1 // SPDX-License-Identifier: GPL-2.0
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
7 #include <linux/acpi.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/blk-integrity.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
17 #include <linux/kstrtox.h>
18 #include <linux/memremap.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/once.h>
23 #include <linux/pci.h>
24 #include <linux/suspend.h>
25 #include <linux/t10-pi.h>
26 #include <linux/types.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/io-64-nonatomic-hi-lo.h>
29 #include <linux/sed-opal.h>
30 #include <linux/pci-p2pdma.h>
35 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
38 #define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
44 #define NVME_MAX_KB_SZ 8192
45 #define NVME_MAX_SEGS 128
46 #define NVME_MAX_META_SEGS 15
47 #define NVME_MAX_NR_ALLOCATIONS 5
49 static int use_threaded_interrupts
;
50 module_param(use_threaded_interrupts
, int, 0444);
52 static bool use_cmb_sqes
= true;
53 module_param(use_cmb_sqes
, bool, 0444);
54 MODULE_PARM_DESC(use_cmb_sqes
, "use controller's memory buffer for I/O SQes");
56 static unsigned int max_host_mem_size_mb
= 128;
57 module_param(max_host_mem_size_mb
, uint
, 0444);
58 MODULE_PARM_DESC(max_host_mem_size_mb
,
59 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
61 static unsigned int sgl_threshold
= SZ_32K
;
62 module_param(sgl_threshold
, uint
, 0644);
63 MODULE_PARM_DESC(sgl_threshold
,
64 "Use SGLs when average request segment size is larger or equal to "
65 "this size. Use 0 to disable SGLs.");
67 #define NVME_PCI_MIN_QUEUE_SIZE 2
68 #define NVME_PCI_MAX_QUEUE_SIZE 4095
69 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
);
70 static const struct kernel_param_ops io_queue_depth_ops
= {
71 .set
= io_queue_depth_set
,
72 .get
= param_get_uint
,
75 static unsigned int io_queue_depth
= 1024;
76 module_param_cb(io_queue_depth
, &io_queue_depth_ops
, &io_queue_depth
, 0644);
77 MODULE_PARM_DESC(io_queue_depth
, "set io queue depth, should >= 2 and < 4096");
79 static int io_queue_count_set(const char *val
, const struct kernel_param
*kp
)
84 ret
= kstrtouint(val
, 10, &n
);
85 if (ret
!= 0 || n
> num_possible_cpus())
87 return param_set_uint(val
, kp
);
90 static const struct kernel_param_ops io_queue_count_ops
= {
91 .set
= io_queue_count_set
,
92 .get
= param_get_uint
,
95 static unsigned int write_queues
;
96 module_param_cb(write_queues
, &io_queue_count_ops
, &write_queues
, 0644);
97 MODULE_PARM_DESC(write_queues
,
98 "Number of queues to use for writes. If not set, reads and writes "
99 "will share a queue set.");
101 static unsigned int poll_queues
;
102 module_param_cb(poll_queues
, &io_queue_count_ops
, &poll_queues
, 0644);
103 MODULE_PARM_DESC(poll_queues
, "Number of queues to use for polled IO.");
106 module_param(noacpi
, bool, 0444);
107 MODULE_PARM_DESC(noacpi
, "disable acpi bios quirks");
112 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
);
113 static void nvme_delete_io_queues(struct nvme_dev
*dev
);
114 static void nvme_update_attrs(struct nvme_dev
*dev
);
117 * Represents an NVM Express device. Each nvme_dev is a PCI function.
120 struct nvme_queue
*queues
;
121 struct blk_mq_tag_set tagset
;
122 struct blk_mq_tag_set admin_tagset
;
125 struct dma_pool
*prp_page_pool
;
126 struct dma_pool
*prp_small_pool
;
127 unsigned online_queues
;
129 unsigned io_queues
[HCTX_MAX_TYPES
];
130 unsigned int num_vecs
;
135 unsigned long bar_mapped_size
;
136 struct mutex shutdown_lock
;
142 struct nvme_ctrl ctrl
;
145 struct sg_table
*hmb_sgt
;
147 mempool_t
*iod_mempool
;
148 mempool_t
*iod_meta_mempool
;
150 /* shadow doorbell buffer support: */
152 dma_addr_t dbbuf_dbs_dma_addr
;
154 dma_addr_t dbbuf_eis_dma_addr
;
156 /* host memory buffer support: */
158 u32 nr_host_mem_descs
;
159 u32 host_mem_descs_size
;
160 dma_addr_t host_mem_descs_dma
;
161 struct nvme_host_mem_buf_desc
*host_mem_descs
;
162 void **host_mem_desc_bufs
;
163 unsigned int nr_allocated_queues
;
164 unsigned int nr_write_queues
;
165 unsigned int nr_poll_queues
;
168 static int io_queue_depth_set(const char *val
, const struct kernel_param
*kp
)
170 return param_set_uint_minmax(val
, kp
, NVME_PCI_MIN_QUEUE_SIZE
,
171 NVME_PCI_MAX_QUEUE_SIZE
);
174 static inline unsigned int sq_idx(unsigned int qid
, u32 stride
)
176 return qid
* 2 * stride
;
179 static inline unsigned int cq_idx(unsigned int qid
, u32 stride
)
181 return (qid
* 2 + 1) * stride
;
184 static inline struct nvme_dev
*to_nvme_dev(struct nvme_ctrl
*ctrl
)
186 return container_of(ctrl
, struct nvme_dev
, ctrl
);
190 * An NVM Express queue. Each device has at least two (one for admin
191 * commands and one for I/O commands).
194 struct nvme_dev
*dev
;
197 /* only used for poll queues: */
198 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp
;
199 struct nvme_completion
*cqes
;
200 dma_addr_t sq_dma_addr
;
201 dma_addr_t cq_dma_addr
;
212 #define NVMEQ_ENABLED 0
213 #define NVMEQ_SQ_CMB 1
214 #define NVMEQ_DELETE_ERROR 2
215 #define NVMEQ_POLLED 3
220 struct completion delete_done
;
223 union nvme_descriptor
{
224 struct nvme_sgl_desc
*sg_list
;
229 * The nvme_iod describes the data in an I/O.
231 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
232 * to the actual struct scatterlist.
235 struct nvme_request req
;
236 struct nvme_command cmd
;
238 s8 nr_allocations
; /* PRP list pool allocations. 0 means small
240 unsigned int dma_len
; /* length of single DMA segment mapping */
241 dma_addr_t first_dma
;
244 struct sg_table meta_sgt
;
245 union nvme_descriptor meta_list
;
246 union nvme_descriptor list
[NVME_MAX_NR_ALLOCATIONS
];
249 static inline unsigned int nvme_dbbuf_size(struct nvme_dev
*dev
)
251 return dev
->nr_allocated_queues
* 8 * dev
->db_stride
;
254 static void nvme_dbbuf_dma_alloc(struct nvme_dev
*dev
)
256 unsigned int mem_size
= nvme_dbbuf_size(dev
);
258 if (!(dev
->ctrl
.oacs
& NVME_CTRL_OACS_DBBUF_SUPP
))
261 if (dev
->dbbuf_dbs
) {
263 * Clear the dbbuf memory so the driver doesn't observe stale
264 * values from the previous instantiation.
266 memset(dev
->dbbuf_dbs
, 0, mem_size
);
267 memset(dev
->dbbuf_eis
, 0, mem_size
);
271 dev
->dbbuf_dbs
= dma_alloc_coherent(dev
->dev
, mem_size
,
272 &dev
->dbbuf_dbs_dma_addr
,
276 dev
->dbbuf_eis
= dma_alloc_coherent(dev
->dev
, mem_size
,
277 &dev
->dbbuf_eis_dma_addr
,
280 goto fail_free_dbbuf_dbs
;
284 dma_free_coherent(dev
->dev
, mem_size
, dev
->dbbuf_dbs
,
285 dev
->dbbuf_dbs_dma_addr
);
286 dev
->dbbuf_dbs
= NULL
;
288 dev_warn(dev
->dev
, "unable to allocate dma for dbbuf\n");
291 static void nvme_dbbuf_dma_free(struct nvme_dev
*dev
)
293 unsigned int mem_size
= nvme_dbbuf_size(dev
);
295 if (dev
->dbbuf_dbs
) {
296 dma_free_coherent(dev
->dev
, mem_size
,
297 dev
->dbbuf_dbs
, dev
->dbbuf_dbs_dma_addr
);
298 dev
->dbbuf_dbs
= NULL
;
300 if (dev
->dbbuf_eis
) {
301 dma_free_coherent(dev
->dev
, mem_size
,
302 dev
->dbbuf_eis
, dev
->dbbuf_eis_dma_addr
);
303 dev
->dbbuf_eis
= NULL
;
307 static void nvme_dbbuf_init(struct nvme_dev
*dev
,
308 struct nvme_queue
*nvmeq
, int qid
)
310 if (!dev
->dbbuf_dbs
|| !qid
)
313 nvmeq
->dbbuf_sq_db
= &dev
->dbbuf_dbs
[sq_idx(qid
, dev
->db_stride
)];
314 nvmeq
->dbbuf_cq_db
= &dev
->dbbuf_dbs
[cq_idx(qid
, dev
->db_stride
)];
315 nvmeq
->dbbuf_sq_ei
= &dev
->dbbuf_eis
[sq_idx(qid
, dev
->db_stride
)];
316 nvmeq
->dbbuf_cq_ei
= &dev
->dbbuf_eis
[cq_idx(qid
, dev
->db_stride
)];
319 static void nvme_dbbuf_free(struct nvme_queue
*nvmeq
)
324 nvmeq
->dbbuf_sq_db
= NULL
;
325 nvmeq
->dbbuf_cq_db
= NULL
;
326 nvmeq
->dbbuf_sq_ei
= NULL
;
327 nvmeq
->dbbuf_cq_ei
= NULL
;
330 static void nvme_dbbuf_set(struct nvme_dev
*dev
)
332 struct nvme_command c
= { };
338 c
.dbbuf
.opcode
= nvme_admin_dbbuf
;
339 c
.dbbuf
.prp1
= cpu_to_le64(dev
->dbbuf_dbs_dma_addr
);
340 c
.dbbuf
.prp2
= cpu_to_le64(dev
->dbbuf_eis_dma_addr
);
342 if (nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0)) {
343 dev_warn(dev
->ctrl
.device
, "unable to set dbbuf\n");
344 /* Free memory and continue on */
345 nvme_dbbuf_dma_free(dev
);
347 for (i
= 1; i
<= dev
->online_queues
; i
++)
348 nvme_dbbuf_free(&dev
->queues
[i
]);
352 static inline int nvme_dbbuf_need_event(u16 event_idx
, u16 new_idx
, u16 old
)
354 return (u16
)(new_idx
- event_idx
- 1) < (u16
)(new_idx
- old
);
357 /* Update dbbuf and return true if an MMIO is required */
358 static bool nvme_dbbuf_update_and_check_event(u16 value
, __le32
*dbbuf_db
,
359 volatile __le32
*dbbuf_ei
)
362 u16 old_value
, event_idx
;
365 * Ensure that the queue is written before updating
366 * the doorbell in memory
370 old_value
= le32_to_cpu(*dbbuf_db
);
371 *dbbuf_db
= cpu_to_le32(value
);
374 * Ensure that the doorbell is updated before reading the event
375 * index from memory. The controller needs to provide similar
376 * ordering to ensure the envent index is updated before reading
381 event_idx
= le32_to_cpu(*dbbuf_ei
);
382 if (!nvme_dbbuf_need_event(event_idx
, value
, old_value
))
390 * Will slightly overestimate the number of pages needed. This is OK
391 * as it only leads to a small amount of wasted memory for the lifetime of
394 static int nvme_pci_npages_prp(void)
396 unsigned max_bytes
= (NVME_MAX_KB_SZ
* 1024) + NVME_CTRL_PAGE_SIZE
;
397 unsigned nprps
= DIV_ROUND_UP(max_bytes
, NVME_CTRL_PAGE_SIZE
);
398 return DIV_ROUND_UP(8 * nprps
, NVME_CTRL_PAGE_SIZE
- 8);
401 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
402 unsigned int hctx_idx
)
404 struct nvme_dev
*dev
= to_nvme_dev(data
);
405 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
407 WARN_ON(hctx_idx
!= 0);
408 WARN_ON(dev
->admin_tagset
.tags
[0] != hctx
->tags
);
410 hctx
->driver_data
= nvmeq
;
414 static int nvme_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
415 unsigned int hctx_idx
)
417 struct nvme_dev
*dev
= to_nvme_dev(data
);
418 struct nvme_queue
*nvmeq
= &dev
->queues
[hctx_idx
+ 1];
420 WARN_ON(dev
->tagset
.tags
[hctx_idx
] != hctx
->tags
);
421 hctx
->driver_data
= nvmeq
;
425 static int nvme_pci_init_request(struct blk_mq_tag_set
*set
,
426 struct request
*req
, unsigned int hctx_idx
,
427 unsigned int numa_node
)
429 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
431 nvme_req(req
)->ctrl
= set
->driver_data
;
432 nvme_req(req
)->cmd
= &iod
->cmd
;
436 static int queue_irq_offset(struct nvme_dev
*dev
)
438 /* if we have more than 1 vec, admin queue offsets us by 1 */
439 if (dev
->num_vecs
> 1)
445 static void nvme_pci_map_queues(struct blk_mq_tag_set
*set
)
447 struct nvme_dev
*dev
= to_nvme_dev(set
->driver_data
);
450 offset
= queue_irq_offset(dev
);
451 for (i
= 0, qoff
= 0; i
< set
->nr_maps
; i
++) {
452 struct blk_mq_queue_map
*map
= &set
->map
[i
];
454 map
->nr_queues
= dev
->io_queues
[i
];
455 if (!map
->nr_queues
) {
456 BUG_ON(i
== HCTX_TYPE_DEFAULT
);
461 * The poll queue(s) doesn't have an IRQ (and hence IRQ
462 * affinity), so use the regular blk-mq cpu mapping
464 map
->queue_offset
= qoff
;
465 if (i
!= HCTX_TYPE_POLL
&& offset
)
466 blk_mq_pci_map_queues(map
, to_pci_dev(dev
->dev
), offset
);
468 blk_mq_map_queues(map
);
469 qoff
+= map
->nr_queues
;
470 offset
+= map
->nr_queues
;
475 * Write sq tail if we are asked to, or if the next command would wrap.
