Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / nvme / host / rdma.c
blobbaf7d2490152821ba0d206737cb87fc7e93030d9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <linux/unaligned.h>
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
27 #include "nvme.h"
28 #include "fabrics.h"
31 #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */
33 #define NVME_RDMA_MAX_SEGMENTS 256
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
42 struct nvme_rdma_device {
43 struct ib_device *dev;
44 struct ib_pd *pd;
45 struct kref ref;
46 struct list_head entry;
47 unsigned int num_inline_segments;
50 struct nvme_rdma_qe {
51 struct ib_cqe cqe;
52 void *data;
53 u64 dma;
56 struct nvme_rdma_sgl {
57 int nents;
58 struct sg_table sg_table;
61 struct nvme_rdma_queue;
62 struct nvme_rdma_request {
63 struct nvme_request req;
64 struct ib_mr *mr;
65 struct nvme_rdma_qe sqe;
66 union nvme_result result;
67 __le16 status;
68 refcount_t ref;
69 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
70 u32 num_sge;
71 struct ib_reg_wr reg_wr;
72 struct ib_cqe reg_cqe;
73 struct nvme_rdma_queue *queue;
74 struct nvme_rdma_sgl data_sgl;
75 struct nvme_rdma_sgl *metadata_sgl;
76 bool use_sig_mr;
79 enum nvme_rdma_queue_flags {
80 NVME_RDMA_Q_ALLOCATED = 0,
81 NVME_RDMA_Q_LIVE = 1,
82 NVME_RDMA_Q_TR_READY = 2,
85 struct nvme_rdma_queue {
86 struct nvme_rdma_qe *rsp_ring;
87 int queue_size;
88 size_t cmnd_capsule_len;
89 struct nvme_rdma_ctrl *ctrl;
90 struct nvme_rdma_device *device;
91 struct ib_cq *ib_cq;
92 struct ib_qp *qp;
94 unsigned long flags;
95 struct rdma_cm_id *cm_id;
96 int cm_error;
97 struct completion cm_done;
98 bool pi_support;
99 int cq_size;
100 struct mutex queue_lock;
103 struct nvme_rdma_ctrl {
104 /* read only in the hot path */
105 struct nvme_rdma_queue *queues;
107 /* other member variables */
108 struct blk_mq_tag_set tag_set;
109 struct work_struct err_work;
111 struct nvme_rdma_qe async_event_sqe;
113 struct delayed_work reconnect_work;
115 struct list_head list;
117 struct blk_mq_tag_set admin_tag_set;
118 struct nvme_rdma_device *device;
120 u32 max_fr_pages;
122 struct sockaddr_storage addr;
123 struct sockaddr_storage src_addr;
125 struct nvme_ctrl ctrl;
126 bool use_inline_data;
127 u32 io_queues[HCTX_MAX_TYPES];
130 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
132 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
135 static LIST_HEAD(device_list);
136 static DEFINE_MUTEX(device_list_mutex);
138 static LIST_HEAD(nvme_rdma_ctrl_list);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
146 static bool register_always = true;
147 module_param(register_always, bool, 0444);
148 MODULE_PARM_DESC(register_always,
149 "Use memory registration even for contiguous memory regions");
151 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
152 struct rdma_cm_event *event);
153 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
154 static void nvme_rdma_complete_rq(struct request *rq);
156 static const struct blk_mq_ops nvme_rdma_mq_ops;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 return queue - queue->ctrl->queues;
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
166 return nvme_rdma_queue_idx(queue) >
167 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
168 queue->ctrl->io_queues[HCTX_TYPE_READ];
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
176 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
177 size_t capsule_size, enum dma_data_direction dir)
179 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
180 kfree(qe->data);
183 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184 size_t capsule_size, enum dma_data_direction dir)
186 qe->data = kzalloc(capsule_size, GFP_KERNEL);
187 if (!qe->data)
188 return -ENOMEM;
190 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
191 if (ib_dma_mapping_error(ibdev, qe->dma)) {
192 kfree(qe->data);
193 qe->data = NULL;
194 return -ENOMEM;
197 return 0;
200 static void nvme_rdma_free_ring(struct ib_device *ibdev,
201 struct nvme_rdma_qe *ring, size_t ib_queue_size,
202 size_t capsule_size, enum dma_data_direction dir)
204 int i;
206 for (i = 0; i < ib_queue_size; i++)
207 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
208 kfree(ring);
211 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
212 size_t ib_queue_size, size_t capsule_size,
213 enum dma_data_direction dir)
215 struct nvme_rdma_qe *ring;
216 int i;
218 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
219 if (!ring)
220 return NULL;
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
227 for (i = 0; i < ib_queue_size; i++) {
228 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
229 goto out_free_ring;
232 return ring;
234 out_free_ring:
235 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
236 return NULL;
239 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event->event), event->event);
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
248 int ret;
250 ret = wait_for_completion_interruptible(&queue->cm_done);
251 if (ret)
252 return ret;
253 WARN_ON_ONCE(queue->cm_error > 0);
254 return queue->cm_error;
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
259 struct nvme_rdma_device *dev = queue->device;
260 struct ib_qp_init_attr init_attr;
261 int ret;
263 memset(&init_attr, 0, sizeof(init_attr));
264 init_attr.event_handler = nvme_rdma_qp_event;
265 /* +1 for drain */
266 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267 /* +1 for drain */
268 init_attr.cap.max_recv_wr = queue->queue_size + 1;
269 init_attr.cap.max_recv_sge = 1;
270 init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
271 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272 init_attr.qp_type = IB_QPT_RC;
273 init_attr.send_cq = queue->ib_cq;
274 init_attr.recv_cq = queue->ib_cq;
275 if (queue->pi_support)
276 init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN;
277 init_attr.qp_context = queue;
279 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
281 queue->qp = queue->cm_id->qp;
282 return ret;
285 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
286 struct request *rq, unsigned int hctx_idx)
288 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
290 kfree(req->sqe.data);
293 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
294 struct request *rq, unsigned int hctx_idx,
295 unsigned int numa_node)
297 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
298 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
299 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
300 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
302 nvme_req(rq)->ctrl = &ctrl->ctrl;
303 req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
304 if (!req->sqe.data)
305 return -ENOMEM;
307 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 if (queue->pi_support)
309 req->metadata_sgl = (void *)nvme_req(rq) +
310 sizeof(struct nvme_rdma_request) +
311 NVME_RDMA_DATA_SGL_SIZE;
313 req->queue = queue;
314 nvme_req(rq)->cmd = req->sqe.data;
316 return 0;
319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
320 unsigned int hctx_idx)
322 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
323 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
325 BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
327 hctx->driver_data = queue;
328 return 0;
331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
332 unsigned int hctx_idx)
334 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(data);
335 struct nvme_rdma_queue *queue = &ctrl->queues[0];
337 BUG_ON(hctx_idx != 0);
339 hctx->driver_data = queue;
340 return 0;
343 static void nvme_rdma_free_dev(struct kref *ref)
345 struct nvme_rdma_device *ndev =
346 container_of(ref, struct nvme_rdma_device, ref);
348 mutex_lock(&device_list_mutex);
349 list_del(&ndev->entry);
350 mutex_unlock(&device_list_mutex);
352 ib_dealloc_pd(ndev->pd);
353 kfree(ndev);
356 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
358 kref_put(&dev->ref, nvme_rdma_free_dev);
361 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
363 return kref_get_unless_zero(&dev->ref);
366 static struct nvme_rdma_device *
367 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
369 struct nvme_rdma_device *ndev;
371 mutex_lock(&device_list_mutex);
372 list_for_each_entry(ndev, &device_list, entry) {
373 if (ndev->dev->node_guid == cm_id->device->node_guid &&
374 nvme_rdma_dev_get(ndev))
375 goto out_unlock;
378 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
379 if (!ndev)
380 goto out_err;
382 ndev->dev = cm_id->device;
383 kref_init(&ndev->ref);
385 ndev->pd = ib_alloc_pd(ndev->dev,
386 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
387 if (IS_ERR(ndev->pd))
388 goto out_free_dev;
390 if (!(ndev->dev->attrs.device_cap_flags &
391 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
392 dev_err(&ndev->dev->dev,
393 "Memory registrations not supported.\n");
394 goto out_free_pd;
397 ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
398 ndev->dev->attrs.max_send_sge - 1);
399 list_add(&ndev->entry, &device_list);
400 out_unlock:
401 mutex_unlock(&device_list_mutex);
402 return ndev;
404 out_free_pd:
405 ib_dealloc_pd(ndev->pd);
406 out_free_dev:
407 kfree(ndev);
408 out_err:
409 mutex_unlock(&device_list_mutex);
410 return NULL;
413 static void nvme_rdma_free_cq(struct nvme_rdma_queue *queue)
415 if (nvme_rdma_poll_queue(queue))
416 ib_free_cq(queue->ib_cq);
417 else
418 ib_cq_pool_put(queue->ib_cq, queue->cq_size);
421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
423 struct nvme_rdma_device *dev;
424 struct ib_device *ibdev;
426 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
427 return;
429 dev = queue->device;
430 ibdev = dev->dev;
432 if (queue->pi_support)
433 ib_mr_pool_destroy(queue->qp, &queue->qp->sig_mrs);
434 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
437 * The cm_id object might have been destroyed during RDMA connection
438 * establishment error flow to avoid getting other cma events, thus
439 * the destruction of the QP shouldn't use rdma_cm API.
