Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / nvdimm / pmem.c
blobd81faa9d89c935285450e69574695b5a13bf2c7c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Persistent Memory Driver
5 * Copyright (c) 2014-2015, Intel Corporation.
6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
8 */
10 #include <linux/blkdev.h>
11 #include <linux/pagemap.h>
12 #include <linux/hdreg.h>
13 #include <linux/init.h>
14 #include <linux/platform_device.h>
15 #include <linux/set_memory.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/badblocks.h>
19 #include <linux/memremap.h>
20 #include <linux/kstrtox.h>
21 #include <linux/vmalloc.h>
22 #include <linux/blk-mq.h>
23 #include <linux/pfn_t.h>
24 #include <linux/slab.h>
25 #include <linux/uio.h>
26 #include <linux/dax.h>
27 #include <linux/nd.h>
28 #include <linux/mm.h>
29 #include <asm/cacheflush.h>
30 #include "pmem.h"
31 #include "btt.h"
32 #include "pfn.h"
33 #include "nd.h"
35 static struct device *to_dev(struct pmem_device *pmem)
38 * nvdimm bus services need a 'dev' parameter, and we record the device
39 * at init in bb.dev.
41 return pmem->bb.dev;
44 static struct nd_region *to_region(struct pmem_device *pmem)
46 return to_nd_region(to_dev(pmem)->parent);
49 static phys_addr_t pmem_to_phys(struct pmem_device *pmem, phys_addr_t offset)
51 return pmem->phys_addr + offset;
54 static sector_t to_sect(struct pmem_device *pmem, phys_addr_t offset)
56 return (offset - pmem->data_offset) >> SECTOR_SHIFT;
59 static phys_addr_t to_offset(struct pmem_device *pmem, sector_t sector)
61 return (sector << SECTOR_SHIFT) + pmem->data_offset;
64 static void pmem_mkpage_present(struct pmem_device *pmem, phys_addr_t offset,
65 unsigned int len)
67 phys_addr_t phys = pmem_to_phys(pmem, offset);
68 unsigned long pfn_start, pfn_end, pfn;
70 /* only pmem in the linear map supports HWPoison */
71 if (is_vmalloc_addr(pmem->virt_addr))
72 return;
74 pfn_start = PHYS_PFN(phys);
75 pfn_end = pfn_start + PHYS_PFN(len);
76 for (pfn = pfn_start; pfn < pfn_end; pfn++) {
77 struct page *page = pfn_to_page(pfn);
80 * Note, no need to hold a get_dev_pagemap() reference
81 * here since we're in the driver I/O path and
82 * outstanding I/O requests pin the dev_pagemap.
84 if (test_and_clear_pmem_poison(page))
85 clear_mce_nospec(pfn);
89 static void pmem_clear_bb(struct pmem_device *pmem, sector_t sector, long blks)
91 if (blks == 0)
92 return;
93 badblocks_clear(&pmem->bb, sector, blks);
94 if (pmem->bb_state)
95 sysfs_notify_dirent(pmem->bb_state);
98 static long __pmem_clear_poison(struct pmem_device *pmem,
99 phys_addr_t offset, unsigned int len)
101 phys_addr_t phys = pmem_to_phys(pmem, offset);
102 long cleared = nvdimm_clear_poison(to_dev(pmem), phys, len);
104 if (cleared > 0) {
105 pmem_mkpage_present(pmem, offset, cleared);
106 arch_invalidate_pmem(pmem->virt_addr + offset, len);
108 return cleared;
111 static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
112 phys_addr_t offset, unsigned int len)
114 long cleared = __pmem_clear_poison(pmem, offset, len);
116 if (cleared < 0)
117 return BLK_STS_IOERR;
119 pmem_clear_bb(pmem, to_sect(pmem, offset), cleared >> SECTOR_SHIFT);
120 if (cleared < len)
121 return BLK_STS_IOERR;
122 return BLK_STS_OK;
125 static void write_pmem(void *pmem_addr, struct page *page,
126 unsigned int off, unsigned int len)
128 unsigned int chunk;
129 void *mem;
131 while (len) {
132 mem = kmap_atomic(page);
133 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
134 memcpy_flushcache(pmem_addr, mem + off, chunk);