477 static inline void nvme_write_sq_db(struct nvme_queue
*nvmeq
, bool write_sq
)
480 u16 next_tail
= nvmeq
->sq_tail
+ 1;
482 if (next_tail
== nvmeq
->q_depth
)
484 if (next_tail
!= nvmeq
->last_sq_tail
)
488 if (nvme_dbbuf_update_and_check_event(nvmeq
->sq_tail
,
489 nvmeq
->dbbuf_sq_db
, nvmeq
->dbbuf_sq_ei
))
490 writel(nvmeq
->sq_tail
, nvmeq
->q_db
);
491 nvmeq
->last_sq_tail
= nvmeq
->sq_tail
;
494 static inline void nvme_sq_copy_cmd(struct nvme_queue
*nvmeq
,
495 struct nvme_command
*cmd
)
497 memcpy(nvmeq
->sq_cmds
+ (nvmeq
->sq_tail
<< nvmeq
->sqes
),
498 absolute_pointer(cmd
), sizeof(*cmd
));
499 if (++nvmeq
->sq_tail
== nvmeq
->q_depth
)
503 static void nvme_commit_rqs(struct blk_mq_hw_ctx
*hctx
)
505 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
507 spin_lock(&nvmeq
->sq_lock
);
508 if (nvmeq
->sq_tail
!= nvmeq
->last_sq_tail
)
509 nvme_write_sq_db(nvmeq
, true);
510 spin_unlock(&nvmeq
->sq_lock
);
513 static inline bool nvme_pci_metadata_use_sgls(struct nvme_dev
*dev
,
516 if (!nvme_ctrl_meta_sgl_supported(&dev
->ctrl
))
518 return req
->nr_integrity_segments
> 1 ||
519 nvme_req(req
)->flags
& NVME_REQ_USERCMD
;
522 static inline bool nvme_pci_use_sgls(struct nvme_dev
*dev
, struct request
*req
,
525 struct nvme_queue
*nvmeq
= req
->mq_hctx
->driver_data
;
526 unsigned int avg_seg_size
;
528 avg_seg_size
= DIV_ROUND_UP(blk_rq_payload_bytes(req
), nseg
);
530 if (!nvme_ctrl_sgl_supported(&dev
->ctrl
))
534 if (nvme_pci_metadata_use_sgls(dev
, req
))
536 if (!sgl_threshold
|| avg_seg_size
< sgl_threshold
)
537 return nvme_req(req
)->flags
& NVME_REQ_USERCMD
;
541 static void nvme_free_prps(struct nvme_dev
*dev
, struct request
*req
)
543 const int last_prp
= NVME_CTRL_PAGE_SIZE
/ sizeof(__le64
) - 1;
544 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
545 dma_addr_t dma_addr
= iod
->first_dma
;
548 for (i
= 0; i
< iod
->nr_allocations
; i
++) {
549 __le64
*prp_list
= iod
->list
[i
].prp_list
;
550 dma_addr_t next_dma_addr
= le64_to_cpu(prp_list
[last_prp
]);
552 dma_pool_free(dev
->prp_page_pool
, prp_list
, dma_addr
);
553 dma_addr
= next_dma_addr
;
557 static void nvme_unmap_data(struct nvme_dev
*dev
, struct request
*req
)
559 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
562 dma_unmap_page(dev
->dev
, iod
->first_dma
, iod
->dma_len
,
567 WARN_ON_ONCE(!iod
->sgt
.nents
);
569 dma_unmap_sgtable(dev
->dev
, &iod
->sgt
, rq_dma_dir(req
), 0);
571 if (iod
->nr_allocations
== 0)
572 dma_pool_free(dev
->prp_small_pool
, iod
->list
[0].sg_list
,
574 else if (iod
->nr_allocations
== 1)
575 dma_pool_free(dev
->prp_page_pool
, iod
->list
[0].sg_list
,
578 nvme_free_prps(dev
, req
);
579 mempool_free(iod
->sgt
.sgl
, dev
->iod_mempool
);
582 static void nvme_print_sgl(struct scatterlist
*sgl
, int nents
)
585 struct scatterlist
*sg
;
587 for_each_sg(sgl
, sg
, nents
, i
) {
588 dma_addr_t phys
= sg_phys(sg
);
589 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
590 "dma_address:%pad dma_length:%d\n",
591 i
, &phys
, sg
->offset
, sg
->length
, &sg_dma_address(sg
),
596 static blk_status_t
nvme_pci_setup_prps(struct nvme_dev
*dev
,
597 struct request
*req
, struct nvme_rw_command
*cmnd
)
599 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
600 struct dma_pool
*pool
;
601 int length
= blk_rq_payload_bytes(req
);
602 struct scatterlist
*sg
= iod
->sgt
.sgl
;
603 int dma_len
= sg_dma_len(sg
);
604 u64 dma_addr
= sg_dma_address(sg
);
605 int offset
= dma_addr
& (NVME_CTRL_PAGE_SIZE
- 1);
610 length
-= (NVME_CTRL_PAGE_SIZE
- offset
);
616 dma_len
-= (NVME_CTRL_PAGE_SIZE
- offset
);
618 dma_addr
+= (NVME_CTRL_PAGE_SIZE
- offset
);
621 dma_addr
= sg_dma_address(sg
);
622 dma_len
= sg_dma_len(sg
);
625 if (length
<= NVME_CTRL_PAGE_SIZE
) {
626 iod
->first_dma
= dma_addr
;
630 nprps
= DIV_ROUND_UP(length
, NVME_CTRL_PAGE_SIZE
);
631 if (nprps
<= (256 / 8)) {
632 pool
= dev
->prp_small_pool
;
633 iod
->nr_allocations
= 0;
635 pool
= dev
->prp_page_pool
;
636 iod
->nr_allocations
= 1;
639 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
641 iod
->nr_allocations
= -1;
642 return BLK_STS_RESOURCE
;
644 iod
->list
[0].prp_list
= prp_list
;
645 iod
->first_dma
= prp_dma
;
648 if (i
== NVME_CTRL_PAGE_SIZE
>> 3) {
649 __le64
*old_prp_list
= prp_list
;
650 prp_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &prp_dma
);
653 iod
->list
[iod
->nr_allocations
++].prp_list
= prp_list
;
654 prp_list
[0] = old_prp_list
[i
- 1];
655 old_prp_list
[i
- 1] = cpu_to_le64(prp_dma
);
658 prp_list
[i
++] = cpu_to_le64(dma_addr
);
659 dma_len
-= NVME_CTRL_PAGE_SIZE
;
660 dma_addr
+= NVME_CTRL_PAGE_SIZE
;
661 length
-= NVME_CTRL_PAGE_SIZE
;
666 if (unlikely(dma_len
< 0))
669 dma_addr
= sg_dma_address(sg
);
670 dma_len
= sg_dma_len(sg
);
673 cmnd
->dptr
.prp1
= cpu_to_le64(sg_dma_address(iod
->sgt
.sgl
));
674 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
);
677 nvme_free_prps(dev
, req
);
678 return BLK_STS_RESOURCE
;
680 WARN(DO_ONCE(nvme_print_sgl
, iod
->sgt
.sgl
, iod
->sgt
.nents
),
681 "Invalid SGL for payload:%d nents:%d\n",
682 blk_rq_payload_bytes(req
), iod
->sgt
.nents
);
683 return BLK_STS_IOERR
;
686 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc
*sge
,
687 struct scatterlist
*sg
)
689 sge
->addr
= cpu_to_le64(sg_dma_address(sg
));
690 sge
->length
= cpu_to_le32(sg_dma_len(sg
));
691 sge
->type
= NVME_SGL_FMT_DATA_DESC
<< 4;
694 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc
*sge
,
695 dma_addr_t dma_addr
, int entries
)
697 sge
->addr
= cpu_to_le64(dma_addr
);
698 sge
->length
= cpu_to_le32(entries
* sizeof(*sge
));
699 sge
->type
= NVME_SGL_FMT_LAST_SEG_DESC
<< 4;
702 static blk_status_t
nvme_pci_setup_sgls(struct nvme_dev
*dev
,
703 struct request
*req
, struct nvme_rw_command
*cmd
)
705 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
706 struct dma_pool
*pool
;
707 struct nvme_sgl_desc
*sg_list
;
708 struct scatterlist
*sg
= iod
->sgt
.sgl
;
709 unsigned int entries
= iod
->sgt
.nents
;
713 /* setting the transfer type as SGL */
714 cmd
->flags
= NVME_CMD_SGL_METABUF
;
717 nvme_pci_sgl_set_data(&cmd
->dptr
.sgl
, sg
);
721 if (entries
<= (256 / sizeof(struct nvme_sgl_desc
))) {
722 pool
= dev
->prp_small_pool
;
723 iod
->nr_allocations
= 0;
725 pool
= dev
->prp_page_pool
;
726 iod
->nr_allocations
= 1;
729 sg_list
= dma_pool_alloc(pool
, GFP_ATOMIC
, &sgl_dma
);
731 iod
->nr_allocations
= -1;
732 return BLK_STS_RESOURCE
;
735 iod
->list
[0].sg_list
= sg_list
;
736 iod
->first_dma
= sgl_dma
;
738 nvme_pci_sgl_set_seg(&cmd
->dptr
.sgl
, sgl_dma
, entries
);
740 nvme_pci_sgl_set_data(&sg_list
[i
++], sg
);
742 } while (--entries
> 0);
747 static blk_status_t
nvme_setup_prp_simple(struct nvme_dev
*dev
,
748 struct request
*req
, struct nvme_rw_command
*cmnd
,
751 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
752 unsigned int offset
= bv
->bv_offset
& (NVME_CTRL_PAGE_SIZE
- 1);
753 unsigned int first_prp_len
= NVME_CTRL_PAGE_SIZE
- offset
;
755 iod
->first_dma
= dma_map_bvec(dev
->dev
, bv
, rq_dma_dir(req
), 0);
756 if (dma_mapping_error(dev
->dev
, iod
->first_dma
))
757 return BLK_STS_RESOURCE
;
758 iod
->dma_len
= bv
->bv_len
;
760 cmnd
->dptr
.prp1
= cpu_to_le64(iod
->first_dma
);
761 if (bv
->bv_len
> first_prp_len
)
762 cmnd
->dptr
.prp2
= cpu_to_le64(iod
->first_dma
+ first_prp_len
);
768 static blk_status_t
nvme_setup_sgl_simple(struct nvme_dev
*dev
,
769 struct request
*req
, struct nvme_rw_command
*cmnd
,
772 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
774 iod
->first_dma
= dma_map_bvec(dev
->dev
, bv
, rq_dma_dir(req
), 0);
775 if (dma_mapping_error(dev
->dev
, iod
->first_dma
))
776 return BLK_STS_RESOURCE
;
777 iod
->dma_len
= bv
->bv_len
;
779 cmnd
->flags
= NVME_CMD_SGL_METABUF
;
780 cmnd
->dptr
.sgl
.addr
= cpu_to_le64(iod
->first_dma
);
781 cmnd
->dptr
.sgl
.length
= cpu_to_le32(iod
->dma_len
);
782 cmnd
->dptr
.sgl
.type
= NVME_SGL_FMT_DATA_DESC
<< 4;
786 static blk_status_t
nvme_map_data(struct nvme_dev
*dev
, struct request
*req
,
787 struct nvme_command
*cmnd
)
789 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
790 blk_status_t ret
= BLK_STS_RESOURCE
;
793 if (blk_rq_nr_phys_segments(req
) == 1) {
794 struct nvme_queue
*nvmeq
= req
->mq_hctx
->driver_data
;
795 struct bio_vec bv
= req_bvec(req
);
797 if (!is_pci_p2pdma_page(bv
.bv_page
)) {
798 if (!nvme_pci_metadata_use_sgls(dev
, req
) &&
799 (bv
.bv_offset
& (NVME_CTRL_PAGE_SIZE
- 1)) +
800 bv
.bv_len
<= NVME_CTRL_PAGE_SIZE
* 2)
801 return nvme_setup_prp_simple(dev
, req
,
804 if (nvmeq
->qid
&& sgl_threshold
&&
805 nvme_ctrl_sgl_supported(&dev
->ctrl
))
806 return nvme_setup_sgl_simple(dev
, req
,
812 iod
->sgt
.sgl
= mempool_alloc(dev
->iod_mempool
, GFP_ATOMIC
);
814 return BLK_STS_RESOURCE
;
815 sg_init_table(iod
->sgt
.sgl
, blk_rq_nr_phys_segments(req
));
816 iod
->sgt
.orig_nents
= blk_rq_map_sg(req
->q
, req
, iod
->sgt
.sgl
);
817 if (!iod
->sgt
.orig_nents
)
820 rc
= dma_map_sgtable(dev
->dev
, &iod
->sgt
, rq_dma_dir(req
),
823 if (rc
== -EREMOTEIO
)
824 ret
= BLK_STS_TARGET
;
828 if (nvme_pci_use_sgls(dev
, req
, iod
->sgt
.nents
))
829 ret
= nvme_pci_setup_sgls(dev
, req
, &cmnd
->rw
);
831 ret
= nvme_pci_setup_prps(dev
, req
, &cmnd
->rw
);
832 if (ret
!= BLK_STS_OK
)
837 dma_unmap_sgtable(dev
->dev
, &iod
->sgt
, rq_dma_dir(req
), 0);
839 mempool_free(iod
->sgt
.sgl
, dev
->iod_mempool
);
843 static blk_status_t
nvme_pci_setup_meta_sgls(struct nvme_dev
*dev
,
846 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
847 struct nvme_rw_command
*cmnd
= &iod
->cmd
.rw
;
848 struct nvme_sgl_desc
*sg_list
;
849 struct scatterlist
*sgl
, *sg
;
850 unsigned int entries
;
854 iod
->meta_sgt
.sgl
= mempool_alloc(dev
->iod_meta_mempool
, GFP_ATOMIC
);
855 if (!iod
->meta_sgt
.sgl
)
856 return BLK_STS_RESOURCE
;
858 sg_init_table(iod
->meta_sgt
.sgl
, req
->nr_integrity_segments
);
859 iod
->meta_sgt
.orig_nents
= blk_rq_map_integrity_sg(req
,
861 if (!iod
->meta_sgt
.orig_nents
)
864 rc
= dma_map_sgtable(dev
->dev
, &iod
->meta_sgt
, rq_dma_dir(req
),
869 sg_list
= dma_pool_alloc(dev
->prp_small_pool
, GFP_ATOMIC
, &sgl_dma
);
873 entries
= iod
->meta_sgt
.nents
;
874 iod
->meta_list
.sg_list
= sg_list
;
875 iod
->meta_dma
= sgl_dma
;
877 cmnd
->flags
= NVME_CMD_SGL_METASEG
;
878 cmnd
->metadata
= cpu_to_le64(sgl_dma
);
880 sgl
= iod
->meta_sgt
.sgl
;
882 nvme_pci_sgl_set_data(sg_list
, sgl
);
886 sgl_dma
+= sizeof(*sg_list
);
887 nvme_pci_sgl_set_seg(sg_list
, sgl_dma
, entries
);
888 for_each_sg(sgl
, sg
, entries
, i
)
889 nvme_pci_sgl_set_data(&sg_list
[i
+ 1], sg
);
894 dma_unmap_sgtable(dev
->dev
, &iod
->meta_sgt
, rq_dma_dir(req
), 0);
896 mempool_free(iod
->meta_sgt
.sgl
, dev
->iod_meta_mempool
);
897 return BLK_STS_RESOURCE
;
900 static blk_status_t
nvme_pci_setup_meta_mptr(struct nvme_dev
*dev
,
903 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
904 struct bio_vec bv
= rq_integrity_vec(req
);
905 struct nvme_command
*cmnd
= &iod
->cmd
;
907 iod
->meta_dma
= dma_map_bvec(dev
->dev
, &bv
, rq_dma_dir(req
), 0);
908 if (dma_mapping_error(dev
->dev
, iod
->meta_dma
))
909 return BLK_STS_IOERR
;
910 cmnd
->rw
.metadata
= cpu_to_le64(iod
->meta_dma
);
914 static blk_status_t
nvme_map_metadata(struct nvme_dev
*dev
, struct request
*req
)
916 if (nvme_pci_metadata_use_sgls(dev
, req
))
917 return nvme_pci_setup_meta_sgls(dev
, req
);
918 return nvme_pci_setup_meta_mptr(dev
, req
);
921 static blk_status_t
nvme_prep_rq(struct nvme_dev
*dev
, struct request
*req
)
923 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
926 iod
->aborted
= false;
927 iod
->nr_allocations
= -1;
929 iod
->meta_sgt
.nents
= 0;
931 ret
= nvme_setup_cmd(req
->q
->queuedata
, req
);
935 if (blk_rq_nr_phys_segments(req
)) {
936 ret
= nvme_map_data(dev
, req
, &iod
->cmd
);
941 if (blk_integrity_rq(req
)) {
942 ret
= nvme_map_metadata(dev
, req
);
947 nvme_start_request(req
);
950 if (blk_rq_nr_phys_segments(req
))
951 nvme_unmap_data(dev
, req
);
953 nvme_cleanup_cmd(req
);
958 * NOTE: ns is NULL when called on the admin queue.
960 static blk_status_t
nvme_queue_rq(struct blk_mq_hw_ctx
*hctx
,
961 const struct blk_mq_queue_data
*bd
)
963 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
964 struct nvme_dev
*dev
= nvmeq
->dev
;
965 struct request
*req
= bd
->rq
;
966 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
970 * We should not need to do this, but we're still using this to
971 * ensure we can drain requests on a dying queue.
