1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics RDMA host code.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <linux/unaligned.h>
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
31 #define NVME_RDMA_CM_TIMEOUT_MS 3000 /* 3 second */
33 #define NVME_RDMA_MAX_SEGMENTS 256
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS 4
37 #define NVME_RDMA_DATA_SGL_SIZE \
38 (sizeof(struct scatterlist) * NVME_INLINE_SG_CNT)
39 #define NVME_RDMA_METADATA_SGL_SIZE \
40 (sizeof(struct scatterlist) * NVME_INLINE_METADATA_SG_CNT)
42 struct nvme_rdma_device
{
43 struct ib_device
*dev
;
46 struct list_head entry
;
47 unsigned int num_inline_segments
;
56 struct nvme_rdma_sgl
{
58 struct sg_table sg_table
;
61 struct nvme_rdma_queue
;
62 struct nvme_rdma_request
{
63 struct nvme_request req
;
65 struct nvme_rdma_qe sqe
;
66 union nvme_result result
;
69 struct ib_sge sge
[1 + NVME_RDMA_MAX_INLINE_SEGMENTS
];
71 struct ib_reg_wr reg_wr
;
72 struct ib_cqe reg_cqe
;
73 struct nvme_rdma_queue
*queue
;
74 struct nvme_rdma_sgl data_sgl
;
75 struct nvme_rdma_sgl
*metadata_sgl
;
79 enum nvme_rdma_queue_flags
{
80 NVME_RDMA_Q_ALLOCATED
= 0,
82 NVME_RDMA_Q_TR_READY
= 2,
85 struct nvme_rdma_queue
{
86 struct nvme_rdma_qe
*rsp_ring
;
88 size_t cmnd_capsule_len
;
89 struct nvme_rdma_ctrl
*ctrl
;
90 struct nvme_rdma_device
*device
;
95 struct rdma_cm_id
*cm_id
;
97 struct completion cm_done
;
100 struct mutex queue_lock
;
103 struct nvme_rdma_ctrl
{
104 /* read only in the hot path */
105 struct nvme_rdma_queue
*queues
;
107 /* other member variables */
108 struct blk_mq_tag_set tag_set
;
109 struct work_struct err_work
;
111 struct nvme_rdma_qe async_event_sqe
;
113 struct delayed_work reconnect_work
;
115 struct list_head list
;
117 struct blk_mq_tag_set admin_tag_set
;
118 struct nvme_rdma_device
*device
;
122 struct sockaddr_storage addr
;
123 struct sockaddr_storage src_addr
;
125 struct nvme_ctrl ctrl
;
126 bool use_inline_data
;
127 u32 io_queues
[HCTX_MAX_TYPES
];
130 static inline struct nvme_rdma_ctrl
*to_rdma_ctrl(struct nvme_ctrl
*ctrl
)
132 return container_of(ctrl
, struct nvme_rdma_ctrl
, ctrl
);
135 static LIST_HEAD(device_list
);
136 static DEFINE_MUTEX(device_list_mutex
);
138 static LIST_HEAD(nvme_rdma_ctrl_list
);
139 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex
);
142 * Disabling this option makes small I/O goes faster, but is fundamentally
143 * unsafe. With it turned off we will have to register a global rkey that
144 * allows read and write access to all physical memory.
146 static bool register_always
= true;
147 module_param(register_always
, bool, 0444);
148 MODULE_PARM_DESC(register_always
,
149 "Use memory registration even for contiguous memory regions");
151 static int nvme_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
152 struct rdma_cm_event
*event
);
153 static void nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
);
154 static void nvme_rdma_complete_rq(struct request
*rq
);
156 static const struct blk_mq_ops nvme_rdma_mq_ops
;
157 static const struct blk_mq_ops nvme_rdma_admin_mq_ops
;
159 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue
*queue
)
161 return queue
- queue
->ctrl
->queues
;
164 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue
*queue
)
166 return nvme_rdma_queue_idx(queue
) >
167 queue
->ctrl
->io_queues
[HCTX_TYPE_DEFAULT
] +
168 queue
->ctrl
->io_queues
[HCTX_TYPE_READ
];
171 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue
*queue
)
173 return queue
->cmnd_capsule_len
- sizeof(struct nvme_command
);
176 static void nvme_rdma_free_qe(struct ib_device
*ibdev
, struct nvme_rdma_qe
*qe
,
177 size_t capsule_size
, enum dma_data_direction dir
)
179 ib_dma_unmap_single(ibdev
, qe
->dma
, capsule_size
, dir
);
183 static int nvme_rdma_alloc_qe(struct ib_device
*ibdev
, struct nvme_rdma_qe
*qe
,
184 size_t capsule_size
, enum dma_data_direction dir
)
186 qe
->data
= kzalloc(capsule_size
, GFP_KERNEL
);
190 qe
->dma
= ib_dma_map_single(ibdev
, qe
->data
, capsule_size
, dir
);
191 if (ib_dma_mapping_error(ibdev
, qe
->dma
)) {
200 static void nvme_rdma_free_ring(struct ib_device
*ibdev
,
201 struct nvme_rdma_qe
*ring
, size_t ib_queue_size
,
202 size_t capsule_size
, enum dma_data_direction dir
)
206 for (i
= 0; i
< ib_queue_size
; i
++)
207 nvme_rdma_free_qe(ibdev
, &ring
[i
], capsule_size
, dir
);
211 static struct nvme_rdma_qe
*nvme_rdma_alloc_ring(struct ib_device
*ibdev
,
212 size_t ib_queue_size
, size_t capsule_size
,
213 enum dma_data_direction dir
)
215 struct nvme_rdma_qe
*ring
;
218 ring
= kcalloc(ib_queue_size
, sizeof(struct nvme_rdma_qe
), GFP_KERNEL
);
223 * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
224 * lifetime. It's safe, since any chage in the underlying RDMA device
225 * will issue error recovery and queue re-creation.
227 for (i
= 0; i
< ib_queue_size
; i
++) {
228 if (nvme_rdma_alloc_qe(ibdev
, &ring
[i
], capsule_size
, dir
))
235 nvme_rdma_free_ring(ibdev
, ring
, i
, capsule_size
, dir
);
239 static void nvme_rdma_qp_event(struct ib_event
*event
, void *context
)
241 pr_debug("QP event %s (%d)\n",
242 ib_event_msg(event
->event
), event
->event
);
246 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue
*queue
)
250 ret
= wait_for_completion_interruptible(&queue
->cm_done
);
253 WARN_ON_ONCE(queue
->cm_error
> 0);
254 return queue
->cm_error
;
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue
*queue
, const int factor
)
259 struct nvme_rdma_device
*dev
= queue
->device
;
260 struct ib_qp_init_attr init_attr
;
263 memset(&init_attr
, 0, sizeof(init_attr
));
264 init_attr
.event_handler
= nvme_rdma_qp_event
;
266 init_attr
.cap
.max_send_wr
= factor
* queue
->queue_size
+ 1;
268 init_attr
.cap
.max_recv_wr
= queue
->queue_size
+ 1;
269 init_attr
.cap
.max_recv_sge
= 1;
270 init_attr
.cap
.max_send_sge
= 1 + dev
->num_inline_segments
;
271 init_attr
.sq_sig_type
= IB_SIGNAL_REQ_WR
;
272 init_attr
.qp_type
= IB_QPT_RC
;
273 init_attr
.send_cq
= queue
->ib_cq
;
274 init_attr
.recv_cq
= queue
->ib_cq
;
275 if (queue
->pi_support
)
276 init_attr
.create_flags
|= IB_QP_CREATE_INTEGRITY_EN
;
277 init_attr
.qp_context
= queue
;
279 ret
= rdma_create_qp(queue
->cm_id
, dev
->pd
, &init_attr
);
281 queue
->qp
= queue
->cm_id
->qp
;
285 static void nvme_rdma_exit_request(struct blk_mq_tag_set
*set
,
286 struct request
*rq
, unsigned int hctx_idx
)
288 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
290 kfree(req
->sqe
.data
);
293 static int nvme_rdma_init_request(struct blk_mq_tag_set
*set
,
294 struct request
*rq
, unsigned int hctx_idx
,
295 unsigned int numa_node
)
297 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(set
->driver_data
);
298 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
299 int queue_idx
= (set
== &ctrl
->tag_set
) ? hctx_idx
+ 1 : 0;
300 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[queue_idx
];
302 nvme_req(rq
)->ctrl
= &ctrl
->ctrl
;
303 req
->sqe
.data
= kzalloc(sizeof(struct nvme_command
), GFP_KERNEL
);
307 /* metadata nvme_rdma_sgl struct is located after command's data SGL */
308 if (queue
->pi_support
)
309 req
->metadata_sgl
= (void *)nvme_req(rq
) +
310 sizeof(struct nvme_rdma_request
) +
311 NVME_RDMA_DATA_SGL_SIZE
;
314 nvme_req(rq
)->cmd
= req
->sqe
.data
;
319 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
320 unsigned int hctx_idx
)
322 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(data
);
323 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[hctx_idx
+ 1];
325 BUG_ON(hctx_idx
>= ctrl
->ctrl
.queue_count
);
327 hctx
->driver_data
= queue
;
331 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
332 unsigned int hctx_idx
)
334 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(data
);
335 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[0];
337 BUG_ON(hctx_idx
!= 0);
339 hctx
->driver_data
= queue
;
343 static void nvme_rdma_free_dev(struct kref
*ref
)
345 struct nvme_rdma_device
*ndev
=
346 container_of(ref
, struct nvme_rdma_device
, ref
);
348 mutex_lock(&device_list_mutex
);
349 list_del(&ndev
->entry
);
350 mutex_unlock(&device_list_mutex
);
352 ib_dealloc_pd(ndev
->pd
);
356 static void nvme_rdma_dev_put(struct nvme_rdma_device
*dev
)
358 kref_put(&dev
->ref
, nvme_rdma_free_dev
);
361 static int nvme_rdma_dev_get(struct nvme_rdma_device
*dev
)
363 return kref_get_unless_zero(&dev
->ref
);
366 static struct nvme_rdma_device
*
367 nvme_rdma_find_get_device(struct rdma_cm_id
*cm_id
)
369 struct nvme_rdma_device
*ndev
;
371 mutex_lock(&device_list_mutex
);
372 list_for_each_entry(ndev
, &device_list
, entry
) {
373 if (ndev
->dev
->node_guid
== cm_id
->device
->node_guid
&&
374 nvme_rdma_dev_get(ndev
))
378 ndev
= kzalloc(sizeof(*ndev
), GFP_KERNEL
);
382 ndev
->dev
= cm_id
->device
;
383 kref_init(&ndev
->ref
);
385 ndev
->pd
= ib_alloc_pd(ndev
->dev
,
386 register_always
? 0 : IB_PD_UNSAFE_GLOBAL_RKEY
);
387 if (IS_ERR(ndev
->pd
))
390 if (!(ndev
->dev
->attrs
.device_cap_flags
&
391 IB_DEVICE_MEM_MGT_EXTENSIONS
)) {
392 dev_err(&ndev
->dev
->dev
,
393 "Memory registrations not supported.\n");
397 ndev
->num_inline_segments
= min(NVME_RDMA_MAX_INLINE_SEGMENTS
,
398 ndev
->dev
->attrs
.max_send_sge
- 1);
399 list_add(&ndev
->entry
, &device_list
);
401 mutex_unlock(&device_list_mutex
);
405 ib_dealloc_pd(ndev
->pd
);
409 mutex_unlock(&device_list_mutex
);
413 static void nvme_rdma_free_cq(struct nvme_rdma_queue
*queue
)
415 if (nvme_rdma_poll_queue(queue
))
416 ib_free_cq(queue
->ib_cq
);
418 ib_cq_pool_put(queue
->ib_cq
, queue
->cq_size
);
421 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue
*queue
)
423 struct nvme_rdma_device
*dev
;
424 struct ib_device
*ibdev
;
426 if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY
, &queue
->flags
))
432 if (queue
->pi_support
)
433 ib_mr_pool_destroy(queue
->qp
, &queue
->qp
->sig_mrs
);
434 ib_mr_pool_destroy(queue
->qp
, &queue
->qp
->rdma_mrs
);
437 * The cm_id object might have been destroyed during RDMA connection
438 * establishment error flow to avoid getting other cma events, thus
439 * the destruction of the QP shouldn't use rdma_cm API.
