
->irq
= card
->irq
;
2450 dev
->netdev_ops
= &fst_ops
;
2451 dev
->tx_queue_len
= FST_TX_QUEUE_LEN
;
2452 dev
->watchdog_timeo
= FST_TX_TIMEOUT
;
2453 hdlc
->attach
= fst_attach
;
2454 hdlc
->xmit
= fst_start_xmit
;
2457 card
->device
= pdev
;
2459 dbg(DBG_PCI
, "type %d nports %d irq %d\n", card
->type
,
2460 card
->nports
, card
->irq
);
2461 dbg(DBG_PCI
, "conf %04x mem %08x ctlmem %08x\n",
2462 card
->pci_conf
, card
->phys_mem
, card
->phys_ctlmem
);
2464 /* Reset the card's processor */
2466 card
->state
= FST_RESET
;
2468 /* Initialise DMA (if required) */
2471 /* Record driver data for later use */
2472 pci_set_drvdata(pdev
, card
);
2474 /* Remainder of card setup */
2475 if (no_of_cards_added
>= FST_MAX_CARDS
) {
2476 pr_err("FarSync: too many cards\n");
2478 goto card_array_fail
;
2480 fst_card_array
[no_of_cards_added
] = card
;
2481 card
->card_no
= no_of_cards_added
++; /* Record instance and bump it */
2482 err
= fst_init_card(card
);
2484 goto init_card_fail
;
2485 if (card
->family
== FST_FAMILY_TXU
) {
2486 /* Allocate a dma buffer for transmit and receives
2488 card
->rx_dma_handle_host
=
2489 dma_alloc_coherent(&card
->device
->dev
, FST_MAX_MTU
,
2490 &card
->rx_dma_handle_card
, GFP_KERNEL
);
2491 if (!card
->rx_dma_handle_host
) {
2492 pr_err("Could not allocate rx dma buffer\n");
2496 card
->tx_dma_handle_host
=
2497 dma_alloc_coherent(&card
->device
->dev
, FST_MAX_MTU
,
2498 &card
->tx_dma_handle_card
, GFP_KERNEL
);
2499 if (!card
->tx_dma_handle_host
) {
2500 pr_err("Could not allocate tx dma buffer\n");
2505 return 0; /* Success */
2508 dma_free_coherent(&card
->device
->dev
, FST_MAX_MTU
,
2509 card
->rx_dma_handle_host
, card
->rx_dma_handle_card
);
2511 fst_disable_intr(card
);
2512 for (i
= 0 ; i
< card
->nports
; i
++)
2513 unregister_hdlc_device(card
->ports
[i
].dev
);
2515 fst_card_array
[card
->card_no
] = NULL
;
2517 for (i
= 0 ; i
< card
->nports
; i
++)
2518 free_netdev(card
->ports
[i
].dev
);
2520 free_irq(card
->irq
, card
);
2522 iounmap(card
->ctlmem
);
2523 ioremap_ctlmem_fail
:
2525 ioremap_physmem_fail
:
2526 pci_release_regions(pdev
);
2528 pci_disable_device(pdev
);
2534 /* Cleanup and close down a card
2537 fst_remove_one(struct pci_dev
*pdev
)
2539 struct fst_card_info
*card
;
2542 card
= pci_get_drvdata(pdev
);
2544 for (i
= 0; i
< card
->nports
; i
++) {
2545 struct net_device
*dev
= port_to_dev(&card
->ports
[i
]);
2547 unregister_hdlc_device(dev
);
2551 fst_disable_intr(card
);
2552 free_irq(card
->irq
, card
);
2554 iounmap(card
->ctlmem
);
2556 pci_release_regions(pdev
);
2557 if (card
->family
== FST_FAMILY_TXU
) {
2560 dma_free_coherent(&card
->device
->dev
, FST_MAX_MTU
,
2561 card
->rx_dma_handle_host
,
2562 card
->rx_dma_handle_card
);
2563 dma_free_coherent(&card
->device
->dev
, FST_MAX_MTU
,
2564 card
->tx_dma_handle_host
,
2565 card
->tx_dma_handle_card
);
2567 fst_card_array
[card
->card_no
] = NULL
;
2571 static struct pci_driver fst_driver
= {
2573 .id_table
= fst_pci_dev_id
,
2574 .probe
= fst_add_one
,
2575 .remove
= fst_remove_one
,
2583 for (i
= 0; i
< FST_MAX_CARDS
; i
++)
2584 fst_card_array
[i
] = NULL
;
2585 return pci_register_driver(&fst_driver
);
2589 fst_cleanup_module(void)
2591 pr_info("FarSync WAN driver unloading\n");
2592 pci_unregister_driver(&fst_driver
);
2595 module_init(fst_init
);
2596 module_exit(fst_cleanup_module
);