441 ib_destroy_qp(queue->qp);
442 nvme_rdma_free_cq(queue);
444 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
445 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447 nvme_rdma_dev_put(dev);
450 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev, bool pi_support)
452 u32 max_page_list_len;
454 if (pi_support)
455 max_page_list_len = ibdev->attrs.max_pi_fast_reg_page_list_len;
456 else
457 max_page_list_len = ibdev->attrs.max_fast_reg_page_list_len;
459 return min_t(u32, NVME_RDMA_MAX_SEGMENTS, max_page_list_len - 1);
462 static int nvme_rdma_create_cq(struct ib_device *ibdev,
463 struct nvme_rdma_queue *queue)
465 int ret, comp_vector, idx = nvme_rdma_queue_idx(queue);
468 * Spread I/O queues completion vectors according their queue index.
469 * Admin queues can always go on completion vector 0.
471 comp_vector = (idx == 0 ? idx : idx - 1) % ibdev->num_comp_vectors;
473 /* Polling queues need direct cq polling context */
474 if (nvme_rdma_poll_queue(queue))
475 queue->ib_cq = ib_alloc_cq(ibdev, queue, queue->cq_size,
476 comp_vector, IB_POLL_DIRECT);
477 else
478 queue->ib_cq = ib_cq_pool_get(ibdev, queue->cq_size,
479 comp_vector, IB_POLL_SOFTIRQ);
481 if (IS_ERR(queue->ib_cq)) {
482 ret = PTR_ERR(queue->ib_cq);
483 return ret;
486 return 0;
489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
491 struct ib_device *ibdev;
492 const int send_wr_factor = 3; /* MR, SEND, INV */
493 const int cq_factor = send_wr_factor + 1; /* + RECV */
494 int ret, pages_per_mr;
496 queue->device = nvme_rdma_find_get_device(queue->cm_id);
497 if (!queue->device) {
498 dev_err(queue->cm_id->device->dev.parent,
499 "no client data found!\n");
500 return -ECONNREFUSED;
502 ibdev = queue->device->dev;
504 /* +1 for ib_drain_qp */
505 queue->cq_size = cq_factor * queue->queue_size + 1;
507 ret = nvme_rdma_create_cq(ibdev, queue);
508 if (ret)
509 goto out_put_dev;
511 ret = nvme_rdma_create_qp(queue, send_wr_factor);
512 if (ret)
513 goto out_destroy_ib_cq;
515 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
516 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
517 if (!queue->rsp_ring) {
518 ret = -ENOMEM;
519 goto out_destroy_qp;
523 * Currently we don't use SG_GAPS MR's so if the first entry is
524 * misaligned we'll end up using two entries for a single data page,
525 * so one additional entry is required.
527 pages_per_mr = nvme_rdma_get_max_fr_pages(ibdev, queue->pi_support) + 1;
528 ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
529 queue->queue_size,
530 IB_MR_TYPE_MEM_REG,
531 pages_per_mr, 0);
532 if (ret) {
533 dev_err(queue->ctrl->ctrl.device,
534 "failed to initialize MR pool sized %d for QID %d\n",
535 queue->queue_size, nvme_rdma_queue_idx(queue));
536 goto out_destroy_ring;
539 if (queue->pi_support) {
540 ret = ib_mr_pool_init(queue->qp, &queue->qp->sig_mrs,
541 queue->queue_size, IB_MR_TYPE_INTEGRITY,
542 pages_per_mr, pages_per_mr);
543 if (ret) {
544 dev_err(queue->ctrl->ctrl.device,
545 "failed to initialize PI MR pool sized %d for QID %d\n",
546 queue->queue_size, nvme_rdma_queue_idx(queue));
547 goto out_destroy_mr_pool;
551 set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
553 return 0;
555 out_destroy_mr_pool:
556 ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
557 out_destroy_ring:
558 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
559 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
560 out_destroy_qp:
561 rdma_destroy_qp(queue->cm_id);
562 out_destroy_ib_cq:
563 nvme_rdma_free_cq(queue);
564 out_put_dev:
565 nvme_rdma_dev_put(queue->device);
566 return ret;
569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
570 int idx, size_t queue_size)
572 struct nvme_rdma_queue *queue;
573 struct sockaddr *src_addr = NULL;
574 int ret;
576 queue = &ctrl->queues[idx];
577 mutex_init(&queue->queue_lock);
578 queue->ctrl = ctrl;
579 if (idx && ctrl->ctrl.max_integrity_segments)
580 queue->pi_support = true;
581 else
582 queue->pi_support = false;
583 init_completion(&queue->cm_done);
585 if (idx > 0)
586 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
587 else
588 queue->cmnd_capsule_len = sizeof(struct nvme_command);
590 queue->queue_size = queue_size;
592 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
593 RDMA_PS_TCP, IB_QPT_RC);
594 if (IS_ERR(queue->cm_id)) {
595 dev_info(ctrl->ctrl.device,
596 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
597 ret = PTR_ERR(queue->cm_id);
598 goto out_destroy_mutex;
601 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
602 src_addr = (struct sockaddr *)&ctrl->src_addr;
604 queue->cm_error = -ETIMEDOUT;
605 ret = rdma_resolve_addr(queue->cm_id, src_addr,
606 (struct sockaddr *)&ctrl->addr,
607 NVME_RDMA_CM_TIMEOUT_MS);
608 if (ret) {
609 dev_info(ctrl->ctrl.device,
610 "rdma_resolve_addr failed (%d).\n", ret);
611 goto out_destroy_cm_id;
614 ret = nvme_rdma_wait_for_cm(queue);
615 if (ret) {
616 dev_info(ctrl->ctrl.device,
617 "rdma connection establishment failed (%d)\n", ret);
618 goto out_destroy_cm_id;
621 set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
623 return 0;
625 out_destroy_cm_id:
626 rdma_destroy_id(queue->cm_id);
627 nvme_rdma_destroy_queue_ib(queue);
628 out_destroy_mutex:
629 mutex_destroy(&queue->queue_lock);
630 return ret;
633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
635 rdma_disconnect(queue->cm_id);
636 ib_drain_qp(queue->qp);
639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
641 if (!test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
642 return;
644 mutex_lock(&queue->queue_lock);
645 if (test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
646 __nvme_rdma_stop_queue(queue);
647 mutex_unlock(&queue->queue_lock);
650 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
652 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
653 return;
655 rdma_destroy_id(queue->cm_id);
656 nvme_rdma_destroy_queue_ib(queue);
657 mutex_destroy(&queue->queue_lock);
660 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
662 int i;
664 for (i = 1; i < ctrl->ctrl.queue_count; i++)
665 nvme_rdma_free_queue(&ctrl->queues[i]);
668 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
670 int i;
672 for (i = 1; i < ctrl->ctrl.queue_count; i++)
673 nvme_rdma_stop_queue(&ctrl->queues[i]);
676 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
678 struct nvme_rdma_queue *queue = &ctrl->queues[idx];
679 int ret;
681 if (idx)
682 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
683 else
684 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
686 if (!ret) {
687 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
688 } else {
689 if (test_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
690 __nvme_rdma_stop_queue(queue);
691 dev_info(ctrl->ctrl.device,
692 "failed to connect queue: %d ret=%d\n", idx, ret);
694 return ret;
697 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl,
698 int first, int last)
700 int i, ret = 0;
702 for (i = first; i < last; i++) {
703 ret = nvme_rdma_start_queue(ctrl, i);
704 if (ret)
705 goto out_stop_queues;
708 return 0;
710 out_stop_queues:
711 for (i--; i >= first; i--)
712 nvme_rdma_stop_queue(&ctrl->queues[i]);
713 return ret;
716 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
718 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
719 unsigned int nr_io_queues;
720 int i, ret;
722 nr_io_queues = nvmf_nr_io_queues(opts);
723 ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
724 if (ret)
725 return ret;
727 if (nr_io_queues == 0) {
728 dev_err(ctrl->ctrl.device,
729 "unable to set any I/O queues\n");
730 return -ENOMEM;
733 ctrl->ctrl.queue_count = nr_io_queues + 1;
734 dev_info(ctrl->ctrl.device,
735 "creating %d I/O queues.\n", nr_io_queues);
737 nvmf_set_io_queues(opts, nr_io_queues, ctrl->io_queues);
738 for (i = 1; i < ctrl->ctrl.queue_count; i++) {
739 ret = nvme_rdma_alloc_queue(ctrl, i,
740 ctrl->ctrl.sqsize + 1);
741 if (ret)
742 goto out_free_queues;
745 return 0;
747 out_free_queues:
748 for (i--; i >= 1; i--)
749 nvme_rdma_free_queue(&ctrl->queues[i]);
751 return ret;
754 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl *ctrl)
756 unsigned int cmd_size = sizeof(struct nvme_rdma_request) +
757 NVME_RDMA_DATA_SGL_SIZE;
759 if (ctrl->max_integrity_segments)
760 cmd_size += sizeof(struct nvme_rdma_sgl) +
761 NVME_RDMA_METADATA_SGL_SIZE;
763 return nvme_alloc_io_tag_set(ctrl, &to_rdma_ctrl(ctrl)->tag_set,
764 &nvme_rdma_mq_ops,
765 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
766 cmd_size);
769 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
771 if (ctrl->async_event_sqe.data) {
772 cancel_work_sync(&ctrl->ctrl.async_event_work);
773 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
774 sizeof(struct nvme_command), DMA_TO_DEVICE);
775 ctrl->async_event_sqe.data = NULL;
777 nvme_rdma_free_queue(&ctrl->queues[0]);
780 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
781 bool new)
783 bool pi_capable = false;
784 int error;
786 error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
787 if (error)
788 return error;
790 ctrl->device = ctrl->queues[0].device;
791 ctrl->ctrl.numa_node = ibdev_to_node(ctrl->device->dev);
793 /* T10-PI support */
794 if (ctrl->device->dev->attrs.kernel_cap_flags &
795 IBK_INTEGRITY_HANDOVER)
796 pi_capable = true;
798 ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev,
799 pi_capable);
802 * Bind the async event SQE DMA mapping to the admin queue lifetime.