441 ib_destroy_qp(queue
->qp
);
442 nvme_rdma_free_cq(queue
);
444 nvme_rdma_free_ring(ibdev
, queue
->rsp_ring
, queue
->queue_size
,
445 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
447 nvme_rdma_dev_put(dev
);
450 static int nvme_rdma_get_max_fr_pages(struct ib_device
*ibdev
, bool pi_support
)
452 u32 max_page_list_len
;
455 max_page_list_len
= ibdev
->attrs
.max_pi_fast_reg_page_list_len
;
457 max_page_list_len
= ibdev
->attrs
.max_fast_reg_page_list_len
;
459 return min_t(u32
, NVME_RDMA_MAX_SEGMENTS
, max_page_list_len
- 1);
462 static int nvme_rdma_create_cq(struct ib_device
*ibdev
,
463 struct nvme_rdma_queue
*queue
)
465 int ret
, comp_vector
, idx
= nvme_rdma_queue_idx(queue
);
468 * Spread I/O queues completion vectors according their queue index.
469 * Admin queues can always go on completion vector 0.
471 comp_vector
= (idx
== 0 ? idx
: idx
- 1) % ibdev
->num_comp_vectors
;
473 /* Polling queues need direct cq polling context */
474 if (nvme_rdma_poll_queue(queue
))
475 queue
->ib_cq
= ib_alloc_cq(ibdev
, queue
, queue
->cq_size
,
476 comp_vector
, IB_POLL_DIRECT
);
478 queue
->ib_cq
= ib_cq_pool_get(ibdev
, queue
->cq_size
,
479 comp_vector
, IB_POLL_SOFTIRQ
);
481 if (IS_ERR(queue
->ib_cq
)) {
482 ret
= PTR_ERR(queue
->ib_cq
);
489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue
*queue
)
491 struct ib_device
*ibdev
;
492 const int send_wr_factor
= 3; /* MR, SEND, INV */
493 const int cq_factor
= send_wr_factor
+ 1; /* + RECV */
494 int ret
, pages_per_mr
;
496 queue
->device
= nvme_rdma_find_get_device(queue
->cm_id
);
497 if (!queue
->device
) {
498 dev_err(queue
->cm_id
->device
->dev
.parent
,
499 "no client data found!\n");
500 return -ECONNREFUSED
;
502 ibdev
= queue
->device
->dev
;
504 /* +1 for ib_drain_qp */
505 queue
->cq_size
= cq_factor
* queue
->queue_size
+ 1;
507 ret
= nvme_rdma_create_cq(ibdev
, queue
);
511 ret
= nvme_rdma_create_qp(queue
, send_wr_factor
);
513 goto out_destroy_ib_cq
;
515 queue
->rsp_ring
= nvme_rdma_alloc_ring(ibdev
, queue
->queue_size
,
516 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
517 if (!queue
->rsp_ring
) {
523 * Currently we don't use SG_GAPS MR's so if the first entry is
524 * misaligned we'll end up using two entries for a single data page,
525 * so one additional entry is required.
527 pages_per_mr
= nvme_rdma_get_max_fr_pages(ibdev
, queue
->pi_support
) + 1;
528 ret
= ib_mr_pool_init(queue
->qp
, &queue
->qp
->rdma_mrs
,
533 dev_err(queue
->ctrl
->ctrl
.device
,
534 "failed to initialize MR pool sized %d for QID %d\n",
535 queue
->queue_size
, nvme_rdma_queue_idx(queue
));
536 goto out_destroy_ring
;
539 if (queue
->pi_support
) {
540 ret
= ib_mr_pool_init(queue
->qp
, &queue
->qp
->sig_mrs
,
541 queue
->queue_size
, IB_MR_TYPE_INTEGRITY
,
542 pages_per_mr
, pages_per_mr
);
544 dev_err(queue
->ctrl
->ctrl
.device
,
545 "failed to initialize PI MR pool sized %d for QID %d\n",
546 queue
->queue_size
, nvme_rdma_queue_idx(queue
));
547 goto out_destroy_mr_pool
;
551 set_bit(NVME_RDMA_Q_TR_READY
, &queue
->flags
);
556 ib_mr_pool_destroy(queue
->qp
, &queue
->qp
->rdma_mrs
);
558 nvme_rdma_free_ring(ibdev
, queue
->rsp_ring
, queue
->queue_size
,
559 sizeof(struct nvme_completion
), DMA_FROM_DEVICE
);
561 rdma_destroy_qp(queue
->cm_id
);
563 nvme_rdma_free_cq(queue
);
565 nvme_rdma_dev_put(queue
->device
);
569 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl
*ctrl
,
570 int idx
, size_t queue_size
)
572 struct nvme_rdma_queue
*queue
;
573 struct sockaddr
*src_addr
= NULL
;
576 queue
= &ctrl
->queues
[idx
];
577 mutex_init(&queue
->queue_lock
);
579 if (idx
&& ctrl
->ctrl
.max_integrity_segments
)
580 queue
->pi_support
= true;
582 queue
->pi_support
= false;
583 init_completion(&queue
->cm_done
);
586 queue
->cmnd_capsule_len
= ctrl
->ctrl
.ioccsz
* 16;
588 queue
->cmnd_capsule_len
= sizeof(struct nvme_command
);
590 queue
->queue_size
= queue_size
;
592 queue
->cm_id
= rdma_create_id(&init_net
, nvme_rdma_cm_handler
, queue
,
593 RDMA_PS_TCP
, IB_QPT_RC
);
594 if (IS_ERR(queue
->cm_id
)) {
595 dev_info(ctrl
->ctrl
.device
,
596 "failed to create CM ID: %ld\n", PTR_ERR(queue
->cm_id
));
597 ret
= PTR_ERR(queue
->cm_id
);
598 goto out_destroy_mutex
;
601 if (ctrl
->ctrl
.opts
->mask
& NVMF_OPT_HOST_TRADDR
)
602 src_addr
= (struct sockaddr
*)&ctrl
->src_addr
;
604 queue
->cm_error
= -ETIMEDOUT
;
605 ret
= rdma_resolve_addr(queue
->cm_id
, src_addr
,
606 (struct sockaddr
*)&ctrl
->addr
,
607 NVME_RDMA_CM_TIMEOUT_MS
);
609 dev_info(ctrl
->ctrl
.device
,
610 "rdma_resolve_addr failed (%d).\n", ret
);
611 goto out_destroy_cm_id
;
614 ret
= nvme_rdma_wait_for_cm(queue
);
616 dev_info(ctrl
->ctrl
.device
,
617 "rdma connection establishment failed (%d)\n", ret
);
618 goto out_destroy_cm_id
;
621 set_bit(NVME_RDMA_Q_ALLOCATED
, &queue
->flags
);
626 rdma_destroy_id(queue
->cm_id
);
627 nvme_rdma_destroy_queue_ib(queue
);
629 mutex_destroy(&queue
->queue_lock
);
633 static void __nvme_rdma_stop_queue(struct nvme_rdma_queue
*queue
)
635 rdma_disconnect(queue
->cm_id
);
636 ib_drain_qp(queue
->qp
);
639 static void nvme_rdma_stop_queue(struct nvme_rdma_queue
*queue
)
641 if (!test_bit(NVME_RDMA_Q_ALLOCATED
, &queue
->flags
))
644 mutex_lock(&queue
->queue_lock
);
645 if (test_and_clear_bit(NVME_RDMA_Q_LIVE
, &queue
->flags
))
646 __nvme_rdma_stop_queue(queue
);
647 mutex_unlock(&queue
->queue_lock
);
650 static void nvme_rdma_free_queue(struct nvme_rdma_queue
*queue
)
652 if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED
, &queue
->flags
))
655 rdma_destroy_id(queue
->cm_id
);
656 nvme_rdma_destroy_queue_ib(queue
);
657 mutex_destroy(&queue
->queue_lock
);
660 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl
*ctrl
)
664 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
665 nvme_rdma_free_queue(&ctrl
->queues
[i
]);
668 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl
*ctrl
)
672 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++)
673 nvme_rdma_stop_queue(&ctrl
->queues
[i
]);
676 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl
*ctrl
, int idx
)
678 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[idx
];
682 ret
= nvmf_connect_io_queue(&ctrl
->ctrl
, idx
);
684 ret
= nvmf_connect_admin_queue(&ctrl
->ctrl
);
687 set_bit(NVME_RDMA_Q_LIVE
, &queue
->flags
);
689 if (test_bit(NVME_RDMA_Q_ALLOCATED
, &queue
->flags
))
690 __nvme_rdma_stop_queue(queue
);
691 dev_info(ctrl
->ctrl
.device
,
692 "failed to connect queue: %d ret=%d\n", idx
, ret
);
697 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl
*ctrl
,
702 for (i
= first
; i
< last
; i
++) {
703 ret
= nvme_rdma_start_queue(ctrl
, i
);
705 goto out_stop_queues
;
711 for (i
--; i
>= first
; i
--)
712 nvme_rdma_stop_queue(&ctrl
->queues
[i
]);
716 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl
*ctrl
)
718 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
719 unsigned int nr_io_queues
;
722 nr_io_queues
= nvmf_nr_io_queues(opts
);
723 ret
= nvme_set_queue_count(&ctrl
->ctrl
, &nr_io_queues
);
727 if (nr_io_queues
== 0) {
728 dev_err(ctrl
->ctrl
.device
,
729 "unable to set any I/O queues\n");
733 ctrl
->ctrl
.queue_count
= nr_io_queues
+ 1;
734 dev_info(ctrl
->ctrl
.device
,
735 "creating %d I/O queues.\n", nr_io_queues
);
737 nvmf_set_io_queues(opts
, nr_io_queues
, ctrl
->io_queues
);
738 for (i
= 1; i
< ctrl
->ctrl
.queue_count
; i
++) {
739 ret
= nvme_rdma_alloc_queue(ctrl
, i
,
740 ctrl
->ctrl
.sqsize
+ 1);
742 goto out_free_queues
;
748 for (i
--; i
>= 1; i
--)
749 nvme_rdma_free_queue(&ctrl
->queues
[i
]);
754 static int nvme_rdma_alloc_tag_set(struct nvme_ctrl
*ctrl
)
756 unsigned int cmd_size
= sizeof(struct nvme_rdma_request
) +
757 NVME_RDMA_DATA_SGL_SIZE
;
759 if (ctrl
->max_integrity_segments
)
760 cmd_size
+= sizeof(struct nvme_rdma_sgl
) +
761 NVME_RDMA_METADATA_SGL_SIZE
;
763 return nvme_alloc_io_tag_set(ctrl
, &to_rdma_ctrl(ctrl
)->tag_set
,
765 ctrl
->opts
->nr_poll_queues
? HCTX_MAX_TYPES
: 2,
769 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl
*ctrl
)
771 if (ctrl
->async_event_sqe
.data
) {
772 cancel_work_sync(&ctrl
->ctrl
.async_event_work
);
773 nvme_rdma_free_qe(ctrl
->device
->dev
, &ctrl
->async_event_sqe
,
774 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
775 ctrl
->async_event_sqe
.data
= NULL
;
777 nvme_rdma_free_queue(&ctrl
->queues
[0]);
780 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl
*ctrl
,
783 bool pi_capable
= false;
786 error
= nvme_rdma_alloc_queue(ctrl
, 0, NVME_AQ_DEPTH
);
790 ctrl
->device
= ctrl
->queues
[0].device
;
791 ctrl
->ctrl
.numa_node
= ibdev_to_node(ctrl
->device
->dev
);
794 if (ctrl
->device
->dev
->attrs
.kernel_cap_flags
&
795 IBK_INTEGRITY_HANDOVER
)
798 ctrl
->max_fr_pages
= nvme_rdma_get_max_fr_pages(ctrl
->device
->dev
,
802 * Bind the async event SQE DMA mapping to the admin queue lifetime.
