Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / drivers / nvme / target / core.c
blob1f4e9989663be9fc37357e311a01841a4826ec94
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
13 #include <generated/utsrelease.h>
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
18 #include "nvmet.h"
19 #include "debugfs.h"
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
31 * This read/write semaphore is used to synchronize access to configuration
32 * information on a target system that will result in discovery log page
33 * information change for at least one host.
34 * The full list of resources to protected by this semaphore is:
36 * - subsystems list
37 * - per-subsystem allowed hosts list
38 * - allow_any_host subsystem attribute
39 * - nvmet_genctr
40 * - the nvmet_transports array
42 * When updating any of those lists/structures write lock should be obtained,
43 * while when reading (popolating discovery log page or checking host-subsystem
44 * link) read lock is obtained to allow concurrent reads.
46 DECLARE_RWSEM(nvmet_config_sem);
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
54 switch (errno) {
55 case 0:
56 return NVME_SC_SUCCESS;
57 case -ENOSPC:
58 req->error_loc = offsetof(struct nvme_rw_command, length);
59 return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60 case -EREMOTEIO:
61 req->error_loc = offsetof(struct nvme_rw_command, slba);
62 return NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63 case -EOPNOTSUPP:
64 req->error_loc = offsetof(struct nvme_common_command, opcode);
65 switch (req->cmd->common.opcode) {
66 case nvme_cmd_dsm:
67 case nvme_cmd_write_zeroes:
68 return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
69 default:
70 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
72 break;
73 case -ENODATA:
74 req->error_loc = offsetof(struct nvme_rw_command, nsid);
75 return NVME_SC_ACCESS_DENIED;
76 case -EIO:
77 fallthrough;
78 default:
79 req->error_loc = offsetof(struct nvme_common_command, opcode);
80 return NVME_SC_INTERNAL | NVME_STATUS_DNR;
84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
86 pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
87 req->sq->qid);
89 req->error_loc = offsetof(struct nvme_common_command, opcode);
90 return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
94 const char *subsysnqn);
96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
97 size_t len)
99 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
100 req->error_loc = offsetof(struct nvme_common_command, dptr);
101 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
103 return 0;
106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
108 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
109 req->error_loc = offsetof(struct nvme_common_command, dptr);
110 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
112 return 0;
115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
117 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
118 req->error_loc = offsetof(struct nvme_common_command, dptr);
119 return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
121 return 0;
124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
126 struct nvmet_ns *cur;
127 unsigned long idx;
128 u32 nsid = 0;
130 xa_for_each(&subsys->namespaces, idx, cur)
131 nsid = cur->nsid;
133 return nsid;
136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
138 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
143 struct nvmet_req *req;
145 mutex_lock(&ctrl->lock);
146 while (ctrl->nr_async_event_cmds) {
147 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
148 mutex_unlock(&ctrl->lock);
149 nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
150 mutex_lock(&ctrl->lock);
152 mutex_unlock(&ctrl->lock);
155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
157 struct nvmet_async_event *aen;
158 struct nvmet_req *req;
160 mutex_lock(&ctrl->lock);
161 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
162 aen = list_first_entry(&ctrl->async_events,
163 struct nvmet_async_event, entry);
164 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165 nvmet_set_result(req, nvmet_async_event_result(aen));
167 list_del(&aen->entry);
168 kfree(aen);
170 mutex_unlock(&ctrl->lock);
171 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
172 nvmet_req_complete(req, 0);
173 mutex_lock(&ctrl->lock);
175 mutex_unlock(&ctrl->lock);
178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
180 struct nvmet_async_event *aen, *tmp;
182 mutex_lock(&ctrl->lock);
183 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
184 list_del(&aen->entry);
185 kfree(aen);
187 mutex_unlock(&ctrl->lock);
190 static void nvmet_async_event_work(struct work_struct *work)
192 struct nvmet_ctrl *ctrl =
193 container_of(work, struct nvmet_ctrl, async_event_work);
195 nvmet_async_events_process(ctrl);
198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
199 u8 event_info, u8 log_page)
201 struct nvmet_async_event *aen;
203 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
204 if (!aen)
205 return;
207 aen->event_type = event_type;
208 aen->event_info = event_info;
209 aen->log_page = log_page;
211 mutex_lock(&ctrl->lock);
212 list_add_tail(&aen->entry, &ctrl->async_events);
213 mutex_unlock(&ctrl->lock);
215 queue_work(nvmet_wq, &ctrl->async_event_work);
218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
220 u32 i;
222 mutex_lock(&ctrl->lock);
223 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
224 goto out_unlock;
226 for (i = 0; i < ctrl->nr_changed_ns; i++) {
227 if (ctrl->changed_ns_list[i] == nsid)
228 goto out_unlock;
231 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
232 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
233 ctrl->nr_changed_ns = U32_MAX;
234 goto out_unlock;
237 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
238 out_unlock:
239 mutex_unlock(&ctrl->lock);
242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
244 struct nvmet_ctrl *ctrl;
246 lockdep_assert_held(&subsys->lock);
248 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
249 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
250 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