803 * It's safe, since any chage in the underlying RDMA device will issue
804 * error recovery and queue re-creation.
806 error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
807 sizeof(struct nvme_command), DMA_TO_DEVICE);
808 if (error)
809 goto out_free_queue;
811 if (new) {
812 error = nvme_alloc_admin_tag_set(&ctrl->ctrl,
813 &ctrl->admin_tag_set, &nvme_rdma_admin_mq_ops,
814 sizeof(struct nvme_rdma_request) +
815 NVME_RDMA_DATA_SGL_SIZE);
816 if (error)
817 goto out_free_async_qe;
821 error = nvme_rdma_start_queue(ctrl, 0);
822 if (error)
823 goto out_remove_admin_tag_set;
825 error = nvme_enable_ctrl(&ctrl->ctrl);
826 if (error)
827 goto out_stop_queue;
829 ctrl->ctrl.max_segments = ctrl->max_fr_pages;
830 ctrl->ctrl.max_hw_sectors = ctrl->max_fr_pages << (ilog2(SZ_4K) - 9);
831 if (pi_capable)
832 ctrl->ctrl.max_integrity_segments = ctrl->max_fr_pages;
833 else
834 ctrl->ctrl.max_integrity_segments = 0;
836 nvme_unquiesce_admin_queue(&ctrl->ctrl);
838 error = nvme_init_ctrl_finish(&ctrl->ctrl, false);
839 if (error)
840 goto out_quiesce_queue;
842 return 0;
844 out_quiesce_queue:
845 nvme_quiesce_admin_queue(&ctrl->ctrl);
846 blk_sync_queue(ctrl->ctrl.admin_q);
847 out_stop_queue:
848 nvme_rdma_stop_queue(&ctrl->queues[0]);
849 nvme_cancel_admin_tagset(&ctrl->ctrl);
850 out_remove_admin_tag_set:
851 if (new)
852 nvme_remove_admin_tag_set(&ctrl->ctrl);
853 out_free_async_qe:
854 if (ctrl->async_event_sqe.data) {
855 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
856 sizeof(struct nvme_command), DMA_TO_DEVICE);
857 ctrl->async_event_sqe.data = NULL;
859 out_free_queue:
860 nvme_rdma_free_queue(&ctrl->queues[0]);
861 return error;
864 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
866 int ret, nr_queues;
868 ret = nvme_rdma_alloc_io_queues(ctrl);
869 if (ret)
870 return ret;
872 if (new) {
873 ret = nvme_rdma_alloc_tag_set(&ctrl->ctrl);
874 if (ret)
875 goto out_free_io_queues;
879 * Only start IO queues for which we have allocated the tagset
880 * and limitted it to the available queues. On reconnects, the
881 * queue number might have changed.
883 nr_queues = min(ctrl->tag_set.nr_hw_queues + 1, ctrl->ctrl.queue_count);
884 ret = nvme_rdma_start_io_queues(ctrl, 1, nr_queues);
885 if (ret)
886 goto out_cleanup_tagset;
888 if (!new) {
889 nvme_start_freeze(&ctrl->ctrl);
890 nvme_unquiesce_io_queues(&ctrl->ctrl);
891 if (!nvme_wait_freeze_timeout(&ctrl->ctrl, NVME_IO_TIMEOUT)) {
893 * If we timed out waiting for freeze we are likely to
894 * be stuck. Fail the controller initialization just
895 * to be safe.
897 ret = -ENODEV;
898 nvme_unfreeze(&ctrl->ctrl);
899 goto out_wait_freeze_timed_out;
901 blk_mq_update_nr_hw_queues(ctrl->ctrl.tagset,
902 ctrl->ctrl.queue_count - 1);
903 nvme_unfreeze(&ctrl->ctrl);
907 * If the number of queues has increased (reconnect case)
908 * start all new queues now.
910 ret = nvme_rdma_start_io_queues(ctrl, nr_queues,
911 ctrl->tag_set.nr_hw_queues + 1);
912 if (ret)
913 goto out_wait_freeze_timed_out;
915 return 0;
917 out_wait_freeze_timed_out:
918 nvme_quiesce_io_queues(&ctrl->ctrl);
919 nvme_sync_io_queues(&ctrl->ctrl);
920 nvme_rdma_stop_io_queues(ctrl);
921 out_cleanup_tagset:
922 nvme_cancel_tagset(&ctrl->ctrl);
923 if (new)
924 nvme_remove_io_tag_set(&ctrl->ctrl);
925 out_free_io_queues:
926 nvme_rdma_free_io_queues(ctrl);
927 return ret;
930 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
931 bool remove)
933 nvme_quiesce_admin_queue(&ctrl->ctrl);
934 blk_sync_queue(ctrl->ctrl.admin_q);
935 nvme_rdma_stop_queue(&ctrl->queues[0]);
936 nvme_cancel_admin_tagset(&ctrl->ctrl);
937 if (remove) {
938 nvme_unquiesce_admin_queue(&ctrl->ctrl);
939 nvme_remove_admin_tag_set(&ctrl->ctrl);
941 nvme_rdma_destroy_admin_queue(ctrl);
944 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
945 bool remove)
947 if (ctrl->ctrl.queue_count > 1) {
948 nvme_quiesce_io_queues(&ctrl->ctrl);
949 nvme_sync_io_queues(&ctrl->ctrl);
950 nvme_rdma_stop_io_queues(ctrl);
951 nvme_cancel_tagset(&ctrl->ctrl);
952 if (remove) {
953 nvme_unquiesce_io_queues(&ctrl->ctrl);
954 nvme_remove_io_tag_set(&ctrl->ctrl);
956 nvme_rdma_free_io_queues(ctrl);
960 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
962 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
964 flush_work(&ctrl->err_work);
965 cancel_delayed_work_sync(&ctrl->reconnect_work);
968 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
970 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
972 if (list_empty(&ctrl->list))
973 goto free_ctrl;
975 mutex_lock(&nvme_rdma_ctrl_mutex);
976 list_del(&ctrl->list);
977 mutex_unlock(&nvme_rdma_ctrl_mutex);
979 nvmf_free_options(nctrl->opts);
980 free_ctrl:
981 kfree(ctrl->queues);
982 kfree(ctrl);
985 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl,
986 int status)
988 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
990 /* If we are resetting/deleting then do nothing */
991 if (state != NVME_CTRL_CONNECTING) {
992 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
993 return;
996 if (nvmf_should_reconnect(&ctrl->ctrl, status)) {
997 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
998 ctrl->ctrl.opts->reconnect_delay);
999 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
1000 ctrl->ctrl.opts->reconnect_delay * HZ);
1001 } else {
1002 nvme_delete_ctrl(&ctrl->ctrl);
1006 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
1008 int ret;
1009 bool changed;
1010 u16 max_queue_size;
1012 ret = nvme_rdma_configure_admin_queue(ctrl, new);
1013 if (ret)
1014 return ret;
1016 if (ctrl->ctrl.icdoff) {
1017 ret = -EOPNOTSUPP;
1018 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1019 goto destroy_admin;
1022 if (!(ctrl->ctrl.sgls & NVME_CTRL_SGLS_KSDBDS)) {
1023 ret = -EOPNOTSUPP;
1024 dev_err(ctrl->ctrl.device,
1025 "Mandatory keyed sgls are not supported!\n");
1026 goto destroy_admin;
1029 if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
1030 dev_warn(ctrl->ctrl.device,
1031 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1032 ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
1035 if (ctrl->ctrl.max_integrity_segments)
1036 max_queue_size = NVME_RDMA_MAX_METADATA_QUEUE_SIZE;
1037 else
1038 max_queue_size = NVME_RDMA_MAX_QUEUE_SIZE;
1040 if (ctrl->ctrl.sqsize + 1 > max_queue_size) {
1041 dev_warn(ctrl->ctrl.device,
1042 "ctrl sqsize %u > max queue size %u, clamping down\n",
1043 ctrl->ctrl.sqsize + 1, max_queue_size);
1044 ctrl->ctrl.sqsize = max_queue_size - 1;
1047 if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
1048 dev_warn(ctrl->ctrl.device,
1049 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1050 ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
1051 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
1054 if (ctrl->ctrl.sgls & NVME_CTRL_SGLS_SAOS)
1055 ctrl->use_inline_data = true;
1057 if (ctrl->ctrl.queue_count > 1) {
1058 ret = nvme_rdma_configure_io_queues(ctrl, new);
1059 if (ret)
1060 goto destroy_admin;
1063 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1064 if (!changed) {
1066 * state change failure is ok if we started ctrl delete,
1067 * unless we're during creation of a new controller to
1068 * avoid races with teardown flow.