135 kunmap_atomic(mem);
136 len -= chunk;
137 off = 0;
138 page++;
139 pmem_addr += chunk;
143 static blk_status_t read_pmem(struct page *page, unsigned int off,
144 void *pmem_addr, unsigned int len)
146 unsigned int chunk;
147 unsigned long rem;
148 void *mem;
150 while (len) {
151 mem = kmap_atomic(page);
152 chunk = min_t(unsigned int, len, PAGE_SIZE - off);
153 rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
154 kunmap_atomic(mem);
155 if (rem)
156 return BLK_STS_IOERR;
157 len -= chunk;
158 off = 0;
159 page++;
160 pmem_addr += chunk;
162 return BLK_STS_OK;
165 static blk_status_t pmem_do_read(struct pmem_device *pmem,
166 struct page *page, unsigned int page_off,
167 sector_t sector, unsigned int len)
169 blk_status_t rc;
170 phys_addr_t pmem_off = to_offset(pmem, sector);
171 void *pmem_addr = pmem->virt_addr + pmem_off;
173 if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
174 return BLK_STS_IOERR;
176 rc = read_pmem(page, page_off, pmem_addr, len);
177 flush_dcache_page(page);
178 return rc;
181 static blk_status_t pmem_do_write(struct pmem_device *pmem,
182 struct page *page, unsigned int page_off,
183 sector_t sector, unsigned int len)
185 phys_addr_t pmem_off = to_offset(pmem, sector);
186 void *pmem_addr = pmem->virt_addr + pmem_off;
188 if (unlikely(is_bad_pmem(&pmem->bb, sector, len))) {
189 blk_status_t rc = pmem_clear_poison(pmem, pmem_off, len);
191 if (rc != BLK_STS_OK)
192 return rc;
195 flush_dcache_page(page);
196 write_pmem(pmem_addr, page, page_off, len);
198 return BLK_STS_OK;
201 static void pmem_submit_bio(struct bio *bio)
203 int ret = 0;
204 blk_status_t rc = 0;
205 bool do_acct;
206 unsigned long start;
207 struct bio_vec bvec;
208 struct bvec_iter iter;
209 struct pmem_device *pmem = bio->bi_bdev->bd_disk->private_data;
210 struct nd_region *nd_region = to_region(pmem);
212 if (bio->bi_opf & REQ_PREFLUSH)
213 ret = nvdimm_flush(nd_region, bio);
215 do_acct = blk_queue_io_stat(bio->bi_bdev->bd_disk->queue);
216 if (do_acct)
217 start = bio_start_io_acct(bio);
218 bio_for_each_segment(bvec, bio, iter) {
219 if (op_is_write(bio_op(bio)))
220 rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
221 iter.bi_sector, bvec.bv_len);
222 else
223 rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
224 iter.bi_sector, bvec.bv_len);
225 if (rc) {
226 bio->bi_status = rc;
227 break;
230 if (do_acct)
231 bio_end_io_acct(bio, start);
233 if (bio->bi_opf & REQ_FUA)
234 ret = nvdimm_flush(nd_region, bio);
236 if (ret)
237 bio->bi_status = errno_to_blk_status(ret);
239 bio_endio(bio);
242 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
243 __weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
244 long nr_pages, enum dax_access_mode mode, void **kaddr,
245 pfn_t *pfn)
247 resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
248 sector_t sector = PFN_PHYS(pgoff) >> SECTOR_SHIFT;
249 unsigned int num = PFN_PHYS(nr_pages) >> SECTOR_SHIFT;
250 struct badblocks *bb = &pmem->bb;
251 sector_t first_bad;
252 int num_bad;
254 if (kaddr)
255 *kaddr = pmem->virt_addr + offset;
256 if (pfn)
257 *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
259 if (bb->count &&
260 badblocks_check(bb, sector, num, &first_bad, &num_bad)) {
261 long actual_nr;
263 if (mode != DAX_RECOVERY_WRITE)
264 return -EHWPOISON;
267 * Set the recovery stride is set to kernel page size because
268 * the underlying driver and firmware clear poison functions
269 * don't appear to handle large chunk(such as 2MiB) reliably.