251 continue;
252 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
253 NVME_AER_NOTICE_NS_CHANGED,
254 NVME_LOG_CHANGED_NS);
258 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
259 struct nvmet_port *port)
261 struct nvmet_ctrl *ctrl;
263 mutex_lock(&subsys->lock);
264 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
265 if (port && ctrl->port != port)
266 continue;
267 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
268 continue;
269 nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
270 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
272 mutex_unlock(&subsys->lock);
275 void nvmet_port_send_ana_event(struct nvmet_port *port)
277 struct nvmet_subsys_link *p;
279 down_read(&nvmet_config_sem);
280 list_for_each_entry(p, &port->subsystems, entry)
281 nvmet_send_ana_event(p->subsys, port);
282 up_read(&nvmet_config_sem);
285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
287 int ret = 0;
289 down_write(&nvmet_config_sem);
290 if (nvmet_transports[ops->type])
291 ret = -EINVAL;
292 else
293 nvmet_transports[ops->type] = ops;
294 up_write(&nvmet_config_sem);
296 return ret;
298 EXPORT_SYMBOL_GPL(nvmet_register_transport);
300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
302 down_write(&nvmet_config_sem);
303 nvmet_transports[ops->type] = NULL;
304 up_write(&nvmet_config_sem);
306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
310 struct nvmet_ctrl *ctrl;
312 mutex_lock(&subsys->lock);
313 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
314 if (ctrl->port == port)
315 ctrl->ops->delete_ctrl(ctrl);
317 mutex_unlock(&subsys->lock);
320 int nvmet_enable_port(struct nvmet_port *port)
322 const struct nvmet_fabrics_ops *ops;
323 int ret;
325 lockdep_assert_held(&nvmet_config_sem);
327 ops = nvmet_transports[port->disc_addr.trtype];
328 if (!ops) {
329 up_write(&nvmet_config_sem);
330 request_module("nvmet-transport-%d", port->disc_addr.trtype);
331 down_write(&nvmet_config_sem);
332 ops = nvmet_transports[port->disc_addr.trtype];
333 if (!ops) {
334 pr_err("transport type %d not supported\n",
335 port->disc_addr.trtype);
336 return -EINVAL;
340 if (!try_module_get(ops->owner))
341 return -EINVAL;
344 * If the user requested PI support and the transport isn't pi capable,
345 * don't enable the port.
347 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
348 pr_err("T10-PI is not supported by transport type %d\n",
349 port->disc_addr.trtype);
350 ret = -EINVAL;
351 goto out_put;
354 ret = ops->add_port(port);
355 if (ret)
356 goto out_put;
358 /* If the transport didn't set inline_data_size, then disable it. */
359 if (port->inline_data_size < 0)
360 port->inline_data_size = 0;
363 * If the transport didn't set the max_queue_size properly, then clamp
364 * it to the target limits. Also set default values in case the
365 * transport didn't set it at all.
367 if (port->max_queue_size < 0)
368 port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
369 else
370 port->max_queue_size = clamp_t(int, port->max_queue_size,
371 NVMET_MIN_QUEUE_SIZE,
372 NVMET_MAX_QUEUE_SIZE);
374 port->enabled = true;
375 port->tr_ops = ops;
376 return 0;
378 out_put:
379 module_put(ops->owner);
380 return ret;
383 void nvmet_disable_port(struct nvmet_port *port)
385 const struct nvmet_fabrics_ops *ops;
387 lockdep_assert_held(&nvmet_config_sem);
389 port->enabled = false;
390 port->tr_ops = NULL;
392 ops = nvmet_transports[port->disc_addr.trtype];
393 ops->remove_port(port);
394 module_put(ops->owner);
397 static void nvmet_keep_alive_timer(struct work_struct *work)
399 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
400 struct nvmet_ctrl, ka_work);
401 bool reset_tbkas = ctrl->reset_tbkas;
403 ctrl->reset_tbkas = false;
404 if (reset_tbkas) {
405 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
406 ctrl->cntlid);
407 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
408 return;
411 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
412 ctrl->cntlid, ctrl->kato);
414 nvmet_ctrl_fatal_error(ctrl);
417 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
419 if (unlikely(ctrl->kato == 0))
420 return;
422 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
423 ctrl->cntlid, ctrl->kato);
425 queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
428 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
430 if (unlikely(ctrl->kato == 0))
431 return;
433 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
435 cancel_delayed_work_sync(&ctrl->ka_work);
438 u16 nvmet_req_find_ns(struct nvmet_req *req)
440 u32 nsid = le32_to_cpu(req->cmd->common.nsid);
441 struct nvmet_subsys *subsys = nvmet_req_subsys(req);
443 req->ns = xa_load(&subsys->namespaces, nsid);
444 if (unlikely(!req->ns)) {
445 req->error_loc = offsetof(struct nvme_common_command, nsid);
446 if (nvmet_subsys_nsid_exists(subsys, nsid))
447 return NVME_SC_INTERNAL_PATH_ERROR;
448 return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
451 percpu_ref_get(&req->ns->ref);
452 return NVME_SC_SUCCESS;
455 static void nvmet_destroy_namespace(struct percpu_ref *ref)
457 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
459 complete(&ns->disable_done);
462 void nvmet_put_namespace(struct nvmet_ns *ns)
464 percpu_ref_put(&ns->ref);
467 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
469 nvmet_bdev_ns_disable(ns);
470 nvmet_file_ns_disable(ns);
473 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
475 int ret;
476 struct pci_dev *p2p_dev;
478 if (!ns->use_p2pmem)
479 return 0;
481 if (!ns->bdev) {
482 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
483 return -EINVAL;
486 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
487 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
488 ns->device_path);
489 return -EINVAL;
492 if (ns->p2p_dev) {
493 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
494 if (ret < 0)
495 return -EINVAL;
496 } else {
498 * Right now we just check that there is p2pmem available so
499 * we can report an error to the user right away if there
500 * is not. We'll find the actual device to use once we
501 * setup the controller when the port's device is available.