1070 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1072 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1073 state != NVME_CTRL_DELETING_NOIO);
1074 WARN_ON_ONCE(new);
1075 ret = -EINVAL;
1076 goto destroy_io;
1079 nvme_start_ctrl(&ctrl->ctrl);
1080 return 0;
1082 destroy_io:
1083 if (ctrl->ctrl.queue_count > 1) {
1084 nvme_quiesce_io_queues(&ctrl->ctrl);
1085 nvme_sync_io_queues(&ctrl->ctrl);
1086 nvme_rdma_stop_io_queues(ctrl);
1087 nvme_cancel_tagset(&ctrl->ctrl);
1088 if (new)
1089 nvme_remove_io_tag_set(&ctrl->ctrl);
1090 nvme_rdma_free_io_queues(ctrl);
1092 destroy_admin:
1093 nvme_stop_keep_alive(&ctrl->ctrl);
1094 nvme_quiesce_admin_queue(&ctrl->ctrl);
1095 blk_sync_queue(ctrl->ctrl.admin_q);
1096 nvme_rdma_stop_queue(&ctrl->queues[0]);
1097 nvme_cancel_admin_tagset(&ctrl->ctrl);
1098 if (new)
1099 nvme_remove_admin_tag_set(&ctrl->ctrl);
1100 nvme_rdma_destroy_admin_queue(ctrl);
1101 return ret;
1104 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1106 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1107 struct nvme_rdma_ctrl, reconnect_work);
1108 int ret;
1110 ++ctrl->ctrl.nr_reconnects;
1112 ret = nvme_rdma_setup_ctrl(ctrl, false);
1113 if (ret)
1114 goto requeue;
1116 dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1117 ctrl->ctrl.nr_reconnects);
1119 ctrl->ctrl.nr_reconnects = 0;
1121 return;
1123 requeue:
1124 dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d/%d\n",
1125 ctrl->ctrl.nr_reconnects, ctrl->ctrl.opts->max_reconnects);
1126 nvme_rdma_reconnect_or_remove(ctrl, ret);
1129 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1131 struct nvme_rdma_ctrl *ctrl = container_of(work,
1132 struct nvme_rdma_ctrl, err_work);
1134 nvme_stop_keep_alive(&ctrl->ctrl);
1135 flush_work(&ctrl->ctrl.async_event_work);
1136 nvme_rdma_teardown_io_queues(ctrl, false);
1137 nvme_unquiesce_io_queues(&ctrl->ctrl);
1138 nvme_rdma_teardown_admin_queue(ctrl, false);
1139 nvme_unquiesce_admin_queue(&ctrl->ctrl);
1140 nvme_auth_stop(&ctrl->ctrl);
1142 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1143 /* state change failure is ok if we started ctrl delete */
1144 enum nvme_ctrl_state state = nvme_ctrl_state(&ctrl->ctrl);
1146 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
1147 state != NVME_CTRL_DELETING_NOIO);
1148 return;
1151 nvme_rdma_reconnect_or_remove(ctrl, 0);
1154 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1156 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1157 return;
1159 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1160 queue_work(nvme_reset_wq, &ctrl->err_work);
1163 static void nvme_rdma_end_request(struct nvme_rdma_request *req)
1165 struct request *rq = blk_mq_rq_from_pdu(req);
1167 if (!refcount_dec_and_test(&req->ref))
1168 return;
1169 if (!nvme_try_complete_req(rq, req->status, req->result))
1170 nvme_rdma_complete_rq(rq);
1173 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1174 const char *op)
1176 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1177 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1179 if (nvme_ctrl_state(&ctrl->ctrl) == NVME_CTRL_LIVE)
1180 dev_info(ctrl->ctrl.device,
1181 "%s for CQE 0x%p failed with status %s (%d)\n",
1182 op, wc->wr_cqe,
1183 ib_wc_status_msg(wc->status), wc->status);
1184 nvme_rdma_error_recovery(ctrl);
1187 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1189 if (unlikely(wc->status != IB_WC_SUCCESS))
1190 nvme_rdma_wr_error(cq, wc, "MEMREG");
1193 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1195 struct nvme_rdma_request *req =
1196 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1198 if (unlikely(wc->status != IB_WC_SUCCESS))
1199 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1200 else
1201 nvme_rdma_end_request(req);
1204 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1205 struct nvme_rdma_request *req)
1207 struct ib_send_wr wr = {
1208 .opcode = IB_WR_LOCAL_INV,
1209 .next = NULL,
1210 .num_sge = 0,
1211 .send_flags = IB_SEND_SIGNALED,
1212 .ex.invalidate_rkey = req->mr->rkey,
1215 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1216 wr.wr_cqe = &req->reg_cqe;
1218 return ib_post_send(queue->qp, &wr, NULL);
1221 static void nvme_rdma_dma_unmap_req(struct ib_device *ibdev, struct request *rq)
1223 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1225 if (blk_integrity_rq(rq)) {
1226 ib_dma_unmap_sg(ibdev, req->metadata_sgl->sg_table.sgl,
1227 req->metadata_sgl->nents, rq_dma_dir(rq));
1228 sg_free_table_chained(&req->metadata_sgl->sg_table,
1229 NVME_INLINE_METADATA_SG_CNT);
1232 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1233 rq_dma_dir(rq));
1234 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1237 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1238 struct request *rq)
1240 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1241 struct nvme_rdma_device *dev = queue->device;
1242 struct ib_device *ibdev = dev->dev;
1243 struct list_head *pool = &queue->qp->rdma_mrs;
1245 if (!blk_rq_nr_phys_segments(rq))
1246 return;
1248 if (req->use_sig_mr)
1249 pool = &queue->qp->sig_mrs;
1251 if (req->mr) {
1252 ib_mr_pool_put(queue->qp, pool, req->mr);
1253 req->mr = NULL;
1256 nvme_rdma_dma_unmap_req(ibdev, rq);
1259 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1261 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1263 sg->addr = 0;
1264 put_unaligned_le24(0, sg->length);
1265 put_unaligned_le32(0, sg->key);
1266 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1267 return 0;
1270 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1271 struct nvme_rdma_request *req, struct nvme_command *c,
1272 int count)
1274 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1275 struct ib_sge *sge = &req->sge[1];
1276 struct scatterlist *sgl;
1277 u32 len = 0;
1278 int i;
1280 for_each_sg(req->data_sgl.sg_table.sgl, sgl, count, i) {
1281 sge->addr = sg_dma_address(sgl);
1282 sge->length = sg_dma_len(sgl);
1283 sge->lkey = queue->device->pd->local_dma_lkey;
1284 len += sge->length;
1285 sge++;
1288 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1289 sg->length = cpu_to_le32(len);
1290 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1292 req->num_sge += count;
1293 return 0;
1296 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1297 struct nvme_rdma_request *req, struct nvme_command *c)
1299 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1301 sg->addr = cpu_to_le64(sg_dma_address(req->data_sgl.sg_table.sgl));
1302 put_unaligned_le24(sg_dma_len(req->data_sgl.sg_table.sgl), sg->length);
1303 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1304 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1305 return 0;
1308 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1309 struct nvme_rdma_request *req, struct nvme_command *c,
1310 int count)
1312 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1313 int nr;
1315 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1316 if (WARN_ON_ONCE(!req->mr))
1317 return -EAGAIN;
1320 * Align the MR to a 4K page size to match the ctrl page size and
1321 * the block virtual boundary.