973 if (unlikely(!test_bit(NVMEQ_ENABLED
, &nvmeq
->flags
)))
974 return BLK_STS_IOERR
;
976 if (unlikely(!nvme_check_ready(&dev
->ctrl
, req
, true)))
977 return nvme_fail_nonready_command(&dev
->ctrl
, req
);
979 ret
= nvme_prep_rq(dev
, req
);
982 spin_lock(&nvmeq
->sq_lock
);
983 nvme_sq_copy_cmd(nvmeq
, &iod
->cmd
);
984 nvme_write_sq_db(nvmeq
, bd
->last
);
985 spin_unlock(&nvmeq
->sq_lock
);
989 static void nvme_submit_cmds(struct nvme_queue
*nvmeq
, struct rq_list
*rqlist
)
993 spin_lock(&nvmeq
->sq_lock
);
994 while ((req
= rq_list_pop(rqlist
))) {
995 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
997 nvme_sq_copy_cmd(nvmeq
, &iod
->cmd
);
999 nvme_write_sq_db(nvmeq
, true);
1000 spin_unlock(&nvmeq
->sq_lock
);
1003 static bool nvme_prep_rq_batch(struct nvme_queue
*nvmeq
, struct request
*req
)
1006 * We should not need to do this, but we're still using this to
1007 * ensure we can drain requests on a dying queue.
1009 if (unlikely(!test_bit(NVMEQ_ENABLED
, &nvmeq
->flags
)))
1011 if (unlikely(!nvme_check_ready(&nvmeq
->dev
->ctrl
, req
, true)))
1014 return nvme_prep_rq(nvmeq
->dev
, req
) == BLK_STS_OK
;
1017 static void nvme_queue_rqs(struct rq_list
*rqlist
)
1019 struct rq_list submit_list
= { };
1020 struct rq_list requeue_list
= { };
1021 struct nvme_queue
*nvmeq
= NULL
;
1022 struct request
*req
;
1024 while ((req
= rq_list_pop(rqlist
))) {
1025 if (nvmeq
&& nvmeq
!= req
->mq_hctx
->driver_data
)
1026 nvme_submit_cmds(nvmeq
, &submit_list
);
1027 nvmeq
= req
->mq_hctx
->driver_data
;
1029 if (nvme_prep_rq_batch(nvmeq
, req
))
1030 rq_list_add_tail(&submit_list
, req
);
1032 rq_list_add_tail(&requeue_list
, req
);
1036 nvme_submit_cmds(nvmeq
, &submit_list
);
1037 *rqlist
= requeue_list
;
1040 static __always_inline
void nvme_unmap_metadata(struct nvme_dev
*dev
,
1041 struct request
*req
)
1043 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1045 if (!iod
->meta_sgt
.nents
) {
1046 dma_unmap_page(dev
->dev
, iod
->meta_dma
,
1047 rq_integrity_vec(req
).bv_len
,
1052 dma_pool_free(dev
->prp_small_pool
, iod
->meta_list
.sg_list
,
1054 dma_unmap_sgtable(dev
->dev
, &iod
->meta_sgt
, rq_dma_dir(req
), 0);
1055 mempool_free(iod
->meta_sgt
.sgl
, dev
->iod_meta_mempool
);
1058 static __always_inline
void nvme_pci_unmap_rq(struct request
*req
)
1060 struct nvme_queue
*nvmeq
= req
->mq_hctx
->driver_data
;
1061 struct nvme_dev
*dev
= nvmeq
->dev
;
1063 if (blk_integrity_rq(req
))
1064 nvme_unmap_metadata(dev
, req
);
1066 if (blk_rq_nr_phys_segments(req
))
1067 nvme_unmap_data(dev
, req
);
1070 static void nvme_pci_complete_rq(struct request
*req
)
1072 nvme_pci_unmap_rq(req
);
1073 nvme_complete_rq(req
);
1076 static void nvme_pci_complete_batch(struct io_comp_batch
*iob
)
1078 nvme_complete_batch(iob
, nvme_pci_unmap_rq
);
1081 /* We read the CQE phase first to check if the rest of the entry is valid */
1082 static inline bool nvme_cqe_pending(struct nvme_queue
*nvmeq
)
1084 struct nvme_completion
*hcqe
= &nvmeq
->cqes
[nvmeq
->cq_head
];
1086 return (le16_to_cpu(READ_ONCE(hcqe
->status
)) & 1) == nvmeq
->cq_phase
;
1089 static inline void nvme_ring_cq_doorbell(struct nvme_queue
*nvmeq
)
1091 u16 head
= nvmeq
->cq_head
;
1093 if (nvme_dbbuf_update_and_check_event(head
, nvmeq
->dbbuf_cq_db
,
1094 nvmeq
->dbbuf_cq_ei
))
1095 writel(head
, nvmeq
->q_db
+ nvmeq
->dev
->db_stride
);
1098 static inline struct blk_mq_tags
*nvme_queue_tagset(struct nvme_queue
*nvmeq
)
1101 return nvmeq
->dev
->admin_tagset
.tags
[0];
1102 return nvmeq
->dev
->tagset
.tags
[nvmeq
->qid
- 1];
1105 static inline void nvme_handle_cqe(struct nvme_queue
*nvmeq
,
1106 struct io_comp_batch
*iob
, u16 idx
)
1108 struct nvme_completion
*cqe
= &nvmeq
->cqes
[idx
];
1109 __u16 command_id
= READ_ONCE(cqe
->command_id
);
1110 struct request
*req
;
1113 * AEN requests are special as they don't time out and can
1114 * survive any kind of queue freeze and often don't respond to
1115 * aborts. We don't even bother to allocate a struct request
1116 * for them but rather special case them here.
1118 if (unlikely(nvme_is_aen_req(nvmeq
->qid
, command_id
))) {
1119 nvme_complete_async_event(&nvmeq
->dev
->ctrl
,
1120 cqe
->status
, &cqe
->result
);
1124 req
= nvme_find_rq(nvme_queue_tagset(nvmeq
), command_id
);
1125 if (unlikely(!req
)) {
1126 dev_warn(nvmeq
->dev
->ctrl
.device
,
1127 "invalid id %d completed on queue %d\n",
1128 command_id
, le16_to_cpu(cqe
->sq_id
));
1132 trace_nvme_sq(req
, cqe
->sq_head
, nvmeq
->sq_tail
);
1133 if (!nvme_try_complete_req(req
, cqe
->status
, cqe
->result
) &&
1134 !blk_mq_add_to_batch(req
, iob
, nvme_req(req
)->status
,
1135 nvme_pci_complete_batch
))
1136 nvme_pci_complete_rq(req
);
1139 static inline void nvme_update_cq_head(struct nvme_queue
*nvmeq
)
1141 u32 tmp
= nvmeq
->cq_head
+ 1;
1143 if (tmp
== nvmeq
->q_depth
) {
1145 nvmeq
->cq_phase
^= 1;
1147 nvmeq
->cq_head
= tmp
;
1151 static inline int nvme_poll_cq(struct nvme_queue
*nvmeq
,
1152 struct io_comp_batch
*iob
)
1156 while (nvme_cqe_pending(nvmeq
)) {
1159 * load-load control dependency between phase and the rest of
1160 * the cqe requires a full read memory barrier
1163 nvme_handle_cqe(nvmeq
, iob
, nvmeq
->cq_head
);
1164 nvme_update_cq_head(nvmeq
);
1168 nvme_ring_cq_doorbell(nvmeq
);
1172 static irqreturn_t
nvme_irq(int irq
, void *data
)
1174 struct nvme_queue
*nvmeq
= data
;
1175 DEFINE_IO_COMP_BATCH(iob
);
1177 if (nvme_poll_cq(nvmeq
, &iob
)) {
1178 if (!rq_list_empty(&iob
.req_list
))
1179 nvme_pci_complete_batch(&iob
);
1185 static irqreturn_t
nvme_irq_check(int irq
, void *data
)
1187 struct nvme_queue
*nvmeq
= data
;
1189 if (nvme_cqe_pending(nvmeq
))
1190 return IRQ_WAKE_THREAD
;
1195 * Poll for completions for any interrupt driven queue
1196 * Can be called from any context.
1198 static void nvme_poll_irqdisable(struct nvme_queue
*nvmeq
)
1200 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1202 WARN_ON_ONCE(test_bit(NVMEQ_POLLED
, &nvmeq
->flags
));
1204 disable_irq(pci_irq_vector(pdev
, nvmeq
->cq_vector
));
1205 nvme_poll_cq(nvmeq
, NULL
);
1206 enable_irq(pci_irq_vector(pdev
, nvmeq
->cq_vector
));
1209 static int nvme_poll(struct blk_mq_hw_ctx
*hctx
, struct io_comp_batch
*iob
)
1211 struct nvme_queue
*nvmeq
= hctx
->driver_data
;
1214 if (!nvme_cqe_pending(nvmeq
))
1217 spin_lock(&nvmeq
->cq_poll_lock
);
1218 found
= nvme_poll_cq(nvmeq
, iob
);
1219 spin_unlock(&nvmeq
->cq_poll_lock
);
1224 static void nvme_pci_submit_async_event(struct nvme_ctrl
*ctrl
)
1226 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1227 struct nvme_queue
*nvmeq
= &dev
->queues
[0];
1228 struct nvme_command c
= { };
1230 c
.common
.opcode
= nvme_admin_async_event
;
1231 c
.common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1233 spin_lock(&nvmeq
->sq_lock
);
1234 nvme_sq_copy_cmd(nvmeq
, &c
);
1235 nvme_write_sq_db(nvmeq
, true);
1236 spin_unlock(&nvmeq
->sq_lock
);
1239 static int nvme_pci_subsystem_reset(struct nvme_ctrl
*ctrl
)
1241 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
1245 * Taking the shutdown_lock ensures the BAR mapping is not being
1246 * altered by reset_work. Holding this lock before the RESETTING state
1247 * change, if successful, also ensures nvme_remove won't be able to
1248 * proceed to iounmap until we're done.
1250 mutex_lock(&dev
->shutdown_lock
);
1251 if (!dev
->bar_mapped_size
) {
1256 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_RESETTING
)) {
1261 writel(NVME_SUBSYS_RESET
, dev
->bar
+ NVME_REG_NSSR
);
1262 nvme_change_ctrl_state(ctrl
, NVME_CTRL_LIVE
);
1265 * Read controller status to flush the previous write and trigger a
1268 readl(dev
->bar
+ NVME_REG_CSTS
);
1270 mutex_unlock(&dev
->shutdown_lock
);
1274 static int adapter_delete_queue(struct nvme_dev
*dev
, u8 opcode
, u16 id
)
1276 struct nvme_command c
= { };
1278 c
.delete_queue
.opcode
= opcode
;
1279 c
.delete_queue
.qid
= cpu_to_le16(id
);
1281 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1284 static int adapter_alloc_cq(struct nvme_dev
*dev
, u16 qid
,
1285 struct nvme_queue
*nvmeq
, s16 vector
)
1287 struct nvme_command c
= { };
1288 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1290 if (!test_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1291 flags
|= NVME_CQ_IRQ_ENABLED
;
1294 * Note: we (ab)use the fact that the prp fields survive if no data
1295 * is attached to the request.
1297 c
.create_cq
.opcode
= nvme_admin_create_cq
;
1298 c
.create_cq
.prp1
= cpu_to_le64(nvmeq
->cq_dma_addr
);
1299 c
.create_cq
.cqid
= cpu_to_le16(qid
);
1300 c
.create_cq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1301 c
.create_cq
.cq_flags
= cpu_to_le16(flags
);
1302 c
.create_cq
.irq_vector
= cpu_to_le16(vector
);
1304 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1307 static int adapter_alloc_sq(struct nvme_dev
*dev
, u16 qid
,
1308 struct nvme_queue
*nvmeq
)
1310 struct nvme_ctrl
*ctrl
= &dev
->ctrl
;
1311 struct nvme_command c
= { };
1312 int flags
= NVME_QUEUE_PHYS_CONTIG
;
1315 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1316 * set. Since URGENT priority is zeroes, it makes all queues
1319 if (ctrl
->quirks
& NVME_QUIRK_MEDIUM_PRIO_SQ
)
1320 flags
|= NVME_SQ_PRIO_MEDIUM
;
1323 * Note: we (ab)use the fact that the prp fields survive if no data
1324 * is attached to the request.
1326 c
.create_sq
.opcode
= nvme_admin_create_sq
;
1327 c
.create_sq
.prp1
= cpu_to_le64(nvmeq
->sq_dma_addr
);
1328 c
.create_sq
.sqid
= cpu_to_le16(qid
);
1329 c
.create_sq
.qsize
= cpu_to_le16(nvmeq
->q_depth
- 1);
1330 c
.create_sq
.sq_flags
= cpu_to_le16(flags
);
1331 c
.create_sq
.cqid
= cpu_to_le16(qid
);
1333 return nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
1336 static int adapter_delete_cq(struct nvme_dev
*dev
, u16 cqid
)
1338 return adapter_delete_queue(dev
, nvme_admin_delete_cq
, cqid
);
1341 static int adapter_delete_sq(struct nvme_dev
*dev
, u16 sqid
)
1343 return adapter_delete_queue(dev
, nvme_admin_delete_sq
, sqid
);
1346 static enum rq_end_io_ret
abort_endio(struct request
*req
, blk_status_t error
)
1348 struct nvme_queue
*nvmeq
= req
->mq_hctx
->driver_data
;
1350 dev_warn(nvmeq
->dev
->ctrl
.device
,
1351 "Abort status: 0x%x", nvme_req(req
)->status
);
1352 atomic_inc(&nvmeq
->dev
->ctrl
.abort_limit
);
1353 blk_mq_free_request(req
);
1354 return RQ_END_IO_NONE
;
1357 static bool nvme_should_reset(struct nvme_dev
*dev
, u32 csts
)
1359 /* If true, indicates loss of adapter communication, possibly by a
1360 * NVMe Subsystem reset.
1362 bool nssro
= dev
->subsystem
&& (csts
& NVME_CSTS_NSSRO
);
1364 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1365 switch (nvme_ctrl_state(&dev
->ctrl
)) {
1366 case NVME_CTRL_RESETTING
:
1367 case NVME_CTRL_CONNECTING
:
1373 /* We shouldn't reset unless the controller is on fatal error state
1374 * _or_ if we lost the communication with it.
1376 if (!(csts
& NVME_CSTS_CFS
) && !nssro
)
1382 static void nvme_warn_reset(struct nvme_dev
*dev
, u32 csts
)
1384 /* Read a config register to help see what died. */
1388 result
= pci_read_config_word(to_pci_dev(dev
->dev
), PCI_STATUS
,
1390 if (result
== PCIBIOS_SUCCESSFUL
)
1391 dev_warn(dev
->ctrl
.device
,
1392 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1395 dev_warn(dev
->ctrl
.device
,
1396 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1402 dev_warn(dev
->ctrl
.device
,
1403 "Does your device have a faulty power saving mode enabled?\n");
1404 dev_warn(dev
->ctrl
.device
,
1405 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off pcie_port_pm=off\" and report a bug\n");
1408 static enum blk_eh_timer_return
nvme_timeout(struct request
*req
)
1410 struct nvme_iod
*iod
= blk_mq_rq_to_pdu(req
);
1411 struct nvme_queue
*nvmeq
= req
->mq_hctx
->driver_data
;
1412 struct nvme_dev
*dev
= nvmeq
->dev
;
1413 struct request
*abort_req
;
1414 struct nvme_command cmd
= { };
1415 u32 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
1418 if (nvme_state_terminal(&dev
->ctrl
))
1421 /* If PCI error recovery process is happening, we cannot reset or
1422 * the recovery mechanism will surely fail.
1425 if (pci_channel_offline(to_pci_dev(dev
->dev
)))
1426 return BLK_EH_RESET_TIMER
;
1429 * Reset immediately if the controller is failed
1431 if (nvme_should_reset(dev
, csts
)) {
1432 nvme_warn_reset(dev
, csts
);
1437 * Did we miss an interrupt?
1439 if (test_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1440 nvme_poll(req
->mq_hctx
, NULL
);
1442 nvme_poll_irqdisable(nvmeq
);
1444 if (blk_mq_rq_state(req
) != MQ_RQ_IN_FLIGHT
) {
1445 dev_warn(dev
->ctrl
.device
,
1446 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1447 req
->tag
, nvme_cid(req
), nvmeq
->qid
);
1452 * Shutdown immediately if controller times out while starting. The
1453 * reset work will see the pci device disabled when it gets the forced
1454 * cancellation error. All outstanding requests are completed on
1455 * shutdown, so we return BLK_EH_DONE.