504 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
505 if (!p2p_dev) {
506 pr_err("no peer-to-peer memory is available for %s\n",
507 ns->device_path);
508 return -EINVAL;
511 pci_dev_put(p2p_dev);
514 return 0;
518 * Note: ctrl->subsys->lock should be held when calling this function
520 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
521 struct nvmet_ns *ns)
523 struct device *clients[2];
524 struct pci_dev *p2p_dev;
525 int ret;
527 if (!ctrl->p2p_client || !ns->use_p2pmem)
528 return;
530 if (ns->p2p_dev) {
531 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
532 if (ret < 0)
533 return;
535 p2p_dev = pci_dev_get(ns->p2p_dev);
536 } else {
537 clients[0] = ctrl->p2p_client;
538 clients[1] = nvmet_ns_dev(ns);
540 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
541 if (!p2p_dev) {
542 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
543 dev_name(ctrl->p2p_client), ns->device_path);
544 return;
548 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
549 if (ret < 0)
550 pci_dev_put(p2p_dev);
552 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
553 ns->nsid);
556 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
558 loff_t oldsize = ns->size;
560 if (ns->bdev)
561 nvmet_bdev_ns_revalidate(ns);
562 else
563 nvmet_file_ns_revalidate(ns);
565 return oldsize != ns->size;
568 int nvmet_ns_enable(struct nvmet_ns *ns)
570 struct nvmet_subsys *subsys = ns->subsys;
571 struct nvmet_ctrl *ctrl;
572 int ret;
574 mutex_lock(&subsys->lock);
575 ret = 0;
577 if (nvmet_is_passthru_subsys(subsys)) {
578 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
579 goto out_unlock;
582 if (ns->enabled)
583 goto out_unlock;
585 ret = -EMFILE;
586 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
587 goto out_unlock;
589 ret = nvmet_bdev_ns_enable(ns);
590 if (ret == -ENOTBLK)
591 ret = nvmet_file_ns_enable(ns);
592 if (ret)
593 goto out_unlock;
595 ret = nvmet_p2pmem_ns_enable(ns);
596 if (ret)
597 goto out_dev_disable;
599 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
600 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
602 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
603 0, GFP_KERNEL);
604 if (ret)
605 goto out_dev_put;
607 if (ns->nsid > subsys->max_nsid)
608 subsys->max_nsid = ns->nsid;
610 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
611 if (ret)
612 goto out_restore_subsys_maxnsid;
614 if (ns->pr.enable) {
615 ret = nvmet_pr_init_ns(ns);
616 if (ret)
617 goto out_remove_from_subsys;
620 subsys->nr_namespaces++;
622 nvmet_ns_changed(subsys, ns->nsid);
623 ns->enabled = true;
624 ret = 0;
625 out_unlock:
626 mutex_unlock(&subsys->lock);
627 return ret;
629 out_remove_from_subsys:
630 xa_erase(&subsys->namespaces, ns->nsid);
631 out_restore_subsys_maxnsid:
632 subsys->max_nsid = nvmet_max_nsid(subsys);
633 percpu_ref_exit(&ns->ref);
634 out_dev_put:
635 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
636 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
637 out_dev_disable:
638 nvmet_ns_dev_disable(ns);
639 goto out_unlock;
642 void nvmet_ns_disable(struct nvmet_ns *ns)
644 struct nvmet_subsys *subsys = ns->subsys;
645 struct nvmet_ctrl *ctrl;
647 mutex_lock(&subsys->lock);
648 if (!ns->enabled)
649 goto out_unlock;
651 ns->enabled = false;
652 xa_erase(&ns->subsys->namespaces, ns->nsid);
653 if (ns->nsid == subsys->max_nsid)
654 subsys->max_nsid = nvmet_max_nsid(subsys);
656 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
657 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
659 mutex_unlock(&subsys->lock);
662 * Now that we removed the namespaces from the lookup list, we
663 * can kill the per_cpu ref and wait for any remaining references
664 * to be dropped, as well as a RCU grace period for anyone only
665 * using the namepace under rcu_read_lock(). Note that we can't
666 * use call_rcu here as we need to ensure the namespaces have
667 * been fully destroyed before unloading the module.