803 * It's safe, since any chage in the underlying RDMA device will issue
804 * error recovery and queue re-creation.
806 error
= nvme_rdma_alloc_qe(ctrl
->device
->dev
, &ctrl
->async_event_sqe
,
807 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
812 error
= nvme_alloc_admin_tag_set(&ctrl
->ctrl
,
813 &ctrl
->admin_tag_set
, &nvme_rdma_admin_mq_ops
,
814 sizeof(struct nvme_rdma_request
) +
815 NVME_RDMA_DATA_SGL_SIZE
);
817 goto out_free_async_qe
;
821 error
= nvme_rdma_start_queue(ctrl
, 0);
823 goto out_remove_admin_tag_set
;
825 error
= nvme_enable_ctrl(&ctrl
->ctrl
);
829 ctrl
->ctrl
.max_segments
= ctrl
->max_fr_pages
;
830 ctrl
->ctrl
.max_hw_sectors
= ctrl
->max_fr_pages
<< (ilog2(SZ_4K
) - 9);
832 ctrl
->ctrl
.max_integrity_segments
= ctrl
->max_fr_pages
;
834 ctrl
->ctrl
.max_integrity_segments
= 0;
836 nvme_unquiesce_admin_queue(&ctrl
->ctrl
);
838 error
= nvme_init_ctrl_finish(&ctrl
->ctrl
, false);
840 goto out_quiesce_queue
;
845 nvme_quiesce_admin_queue(&ctrl
->ctrl
);
846 blk_sync_queue(ctrl
->ctrl
.admin_q
);
848 nvme_rdma_stop_queue(&ctrl
->queues
[0]);
849 nvme_cancel_admin_tagset(&ctrl
->ctrl
);
850 out_remove_admin_tag_set
:
852 nvme_remove_admin_tag_set(&ctrl
->ctrl
);
854 if (ctrl
->async_event_sqe
.data
) {
855 nvme_rdma_free_qe(ctrl
->device
->dev
, &ctrl
->async_event_sqe
,
856 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
857 ctrl
->async_event_sqe
.data
= NULL
;
860 nvme_rdma_free_queue(&ctrl
->queues
[0]);
864 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl
*ctrl
, bool new)
868 ret
= nvme_rdma_alloc_io_queues(ctrl
);
873 ret
= nvme_rdma_alloc_tag_set(&ctrl
->ctrl
);
875 goto out_free_io_queues
;
879 * Only start IO queues for which we have allocated the tagset
880 * and limitted it to the available queues. On reconnects, the
881 * queue number might have changed.
883 nr_queues
= min(ctrl
->tag_set
.nr_hw_queues
+ 1, ctrl
->ctrl
.queue_count
);
884 ret
= nvme_rdma_start_io_queues(ctrl
, 1, nr_queues
);
886 goto out_cleanup_tagset
;
889 nvme_start_freeze(&ctrl
->ctrl
);
890 nvme_unquiesce_io_queues(&ctrl
->ctrl
);
891 if (!nvme_wait_freeze_timeout(&ctrl
->ctrl
, NVME_IO_TIMEOUT
)) {
893 * If we timed out waiting for freeze we are likely to
894 * be stuck. Fail the controller initialization just
898 nvme_unfreeze(&ctrl
->ctrl
);
899 goto out_wait_freeze_timed_out
;
901 blk_mq_update_nr_hw_queues(ctrl
->ctrl
.tagset
,
902 ctrl
->ctrl
.queue_count
- 1);
903 nvme_unfreeze(&ctrl
->ctrl
);
907 * If the number of queues has increased (reconnect case)
908 * start all new queues now.
910 ret
= nvme_rdma_start_io_queues(ctrl
, nr_queues
,
911 ctrl
->tag_set
.nr_hw_queues
+ 1);
913 goto out_wait_freeze_timed_out
;
917 out_wait_freeze_timed_out
:
918 nvme_quiesce_io_queues(&ctrl
->ctrl
);
919 nvme_sync_io_queues(&ctrl
->ctrl
);
920 nvme_rdma_stop_io_queues(ctrl
);
922 nvme_cancel_tagset(&ctrl
->ctrl
);
924 nvme_remove_io_tag_set(&ctrl
->ctrl
);
926 nvme_rdma_free_io_queues(ctrl
);
930 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl
*ctrl
,
933 nvme_quiesce_admin_queue(&ctrl
->ctrl
);
934 blk_sync_queue(ctrl
->ctrl
.admin_q
);
935 nvme_rdma_stop_queue(&ctrl
->queues
[0]);
936 nvme_cancel_admin_tagset(&ctrl
->ctrl
);
938 nvme_unquiesce_admin_queue(&ctrl
->ctrl
);
939 nvme_remove_admin_tag_set(&ctrl
->ctrl
);
941 nvme_rdma_destroy_admin_queue(ctrl
);
944 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl
*ctrl
,
947 if (ctrl
->ctrl
.queue_count
> 1) {
948 nvme_quiesce_io_queues(&ctrl
->ctrl
);
949 nvme_sync_io_queues(&ctrl
->ctrl
);
950 nvme_rdma_stop_io_queues(ctrl
);
951 nvme_cancel_tagset(&ctrl
->ctrl
);
953 nvme_unquiesce_io_queues(&ctrl
->ctrl
);
954 nvme_remove_io_tag_set(&ctrl
->ctrl
);
956 nvme_rdma_free_io_queues(ctrl
);
960 static void nvme_rdma_stop_ctrl(struct nvme_ctrl
*nctrl
)
962 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
964 flush_work(&ctrl
->err_work
);
965 cancel_delayed_work_sync(&ctrl
->reconnect_work
);
968 static void nvme_rdma_free_ctrl(struct nvme_ctrl
*nctrl
)
970 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(nctrl
);
972 if (list_empty(&ctrl
->list
))
975 mutex_lock(&nvme_rdma_ctrl_mutex
);
976 list_del(&ctrl
->list
);
977 mutex_unlock(&nvme_rdma_ctrl_mutex
);
979 nvmf_free_options(nctrl
->opts
);
985 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl
*ctrl
,
988 enum nvme_ctrl_state state
= nvme_ctrl_state(&ctrl
->ctrl
);
990 /* If we are resetting/deleting then do nothing */
991 if (state
!= NVME_CTRL_CONNECTING
) {
992 WARN_ON_ONCE(state
== NVME_CTRL_NEW
|| state
== NVME_CTRL_LIVE
);
996 if (nvmf_should_reconnect(&ctrl
->ctrl
, status
)) {
997 dev_info(ctrl
->ctrl
.device
, "Reconnecting in %d seconds...\n",
998 ctrl
->ctrl
.opts
->reconnect_delay
);
999 queue_delayed_work(nvme_wq
, &ctrl
->reconnect_work
,
1000 ctrl
->ctrl
.opts
->reconnect_delay
* HZ
);
1002 nvme_delete_ctrl(&ctrl
->ctrl
);
1006 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl
*ctrl
, bool new)
1012 ret
= nvme_rdma_configure_admin_queue(ctrl
, new);
1016 if (ctrl
->ctrl
.icdoff
) {
1018 dev_err(ctrl
->ctrl
.device
, "icdoff is not supported!\n");
1022 if (!(ctrl
->ctrl
.sgls
& NVME_CTRL_SGLS_KSDBDS
)) {
1024 dev_err(ctrl
->ctrl
.device
,
1025 "Mandatory keyed sgls are not supported!\n");
1029 if (ctrl
->ctrl
.opts
->queue_size
> ctrl
->ctrl
.sqsize
+ 1) {
1030 dev_warn(ctrl
->ctrl
.device
,
1031 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1032 ctrl
->ctrl
.opts
->queue_size
, ctrl
->ctrl
.sqsize
+ 1);
1035 if (ctrl
->ctrl
.max_integrity_segments
)
1036 max_queue_size
= NVME_RDMA_MAX_METADATA_QUEUE_SIZE
;
1038 max_queue_size
= NVME_RDMA_MAX_QUEUE_SIZE
;
1040 if (ctrl
->ctrl
.sqsize
+ 1 > max_queue_size
) {
1041 dev_warn(ctrl
->ctrl
.device
,
1042 "ctrl sqsize %u > max queue size %u, clamping down\n",
1043 ctrl
->ctrl
.sqsize
+ 1, max_queue_size
);
1044 ctrl
->ctrl
.sqsize
= max_queue_size
- 1;
1047 if (ctrl
->ctrl
.sqsize
+ 1 > ctrl
->ctrl
.maxcmd
) {
1048 dev_warn(ctrl
->ctrl
.device
,
1049 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1050 ctrl
->ctrl
.sqsize
+ 1, ctrl
->ctrl
.maxcmd
);
1051 ctrl
->ctrl
.sqsize
= ctrl
->ctrl
.maxcmd
- 1;
1054 if (ctrl
->ctrl
.sgls
& NVME_CTRL_SGLS_SAOS
)
1055 ctrl
->use_inline_data
= true;
1057 if (ctrl
->ctrl
.queue_count
> 1) {
1058 ret
= nvme_rdma_configure_io_queues(ctrl
, new);
1063 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_LIVE
);
1066 * state change failure is ok if we started ctrl delete,
1067 * unless we're during creation of a new controller to
1068 * avoid races with teardown flow.