271 actual_nr = PHYS_PFN(
272 PAGE_ALIGN((first_bad - sector) << SECTOR_SHIFT));
273 dev_dbg(pmem->bb.dev, "start sector(%llu), nr_pages(%ld), first_bad(%llu), actual_nr(%ld)\n",
274 sector, nr_pages, first_bad, actual_nr);
275 if (actual_nr)
276 return actual_nr;
277 return 1;
281 * If badblocks are present but not in the range, limit known good range
282 * to the requested range.
284 if (bb->count)
285 return nr_pages;
286 return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
289 static const struct block_device_operations pmem_fops = {
290 .owner = THIS_MODULE,
291 .submit_bio = pmem_submit_bio,
294 static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
295 size_t nr_pages)
297 struct pmem_device *pmem = dax_get_private(dax_dev);
299 return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
300 PFN_PHYS(pgoff) >> SECTOR_SHIFT,
301 PAGE_SIZE));
304 static long pmem_dax_direct_access(struct dax_device *dax_dev,
305 pgoff_t pgoff, long nr_pages, enum dax_access_mode mode,
306 void **kaddr, pfn_t *pfn)
308 struct pmem_device *pmem = dax_get_private(dax_dev);
310 return __pmem_direct_access(pmem, pgoff, nr_pages, mode, kaddr, pfn);
314 * The recovery write thread started out as a normal pwrite thread and
315 * when the filesystem was told about potential media error in the
316 * range, filesystem turns the normal pwrite to a dax_recovery_write.
318 * The recovery write consists of clearing media poison, clearing page
319 * HWPoison bit, re-enable page-wide read-write permission, flush the
320 * caches and finally write. A competing pread thread will be held
321 * off during the recovery process since data read back might not be
322 * valid, and this is achieved by clearing the badblock records after
323 * the recovery write is complete. Competing recovery write threads
324 * are already serialized by writer lock held by dax_iomap_rw().
326 static size_t pmem_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
327 void *addr, size_t bytes, struct iov_iter *i)
329 struct pmem_device *pmem = dax_get_private(dax_dev);
330 size_t olen, len, off;
331 phys_addr_t pmem_off;
332 struct device *dev = pmem->bb.dev;
333 long cleared;
335 off = offset_in_page(addr);
336 len = PFN_PHYS(PFN_UP(off + bytes));
337 if (!is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) >> SECTOR_SHIFT, len))
338 return _copy_from_iter_flushcache(addr, bytes, i);
341 * Not page-aligned range cannot be recovered. This should not
342 * happen unless something else went wrong.
344 if (off || !PAGE_ALIGNED(bytes)) {
345 dev_dbg(dev, "Found poison, but addr(%p) or bytes(%#zx) not page aligned\n",
346 addr, bytes);
347 return 0;
350 pmem_off = PFN_PHYS(pgoff) + pmem->data_offset;
351 cleared = __pmem_clear_poison(pmem, pmem_off, len);
352 if (cleared > 0 && cleared < len) {
353 dev_dbg(dev, "poison cleared only %ld out of %zu bytes\n",
354 cleared, len);
355 return 0;
357 if (cleared < 0) {
358 dev_dbg(dev, "poison clear failed: %ld\n", cleared);
359 return 0;
362 olen = _copy_from_iter_flushcache(addr, bytes, i);
363 pmem_clear_bb(pmem, to_sect(pmem, pmem_off), cleared >> SECTOR_SHIFT);
365 return olen;
368 static const struct dax_operations pmem_dax_ops = {
369 .direct_access = pmem_dax_direct_access,
370 .zero_page_range = pmem_dax_zero_page_range,
371 .recovery_write = pmem_recovery_write,
374 static ssize_t write_cache_show(struct device *dev,
375 struct device_attribute *attr, char *buf)
377 struct pmem_device *pmem = dev_to_disk(dev)->private_data;