1457 switch (nvme_ctrl_state(&dev
->ctrl
)) {
1458 case NVME_CTRL_CONNECTING
:
1459 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
1461 case NVME_CTRL_DELETING
:
1462 dev_warn_ratelimited(dev
->ctrl
.device
,
1463 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1464 req
->tag
, nvme_cid(req
), nvmeq
->qid
);
1465 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1466 nvme_dev_disable(dev
, true);
1468 case NVME_CTRL_RESETTING
:
1469 return BLK_EH_RESET_TIMER
;
1475 * Shutdown the controller immediately and schedule a reset if the
1476 * command was already aborted once before and still hasn't been
1477 * returned to the driver, or if this is the admin queue.
1479 opcode
= nvme_req(req
)->cmd
->common
.opcode
;
1480 if (!nvmeq
->qid
|| iod
->aborted
) {
1481 dev_warn(dev
->ctrl
.device
,
1482 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1483 req
->tag
, nvme_cid(req
), opcode
,
1484 nvme_opcode_str(nvmeq
->qid
, opcode
), nvmeq
->qid
);
1485 nvme_req(req
)->flags
|= NVME_REQ_CANCELLED
;
1489 if (atomic_dec_return(&dev
->ctrl
.abort_limit
) < 0) {
1490 atomic_inc(&dev
->ctrl
.abort_limit
);
1491 return BLK_EH_RESET_TIMER
;
1493 iod
->aborted
= true;
1495 cmd
.abort
.opcode
= nvme_admin_abort_cmd
;
1496 cmd
.abort
.cid
= nvme_cid(req
);
1497 cmd
.abort
.sqid
= cpu_to_le16(nvmeq
->qid
);
1499 dev_warn(nvmeq
->dev
->ctrl
.device
,
1500 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1501 req
->tag
, nvme_cid(req
), opcode
, nvme_get_opcode_str(opcode
),
1502 nvmeq
->qid
, blk_op_str(req_op(req
)), req_op(req
),
1505 abort_req
= blk_mq_alloc_request(dev
->ctrl
.admin_q
, nvme_req_op(&cmd
),
1507 if (IS_ERR(abort_req
)) {
1508 atomic_inc(&dev
->ctrl
.abort_limit
);
1509 return BLK_EH_RESET_TIMER
;
1511 nvme_init_request(abort_req
, &cmd
);
1513 abort_req
->end_io
= abort_endio
;
1514 abort_req
->end_io_data
= NULL
;
1515 blk_execute_rq_nowait(abort_req
, false);
1518 * The aborted req will be completed on receiving the abort req.
1519 * We enable the timer again. If hit twice, it'll cause a device reset,
1520 * as the device then is in a faulty state.
1522 return BLK_EH_RESET_TIMER
;
1525 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_RESETTING
)) {
1526 if (nvme_state_terminal(&dev
->ctrl
))
1527 nvme_dev_disable(dev
, true);
1531 nvme_dev_disable(dev
, false);
1532 if (nvme_try_sched_reset(&dev
->ctrl
))
1533 nvme_unquiesce_io_queues(&dev
->ctrl
);
1537 static void nvme_free_queue(struct nvme_queue
*nvmeq
)
1539 dma_free_coherent(nvmeq
->dev
->dev
, CQ_SIZE(nvmeq
),
1540 (void *)nvmeq
->cqes
, nvmeq
->cq_dma_addr
);
1541 if (!nvmeq
->sq_cmds
)
1544 if (test_and_clear_bit(NVMEQ_SQ_CMB
, &nvmeq
->flags
)) {
1545 pci_free_p2pmem(to_pci_dev(nvmeq
->dev
->dev
),
1546 nvmeq
->sq_cmds
, SQ_SIZE(nvmeq
));
1548 dma_free_coherent(nvmeq
->dev
->dev
, SQ_SIZE(nvmeq
),
1549 nvmeq
->sq_cmds
, nvmeq
->sq_dma_addr
);
1553 static void nvme_free_queues(struct nvme_dev
*dev
, int lowest
)
1557 for (i
= dev
->ctrl
.queue_count
- 1; i
>= lowest
; i
--) {
1558 dev
->ctrl
.queue_count
--;
1559 nvme_free_queue(&dev
->queues
[i
]);
1563 static void nvme_suspend_queue(struct nvme_dev
*dev
, unsigned int qid
)
1565 struct nvme_queue
*nvmeq
= &dev
->queues
[qid
];
1567 if (!test_and_clear_bit(NVMEQ_ENABLED
, &nvmeq
->flags
))
1570 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1573 nvmeq
->dev
->online_queues
--;
1574 if (!nvmeq
->qid
&& nvmeq
->dev
->ctrl
.admin_q
)
1575 nvme_quiesce_admin_queue(&nvmeq
->dev
->ctrl
);
1576 if (!test_and_clear_bit(NVMEQ_POLLED
, &nvmeq
->flags
))
1577 pci_free_irq(to_pci_dev(dev
->dev
), nvmeq
->cq_vector
, nvmeq
);
1580 static void nvme_suspend_io_queues(struct nvme_dev
*dev
)
1584 for (i
= dev
->ctrl
.queue_count
- 1; i
> 0; i
--)
1585 nvme_suspend_queue(dev
, i
);
1589 * Called only on a device that has been disabled and after all other threads
1590 * that can check this device's completion queues have synced, except
1591 * nvme_poll(). This is the last chance for the driver to see a natural
1592 * completion before nvme_cancel_request() terminates all incomplete requests.
1594 static void nvme_reap_pending_cqes(struct nvme_dev
*dev
)
1598 for (i
= dev
->ctrl
.queue_count
- 1; i
> 0; i
--) {
1599 spin_lock(&dev
->queues
[i
].cq_poll_lock
);
1600 nvme_poll_cq(&dev
->queues
[i
], NULL
);
1601 spin_unlock(&dev
->queues
[i
].cq_poll_lock
);
1605 static int nvme_cmb_qdepth(struct nvme_dev
*dev
, int nr_io_queues
,
1608 int q_depth
= dev
->q_depth
;
1609 unsigned q_size_aligned
= roundup(q_depth
* entry_size
,
1610 NVME_CTRL_PAGE_SIZE
);
1612 if (q_size_aligned
* nr_io_queues
> dev
->cmb_size
) {
1613 u64 mem_per_q
= div_u64(dev
->cmb_size
, nr_io_queues
);
1615 mem_per_q
= round_down(mem_per_q
, NVME_CTRL_PAGE_SIZE
);
1616 q_depth
= div_u64(mem_per_q
, entry_size
);
1619 * Ensure the reduced q_depth is above some threshold where it
1620 * would be better to map queues in system memory with the
1630 static int nvme_alloc_sq_cmds(struct nvme_dev
*dev
, struct nvme_queue
*nvmeq
,
1633 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1635 if (qid
&& dev
->cmb_use_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
)) {
1636 nvmeq
->sq_cmds
= pci_alloc_p2pmem(pdev
, SQ_SIZE(nvmeq
));
1637 if (nvmeq
->sq_cmds
) {
1638 nvmeq
->sq_dma_addr
= pci_p2pmem_virt_to_bus(pdev
,
1640 if (nvmeq
->sq_dma_addr
) {
1641 set_bit(NVMEQ_SQ_CMB
, &nvmeq
->flags
);
1645 pci_free_p2pmem(pdev
, nvmeq
->sq_cmds
, SQ_SIZE(nvmeq
));
1649 nvmeq
->sq_cmds
= dma_alloc_coherent(dev
->dev
, SQ_SIZE(nvmeq
),
1650 &nvmeq
->sq_dma_addr
, GFP_KERNEL
);
1651 if (!nvmeq
->sq_cmds
)
1656 static int nvme_alloc_queue(struct nvme_dev
*dev
, int qid
, int depth
)
1658 struct nvme_queue
*nvmeq
= &dev
->queues
[qid
];
1660 if (dev
->ctrl
.queue_count
> qid
)
1663 nvmeq
->sqes
= qid
? dev
->io_sqes
: NVME_ADM_SQES
;
1664 nvmeq
->q_depth
= depth
;
1665 nvmeq
->cqes
= dma_alloc_coherent(dev
->dev
, CQ_SIZE(nvmeq
),
1666 &nvmeq
->cq_dma_addr
, GFP_KERNEL
);
1670 if (nvme_alloc_sq_cmds(dev
, nvmeq
, qid
))
1674 spin_lock_init(&nvmeq
->sq_lock
);
1675 spin_lock_init(&nvmeq
->cq_poll_lock
);
1677 nvmeq
->cq_phase
= 1;
1678 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1680 dev
->ctrl
.queue_count
++;
1685 dma_free_coherent(dev
->dev
, CQ_SIZE(nvmeq
), (void *)nvmeq
->cqes
,
1686 nvmeq
->cq_dma_addr
);
1691 static int queue_request_irq(struct nvme_queue
*nvmeq
)
1693 struct pci_dev
*pdev
= to_pci_dev(nvmeq
->dev
->dev
);
1694 int nr
= nvmeq
->dev
->ctrl
.instance
;
1696 if (use_threaded_interrupts
) {
1697 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq_check
,
1698 nvme_irq
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1700 return pci_request_irq(pdev
, nvmeq
->cq_vector
, nvme_irq
,
1701 NULL
, nvmeq
, "nvme%dq%d", nr
, nvmeq
->qid
);
1705 static void nvme_init_queue(struct nvme_queue
*nvmeq
, u16 qid
)
1707 struct nvme_dev
*dev
= nvmeq
->dev
;
1710 nvmeq
->last_sq_tail
= 0;
1712 nvmeq
->cq_phase
= 1;
1713 nvmeq
->q_db
= &dev
->dbs
[qid
* 2 * dev
->db_stride
];
1714 memset((void *)nvmeq
->cqes
, 0, CQ_SIZE(nvmeq
));
1715 nvme_dbbuf_init(dev
, nvmeq
, qid
);
1716 dev
->online_queues
++;
1717 wmb(); /* ensure the first interrupt sees the initialization */
1721 * Try getting shutdown_lock while setting up IO queues.
1723 static int nvme_setup_io_queues_trylock(struct nvme_dev
*dev
)
1726 * Give up if the lock is being held by nvme_dev_disable.
1728 if (!mutex_trylock(&dev
->shutdown_lock
))
1732 * Controller is in wrong state, fail early.
1734 if (nvme_ctrl_state(&dev
->ctrl
) != NVME_CTRL_CONNECTING
) {
1735 mutex_unlock(&dev
->shutdown_lock
);
1742 static int nvme_create_queue(struct nvme_queue
*nvmeq
, int qid
, bool polled
)
1744 struct nvme_dev
*dev
= nvmeq
->dev
;
1748 clear_bit(NVMEQ_DELETE_ERROR
, &nvmeq
->flags
);
1751 * A queue's vector matches the queue identifier unless the controller
1752 * has only one vector available.
1755 vector
= dev
->num_vecs
== 1 ? 0 : qid
;
1757 set_bit(NVMEQ_POLLED
, &nvmeq
->flags
);
1759 result
= adapter_alloc_cq(dev
, qid
, nvmeq
, vector
);
1763 result
= adapter_alloc_sq(dev
, qid
, nvmeq
);
1769 nvmeq
->cq_vector
= vector
;
1771 result
= nvme_setup_io_queues_trylock(dev
);
1774 nvme_init_queue(nvmeq
, qid
);
1776 result
= queue_request_irq(nvmeq
);
1781 set_bit(NVMEQ_ENABLED
, &nvmeq
->flags
);
1782 mutex_unlock(&dev
->shutdown_lock
);
1786 dev
->online_queues
--;
1787 mutex_unlock(&dev
->shutdown_lock
);
1788 adapter_delete_sq(dev
, qid
);
1790 adapter_delete_cq(dev
, qid
);
1794 static const struct blk_mq_ops nvme_mq_admin_ops
= {
1795 .queue_rq
= nvme_queue_rq
,
1796 .complete
= nvme_pci_complete_rq
,
1797 .init_hctx
= nvme_admin_init_hctx
,
1798 .init_request
= nvme_pci_init_request
,
1799 .timeout
= nvme_timeout
,
1802 static const struct blk_mq_ops nvme_mq_ops
= {
1803 .queue_rq
= nvme_queue_rq
,
1804 .queue_rqs
= nvme_queue_rqs
,
1805 .complete
= nvme_pci_complete_rq
,
1806 .commit_rqs
= nvme_commit_rqs
,
1807 .init_hctx
= nvme_init_hctx
,
1808 .init_request
= nvme_pci_init_request
,
1809 .map_queues
= nvme_pci_map_queues
,
1810 .timeout
= nvme_timeout
,
1814 static void nvme_dev_remove_admin(struct nvme_dev
*dev
)
1816 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
)) {
1818 * If the controller was reset during removal, it's possible
1819 * user requests may be waiting on a stopped queue. Start the
1820 * queue to flush these to completion.
1822 nvme_unquiesce_admin_queue(&dev
->ctrl
);
1823 nvme_remove_admin_tag_set(&dev
->ctrl
);
1827 static unsigned long db_bar_size(struct nvme_dev
*dev
, unsigned nr_io_queues
)
1829 return NVME_REG_DBS
+ ((nr_io_queues
+ 1) * 8 * dev
->db_stride
);
1832 static int nvme_remap_bar(struct nvme_dev
*dev
, unsigned long size
)
1834 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1836 if (size
<= dev
->bar_mapped_size
)
1838 if (size
> pci_resource_len(pdev
, 0))
1842 dev
->bar
= ioremap(pci_resource_start(pdev
, 0), size
);
1844 dev
->bar_mapped_size
= 0;
1847 dev
->bar_mapped_size
= size
;
1848 dev
->dbs
= dev
->bar
+ NVME_REG_DBS
;
1853 static int nvme_pci_configure_admin_queue(struct nvme_dev
*dev
)
1857 struct nvme_queue
*nvmeq
;
1859 result
= nvme_remap_bar(dev
, db_bar_size(dev
, 0));
1863 dev
->subsystem
= readl(dev
->bar
+ NVME_REG_VS
) >= NVME_VS(1, 1, 0) ?
1864 NVME_CAP_NSSRC(dev
->ctrl
.cap
) : 0;
1866 if (dev
->subsystem
&&
1867 (readl(dev
->bar
+ NVME_REG_CSTS
) & NVME_CSTS_NSSRO
))
1868 writel(NVME_CSTS_NSSRO
, dev
->bar
+ NVME_REG_CSTS
);
1871 * If the device has been passed off to us in an enabled state, just
1872 * clear the enabled bit. The spec says we should set the 'shutdown
1873 * notification bits', but doing so may cause the device to complete
1874 * commands to the admin queue ... and we don't know what memory that
1875 * might be pointing at!
1877 result
= nvme_disable_ctrl(&dev
->ctrl
, false);
1881 result
= nvme_alloc_queue(dev
, 0, NVME_AQ_DEPTH
);
1885 dev
->ctrl
.numa_node
= dev_to_node(dev
->dev
);
1887 nvmeq
= &dev
->queues
[0];
1888 aqa
= nvmeq
->q_depth
- 1;
1891 writel(aqa
, dev
->bar
+ NVME_REG_AQA
);
1892 lo_hi_writeq(nvmeq
->sq_dma_addr
, dev
->bar
+ NVME_REG_ASQ
);
1893 lo_hi_writeq(nvmeq
->cq_dma_addr
, dev
->bar
+ NVME_REG_ACQ
);
1895 result
= nvme_enable_ctrl(&dev
->ctrl
);
1899 nvmeq
->cq_vector
= 0;
1900 nvme_init_queue(nvmeq
, 0);
1901 result
= queue_request_irq(nvmeq
);
1903 dev
->online_queues
--;
1907 set_bit(NVMEQ_ENABLED
, &nvmeq
->flags
);
1911 static int nvme_create_io_queues(struct nvme_dev
*dev
)
1913 unsigned i
, max
, rw_queues
;
1916 for (i
= dev
->ctrl
.queue_count
; i
<= dev
->max_qid
; i
++) {
1917 if (nvme_alloc_queue(dev
, i
, dev
->q_depth
)) {
1923 max
= min(dev
->max_qid
, dev
->ctrl
.queue_count
- 1);
1924 if (max
!= 1 && dev
->io_queues
[HCTX_TYPE_POLL
]) {
1925 rw_queues
= dev
->io_queues
[HCTX_TYPE_DEFAULT
] +
1926 dev
->io_queues
[HCTX_TYPE_READ
];
1931 for (i
= dev
->online_queues
; i
<= max
; i
++) {
1932 bool polled
= i
> rw_queues
;
1934 ret
= nvme_create_queue(&dev
->queues
[i
], i
, polled
);
1940 * Ignore failing Create SQ/CQ commands, we can continue with less
1941 * than the desired amount of queues, and even a controller without
1942 * I/O queues can still be used to issue admin commands. This might
1943 * be useful to upgrade a buggy firmware for example.