669 percpu_ref_kill(&ns->ref);
670 synchronize_rcu();
671 wait_for_completion(&ns->disable_done);
672 percpu_ref_exit(&ns->ref);
674 if (ns->pr.enable)
675 nvmet_pr_exit_ns(ns);
677 mutex_lock(&subsys->lock);
679 subsys->nr_namespaces--;
680 nvmet_ns_changed(subsys, ns->nsid);
681 nvmet_ns_dev_disable(ns);
682 out_unlock:
683 mutex_unlock(&subsys->lock);
686 void nvmet_ns_free(struct nvmet_ns *ns)
688 nvmet_ns_disable(ns);
690 down_write(&nvmet_ana_sem);
691 nvmet_ana_group_enabled[ns->anagrpid]--;
692 up_write(&nvmet_ana_sem);
694 kfree(ns->device_path);
695 kfree(ns);
698 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
700 struct nvmet_ns *ns;
702 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
703 if (!ns)
704 return NULL;
706 init_completion(&ns->disable_done);
708 ns->nsid = nsid;
709 ns->subsys = subsys;
711 down_write(&nvmet_ana_sem);
712 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
713 nvmet_ana_group_enabled[ns->anagrpid]++;
714 up_write(&nvmet_ana_sem);
716 uuid_gen(&ns->uuid);
717 ns->buffered_io = false;
718 ns->csi = NVME_CSI_NVM;
720 return ns;
723 static void nvmet_update_sq_head(struct nvmet_req *req)
725 if (req->sq->size) {
726 u32 old_sqhd, new_sqhd;
728 old_sqhd = READ_ONCE(req->sq->sqhd);
729 do {
730 new_sqhd = (old_sqhd + 1) % req->sq->size;
731 } while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
733 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
736 static void nvmet_set_error(struct nvmet_req *req, u16 status)
738 struct nvmet_ctrl *ctrl = req->sq->ctrl;
739 struct nvme_error_slot *new_error_slot;
740 unsigned long flags;
742 req->cqe->status = cpu_to_le16(status << 1);
744 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
745 return;
747 spin_lock_irqsave(&ctrl->error_lock, flags);
748 ctrl->err_counter++;
749 new_error_slot =
750 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
752 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
753 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
754 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
755 new_error_slot->status_field = cpu_to_le16(status << 1);
756 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
757 new_error_slot->lba = cpu_to_le64(req->error_slba);
758 new_error_slot->nsid = req->cmd->common.nsid;
759 spin_unlock_irqrestore(&ctrl->error_lock, flags);
761 /* set the more bit for this request */
762 req->cqe->status |= cpu_to_le16(1 << 14);
765 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
767 struct nvmet_ns *ns = req->ns;
768 struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref;
770 if (!req->sq->sqhd_disabled)
771 nvmet_update_sq_head(req);
772 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
773 req->cqe->command_id = req->cmd->common.command_id;
775 if (unlikely(status))
776 nvmet_set_error(req, status);
778 trace_nvmet_req_complete(req);
780 req->ops->queue_response(req);
782 if (pc_ref)
783 nvmet_pr_put_ns_pc_ref(pc_ref);
784 if (ns)
785 nvmet_put_namespace(ns);
788 void nvmet_req_complete(struct nvmet_req *req, u16 status)
790 struct nvmet_sq *sq = req->sq;
792 __nvmet_req_complete(req, status);
793 percpu_ref_put(&sq->ref);
795 EXPORT_SYMBOL_GPL(nvmet_req_complete);
797 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
798 u16 qid, u16 size)
800 cq->qid = qid;
801 cq->size = size;
804 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
805 u16 qid, u16 size)
807 sq->sqhd = 0;
808 sq->qid = qid;
809 sq->size = size;
811 ctrl->sqs[qid] = sq;
814 static void nvmet_confirm_sq(struct percpu_ref *ref)
816 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
818 complete(&sq->confirm_done);
821 void nvmet_sq_destroy(struct nvmet_sq *sq)
823 struct nvmet_ctrl *ctrl = sq->ctrl;
826 * If this is the admin queue, complete all AERs so that our
827 * queue doesn't have outstanding requests on it.
829 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
830 nvmet_async_events_failall(ctrl);
831 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
832 wait_for_completion(&sq->confirm_done);
833 wait_for_completion(&sq->free_done);
834 percpu_ref_exit(&sq->ref);
835 nvmet_auth_sq_free(sq);
838 * we must reference the ctrl again after waiting for inflight IO
839 * to complete. Because admin connect may have sneaked in after we
840 * store sq->ctrl locally, but before we killed the percpu_ref. the
841 * admin connect allocates and assigns sq->ctrl, which now needs a
842 * final ref put, as this ctrl is going away.
844 ctrl = sq->ctrl;
846 if (ctrl) {
848 * The teardown flow may take some time, and the host may not
849 * send us keep-alive during this period, hence reset the
850 * traffic based keep-alive timer so we don't trigger a
851 * controller teardown as a result of a keep-alive expiration.
853 ctrl->reset_tbkas = true;
854 sq->ctrl->sqs[sq->qid] = NULL;
855 nvmet_ctrl_put(ctrl);
856 sq->ctrl = NULL; /* allows reusing the queue later */
859 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
861 static void nvmet_sq_free(struct percpu_ref *ref)
863 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
865 complete(&sq->free_done);
868 int nvmet_sq_init(struct nvmet_sq *sq)
870 int ret;
872 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
873 if (ret) {
874 pr_err("percpu_ref init failed!\n");
875 return ret;
877 init_completion(&sq->free_done);
878 init_completion(&sq->confirm_done);
879 nvmet_auth_sq_init(sq);
881 return 0;
883 EXPORT_SYMBOL_GPL(nvmet_sq_init);
885 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
886 struct nvmet_ns *ns)
888 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
890 if (unlikely(state == NVME_ANA_INACCESSIBLE))
891 return NVME_SC_ANA_INACCESSIBLE;
892 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
893 return NVME_SC_ANA_PERSISTENT_LOSS;
894 if (unlikely(state == NVME_ANA_CHANGE))
895 return NVME_SC_ANA_TRANSITION;
896 return 0;
899 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
901 if (unlikely(req->ns->readonly)) {
902 switch (req->cmd->common.opcode) {
903 case nvme_cmd_read:
904 case nvme_cmd_flush:
905 break;
906 default:
907 return NVME_SC_NS_WRITE_PROTECTED;
911 return 0;
914 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
916 struct nvme_command *cmd = req->cmd;
917 u16 ret;
919 if (nvme_is_fabrics(cmd))
920 return nvmet_parse_fabrics_io_cmd(req);
922 if (unlikely(!nvmet_check_auth_status(req)))
923 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
925 ret = nvmet_check_ctrl_status(req);
926 if (unlikely(ret))
927 return ret;
929 if (nvmet_is_passthru_req(req))
930 return nvmet_parse_passthru_io_cmd(req);
932 ret = nvmet_req_find_ns(req);
933 if (unlikely(ret))
934 return ret;
936 ret = nvmet_check_ana_state(req->port, req->ns);
937 if (unlikely(ret)) {