379 return sprintf(buf, "%d\n", !!dax_write_cache_enabled(pmem->dax_dev));
382 static ssize_t write_cache_store(struct device *dev,
383 struct device_attribute *attr, const char *buf, size_t len)
385 struct pmem_device *pmem = dev_to_disk(dev)->private_data;
386 bool write_cache;
387 int rc;
389 rc = kstrtobool(buf, &write_cache);
390 if (rc)
391 return rc;
392 dax_write_cache(pmem->dax_dev, write_cache);
393 return len;
395 static DEVICE_ATTR_RW(write_cache);
397 static umode_t dax_visible(struct kobject *kobj, struct attribute *a, int n)
399 #ifndef CONFIG_ARCH_HAS_PMEM_API
400 if (a == &dev_attr_write_cache.attr)
401 return 0;
402 #endif
403 return a->mode;
406 static struct attribute *dax_attributes[] = {
407 &dev_attr_write_cache.attr,
408 NULL,
411 static const struct attribute_group dax_attribute_group = {
412 .name = "dax",
413 .attrs = dax_attributes,
414 .is_visible = dax_visible,
417 static const struct attribute_group *pmem_attribute_groups[] = {
418 &dax_attribute_group,
419 NULL,
422 static void pmem_release_disk(void *__pmem)
424 struct pmem_device *pmem = __pmem;
426 dax_remove_host(pmem->disk);
427 kill_dax(pmem->dax_dev);
428 put_dax(pmem->dax_dev);
429 del_gendisk(pmem->disk);
431 put_disk(pmem->disk);
434 static int pmem_pagemap_memory_failure(struct dev_pagemap *pgmap,
435 unsigned long pfn, unsigned long nr_pages, int mf_flags)
437 struct pmem_device *pmem =
438 container_of(pgmap, struct pmem_device, pgmap);
439 u64 offset = PFN_PHYS(pfn) - pmem->phys_addr - pmem->data_offset;
440 u64 len = nr_pages << PAGE_SHIFT;
442 return dax_holder_notify_failure(pmem->dax_dev, offset, len, mf_flags);
445 static const struct dev_pagemap_ops fsdax_pagemap_ops = {
446 .memory_failure = pmem_pagemap_memory_failure,
449 static int pmem_attach_disk(struct device *dev,
450 struct nd_namespace_common *ndns)
452 struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
453 struct nd_region *nd_region = to_nd_region(dev->parent);
454 struct queue_limits lim = {
455 .logical_block_size = pmem_sector_size(ndns),
456 .physical_block_size = PAGE_SIZE,
457 .max_hw_sectors = UINT_MAX,
458 .features = BLK_FEAT_WRITE_CACHE |
459 BLK_FEAT_SYNCHRONOUS,
461 int nid = dev_to_node(dev), fua;
462 struct resource *res = &nsio->res;
463 struct range bb_range;
464 struct nd_pfn *nd_pfn = NULL;
465 struct dax_device *dax_dev;
466 struct nd_pfn_sb *pfn_sb;
467 struct pmem_device *pmem;
468 struct gendisk *disk;
469 void *addr;
470 int rc;
472 pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
473 if (!pmem)
474 return -ENOMEM;
476 rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
477 if (rc)
478 return rc;
480 /* while nsio_rw_bytes is active, parse a pfn info block if present */
481 if (is_nd_pfn(dev)) {
482 nd_pfn = to_nd_pfn(dev);
483 rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
484 if (rc)
485 return rc;
488 /* we're attaching a block device, disable raw namespace access */
489 devm_namespace_disable(dev, ndns);
491 dev_set_drvdata(dev, pmem);
492 pmem->phys_addr = res->start;
493 pmem->size = resource_size(res);
494 fua = nvdimm_has_flush(nd_region);
495 if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
496 dev_warn(dev, "unable to guarantee persistence of writes\n");
497 fua = 0;
499 if (fua)
500 lim.features |= BLK_FEAT_FUA;
501 if (is_nd_pfn(dev) || pmem_should_map_pages(dev))
502 lim.features |= BLK_FEAT_DAX;
504 if (!devm_request_mem_region(dev, res->start, resource_size(res),