1945 return ret
>= 0 ? 0 : ret
;
1948 static u64
nvme_cmb_size_unit(struct nvme_dev
*dev
)
1950 u8 szu
= (dev
->cmbsz
>> NVME_CMBSZ_SZU_SHIFT
) & NVME_CMBSZ_SZU_MASK
;
1952 return 1ULL << (12 + 4 * szu
);
1955 static u32
nvme_cmb_size(struct nvme_dev
*dev
)
1957 return (dev
->cmbsz
>> NVME_CMBSZ_SZ_SHIFT
) & NVME_CMBSZ_SZ_MASK
;
1960 static void nvme_map_cmb(struct nvme_dev
*dev
)
1963 resource_size_t bar_size
;
1964 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
1970 if (NVME_CAP_CMBS(dev
->ctrl
.cap
))
1971 writel(NVME_CMBMSC_CRE
, dev
->bar
+ NVME_REG_CMBMSC
);
1973 dev
->cmbsz
= readl(dev
->bar
+ NVME_REG_CMBSZ
);
1976 dev
->cmbloc
= readl(dev
->bar
+ NVME_REG_CMBLOC
);
1978 size
= nvme_cmb_size_unit(dev
) * nvme_cmb_size(dev
);
1979 offset
= nvme_cmb_size_unit(dev
) * NVME_CMB_OFST(dev
->cmbloc
);
1980 bar
= NVME_CMB_BIR(dev
->cmbloc
);
1981 bar_size
= pci_resource_len(pdev
, bar
);
1983 if (offset
> bar_size
)
1987 * Tell the controller about the host side address mapping the CMB,
1988 * and enable CMB decoding for the NVMe 1.4+ scheme:
1990 if (NVME_CAP_CMBS(dev
->ctrl
.cap
)) {
1991 hi_lo_writeq(NVME_CMBMSC_CRE
| NVME_CMBMSC_CMSE
|
1992 (pci_bus_address(pdev
, bar
) + offset
),
1993 dev
->bar
+ NVME_REG_CMBMSC
);
1997 * Controllers may support a CMB size larger than their BAR,
1998 * for example, due to being behind a bridge. Reduce the CMB to
1999 * the reported size of the BAR
2001 if (size
> bar_size
- offset
)
2002 size
= bar_size
- offset
;
2004 if (pci_p2pdma_add_resource(pdev
, bar
, size
, offset
)) {
2005 dev_warn(dev
->ctrl
.device
,
2006 "failed to register the CMB\n");
2010 dev
->cmb_size
= size
;
2011 dev
->cmb_use_sqes
= use_cmb_sqes
&& (dev
->cmbsz
& NVME_CMBSZ_SQS
);
2013 if ((dev
->cmbsz
& (NVME_CMBSZ_WDS
| NVME_CMBSZ_RDS
)) ==
2014 (NVME_CMBSZ_WDS
| NVME_CMBSZ_RDS
))
2015 pci_p2pmem_publish(pdev
, true);
2017 nvme_update_attrs(dev
);
2020 static int nvme_set_host_mem(struct nvme_dev
*dev
, u32 bits
)
2022 u32 host_mem_size
= dev
->host_mem_size
>> NVME_CTRL_PAGE_SHIFT
;
2023 u64 dma_addr
= dev
->host_mem_descs_dma
;
2024 struct nvme_command c
= { };
2027 c
.features
.opcode
= nvme_admin_set_features
;
2028 c
.features
.fid
= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF
);
2029 c
.features
.dword11
= cpu_to_le32(bits
);
2030 c
.features
.dword12
= cpu_to_le32(host_mem_size
);
2031 c
.features
.dword13
= cpu_to_le32(lower_32_bits(dma_addr
));
2032 c
.features
.dword14
= cpu_to_le32(upper_32_bits(dma_addr
));
2033 c
.features
.dword15
= cpu_to_le32(dev
->nr_host_mem_descs
);
2035 ret
= nvme_submit_sync_cmd(dev
->ctrl
.admin_q
, &c
, NULL
, 0);
2037 dev_warn(dev
->ctrl
.device
,
2038 "failed to set host mem (err %d, flags %#x).\n",
2041 dev
->hmb
= bits
& NVME_HOST_MEM_ENABLE
;
2046 static void nvme_free_host_mem_multi(struct nvme_dev
*dev
)
2050 for (i
= 0; i
< dev
->nr_host_mem_descs
; i
++) {
2051 struct nvme_host_mem_buf_desc
*desc
= &dev
->host_mem_descs
[i
];
2052 size_t size
= le32_to_cpu(desc
->size
) * NVME_CTRL_PAGE_SIZE
;
2054 dma_free_attrs(dev
->dev
, size
, dev
->host_mem_desc_bufs
[i
],
2055 le64_to_cpu(desc
->addr
),
2056 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
2059 kfree(dev
->host_mem_desc_bufs
);
2060 dev
->host_mem_desc_bufs
= NULL
;
2063 static void nvme_free_host_mem(struct nvme_dev
*dev
)
2066 dma_free_noncontiguous(dev
->dev
, dev
->host_mem_size
,
2067 dev
->hmb_sgt
, DMA_BIDIRECTIONAL
);
2069 nvme_free_host_mem_multi(dev
);
2071 dma_free_coherent(dev
->dev
, dev
->host_mem_descs_size
,
2072 dev
->host_mem_descs
, dev
->host_mem_descs_dma
);
2073 dev
->host_mem_descs
= NULL
;
2074 dev
->host_mem_descs_size
= 0;
2075 dev
->nr_host_mem_descs
= 0;
2078 static int nvme_alloc_host_mem_single(struct nvme_dev
*dev
, u64 size
)
2080 dev
->hmb_sgt
= dma_alloc_noncontiguous(dev
->dev
, size
,
2081 DMA_BIDIRECTIONAL
, GFP_KERNEL
, 0);
2085 dev
->host_mem_descs
= dma_alloc_coherent(dev
->dev
,
2086 sizeof(*dev
->host_mem_descs
), &dev
->host_mem_descs_dma
,
2088 if (!dev
->host_mem_descs
) {
2089 dma_free_noncontiguous(dev
->dev
, dev
->host_mem_size
,
2090 dev
->hmb_sgt
, DMA_BIDIRECTIONAL
);
2091 dev
->hmb_sgt
= NULL
;
2094 dev
->host_mem_size
= size
;
2095 dev
->host_mem_descs_size
= sizeof(*dev
->host_mem_descs
);
2096 dev
->nr_host_mem_descs
= 1;
2098 dev
->host_mem_descs
[0].addr
=
2099 cpu_to_le64(dev
->hmb_sgt
->sgl
->dma_address
);
2100 dev
->host_mem_descs
[0].size
= cpu_to_le32(size
/ NVME_CTRL_PAGE_SIZE
);
2104 static int nvme_alloc_host_mem_multi(struct nvme_dev
*dev
, u64 preferred
,
2107 struct nvme_host_mem_buf_desc
*descs
;
2108 u32 max_entries
, len
, descs_size
;
2109 dma_addr_t descs_dma
;
2114 tmp
= (preferred
+ chunk_size
- 1);
2115 do_div(tmp
, chunk_size
);
2118 if (dev
->ctrl
.hmmaxd
&& dev
->ctrl
.hmmaxd
< max_entries
)
2119 max_entries
= dev
->ctrl
.hmmaxd
;
2121 descs_size
= max_entries
* sizeof(*descs
);
2122 descs
= dma_alloc_coherent(dev
->dev
, descs_size
, &descs_dma
,
2127 bufs
= kcalloc(max_entries
, sizeof(*bufs
), GFP_KERNEL
);
2129 goto out_free_descs
;
2131 for (size
= 0; size
< preferred
&& i
< max_entries
; size
+= len
) {
2132 dma_addr_t dma_addr
;
2134 len
= min_t(u64
, chunk_size
, preferred
- size
);
2135 bufs
[i
] = dma_alloc_attrs(dev
->dev
, len
, &dma_addr
, GFP_KERNEL
,
2136 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
2140 descs
[i
].addr
= cpu_to_le64(dma_addr
);
2141 descs
[i
].size
= cpu_to_le32(len
/ NVME_CTRL_PAGE_SIZE
);
2148 dev
->nr_host_mem_descs
= i
;
2149 dev
->host_mem_size
= size
;
2150 dev
->host_mem_descs
= descs
;
2151 dev
->host_mem_descs_dma
= descs_dma
;
2152 dev
->host_mem_descs_size
= descs_size
;
2153 dev
->host_mem_desc_bufs
= bufs
;
2158 size_t size
= le32_to_cpu(descs
[i
].size
) * NVME_CTRL_PAGE_SIZE
;
2160 dma_free_attrs(dev
->dev
, size
, bufs
[i
],
2161 le64_to_cpu(descs
[i
].addr
),
2162 DMA_ATTR_NO_KERNEL_MAPPING
| DMA_ATTR_NO_WARN
);
2167 dma_free_coherent(dev
->dev
, descs_size
, descs
, descs_dma
);
2169 dev
->host_mem_descs
= NULL
;
2173 static int nvme_alloc_host_mem(struct nvme_dev
*dev
, u64 min
, u64 preferred
)
2175 u64 min_chunk
= min_t(u64
, preferred
, PAGE_SIZE
* MAX_ORDER_NR_PAGES
);
2176 u64 hmminds
= max_t(u32
, dev
->ctrl
.hmminds
* 4096, PAGE_SIZE
* 2);
2180 * If there is an IOMMU that can merge pages, try a virtually
2181 * non-contiguous allocation for a single segment first.
2183 if (!(PAGE_SIZE
& dma_get_merge_boundary(dev
->dev
))) {
2184 if (!nvme_alloc_host_mem_single(dev
, preferred
))
2188 /* start big and work our way down */
2189 for (chunk_size
= min_chunk
; chunk_size
>= hmminds
; chunk_size
/= 2) {
2190 if (!nvme_alloc_host_mem_multi(dev
, preferred
, chunk_size
)) {
2191 if (!min
|| dev
->host_mem_size
>= min
)
2193 nvme_free_host_mem(dev
);
2200 static int nvme_setup_host_mem(struct nvme_dev
*dev
)
2202 u64 max
= (u64
)max_host_mem_size_mb
* SZ_1M
;
2203 u64 preferred
= (u64
)dev
->ctrl
.hmpre
* 4096;
2204 u64 min
= (u64
)dev
->ctrl
.hmmin
* 4096;
2205 u32 enable_bits
= NVME_HOST_MEM_ENABLE
;
2208 if (!dev
->ctrl
.hmpre
)
2211 preferred
= min(preferred
, max
);
2213 dev_warn(dev
->ctrl
.device
,
2214 "min host memory (%lld MiB) above limit (%d MiB).\n",
2215 min
>> ilog2(SZ_1M
), max_host_mem_size_mb
);
2216 nvme_free_host_mem(dev
);
2221 * If we already have a buffer allocated check if we can reuse it.
2223 if (dev
->host_mem_descs
) {
2224 if (dev
->host_mem_size
>= min
)
2225 enable_bits
|= NVME_HOST_MEM_RETURN
;
2227 nvme_free_host_mem(dev
);
2230 if (!dev
->host_mem_descs
) {
2231 if (nvme_alloc_host_mem(dev
, min
, preferred
)) {
2232 dev_warn(dev
->ctrl
.device
,
2233 "failed to allocate host memory buffer.\n");
2234 return 0; /* controller must work without HMB */
2237 dev_info(dev
->ctrl
.device
,
2238 "allocated %lld MiB host memory buffer (%u segment%s).\n",
2239 dev
->host_mem_size
>> ilog2(SZ_1M
),
2240 dev
->nr_host_mem_descs
,
2241 str_plural(dev
->nr_host_mem_descs
));
2244 ret
= nvme_set_host_mem(dev
, enable_bits
);
2246 nvme_free_host_mem(dev
);
2250 static ssize_t
cmb_show(struct device
*dev
, struct device_attribute
*attr
,
2253 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
2255 return sysfs_emit(buf
, "cmbloc : x%08x\ncmbsz : x%08x\n",
2256 ndev
->cmbloc
, ndev
->cmbsz
);
2258 static DEVICE_ATTR_RO(cmb
);
2260 static ssize_t
cmbloc_show(struct device
*dev
, struct device_attribute
*attr
,
2263 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
2265 return sysfs_emit(buf
, "%u\n", ndev
->cmbloc
);
2267 static DEVICE_ATTR_RO(cmbloc
);
2269 static ssize_t
cmbsz_show(struct device
*dev
, struct device_attribute
*attr
,
2272 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
2274 return sysfs_emit(buf
, "%u\n", ndev
->cmbsz
);
2276 static DEVICE_ATTR_RO(cmbsz
);
2278 static ssize_t
hmb_show(struct device
*dev
, struct device_attribute
*attr
,
2281 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
2283 return sysfs_emit(buf
, "%d\n", ndev
->hmb
);
2286 static ssize_t
hmb_store(struct device
*dev
, struct device_attribute
*attr
,
2287 const char *buf
, size_t count
)
2289 struct nvme_dev
*ndev
= to_nvme_dev(dev_get_drvdata(dev
));
2293 if (kstrtobool(buf
, &new) < 0)
2296 if (new == ndev
->hmb
)
2300 ret
= nvme_setup_host_mem(ndev
);
2302 ret
= nvme_set_host_mem(ndev
, 0);
2304 nvme_free_host_mem(ndev
);
2312 static DEVICE_ATTR_RW(hmb
);
2314 static umode_t
nvme_pci_attrs_are_visible(struct kobject
*kobj
,
2315 struct attribute
*a
, int n
)
2317 struct nvme_ctrl
*ctrl
=
2318 dev_get_drvdata(container_of(kobj
, struct device
, kobj
));
2319 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
2321 if (a
== &dev_attr_cmb
.attr
||
2322 a
== &dev_attr_cmbloc
.attr
||
2323 a
== &dev_attr_cmbsz
.attr
) {
2327 if (a
== &dev_attr_hmb
.attr
&& !ctrl
->hmpre
)
2333 static struct attribute
*nvme_pci_attrs
[] = {
2335 &dev_attr_cmbloc
.attr
,
2336 &dev_attr_cmbsz
.attr
,
2341 static const struct attribute_group nvme_pci_dev_attrs_group
= {
2342 .attrs
= nvme_pci_attrs
,
2343 .is_visible
= nvme_pci_attrs_are_visible
,
2346 static const struct attribute_group
*nvme_pci_dev_attr_groups
[] = {
2347 &nvme_dev_attrs_group
,
2348 &nvme_pci_dev_attrs_group
,
2352 static void nvme_update_attrs(struct nvme_dev
*dev
)
2354 sysfs_update_group(&dev
->ctrl
.device
->kobj
, &nvme_pci_dev_attrs_group
);
2358 * nirqs is the number of interrupts available for write and read
2359 * queues. The core already reserved an interrupt for the admin queue.
2361 static void nvme_calc_irq_sets(struct irq_affinity
*affd
, unsigned int nrirqs
)
2363 struct nvme_dev
*dev
= affd
->priv
;
2364 unsigned int nr_read_queues
, nr_write_queues
= dev
->nr_write_queues
;
2367 * If there is no interrupt available for queues, ensure that
2368 * the default queue is set to 1. The affinity set size is
2369 * also set to one, but the irq core ignores it for this case.
2371 * If only one interrupt is available or 'write_queue' == 0, combine
2372 * write and read queues.