1070 enum nvme_ctrl_state state
= nvme_ctrl_state(&ctrl
->ctrl
);
1072 WARN_ON_ONCE(state
!= NVME_CTRL_DELETING
&&
1073 state
!= NVME_CTRL_DELETING_NOIO
);
1079 nvme_start_ctrl(&ctrl
->ctrl
);
1083 if (ctrl
->ctrl
.queue_count
> 1) {
1084 nvme_quiesce_io_queues(&ctrl
->ctrl
);
1085 nvme_sync_io_queues(&ctrl
->ctrl
);
1086 nvme_rdma_stop_io_queues(ctrl
);
1087 nvme_cancel_tagset(&ctrl
->ctrl
);
1089 nvme_remove_io_tag_set(&ctrl
->ctrl
);
1090 nvme_rdma_free_io_queues(ctrl
);
1093 nvme_stop_keep_alive(&ctrl
->ctrl
);
1094 nvme_quiesce_admin_queue(&ctrl
->ctrl
);
1095 blk_sync_queue(ctrl
->ctrl
.admin_q
);
1096 nvme_rdma_stop_queue(&ctrl
->queues
[0]);
1097 nvme_cancel_admin_tagset(&ctrl
->ctrl
);
1099 nvme_remove_admin_tag_set(&ctrl
->ctrl
);
1100 nvme_rdma_destroy_admin_queue(ctrl
);
1104 static void nvme_rdma_reconnect_ctrl_work(struct work_struct
*work
)
1106 struct nvme_rdma_ctrl
*ctrl
= container_of(to_delayed_work(work
),
1107 struct nvme_rdma_ctrl
, reconnect_work
);
1110 ++ctrl
->ctrl
.nr_reconnects
;
1112 ret
= nvme_rdma_setup_ctrl(ctrl
, false);
1116 dev_info(ctrl
->ctrl
.device
, "Successfully reconnected (%d attempts)\n",
1117 ctrl
->ctrl
.nr_reconnects
);
1119 ctrl
->ctrl
.nr_reconnects
= 0;
1124 dev_info(ctrl
->ctrl
.device
, "Failed reconnect attempt %d/%d\n",
1125 ctrl
->ctrl
.nr_reconnects
, ctrl
->ctrl
.opts
->max_reconnects
);
1126 nvme_rdma_reconnect_or_remove(ctrl
, ret
);
1129 static void nvme_rdma_error_recovery_work(struct work_struct
*work
)
1131 struct nvme_rdma_ctrl
*ctrl
= container_of(work
,
1132 struct nvme_rdma_ctrl
, err_work
);
1134 nvme_stop_keep_alive(&ctrl
->ctrl
);
1135 flush_work(&ctrl
->ctrl
.async_event_work
);
1136 nvme_rdma_teardown_io_queues(ctrl
, false);
1137 nvme_unquiesce_io_queues(&ctrl
->ctrl
);
1138 nvme_rdma_teardown_admin_queue(ctrl
, false);
1139 nvme_unquiesce_admin_queue(&ctrl
->ctrl
);
1140 nvme_auth_stop(&ctrl
->ctrl
);
1142 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
)) {
1143 /* state change failure is ok if we started ctrl delete */
1144 enum nvme_ctrl_state state
= nvme_ctrl_state(&ctrl
->ctrl
);
1146 WARN_ON_ONCE(state
!= NVME_CTRL_DELETING
&&
1147 state
!= NVME_CTRL_DELETING_NOIO
);
1151 nvme_rdma_reconnect_or_remove(ctrl
, 0);
1154 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl
*ctrl
)
1156 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_RESETTING
))
1159 dev_warn(ctrl
->ctrl
.device
, "starting error recovery\n");
1160 queue_work(nvme_reset_wq
, &ctrl
->err_work
);
1163 static void nvme_rdma_end_request(struct nvme_rdma_request
*req
)
1165 struct request
*rq
= blk_mq_rq_from_pdu(req
);
1167 if (!refcount_dec_and_test(&req
->ref
))
1169 if (!nvme_try_complete_req(rq
, req
->status
, req
->result
))
1170 nvme_rdma_complete_rq(rq
);
1173 static void nvme_rdma_wr_error(struct ib_cq
*cq
, struct ib_wc
*wc
,
1176 struct nvme_rdma_queue
*queue
= wc
->qp
->qp_context
;
1177 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
1179 if (nvme_ctrl_state(&ctrl
->ctrl
) == NVME_CTRL_LIVE
)
1180 dev_info(ctrl
->ctrl
.device
,
1181 "%s for CQE 0x%p failed with status %s (%d)\n",
1183 ib_wc_status_msg(wc
->status
), wc
->status
);
1184 nvme_rdma_error_recovery(ctrl
);
1187 static void nvme_rdma_memreg_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1189 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1190 nvme_rdma_wr_error(cq
, wc
, "MEMREG");
1193 static void nvme_rdma_inv_rkey_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1195 struct nvme_rdma_request
*req
=
1196 container_of(wc
->wr_cqe
, struct nvme_rdma_request
, reg_cqe
);
1198 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1199 nvme_rdma_wr_error(cq
, wc
, "LOCAL_INV");
1201 nvme_rdma_end_request(req
);
1204 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue
*queue
,
1205 struct nvme_rdma_request
*req
)
1207 struct ib_send_wr wr
= {
1208 .opcode
= IB_WR_LOCAL_INV
,
1211 .send_flags
= IB_SEND_SIGNALED
,
1212 .ex
.invalidate_rkey
= req
->mr
->rkey
,
1215 req
->reg_cqe
.done
= nvme_rdma_inv_rkey_done
;
1216 wr
.wr_cqe
= &req
->reg_cqe
;
1218 return ib_post_send(queue
->qp
, &wr
, NULL
);
1221 static void nvme_rdma_dma_unmap_req(struct ib_device
*ibdev
, struct request
*rq
)
1223 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1225 if (blk_integrity_rq(rq
)) {
1226 ib_dma_unmap_sg(ibdev
, req
->metadata_sgl
->sg_table
.sgl
,
1227 req
->metadata_sgl
->nents
, rq_dma_dir(rq
));
1228 sg_free_table_chained(&req
->metadata_sgl
->sg_table
,
1229 NVME_INLINE_METADATA_SG_CNT
);
1232 ib_dma_unmap_sg(ibdev
, req
->data_sgl
.sg_table
.sgl
, req
->data_sgl
.nents
,
1234 sg_free_table_chained(&req
->data_sgl
.sg_table
, NVME_INLINE_SG_CNT
);
1237 static void nvme_rdma_unmap_data(struct nvme_rdma_queue
*queue
,
1240 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1241 struct nvme_rdma_device
*dev
= queue
->device
;
1242 struct ib_device
*ibdev
= dev
->dev
;
1243 struct list_head
*pool
= &queue
->qp
->rdma_mrs
;
1245 if (!blk_rq_nr_phys_segments(rq
))
1248 if (req
->use_sig_mr
)
1249 pool
= &queue
->qp
->sig_mrs
;
1252 ib_mr_pool_put(queue
->qp
, pool
, req
->mr
);
1256 nvme_rdma_dma_unmap_req(ibdev
, rq
);
1259 static int nvme_rdma_set_sg_null(struct nvme_command
*c
)
1261 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1264 put_unaligned_le24(0, sg
->length
);
1265 put_unaligned_le32(0, sg
->key
);
1266 sg
->type
= NVME_KEY_SGL_FMT_DATA_DESC
<< 4;
1270 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue
*queue
,
1271 struct nvme_rdma_request
*req
, struct nvme_command
*c
,
1274 struct nvme_sgl_desc
*sg
= &c
->common
.dptr
.sgl
;
1275 struct ib_sge
*sge
= &req
->sge
[1];
1276 struct scatterlist
*sgl
;
1280 for_each_sg(req
->data_sgl
.sg_table
.sgl
, sgl
, count
, i
) {
1281 sge
->addr
= sg_dma_address(sgl
);
1282 sge
->length
= sg_dma_len(sgl
);
1283 sge
->lkey
= queue
->device
->pd
->local_dma_lkey
;
1288 sg
->addr
= cpu_to_le64(queue
->ctrl
->ctrl
.icdoff
);
1289 sg
->length
= cpu_to_le32(len
);
1290 sg
->type
= (NVME_SGL_FMT_DATA_DESC
<< 4) | NVME_SGL_FMT_OFFSET
;
1292 req
->num_sge
+= count
;
1296 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue
*queue
,
1297 struct nvme_rdma_request
*req
, struct nvme_command
*c
)
1299 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1301 sg
->addr
= cpu_to_le64(sg_dma_address(req
->data_sgl
.sg_table
.sgl
));
1302 put_unaligned_le24(sg_dma_len(req
->data_sgl
.sg_table
.sgl
), sg
->length
);
1303 put_unaligned_le32(queue
->device
->pd
->unsafe_global_rkey
, sg
->key
);
1304 sg
->type
= NVME_KEY_SGL_FMT_DATA_DESC
<< 4;
1308 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue
*queue
,
1309 struct nvme_rdma_request
*req
, struct nvme_command
*c
,
1312 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1315 req
->mr
= ib_mr_pool_get(queue
->qp
, &queue
->qp
->rdma_mrs
);
1316 if (WARN_ON_ONCE(!req
->mr
))
1320 * Align the MR to a 4K page size to match the ctrl page size and
1321 * the block virtual boundary.