1323 nr = ib_map_mr_sg(req->mr, req->data_sgl.sg_table.sgl, count, NULL,
1324 SZ_4K);
1325 if (unlikely(nr < count)) {
1326 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1327 req->mr = NULL;
1328 if (nr < 0)
1329 return nr;
1330 return -EINVAL;
1333 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1335 req->reg_cqe.done = nvme_rdma_memreg_done;
1336 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1337 req->reg_wr.wr.opcode = IB_WR_REG_MR;
1338 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1339 req->reg_wr.wr.num_sge = 0;
1340 req->reg_wr.mr = req->mr;
1341 req->reg_wr.key = req->mr->rkey;
1342 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1343 IB_ACCESS_REMOTE_READ |
1344 IB_ACCESS_REMOTE_WRITE;
1346 sg->addr = cpu_to_le64(req->mr->iova);
1347 put_unaligned_le24(req->mr->length, sg->length);
1348 put_unaligned_le32(req->mr->rkey, sg->key);
1349 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1350 NVME_SGL_FMT_INVALIDATE;
1352 return 0;
1355 static void nvme_rdma_set_sig_domain(struct blk_integrity *bi,
1356 struct nvme_command *cmd, struct ib_sig_domain *domain,
1357 u16 control, u8 pi_type)
1359 domain->sig_type = IB_SIG_TYPE_T10_DIF;
1360 domain->sig.dif.bg_type = IB_T10DIF_CRC;
1361 domain->sig.dif.pi_interval = 1 << bi->interval_exp;
1362 domain->sig.dif.ref_tag = le32_to_cpu(cmd->rw.reftag);
1363 if (control & NVME_RW_PRINFO_PRCHK_REF)
1364 domain->sig.dif.ref_remap = true;
1366 domain->sig.dif.app_tag = le16_to_cpu(cmd->rw.lbat);
1367 domain->sig.dif.apptag_check_mask = le16_to_cpu(cmd->rw.lbatm);
1368 domain->sig.dif.app_escape = true;
1369 if (pi_type == NVME_NS_DPS_PI_TYPE3)
1370 domain->sig.dif.ref_escape = true;
1373 static void nvme_rdma_set_sig_attrs(struct blk_integrity *bi,
1374 struct nvme_command *cmd, struct ib_sig_attrs *sig_attrs,
1375 u8 pi_type)
1377 u16 control = le16_to_cpu(cmd->rw.control);
1379 memset(sig_attrs, 0, sizeof(*sig_attrs));
1380 if (control & NVME_RW_PRINFO_PRACT) {
1381 /* for WRITE_INSERT/READ_STRIP no memory domain */
1382 sig_attrs->mem.sig_type = IB_SIG_TYPE_NONE;
1383 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1384 pi_type);
1385 /* Clear the PRACT bit since HCA will generate/verify the PI */
1386 control &= ~NVME_RW_PRINFO_PRACT;
1387 cmd->rw.control = cpu_to_le16(control);
1388 } else {
1389 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1390 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->wire, control,
1391 pi_type);
1392 nvme_rdma_set_sig_domain(bi, cmd, &sig_attrs->mem, control,
1393 pi_type);
1397 static void nvme_rdma_set_prot_checks(struct nvme_command *cmd, u8 *mask)
1399 *mask = 0;
1400 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_REF)
1401 *mask |= IB_SIG_CHECK_REFTAG;
1402 if (le16_to_cpu(cmd->rw.control) & NVME_RW_PRINFO_PRCHK_GUARD)
1403 *mask |= IB_SIG_CHECK_GUARD;
1406 static void nvme_rdma_sig_done(struct ib_cq *cq, struct ib_wc *wc)
1408 if (unlikely(wc->status != IB_WC_SUCCESS))
1409 nvme_rdma_wr_error(cq, wc, "SIG");
1412 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue *queue,
1413 struct nvme_rdma_request *req, struct nvme_command *c,
1414 int count, int pi_count)
1416 struct nvme_rdma_sgl *sgl = &req->data_sgl;
1417 struct ib_reg_wr *wr = &req->reg_wr;
1418 struct request *rq = blk_mq_rq_from_pdu(req);
1419 struct nvme_ns *ns = rq->q->queuedata;
1420 struct bio *bio = rq->bio;
1421 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1422 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
1423 u32 xfer_len;
1424 int nr;
1426 req->mr = ib_mr_pool_get(queue->qp, &queue->qp->sig_mrs);
1427 if (WARN_ON_ONCE(!req->mr))
1428 return -EAGAIN;
1430 nr = ib_map_mr_sg_pi(req->mr, sgl->sg_table.sgl, count, NULL,
1431 req->metadata_sgl->sg_table.sgl, pi_count, NULL,
1432 SZ_4K);
1433 if (unlikely(nr))
1434 goto mr_put;
1436 nvme_rdma_set_sig_attrs(bi, c, req->mr->sig_attrs, ns->head->pi_type);
1437 nvme_rdma_set_prot_checks(c, &req->mr->sig_attrs->check_mask);
1439 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1441 req->reg_cqe.done = nvme_rdma_sig_done;
1442 memset(wr, 0, sizeof(*wr));
1443 wr->wr.opcode = IB_WR_REG_MR_INTEGRITY;
1444 wr->wr.wr_cqe = &req->reg_cqe;
1445 wr->wr.num_sge = 0;
1446 wr->wr.send_flags = 0;
1447 wr->mr = req->mr;
1448 wr->key = req->mr->rkey;
1449 wr->access = IB_ACCESS_LOCAL_WRITE |
1450 IB_ACCESS_REMOTE_READ |
1451 IB_ACCESS_REMOTE_WRITE;
1453 sg->addr = cpu_to_le64(req->mr->iova);
1454 xfer_len = req->mr->length;
1455 /* Check if PI is added by the HW */
1456 if (!pi_count)
1457 xfer_len += (xfer_len >> bi->interval_exp) * ns->head->pi_size;
1458 put_unaligned_le24(xfer_len, sg->length);
1459 put_unaligned_le32(req->mr->rkey, sg->key);
1460 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1462 return 0;
1464 mr_put:
1465 ib_mr_pool_put(queue->qp, &queue->qp->sig_mrs, req->mr);
1466 req->mr = NULL;
1467 if (nr < 0)
1468 return nr;
1469 return -EINVAL;
1472 static int nvme_rdma_dma_map_req(struct ib_device *ibdev, struct request *rq,
1473 int *count, int *pi_count)
1475 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1476 int ret;
1478 req->data_sgl.sg_table.sgl = (struct scatterlist *)(req + 1);
1479 ret = sg_alloc_table_chained(&req->data_sgl.sg_table,
1480 blk_rq_nr_phys_segments(rq), req->data_sgl.sg_table.sgl,
1481 NVME_INLINE_SG_CNT);
1482 if (ret)
1483 return -ENOMEM;
1485 req->data_sgl.nents = blk_rq_map_sg(rq->q, rq,
1486 req->data_sgl.sg_table.sgl);
1488 *count = ib_dma_map_sg(ibdev, req->data_sgl.sg_table.sgl,
1489 req->data_sgl.nents, rq_dma_dir(rq));
1490 if (unlikely(*count <= 0)) {
1491 ret = -EIO;
1492 goto out_free_table;
1495 if (blk_integrity_rq(rq)) {
1496 req->metadata_sgl->sg_table.sgl =
1497 (struct scatterlist *)(req->metadata_sgl + 1);
1498 ret = sg_alloc_table_chained(&req->metadata_sgl->sg_table,
1499 rq->nr_integrity_segments,
1500 req->metadata_sgl->sg_table.sgl,
1501 NVME_INLINE_METADATA_SG_CNT);
1502 if (unlikely(ret)) {
1503 ret = -ENOMEM;
1504 goto out_unmap_sg;
1507 req->metadata_sgl->nents = blk_rq_map_integrity_sg(rq,
1508 req->metadata_sgl->sg_table.sgl);
1509 *pi_count = ib_dma_map_sg(ibdev,
1510 req->metadata_sgl->sg_table.sgl,
1511 req->metadata_sgl->nents,
1512 rq_dma_dir(rq));
1513 if (unlikely(*pi_count <= 0)) {
1514 ret = -EIO;
1515 goto out_free_pi_table;
1519 return 0;
1521 out_free_pi_table:
1522 sg_free_table_chained(&req->metadata_sgl->sg_table,
1523 NVME_INLINE_METADATA_SG_CNT);
1524 out_unmap_sg:
1525 ib_dma_unmap_sg(ibdev, req->data_sgl.sg_table.sgl, req->data_sgl.nents,
1526 rq_dma_dir(rq));
1527 out_free_table:
1528 sg_free_table_chained(&req->data_sgl.sg_table, NVME_INLINE_SG_CNT);
1529 return ret;
1532 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1533 struct request *rq, struct nvme_command *c)
1535 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1536 struct nvme_rdma_device *dev = queue->device;
1537 struct ib_device *ibdev = dev->dev;
1538 int pi_count = 0;
1539 int count, ret;
1541 req->num_sge = 1;
1542 refcount_set(&req->ref, 2); /* send and recv completions */
1544 c->common.flags |= NVME_CMD_SGL_METABUF;
1546 if (!blk_rq_nr_phys_segments(rq))
1547 return nvme_rdma_set_sg_null(c);
1549 ret = nvme_rdma_dma_map_req(ibdev, rq, &count, &pi_count);
1550 if (unlikely(ret))
1551 return ret;
1553 if (req->use_sig_mr) {
1554 ret = nvme_rdma_map_sg_pi(queue, req, c, count, pi_count);
1555 goto out;
1558 if (count <= dev->num_inline_segments) {
1559 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1560 queue->ctrl->use_inline_data &&
1561 blk_rq_payload_bytes(rq) <=
1562 nvme_rdma_inline_data_size(queue)) {
1563 ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1564 goto out;
1567 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1568 ret = nvme_rdma_map_sg_single(queue, req, c);
1569 goto out;
1573 ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1574 out:
1575 if (unlikely(ret))
1576 goto out_dma_unmap_req;
1578 return 0;
1580 out_dma_unmap_req:
1581 nvme_rdma_dma_unmap_req(ibdev, rq);
1582 return ret;
1585 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1587 struct nvme_rdma_qe *qe =