505 dev_name(&ndns->dev))) {
506 dev_warn(dev, "could not reserve region %pR\n", res);
507 return -EBUSY;
510 disk = blk_alloc_disk(&lim, nid);
511 if (IS_ERR(disk))
512 return PTR_ERR(disk);
514 pmem->disk = disk;
515 pmem->pgmap.owner = pmem;
516 pmem->pfn_flags = PFN_DEV;
517 if (is_nd_pfn(dev)) {
518 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
519 pmem->pgmap.ops = &fsdax_pagemap_ops;
520 addr = devm_memremap_pages(dev, &pmem->pgmap);
521 pfn_sb = nd_pfn->pfn_sb;
522 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
523 pmem->pfn_pad = resource_size(res) -
524 range_len(&pmem->pgmap.range);
525 pmem->pfn_flags |= PFN_MAP;
526 bb_range = pmem->pgmap.range;
527 bb_range.start += pmem->data_offset;
528 } else if (pmem_should_map_pages(dev)) {
529 pmem->pgmap.range.start = res->start;
530 pmem->pgmap.range.end = res->end;
531 pmem->pgmap.nr_range = 1;
532 pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
533 pmem->pgmap.ops = &fsdax_pagemap_ops;
534 addr = devm_memremap_pages(dev, &pmem->pgmap);
535 pmem->pfn_flags |= PFN_MAP;
536 bb_range = pmem->pgmap.range;
537 } else {
538 addr = devm_memremap(dev, pmem->phys_addr,
539 pmem->size, ARCH_MEMREMAP_PMEM);
540 bb_range.start = res->start;
541 bb_range.end = res->end;
544 if (IS_ERR(addr)) {
545 rc = PTR_ERR(addr);
546 goto out;
548 pmem->virt_addr = addr;
550 disk->fops = &pmem_fops;
551 disk->private_data = pmem;
552 nvdimm_namespace_disk_name(ndns, disk->disk_name);
553 set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
554 / 512);
555 if (devm_init_badblocks(dev, &pmem->bb))
556 return -ENOMEM;
557 nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
558 disk->bb = &pmem->bb;
560 dax_dev = alloc_dax(pmem, &pmem_dax_ops);
561 if (IS_ERR(dax_dev)) {
562 rc = PTR_ERR(dax_dev);
563 if (rc != -EOPNOTSUPP)
564 goto out;
565 } else {
566 set_dax_nocache(dax_dev);
567 set_dax_nomc(dax_dev);
568 if (is_nvdimm_sync(nd_region))
569 set_dax_synchronous(dax_dev);
570 pmem->dax_dev = dax_dev;
571 rc = dax_add_host(dax_dev, disk);
572 if (rc)
573 goto out_cleanup_dax;
574 dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
576 rc = device_add_disk(dev, disk, pmem_attribute_groups);
577 if (rc)
578 goto out_remove_host;
579 if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
580 return -ENOMEM;
582 nvdimm_check_and_set_ro(disk);
584 pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
585 "badblocks");
586 if (!pmem->bb_state)
587 dev_warn(dev, "'badblocks' notification disabled\n");
588 return 0;
590 out_remove_host:
591 dax_remove_host(pmem->disk);
592 out_cleanup_dax:
593 kill_dax(pmem->dax_dev);
594 put_dax(pmem->dax_dev);
595 out:
596 put_disk(pmem->disk);
597 return rc;
600 static int nd_pmem_probe(struct device *dev)
602 int ret;
603 struct nd_namespace_common *ndns;
605 ndns = nvdimm_namespace_common_probe(dev);
606 if (IS_ERR(ndns))
607 return PTR_ERR(ndns);
609 if (is_nd_btt(dev))
610 return nvdimm_namespace_attach_btt(ndns);
612 if (is_nd_pfn(dev))
613 return pmem_attach_disk(dev, ndns);
615 ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
616 if (ret)
617 return ret;
619 ret = nd_btt_probe(dev, ndns);
620 if (ret == 0)
621 return -ENXIO;
624 * We have two failure conditions here, there is no
625 * info reserver block or we found a valid info reserve block
626 * but failed to initialize the pfn superblock.
628 * For the first case consider namespace as a raw pmem namespace
629 * and attach a disk.