1323 nr
= ib_map_mr_sg(req
->mr
, req
->data_sgl
.sg_table
.sgl
, count
, NULL
,
1325 if (unlikely(nr
< count
)) {
1326 ib_mr_pool_put(queue
->qp
, &queue
->qp
->rdma_mrs
, req
->mr
);
1333 ib_update_fast_reg_key(req
->mr
, ib_inc_rkey(req
->mr
->rkey
));
1335 req
->reg_cqe
.done
= nvme_rdma_memreg_done
;
1336 memset(&req
->reg_wr
, 0, sizeof(req
->reg_wr
));
1337 req
->reg_wr
.wr
.opcode
= IB_WR_REG_MR
;
1338 req
->reg_wr
.wr
.wr_cqe
= &req
->reg_cqe
;
1339 req
->reg_wr
.wr
.num_sge
= 0;
1340 req
->reg_wr
.mr
= req
->mr
;
1341 req
->reg_wr
.key
= req
->mr
->rkey
;
1342 req
->reg_wr
.access
= IB_ACCESS_LOCAL_WRITE
|
1343 IB_ACCESS_REMOTE_READ
|
1344 IB_ACCESS_REMOTE_WRITE
;
1346 sg
->addr
= cpu_to_le64(req
->mr
->iova
);
1347 put_unaligned_le24(req
->mr
->length
, sg
->length
);
1348 put_unaligned_le32(req
->mr
->rkey
, sg
->key
);
1349 sg
->type
= (NVME_KEY_SGL_FMT_DATA_DESC
<< 4) |
1350 NVME_SGL_FMT_INVALIDATE
;
1355 static void nvme_rdma_set_sig_domain(struct blk_integrity
*bi
,
1356 struct nvme_command
*cmd
, struct ib_sig_domain
*domain
,
1357 u16 control
, u8 pi_type
)
1359 domain
->sig_type
= IB_SIG_TYPE_T10_DIF
;
1360 domain
->sig
.dif
.bg_type
= IB_T10DIF_CRC
;
1361 domain
->sig
.dif
.pi_interval
= 1 << bi
->interval_exp
;
1362 domain
->sig
.dif
.ref_tag
= le32_to_cpu(cmd
->rw
.reftag
);
1363 if (control
& NVME_RW_PRINFO_PRCHK_REF
)
1364 domain
->sig
.dif
.ref_remap
= true;
1366 domain
->sig
.dif
.app_tag
= le16_to_cpu(cmd
->rw
.lbat
);
1367 domain
->sig
.dif
.apptag_check_mask
= le16_to_cpu(cmd
->rw
.lbatm
);
1368 domain
->sig
.dif
.app_escape
= true;
1369 if (pi_type
== NVME_NS_DPS_PI_TYPE3
)
1370 domain
->sig
.dif
.ref_escape
= true;
1373 static void nvme_rdma_set_sig_attrs(struct blk_integrity
*bi
,
1374 struct nvme_command
*cmd
, struct ib_sig_attrs
*sig_attrs
,
1377 u16 control
= le16_to_cpu(cmd
->rw
.control
);
1379 memset(sig_attrs
, 0, sizeof(*sig_attrs
));
1380 if (control
& NVME_RW_PRINFO_PRACT
) {
1381 /* for WRITE_INSERT/READ_STRIP no memory domain */
1382 sig_attrs
->mem
.sig_type
= IB_SIG_TYPE_NONE
;
1383 nvme_rdma_set_sig_domain(bi
, cmd
, &sig_attrs
->wire
, control
,
1385 /* Clear the PRACT bit since HCA will generate/verify the PI */
1386 control
&= ~NVME_RW_PRINFO_PRACT
;
1387 cmd
->rw
.control
= cpu_to_le16(control
);
1389 /* for WRITE_PASS/READ_PASS both wire/memory domains exist */
1390 nvme_rdma_set_sig_domain(bi
, cmd
, &sig_attrs
->wire
, control
,
1392 nvme_rdma_set_sig_domain(bi
, cmd
, &sig_attrs
->mem
, control
,
1397 static void nvme_rdma_set_prot_checks(struct nvme_command
*cmd
, u8
*mask
)
1400 if (le16_to_cpu(cmd
->rw
.control
) & NVME_RW_PRINFO_PRCHK_REF
)
1401 *mask
|= IB_SIG_CHECK_REFTAG
;
1402 if (le16_to_cpu(cmd
->rw
.control
) & NVME_RW_PRINFO_PRCHK_GUARD
)
1403 *mask
|= IB_SIG_CHECK_GUARD
;
1406 static void nvme_rdma_sig_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1408 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1409 nvme_rdma_wr_error(cq
, wc
, "SIG");
1412 static int nvme_rdma_map_sg_pi(struct nvme_rdma_queue
*queue
,
1413 struct nvme_rdma_request
*req
, struct nvme_command
*c
,
1414 int count
, int pi_count
)
1416 struct nvme_rdma_sgl
*sgl
= &req
->data_sgl
;
1417 struct ib_reg_wr
*wr
= &req
->reg_wr
;
1418 struct request
*rq
= blk_mq_rq_from_pdu(req
);
1419 struct nvme_ns
*ns
= rq
->q
->queuedata
;
1420 struct bio
*bio
= rq
->bio
;
1421 struct nvme_keyed_sgl_desc
*sg
= &c
->common
.dptr
.ksgl
;
1422 struct blk_integrity
*bi
= blk_get_integrity(bio
->bi_bdev
->bd_disk
);
1426 req
->mr
= ib_mr_pool_get(queue
->qp
, &queue
->qp
->sig_mrs
);
1427 if (WARN_ON_ONCE(!req
->mr
))
1430 nr
= ib_map_mr_sg_pi(req
->mr
, sgl
->sg_table
.sgl
, count
, NULL
,
1431 req
->metadata_sgl
->sg_table
.sgl
, pi_count
, NULL
,
1436 nvme_rdma_set_sig_attrs(bi
, c
, req
->mr
->sig_attrs
, ns
->head
->pi_type
);
1437 nvme_rdma_set_prot_checks(c
, &req
->mr
->sig_attrs
->check_mask
);
1439 ib_update_fast_reg_key(req
->mr
, ib_inc_rkey(req
->mr
->rkey
));
1441 req
->reg_cqe
.done
= nvme_rdma_sig_done
;
1442 memset(wr
, 0, sizeof(*wr
));
1443 wr
->wr
.opcode
= IB_WR_REG_MR_INTEGRITY
;
1444 wr
->wr
.wr_cqe
= &req
->reg_cqe
;
1446 wr
->wr
.send_flags
= 0;
1448 wr
->key
= req
->mr
->rkey
;
1449 wr
->access
= IB_ACCESS_LOCAL_WRITE
|
1450 IB_ACCESS_REMOTE_READ
|
1451 IB_ACCESS_REMOTE_WRITE
;
1453 sg
->addr
= cpu_to_le64(req
->mr
->iova
);
1454 xfer_len
= req
->mr
->length
;
1455 /* Check if PI is added by the HW */
1457 xfer_len
+= (xfer_len
>> bi
->interval_exp
) * ns
->head
->pi_size
;
1458 put_unaligned_le24(xfer_len
, sg
->length
);
1459 put_unaligned_le32(req
->mr
->rkey
, sg
->key
);
1460 sg
->type
= NVME_KEY_SGL_FMT_DATA_DESC
<< 4;
1465 ib_mr_pool_put(queue
->qp
, &queue
->qp
->sig_mrs
, req
->mr
);
1472 static int nvme_rdma_dma_map_req(struct ib_device
*ibdev
, struct request
*rq
,
1473 int *count
, int *pi_count
)
1475 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1478 req
->data_sgl
.sg_table
.sgl
= (struct scatterlist
*)(req
+ 1);
1479 ret
= sg_alloc_table_chained(&req
->data_sgl
.sg_table
,
1480 blk_rq_nr_phys_segments(rq
), req
->data_sgl
.sg_table
.sgl
,
1481 NVME_INLINE_SG_CNT
);
1485 req
->data_sgl
.nents
= blk_rq_map_sg(rq
->q
, rq
,
1486 req
->data_sgl
.sg_table
.sgl
);
1488 *count
= ib_dma_map_sg(ibdev
, req
->data_sgl
.sg_table
.sgl
,
1489 req
->data_sgl
.nents
, rq_dma_dir(rq
));
1490 if (unlikely(*count
<= 0)) {
1492 goto out_free_table
;
1495 if (blk_integrity_rq(rq
)) {
1496 req
->metadata_sgl
->sg_table
.sgl
=
1497 (struct scatterlist
*)(req
->metadata_sgl
+ 1);
1498 ret
= sg_alloc_table_chained(&req
->metadata_sgl
->sg_table
,
1499 rq
->nr_integrity_segments
,
1500 req
->metadata_sgl
->sg_table
.sgl
,
1501 NVME_INLINE_METADATA_SG_CNT
);
1502 if (unlikely(ret
)) {
1507 req
->metadata_sgl
->nents
= blk_rq_map_integrity_sg(rq
,
1508 req
->metadata_sgl
->sg_table
.sgl
);
1509 *pi_count
= ib_dma_map_sg(ibdev
,
1510 req
->metadata_sgl
->sg_table
.sgl
,
1511 req
->metadata_sgl
->nents
,
1513 if (unlikely(*pi_count
<= 0)) {
1515 goto out_free_pi_table
;
1522 sg_free_table_chained(&req
->metadata_sgl
->sg_table
,
1523 NVME_INLINE_METADATA_SG_CNT
);
1525 ib_dma_unmap_sg(ibdev
, req
->data_sgl
.sg_table
.sgl
, req
->data_sgl
.nents
,
1528 sg_free_table_chained(&req
->data_sgl
.sg_table
, NVME_INLINE_SG_CNT
);
1532 static int nvme_rdma_map_data(struct nvme_rdma_queue
*queue
,
1533 struct request
*rq
, struct nvme_command
*c
)
1535 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1536 struct nvme_rdma_device
*dev
= queue
->device
;
1537 struct ib_device
*ibdev
= dev
->dev
;
1542 refcount_set(&req
->ref
, 2); /* send and recv completions */
1544 c
->common
.flags
|= NVME_CMD_SGL_METABUF
;
1546 if (!blk_rq_nr_phys_segments(rq
))
1547 return nvme_rdma_set_sg_null(c
);
1549 ret
= nvme_rdma_dma_map_req(ibdev
, rq
, &count
, &pi_count
);
1553 if (req
->use_sig_mr
) {
1554 ret
= nvme_rdma_map_sg_pi(queue
, req
, c
, count
, pi_count
);
1558 if (count
<= dev
->num_inline_segments
) {
1559 if (rq_data_dir(rq
) == WRITE
&& nvme_rdma_queue_idx(queue
) &&
1560 queue
->ctrl
->use_inline_data
&&
1561 blk_rq_payload_bytes(rq
) <=
1562 nvme_rdma_inline_data_size(queue
)) {
1563 ret
= nvme_rdma_map_sg_inline(queue
, req
, c
, count
);
1567 if (count
== 1 && dev
->pd
->flags
& IB_PD_UNSAFE_GLOBAL_RKEY
) {
1568 ret
= nvme_rdma_map_sg_single(queue
, req
, c
);
1573 ret
= nvme_rdma_map_sg_fr(queue
, req
, c
, count
);
1576 goto out_dma_unmap_req
;
1581 nvme_rdma_dma_unmap_req(ibdev
, rq
);