1588 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1589 struct nvme_rdma_request *req =
1590 container_of(qe, struct nvme_rdma_request, sqe);
1592 if (unlikely(wc->status != IB_WC_SUCCESS))
1593 nvme_rdma_wr_error(cq, wc, "SEND");
1594 else
1595 nvme_rdma_end_request(req);
1598 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1599 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1600 struct ib_send_wr *first)
1602 struct ib_send_wr wr;
1603 int ret;
1605 sge->addr = qe->dma;
1606 sge->length = sizeof(struct nvme_command);
1607 sge->lkey = queue->device->pd->local_dma_lkey;
1609 wr.next = NULL;
1610 wr.wr_cqe = &qe->cqe;
1611 wr.sg_list = sge;
1612 wr.num_sge = num_sge;
1613 wr.opcode = IB_WR_SEND;
1614 wr.send_flags = IB_SEND_SIGNALED;
1616 if (first)
1617 first->next = &wr;
1618 else
1619 first = &wr;
1621 ret = ib_post_send(queue->qp, first, NULL);
1622 if (unlikely(ret)) {
1623 dev_err(queue->ctrl->ctrl.device,
1624 "%s failed with error code %d\n", __func__, ret);
1626 return ret;
1629 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1630 struct nvme_rdma_qe *qe)
1632 struct ib_recv_wr wr;
1633 struct ib_sge list;
1634 int ret;
1636 list.addr = qe->dma;
1637 list.length = sizeof(struct nvme_completion);
1638 list.lkey = queue->device->pd->local_dma_lkey;
1640 qe->cqe.done = nvme_rdma_recv_done;
1642 wr.next = NULL;
1643 wr.wr_cqe = &qe->cqe;
1644 wr.sg_list = &list;
1645 wr.num_sge = 1;
1647 ret = ib_post_recv(queue->qp, &wr, NULL);
1648 if (unlikely(ret)) {
1649 dev_err(queue->ctrl->ctrl.device,
1650 "%s failed with error code %d\n", __func__, ret);
1652 return ret;
1655 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1657 u32 queue_idx = nvme_rdma_queue_idx(queue);
1659 if (queue_idx == 0)
1660 return queue->ctrl->admin_tag_set.tags[queue_idx];
1661 return queue->ctrl->tag_set.tags[queue_idx - 1];
1664 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1666 if (unlikely(wc->status != IB_WC_SUCCESS))
1667 nvme_rdma_wr_error(cq, wc, "ASYNC");
1670 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1672 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1673 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1674 struct ib_device *dev = queue->device->dev;
1675 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1676 struct nvme_command *cmd = sqe->data;
1677 struct ib_sge sge;
1678 int ret;
1680 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1682 memset(cmd, 0, sizeof(*cmd));
1683 cmd->common.opcode = nvme_admin_async_event;
1684 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1685 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1686 nvme_rdma_set_sg_null(cmd);
1688 sqe->cqe.done = nvme_rdma_async_done;
1690 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1691 DMA_TO_DEVICE);
1693 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1694 WARN_ON_ONCE(ret);
1697 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1698 struct nvme_completion *cqe, struct ib_wc *wc)
1700 struct request *rq;
1701 struct nvme_rdma_request *req;
1703 rq = nvme_find_rq(nvme_rdma_tagset(queue), cqe->command_id);
1704 if (!rq) {
1705 dev_err(queue->ctrl->ctrl.device,
1706 "got bad command_id %#x on QP %#x\n",
1707 cqe->command_id, queue->qp->qp_num);
1708 nvme_rdma_error_recovery(queue->ctrl);
1709 return;
1711 req = blk_mq_rq_to_pdu(rq);
1713 req->status = cqe->status;
1714 req->result = cqe->result;
1716 if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1717 if (unlikely(!req->mr ||
1718 wc->ex.invalidate_rkey != req->mr->rkey)) {
1719 dev_err(queue->ctrl->ctrl.device,
1720 "Bogus remote invalidation for rkey %#x\n",
1721 req->mr ? req->mr->rkey : 0);
1722 nvme_rdma_error_recovery(queue->ctrl);
1724 } else if (req->mr) {
1725 int ret;
1727 ret = nvme_rdma_inv_rkey(queue, req);
1728 if (unlikely(ret < 0)) {
1729 dev_err(queue->ctrl->ctrl.device,
1730 "Queueing INV WR for rkey %#x failed (%d)\n",
1731 req->mr->rkey, ret);
1732 nvme_rdma_error_recovery(queue->ctrl);
1734 /* the local invalidation completion will end the request */
1735 return;
1738 nvme_rdma_end_request(req);
1741 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1743 struct nvme_rdma_qe *qe =
1744 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1745 struct nvme_rdma_queue *queue = wc->qp->qp_context;
1746 struct ib_device *ibdev = queue->device->dev;
1747 struct nvme_completion *cqe = qe->data;
1748 const size_t len = sizeof(struct nvme_completion);
1750 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1751 nvme_rdma_wr_error(cq, wc, "RECV");
1752 return;
1755 /* sanity checking for received data length */
1756 if (unlikely(wc->byte_len < len)) {
1757 dev_err(queue->ctrl->ctrl.device,
1758 "Unexpected nvme completion length(%d)\n", wc->byte_len);
1759 nvme_rdma_error_recovery(queue->ctrl);
1760 return;
1763 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1765 * AEN requests are special as they don't time out and can
1766 * survive any kind of queue freeze and often don't respond to
1767 * aborts. We don't even bother to allocate a struct request
1768 * for them but rather special case them here.
1770 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue),
1771 cqe->command_id)))
1772 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1773 &cqe->result);
1774 else
1775 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1776 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1778 nvme_rdma_post_recv(queue, qe);
1781 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1783 int ret, i;
1785 for (i = 0; i < queue->queue_size; i++) {
1786 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1787 if (ret)
1788 return ret;
1791 return 0;
1794 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1795 struct rdma_cm_event *ev)
1797 struct rdma_cm_id *cm_id = queue->cm_id;
1798 int status = ev->status;
1799 const char *rej_msg;
1800 const struct nvme_rdma_cm_rej *rej_data;
1801 u8 rej_data_len;
1803 rej_msg = rdma_reject_msg(cm_id, status);
1804 rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1806 if (rej_data && rej_data_len >= sizeof(u16)) {
1807 u16 sts = le16_to_cpu(rej_data->sts);
1809 dev_err(queue->ctrl->ctrl.device,
1810 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1811 status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1812 } else {
1813 dev_err(queue->ctrl->ctrl.device,
1814 "Connect rejected: status %d (%s).\n", status, rej_msg);
1817 return -ECONNRESET;
1820 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1822 struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1823 int ret;
1825 ret = nvme_rdma_create_queue_ib(queue);
1826 if (ret)
1827 return ret;
1829 if (ctrl->opts->tos >= 0)
1830 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1831 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CM_TIMEOUT_MS);
1832 if (ret) {
1833 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1834 queue->cm_error);
1835 goto out_destroy_queue;
1838 return 0;
1840 out_destroy_queue:
1841 nvme_rdma_destroy_queue_ib(queue);
1842 return ret;
1845 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1847 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1848 struct rdma_conn_param param = { };
1849 struct nvme_rdma_cm_req priv = { };
1850 int ret;
1852 param.qp_num = queue->qp->qp_num;
1853 param.flow_control = 1;
1855 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1856 /* maximum retry count */
1857 param.retry_count = 7;
1858 param.rnr_retry_count = 7;
1859 param.private_data = &priv;
1860 param.private_data_len = sizeof(priv);
1862 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1863 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1865 * set the admin queue depth to the minimum size
1866 * specified by the Fabrics standard.
1868 if (priv.qid == 0) {
1869 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1870 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1871 } else {
1873 * current interpretation of the fabrics spec
1874 * is at minimum you make hrqsize sqsize+1, or a
1875 * 1's based representation of sqsize.