938 req->error_loc = offsetof(struct nvme_common_command, nsid);
939 return ret;
941 ret = nvmet_io_cmd_check_access(req);
942 if (unlikely(ret)) {
943 req->error_loc = offsetof(struct nvme_common_command, nsid);
944 return ret;
947 if (req->ns->pr.enable) {
948 ret = nvmet_parse_pr_cmd(req);
949 if (!ret)
950 return ret;
953 switch (req->ns->csi) {
954 case NVME_CSI_NVM:
955 if (req->ns->file)
956 ret = nvmet_file_parse_io_cmd(req);
957 else
958 ret = nvmet_bdev_parse_io_cmd(req);
959 break;
960 case NVME_CSI_ZNS:
961 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
962 ret = nvmet_bdev_zns_parse_io_cmd(req);
963 else
964 ret = NVME_SC_INVALID_IO_CMD_SET;
965 break;
966 default:
967 ret = NVME_SC_INVALID_IO_CMD_SET;
969 if (ret)
970 return ret;
972 if (req->ns->pr.enable) {
973 ret = nvmet_pr_check_cmd_access(req);
974 if (ret)
975 return ret;
977 ret = nvmet_pr_get_ns_pc_ref(req);
979 return ret;
982 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
983 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
985 u8 flags = req->cmd->common.flags;
986 u16 status;
988 req->cq = cq;
989 req->sq = sq;
990 req->ops = ops;
991 req->sg = NULL;
992 req->metadata_sg = NULL;
993 req->sg_cnt = 0;
994 req->metadata_sg_cnt = 0;
995 req->transfer_len = 0;
996 req->metadata_len = 0;
997 req->cqe->result.u64 = 0;
998 req->cqe->status = 0;
999 req->cqe->sq_head = 0;
1000 req->ns = NULL;
1001 req->error_loc = NVMET_NO_ERROR_LOC;
1002 req->error_slba = 0;
1003 req->pc_ref = NULL;
1005 /* no support for fused commands yet */
1006 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
1007 req->error_loc = offsetof(struct nvme_common_command, flags);
1008 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1009 goto fail;
1013 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
1014 * contains an address of a single contiguous physical buffer that is
1015 * byte aligned.
1017 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
1018 req->error_loc = offsetof(struct nvme_common_command, flags);
1019 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1020 goto fail;
1023 if (unlikely(!req->sq->ctrl))
1024 /* will return an error for any non-connect command: */
1025 status = nvmet_parse_connect_cmd(req);
1026 else if (likely(req->sq->qid != 0))
1027 status = nvmet_parse_io_cmd(req);
1028 else
1029 status = nvmet_parse_admin_cmd(req);
1031 if (status)
1032 goto fail;
1034 trace_nvmet_req_init(req, req->cmd);
1036 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1037 status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1038 goto fail;
1041 if (sq->ctrl)
1042 sq->ctrl->reset_tbkas = true;
1044 return true;
1046 fail:
1047 __nvmet_req_complete(req, status);
1048 return false;
1050 EXPORT_SYMBOL_GPL(nvmet_req_init);
1052 void nvmet_req_uninit(struct nvmet_req *req)
1054 percpu_ref_put(&req->sq->ref);
1055 if (req->pc_ref)
1056 nvmet_pr_put_ns_pc_ref(req->pc_ref);
1057 if (req->ns)
1058 nvmet_put_namespace(req->ns);
1060 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1062 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1064 if (unlikely(len != req->transfer_len)) {
1065 req->error_loc = offsetof(struct nvme_common_command, dptr);
1066 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1067 return false;
1070 return true;
1072 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1074 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1076 if (unlikely(data_len > req->transfer_len)) {
1077 req->error_loc = offsetof(struct nvme_common_command, dptr);
1078 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR);
1079 return false;
1082 return true;
1085 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1087 return req->transfer_len - req->metadata_len;
1090 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1091 struct nvmet_req *req)
1093 req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1094 nvmet_data_transfer_len(req));
1095 if (!req->sg)
1096 goto out_err;
1098 if (req->metadata_len) {
1099 req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1100 &req->metadata_sg_cnt, req->metadata_len);
1101 if (!req->metadata_sg)
1102 goto out_free_sg;
1105 req->p2p_dev = p2p_dev;
1107 return 0;
1108 out_free_sg:
1109 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1110 out_err:
1111 return -ENOMEM;
1114 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1116 if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1117 !req->sq->ctrl || !req->sq->qid || !req->ns)
1118 return NULL;
1119 return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1122 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1124 struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1126 if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1127 return 0;
1129 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1130 &req->sg_cnt);
1131 if (unlikely(!req->sg))
1132 goto out;
1134 if (req->metadata_len) {
1135 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1136 &req->metadata_sg_cnt);
1137 if (unlikely(!req->metadata_sg))
1138 goto out_free;
1141 return 0;
1142 out_free:
1143 sgl_free(req->sg);
1144 out:
1145 return -ENOMEM;
1147 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1149 void nvmet_req_free_sgls(struct nvmet_req *req)
1151 if (req->p2p_dev) {
1152 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1153 if (req->metadata_sg)
1154 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1155 req->p2p_dev = NULL;
1156 } else {
1157 sgl_free(req->sg);
1158 if (req->metadata_sg)
1159 sgl_free(req->metadata_sg);
1162 req->sg = NULL;
1163 req->metadata_sg = NULL;
1164 req->sg_cnt = 0;
1165 req->metadata_sg_cnt = 0;
1167 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1169 static inline bool nvmet_cc_en(u32 cc)
1171 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1174 static inline u8 nvmet_cc_css(u32 cc)
1176 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1179 static inline u8 nvmet_cc_mps(u32 cc)
1181 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1184 static inline u8 nvmet_cc_ams(u32 cc)
1186 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1189 static inline u8 nvmet_cc_shn(u32 cc)
1191 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1194 static inline u8 nvmet_cc_iosqes(u32 cc)
1196 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1199 static inline u8 nvmet_cc_iocqes(u32 cc)
1201 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1204 static inline bool nvmet_css_supported(u8 cc_css)
1206 switch (cc_css << NVME_CC_CSS_SHIFT) {
1207 case NVME_CC_CSS_NVM:
1208 case NVME_CC_CSS_CSI:
1209 return true;
1210 default:
1211 return false;
1215 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1217 lockdep_assert_held(&ctrl->lock);
1220 * Only I/O controllers should verify iosqes,iocqes.