1585 static void nvme_rdma_send_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1587 struct nvme_rdma_qe
*qe
=
1588 container_of(wc
->wr_cqe
, struct nvme_rdma_qe
, cqe
);
1589 struct nvme_rdma_request
*req
=
1590 container_of(qe
, struct nvme_rdma_request
, sqe
);
1592 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1593 nvme_rdma_wr_error(cq
, wc
, "SEND");
1595 nvme_rdma_end_request(req
);
1598 static int nvme_rdma_post_send(struct nvme_rdma_queue
*queue
,
1599 struct nvme_rdma_qe
*qe
, struct ib_sge
*sge
, u32 num_sge
,
1600 struct ib_send_wr
*first
)
1602 struct ib_send_wr wr
;
1605 sge
->addr
= qe
->dma
;
1606 sge
->length
= sizeof(struct nvme_command
);
1607 sge
->lkey
= queue
->device
->pd
->local_dma_lkey
;
1610 wr
.wr_cqe
= &qe
->cqe
;
1612 wr
.num_sge
= num_sge
;
1613 wr
.opcode
= IB_WR_SEND
;
1614 wr
.send_flags
= IB_SEND_SIGNALED
;
1621 ret
= ib_post_send(queue
->qp
, first
, NULL
);
1622 if (unlikely(ret
)) {
1623 dev_err(queue
->ctrl
->ctrl
.device
,
1624 "%s failed with error code %d\n", __func__
, ret
);
1629 static int nvme_rdma_post_recv(struct nvme_rdma_queue
*queue
,
1630 struct nvme_rdma_qe
*qe
)
1632 struct ib_recv_wr wr
;
1636 list
.addr
= qe
->dma
;
1637 list
.length
= sizeof(struct nvme_completion
);
1638 list
.lkey
= queue
->device
->pd
->local_dma_lkey
;
1640 qe
->cqe
.done
= nvme_rdma_recv_done
;
1643 wr
.wr_cqe
= &qe
->cqe
;
1647 ret
= ib_post_recv(queue
->qp
, &wr
, NULL
);
1648 if (unlikely(ret
)) {
1649 dev_err(queue
->ctrl
->ctrl
.device
,
1650 "%s failed with error code %d\n", __func__
, ret
);
1655 static struct blk_mq_tags
*nvme_rdma_tagset(struct nvme_rdma_queue
*queue
)
1657 u32 queue_idx
= nvme_rdma_queue_idx(queue
);
1660 return queue
->ctrl
->admin_tag_set
.tags
[queue_idx
];
1661 return queue
->ctrl
->tag_set
.tags
[queue_idx
- 1];
1664 static void nvme_rdma_async_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1666 if (unlikely(wc
->status
!= IB_WC_SUCCESS
))
1667 nvme_rdma_wr_error(cq
, wc
, "ASYNC");
1670 static void nvme_rdma_submit_async_event(struct nvme_ctrl
*arg
)
1672 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(arg
);
1673 struct nvme_rdma_queue
*queue
= &ctrl
->queues
[0];
1674 struct ib_device
*dev
= queue
->device
->dev
;
1675 struct nvme_rdma_qe
*sqe
= &ctrl
->async_event_sqe
;
1676 struct nvme_command
*cmd
= sqe
->data
;
1680 ib_dma_sync_single_for_cpu(dev
, sqe
->dma
, sizeof(*cmd
), DMA_TO_DEVICE
);
1682 memset(cmd
, 0, sizeof(*cmd
));
1683 cmd
->common
.opcode
= nvme_admin_async_event
;
1684 cmd
->common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1685 cmd
->common
.flags
|= NVME_CMD_SGL_METABUF
;
1686 nvme_rdma_set_sg_null(cmd
);
1688 sqe
->cqe
.done
= nvme_rdma_async_done
;
1690 ib_dma_sync_single_for_device(dev
, sqe
->dma
, sizeof(*cmd
),
1693 ret
= nvme_rdma_post_send(queue
, sqe
, &sge
, 1, NULL
);
1697 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue
*queue
,
1698 struct nvme_completion
*cqe
, struct ib_wc
*wc
)
1701 struct nvme_rdma_request
*req
;
1703 rq
= nvme_find_rq(nvme_rdma_tagset(queue
), cqe
->command_id
);
1705 dev_err(queue
->ctrl
->ctrl
.device
,
1706 "got bad command_id %#x on QP %#x\n",
1707 cqe
->command_id
, queue
->qp
->qp_num
);
1708 nvme_rdma_error_recovery(queue
->ctrl
);
1711 req
= blk_mq_rq_to_pdu(rq
);
1713 req
->status
= cqe
->status
;
1714 req
->result
= cqe
->result
;
1716 if (wc
->wc_flags
& IB_WC_WITH_INVALIDATE
) {
1717 if (unlikely(!req
->mr
||
1718 wc
->ex
.invalidate_rkey
!= req
->mr
->rkey
)) {
1719 dev_err(queue
->ctrl
->ctrl
.device
,
1720 "Bogus remote invalidation for rkey %#x\n",
1721 req
->mr
? req
->mr
->rkey
: 0);
1722 nvme_rdma_error_recovery(queue
->ctrl
);
1724 } else if (req
->mr
) {
1727 ret
= nvme_rdma_inv_rkey(queue
, req
);
1728 if (unlikely(ret
< 0)) {
1729 dev_err(queue
->ctrl
->ctrl
.device
,
1730 "Queueing INV WR for rkey %#x failed (%d)\n",
1731 req
->mr
->rkey
, ret
);
1732 nvme_rdma_error_recovery(queue
->ctrl
);
1734 /* the local invalidation completion will end the request */
1738 nvme_rdma_end_request(req
);
1741 static void nvme_rdma_recv_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
1743 struct nvme_rdma_qe
*qe
=
1744 container_of(wc
->wr_cqe
, struct nvme_rdma_qe
, cqe
);
1745 struct nvme_rdma_queue
*queue
= wc
->qp
->qp_context
;
1746 struct ib_device
*ibdev
= queue
->device
->dev
;
1747 struct nvme_completion
*cqe
= qe
->data
;
1748 const size_t len
= sizeof(struct nvme_completion
);
1750 if (unlikely(wc
->status
!= IB_WC_SUCCESS
)) {
1751 nvme_rdma_wr_error(cq
, wc
, "RECV");
1755 /* sanity checking for received data length */
1756 if (unlikely(wc
->byte_len
< len
)) {
1757 dev_err(queue
->ctrl
->ctrl
.device
,
1758 "Unexpected nvme completion length(%d)\n", wc
->byte_len
);
1759 nvme_rdma_error_recovery(queue
->ctrl
);
1763 ib_dma_sync_single_for_cpu(ibdev
, qe
->dma
, len
, DMA_FROM_DEVICE
);
1765 * AEN requests are special as they don't time out and can
1766 * survive any kind of queue freeze and often don't respond to
1767 * aborts. We don't even bother to allocate a struct request
1768 * for them but rather special case them here.
1770 if (unlikely(nvme_is_aen_req(nvme_rdma_queue_idx(queue
),
1772 nvme_complete_async_event(&queue
->ctrl
->ctrl
, cqe
->status
,
1775 nvme_rdma_process_nvme_rsp(queue
, cqe
, wc
);
1776 ib_dma_sync_single_for_device(ibdev
, qe
->dma
, len
, DMA_FROM_DEVICE
);
1778 nvme_rdma_post_recv(queue
, qe
);
1781 static int nvme_rdma_conn_established(struct nvme_rdma_queue
*queue
)
1785 for (i
= 0; i
< queue
->queue_size
; i
++) {
1786 ret
= nvme_rdma_post_recv(queue
, &queue
->rsp_ring
[i
]);
1794 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue
*queue
,
1795 struct rdma_cm_event
*ev
)
1797 struct rdma_cm_id
*cm_id
= queue
->cm_id
;
1798 int status
= ev
->status
;
1799 const char *rej_msg
;
1800 const struct nvme_rdma_cm_rej
*rej_data
;
1803 rej_msg
= rdma_reject_msg(cm_id
, status
);
1804 rej_data
= rdma_consumer_reject_data(cm_id
, ev
, &rej_data_len
);
1806 if (rej_data
&& rej_data_len
>= sizeof(u16
)) {
1807 u16 sts
= le16_to_cpu(rej_data
->sts
);
1809 dev_err(queue
->ctrl
->ctrl
.device
,
1810 "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1811 status
, rej_msg
, sts
, nvme_rdma_cm_msg(sts
));
1813 dev_err(queue
->ctrl
->ctrl
.device
,
1814 "Connect rejected: status %d (%s).\n", status
, rej_msg
);
1820 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue
*queue
)
1822 struct nvme_ctrl
*ctrl
= &queue
->ctrl
->ctrl
;
1825 ret
= nvme_rdma_create_queue_ib(queue
);
1829 if (ctrl
->opts
->tos
>= 0)
1830 rdma_set_service_type(queue
->cm_id
, ctrl
->opts
->tos
);
1831 ret
= rdma_resolve_route(queue
->cm_id
, NVME_RDMA_CM_TIMEOUT_MS
);
1833 dev_err(ctrl
->device
, "rdma_resolve_route failed (%d).\n",
1835 goto out_destroy_queue
;
1841 nvme_rdma_destroy_queue_ib(queue
);
1845 static int nvme_rdma_route_resolved(struct nvme_rdma_queue
*queue
)
1847 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
1848 struct rdma_conn_param param
= { };
1849 struct nvme_rdma_cm_req priv
= { };
1852 param
.qp_num
= queue
->qp
->qp_num
;
1853 param
.flow_control
= 1;
1855 param
.responder_resources
= queue
->device
->dev
->attrs
.max_qp_rd_atom
;
1856 /* maximum retry count */
1857 param
.retry_count
= 7;
1858 param
.rnr_retry_count
= 7;
1859 param
.private_data
= &priv
;
1860 param
.private_data_len
= sizeof(priv
);
1862 priv
.recfmt
= cpu_to_le16(NVME_RDMA_CM_FMT_1_0
);
1863 priv
.qid
= cpu_to_le16(nvme_rdma_queue_idx(queue
));
1865 * set the admin queue depth to the minimum size
1866 * specified by the Fabrics standard.