1877 priv.hrqsize = cpu_to_le16(queue->queue_size);
1878 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1879 /* cntlid should only be set when creating an I/O queue */
1880 priv.cntlid = cpu_to_le16(ctrl->ctrl.cntlid);
1883 ret = rdma_connect_locked(queue->cm_id, &param);
1884 if (ret) {
1885 dev_err(ctrl->ctrl.device,
1886 "rdma_connect_locked failed (%d).\n", ret);
1887 return ret;
1890 return 0;
1893 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1894 struct rdma_cm_event *ev)
1896 struct nvme_rdma_queue *queue = cm_id->context;
1897 int cm_error = 0;
1899 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1900 rdma_event_msg(ev->event), ev->event,
1901 ev->status, cm_id);
1903 switch (ev->event) {
1904 case RDMA_CM_EVENT_ADDR_RESOLVED:
1905 cm_error = nvme_rdma_addr_resolved(queue);
1906 break;
1907 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1908 cm_error = nvme_rdma_route_resolved(queue);
1909 break;
1910 case RDMA_CM_EVENT_ESTABLISHED:
1911 queue->cm_error = nvme_rdma_conn_established(queue);
1912 /* complete cm_done regardless of success/failure */
1913 complete(&queue->cm_done);
1914 return 0;
1915 case RDMA_CM_EVENT_REJECTED:
1916 cm_error = nvme_rdma_conn_rejected(queue, ev);
1917 break;
1918 case RDMA_CM_EVENT_ROUTE_ERROR:
1919 case RDMA_CM_EVENT_CONNECT_ERROR:
1920 case RDMA_CM_EVENT_UNREACHABLE:
1921 case RDMA_CM_EVENT_ADDR_ERROR:
1922 dev_dbg(queue->ctrl->ctrl.device,
1923 "CM error event %d\n", ev->event);
1924 cm_error = -ECONNRESET;
1925 break;
1926 case RDMA_CM_EVENT_DISCONNECTED:
1927 case RDMA_CM_EVENT_ADDR_CHANGE:
1928 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1929 dev_dbg(queue->ctrl->ctrl.device,
1930 "disconnect received - connection closed\n");
1931 nvme_rdma_error_recovery(queue->ctrl);
1932 break;
1933 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1934 /* device removal is handled via the ib_client API */
1935 break;
1936 default:
1937 dev_err(queue->ctrl->ctrl.device,
1938 "Unexpected RDMA CM event (%d)\n", ev->event);
1939 nvme_rdma_error_recovery(queue->ctrl);
1940 break;
1943 if (cm_error) {
1944 queue->cm_error = cm_error;
1945 complete(&queue->cm_done);
1948 return 0;
1951 static void nvme_rdma_complete_timed_out(struct request *rq)
1953 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1954 struct nvme_rdma_queue *queue = req->queue;
1956 nvme_rdma_stop_queue(queue);
1957 nvmf_complete_timed_out_request(rq);
1960 static enum blk_eh_timer_return nvme_rdma_timeout(struct request *rq)
1962 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1963 struct nvme_rdma_queue *queue = req->queue;
1964 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1965 struct nvme_command *cmd = req->req.cmd;
1966 int qid = nvme_rdma_queue_idx(queue);
1968 dev_warn(ctrl->ctrl.device,
1969 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout\n",
1970 rq->tag, nvme_cid(rq), cmd->common.opcode,
1971 nvme_fabrics_opcode_str(qid, cmd), qid);
1973 if (nvme_ctrl_state(&ctrl->ctrl) != NVME_CTRL_LIVE) {
1975 * If we are resetting, connecting or deleting we should
1976 * complete immediately because we may block controller
1977 * teardown or setup sequence
1978 * - ctrl disable/shutdown fabrics requests
1979 * - connect requests
1980 * - initialization admin requests
1981 * - I/O requests that entered after unquiescing and
1982 * the controller stopped responding
1984 * All other requests should be cancelled by the error
1985 * recovery work, so it's fine that we fail it here.
1987 nvme_rdma_complete_timed_out(rq);
1988 return BLK_EH_DONE;
1992 * LIVE state should trigger the normal error recovery which will
1993 * handle completing this request.
1995 nvme_rdma_error_recovery(ctrl);
1996 return BLK_EH_RESET_TIMER;
1999 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
2000 const struct blk_mq_queue_data *bd)
2002 struct nvme_ns *ns = hctx->queue->queuedata;
2003 struct nvme_rdma_queue *queue = hctx->driver_data;
2004 struct request *rq = bd->rq;
2005 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2006 struct nvme_rdma_qe *sqe = &req->sqe;
2007 struct nvme_command *c = nvme_req(rq)->cmd;
2008 struct ib_device *dev;
2009 bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
2010 blk_status_t ret;
2011 int err;
2013 WARN_ON_ONCE(rq->tag < 0);
2015 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2016 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2018 dev = queue->device->dev;
2020 req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
2021 sizeof(struct nvme_command),
2022 DMA_TO_DEVICE);
2023 err = ib_dma_mapping_error(dev, req->sqe.dma);
2024 if (unlikely(err))
2025 return BLK_STS_RESOURCE;
2027 ib_dma_sync_single_for_cpu(dev, sqe->dma,
2028 sizeof(struct nvme_command), DMA_TO_DEVICE);
2030 ret = nvme_setup_cmd(ns, rq);
2031 if (ret)
2032 goto unmap_qe;
2034 nvme_start_request(rq);
2036 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2037 queue->pi_support &&
2038 (c->common.opcode == nvme_cmd_write ||
2039 c->common.opcode == nvme_cmd_read) &&
2040 nvme_ns_has_pi(ns->head))
2041 req->use_sig_mr = true;
2042 else
2043 req->use_sig_mr = false;
2045 err = nvme_rdma_map_data(queue, rq, c);
2046 if (unlikely(err < 0)) {
2047 dev_err(queue->ctrl->ctrl.device,
2048 "Failed to map data (%d)\n", err);
2049 goto err;
2052 sqe->cqe.done = nvme_rdma_send_done;
2054 ib_dma_sync_single_for_device(dev, sqe->dma,
2055 sizeof(struct nvme_command), DMA_TO_DEVICE);
2057 err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
2058 req->mr ? &req->reg_wr.wr : NULL);
2059 if (unlikely(err))
2060 goto err_unmap;
2062 return BLK_STS_OK;
2064 err_unmap:
2065 nvme_rdma_unmap_data(queue, rq);
2066 err:
2067 if (err == -EIO)
2068 ret = nvme_host_path_error(rq);
2069 else if (err == -ENOMEM || err == -EAGAIN)
2070 ret = BLK_STS_RESOURCE;
2071 else
2072 ret = BLK_STS_IOERR;
2073 nvme_cleanup_cmd(rq);
2074 unmap_qe:
2075 ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
2076 DMA_TO_DEVICE);
2077 return ret;
2080 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2082 struct nvme_rdma_queue *queue = hctx->driver_data;
2084 return ib_process_cq_direct(queue->ib_cq, -1);
2087 static void nvme_rdma_check_pi_status(struct nvme_rdma_request *req)
2089 struct request *rq = blk_mq_rq_from_pdu(req);
2090 struct ib_mr_status mr_status;
2091 int ret;
2093 ret = ib_check_mr_status(req->mr, IB_MR_CHECK_SIG_STATUS, &mr_status);
2094 if (ret) {
2095 pr_err("ib_check_mr_status failed, ret %d\n", ret);
2096 nvme_req(rq)->status = NVME_SC_INVALID_PI;
2097 return;
2100 if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
2101 switch (mr_status.sig_err.err_type) {
2102 case IB_SIG_BAD_GUARD:
2103 nvme_req(rq)->status = NVME_SC_GUARD_CHECK;
2104 break;
2105 case IB_SIG_BAD_REFTAG:
2106 nvme_req(rq)->status = NVME_SC_REFTAG_CHECK;
2107 break;
2108 case IB_SIG_BAD_APPTAG:
2109 nvme_req(rq)->status = NVME_SC_APPTAG_CHECK;
2110 break;
2112 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2113 mr_status.sig_err.err_type, mr_status.sig_err.expected,
2114 mr_status.sig_err.actual);
2118 static void nvme_rdma_complete_rq(struct request *rq)
2120 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
2121 struct nvme_rdma_queue *queue = req->queue;
2122 struct ib_device *ibdev = queue->device->dev;
2124 if (req->use_sig_mr)
2125 nvme_rdma_check_pi_status(req);
2127 nvme_rdma_unmap_data(queue, rq);
2128 ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
2129 DMA_TO_DEVICE);
2130 nvme_complete_rq(rq);
2133 static void nvme_rdma_map_queues(struct blk_mq_tag_set *set)
2135 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(set->driver_data);
2137 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2140 static const struct blk_mq_ops nvme_rdma_mq_ops = {
2141 .queue_rq = nvme_rdma_queue_rq,
2142 .complete = nvme_rdma_complete_rq,
2143 .init_request = nvme_rdma_init_request,
2144 .exit_request = nvme_rdma_exit_request,
2145 .init_hctx = nvme_rdma_init_hctx,
2146 .timeout = nvme_rdma_timeout,
2147 .map_queues = nvme_rdma_map_queues,
2148 .poll = nvme_rdma_poll,
2151 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
2152 .queue_rq = nvme_rdma_queue_rq,
2153 .complete = nvme_rdma_complete_rq,
2154 .init_request = nvme_rdma_init_request,
2155 .exit_request = nvme_rdma_exit_request,
2156 .init_hctx = nvme_rdma_init_admin_hctx,
2157 .timeout = nvme_rdma_timeout,
2160 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
2162 nvme_rdma_teardown_io_queues(ctrl, shutdown);
2163 nvme_quiesce_admin_queue(&ctrl->ctrl);
2164 nvme_disable_ctrl(&ctrl->ctrl, shutdown);
2165 nvme_rdma_teardown_admin_queue(ctrl, shutdown);
2168 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
2170 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
2173 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
2175 struct nvme_rdma_ctrl *ctrl =
2176 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
2177 int ret;
2179 nvme_stop_ctrl(&ctrl->ctrl);
2180 nvme_rdma_shutdown_ctrl(ctrl, false);
2182 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2183 /* state change failure should never happen */
2184 WARN_ON_ONCE(1);
2185 return;
2188 ret = nvme_rdma_setup_ctrl(ctrl, false);
2189 if (ret)
2190 goto out_fail;
2192 return;
2194 out_fail:
2195 ++ctrl->ctrl.nr_reconnects;
2196 nvme_rdma_reconnect_or_remove(ctrl, ret);
2199 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
2200 .name = "rdma",
2201 .module = THIS_MODULE,
2202 .flags = NVME_F_FABRICS | NVME_F_METADATA_SUPPORTED,
2203 .reg_read32 = nvmf_reg_read32,
2204 .reg_read64 = nvmf_reg_read64,
2205 .reg_write32 = nvmf_reg_write32,
2206 .subsystem_reset = nvmf_subsystem_reset,
2207 .free_ctrl = nvme_rdma_free_ctrl,
2208 .submit_async_event = nvme_rdma_submit_async_event,
2209 .delete_ctrl = nvme_rdma_delete_ctrl,
2210 .get_address = nvmf_get_address,
2211 .stop_ctrl = nvme_rdma_stop_ctrl,
2215 * Fails a connection request if it matches an existing controller
2216 * (association) with the same tuple:
2217 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2219 * if local address is not specified in the request, it will match an
2220 * existing controller with all the other parameters the same and no
2221 * local port address specified as well.