1221 * Strictly speaking, the spec says a discovery controller
1222 * should verify iosqes,iocqes are zeroed, however that
1223 * would break backwards compatibility, so don't enforce it.
1225 if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1226 (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1227 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1228 ctrl->csts = NVME_CSTS_CFS;
1229 return;
1232 if (nvmet_cc_mps(ctrl->cc) != 0 ||
1233 nvmet_cc_ams(ctrl->cc) != 0 ||
1234 !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1235 ctrl->csts = NVME_CSTS_CFS;
1236 return;
1239 ctrl->csts = NVME_CSTS_RDY;
1242 * Controllers that are not yet enabled should not really enforce the
1243 * keep alive timeout, but we still want to track a timeout and cleanup
1244 * in case a host died before it enabled the controller. Hence, simply
1245 * reset the keep alive timer when the controller is enabled.
1247 if (ctrl->kato)
1248 mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1251 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1253 lockdep_assert_held(&ctrl->lock);
1255 /* XXX: tear down queues? */
1256 ctrl->csts &= ~NVME_CSTS_RDY;
1257 ctrl->cc = 0;
1260 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1262 u32 old;
1264 mutex_lock(&ctrl->lock);
1265 old = ctrl->cc;
1266 ctrl->cc = new;
1268 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1269 nvmet_start_ctrl(ctrl);
1270 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1271 nvmet_clear_ctrl(ctrl);
1272 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1273 nvmet_clear_ctrl(ctrl);
1274 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1276 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1277 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1278 mutex_unlock(&ctrl->lock);
1281 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1283 /* command sets supported: NVMe command set: */
1284 ctrl->cap = (1ULL << 37);
1285 /* Controller supports one or more I/O Command Sets */
1286 ctrl->cap |= (1ULL << 43);
1287 /* CC.EN timeout in 500msec units: */
1288 ctrl->cap |= (15ULL << 24);
1289 /* maximum queue entries supported: */
1290 if (ctrl->ops->get_max_queue_size)
1291 ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1292 ctrl->port->max_queue_size) - 1;
1293 else
1294 ctrl->cap |= ctrl->port->max_queue_size - 1;
1296 if (nvmet_is_passthru_subsys(ctrl->subsys))
1297 nvmet_passthrough_override_cap(ctrl);
1300 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1301 const char *hostnqn, u16 cntlid,
1302 struct nvmet_req *req)
1304 struct nvmet_ctrl *ctrl = NULL;
1305 struct nvmet_subsys *subsys;
1307 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1308 if (!subsys) {
1309 pr_warn("connect request for invalid subsystem %s!\n",
1310 subsysnqn);
1311 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1312 goto out;
1315 mutex_lock(&subsys->lock);
1316 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1317 if (ctrl->cntlid == cntlid) {
1318 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1319 pr_warn("hostnqn mismatch.\n");
1320 continue;
1322 if (!kref_get_unless_zero(&ctrl->ref))
1323 continue;
1325 /* ctrl found */
1326 goto found;
1330 ctrl = NULL; /* ctrl not found */
1331 pr_warn("could not find controller %d for subsys %s / host %s\n",
1332 cntlid, subsysnqn, hostnqn);
1333 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1335 found:
1336 mutex_unlock(&subsys->lock);
1337 nvmet_subsys_put(subsys);
1338 out:
1339 return ctrl;
1342 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1344 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1345 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1346 req->cmd->common.opcode, req->sq->qid);
1347 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1350 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1351 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1352 req->cmd->common.opcode, req->sq->qid);
1353 return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1356 if (unlikely(!nvmet_check_auth_status(req))) {
1357 pr_warn("qid %d not authenticated\n", req->sq->qid);
1358 return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1360 return 0;
1363 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1365 struct nvmet_host_link *p;
1367 lockdep_assert_held(&nvmet_config_sem);
1369 if (subsys->allow_any_host)
1370 return true;
1372 if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1373 return true;
1375 list_for_each_entry(p, &subsys->hosts, entry) {
1376 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1377 return true;
1380 return false;
1384 * Note: ctrl->subsys->lock should be held when calling this function
1386 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1387 struct nvmet_req *req)
1389 struct nvmet_ns *ns;
1390 unsigned long idx;
1392 if (!req->p2p_client)
1393 return;
1395 ctrl->p2p_client = get_device(req->p2p_client);
1397 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1398 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1402 * Note: ctrl->subsys->lock should be held when calling this function
1404 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1406 struct radix_tree_iter iter;
1407 void __rcu **slot;
1409 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1410 pci_dev_put(radix_tree_deref_slot(slot));
1412 put_device(ctrl->p2p_client);
1415 static void nvmet_fatal_error_handler(struct work_struct *work)