1868 if (priv
.qid
== 0) {
1869 priv
.hrqsize
= cpu_to_le16(NVME_AQ_DEPTH
);
1870 priv
.hsqsize
= cpu_to_le16(NVME_AQ_DEPTH
- 1);
1873 * current interpretation of the fabrics spec
1874 * is at minimum you make hrqsize sqsize+1, or a
1875 * 1's based representation of sqsize.
1877 priv
.hrqsize
= cpu_to_le16(queue
->queue_size
);
1878 priv
.hsqsize
= cpu_to_le16(queue
->ctrl
->ctrl
.sqsize
);
1879 /* cntlid should only be set when creating an I/O queue */
1880 priv
.cntlid
= cpu_to_le16(ctrl
->ctrl
.cntlid
);
1883 ret
= rdma_connect_locked(queue
->cm_id
, ¶m
);
1885 dev_err(ctrl
->ctrl
.device
,
1886 "rdma_connect_locked failed (%d).\n", ret
);
1893 static int nvme_rdma_cm_handler(struct rdma_cm_id
*cm_id
,
1894 struct rdma_cm_event
*ev
)
1896 struct nvme_rdma_queue
*queue
= cm_id
->context
;
1899 dev_dbg(queue
->ctrl
->ctrl
.device
, "%s (%d): status %d id %p\n",
1900 rdma_event_msg(ev
->event
), ev
->event
,
1903 switch (ev
->event
) {
1904 case RDMA_CM_EVENT_ADDR_RESOLVED
:
1905 cm_error
= nvme_rdma_addr_resolved(queue
);
1907 case RDMA_CM_EVENT_ROUTE_RESOLVED
:
1908 cm_error
= nvme_rdma_route_resolved(queue
);
1910 case RDMA_CM_EVENT_ESTABLISHED
:
1911 queue
->cm_error
= nvme_rdma_conn_established(queue
);
1912 /* complete cm_done regardless of success/failure */
1913 complete(&queue
->cm_done
);
1915 case RDMA_CM_EVENT_REJECTED
:
1916 cm_error
= nvme_rdma_conn_rejected(queue
, ev
);
1918 case RDMA_CM_EVENT_ROUTE_ERROR
:
1919 case RDMA_CM_EVENT_CONNECT_ERROR
:
1920 case RDMA_CM_EVENT_UNREACHABLE
:
1921 case RDMA_CM_EVENT_ADDR_ERROR
:
1922 dev_dbg(queue
->ctrl
->ctrl
.device
,
1923 "CM error event %d\n", ev
->event
);
1924 cm_error
= -ECONNRESET
;
1926 case RDMA_CM_EVENT_DISCONNECTED
:
1927 case RDMA_CM_EVENT_ADDR_CHANGE
:
1928 case RDMA_CM_EVENT_TIMEWAIT_EXIT
:
1929 dev_dbg(queue
->ctrl
->ctrl
.device
,
1930 "disconnect received - connection closed\n");
1931 nvme_rdma_error_recovery(queue
->ctrl
);
1933 case RDMA_CM_EVENT_DEVICE_REMOVAL
:
1934 /* device removal is handled via the ib_client API */
1937 dev_err(queue
->ctrl
->ctrl
.device
,
1938 "Unexpected RDMA CM event (%d)\n", ev
->event
);
1939 nvme_rdma_error_recovery(queue
->ctrl
);
1944 queue
->cm_error
= cm_error
;
1945 complete(&queue
->cm_done
);
1951 static void nvme_rdma_complete_timed_out(struct request
*rq
)
1953 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1954 struct nvme_rdma_queue
*queue
= req
->queue
;
1956 nvme_rdma_stop_queue(queue
);
1957 nvmf_complete_timed_out_request(rq
);
1960 static enum blk_eh_timer_return
nvme_rdma_timeout(struct request
*rq
)
1962 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
1963 struct nvme_rdma_queue
*queue
= req
->queue
;
1964 struct nvme_rdma_ctrl
*ctrl
= queue
->ctrl
;
1965 struct nvme_command
*cmd
= req
->req
.cmd
;
1966 int qid
= nvme_rdma_queue_idx(queue
);
1968 dev_warn(ctrl
->ctrl
.device
,
1969 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout\n",
1970 rq
->tag
, nvme_cid(rq
), cmd
->common
.opcode
,
1971 nvme_fabrics_opcode_str(qid
, cmd
), qid
);
1973 if (nvme_ctrl_state(&ctrl
->ctrl
) != NVME_CTRL_LIVE
) {
1975 * If we are resetting, connecting or deleting we should
1976 * complete immediately because we may block controller
1977 * teardown or setup sequence
1978 * - ctrl disable/shutdown fabrics requests
1979 * - connect requests
1980 * - initialization admin requests
1981 * - I/O requests that entered after unquiescing and
1982 * the controller stopped responding
1984 * All other requests should be cancelled by the error
1985 * recovery work, so it's fine that we fail it here.
1987 nvme_rdma_complete_timed_out(rq
);
1992 * LIVE state should trigger the normal error recovery which will
1993 * handle completing this request.
1995 nvme_rdma_error_recovery(ctrl
);
1996 return BLK_EH_RESET_TIMER
;
1999 static blk_status_t
nvme_rdma_queue_rq(struct blk_mq_hw_ctx
*hctx
,
2000 const struct blk_mq_queue_data
*bd
)
2002 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
2003 struct nvme_rdma_queue
*queue
= hctx
->driver_data
;
2004 struct request
*rq
= bd
->rq
;
2005 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
2006 struct nvme_rdma_qe
*sqe
= &req
->sqe
;
2007 struct nvme_command
*c
= nvme_req(rq
)->cmd
;
2008 struct ib_device
*dev
;
2009 bool queue_ready
= test_bit(NVME_RDMA_Q_LIVE
, &queue
->flags
);
2013 WARN_ON_ONCE(rq
->tag
< 0);
2015 if (!nvme_check_ready(&queue
->ctrl
->ctrl
, rq
, queue_ready
))
2016 return nvme_fail_nonready_command(&queue
->ctrl
->ctrl
, rq
);
2018 dev
= queue
->device
->dev
;
2020 req
->sqe
.dma
= ib_dma_map_single(dev
, req
->sqe
.data
,
2021 sizeof(struct nvme_command
),
2023 err
= ib_dma_mapping_error(dev
, req
->sqe
.dma
);
2025 return BLK_STS_RESOURCE
;
2027 ib_dma_sync_single_for_cpu(dev
, sqe
->dma
,
2028 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
2030 ret
= nvme_setup_cmd(ns
, rq
);
2034 nvme_start_request(rq
);
2036 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY
) &&
2037 queue
->pi_support
&&
2038 (c
->common
.opcode
== nvme_cmd_write
||
2039 c
->common
.opcode
== nvme_cmd_read
) &&
2040 nvme_ns_has_pi(ns
->head
))
2041 req
->use_sig_mr
= true;
2043 req
->use_sig_mr
= false;
2045 err
= nvme_rdma_map_data(queue
, rq
, c
);
2046 if (unlikely(err
< 0)) {
2047 dev_err(queue
->ctrl
->ctrl
.device
,
2048 "Failed to map data (%d)\n", err
);
2052 sqe
->cqe
.done
= nvme_rdma_send_done
;
2054 ib_dma_sync_single_for_device(dev
, sqe
->dma
,
2055 sizeof(struct nvme_command
), DMA_TO_DEVICE
);
2057 err
= nvme_rdma_post_send(queue
, sqe
, req
->sge
, req
->num_sge
,
2058 req
->mr
? &req
->reg_wr
.wr
: NULL
);
2065 nvme_rdma_unmap_data(queue
, rq
);
2068 ret
= nvme_host_path_error(rq
);
2069 else if (err
== -ENOMEM
|| err
== -EAGAIN
)
2070 ret
= BLK_STS_RESOURCE
;
2072 ret
= BLK_STS_IOERR
;
2073 nvme_cleanup_cmd(rq
);
2075 ib_dma_unmap_single(dev
, req
->sqe
.dma
, sizeof(struct nvme_command
),
2080 static int nvme_rdma_poll(struct blk_mq_hw_ctx
*hctx
, struct io_comp_batch
*iob
)
2082 struct nvme_rdma_queue
*queue
= hctx
->driver_data
;
2084 return ib_process_cq_direct(queue
->ib_cq
, -1);
2087 static void nvme_rdma_check_pi_status(struct nvme_rdma_request
*req
)
2089 struct request
*rq
= blk_mq_rq_from_pdu(req
);
2090 struct ib_mr_status mr_status
;
2093 ret
= ib_check_mr_status(req
->mr
, IB_MR_CHECK_SIG_STATUS
, &mr_status
);
2095 pr_err("ib_check_mr_status failed, ret %d\n", ret
);
2096 nvme_req(rq
)->status
= NVME_SC_INVALID_PI
;
2100 if (mr_status
.fail_status
& IB_MR_CHECK_SIG_STATUS
) {
2101 switch (mr_status
.sig_err
.err_type
) {
2102 case IB_SIG_BAD_GUARD
:
2103 nvme_req(rq
)->status
= NVME_SC_GUARD_CHECK
;
2105 case IB_SIG_BAD_REFTAG
:
2106 nvme_req(rq
)->status
= NVME_SC_REFTAG_CHECK
;
2108 case IB_SIG_BAD_APPTAG
:
2109 nvme_req(rq
)->status
= NVME_SC_APPTAG_CHECK
;
2112 pr_err("PI error found type %d expected 0x%x vs actual 0x%x\n",
2113 mr_status
.sig_err
.err_type
, mr_status
.sig_err
.expected
,
2114 mr_status
.sig_err
.actual
);
2118 static void nvme_rdma_complete_rq(struct request
*rq
)
2120 struct nvme_rdma_request
*req
= blk_mq_rq_to_pdu(rq
);
2121 struct nvme_rdma_queue
*queue
= req
->queue
;
2122 struct ib_device
*ibdev
= queue
->device
->dev
;
2124 if (req
->use_sig_mr
)
2125 nvme_rdma_check_pi_status(req
);
2127 nvme_rdma_unmap_data(queue
, rq
);
2128 ib_dma_unmap_single(ibdev
, req
->sqe
.dma
, sizeof(struct nvme_command
),
2130 nvme_complete_rq(rq
);
2133 static void nvme_rdma_map_queues(struct blk_mq_tag_set
*set
)
2135 struct nvme_rdma_ctrl
*ctrl
= to_rdma_ctrl(set