2374 * If 'write_queues' > 0, ensure it leaves room for at least one read
2380 } else if (nrirqs
== 1 || !nr_write_queues
) {
2382 } else if (nr_write_queues
>= nrirqs
) {
2385 nr_read_queues
= nrirqs
- nr_write_queues
;
2388 dev
->io_queues
[HCTX_TYPE_DEFAULT
] = nrirqs
- nr_read_queues
;
2389 affd
->set_size
[HCTX_TYPE_DEFAULT
] = nrirqs
- nr_read_queues
;
2390 dev
->io_queues
[HCTX_TYPE_READ
] = nr_read_queues
;
2391 affd
->set_size
[HCTX_TYPE_READ
] = nr_read_queues
;
2392 affd
->nr_sets
= nr_read_queues
? 2 : 1;
2395 static int nvme_setup_irqs(struct nvme_dev
*dev
, unsigned int nr_io_queues
)
2397 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2398 struct irq_affinity affd
= {
2400 .calc_sets
= nvme_calc_irq_sets
,
2403 unsigned int irq_queues
, poll_queues
;
2404 unsigned int flags
= PCI_IRQ_ALL_TYPES
| PCI_IRQ_AFFINITY
;
2407 * Poll queues don't need interrupts, but we need at least one I/O queue
2408 * left over for non-polled I/O.
2410 poll_queues
= min(dev
->nr_poll_queues
, nr_io_queues
- 1);
2411 dev
->io_queues
[HCTX_TYPE_POLL
] = poll_queues
;
2414 * Initialize for the single interrupt case, will be updated in
2415 * nvme_calc_irq_sets().
2417 dev
->io_queues
[HCTX_TYPE_DEFAULT
] = 1;
2418 dev
->io_queues
[HCTX_TYPE_READ
] = 0;
2421 * We need interrupts for the admin queue and each non-polled I/O queue,
2422 * but some Apple controllers require all queues to use the first
2426 if (!(dev
->ctrl
.quirks
& NVME_QUIRK_SINGLE_VECTOR
))
2427 irq_queues
+= (nr_io_queues
- poll_queues
);
2428 if (dev
->ctrl
.quirks
& NVME_QUIRK_BROKEN_MSI
)
2429 flags
&= ~PCI_IRQ_MSI
;
2430 return pci_alloc_irq_vectors_affinity(pdev
, 1, irq_queues
, flags
,
2434 static unsigned int nvme_max_io_queues(struct nvme_dev
*dev
)
2437 * If tags are shared with admin queue (Apple bug), then
2438 * make sure we only use one IO queue.
2440 if (dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
)
2442 return num_possible_cpus() + dev
->nr_write_queues
+ dev
->nr_poll_queues
;
2445 static int nvme_setup_io_queues(struct nvme_dev
*dev
)
2447 struct nvme_queue
*adminq
= &dev
->queues
[0];
2448 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2449 unsigned int nr_io_queues
;
2454 * Sample the module parameters once at reset time so that we have
2455 * stable values to work with.
2457 dev
->nr_write_queues
= write_queues
;
2458 dev
->nr_poll_queues
= poll_queues
;
2460 nr_io_queues
= dev
->nr_allocated_queues
- 1;
2461 result
= nvme_set_queue_count(&dev
->ctrl
, &nr_io_queues
);
2465 if (nr_io_queues
== 0)
2469 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2470 * from set to unset. If there is a window to it is truely freed,
2471 * pci_free_irq_vectors() jumping into this window will crash.
2472 * And take lock to avoid racing with pci_free_irq_vectors() in
2473 * nvme_dev_disable() path.
2475 result
= nvme_setup_io_queues_trylock(dev
);
2478 if (test_and_clear_bit(NVMEQ_ENABLED
, &adminq
->flags
))
2479 pci_free_irq(pdev
, 0, adminq
);
2481 if (dev
->cmb_use_sqes
) {
2482 result
= nvme_cmb_qdepth(dev
, nr_io_queues
,
2483 sizeof(struct nvme_command
));
2485 dev
->q_depth
= result
;
2486 dev
->ctrl
.sqsize
= result
- 1;
2488 dev
->cmb_use_sqes
= false;
2493 size
= db_bar_size(dev
, nr_io_queues
);
2494 result
= nvme_remap_bar(dev
, size
);
2497 if (!--nr_io_queues
) {
2502 adminq
->q_db
= dev
->dbs
;
2505 /* Deregister the admin queue's interrupt */
2506 if (test_and_clear_bit(NVMEQ_ENABLED
, &adminq
->flags
))
2507 pci_free_irq(pdev
, 0, adminq
);
2510 * If we enable msix early due to not intx, disable it again before
2511 * setting up the full range we need.
2513 pci_free_irq_vectors(pdev
);
2515 result
= nvme_setup_irqs(dev
, nr_io_queues
);
2521 dev
->num_vecs
= result
;
2522 result
= max(result
- 1, 1);
2523 dev
->max_qid
= result
+ dev
->io_queues
[HCTX_TYPE_POLL
];
2526 * Should investigate if there's a performance win from allocating
2527 * more queues than interrupt vectors; it might allow the submission
2528 * path to scale better, even if the receive path is limited by the
2529 * number of interrupts.
2531 result
= queue_request_irq(adminq
);
2534 set_bit(NVMEQ_ENABLED
, &adminq
->flags
);
2535 mutex_unlock(&dev
->shutdown_lock
);
2537 result
= nvme_create_io_queues(dev
);
2538 if (result
|| dev
->online_queues
< 2)
2541 if (dev
->online_queues
- 1 < dev
->max_qid
) {
2542 nr_io_queues
= dev
->online_queues
- 1;
2543 nvme_delete_io_queues(dev
);
2544 result
= nvme_setup_io_queues_trylock(dev
);
2547 nvme_suspend_io_queues(dev
);
2550 dev_info(dev
->ctrl
.device
, "%d/%d/%d default/read/poll queues\n",
2551 dev
->io_queues
[HCTX_TYPE_DEFAULT
],
2552 dev
->io_queues
[HCTX_TYPE_READ
],
2553 dev
->io_queues
[HCTX_TYPE_POLL
]);
2556 mutex_unlock(&dev
->shutdown_lock
);
2560 static enum rq_end_io_ret
nvme_del_queue_end(struct request
*req
,
2563 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2565 blk_mq_free_request(req
);
2566 complete(&nvmeq
->delete_done
);
2567 return RQ_END_IO_NONE
;
2570 static enum rq_end_io_ret
nvme_del_cq_end(struct request
*req
,
2573 struct nvme_queue
*nvmeq
= req
->end_io_data
;
2576 set_bit(NVMEQ_DELETE_ERROR
, &nvmeq
->flags
);
2578 return nvme_del_queue_end(req
, error
);
2581 static int nvme_delete_queue(struct nvme_queue
*nvmeq
, u8 opcode
)
2583 struct request_queue
*q
= nvmeq
->dev
->ctrl
.admin_q
;
2584 struct request
*req
;
2585 struct nvme_command cmd
= { };
2587 cmd
.delete_queue
.opcode
= opcode
;
2588 cmd
.delete_queue
.qid
= cpu_to_le16(nvmeq
->qid
);
2590 req
= blk_mq_alloc_request(q
, nvme_req_op(&cmd
), BLK_MQ_REQ_NOWAIT
);
2592 return PTR_ERR(req
);
2593 nvme_init_request(req
, &cmd
);
2595 if (opcode
== nvme_admin_delete_cq
)
2596 req
->end_io
= nvme_del_cq_end
;
2598 req
->end_io
= nvme_del_queue_end
;
2599 req
->end_io_data
= nvmeq
;
2601 init_completion(&nvmeq
->delete_done
);
2602 blk_execute_rq_nowait(req
, false);
2606 static bool __nvme_delete_io_queues(struct nvme_dev
*dev
, u8 opcode
)
2608 int nr_queues
= dev
->online_queues
- 1, sent
= 0;
2609 unsigned long timeout
;
2612 timeout
= NVME_ADMIN_TIMEOUT
;
2613 while (nr_queues
> 0) {
2614 if (nvme_delete_queue(&dev
->queues
[nr_queues
], opcode
))
2620 struct nvme_queue
*nvmeq
= &dev
->queues
[nr_queues
+ sent
];
2622 timeout
= wait_for_completion_io_timeout(&nvmeq
->delete_done
,
2634 static void nvme_delete_io_queues(struct nvme_dev
*dev
)
2636 if (__nvme_delete_io_queues(dev
, nvme_admin_delete_sq
))
2637 __nvme_delete_io_queues(dev
, nvme_admin_delete_cq
);
2640 static unsigned int nvme_pci_nr_maps(struct nvme_dev
*dev
)
2642 if (dev
->io_queues
[HCTX_TYPE_POLL
])
2644 if (dev
->io_queues
[HCTX_TYPE_READ
])
2649 static bool nvme_pci_update_nr_queues(struct nvme_dev
*dev
)
2651 if (!dev
->ctrl
.tagset
) {
2652 nvme_alloc_io_tag_set(&dev
->ctrl
, &dev
->tagset
, &nvme_mq_ops
,
2653 nvme_pci_nr_maps(dev
), sizeof(struct nvme_iod
));
2657 /* Give up if we are racing with nvme_dev_disable() */
2658 if (!mutex_trylock(&dev
->shutdown_lock
))
2661 /* Check if nvme_dev_disable() has been executed already */
2662 if (!dev
->online_queues
) {
2663 mutex_unlock(&dev
->shutdown_lock
);
2667 blk_mq_update_nr_hw_queues(&dev
->tagset
, dev
->online_queues
- 1);
2668 /* free previously allocated queues that are no longer usable */
2669 nvme_free_queues(dev
, dev
->online_queues
);
2670 mutex_unlock(&dev
->shutdown_lock
);
2674 static int nvme_pci_enable(struct nvme_dev
*dev
)
2676 int result
= -ENOMEM
;
2677 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2678 unsigned int flags
= PCI_IRQ_ALL_TYPES
;
2680 if (pci_enable_device_mem(pdev
))
2683 pci_set_master(pdev
);
2685 if (readl(dev
->bar
+ NVME_REG_CSTS
) == -1) {
2691 * Some devices and/or platforms don't advertise or work with INTx
2692 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2693 * adjust this later.
2695 if (dev
->ctrl
.quirks
& NVME_QUIRK_BROKEN_MSI
)
2696 flags
&= ~PCI_IRQ_MSI
;
2697 result
= pci_alloc_irq_vectors(pdev
, 1, 1, flags
);
2701 dev
->ctrl
.cap
= lo_hi_readq(dev
->bar
+ NVME_REG_CAP
);
2703 dev
->q_depth
= min_t(u32
, NVME_CAP_MQES(dev
->ctrl
.cap
) + 1,
2705 dev
->db_stride
= 1 << NVME_CAP_STRIDE(dev
->ctrl
.cap
);
2706 dev
->dbs
= dev
->bar
+ 4096;
2709 * Some Apple controllers require a non-standard SQE size.
2710 * Interestingly they also seem to ignore the CC:IOSQES register
2711 * so we don't bother updating it here.
2713 if (dev
->ctrl
.quirks
& NVME_QUIRK_128_BYTES_SQES
)
2716 dev
->io_sqes
= NVME_NVM_IOSQES
;
2718 if (dev
->ctrl
.quirks
& NVME_QUIRK_QDEPTH_ONE
) {
2720 } else if (pdev
->vendor
== PCI_VENDOR_ID_SAMSUNG
&&
2721 (pdev
->device
== 0xa821 || pdev
->device
== 0xa822) &&
2722 NVME_CAP_MQES(dev
->ctrl
.cap
) == 0) {
2724 dev_err(dev
->ctrl
.device
, "detected PM1725 NVMe controller, "
2725 "set queue depth=%u\n", dev
->q_depth
);
2729 * Controllers with the shared tags quirk need the IO queue to be
2730 * big enough so that we get 32 tags for the admin queue
2732 if ((dev
->ctrl
.quirks
& NVME_QUIRK_SHARED_TAGS
) &&
2733 (dev
->q_depth
< (NVME_AQ_DEPTH
+ 2))) {
2734 dev
->q_depth
= NVME_AQ_DEPTH
+ 2;
2735 dev_warn(dev
->ctrl
.device
, "IO queue depth clamped to %d\n",
2738 dev
->ctrl
.sqsize
= dev
->q_depth
- 1; /* 0's based queue depth */
2742 pci_save_state(pdev
);
2744 result
= nvme_pci_configure_admin_queue(dev
);
2750 pci_free_irq_vectors(pdev
);
2752 pci_disable_device(pdev
);
2756 static void nvme_dev_unmap(struct nvme_dev
*dev
)
2760 pci_release_mem_regions(to_pci_dev(dev
->dev
));
2763 static bool nvme_pci_ctrl_is_dead(struct nvme_dev
*dev
)
2765 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2768 if (!pci_is_enabled(pdev
) || !pci_device_is_present(pdev
))
2770 if (pdev
->error_state
!= pci_channel_io_normal
)
2773 csts
= readl(dev
->bar
+ NVME_REG_CSTS
);
2774 return (csts
& NVME_CSTS_CFS
) || !(csts
& NVME_CSTS_RDY
);
2777 static void nvme_dev_disable(struct nvme_dev
*dev
, bool shutdown
)
2779 enum nvme_ctrl_state state
= nvme_ctrl_state(&dev
->ctrl
);
2780 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
2783 mutex_lock(&dev
->shutdown_lock
);
2784 dead
= nvme_pci_ctrl_is_dead(dev
);
2785 if (state
== NVME_CTRL_LIVE
|| state
== NVME_CTRL_RESETTING
) {
2786 if (pci_is_enabled(pdev
))
2787 nvme_start_freeze(&dev
->ctrl
);
2789 * Give the controller a chance to complete all entered requests
2790 * if doing a safe shutdown.
2792 if (!dead
&& shutdown
)
2793 nvme_wait_freeze_timeout(&dev
->ctrl
, NVME_IO_TIMEOUT
);
2796 nvme_quiesce_io_queues(&dev
->ctrl
);
2798 if (!dead
&& dev
->ctrl
.queue_count
> 0) {
2799 nvme_delete_io_queues(dev
);
2800 nvme_disable_ctrl(&dev
->ctrl
, shutdown
);
2801 nvme_poll_irqdisable(&dev
->queues
[0]);
2803 nvme_suspend_io_queues(dev
);
2804 nvme_suspend_queue(dev
, 0);
2805 pci_free_irq_vectors(pdev
);
2806 if (pci_is_enabled(pdev
))
2807 pci_disable_device(pdev
);
2808 nvme_reap_pending_cqes(dev
);
2810 nvme_cancel_tagset(&dev
->ctrl
);
2811 nvme_cancel_admin_tagset(&dev
->ctrl
);
2814 * The driver will not be starting up queues again if shutting down so
2815 * must flush all entered requests to their failed completion to avoid
2816 * deadlocking blk-mq hot-cpu notifier.
2819 nvme_unquiesce_io_queues(&dev
->ctrl
);
2820 if (dev
->ctrl
.admin_q
&& !blk_queue_dying(dev
->ctrl
.admin_q
))
2821 nvme_unquiesce_admin_queue(&dev
->ctrl
);
2823 mutex_unlock(&dev
->shutdown_lock
);
2826 static int nvme_disable_prepare_reset(struct nvme_dev
*dev
, bool shutdown
)
2828 if (!nvme_wait_reset(&dev
->ctrl
))
2830 nvme_dev_disable(dev
, shutdown
);
2834 static int nvme_setup_prp_pools(struct nvme_dev
*dev
)
2836 dev
->prp_page_pool
= dma_pool_create("prp list page", dev
->dev
,
2837 NVME_CTRL_PAGE_SIZE
,
2838 NVME_CTRL_PAGE_SIZE
, 0);
2839 if (!dev
->prp_page_pool
)
2842 /* Optimisation for I/Os between 4k and 128k */
2843 dev
->prp_small_pool
= dma_pool_create("prp list 256", dev
->dev
,
2845 if (!dev
->prp_small_pool
) {
2846 dma_pool_destroy(dev
->prp_page_pool
);
2852 static void nvme_release_prp_pools(struct nvme_dev
*dev
)
2854 dma_pool_destroy(dev
->prp_page_pool
);
2855 dma_pool_destroy(dev
->prp_small_pool
);
2858 static int nvme_pci_alloc_iod_mempool(struct nvme_dev
*dev
)
2860 size_t meta_size
= sizeof(struct scatterlist
) * (NVME_MAX_META_SEGS
+ 1);
2861 size_t alloc_size
= sizeof(struct scatterlist
) * NVME_MAX_SEGS
;
2863 dev
->iod_mempool
= mempool_create_node(1,
2864 mempool_kmalloc
, mempool_kfree
,
2865 (void *)alloc_size
, GFP_KERNEL
,
2866 dev_to_node(dev
->dev
));
2867 if (!dev
->iod_mempool
)
2870 dev
->iod_meta_mempool
= mempool_create_node(1,
2871 mempool_kmalloc
, mempool_kfree
,
2872 (void *)meta_size
, GFP_KERNEL
,
2873 dev_to_node(dev
->dev
));
2874 if (!dev
->iod_meta_mempool
)
2879 mempool_destroy(dev
->iod_mempool
);
2883 static void nvme_free_tagset(struct nvme_dev
*dev
)
2885 if (dev
->tagset
.tags
)
2886 nvme_remove_io_tag_set(&dev
->ctrl
);
2887 dev
->ctrl
.tagset
= NULL
;
2890 /* pairs with nvme_pci_alloc_dev */
2891 static void nvme_pci_free_ctrl(struct nvme_ctrl
*ctrl
)
2893 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
2895 nvme_free_tagset(dev
);
2896 put_device(dev
->dev
);
2901 static void nvme_reset_work(struct work_struct
*work
)
2903 struct nvme_dev
*dev
=
2904 container_of(work
, struct nvme_dev
, ctrl
.reset_work
);
2905 bool was_suspend
= !!(dev
->ctrl
.ctrl_config
& NVME_CC_SHN_NORMAL
);
2908 if (nvme_ctrl_state(&dev
->ctrl
) != NVME_CTRL_RESETTING
) {
2909 dev_warn(dev
->ctrl
.device
, "ctrl state %d is not RESETTING\n",
2916 * If we're called to reset a live controller first shut it down before
2919 if (dev
->ctrl
.ctrl_config
& NVME_CC_ENABLE
)
2920 nvme_dev_disable(dev
, false);
2921 nvme_sync_queues(&dev
->ctrl
);
2923 mutex_lock(&dev
->shutdown_lock
);
2924 result
= nvme_pci_enable(dev
);
2927 nvme_unquiesce_admin_queue(&dev
->ctrl
);
2928 mutex_unlock(&dev
->shutdown_lock
);
2931 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2932 * initializing procedure here.