1417 struct nvmet_ctrl *ctrl =
1418 container_of(work, struct nvmet_ctrl, fatal_err_work);
1420 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1421 ctrl->ops->delete_ctrl(ctrl);
1424 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1425 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp,
1426 uuid_t *hostid)
1428 struct nvmet_subsys *subsys;
1429 struct nvmet_ctrl *ctrl;
1430 int ret;
1431 u16 status;
1433 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1434 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1435 if (!subsys) {
1436 pr_warn("connect request for invalid subsystem %s!\n",
1437 subsysnqn);
1438 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1439 req->error_loc = offsetof(struct nvme_common_command, dptr);
1440 goto out;
1443 down_read(&nvmet_config_sem);
1444 if (!nvmet_host_allowed(subsys, hostnqn)) {
1445 pr_info("connect by host %s for subsystem %s not allowed\n",
1446 hostnqn, subsysnqn);
1447 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1448 up_read(&nvmet_config_sem);
1449 status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1450 req->error_loc = offsetof(struct nvme_common_command, dptr);
1451 goto out_put_subsystem;
1453 up_read(&nvmet_config_sem);
1455 status = NVME_SC_INTERNAL;
1456 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1457 if (!ctrl)
1458 goto out_put_subsystem;
1459 mutex_init(&ctrl->lock);
1461 ctrl->port = req->port;
1462 ctrl->ops = req->ops;
1464 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1465 /* By default, set loop targets to clear IDS by default */
1466 if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1467 subsys->clear_ids = 1;
1468 #endif
1470 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1471 INIT_LIST_HEAD(&ctrl->async_events);
1472 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1473 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1474 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1476 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1477 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1479 kref_init(&ctrl->ref);
1480 ctrl->subsys = subsys;
1481 ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1482 nvmet_init_cap(ctrl);
1483 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1485 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1486 sizeof(__le32), GFP_KERNEL);
1487 if (!ctrl->changed_ns_list)
1488 goto out_free_ctrl;
1490 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1491 sizeof(struct nvmet_sq *),
1492 GFP_KERNEL);
1493 if (!ctrl->sqs)
1494 goto out_free_changed_ns_list;
1496 ret = ida_alloc_range(&cntlid_ida,
1497 subsys->cntlid_min, subsys->cntlid_max,
1498 GFP_KERNEL);
1499 if (ret < 0) {
1500 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1501 goto out_free_sqs;
1503 ctrl->cntlid = ret;
1505 uuid_copy(&ctrl->hostid, hostid);
1508 * Discovery controllers may use some arbitrary high value
1509 * in order to cleanup stale discovery sessions
1511 if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1512 kato = NVMET_DISC_KATO_MS;
1514 /* keep-alive timeout in seconds */
1515 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1517 ctrl->err_counter = 0;
1518 spin_lock_init(&ctrl->error_lock);
1520 nvmet_start_keep_alive_timer(ctrl);
1522 mutex_lock(&subsys->lock);
1523 ret = nvmet_ctrl_init_pr(ctrl);
1524 if (ret)
1525 goto init_pr_fail;
1526 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1527 nvmet_setup_p2p_ns_map(ctrl, req);
1528 nvmet_debugfs_ctrl_setup(ctrl);
1529 mutex_unlock(&subsys->lock);
1531 *ctrlp = ctrl;
1532 return 0;
1534 init_pr_fail:
1535 mutex_unlock(&subsys->lock);
1536 nvmet_stop_keep_alive_timer(ctrl);
1537 ida_free(&cntlid_ida, ctrl->cntlid);
1538 out_free_sqs:
1539 kfree(ctrl->sqs);
1540 out_free_changed_ns_list:
1541 kfree(ctrl->changed_ns_list);
1542 out_free_ctrl:
1543 kfree(ctrl);
1544 out_put_subsystem:
1545 nvmet_subsys_put(subsys);
1546 out:
1547 return status;
1550 static void nvmet_ctrl_free(struct kref *ref)
1552 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1553 struct nvmet_subsys *subsys = ctrl->subsys;
1555 mutex_lock(&subsys->lock);
1556 nvmet_ctrl_destroy_pr(ctrl);
1557 nvmet_release_p2p_ns_map(ctrl);
1558 list_del(&ctrl->subsys_entry);
1559 mutex_unlock(&subsys->lock);
1561 nvmet_stop_keep_alive_timer(ctrl);
1563 flush_work(&ctrl->async_event_work);
1564 cancel_work_sync(&ctrl->fatal_err_work);
1566 nvmet_destroy_auth(ctrl);
1568 nvmet_debugfs_ctrl_free(ctrl);
1570 ida_free(&cntlid_ida, ctrl->cntlid);
1572 nvmet_async_events_free(ctrl);
1573 kfree(ctrl->sqs);
1574 kfree(ctrl->changed_ns_list);
1575 kfree(ctrl);
1577 nvmet_subsys_put(subsys);
1580 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1582 kref_put(&ctrl->ref, nvmet_ctrl_free);
1585 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1587 mutex_lock(&ctrl->lock);
1588 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1589 ctrl->csts |= NVME_CSTS_CFS;
1590 queue_work(nvmet_wq, &ctrl->fatal_err_work);
1592 mutex_unlock(&ctrl->lock);
1594 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1596 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1597 char *traddr, size_t traddr_len)
1599 if (!ctrl->ops->host_traddr)
1600 return -EOPNOTSUPP;
1601 return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1604 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1605 const char *subsysnqn)