2223 * The ports don't need to be compared as they are intrinsically
2224 * already matched by the port pointers supplied.
2226 static bool
2227 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
2229 struct nvme_rdma_ctrl *ctrl;
2230 bool found = false;
2232 mutex_lock(&nvme_rdma_ctrl_mutex);
2233 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2234 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2235 if (found)
2236 break;
2238 mutex_unlock(&nvme_rdma_ctrl_mutex);
2240 return found;
2243 static struct nvme_rdma_ctrl *nvme_rdma_alloc_ctrl(struct device *dev,
2244 struct nvmf_ctrl_options *opts)
2246 struct nvme_rdma_ctrl *ctrl;
2247 int ret;
2249 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2250 if (!ctrl)
2251 return ERR_PTR(-ENOMEM);
2252 ctrl->ctrl.opts = opts;
2253 INIT_LIST_HEAD(&ctrl->list);
2255 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2256 opts->trsvcid =
2257 kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
2258 if (!opts->trsvcid) {
2259 ret = -ENOMEM;
2260 goto out_free_ctrl;
2262 opts->mask |= NVMF_OPT_TRSVCID;
2265 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2266 opts->traddr, opts->trsvcid, &ctrl->addr);
2267 if (ret) {
2268 pr_err("malformed address passed: %s:%s\n",
2269 opts->traddr, opts->trsvcid);
2270 goto out_free_ctrl;
2273 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2274 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2275 opts->host_traddr, NULL, &ctrl->src_addr);
2276 if (ret) {
2277 pr_err("malformed src address passed: %s\n",
2278 opts->host_traddr);
2279 goto out_free_ctrl;
2283 if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
2284 ret = -EALREADY;
2285 goto out_free_ctrl;
2288 INIT_DELAYED_WORK(&ctrl->reconnect_work,
2289 nvme_rdma_reconnect_ctrl_work);
2290 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
2291 INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
2293 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2294 opts->nr_poll_queues + 1;
2295 ctrl->ctrl.sqsize = opts->queue_size - 1;
2296 ctrl->ctrl.kato = opts->kato;
2298 ret = -ENOMEM;
2299 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2300 GFP_KERNEL);
2301 if (!ctrl->queues)
2302 goto out_free_ctrl;
2304 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2305 0 /* no quirks, we're perfect! */);
2306 if (ret)
2307 goto out_kfree_queues;
2309 return ctrl;
2311 out_kfree_queues:
2312 kfree(ctrl->queues);
2313 out_free_ctrl:
2314 kfree(ctrl);
2315 return ERR_PTR(ret);
2318 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
2319 struct nvmf_ctrl_options *opts)
2321 struct nvme_rdma_ctrl *ctrl;
2322 bool changed;
2323 int ret;
2325 ctrl = nvme_rdma_alloc_ctrl(dev, opts);
2326 if (IS_ERR(ctrl))
2327 return ERR_CAST(ctrl);
2329 ret = nvme_add_ctrl(&ctrl->ctrl);
2330 if (ret)
2331 goto out_put_ctrl;
2333 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2334 WARN_ON_ONCE(!changed);
2336 ret = nvme_rdma_setup_ctrl(ctrl, true);
2337 if (ret)
2338 goto out_uninit_ctrl;
2340 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs, hostnqn: %s\n",
2341 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
2343 mutex_lock(&nvme_rdma_ctrl_mutex);
2344 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2345 mutex_unlock(&nvme_rdma_ctrl_mutex);
2347 return &ctrl->ctrl;
2349 out_uninit_ctrl:
2350 nvme_uninit_ctrl(&ctrl->ctrl);
2351 out_put_ctrl:
2352 nvme_put_ctrl(&ctrl->ctrl);
2353 if (ret > 0)
2354 ret = -EIO;
2355 return ERR_PTR(ret);
2358 static struct nvmf_transport_ops nvme_rdma_transport = {
2359 .name = "rdma",
2360 .module = THIS_MODULE,
2361 .required_opts = NVMF_OPT_TRADDR,
2362 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2363 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2364 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2365 NVMF_OPT_TOS,
2366 .create_ctrl = nvme_rdma_create_ctrl,
2369 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2371 struct nvme_rdma_ctrl *ctrl;
2372 struct nvme_rdma_device *ndev;
2373 bool found = false;
2375 mutex_lock(&device_list_mutex);
2376 list_for_each_entry(ndev, &device_list, entry) {
2377 if (ndev->dev == ib_device) {
2378 found = true;
2379 break;
2382 mutex_unlock(&device_list_mutex);
2384 if (!found)
2385 return;
2387 /* Delete all controllers using this device */
2388 mutex_lock(&nvme_rdma_ctrl_mutex);
2389 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2390 if (ctrl->device->dev != ib_device)
2391 continue;
2392 nvme_delete_ctrl(&ctrl->ctrl);
2394 mutex_unlock(&nvme_rdma_ctrl_mutex);
2396 flush_workqueue(nvme_delete_wq);
2399 static struct ib_client nvme_rdma_ib_client = {
2400 .name = "nvme_rdma",
2401 .remove = nvme_rdma_remove_one
2404 static int __init nvme_rdma_init_module(void)
2406 int ret;
2408 ret = ib_register_client(&nvme_rdma_ib_client);
2409 if (ret)
2410 return ret;
2412 ret = nvmf_register_transport(&nvme_rdma_transport);
2413 if (ret)
2414 goto err_unreg_client;
2416 return 0;
2418 err_unreg_client:
2419 ib_unregister_client(&nvme_rdma_ib_client);
2420 return ret;
2423 static void __exit nvme_rdma_cleanup_module(void)
2425 struct nvme_rdma_ctrl *ctrl;
2427 nvmf_unregister_transport(&nvme_rdma_transport);
2428 ib_unregister_client(&nvme_rdma_ib_client);
2430 mutex_lock(&nvme_rdma_ctrl_mutex);
2431 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2432 nvme_delete_ctrl(&ctrl->ctrl);
2433 mutex_unlock(&nvme_rdma_ctrl_mutex);
2434 flush_workqueue(nvme_delete_wq);
2437 module_init(nvme_rdma_init_module);
2438 module_exit(nvme_rdma_cleanup_module);
2440 MODULE_DESCRIPTION("NVMe host RDMA transport driver");
2441 MODULE_LICENSE("GPL v2");