2934 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_CONNECTING
)) {
2935 dev_warn(dev
->ctrl
.device
,
2936 "failed to mark controller CONNECTING\n");
2941 result
= nvme_init_ctrl_finish(&dev
->ctrl
, was_suspend
);
2945 if (nvme_ctrl_meta_sgl_supported(&dev
->ctrl
))
2946 dev
->ctrl
.max_integrity_segments
= NVME_MAX_META_SEGS
;
2948 dev
->ctrl
.max_integrity_segments
= 1;
2950 nvme_dbbuf_dma_alloc(dev
);
2952 result
= nvme_setup_host_mem(dev
);
2956 result
= nvme_setup_io_queues(dev
);
2961 * Freeze and update the number of I/O queues as thos might have
2962 * changed. If there are no I/O queues left after this reset, keep the
2963 * controller around but remove all namespaces.
2965 if (dev
->online_queues
> 1) {
2966 nvme_dbbuf_set(dev
);
2967 nvme_unquiesce_io_queues(&dev
->ctrl
);
2968 nvme_wait_freeze(&dev
->ctrl
);
2969 if (!nvme_pci_update_nr_queues(dev
))
2971 nvme_unfreeze(&dev
->ctrl
);
2973 dev_warn(dev
->ctrl
.device
, "IO queues lost\n");
2974 nvme_mark_namespaces_dead(&dev
->ctrl
);
2975 nvme_unquiesce_io_queues(&dev
->ctrl
);
2976 nvme_remove_namespaces(&dev
->ctrl
);
2977 nvme_free_tagset(dev
);
2981 * If only admin queue live, keep it to do further investigation or
2984 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_LIVE
)) {
2985 dev_warn(dev
->ctrl
.device
,
2986 "failed to mark controller live state\n");
2991 nvme_start_ctrl(&dev
->ctrl
);
2995 mutex_unlock(&dev
->shutdown_lock
);
2998 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2999 * may be holding this pci_dev's device lock.
3001 dev_warn(dev
->ctrl
.device
, "Disabling device after reset failure: %d\n",
3003 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
3004 nvme_dev_disable(dev
, true);
3005 nvme_sync_queues(&dev
->ctrl
);
3006 nvme_mark_namespaces_dead(&dev
->ctrl
);
3007 nvme_unquiesce_io_queues(&dev
->ctrl
);
3008 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
3011 static int nvme_pci_reg_read32(struct nvme_ctrl
*ctrl
, u32 off
, u32
*val
)
3013 *val
= readl(to_nvme_dev(ctrl
)->bar
+ off
);
3017 static int nvme_pci_reg_write32(struct nvme_ctrl
*ctrl
, u32 off
, u32 val
)
3019 writel(val
, to_nvme_dev(ctrl
)->bar
+ off
);
3023 static int nvme_pci_reg_read64(struct nvme_ctrl
*ctrl
, u32 off
, u64
*val
)
3025 *val
= lo_hi_readq(to_nvme_dev(ctrl
)->bar
+ off
);
3029 static int nvme_pci_get_address(struct nvme_ctrl
*ctrl
, char *buf
, int size
)
3031 struct pci_dev
*pdev
= to_pci_dev(to_nvme_dev(ctrl
)->dev
);
3033 return snprintf(buf
, size
, "%s\n", dev_name(&pdev
->dev
));
3036 static void nvme_pci_print_device_info(struct nvme_ctrl
*ctrl
)
3038 struct pci_dev
*pdev
= to_pci_dev(to_nvme_dev(ctrl
)->dev
);
3039 struct nvme_subsystem
*subsys
= ctrl
->subsys
;
3041 dev_err(ctrl
->device
,
3042 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
3043 pdev
->vendor
, pdev
->device
,
3044 nvme_strlen(subsys
->model
, sizeof(subsys
->model
)),
3045 subsys
->model
, nvme_strlen(subsys
->firmware_rev
,
3046 sizeof(subsys
->firmware_rev
)),
3047 subsys
->firmware_rev
);
3050 static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl
*ctrl
)
3052 struct nvme_dev
*dev
= to_nvme_dev(ctrl
);
3054 return dma_pci_p2pdma_supported(dev
->dev
);
3057 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops
= {
3059 .module
= THIS_MODULE
,
3060 .flags
= NVME_F_METADATA_SUPPORTED
,
3061 .dev_attr_groups
= nvme_pci_dev_attr_groups
,
3062 .reg_read32
= nvme_pci_reg_read32
,
3063 .reg_write32
= nvme_pci_reg_write32
,
3064 .reg_read64
= nvme_pci_reg_read64
,
3065 .free_ctrl
= nvme_pci_free_ctrl
,
3066 .submit_async_event
= nvme_pci_submit_async_event
,
3067 .subsystem_reset
= nvme_pci_subsystem_reset
,
3068 .get_address
= nvme_pci_get_address
,
3069 .print_device_info
= nvme_pci_print_device_info
,
3070 .supports_pci_p2pdma
= nvme_pci_supports_pci_p2pdma
,
3073 static int nvme_dev_map(struct nvme_dev
*dev
)
3075 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
3077 if (pci_request_mem_regions(pdev
, "nvme"))
3080 if (nvme_remap_bar(dev
, NVME_REG_DBS
+ 4096))
3085 pci_release_mem_regions(pdev
);
3089 static unsigned long check_vendor_combination_bug(struct pci_dev
*pdev
)
3091 if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa802) {
3093 * Several Samsung devices seem to drop off the PCIe bus
3094 * randomly when APST is on and uses the deepest sleep state.
3095 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
3096 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
3097 * 950 PRO 256GB", but it seems to be restricted to two Dell
3100 if (dmi_match(DMI_SYS_VENDOR
, "Dell Inc.") &&
3101 (dmi_match(DMI_PRODUCT_NAME
, "XPS 15 9550") ||
3102 dmi_match(DMI_PRODUCT_NAME
, "Precision 5510")))
3103 return NVME_QUIRK_NO_DEEPEST_PS
;
3104 } else if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa804) {
3106 * Samsung SSD 960 EVO drops off the PCIe bus after system
3107 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
3108 * within few minutes after bootup on a Coffee Lake board -
3111 if (dmi_match(DMI_BOARD_VENDOR
, "ASUSTeK COMPUTER INC.") &&
3112 (dmi_match(DMI_BOARD_NAME
, "PRIME B350M-A") ||
3113 dmi_match(DMI_BOARD_NAME
, "PRIME Z370-A")))
3114 return NVME_QUIRK_NO_APST
;
3115 } else if ((pdev
->vendor
== 0x144d && (pdev
->device
== 0xa801 ||
3116 pdev
->device
== 0xa808 || pdev
->device
== 0xa809)) ||
3117 (pdev
->vendor
== 0x1e0f && pdev
->device
== 0x0001)) {
3119 * Forcing to use host managed nvme power settings for
3120 * lowest idle power with quick resume latency on
3121 * Samsung and Toshiba SSDs based on suspend behavior
3122 * on Coffee Lake board for LENOVO C640
3124 if ((dmi_match(DMI_BOARD_VENDOR
, "LENOVO")) &&
3125 dmi_match(DMI_BOARD_NAME
, "LNVNB161216"))
3126 return NVME_QUIRK_SIMPLE_SUSPEND
;
3127 } else if (pdev
->vendor
== 0x2646 && (pdev
->device
== 0x2263 ||
3128 pdev
->device
== 0x500f)) {
3130 * Exclude some Kingston NV1 and A2000 devices from
3131 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
3132 * lot fo energy with s2idle sleep on some TUXEDO platforms.
3134 if (dmi_match(DMI_BOARD_NAME
, "NS5X_NS7XAU") ||
3135 dmi_match(DMI_BOARD_NAME
, "NS5x_7xAU") ||
3136 dmi_match(DMI_BOARD_NAME
, "NS5x_7xPU") ||
3137 dmi_match(DMI_BOARD_NAME
, "PH4PRX1_PH6PRX1"))
3138 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND
;
3139 } else if (pdev
->vendor
== 0x144d && pdev
->device
== 0xa80d) {
3141 * Exclude Samsung 990 Evo from NVME_QUIRK_SIMPLE_SUSPEND
3142 * because of high power consumption (> 2 Watt) in s2idle
3143 * sleep. Only some boards with Intel CPU are affected.
3145 if (dmi_match(DMI_BOARD_NAME
, "GMxPXxx") ||
3146 dmi_match(DMI_BOARD_NAME
, "PH4PG31") ||
3147 dmi_match(DMI_BOARD_NAME
, "PH4PRX1_PH6PRX1") ||
3148 dmi_match(DMI_BOARD_NAME
, "PH6PG01_PH6PG71"))
3149 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND
;
3153 * NVMe SSD drops off the PCIe bus after system idle
3154 * for 10 hours on a Lenovo N60z board.
3156 if (dmi_match(DMI_BOARD_NAME
, "LXKT-ZXEG-N6"))
3157 return NVME_QUIRK_NO_APST
;
3162 static struct nvme_dev
*nvme_pci_alloc_dev(struct pci_dev
*pdev
,
3163 const struct pci_device_id
*id
)
3165 unsigned long quirks
= id
->driver_data
;
3166 int node
= dev_to_node(&pdev
->dev
);
3167 struct nvme_dev
*dev
;
3170 dev
= kzalloc_node(sizeof(*dev
), GFP_KERNEL
, node
);
3172 return ERR_PTR(-ENOMEM
);
3173 INIT_WORK(&dev
->ctrl
.reset_work
, nvme_reset_work
);
3174 mutex_init(&dev
->shutdown_lock
);
3176 dev
->nr_write_queues
= write_queues
;
3177 dev
->nr_poll_queues
= poll_queues
;
3178 dev
->nr_allocated_queues
= nvme_max_io_queues(dev
) + 1;
3179 dev
->queues
= kcalloc_node(dev
->nr_allocated_queues
,
3180 sizeof(struct nvme_queue
), GFP_KERNEL
, node
);
3184 dev
->dev
= get_device(&pdev
->dev
);
3186 quirks
|= check_vendor_combination_bug(pdev
);
3188 !(quirks
& NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND
) &&
3189 acpi_storage_d3(&pdev
->dev
)) {
3191 * Some systems use a bios work around to ask for D3 on
3192 * platforms that support kernel managed suspend.
3194 dev_info(&pdev
->dev
,
3195 "platform quirk: setting simple suspend\n");
3196 quirks
|= NVME_QUIRK_SIMPLE_SUSPEND
;
3198 ret
= nvme_init_ctrl(&dev
->ctrl
, &pdev
->dev
, &nvme_pci_ctrl_ops
,
3201 goto out_put_device
;
3203 if (dev
->ctrl
.quirks
& NVME_QUIRK_DMA_ADDRESS_BITS_48
)
3204 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(48));
3206 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64));
3207 dma_set_min_align_mask(&pdev
->dev
, NVME_CTRL_PAGE_SIZE
- 1);
3208 dma_set_max_seg_size(&pdev
->dev
, 0xffffffff);
3211 * Limit the max command size to prevent iod->sg allocations going
3212 * over a single page.
3214 dev
->ctrl
.max_hw_sectors
= min_t(u32
,
3215 NVME_MAX_KB_SZ
<< 1, dma_opt_mapping_size(&pdev
->dev
) >> 9);
3216 dev
->ctrl
.max_segments
= NVME_MAX_SEGS
;
3217 dev
->ctrl
.max_integrity_segments
= 1;
3221 put_device(dev
->dev
);
3225 return ERR_PTR(ret
);
3228 static int nvme_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
3230 struct nvme_dev
*dev
;
3231 int result
= -ENOMEM
;
3233 dev
= nvme_pci_alloc_dev(pdev
, id
);
3235 return PTR_ERR(dev
);
3237 result
= nvme_add_ctrl(&dev
->ctrl
);
3241 result
= nvme_dev_map(dev
);
3243 goto out_uninit_ctrl
;
3245 result
= nvme_setup_prp_pools(dev
);
3249 result
= nvme_pci_alloc_iod_mempool(dev
);
3251 goto out_release_prp_pools
;
3253 dev_info(dev
->ctrl
.device
, "pci function %s\n", dev_name(&pdev
->dev
));
3255 result
= nvme_pci_enable(dev
);
3257 goto out_release_iod_mempool
;
3259 result
= nvme_alloc_admin_tag_set(&dev
->ctrl
, &dev
->admin_tagset
,
3260 &nvme_mq_admin_ops
, sizeof(struct nvme_iod
));
3265 * Mark the controller as connecting before sending admin commands to
3266 * allow the timeout handler to do the right thing.