1607 struct nvmet_subsys_link *p;
1609 if (!port)
1610 return NULL;
1612 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1613 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1614 return NULL;
1615 return nvmet_disc_subsys;
1618 down_read(&nvmet_config_sem);
1619 if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1620 NVMF_NQN_SIZE)) {
1621 if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1622 up_read(&nvmet_config_sem);
1623 return nvmet_disc_subsys;
1626 list_for_each_entry(p, &port->subsystems, entry) {
1627 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1628 NVMF_NQN_SIZE)) {
1629 if (!kref_get_unless_zero(&p->subsys->ref))
1630 break;
1631 up_read(&nvmet_config_sem);
1632 return p->subsys;
1635 up_read(&nvmet_config_sem);
1636 return NULL;
1639 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1640 enum nvme_subsys_type type)
1642 struct nvmet_subsys *subsys;
1643 char serial[NVMET_SN_MAX_SIZE / 2];
1644 int ret;
1646 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1647 if (!subsys)
1648 return ERR_PTR(-ENOMEM);
1650 subsys->ver = NVMET_DEFAULT_VS;
1651 /* generate a random serial number as our controllers are ephemeral: */
1652 get_random_bytes(&serial, sizeof(serial));
1653 bin2hex(subsys->serial, &serial, sizeof(serial));
1655 subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1656 if (!subsys->model_number) {
1657 ret = -ENOMEM;
1658 goto free_subsys;
1661 subsys->ieee_oui = 0;
1663 subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1664 if (!subsys->firmware_rev) {
1665 ret = -ENOMEM;
1666 goto free_mn;
1669 switch (type) {
1670 case NVME_NQN_NVME:
1671 subsys->max_qid = NVMET_NR_QUEUES;
1672 break;
1673 case NVME_NQN_DISC:
1674 case NVME_NQN_CURR:
1675 subsys->max_qid = 0;
1676 break;
1677 default:
1678 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1679 ret = -EINVAL;
1680 goto free_fr;
1682 subsys->type = type;
1683 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1684 GFP_KERNEL);
1685 if (!subsys->subsysnqn) {
1686 ret = -ENOMEM;
1687 goto free_fr;
1689 subsys->cntlid_min = NVME_CNTLID_MIN;
1690 subsys->cntlid_max = NVME_CNTLID_MAX;
1691 kref_init(&subsys->ref);
1693 mutex_init(&subsys->lock);
1694 xa_init(&subsys->namespaces);
1695 INIT_LIST_HEAD(&subsys->ctrls);
1696 INIT_LIST_HEAD(&subsys->hosts);
1698 ret = nvmet_debugfs_subsys_setup(subsys);
1699 if (ret)
1700 goto free_subsysnqn;
1702 return subsys;
1704 free_subsysnqn:
1705 kfree(subsys->subsysnqn);
1706 free_fr:
1707 kfree(subsys->firmware_rev);
1708 free_mn:
1709 kfree(subsys->model_number);
1710 free_subsys:
1711 kfree(subsys);
1712 return ERR_PTR(ret);
1715 static void nvmet_subsys_free(struct kref *ref)
1717 struct nvmet_subsys *subsys =
1718 container_of(ref, struct nvmet_subsys, ref);
1720 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1722 nvmet_debugfs_subsys_free(subsys);
1724 xa_destroy(&subsys->namespaces);
1725 nvmet_passthru_subsys_free(subsys);
1727 kfree(subsys->subsysnqn);
1728 kfree(subsys->model_number);
1729 kfree(subsys->firmware_rev);
1730 kfree(subsys);
1733 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1735 struct nvmet_ctrl *ctrl;
1737 mutex_lock(&subsys->lock);
1738 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1739 ctrl->ops->delete_ctrl(ctrl);
1740 mutex_unlock(&subsys->lock);
1743 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1745 kref_put(&subsys->ref, nvmet_subsys_free);
1748 static int __init nvmet_init(void)
1750 int error = -ENOMEM;
1752 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1754 nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1755 NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1756 SLAB_HWCACHE_ALIGN, NULL);
1757 if (!nvmet_bvec_cache)
1758 return -ENOMEM;
1760 zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1761 if (!zbd_wq)
1762 goto out_destroy_bvec_cache;
1764 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1765 WQ_MEM_RECLAIM, 0);
1766 if (!buffered_io_wq)
1767 goto out_free_zbd_work_queue;
1769 nvmet_wq = alloc_workqueue("nvmet-wq",
1770 WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0);
1771 if (!nvmet_wq)
1772 goto out_free_buffered_work_queue;
1774 error = nvmet_init_discovery();
1775 if (error)
1776 goto out_free_nvmet_work_queue;
1778 error = nvmet_init_debugfs();
1779 if (error)
1780 goto out_exit_discovery;
1782 error = nvmet_init_configfs();
1783 if (error)
1784 goto out_exit_debugfs;
1786 return 0;
1788 out_exit_debugfs:
1789 nvmet_exit_debugfs();
1790 out_exit_discovery:
1791 nvmet_exit_discovery();
1792 out_free_nvmet_work_queue:
1793 destroy_workqueue(nvmet_wq);
1794 out_free_buffered_work_queue:
1795 destroy_workqueue(buffered_io_wq);
1796 out_free_zbd_work_queue:
1797 destroy_workqueue(zbd_wq);
1798 out_destroy_bvec_cache:
1799 kmem_cache_destroy(nvmet_bvec_cache);
1800 return error;
1803 static void __exit nvmet_exit(void)
1805 nvmet_exit_configfs();
1806 nvmet_exit_debugfs();
1807 nvmet_exit_discovery();
1808 ida_destroy(&cntlid_ida);
1809 destroy_workqueue(nvmet_wq);
1810 destroy_workqueue(buffered_io_wq);
1811 destroy_workqueue(zbd_wq);
1812 kmem_cache_destroy(nvmet_bvec_cache);
1814 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1815 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1818 module_init(nvmet_init);
1819 module_exit(nvmet_exit);
1821 MODULE_DESCRIPTION("NVMe target core framework");
1822 MODULE_LICENSE("GPL v2");