->driver_data
);
2137 nvmf_map_queues(set
, &ctrl
->ctrl
, ctrl
->io_queues
);
2140 static const struct blk_mq_ops nvme_rdma_mq_ops
= {
2141 .queue_rq
= nvme_rdma_queue_rq
,
2142 .complete
= nvme_rdma_complete_rq
,
2143 .init_request
= nvme_rdma_init_request
,
2144 .exit_request
= nvme_rdma_exit_request
,
2145 .init_hctx
= nvme_rdma_init_hctx
,
2146 .timeout
= nvme_rdma_timeout
,
2147 .map_queues
= nvme_rdma_map_queues
,
2148 .poll
= nvme_rdma_poll
,
2151 static const struct blk_mq_ops nvme_rdma_admin_mq_ops
= {
2152 .queue_rq
= nvme_rdma_queue_rq
,
2153 .complete
= nvme_rdma_complete_rq
,
2154 .init_request
= nvme_rdma_init_request
,
2155 .exit_request
= nvme_rdma_exit_request
,
2156 .init_hctx
= nvme_rdma_init_admin_hctx
,
2157 .timeout
= nvme_rdma_timeout
,
2160 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl
*ctrl
, bool shutdown
)
2162 nvme_rdma_teardown_io_queues(ctrl
, shutdown
);
2163 nvme_quiesce_admin_queue(&ctrl
->ctrl
);
2164 nvme_disable_ctrl(&ctrl
->ctrl
, shutdown
);
2165 nvme_rdma_teardown_admin_queue(ctrl
, shutdown
);
2168 static void nvme_rdma_delete_ctrl(struct nvme_ctrl
*ctrl
)
2170 nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl
), true);
2173 static void nvme_rdma_reset_ctrl_work(struct work_struct
*work
)
2175 struct nvme_rdma_ctrl
*ctrl
=
2176 container_of(work
, struct nvme_rdma_ctrl
, ctrl
.reset_work
);
2179 nvme_stop_ctrl(&ctrl
->ctrl
);
2180 nvme_rdma_shutdown_ctrl(ctrl
, false);
2182 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
)) {
2183 /* state change failure should never happen */
2188 ret
= nvme_rdma_setup_ctrl(ctrl
, false);
2195 ++ctrl
->ctrl
.nr_reconnects
;
2196 nvme_rdma_reconnect_or_remove(ctrl
, ret
);
2199 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops
= {
2201 .module
= THIS_MODULE
,
2202 .flags
= NVME_F_FABRICS
| NVME_F_METADATA_SUPPORTED
,
2203 .reg_read32
= nvmf_reg_read32
,
2204 .reg_read64
= nvmf_reg_read64
,
2205 .reg_write32
= nvmf_reg_write32
,
2206 .subsystem_reset
= nvmf_subsystem_reset
,
2207 .free_ctrl
= nvme_rdma_free_ctrl
,
2208 .submit_async_event
= nvme_rdma_submit_async_event
,
2209 .delete_ctrl
= nvme_rdma_delete_ctrl
,
2210 .get_address
= nvmf_get_address
,
2211 .stop_ctrl
= nvme_rdma_stop_ctrl
,
2215 * Fails a connection request if it matches an existing controller
2216 * (association) with the same tuple:
2217 * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
2219 * if local address is not specified in the request, it will match an
2220 * existing controller with all the other parameters the same and no
2221 * local port address specified as well.
2223 * The ports don't need to be compared as they are intrinsically
2224 * already matched by the port pointers supplied.
2227 nvme_rdma_existing_controller(struct nvmf_ctrl_options
*opts
)
2229 struct nvme_rdma_ctrl
*ctrl
;
2232 mutex_lock(&nvme_rdma_ctrl_mutex
);
2233 list_for_each_entry(ctrl
, &nvme_rdma_ctrl_list
, list
) {
2234 found
= nvmf_ip_options_match(&ctrl
->ctrl
, opts
);
2238 mutex_unlock(&nvme_rdma_ctrl_mutex
);
2243 static struct nvme_rdma_ctrl
*nvme_rdma_alloc_ctrl(struct device
*dev
,
2244 struct nvmf_ctrl_options
*opts
)
2246 struct nvme_rdma_ctrl
*ctrl
;
2249 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
2251 return ERR_PTR(-ENOMEM
);
2252 ctrl
->ctrl
.opts
= opts
;
2253 INIT_LIST_HEAD(&ctrl
->list
);
2255 if (!(opts
->mask
& NVMF_OPT_TRSVCID
)) {
2257 kstrdup(__stringify(NVME_RDMA_IP_PORT
), GFP_KERNEL
);
2258 if (!opts
->trsvcid
) {
2262 opts
->mask
|= NVMF_OPT_TRSVCID
;
2265 ret
= inet_pton_with_scope(&init_net
, AF_UNSPEC
,
2266 opts
->traddr
, opts
->trsvcid
, &ctrl
->addr
);
2268 pr_err("malformed address passed: %s:%s\n",
2269 opts
->traddr
, opts
->trsvcid
);
2273 if (opts
->mask
& NVMF_OPT_HOST_TRADDR
) {
2274 ret
= inet_pton_with_scope(&init_net
, AF_UNSPEC
,
2275 opts
->host_traddr
, NULL
, &ctrl
->src_addr
);
2277 pr_err("malformed src address passed: %s\n",
2283 if (!opts
->duplicate_connect
&& nvme_rdma_existing_controller(opts
)) {
2288 INIT_DELAYED_WORK(&ctrl
->reconnect_work
,
2289 nvme_rdma_reconnect_ctrl_work
);
2290 INIT_WORK(&ctrl
->err_work
, nvme_rdma_error_recovery_work
);
2291 INIT_WORK(&ctrl
->ctrl
.reset_work
, nvme_rdma_reset_ctrl_work
);
2293 ctrl
->ctrl
.queue_count
= opts
->nr_io_queues
+ opts
->nr_write_queues
+
2294 opts
->nr_poll_queues
+ 1;
2295 ctrl
->ctrl
.sqsize
= opts
->queue_size
- 1;
2296 ctrl
->ctrl
.kato
= opts
->kato
;
2299 ctrl
->queues
= kcalloc(ctrl
->ctrl
.queue_count
, sizeof(*ctrl
->queues
),
2304 ret
= nvme_init_ctrl(&ctrl
->ctrl
, dev
, &nvme_rdma_ctrl_ops
,
2305 0 /* no quirks, we're perfect! */);
2307 goto out_kfree_queues
;
2312 kfree(ctrl
->queues
);
2315 return ERR_PTR(ret
);
2318 static struct nvme_ctrl
*nvme_rdma_create_ctrl(struct device
*dev
,
2319 struct nvmf_ctrl_options
*opts
)
2321 struct nvme_rdma_ctrl
*ctrl
;
2325 ctrl
= nvme_rdma_alloc_ctrl(dev
, opts
);
2327 return ERR_CAST(ctrl
);
2329 ret
= nvme_add_ctrl(&ctrl
->ctrl
);
2333 changed
= nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
);
2334 WARN_ON_ONCE(!changed
);
2336 ret
= nvme_rdma_setup_ctrl(ctrl
, true);
2338 goto out_uninit_ctrl
;
2340 dev_info(ctrl
->ctrl
.device
, "new ctrl: NQN \"%s\", addr %pISpcs, hostnqn: %s\n",
2341 nvmf_ctrl_subsysnqn(&ctrl
->ctrl
), &ctrl
->addr
, opts
->host
->nqn
);
2343 mutex_lock(&nvme_rdma_ctrl_mutex
);
2344 list_add_tail(&ctrl
->list
, &nvme_rdma_ctrl_list
);
2345 mutex_unlock(&nvme_rdma_ctrl_mutex
);
2350 nvme_uninit_ctrl(&ctrl
->ctrl
);
2352 nvme_put_ctrl(&ctrl
->ctrl
);
2355 return ERR_PTR(ret
);
2358 static struct nvmf_transport_ops nvme_rdma_transport
= {
2360 .module
= THIS_MODULE
,
2361 .required_opts
= NVMF_OPT_TRADDR
,
2362 .allowed_opts
= NVMF_OPT_TRSVCID
| NVMF_OPT_RECONNECT_DELAY
|
2363 NVMF_OPT_HOST_TRADDR
| NVMF_OPT_CTRL_LOSS_TMO
|
2364 NVMF_OPT_NR_WRITE_QUEUES
| NVMF_OPT_NR_POLL_QUEUES
|
2366 .create_ctrl
= nvme_rdma_create_ctrl
,
2369 static void nvme_rdma_remove_one(struct ib_device
*ib_device
, void *client_data
)
2371 struct nvme_rdma_ctrl
*ctrl
;
2372 struct nvme_rdma_device
*ndev
;
2375 mutex_lock(&device_list_mutex
);
2376 list_for_each_entry(ndev
, &device_list
, entry
) {
2377 if (ndev
->dev
== ib_device
) {
2382 mutex_unlock(&device_list_mutex
);
2387 /* Delete all controllers using this device */
2388 mutex_lock(&nvme_rdma_ctrl_mutex
);
2389 list_for_each_entry(ctrl
, &nvme_rdma_ctrl_list
, list
) {
2390 if (ctrl
->device
->dev
!= ib_device
)
2392 nvme_delete_ctrl(&ctrl
->ctrl
);
2394 mutex_unlock(&nvme_rdma_ctrl_mutex
);
2396 flush_workqueue(nvme_delete_wq
);
2399 static struct ib_client nvme_rdma_ib_client
= {
2400 .name
= "nvme_rdma",
2401 .remove
= nvme_rdma_remove_one
2404 static int __init
nvme_rdma_init_module(void)
2408 ret
= ib_register_client(&nvme_rdma_ib_client
);
2412 ret
= nvmf_register_transport(&nvme_rdma_transport
);
2414 goto err_unreg_client
;
2419 ib_unregister_client(&nvme_rdma_ib_client
);
2423 static void __exit
nvme_rdma_cleanup_module(void)
2425 struct nvme_rdma_ctrl
*ctrl
;
2427 nvmf_unregister_transport(&nvme_rdma_transport
);
2428 ib_unregister_client(&nvme_rdma_ib_client
);
2430 mutex_lock(&nvme_rdma_ctrl_mutex
);
2431 list_for_each_entry(ctrl
, &nvme_rdma_ctrl_list
, list
)
2432 nvme_delete_ctrl(&ctrl
->ctrl
);
2433 mutex_unlock(&nvme_rdma_ctrl_mutex
);
2434 flush_workqueue(nvme_delete_wq
);
2437 module_init(nvme_rdma_init_module
);
2438 module_exit(nvme_rdma_cleanup_module
);
2440 MODULE_DESCRIPTION("NVMe host RDMA transport driver");
2441 MODULE_LICENSE("GPL v2");