3268 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_CONNECTING
)) {
3269 dev_warn(dev
->ctrl
.device
,
3270 "failed to mark controller CONNECTING\n");
3275 result
= nvme_init_ctrl_finish(&dev
->ctrl
, false);
3279 if (nvme_ctrl_meta_sgl_supported(&dev
->ctrl
))
3280 dev
->ctrl
.max_integrity_segments
= NVME_MAX_META_SEGS
;
3282 dev
->ctrl
.max_integrity_segments
= 1;
3284 nvme_dbbuf_dma_alloc(dev
);
3286 result
= nvme_setup_host_mem(dev
);
3290 result
= nvme_setup_io_queues(dev
);
3294 if (dev
->online_queues
> 1) {
3295 nvme_alloc_io_tag_set(&dev
->ctrl
, &dev
->tagset
, &nvme_mq_ops
,
3296 nvme_pci_nr_maps(dev
), sizeof(struct nvme_iod
));
3297 nvme_dbbuf_set(dev
);
3300 if (!dev
->ctrl
.tagset
)
3301 dev_warn(dev
->ctrl
.device
, "IO queues not created\n");
3303 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_LIVE
)) {
3304 dev_warn(dev
->ctrl
.device
,
3305 "failed to mark controller live state\n");
3310 pci_set_drvdata(pdev
, dev
);
3312 nvme_start_ctrl(&dev
->ctrl
);
3313 nvme_put_ctrl(&dev
->ctrl
);
3314 flush_work(&dev
->ctrl
.scan_work
);
3318 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
3319 nvme_dev_disable(dev
, true);
3320 nvme_free_host_mem(dev
);
3321 nvme_dev_remove_admin(dev
);
3322 nvme_dbbuf_dma_free(dev
);
3323 nvme_free_queues(dev
, 0);
3324 out_release_iod_mempool
:
3325 mempool_destroy(dev
->iod_mempool
);
3326 mempool_destroy(dev
->iod_meta_mempool
);
3327 out_release_prp_pools
:
3328 nvme_release_prp_pools(dev
);
3330 nvme_dev_unmap(dev
);
3332 nvme_uninit_ctrl(&dev
->ctrl
);
3334 nvme_put_ctrl(&dev
->ctrl
);
3338 static void nvme_reset_prepare(struct pci_dev
*pdev
)
3340 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3343 * We don't need to check the return value from waiting for the reset
3344 * state as pci_dev device lock is held, making it impossible to race
3347 nvme_disable_prepare_reset(dev
, false);
3348 nvme_sync_queues(&dev
->ctrl
);
3351 static void nvme_reset_done(struct pci_dev
*pdev
)
3353 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3355 if (!nvme_try_sched_reset(&dev
->ctrl
))
3356 flush_work(&dev
->ctrl
.reset_work
);
3359 static void nvme_shutdown(struct pci_dev
*pdev
)
3361 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3363 nvme_disable_prepare_reset(dev
, true);
3367 * The driver's remove may be called on a device in a partially initialized
3368 * state. This function must not have any dependencies on the device state in
3371 static void nvme_remove(struct pci_dev
*pdev
)
3373 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3375 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DELETING
);
3376 pci_set_drvdata(pdev
, NULL
);
3378 if (!pci_device_is_present(pdev
)) {
3379 nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_DEAD
);
3380 nvme_dev_disable(dev
, true);
3383 flush_work(&dev
->ctrl
.reset_work
);
3384 nvme_stop_ctrl(&dev
->ctrl
);
3385 nvme_remove_namespaces(&dev
->ctrl
);
3386 nvme_dev_disable(dev
, true);
3387 nvme_free_host_mem(dev
);
3388 nvme_dev_remove_admin(dev
);
3389 nvme_dbbuf_dma_free(dev
);
3390 nvme_free_queues(dev
, 0);
3391 mempool_destroy(dev
->iod_mempool
);
3392 mempool_destroy(dev
->iod_meta_mempool
);
3393 nvme_release_prp_pools(dev
);
3394 nvme_dev_unmap(dev
);
3395 nvme_uninit_ctrl(&dev
->ctrl
);
3398 #ifdef CONFIG_PM_SLEEP
3399 static int nvme_get_power_state(struct nvme_ctrl
*ctrl
, u32
*ps
)
3401 return nvme_get_features(ctrl
, NVME_FEAT_POWER_MGMT
, 0, NULL
, 0, ps
);
3404 static int nvme_set_power_state(struct nvme_ctrl
*ctrl
, u32 ps
)
3406 return nvme_set_features(ctrl
, NVME_FEAT_POWER_MGMT
, ps
, NULL
, 0, NULL
);
3409 static int nvme_resume(struct device
*dev
)
3411 struct nvme_dev
*ndev
= pci_get_drvdata(to_pci_dev(dev
));
3412 struct nvme_ctrl
*ctrl
= &ndev
->ctrl
;
3414 if (ndev
->last_ps
== U32_MAX
||
3415 nvme_set_power_state(ctrl
, ndev
->last_ps
) != 0)
3417 if (ctrl
->hmpre
&& nvme_setup_host_mem(ndev
))
3422 return nvme_try_sched_reset(ctrl
);
3425 static int nvme_suspend(struct device
*dev
)
3427 struct pci_dev
*pdev
= to_pci_dev(dev
);
3428 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
3429 struct nvme_ctrl
*ctrl
= &ndev
->ctrl
;
3432 ndev
->last_ps
= U32_MAX
;
3435 * The platform does not remove power for a kernel managed suspend so
3436 * use host managed nvme power settings for lowest idle power if
3437 * possible. This should have quicker resume latency than a full device
3438 * shutdown. But if the firmware is involved after the suspend or the
3439 * device does not support any non-default power states, shut down the
3442 * If ASPM is not enabled for the device, shut down the device and allow
3443 * the PCI bus layer to put it into D3 in order to take the PCIe link
3444 * down, so as to allow the platform to achieve its minimum low-power
3445 * state (which may not be possible if the link is up).
3447 if (pm_suspend_via_firmware() || !ctrl
->npss
||
3448 !pcie_aspm_enabled(pdev
) ||
3449 (ndev
->ctrl
.quirks
& NVME_QUIRK_SIMPLE_SUSPEND
))
3450 return nvme_disable_prepare_reset(ndev
, true);
3452 nvme_start_freeze(ctrl
);
3453 nvme_wait_freeze(ctrl
);
3454 nvme_sync_queues(ctrl
);
3456 if (nvme_ctrl_state(ctrl
) != NVME_CTRL_LIVE
)
3460 * Host memory access may not be successful in a system suspend state,
3461 * but the specification allows the controller to access memory in a
3462 * non-operational power state.
3465 ret
= nvme_set_host_mem(ndev
, 0);
3470 ret
= nvme_get_power_state(ctrl
, &ndev
->last_ps
);
3475 * A saved state prevents pci pm from generically controlling the
3476 * device's power. If we're using protocol specific settings, we don't
3477 * want pci interfering.
3479 pci_save_state(pdev
);
3481 ret
= nvme_set_power_state(ctrl
, ctrl
->npss
);
3486 /* discard the saved state */
3487 pci_load_saved_state(pdev
, NULL
);
3490 * Clearing npss forces a controller reset on resume. The
3491 * correct value will be rediscovered then.
3493 ret
= nvme_disable_prepare_reset(ndev
, true);
3497 nvme_unfreeze(ctrl
);
3501 static int nvme_simple_suspend(struct device
*dev
)
3503 struct nvme_dev
*ndev
= pci_get_drvdata(to_pci_dev(dev
));
3505 return nvme_disable_prepare_reset(ndev
, true);
3508 static int nvme_simple_resume(struct device
*dev
)
3510 struct pci_dev
*pdev
= to_pci_dev(dev
);
3511 struct nvme_dev
*ndev
= pci_get_drvdata(pdev
);
3513 return nvme_try_sched_reset(&ndev
->ctrl
);
3516 static const struct dev_pm_ops nvme_dev_pm_ops
= {
3517 .suspend
= nvme_suspend
,
3518 .resume
= nvme_resume
,
3519 .freeze
= nvme_simple_suspend
,
3520 .thaw
= nvme_simple_resume
,
3521 .poweroff
= nvme_simple_suspend
,
3522 .restore
= nvme_simple_resume
,
3524 #endif /* CONFIG_PM_SLEEP */
3526 static pci_ers_result_t
nvme_error_detected(struct pci_dev
*pdev
,
3527 pci_channel_state_t state
)
3529 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3532 * A frozen channel requires a reset. When detected, this method will
3533 * shutdown the controller to quiesce. The controller will be restarted
3534 * after the slot reset through driver's slot_reset callback.
3537 case pci_channel_io_normal
:
3538 return PCI_ERS_RESULT_CAN_RECOVER
;
3539 case pci_channel_io_frozen
:
3540 dev_warn(dev
->ctrl
.device
,
3541 "frozen state error detected, reset controller\n");
3542 if (!nvme_change_ctrl_state(&dev
->ctrl
, NVME_CTRL_RESETTING
)) {
3543 nvme_dev_disable(dev
, true);
3544 return PCI_ERS_RESULT_DISCONNECT
;
3546 nvme_dev_disable(dev
, false);
3547 return PCI_ERS_RESULT_NEED_RESET
;
3548 case pci_channel_io_perm_failure
:
3549 dev_warn(dev
->ctrl
.device
,
3550 "failure state error detected, request disconnect\n");
3551 return PCI_ERS_RESULT_DISCONNECT
;
3553 return PCI_ERS_RESULT_NEED_RESET
;
3556 static pci_ers_result_t
nvme_slot_reset(struct pci_dev
*pdev
)
3558 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3560 dev_info(dev
->ctrl
.device
, "restart after slot reset\n");
3561 pci_restore_state(pdev
);
3562 if (!nvme_try_sched_reset(&dev
->ctrl
))
3563 nvme_unquiesce_io_queues(&dev
->ctrl
);
3564 return PCI_ERS_RESULT_RECOVERED
;
3567 static void nvme_error_resume(struct pci_dev
*pdev
)
3569 struct nvme_dev
*dev
= pci_get_drvdata(pdev
);
3571 flush_work(&dev
->ctrl
.reset_work
);
3574 static const struct pci_error_handlers nvme_err_handler
= {
3575 .error_detected
= nvme_error_detected
,
3576 .slot_reset
= nvme_slot_reset
,
3577 .resume
= nvme_error_resume
,
3578 .reset_prepare
= nvme_reset_prepare
,
3579 .reset_done
= nvme_reset_done
,
3582 static const struct pci_device_id nvme_id_table
[] = {
3583 { PCI_VDEVICE(INTEL
, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3584 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3585 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3586 { PCI_VDEVICE(INTEL
, 0x0a53), /* Intel P3520 */
3587 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3588 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3589 { PCI_VDEVICE(INTEL
, 0x0a54), /* Intel P4500/P4600 */
3590 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3591 NVME_QUIRK_DEALLOCATE_ZEROES
|
3592 NVME_QUIRK_IGNORE_DEV_SUBNQN
|
3593 NVME_QUIRK_BOGUS_NID
, },
3594 { PCI_VDEVICE(INTEL
, 0x0a55), /* Dell Express Flash P4600 */
3595 .driver_data
= NVME_QUIRK_STRIPE_SIZE
|
3596 NVME_QUIRK_DEALLOCATE_ZEROES
, },
3597 { PCI_VDEVICE(INTEL
, 0xf1a5), /* Intel 600P/P3100 */
3598 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
3599 NVME_QUIRK_MEDIUM_PRIO_SQ
|
3600 NVME_QUIRK_NO_TEMP_THRESH_CHANGE
|
3601 NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3602 { PCI_VDEVICE(INTEL
, 0xf1a6), /* Intel 760p/Pro 7600p */
3603 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3604 { PCI_VDEVICE(INTEL
, 0x5845), /* Qemu emulated controller */
3605 .driver_data
= NVME_QUIRK_IDENTIFY_CNS
|
3606 NVME_QUIRK_DISABLE_WRITE_ZEROES
|
3607 NVME_QUIRK_BOGUS_NID
, },
3608 { PCI_VDEVICE(REDHAT
, 0x0010), /* Qemu emulated controller */
3609 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3610 { PCI_DEVICE(0x1217, 0x8760), /* O2 Micro 64GB Steam Deck */
3611 .driver_data
= NVME_QUIRK_QDEPTH_ONE
},
3612 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3613 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
3614 NVME_QUIRK_BOGUS_NID
, },
3615 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3616 .driver_data
= NVME_QUIRK_NO_NS_DESC_LIST
|
3617 NVME_QUIRK_BOGUS_NID
, },
3618 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3619 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
|
3620 NVME_QUIRK_NO_NS_DESC_LIST
, },
3621 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3622 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3623 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3624 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3625 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3626 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3627 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3628 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
, },
3629 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3630 .driver_data
= NVME_QUIRK_DELAY_BEFORE_CHK_RDY
|
3631 NVME_QUIRK_DISABLE_WRITE_ZEROES
|
3632 NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3633 { PCI_DEVICE(0x15b7, 0x5008), /* Sandisk SN530 */
3634 .driver_data
= NVME_QUIRK_BROKEN_MSI
},
3635 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3636 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3637 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3638 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
|
3639 NVME_QUIRK_BOGUS_NID
, },
3640 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3641 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3642 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3643 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3644 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3645 .driver_data
= NVME_QUIRK_NO_NS_DESC_LIST
|
3646 NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3647 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3648 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3649 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3650 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
|
3651 NVME_QUIRK_BOGUS_NID
, },
3652 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3653 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3654 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3655 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
|
3656 NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3657 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3658 .driver_data
= NVME_QUIRK_IGNORE_DEV_SUBNQN
},
3659 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3660 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3661 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3662 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3663 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3664 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3665 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3666 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3667 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3668 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3669 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3670 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3671 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3672 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
|
3673 NVME_QUIRK_BOGUS_NID
, },
3674 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3675 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3676 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3677 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3678 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3679 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3680 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3681 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3682 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3683 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
, },
3684 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3685 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
, },
3686 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3687 .driver_data
= NVME_QUIRK_NO_SECONDARY_TEMP_THRESH
, },
3688 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3689 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3690 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3691 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3692 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3693 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3694 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3695 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3696 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3697 .driver_data
= NVME_QUIRK_DISABLE_WRITE_ZEROES
, },
3698 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3699 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3700 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3701 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3702 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3703 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3704 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3705 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3706 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3707 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3708 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3709 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3710 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3711 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3712 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3713 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3714 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3715 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
, },
3716 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3717 .driver_data
= NVME_QUIRK_NO_DEEPEST_PS
, },
3718 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3719 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3720 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3721 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3722 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3723 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3724 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3725 .driver_data
= NVME_QUIRK_BOGUS_NID
|
3726 NVME_QUIRK_IGNORE_DEV_SUBNQN
, },
3727 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3728 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3729 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3730 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3731 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3732 .driver_data
= NVME_QUIRK_BOGUS_NID
, },
3733 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON
, 0x0061),
3734 .driver_data
= NVME_QUIRK_DMA_ADDRESS_BITS_48
, },
3735 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON
, 0x0065),
3736 .driver_data
= NVME_QUIRK_DMA_ADDRESS_BITS_48
, },
3737 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON
, 0x8061),
3738 .driver_data
= NVME_QUIRK_DMA_ADDRESS_BITS_48
, },
3739 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON
, 0xcd00),
3740 .driver_data
= NVME_QUIRK_DMA_ADDRESS_BITS_48
, },
3741 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON
, 0xcd01),
3742 .driver_data
= NVME_QUIRK_DMA_ADDRESS_BITS_48
, },
3743 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON
, 0xcd02),
3744 .driver_data
= NVME_QUIRK_DMA_ADDRESS_BITS_48
, },
3745 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2001),
3747 * Fix for the Apple controller found in the MacBook8,1 and
3748 * some MacBook7,1 to avoid controller resets and data loss.
3750 .driver_data
= NVME_QUIRK_SINGLE_VECTOR
|
3751 NVME_QUIRK_QDEPTH_ONE
},
3752 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2003) },
3753 { PCI_DEVICE(PCI_VENDOR_ID_APPLE
, 0x2005),
3754 .driver_data
= NVME_QUIRK_SINGLE_VECTOR
|
3755 NVME_QUIRK_128_BYTES_SQES
|
3756 NVME_QUIRK_SHARED_TAGS
|
3757 NVME_QUIRK_SKIP_CID_GEN
|
3758 NVME_QUIRK_IDENTIFY_CNS
},
3759 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS
, 0xffffff) },
3762 MODULE_DEVICE_TABLE(pci
, nvme_id_table
);
3764 static struct pci_driver nvme_driver
= {
3766 .id_table
= nvme_id_table
,
3767 .probe
= nvme_probe
,
3768 .remove
= nvme_remove
,
3769 .shutdown
= nvme_shutdown
,
3771 .probe_type
= PROBE_PREFER_ASYNCHRONOUS
,
3772 #ifdef CONFIG_PM_SLEEP
3773 .pm
= &nvme_dev_pm_ops
,
3776 .sriov_configure
= pci_sriov_configure_simple
,
3777 .err_handler
= &nvme_err_handler
,
3780 static int __init
nvme_init(void)
3782 BUILD_BUG_ON(sizeof(struct nvme_create_cq
) != 64);
3783 BUILD_BUG_ON(sizeof(struct nvme_create_sq
) != 64);
3784 BUILD_BUG_ON(sizeof(struct nvme_delete_queue
) != 64);
3785 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS
< 2);
3786 BUILD_BUG_ON(NVME_MAX_SEGS
> SGES_PER_PAGE
);
3787 BUILD_BUG_ON(sizeof(struct scatterlist
) * NVME_MAX_SEGS
> PAGE_SIZE
);
3788 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS
);
3790 return pci_register_driver(&nvme_driver
);
3793 static void __exit
nvme_exit(void)
3795 pci_unregister_driver(&nvme_driver
);
3796 flush_workqueue(nvme_wq
);
3799 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3800 MODULE_LICENSE("GPL");
3801 MODULE_VERSION("1.0");
3802 MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3803 module_init(nvme_init
);
3804 module_exit(nvme_exit
);