631 * For the latter, consider this a success and advance the namespace
632 * seed.
634 ret = nd_pfn_probe(dev, ndns);
635 if (ret == 0)
636 return -ENXIO;
637 else if (ret == -EOPNOTSUPP)
638 return ret;
640 ret = nd_dax_probe(dev, ndns);
641 if (ret == 0)
642 return -ENXIO;
643 else if (ret == -EOPNOTSUPP)
644 return ret;
646 /* probe complete, attach handles namespace enabling */
647 devm_namespace_disable(dev, ndns);
649 return pmem_attach_disk(dev, ndns);
652 static void nd_pmem_remove(struct device *dev)
654 struct pmem_device *pmem = dev_get_drvdata(dev);
656 if (is_nd_btt(dev))
657 nvdimm_namespace_detach_btt(to_nd_btt(dev));
658 else {
660 * Note, this assumes device_lock() context to not
661 * race nd_pmem_notify()
663 sysfs_put(pmem->bb_state);
664 pmem->bb_state = NULL;
666 nvdimm_flush(to_nd_region(dev->parent), NULL);
669 static void nd_pmem_shutdown(struct device *dev)
671 nvdimm_flush(to_nd_region(dev->parent), NULL);
674 static void pmem_revalidate_poison(struct device *dev)
676 struct nd_region *nd_region;
677 resource_size_t offset = 0, end_trunc = 0;
678 struct nd_namespace_common *ndns;
679 struct nd_namespace_io *nsio;
680 struct badblocks *bb;
681 struct range range;
682 struct kernfs_node *bb_state;
684 if (is_nd_btt(dev)) {
685 struct nd_btt *nd_btt = to_nd_btt(dev);
687 ndns = nd_btt->ndns;
688 nd_region = to_nd_region(ndns->dev.parent);
689 nsio = to_nd_namespace_io(&ndns->dev);
690 bb = &nsio->bb;
691 bb_state = NULL;
692 } else {
693 struct pmem_device *pmem = dev_get_drvdata(dev);
695 nd_region = to_region(pmem);
696 bb = &pmem->bb;
697 bb_state = pmem->bb_state;
699 if (is_nd_pfn(dev)) {
700 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
701 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
703 ndns = nd_pfn->ndns;
704 offset = pmem->data_offset +
705 __le32_to_cpu(pfn_sb->start_pad);
706 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
707 } else {
708 ndns = to_ndns(dev);
711 nsio = to_nd_namespace_io(&ndns->dev);
714 range.start = nsio->res.start + offset;
715 range.end = nsio->res.end - end_trunc;
716 nvdimm_badblocks_populate(nd_region, bb, &range);
717 if (bb_state)
718 sysfs_notify_dirent(bb_state);
721 static void pmem_revalidate_region(struct device *dev)
723 struct pmem_device *pmem;
725 if (is_nd_btt(dev)) {
726 struct nd_btt *nd_btt = to_nd_btt(dev);
727 struct btt *btt = nd_btt->btt;
729 nvdimm_check_and_set_ro(btt->btt_disk);
730 return;
733 pmem = dev_get_drvdata(dev);
734 nvdimm_check_and_set_ro(pmem->disk);
737 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
739 switch (event) {
740 case NVDIMM_REVALIDATE_POISON:
741 pmem_revalidate_poison(dev);
742 break;
743 case NVDIMM_REVALIDATE_REGION:
744 pmem_revalidate_region(dev);
745 break;
746 default:
747 dev_WARN_ONCE(dev, 1, "notify: unknown event: %d\n", event);
748 break;
752 MODULE_ALIAS("pmem");
753 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
754 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
755 static struct nd_device_driver nd_pmem_driver = {
756 .probe = nd_pmem_probe,
757 .remove = nd_pmem_remove,
758 .notify = nd_pmem_notify,
759 .shutdown = nd_pmem_shutdown,
760 .drv = {
761 .name = "nd_pmem",
763 .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
766 module_nd_driver(nd_pmem_driver);
768 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
769 MODULE_DESCRIPTION("NVDIMM Persistent Memory Driver");
770 MODULE_LICENSE("GPL v2");